A Server System Infrastructure (SSI) Specification For Entry Chassis Power Supplies

Version 2.91

Orig./Rev.	Description of Changes
2.1	Posted design guide
2.8	Remove references to common and split 12V planes. Added higher power levels up to 800W. Reduced holdup time requirements to 75% of max load. Added cross loading plots. Added option for tighter 12V regulation. Add new SSI efficiency requirements (recommended level & loading conditions). Increase 12V rail currents. Tpwok_on max time reduced to 500msec. Change 5VSB to 3.0A for higher power levels.
	Added reference to PSMI spec. Modified SMBus section (FRU and PSMI) to 3.3V with 5V tolerance. Modified 240VA section; removed common plane, change to <20A for all 12V outputs. Updated sound power & airflow requirements Add SATA and PCI-Express GFX connectors Updated efficiency testing method
2.9 Increase 5V current to 30A and combined 3.3V/5V power to 160W for the 650-800W po Increase 12V1/2 current for 550W-600W power levels. Relax require regulation limits. optional regulation limits.	
2.91	Fixed error in 3.3V and 5V loading at higher power levels. Increased 3.3V/5V combined loading to 170W.

Disclaimer:

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO **WARRANTIES** WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR WITHOUT LIMITATION, THE PROMOTERS (Intel Corporation, NEC Corporation, Dell Computer Corporation, Data General a division of EMC Corporation, Compag Computer Corporation, Silicon Graphics Inc., and International Business Machines Corporation) DISCLAIM ALL LIABILITY FOR COST OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL AMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY OR OTHERWISE, ARISING IN ANY WAY OUT OF USE OR RELIANCE UPON THIS SPECIFICATION OR ANY INFORMATION HEREIN.

The Promoters disclaim all liability, including liability for infringement of any proprietary rights, relating to use of information in this specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

This specification and the information herein is the confidential and trade secret information of the Promoters. Use, reproduction and disclosure of this specification and the information herein are subject to the terms of the S.S.I. Specification Adopter's Agreement.

Copyright © Intel Corporation, Dell Computer Corporation, Hewlett Packard Company, Silicon Graphics Inc., International Business Machines Corporation, 2002 – 2004.

Contents

1		Purpose	7
2		Conceptual Overview	7
3		Definitions/Terms/Acronyms	8
4		Mechanical Overview	
	4.1	Acoustic Requirements	
	4.2	Airflow Requirements	
	4.3	Temperature Requirements	
5		AC Input Requirements	
	5.1	AC Inlet Connector	
	5.2	AC Input Voltage Specification	
	5.3	Input Under Voltage	
	5.4	Efficiency	
	5.5	AC Line Dropout	
	5.6	AC Line Fuse	13
	5.7	AC Inrush	13
	5.8	AC Line Transient Specification	14
	5.9	AC Line Fast Transient Specification	14
6		DC Output Specification	15
	6.1	Output Connectors	15
	6.	.1.1 Baseboard power connector	15
	6.	.1.2 Processor Power Connector	15
		.1.3 +12V4 Baseboard Power Connector	
		.1.4 Peripheral Power Connectors	
		.1.5 Floppy Power Connector	
		.1.6 Serial ATA Power Connector	
		.1.7 Server Signal Connector	
		.1.8 Workstation Power Connector for High Power Graphics Cards	
	6.2	Grounding	
	6.3	Remote Sense Output Power/Currents	
	6.4	.4.1 Standby Outputs	
	6.5	Voltage Regulation	
	6.6	Dynamic Loading	
	6.7	Capacitive Loading	
	6.8	Ripple / Noise	
	6.9	Timing Requirements	
7		Protection Circuits	
	7.1	Current Limit	
	7.1	240VA Protection	
	7.3	Over Voltage Protection	
	7.4	Over Temperature Protection	
8	-	Control and Indicator Functions	
	8.1	PSON#	
	8.2	PWOK (Power OK)	
	8.3	SMBus Communication	
	8.4	Power Supply Management Interface	
	8.5	Field Replacement Unit (FRU) Signals	

SSI

	EPS12V Power Supply Design Guide, V2.91
8.5.2 FRU Data Format	
9 MTBF	38
10 Agency Requirements	39
Agency requirements	
Figures	
	9
	10
	21
	22
	23
	24
Figure 9: Output Voltage Timing	
Figure 11: PSON# Signal Characteristics	
Tables	
	10
	10
	Error! Bookmark not defined.
	14
•	15
	16
Table 10: Peripheral Power Connectors	17
Table 11: Floppy Power Connector	
Table 12: Floppy Power Connector	18
	19
Table 14 PCI Express Graphic Card Power Connector	19
_	21
<u> </u>	22
_	23
<u> </u>	24
· · · · · · · · · · · · · · · · · · ·	25
_	
•	
•	
•	
·	30
, ,	
Table 30: Over Voltage Limits	3/1

SSI

		EPS12V Power Supply Design Guide, V2.91
Table 31:	PSON [#] Signal Characteristic	
Table 32:	PWOK Signal Characteristics	36
	FRU Device Information	
Table 34:	FRU Device Product Information Area	
Table 35:	MultiRecord information Area	38

1 Purpose

This specification defines a non-redundant power supply that supports entry server computer systems. Recommendations for 550 W, 600 W, 650 W, 700W, 750W, and 800W power supplies with 8 outputs (3.3 V, 5 V, 12V1, 12V2, 12V3, 12V4, -12 V, and 5 VSB) are provided. The form factor is based on the PS/2 power supply, with three enclosure lengths defined to support various output power levels. Connector/cable assemblies are required for the motherboard power, remote sensing, control functions, and peripheral power. Because of its connector leads, the entry-level power supply is not intended to be a hot swap type of power supply. The cooling fan should meet the acoustical requirements for the system, while providing system cooling.

The parameters of this supply are defined in this specification for open industry use.

2 Conceptual Overview

In the Entry server market, the bulk power system must source power on several output rails.

These rails are typically as follows:

- +3.3 V
- +5 V
- +12 V
- −12 V
- +5 V standby

NOTES

Local DC-DC converters shall be utilized for processor power, and will ideally convert power from the +12 V rail, however, they may also convert power from other rails.

The +12V rail may be separated into three +12V rails to meet regulatory requirements for energy hazards (240VA).

