% e e i . A : Ly Sl e
! - vy i e 4 T S R
3 i ¥ " i ‘
' & : -
.
-
.




1722A
Operator’s
Quick Reference Card

FLUKE

TOUCH-SENSITIVE DISPLAY  DISK ACCESS LIGHT

L L

] DISK DRIVE

| —
(O ¢4¢)
T 'I'!_J
RESTART ABORT

RESTART J and {_ABORT | pressed at the same time is the same

as turning the power off and then on again (a coid start).

begins the program again. It reloads system
software and performs the start-up sequence.

is a programmable function. Consult with the
programmer to learn its meaning and use for each
program.

POWER POWER CARD CAGE BRIGHTNESS CONTROL
CO[-ID SIWITCH

=1

| g

‘ 5 IEEE-488

| B CONNECTOR

| / si202.C

; FUSE [ AIRFILTER L TOR

~ SYSTEM GROUND TERMINAL

|

|

. Slots

l Single Board Computer 7

| Video/Graphics/Keyboard Interface 2

l Options 1,3,4,5,6
Memory Expansion Options 1,3,4,5,6
Input/Output Options 1,35
Non-Input/Output Options 4,6
P/N 718163 ©1983 John Fiuke Mfg. Co., Inc.,

OCTOBER 1983 all rights reserved. Litho in U.S.A.



SYSTEM MESSAGES

Failures in system performance usually result in a
message being displayed. Many errors are recoverable,
although some of them indicate a hardware failure has
occurred, and others indicate a problem with the software.
Consult the information below to see how to proceed if a
system error is reported.

Self-Test Messages

Every time the system performs a cold start (power up or
RESTART and ABORT pressed simultaneously), it
performs a Self Test. If any portion of the Self-Test fails, a
message displays indicating which hardware component
has failed. These are non-recoverable errors. Report the
failure to the System Manager.

General Messages

These messages can occur any time during operation.
They are all preceded by a question mark, indicating that
they are recoverable. Use this guide to determine the
cause of the error, and how to proceed if they are
displayed.

? Device Error The system is having difficulty
reading the floppy disk. Check
to be sureit is a System disk and
that it is inserted properly. If it
is, press RESTART and try
again. If the failure continues,
try another System disk.

? Disk Not Ready Insert or reinsert the System
disk. Either there is no disk in
the drive, or it has been inserted
incorrectly. Make sure the disk
drive door is latched.

?7 No Svstem On Device The Controller does not
recognize the disk in the drive
as a System disk. Try another
System disk. The wrong disk
may be inserted, or it may be
inserted incorrectly.

Other Messages

If any message occurs other than those described here,
seek the assistance of the programmer. These messages
are either non-recoverable, or indicate a problem with the
software.

1722A
Operator’s
Quick Reference Card

P/N 718163 ©1983 John Fluke Mfg. Co., Inc.,
OCTOBER 1983 all rights reserved. Litho in U.S.A.




DD

PARALLAX ERROR

Face the screen directly to avoid parallax errors when you
touch the Touch-Sensitive Display.

TOUCH SENSITIVE PANEL

FACE OF TUBE
-7
\q’
CHARACTER e
.

WRONG

TOUCH SENSITIVE PANEL
FACE OF TUBE

CHARACTER

FLOPPY DISK CARE

Never Insert Carefully.

Never Protect

No 10°C - 50°C
50°F - 122°F




LOADING A DISK

@] Gently insert the System disk (label up) into the disk
drive.
(] When the disk is fully seated, latch the drive closed

by pressing in on the bottom of the latch.

o Fioppy disks supplied by Fluke use reinforced
center rings to help seat the disk on the spindle. If
floppy disks without such rings are used, first insert
the disk, and gently close the door without latching
it. Reopen the door slightly, then close and latch it.
That insures that the disk seats on the spindle, and
improves the reliability of reading and recording
data.

PRESS TOP OF DOOR LATCH
TO RELEASE




1722A USER INFORMATION
SYSTEM DIAGNOSTIC SOFTVARE

INTRODUCTION

This section covers the operation of the System Diagnostic software
and assists the user in diagnosing problems with the 17224 Instrument
‘Controller.

