

Model DB62

Dekabox® In-line Decade Resistors

- 0.02% nominal accuracy
- · Precision DC use
- · Six dual in-line decades
- Low temperature and power coefficient shielding
- · Four standard values

Dekabox in-line decade resistors are designed for precision DC and audio frequency use. They feature high accuracy, ease of setting, and rapid, error-free reading. The smallest step provided is 0.01Ω ; the largest total resistance available is slightly greater than $11M\Omega$.

Initial adjustment precision is maintained by sound electrical and mechanical design and by the use of materials of highest stability. Accuracy over a wide range of ambient conditions is assured by the use of resistors of low temperature and power coefficients. Switches having multiple contacts made of solid silver-alloy provide low, stable contact resistance. Insulation and circuit design minimize leakage effects.

The bar knobs that rotate the decade switches are especially designed to permit decade setting with a minimum of visual attention. All dials turn a full 360 degrees to simplify and speed settings. The "10" position on each dial gives the

overlap on every decade; the unused "11" position is not detented and can be identified by feel.

The Dekabox resistance values are easily read from the largenumeral in-line presentation above the knobs. Resistance per step and current rating of each decade are presented below the knobs for operator convenience and circuit safety. A sturdy aluminum housing provides both mechanical protection and electrical shielding for the resistance decades.

Specifications

MODEL NO.	TOTAL	RESIST- ANCE - PER STEP	RESISTANCE VALUES (Ω)						
	RESIST- ANCE								
	(Ω)	(Ω)	R1	R2	R3	R4	R5	R6	
	11.1111M	10	1M	100k	10k	1k	100	10	
DB62	1.11111M	1	100k	10k	1k	100	10	1	
	111.111k	0.1	10k	1k	100	10	1	0.1	
	11.1111k	0.01	1k	100	10	1	0.1	0.01	

Accuracy

Accuracy of resistance increments is given in the accompanying table. Accuracy of resistance change from zero setting is given below.

Initial (60 days) \pm (0.01% + 6m Ω) Long-term (two years) \pm (0.02% + 6m Ω)

Short-Term Switching Repeatability

 ± 0.24 m Ω (typical)

Number of Decades

Six

Total Resistance

See table

Resistance per Decade

See table

Smallest Step

See table

Ratings per step for each decade

Resistance at Zero Setting

Approximately $12m\Omega$

Breakdown Voltage

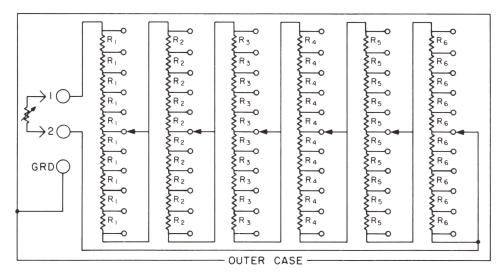
1000V peak to case

Dimensions

Height 4.3 in. (10.9cm) Width 18.0 in. (45.7cm)

Depth 4.9 in. (12.45cm)

Weight


4.5 lbs (2.2kg) net

RESIST- ANCE	RESIST- ANCE① VALUE R (Ω)	INCREMENTAL ACCURACY		COEFFICIENTS		MEASUREMENT DUTY® MAXIMUM RATINGS		PEAK
PER DECADE (Ω)		INITIAL (%)	LONG TERM (%)	TEMPER- ATURE (ppm/°C)	POWER (ppm/mW/ step)	POWER (mW/step)	CURRENT (mA)	VOLTAGE (V/Step)
10M	1M	0.01	0.02	5	0.15	100	0.3	300
1 M	100k	0.01	0.02	5	0.15	1000	3.2	300
100k	10k	0.01	0.02	5	0.15	1000	10	
10k	1k	0.01	0.02	5	0.15	1000	32	
1k	100	0.01	0.02	5	0.15	1000	100	
100	10	0.012	0.025	15	0.45	1000	320	
10	1	0.03	0.07	20	0.6	1000	1000	
1	0.1	0.2	0.5	60	3	500	3200	1
0.1	0.01	2	5	400	60	160	4000	

①Refers to previous table

Standard Equipment

Model DB62 comes with a 7275 instruction manual.

Dekabox Schematic Diagram

U.S. Patent D-203,991,@1988 Electro Scientific Industries, Inc. Printed in U.S.A.

1841-1188-A2K

②Intermittent use such that temperature rise of the resistor will not appreciably exceed that which would occur in free air.