3 Definitions/Terms/Acronyms

Required	The status given to items within this design guide, which are required to meet SSI guidelines and a large majority of system applications			
Recommended	The status given to items within this design guide which are not required to meet SSI guidelines, however, are required by many system applications			
Optional	The status given to items within this design guide, which are not required to meet SSI guidelines, however, some system applications may optionally use these features			
Autoranging	A power supply that automatically senses and adjusts itself to the proper input voltage range (110 VAC or 220 VAC). No manual switches or manual adjustments are needed			
CFM	Cubic Feet per Minute (airflow)			
Dropout	A condition that allows the line voltage input to the power supply to drop to below the minimum operating voltage			
Latch Off	A power supply, after detecting a fault condition, shuts itself off. Even if the fault condition disappears the supply does not restart unless manual or electronic intervention occurs. Manual intervention commonly includes briefly removing and then reconnecting the supply, or it could be done through a switch. Electronic intervention could be done by electronic signals in the Server System			
Monotonically	A waveform changes from one level to another in a steady fashion, without intermediate retracement or oscillation			
Noise	The periodic or random signals over frequency band of 0 Hz to 20 MHz			
Overcurrent	A condition in which a supply attempts to provide more output current than the amount for which it is rated. This commonly occurs if there is a "short circuit" condition in the load attached to the supply			
PFC	Power Factor Corrected			
Ripple	The periodic or random signals over a frequency band of 0 Hz to 20 MHz			
Rise Time	Rise time is defined as the time it takes any output voltage to rise from 10% to 95% of its nominal voltage			
Sag	The condition where the AC line voltage drops below the nominal voltage conditions			
Surge	The condition where the AC line voltage rises above nominal voltage			
VSB or Standby Voltage	An output voltage that is present whenever AC power is applied to the AC inputs of the supply			
MTBF	Mean time between failure			
PWOK	A typical logic level output signal provided by the supply that signals the Server System that all DC output voltages are within their specified range			

4 Mechanical Overview

STATUS
Required

Three enclosure size options are defined to accommodate various power levels. Recommended power levels for each enclosure length are shown below. Refer to Figure 1 for details. The two rear mounting tabs on the enclosure are OPTIONAL and may not be required for many systems.

Length	Recommended power levels
140mm	< 450W
180mm	450W to 750W
230mm	> 800W

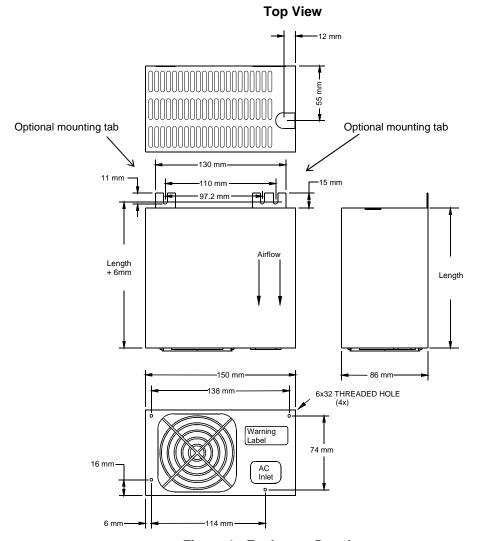


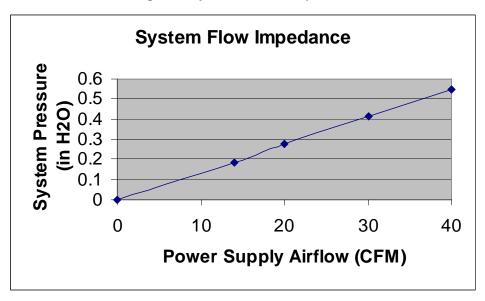
Figure 1: Enclosure Drawing

4.1 Acoustic Requirements

STATUS
Recommended

It is recommended the power supply have a variable speed fan based on temperature and loading conditions. There are three different acoustic sound power levels defined at different ambient temperatures and loading conditions.

Table 1 Recommended Acoustic Sound Power Levels


	Idle	Typical	Max
Ambient Temperature	35°C	40°C	45°C
% Loading	40%	60%	100%
Sound Power (BA)	4.0	4.7	6.0

4.2 Airflow Requirements

STATUS	
Recommended	

It is recommended the power supply have no less than 14 CFM of airflow to provide proper airflow to system components. The air shall exit the power supply on the AC inlet face. The power supply shall meet all requirements with the below system airflow impedance presented to the power supplies airflow path.

Figure 2 System Airflow Impedance

4.3 Temperature Requirements

STATUS	
Recommended	

The power supply shall operate within all specified limits over the T_{op} temperature range. The average air temperature difference (ΔT_{ps}) from the inlet to the outlet of the power supply shall not exceed the values shown below in Table 2. All airflow shall pass through the power supply and not over the exterior surfaces of the power supply.

Table 2: Thermal Requirements

ITEM	DESCRIPTION	MIN	MAX	UNITS
T _{op}	Operating temperature range.	0	45	°C
T _{non-op}	Non-operating temperature range.	-40	70	°C

The power supply must meet UL enclosure requirements for temperature rise limits. All sides of the power supply with exception of the air exhaust side, must be classified as "Handle, knobs, grips, etc. held for short periods of time only".

5 AC Input Requirements

STATUS	
Required	

The power supply shall incorporate universal power input with active power factor correction, which shall reduce line harmonics in accordance with the EN61000-3-2 and JEIDA MITI standards.

5.1 AC Inlet Connector

STATUS	
Required	

The AC input connector shall be an IEC 320 C-14 power inlet. This inlet is rated for 15 A/250 VAC.

5.2 AC Input Voltage Specification

STATUS	
Required	

The power supply must operate within all specified limits over the following input voltage range. Harmonic distortion of up to 10% THD must not cause the power supply to go out of specified limits. The power supply shall operate properly at 85 VAC input voltage to guarantee proper design margins.

Table 3: AC Input Rating

PARAMETER	MIN	RATED	MAX
Voltage (110)	90 V _{rms}	100-127 V _{rms}	140 V _{rms}
Voltage (220)	180 V _{rms}	200-240 V _{rms}	264 V _{rms}
Frequency	47 Hz		63 Hz

5.3 Input Under Voltage

STATU	S
Require	ed

The power supply shall contain protection circuitry such that application of an input voltage below the minimum specified in Section 5.2 shall not cause damage to the power supply.

5.4 Efficiency

Recommended / Required	
STATUS	

The following table provides recommended and required minimum efficiency levels. These are provided at three different load levels; 100%, 50% and 20%. The "required" minimum efficiency levels are for the purpose of proper power supply cooling when installed in the system. The "recommended" minimum efficiency levels are for the

purpose of reducing the system's AC power consumption. The efficiency is specified at 50% and 20% loading conditions to help reduce system power consumption at typical system loading conditions.

Efficiency shall be tested at AC input voltages of 115VAC and 230VAC. Refer to www.efficientpowersupplies.org for details on proper efficiency testing methods.