The System Diagnostic software is provided on a floppy disk and is
designed to be s customer, manufacturing, and field service tool.
Successful completion of testing the 17224 using the System Diagnostic
software gives the user confidence that the 17224 Instrument Controllef
is operating properly. ’ o

System Diagnostics Software

MAINTENANCE PRILOSOPHY

‘The maintenance philosophy for field-service repair is at the module
level, including the SBC, VGK, video electronics, power supply, floppy
disk drive, and the options. Faulty modules are identified by -using the
System Diagnostic software.

Replacement modules are available through your local Fluke Service
Center. Contact your local Fluke Service Center for details on
.0ewarranty repair, and contact the Module Exchange Center for
qut-of-warranty: repair.

DIAPROSTIC DESION

The System Diagnostic software uses:a menu system and presents the
1722A as a set of modules. A module is either a circuit beard, an
externally connected peripheral, or a major subsystem. There is a set
of subtests for each module. Each subtest covers one specific function
of a module. The test selections are pressnted on the 1722A display and
use touch-sensitive command blocks for making choices.

The menu system allows individual modules to be selected and tested. A
particular combination of tests is called a test configuration. The
Standard Test Configuration can be used to test a standard 17224 with
no options installed. Other test configurations can be created, edited,
stored, and recalled as Configurations A, B, and C,

Some module tests can cover up to five units (modules of the same type).

For example, the test for the 512K byte Memory Expansion module
(Option -007) can test from one to five modules.

-l=



Systea Diagnostic% Sof tware

MENU LEVELS
The diagnostic software has three menu levels:

0 The Main Menu presents the test configurations, test modes, and a
destination for the test results.

0 The Test Menu presents the modules and options that can be selected
for testing.

0 The Subtest Menu presents the subtests that can be selected for each
_module and optiom. ...

Here is the menu level ‘diagram:

LA e . S
1722A SYSTEM DIAGNOSTIC
—p{ MAIN MENU
—
1 __l
JEN vy v
5 TEST MENU START
X TEST
N —
el e e L LSTOR TEST LT
TEST MEN 4=
~ | .| SUBTEST MENU MENU

-2-



OPERATION

Systea Diagnostics Software

NOTE s

Copy any programs stored in the 1722A E-Disk TR e

onto a floppy disk before loading the System

Diagnostic software. When the System Diagnostic
software is loaded into the 1722A memory, portions of
the E-Disk and program memory in the 1722A are erased.

Use the following procedure to run the System Diagnostic software.

1.

Insert the System Diagnostic disk into the disk drive.

Power up the 17224, or press the RESTART and ABORT switches on
the front panel simultaneously if the 17224 is already
running. s ’

After the System Diagnostic software is loaded from the floppy
disk, the 1722A display reads:

( 17324 Syevem Liegnastic Program Vervien 1 °
scangere |
tost test I Test Tert wenu
PIYR contig. & ! crnoig. 8| .ondig
"
T ¥
Write last ] Write lastiurite test
test est 1™ eate
cent ta | ~epurt ca jresort te
dinsiae | e fieria ci. :
; i STant test
I T
| Loor mQ0E Srue N Fary
|
\ T Thress ANORT by wert -~ y

Touch the START TEST command block on the display to execute
the Standard Test Configuration, or select individual tests as
described in the paragraphs below.

The test will stop and display a prompt at any point where a
user response is required. At the end of the test, the results
will be displayed on the screen.

If any problems are encountered while loading the
System Diagnostic software or during the execution
of a test, refer to "Troubleshooting®” at the end
of this section.



System Diagnostics Software

Main Menu

The Main Menu has 11 command blocks, described below.

1. Standard Test Config.

The Standard Test Configuration is a set of tests that has been
preselected to test the proper functioning of standard 1722A system

. modules. The tests allow untrained personnel to perform diagnostic testing.

Additional hardware or test cables are not used with this test
configuration. If the 1722A passes the Standard Test Configuration, the
1722A is fully functional up to the I/0 drivers. The 1/0 drivers are
tested with additional subtests and external hardware.

2. Test Config. A, or ﬁ,ror Cc

The purpose of Test Configurations A, or B, or C is to allow the
creation of special test configurations. To create a configuration,
select any combination of module tests and subtests, and store the
special configuration if it will be needed again. Instructions on
storing special configurations are given in the descriptions of the Test
Menu selections. :

3. Test Menu

By pressing the Test Menu command block, the Test Menu is displayed.
From this menu, alternate test configurations can be defined and stored
by the user.