Table 4: Efficiency

Loading	100% of maximum	50% of maximum	20% of maximum
Required minimum	70%	72%	65%
Recommended minimum	77%	80%	75%

5.5 AC Line Dropout

STATUS
Required

An AC line dropout is defined to be when the AC input drops to 0 VAC at any phase of the AC line for any length of time. During an AC dropout of one cycle or less the power supply must meet dynamic voltage regulation requirements over the rated load. An AC line dropout of one cycle or less shall not cause any tripping of control signals or protection circuits. If the AC dropout lasts longer than one cycle, the power supply should recover and meet all turn on requirements. The power supply must meet the AC dropout requirement over rated AC voltages, frequencies, and 75% or less of the rated output loading conditions. Any dropout of the AC line shall not cause damage to the power supply.

5.6 AC Line Fuse

STATUS	
Required	

The power supply shall incorporate one input fuse on the LINE side for input over-current protection to prevent damage to the power supply and meet product safety requirements. Fuses should be slow blow type or equivalent to prevent nuisance trips. AC inrush current shall not cause the AC line fuse to blow under any conditions. All protection circuits in the power supply shall not cause the AC fuse to blow unless a component in the power supply has failed. This includes DC output load short conditions.

5.7 AC Inrush

STATUS
Required

The power supply must meet inrush requirements for any rated AC voltage, during turn on at any phase of AC voltage, during a single cycle AC dropout condition, during repetitive ON/OFF cycling of AC, and over the specified temperature range (T_{op}). The peak inrush current shall be less than the ratings of its critical components (including input fuse, bulk rectifiers, and surge limiting device).

STATUS
Recommended

An additional inrush current limit is recommended for some system applications that require multiple systems on a single AC circuit. AC line inrush current shall not exceed 50 A peak for one-quarter of the AC cycle, after which, the input current should be no more than the specified maximum input current from Table 3.

5.8 AC Line Transient Specification

STATUS
Recommended

AC line transient conditions shall be defined as "sag" and "surge" conditions. Sag conditions (also referred to as "brownout" conditions) will be defined as the AC line voltage dropping below nominal voltage. Surge will be defined as the AC line voltage rising above nominal voltage.

The power supply shall meet the requirements under the following AC line sag and surge conditions.

Table 5: AC Line Sag Transient Performance

	AC Line Sag						
Duration	Sag	Operating AC Voltage	Line Frequency	Performance Criteria			
Continuous	10%	Nominal AC Voltage ranges	50/60 Hz	No loss of function or performance			
0 to 1 AC cycle	100%	Nominal AC Voltage ranges	50/60 Hz	No loss of function or performance			
>1 AC cycle	>10%	Nominal AC Voltage ranges	50/60 Hz	Loss of function acceptable, self recoverable			

Table 6: AC Line Surge Transient Performance

AC Line Surge						
Duration	Surge	Operating AC Voltage	Line Frequency	Performance Criteria		
Continuous	10%	Nominal AC Voltages	50/60 Hz	No loss of function or performance		
0 to ½ AC cycle	30%	Mid-point of nominal AC Voltages	50/60 Hz	No loss of function or performance		

5.9 AC Line Fast Transient Specification

STATUS	
CTATUC	

The power supply shall meet the *EN61000-4-5* directive and any additional requirements in *IEC1000-4-5:1995* and the Level 3 requirements for surge-withstand capability, with the following conditions and exceptions:

- These input transients must not cause any out-of-regulation conditions, such as overshoot and undershoot, nor must it cause any nuisance trips of any of the power supply protection circuits.
- The surge-withstand test must not produce damage to the power supply.
- The supply must meet surge-withstand test conditions under maximum and minimum DC-output load conditions.

6 DC Output Specification

6.1 Output Connectors

The power supply shall have the following output connectors.

6.1.1 Baseboard power connector

STATUS
Required

Connector housing: 24-Pin Molex 39-01-2240 or equivalent

Contact: Molex 44476-1111 or equivalent

Table 7: P1 Baseboard Power Connector

Pin	Signal	18 AWG Color	Pin	Signal	18 AWG Color
1	+3.3 VDC ¹	Orange	13	+3.3 VDC	Orange
2	+3.3 VDC	Orange	14	-12 VDC	Blue
3	СОМ	Black	15	COM	Black
4	+5 VDC	Red	16	PS_ON	Green
5	СОМ	Black	17	COM	Black
6	+5 VDC	Red	18	COM	Black
7	СОМ	Black	19	COM	Black
8	PWR OK	Gray	20	Reserved (-5 V in ATX)	N.C.
9	5 VSB	Purple	21	+5 VDC	Red
10	+12 V3 ²	Yellow/Blue Stripe	22	+5 VDC	Red
11	+12 V3 ²	Yellow/Blue Stripe	23	+5 VDC	Red
12	+3.3 VDC	Orange	24	COM	Black

^{1. 3.3}V remote sense signal double crimped with 3.3V contact.

6.1.2 Processor Power Connector

STATUS	
Required	

Connector housing: 8-Pin Molex 39-01-2080 or equivalent

Contact: Molex 44476-1111 or equivalent

^{2.} If 240VA limiting is not a requirement for the power supply than all +12V outputs are common and may have the same wire color (yellow).

Table 8: Processor Power Connector

Pin	Signal	18 AWG color	Pin	Signal	18 AWG Color
1	СОМ	Black	5	+12 V1	Yellow/Black Stripe
2	СОМ	Black	6	+12 V1	Yellow/Black Stripe
3	СОМ	Black	7	+12 V2	Yellow
4	СОМ	Black	8	+12 V2	Yellow

If 240VA limiting is not a requirement for the power supply than all +12V outputs are common and may have the same wire color (yellow).

6.1.3 +12V4 Baseboard Power Connector

STATUS
Required for 700W, 750W, and 800W power levels.

Systems that require more then 16A of +12V current to the baseboard will require this additional 2x2 power connector.. This is due to the limited +12V capability of the 2x12 baseboard power connector. +12V4 will power this 2x2 connector.

Connector housing: 4-Pin Molex 39-01-2040 or equivalent

Contact: Molex 44476-1111 or equivalent

Pin	Signal	18 AWG color	Pin	Signal	18 AWG Color
1	СОМ	Black	3	+12 V4	Yellow/Green Stripe
2	СОМ	Black	4	+12 V4	Yellow/Green Stripe

If 240VA limiting is not a requirement for the power supply than all +12V outputs are common and may have the same wire color (yellow

6.1.4 Peripheral Power Connectors

STATUS	
Required	

Connector housing: Amp 1-480424-0 or equivalent

Contact: Amp 61314-1 contact or equivalent

Table 9: Peripheral Power Connectors

Pin	Signal	18 AWG Color
1	+12V4	Yellow/Green stripe
2	COM	Black
3	COM	Black
4	+5 VDC	Red

- 1. The +12V power to peripherals may be split between the second, third, or fourth +12V channel for the purpose of limiting power to less than 240VA.
- 2. If 240VA limiting is not a requirement, all +12V outputs are common and may have the same wire color.