4. Write Last Test Report to Display, or Disk, or Serial Pt. (Port).

After a test has stbpped running, these command blocks allow the user to
redisplay the test results or send them to a floppy disk or printer for
future use.

If Write Last Report to Disk is selected, the test results are stored in
the file MFO:REPORT.DAT. If Write Last Report to Serial Pt. is selected,
the test results are sent to serial port KB1: and can be output to a
printer for a hard copy. The default baud rate set by the start-up
command file when the System Diagnostic software is loaded is 1200 baud.
Set your printer to this baud rate. See Section 5 of the 1722A System
Guide for more information about RS-232 communications and using the SET
Utility Program.

-l



System Diagnostics Software

5. Loop Mode

The LOOP MODE command block performs like a toggle switch. When it is
off (the power-up default), the test configuration executes one time and
then stops. When LOOP MODE is on, the test configuration continues until
the ABORT switch on the 1722A front panel is pressed. :

6. Stop On Fail

The STOP ON FAIL command block performs like a toggle switch. When the
System Diagnostic software is first loaded, STOP ON FAIL is selected.

When STOP ON FAIL is off, the System Diagnostic software tests do not

stop if a failure occurs.

When STOP ON FAIL is selected, the System Diagnostic software will halt
the test and give a Stop Test Menu whenever a failure is encountered.
Here is an example of a Stop Test Menu:

(¢ N

SBC. Mem checssue

Chectsum 13 BAAG. Should be re-c

[CONTiMoE] [REPEAT | [AEPEAT || NENT 1[Coor on | aBuer

t | i i
- TESTSTER! | SURTEST | | SUBTEST! [ TESTSTER] enas test
Comasne L il L

SBC  #OM checvaum




Systeam Diagnostics Software

7. Start Test

The START TEST command block begins execution of the currently selected
test configuration. The tests are executed and any failures are logged.

To begin any of the test configurations, press START TEST on the 1722A
display. As the test runs, the 1722A display is updated at the
completion of each subtest. To return to the Main Menu, or to halt any
test, press the ABORT switch on the 1722A front panel. If all the tests
in the chosen configuration are successful, the display reads 'No
failures'. If any of the tests in the selected configuration are
unsuccessful, three things happen:

a. The 1722A display indicates the name of the test in progress at the
time of the failure.

b. The errors are stored on the E-Disk.

¢. A Stop Test Menu is displayed with an error log and more operator
choices.

CAUTION

Portions of the System Diagnostic software can write over
areas of RAM used by FDOS. Always reload the operating
system by executing a cold start (press the RESTART and
ABORT buttons on the front panel simultaneously) if
<CTRL>/P is used to stop the System Diagnostic sortware.

6=



Systeam Diagnostics Software

TEST MENU

The Test Menu lets the user specify which modules are to be included in
a particular test configuration. An example of a test configuration is

the Standard Test Configuration which includes tests for the SBC, VGK,

and floppy disk drive. If optional modules are installed in the 17224,

they can also be selected for testing from this menu.

The Test Menu is displayed on two screens. The first screen has 15
possible module selection blocks and six additional command blocks. The
module selection blocks act as toggle switches to select and deselect
the module.

The Test Menu includes module selection blocks for the SBC, Floppy Disk
Drive, VGK, Option -006 256K RAM, Option -007 512K RAM, and Option -008
RS-232/IEEE-488. Here is an example of the first screen of the Test Menu:

P )

Tess Fenu

-
" B a3 ra I 1w
LA LT taan -
I

SBC vem Tstion vption
e S007

-
RS2/ 1EEE ! I
eption
~008 L !

'

i

T

I Stare  'Store | Ntare morn i
a1l a48 | coméig. ‘cm.uu. coneln. e stamt regr |

A i
- ! i ]

\. J
2 g,
¥When a module is selected from the Test Menu the second screen is
displayed. The lower six command blocks in the Test Menu are replaced
with another set of command blocks. If the desired module is already

selected, it must be toggled off and on again to display the second
screen.

From the second screen of the Test Menu, the user can choose how many
of the selected modules are to be tested, return to the first screen of
the Test Menu, or go to the Subtest Menu for the selected module.

Here is an example of the second screen of the Test Menu:

1 0

r Test Menu \
I £1epey ‘ T 3% ram | 312w ram |
sic L antine von aption setian |
i i -006 007" |
i t + + —
nea3asrene | i ! ]
sestian 1 ;
| ees” | !
t —~
l ; : :
i 1 | |
T T T T T I
: i | ! ! Norasl | Suntest
umite | | i i i ‘lu!!ﬂll‘ aeny
L L . L 1
\_ s8¢ J




System Diagnostics Software

The command blocks for both screens of the Test Menu are described in
the following paragraphs.

1.

All off

The All Off command block deselects all the modules in the Test Menu
that were previously selected for testing.

Store Configuration A, or B, or C

After a test configuration has been selected by lighting the
appropriate display blocks in the Test Menu and subtest Menus, the
test configuration may be stored as Test Configuration &, B, or C by
touching one of these command blocks. The special configuration is
stored on the floppy disk and can be used again by selecting it from
the Main Menu.

Unit # 1, 2, 3, 4, 5

From the second screen of the Test Menu the user can select the
number of units (modules of the same type) to be inecluded in the
testing.

Normal Buttons

When the Normal Buttons command block is selected, the System
Diagnostic software returns to the first screen of the Test Menu.

Main Menu

When the Main Menu command block is selected, the System Diagnostic
sof tware returns to the Main Menu.

Start Test

When the Start Test command block is touched, the currently selected
test configuration begins to execute.

Subtest Menu

When the Subtest Menu command block is selected, the Subtest Menu
for the chosen module is displayed.

8-



System Diagnostics Software

SUBTEST MENUS

There is a Subtest Menu for each module listed in the Test Menu. From
the Subtest Menu the user can select specific tests to be executed for
the chosen module. This is useful for obtaining more specific
information about a module that has failed. For example, a failure at an
RS-232 port may be due to a problem on either side of the I/0 buffers.
To isolate the problem, there is an Internal Loopback Test, an External
Loopback Test, and a Port-to-Port Loopback Test, any of which can be
selected to exercise a particular portion of the module circuitry.

For each module subtest, there are 15 toggle type subtest selection
blocks and five command blocks. An example of the SBC Subtest Menu is

shown below.

r =

T T t

i mom Nan Dessructivel Non
Clecs { CROCHBUS 20StTLUCEIve @ACTOItOTE [deutructive

' wacrastare i rem I

#$232 Pare 15EE
to sort tnterne} !
loss Lo P

NesZI3 n$232
Destructive| internal ( esternsl
res leep j  lesy

.

i

IEEE port
te gort !

i

| seiect .
AL ere stendare Mein meny ' Test menu | STAAT TEST
sustest ¢ i

L

O

Subtest Menu
\. _J/

\_ Y,

The command blocks in the Subtest Menu operate identically to the
command blocks described above for the Test Menu. The subtest selection
blocks for each of the modules are described in the following paragraphs.

-9-



System Diagnostics Software

Subtest Descriptions
SBC (Single Board Computer)
The SBC Subtest Menu includes the following tests:
| 1. Clock

Checks time rollover and storage of all stages of the real-time
clock registers.

2. ROM Checksum

Generates a checksum for the contents of the BOOT ROM. The test
fails if the checksum is not equal to zero.

The ROM checksum test will not work properly
with Version 1.0 of the BOOT ROM. The correct
checksum for Version 1.0 is hex 8AAO.

3. Non-Destructive Macrostore

Perform a simple read/write test of the Macrostore memory. The
contents of the Macrostore are left intact at the end of the test.

4, Destructive Macrostore

This is a comprehensive memory test including pattern sensitivity.
The System Diagnostic software loads another program from the disk
to do this test, deleting the Operating System and the System
Diagnostic software from the 1722A memory in the process. This test
takes several minutes to complete. At the conclusion of the test,
the Operating System and the System Diagnostic software must be
reloaded.

5. Non-Destructive RAM

This tests portions of the 1722A memory not presently being used by the
System Diagnostic software.

-10=



10.