6.1.5 Floppy Power Connector

STATUS	
Required	

Connector housing: Amp 171822-4 or equivalent

Table 10: Floppy Power Connector

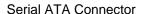
Pin	Signal	22 AWG Color
1	+5 VDC	Red
2	COM	Black
3	СОМ	Black
4	+12V4	Yellow/Green Stripe

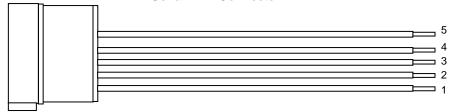
- 1. The +12V power to peripherals may be split between the second, third, or fourth +12V channel for the purpose of limiting power to less than 240VA.
- If 240VA limiting is not a requirement for the power supply than all +12V outputs are common and may have the same wire color.

6.1.6 Serial ATA Power Connector

STATUS	
Optional	

This is a required connector for systems with serial ATA devices.


The detailed requirements for the serial ATA connector can be found in the "Serial ATA: High Speed Serialized AT Attachment" specification at www.serialata.org.


Molex Housing #675820000

Molex Terminal #67510000

Table 11: Floppy Power Connector

Pin	Signal	18 AWG Color
5	+3.3VDC	Orange
4	СОМ	Black
3	+5VDC	Red
2	СОМ	Black
1	+12V4	Yellow/Green Stripe

6.1.7 Server Signal Connector

STATUS	
Optional	

For server systems with SMBus features, the power supply may have an additional connector, which provides serial SMBus for FRU data and remote sense on 3.3V and Return.

If the optional server signal connector is not used on the power supply or the connector is unplugged, the power supply shall utilize the 3.3RS on the baseboard connector (Pin 1).

Connector housing: 5-pin Molex 50-57-9405 or equivalent

Contacts: Molex 16-02-0088 or equivalent

Table 12: Server Signal Connector

Pin	Signal	24 AWG Color
1	SMBus Clock	White/Green Stripe
2	SMBus Data	White/Yellow Stripe
3	SMBAlert	White
4	ReturnS	Black/White Stripe
5	3.3RS	Orange/White Stripe

6.1.8 Workstation Power Connector for High Power Graphics Cards

STATUS	
Optional	

For workstation systems with high-powered graphics cards an additional power connector to the baseboard may be needed. This connector supplies additional +12V power for the higher power level graphics cards used in workstation applications.

Connector housing: 6-pin Molex 45559-0002 or equivalent

Contacts: Molex 39-00-0207 or equivalent

Table 13 PCI Express Graphic Card Power Connector

PIN	SIGNAL	18 AWG Colors	PIN	SIGNAL	18 AWG Colors
1	+12V4	Yellow/Green Stripe	4	COM	Black
2	+12V4	Yellow/Green Stripe	5	COM	Black
3	+12V4	Yellow/Green Stripe	6	COM	Black

6.2 Grounding

STATUS	
Required	l

The ground of the pins of the power supply wire harness provides the power return path. The wire harness ground pins shall be connected to safety ground (power supply enclosure).

6.3 Remote Sense

STATUS	
Optional	

The power supply may have remote sense for the +3.3V (3.3VS) and return (ReturnS) if the Optional Server Signal connector is implemented. The remote sense return (ReturnS) is used to regulate out ground drops for all output voltages; +3.3V, +5 V, +12V1, +12V2, +12V3, -12 V, and 5 VSB. The 3.3V remote sense (3.3VS) is used to regulate out drops in the system for the +3.3 V output. The remote sense input impedance to the power supply must be greater than 200 W on 3.3 VS and ReturnS. This is the value of the resistor connecting the remote sense to the output voltage internal to the power supply. Remote sense must be able to regulate out a minimum of 200 mV drop on the +3.3 V output. The remote sense return (ReturnS) must be able to regulate out a minimum of 200 mV drop in the power ground return. The current in any remote sense line shall be less than 5 mA to prevent voltage sensing errors. The power supply must operate within specification over the full range of voltage drops from the power supply's output connector to the remote sense points.

6.4 Output Power/Currents

The following tables define power and current ratings for four recommended power levels selected to cover different types of systems and configurations.

The combined output power of all outputs shall not exceed the rated output power. Load ranges are provided for each output level. The power supply must meet both static and dynamic voltage regulation requirements for the minimum loading conditions.

Table 14: 550 W Load Ratings

Voltage	Minimum Continuous	Maximum Continuous	Peak
+3.3 V	1.5 A	24 A	
+5 V	1.0 A	24 A	
+12V1	0.5 A	16 A	18 A
+12V2	0.5 A	16 A	18 A
+12V3	1.0 A	14 A	
+12V4	0.5 A	8.0 A	13 A
-12 V	0 A	0.5 A	
+5 VSB	0.1 A	3.0 A	3.5 A

- 1. Maximum continuous total DC output power should not exceed 550 W.
- 2. Maximum continuous combined load on +3.3 VDC and +5 VDC outputs shall not exceed 140 W.
- 3. Maximum peak total DC output power should not exceed 660 W.
- 4. Peak power and current loading shall be supported for a minimum of 12 second.
- 5. Maximum combined current for the 12 V outputs shall be 41 A.
- 6. Peak current for the combined 12 V outputs shall be 50 A.

Figure 3 Cross Loading Graph for 550W Configuration

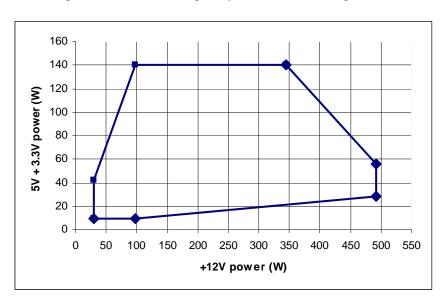


Table 15: 600 W Load Ratings

Voltage	Minimum Continuous	Maximum Continuous	Peak
+3.3 V	1.5 A	24 A	
+5 V	1.0 A	24 A	
+12V1	0.5 A	16 A	18 A
+12V2	0.5 A	16 A	18 A
+12V3	1.0 A	16 A	18 A
+12V4	0.5 A	16 A	18 A
-12 V	0 A	0.5 A	
+5 VSB	0.1 A	3.0 A	3.5 A

- 1. Maximum continuous total DC output power should not exceed 600 W.
- 2. Maximum continuous combined load on +3.3 VDC and +5 VDC outputs shall not exceed 140 W.
- 3. Maximum peak total DC output power should not exceed 680 W.
- 4. Peak power and current loading shall be supported for a minimum of 12 second.
- 5. Maximum combined current for the 12 V outputs shall be 48 A.
- 6. Peak current for the combined 12 V outputs shall be 54 A.