Systea Diagnostics Software

Destructive RAM

This is an intensive memory test requiring approximately 30 minutes
to execute. When the test is over, the System Diagnostic software
must be reloaded because the test deletes the software from memory.

RS=232 Internal Loop

This test sets an internal loopback mode on the UART (Universal
Asynchronous Receiver Transmitter) to allow the 17224 to send and
receive data internally. The I/0 buffers to off-board devices are
not tested.

RS-232 External Loop

This test uses a special test connector (Fluke P/N 731216) to
allow any port to talk to itself. This tests the buffers and
registers of the RS-232 port.

RS=232 Port-to-Port Loop

A Null Modem cable (Fluke Model Number Y1705) is required to permit
two RS=232 ports to communicate with each other and test the entire
communications interface including the buffers. The Option
17XXA-008 IEEE/RS-232 Interface module must be installed to run
this test. The Null Modem cable connects the RS-232 ports on the
SBC and the Option -008 module.

IEEE Internal Loop

The IEEE-488 Internal Loop tests the operation of the IEEE-488
interface. The buffers to the IEEE-488 bus are not tested.

-11=



System Diagnostics Software

11. IEEE Port to Port Loop

The IEEE-488 Port-to-Port Loop Test verifies the port's ability to
transmit or receive data and drive the IEEE-488 bus. Use any
standard Fluke IEEE-488 cable, Y8021, Y8022, or Y8023. The Option
17XXA-008 IEEE/RS-232 module must be installed to run this test.
The IEEE cable connects the IEEE-488 ports on the SBC and the
Option -008 module. Switch positions 5 and 6 on the SBC must be in
the "OFF" position and switch positions 5 and 6 on the Option -008
module must be in the "ON™ position for the test to complete
successfully.

This test requires the user to remove the

SBC or Option -008 module from the 1722A chassis
in order to verify proper switch settings.

It is not necessary to run this test

unless there are IEEE-488 bus problems

that cannot be identified using the

Standard Test Configuration supplied with

the System Diagnostic software. If it

becomes necessary to run this test, refer

to the discussion on "Installing Hardware
Options" in the section entitled "Options"

in the 1722A System Guide. This discussion
explains how to remove the rear panel to gain
access to the SBC and Option -008 module. Also, be
sure to return the SBC and -008 option to their
initial switch configuration after running

the test.

12~



System Diagnostics Software

Floppy Disk Drive

The Floppy Disk Drive menu includes the following tests:

1. Write Protect Switch

This test displays the status of the Write Protect Switch. Removing
or inserting a disk causes the switch to toggle. The System
Diagnostic software tests to insure that the switch does toggle.
When testing is complete, touch the screen, and the System
Diagnostic software reports its findings.

2. Track O Sw & Stepper Motor

A disk is not needed for this test. The read/write head is moved
from track 00 to track 39 and back again to test the operation of
the track 00 indicator and the stepper motor.

3. Disk RPM Check/Adjust

y,

A disk must be loaded to perform this subtest. Any disk will do,
because nothing is written or read from the disk.

In this subtest the disk speed is measured and tested to insure it
is within tolerance. The disk speed is displayed continucusly if the
System Diagnostic software is not in the LOOP MODE. When the System
Diagnostic software is in the LOOP MODE, the disk speed is sampled
and displayed for about 15 seconds, then the test continues to the
next subtest. If the test results indicate that the disk speed needs
to be adjusted, please refer to the 1722A Service Manual or return
the unit to your local Fluke Service Center for servicing.

Bad Block Secan

Each block on the disk is read and checked for errors. A total of
1600 blocks is read (two passes over the disk). The disk is never
written on. Use this subtest to check a disk for bad blocks. If
this subtest is used to check the disk drive itself, a disk with
flawless format is required.

-13=



System Diagnostics Software

5. Soft Error Rate

This subtest does an extensive test of the disk drive's ability to
read a worst case data pattern over many passes of the disk. A
scratch disk with error free format is required. After writing the
worst case data pattern (hex 6DB6DB...) over the entire disk
surface, the disk is read for 306 passes (over 1 billion bits).
This test takes approximately 3 hours to complete.

The display indicates the progress of the subtest while the disk is
being read, showing the disk pass number, blocks read, bits read,
and the current number of soft and hard errors. Refer to
"Troubleshooting™ at the end of this section for a description of
soft and hard errors.