Figure 4 Cross Loading Graph for 600W Configuration

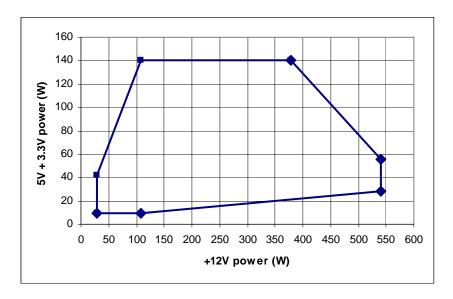


Table 16: 650 W Load Ratings

Voltage	Minimum Continuous	Maximum Continuous	Peak
+3.3 V	1.5 A	24 A	
+5 V	1.0 A	30 A	
+12V1	0.8 A	16 A	18 A
+12V2	0.8 A	16 A	18 A
+12V3	0.5 A	16 A	18 A
+12V4	1.0 A	16 A	18 A
-12 V	0 A	0.5 A	
+5 VSB	0.1 A	3.0 A	3.5 A

- 1. Maximum continuous total DC output power should not exceed 650 W.
- 2. Maximum continuous combined load on +3.3 VDC and +5 VDC outputs shall not exceed 170 W.
- 3. Maximum peak total DC output power should not exceed 730 W.
- 4. Peak power and current loading shall be supported for a minimum of 12 second.
- 5. Maximum combined current for the 12 V outputs shall be 52 A.
- 6. Peak current for the combined 12 V outputs shall be 58 A.

Figure 5 Cross Loading Graph for 650W Configuration

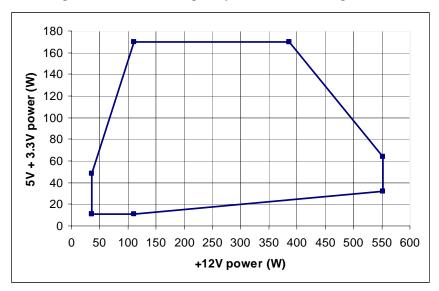
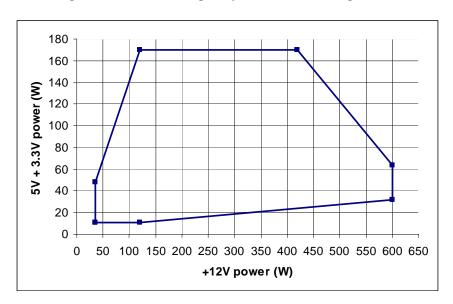


Table 17: 700 W Load Ratings

Voltage	Minimum Continuous	Maximum Continuous	Peak
+3.3 V	1.5 A	24 A	
+5 V	1.0 A	30 A	
+12V1	0.8 A	16 A	18 A
+12V2	0.8 A	16 A	18 A
+12V3	0.5 A	16 A	18 A
+12V4	1.0 A	16 A	18 A
-12 V	0 A	0.5 A	
+5 VSB	0.1 A	3.0 A	3.5 A

- 1. Maximum continuous total DC output power should not exceed 700 W.
- 2. Maximum continuous combined load on +3.3 VDC and +5 VDC outputs shall not exceed 170 W.
- 3. Maximum peak total DC output power should not exceed 780 W.
- 4. Peak power and current loading shall be supported for a minimum of 12 second.
- 5. Maximum combined current for the 12 V outputs shall be 56 A.
- 6. Peak current for the combined 12 V outputs shall be 62 A.

Figure 6 Cross Loading Graph for 700W Configuration



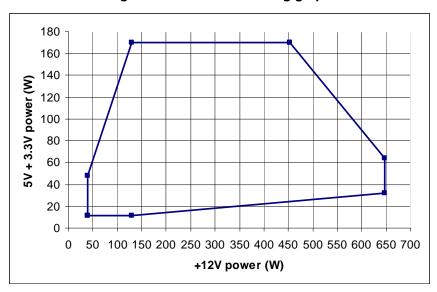


Table 18: 750W Load Ratings

Voltage	Minimum	Maximum	Peak
+3.3 V	1.5 A	24 A	
+5 V	1.0 A	30 A	
+12 V1	0.8 A	16 A	18 A
+12 V2	0.8 A	16 A	18 A
+12 V3	0.5 A	16 A	18 A
+12 V4	1.0 A	18 A	22 A ⁷
-12 V	0 A	0.5 A	
+5 VSB	0.1 A	3.0 A	3.5 A

- 1. Maximum continuous total DC output power should not exceed 750 W.
- 2. Peak load on the combined 12 V output shall not exceed 66A.
- 3. Maximum continuous load on the combined 12 V output shall not exceed 60 A.
- 4. Peak total DC output power should not exceed 850 W.
- 5. Peak power and current loading shall be supported for a minimum of 12 seconds.
- 6. Combined 3.3V and 5V power shall not exceed 170W.
- 7. Peak current on 12V4 shall be supported for a minimum of 0.5 seconds.

Figure 7 750W Cross loading graph

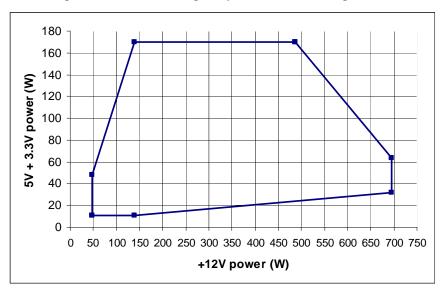

SSI

Table 19: 800 W Load Ratings

Voltage	Minimum Continuous	Maximum Continuous	Peak
+3.3 V	0.8 A	24 A	
+5 V	0.5 A	30 A	
+12V1	0 A	16 A	18 A
+12V2	0 A	16 A	18 A
+12V3	0.9 A	16 A	18 A
+12V4	0.1 A	18 A	22 A ⁷
-12 V	0 A	0.5 A	
+5 VSB	0.1 A	3.0 A	3.5 A

- 1. Maximum continuous total DC output power should not exceed 800 W.
- 2. Maximum continuous combined load on +3.3 VDC and +5 VDC outputs shall not exceed 170 W.
- 3. Maximum peak total DC output power should not exceed 880 W.
- 4. Peak power and current loading shall be supported for a minimum of 12 second.
- 5. Maximum combined current for the 12 V outputs shall be 64 A.
- 6. Peak current for the combined 12 V outputs shall be 70 A.
- 7. Peak power on the +12V4 rail shall be sustained for a minimum of 500msec.

Figure 8 Cross Loading Graph for 800W Configuration

6.4.1 Standby Outputs

STATUS	
Required	

The 5 VSB output shall be present when an AC input greater than the power supply turn on voltage is applied.

6.5 Voltage Regulation

STATUS	
Required	

The power supply output voltages must stay within the following voltage limits when operating at steady state and dynamic loading conditions. These limits include the peak-peak ripple/noise specified in Section 6.8. All outputs are measured with reference to the return remote sense (ReturnS) signal. The 5 V, 12V1, 12V2, 12V3, –12 V and 5 VSB outputs are measured at the power supply connectors referenced to ReturnS. The +3.3 V is measured at it remote sense signal (3.3VS) located at the signal connector.

Table 20: Voltage Regulation Limits

Parameter	MIN	NOM	MAX	Units	Tolerance
+3.3 V	+3.14	+3.30	+3.47	V_{rms}	+/-5%
+5 V	+4.75	+5.00	+5.25	V_{rms}	+/-5%
+12V1,2,3,4	+11.40	+12.00	+12.60	V_{rms}	+/-5%
-12 V	-10.80	-12.20	-13.20	V_{rms}	+/-10%
+5 VSB	+4.75	+5.00	+5.25	V _{rms}	+5/-5%

STATUS	
Optional	

Some system applications may require tighter regulation limits on the outputs. The optional regulation limits are shown below.

Table 21: Optional Regulation Limits

Parameter	MIN	NOM	MAX	Units	Tolerance
+3.3V	+3.20	+3.30	+3.47	V_{rms}	+5/-3%
+5 V	+4.85	+5.00	+5.25	V_{rms}	+5/-3%
+12V1,2,3,4	+11.64	+12.00	+12.60	V _{rms}	+5/-3%
-12V	-11.40	-12.00	-13.08	V_{rms}	+9/-5%
+5 VSB	+4.85	+5.00	+5.25	V_{rms}	+5/-3%

6.6 Dynamic Loading

STATUS	
Required	

The output voltages shall remain within the limits specified in Table 21 for the step loading and within the limits specified in Table 23 for the capacitive loading specified in below. The load transient repetition rate shall be tested between 50 Hz and 5 kHz at duty cycles ranging from 10%-90%. The load transient repetition rate is only a test specification. The Δ step load may occur anywhere within the MIN load to the MAX load range.

Table 22: Transient Load Requirements

		1	
Output	∆ Step Load Size	Load Slew Rate	Capacitive Load
+3.3 V	30% of max load	0.5 A/μs	1000 μF
+5 V	30% of max load	0.5 A/μs	1000 μF
12V1+12V2+12V3+12V4	65% of max load	0.5 A/μs	2200 μF
+5 VSB	25% of max load	0.5 A/μs	1 μF

6.7 Capacitive Loading

STATUS	
Required	

The power supply shall be stable and meet all requirements with the following capacitive loading ranges.

Table 23: Capacitive Loading Conditions

Output	MIN	MAX	Units
+3.3 V	10	12,000	μF
+5 V	10	12,000	μF
+12 V	10	11,000	μF
-12 V	1	350	μF
+5 VSB	1	350	μF

6.8 Ripple / Noise

STATUS	
Required	

The maximum allowed ripple/noise output of the power supply is defined in Table 25. This is measured over a bandwidth of 0 Hz to 20 MHz at the power supply output connectors. A 10 μ F tantalum capacitor in parallel with a 0.1 μ F ceramic capacitor are placed at the point of measurement.

	Tab	le 24: Ripple a	nd Noise	
+3.3 V	+5 V	+12 V	-12 V	+5 VSB
50 mVp-p	50 mVp-p	120 mVp-p	120 mVp-p	50 mVp-p

6.9 Timing Requirements

STATUS
Required

These are the timing requirements for the power supply operation. The output voltages must rise from 10% to within regulation limits (T_{vout_rise}) within 5 to 70 ms; except for 5VSB which is required to rise from 10% to regulation limits within 1 to 25ms. The +3.3 V, +5 V and +12 V output voltages should start to rise at about the same time. All outputs must rise monotonically. The +5 V output needs to be greater than the +3.3 V output during any point of the voltage rise. The +5V output must never be greater than the +3.3V output by more than 2.25 V. Each output voltage shall reach regulation within 50 ms (T_{vout_on}) of each other during turn on of the power supply. Each output voltage shall fall out of regulation within 400 ms (T_{vout_off}) of each other during turn off. Figure 9 and Figure 10 show the turn ON and turn OFF timing requirements. In Figure 10 the timing is shown with both AC and PSON# controlling the ON/OFF of the power supply.

Table 25: Output Voltage Timing

Item	Description	MIN	MAX	Units
T_{vout_rise}	Output voltage rise time from each main output.	5	70	ms
	Ouput voltage rise time for the 5VSB output.	1	25	ms
T_{vout_on}	All main outputs must be within regulation of each other within this time.		50	ms
T_{vout_off}	All main outputs must leave regulation within this time.		400	Ms

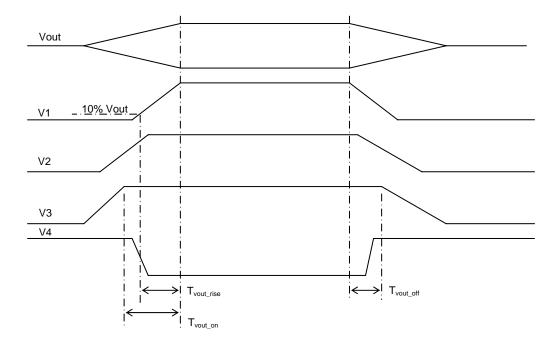


Figure 9: Output Voltage Timing

Table 26: Turn On/Off Timing

Item	Description	MIN	MAX	UNITS
T _{sb_on_delay}	Delay from AC being applied to 5 VSB being within regulation.		1500	ms
T ac_on_delay	Delay from AC being applied to all output voltages being within regulation.		2500	ms
T_{vout_holdup}	Time all output voltages stay within regulation after loss of AC. Tested at 75% of maximum load and over 100-240VAC input.	18		ms
T_{pwok_holdup}	Delay from loss of AC to deassertion of PWOK. Tested at 75% of maximum load and over 100-240VAC input.	17		ms
$T_{pson_on_delay}$	Delay from PSON [#] active to output voltages within regulation limits.	5	400	ms
T pson_pwok	Delay from PSON [#] deactive to PWOK being deasserted.		50	ms
T_{pwok_on}	Delay from output voltages within regulation limits to PWOK asserted at turn on.	100	500	ms
T pwok_off	Delay from PWOK deasserted to output voltages (3.3 V, 5 V, 12 V, -12 V) dropping out of regulation limits.	1		ms
T_{pwok_low}	Duration of PWOK being in the deasserted state during an off/on cycle using AC or the PSON# signal.	100		ms
T_{sb_vout}	Delay from 5 VSB being in regulation to O/Ps being in regulation at AC turn on.	50	1000	ms

STATUS Recommended

Item	Description	MIN	MAX	UNITS
T _{vout_holdup}	Time all output voltages stay within regulation after loss of AC.	21		ms
T_{pwok_holdup}	Delay from loss of AC to deassertion of PWOK.	20		ms
T_{sb_holdup}	Time 5VSB output voltage stays within regulation after loss of AC.	70		ms

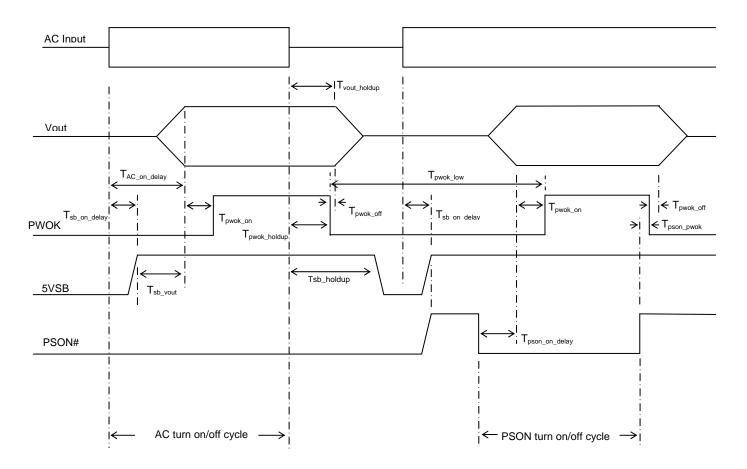


Figure 10: Turn On/Off Timing (Single Power Supply)

7 Protection Circuits

STATUS
Required

Protection circuits inside the power supply shall cause only the power supply's main outputs to shutdown. If the power supply latches off due to a protection circuit tripping, an AC cycle OFF for 15 s and a PSON[#] cycle HIGH for 1 second must be able to reset the power supply.

7.1 Current Limit

STATUS	
Required	

The power supply shall have current limit to prevent the +3.3 V, +5 V, and +12 V outputs from exceeding the values shown in Table 28. If the current limits are exceeded the power supply shall shutdown and latch off. The latch will be cleared by toggling the PSON[#] signal or by an AC power interruption. The power supply shall not be damaged from repeated power cycling in this condition. -12 V and 5 VSB shall be protected under over current or shorted conditions so that no damage can occur to the power supply. All outputs shall be protected so that no damage occurs to the power supply under a shorted output condition.

Table 27: Over Current Protection

Voltage	Over Current Limit (lout limit)
+3.3 V	110% minimum; 150% maximum
+5 V	110% minimum; 150% maximum
+12V	110% minimum; 150% maximum

7.2 240VA Protection

STATUS	
Recommended	

System designs may require user access to energized areas of the system. In these cases the power supply may be required to meet regulatory 240VA energy limits for any power rail. Since the +12V rail combined power exceeds 240VA it must be divided into separate channels to meet this requirement. Each separate rail needs to be limited to less than 20A for each +12V rail. The separate +12V rails do not necessarily need to be independently regulated outputs. They can share a common power conversion stage. The +12V rail is split into four rails. Refer to section 6.4 for how the 12V rail is split between different output connectors.

Table	28.	Over (Current i	l imi	ts
IUNIC	20.		Juli Cill I	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ιJ

Voltage	Over Current Limit (lout limit)
+3.3 V	110% minimum; 150% maximum
+5 V	110% minimum; 150% maximum
+12V1	Peak current minimum; 20A maximum
+12V2	Peak current minimum; 20A maximum
+12V3	Peak current minimum; 20A maximum
+12V4	Peak current minimum; 20A maximum
+12V4 (750W-800W)	Peak current minimum; 22A maximum ¹

 ⁺¹²V4 peak current for the 750W and 800W power supplies shall be maintained for a minimum of 500msec. The maximum duration of the peak current exceeding the 240VA limit should be limited to meet safety regulations. A maximum duration of 1 second is recommended.

7.3 Over Voltage Protection

STATUS	
Required	

The power supply over voltage protection shall be locally sensed. The power supply shall shutdown and latch off after an over voltage condition occurs. This latch shall be cleared by toggling the PSON[#] signal or by an AC power interruption. Table 30 contains the over voltage limits. The values are measured at the output of the power supply's connectors. The voltage shall never exceed the maximum levels when measured at the power pins of the power supply connector during any single point of fail. The voltage shall never trip any lower than the minimum levels when measured at the power pins of the power supply connector.

Table 29: Over Voltage Limits

Output Voltage	MIN (V)	MAX (V)
+3.3 V	3.9	4.5
+5 V	5.7	6.5
+12V1,2,3,4	13.3	14.5
-12 V	-13.3	-14.5
+5 VSB	5.7	6.5

7.4 Over Temperature Protection

STATUS	
Recommended	

The power supply will be protected against over temperature conditions caused by loss of fan cooling or excessive ambient temperature. In an OTP condition the PSU will shutdown. When the power supply temperature drops to within specified limits, the power supply shall restore power automatically. The OTP circuit

50 ms

must have built in hysteresis such that the power supply will not oscillate on and off due to temperature recovering condition. The OTP trip level shall have a minimum of 4 °C of ambient temperature hysteresis.

8 Control and Indicator Functions

The following sections define the input and output signals from the power supply.

Signals that can be defined as low true use the following convention:

T pson_pwok

 $signal^{\#} = low true$

8.1 PSON#

STATUS			
Required			

PWOK delay:

The PSON[#] signal is required to remotely turn on/off the power supply. PSON[#] is an active low signal that turns on the +3.3 V, +5 V, +12 V, and -12 V power rails. When this signal is not pulled low by the system, or left open, the outputs (except the +5 VSB) turn off. This signal is pulled to a standby voltage by a pull-up resistor internal to the power supply. Refer to Figure 10 for timing diagram.

Table 30: PSON[#] Signal Characteristic Signal Type Accepts an open collector/drain input from the system. Pull-up to VSB located in power supply. PSON# = Low ON PSON# = Open or High OFF MIN MAX Logic level low (power supply ON) 0 V 1.0 V Logic level high (power supply OFF) 2.0 V 5.25 V Source current, Vpson = low 4 mA Power up delay: 5 ms T_{pson on delay} 400 ms

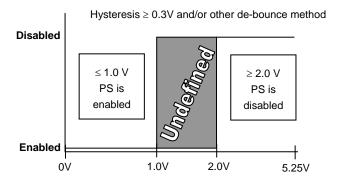


Figure 11: PSON# Signal Characteristics

8.2 PWOK (Power OK)

STATUS
Required

PWOK is a power OK signal and will be pulled HIGH by the power supply to indicate that all the outputs are within the regulation limits of the power supply. When any output voltage falls below regulation limits or when AC power has been removed for a time sufficiently long so that power supply operation is no longer guaranteed, PWOK will be deasserted to a LOW state. See Figure 10 for a representation of the timing characteristics of PWOK. The start of the PWOK delay time shall be inhibited as long as any power supply output is in current limit.

Table 31: PWOK Signal Characteristics			
Signal Type	+5V TTL Compatible output signal		
PWOK = High	Power OK		
PWOK = Low	Power Not OK		
	MIN	MAX	
Logic level low voltage, Isink = 4 mA	0 V	0.4 V	
Logic level high voltage, Isource=200 μA	2.4 V	5.25 V	
PWOK delay: T _{pwok on}	200 ms	1000 ms	
PWOK rise and fall time		100 μs	
Power down delay: T pwok_off	1 ms		

8.3 SMBus Communication

STATUS	
Optional	

The serial bus communication devices for PSMI and FRU data in the power supply shall be compatible with both SMBus 2.0 'high power' and I^2C V_{dd} based power and drive. This bus shall operate at 3.3V but tolerant of 5V signaling. The SMBus pull-ups are located on the motherboard and may be connected to 3.3V or 5V.

Two pins are allocated on the power supply. One pin is the Serial Clock (PSM Clock). The second pin is used for Serial Data (PSM Data). Both pins are bi-directional and are used to form a serial bus. The circuits inside the power supply shall derive their power from the 5VSB bus. No pull-up resistors shall be on SCL or SDA inside the power supply. These pull-up resistors should be located external to the power supply.

8.4 Power Supply Management Interface

STATUS	
Optional	

The PSMI device in the power supply shall derive its power off of the 5VSB output and grounded to ReturnS. It shall be located at address B0h. Refer to the PSMI specification posted on the www.ssiforum.org website for

details on the Power Supply Monitoring Interface requirements. PSMI is a SMBus interface used to communicate power management information to the system.

8.5 Field Replacement Unit (FRU) Signals

STATUS	
Optional	

The FRU circuits inside the power supply must be powered off of 5 VSB output and grounded to ReturnS (remote sense return). The Write Control (or Write protect) pin should be tied to ReturnS inside the power supply so that information can be written to the EEPROM.

8.5.1 FRU Data

FRU data shall be stored starting in address location 8000h through 80FFh. The FRU data format shall be compliant with the IPMI specifications. The current versions of these specifications are available at: http://developer.intel.com/design/servers/ipmi/spec.htm.

8.5.2 FRU Data Format

Table 32: FRU Device Information

Table 621 1110 201100 miletination		
Area Type	Description	
Common Header	As defined by the FRU document	
Internal Use Area	Not required, do not reserve	
Chassis Info Area	Not applicable, do not reserve	
Board Info Area	Not applicable, do not reserve	

8.5.2.1 Product Info Area

Implement as defined by the IPMI FRU document. Product information shall be defined as follows:

Table 33: FRU Device Product Information Area

Field Name	Field Description
Manufacturer Name	{Formal name of manufacturer}
Product Name	{Manufacturer's model number}
Product part/model number	Customer part number
Product Version	Customer current revision
Product Serial Number	{Defined at time of manufacture}
Asset Tag	{Not used, code is zero length byte}
FRU File ID	{Not required}
PAD Bytes	{Added as necessary to allow for 8-byte offset to next area}

8.5.2.2 MultiRecord Area

Implement as defined by the IPMI FRU document. The following record types shall be used on this power supply:

- Power Supply Information (Record Type 0x00)
- DC Output (Record Type 0x01)
- No other record types are required for the power supply.

MultiRecord information shall be defined as follows:

Table 34:	MultiRecord	int	formation	Area
-----------	-------------	-----	-----------	------

Field Name (PS Info)	Field Information Definition
Overall Capacity (watts)	550 {Low power version would be 450}
Peak VA	610 {Low power version would be 490}
Inrush current (A)	50
Inrush interval (ms)	5
Low end input voltage range 1	90
High end input voltage range 1	140
Low end input voltage range 2	180
High end input voltage range 2	264
A/C dropout tol. (ms)	20
Binary flags	Set for: Hot Swap support, Autoswitch, and PFC
Peak Wattage	Set for: 10 s, 610 W {Low power version would be 490 W}
Combined wattage	Set for 5 V & 3.3V combined wattage of 115 W {Low power version would be 115 W}
Predictive fail tach support	Not supported, 00h value
Field Name (Output)	Field Description
Five outputs are to be defined from #1 to #5, as follows: +3.3 V, +5 V, +12 V, -12V, and +5 VSB.	
Output Information	Set for: Standby on +5 VSB, No Standby on all others.
All other output fields	Format per IPMI specification, using parameters in the EPS12V specification.

9 MTBF

STATUS
Recommended

The power supply shall have a minimum MTBF at continuous operation of 1) 50,000 hours at 100% load and 50 $^{\circ}$ C, as calculated by Bellcore RPP, or 2) 100,000 hours demonstrated at 100% load and 50 $^{\circ}$ C.

10 Agency Requirements

STATUS Recommended

The power supply must comply with all regulatory requirements for its intended geographical market. Depending on the chosen market, regulatory requirements may vary. Although a power supply can be designed for worldwide compliance, there may be cost factors that drive different versions of supplies for different geographically targeted markets.

This specification requires that the power supply meet all regulatory requirements for the intended market at the time of manufacturing. Typically this includes:

- UL
- CSA
- A Nordic CENELEC
- TUV
- VDE
- CISPR Class B
- FCC Class B

The power supply, when installed in the system, shall meet immunity requirements specified in EN55024. Specific tests are to be EN61000-4-2, -3, -4, -5, -6, -8, -11, EN61000-3-2, -3, and JEIDI MITI standard. The power supply must maintain normal performance within specified limits. This testing must be completed by the system EMI engineer. Conformance must be designated with the European Union CE Marking. Specific immunity level requirements are left to customer requirements.