If the System Diagnostic software is in LOOP MODE, the total number
of disk passes, blocks read, etc., for all the times the subtest
was executed, are alsc shown in the display. The display is updated
at the end of each disk pass.

6. Random block I/0

This subtest tests the floppy disk drive'’'s worst case ability to
read, write, and seek. It is identical to the Sof't Error Rate test
except that the block number is chosen at random. A seek to the
chosen block is followed by writing the worst case data pattern and
reading it back. The total number of blocks tested is 800. The

soft and hard errors are handled the same as in the Soft Error Rate
Test.

-1l



System Diagnostics Software

VGK (Video/Graphics/Keyboard Interface)
The VGK menu includes the following subtests:
1. Aligmment pattern

Displays the alignment pattern used for the initial factory setup
of the CRT and permits later checking for shift of the display.

2. Keyboard

A picture of the keyboard is displayed on the screen. Each time a
key is pressed on the 1722A keyboard, the corresponding key on the
display toggles either on or off. Follow the instructions to light
all the keys on the display and then touch the screen to continue.
The diagnostic software records an error if a keystroke was not
detected.

3. Touch~Sensitive Overlay
The Touch-Sensitive Overlay (TSQ) grid is displayed. Each square
covers exactly one TSO touch pad. Light each square by touching it.
Press each one again to turn it off. The subtest passes if each
touch pad responds at least twice. If a square does not work, exit
the subtest by pressing the ABORT switch on the 1722A front panel.
256K RAM Option =006
Up to five units can be tested at once by selecting the unit numbers
from the Test Menu. Each unit number corresponds to a specific switch
setting as described in the information supplied with the option or in
the section of the 1722A System Guide entitled 'Options’'.
The menu for the 256K RAM option includes the following tests:
1. Non=Destructive RAM Test
This subtest operates the same as the SBC Non-destructive RAM test.
2. Destructive RAM Test
This subtest operates the same as the SBC Destructive RAM test. The

test may take several hours to complete depending on how many
Option -006 modules are installed.

-15-



System Diagnostics Software

512K RAM Option -007

Up to five units can be tested at once by selecting the unit numbers
from the Test Menu. Each unit number corresponds to a specific switch
setting as described in the information supplied with the option or in
the section of the 1722A System Guide entitled 'Options’.
The menu for the 512K RAM includes the following tests:
1. Non-Destructive RAM Test

This subtest operates the same as the SBC Non-destructive RAM test.
2. Destructive RAM Test

This subtest operates the same as the SBC Destructive RAM test. The

test may take several hours to compete depending on how many Option
=007 modules are installed.

16



System Diagnostics Sqftuare

RS232/IEEE Option -008

The subtest for the RS232/IEEE option operates the same as SBC Loop
Tests. The cables described in the section on SBC subtests are also used
for the IEEE and RS-232 port tests for the -008 option. For the IEEE
Port-to-Port test, however, switch position 5 and 6 on the SBC are set to
the "ON®™ position and switch positions 5 and 6 on the Option -008 module
are set to the "OFF" position. Here is a list of the subtests for Option

-008.

1. RS-232 Internal Loop

2. RS-232 External Loop

3.
b,

RS-232 Port-to-Port Loop

IEEE-488 Internal Loop

5. IEEE-488 Port-to-Port Loop

HOTE

This test requires the user to remove the

SBC or Option -008 module from the 1722A chassis
in order to verify proper switch settings.

It is not necessary to run this test

unless there are IEEE-488 bus problems

that cannot be identified using the

Standard Test Configuration supplied with

the System Diagnostic software. If it

becomes necessary to run this test, refer

to the discussion on "Installing Hardware
Options" in the section entitled "Options"

in the 1722A System Guide. This discussion
explains how to remove the rear panel to gain
access to the SBC and Option -008 module. Also, be
sure to return the SBC and -008 option to their
initial switch configuration after running

the test.

-17-



System Diagnostics Software

Additional System Diagnostic Software

There are four additional diagnostic programs on the System Diagnostic
disk. They are used to test other 1722A options and peripherals. The
four programs are listed below:

1. MBXIST

This program tests up to three Bubble Memory Modules (Option 17XXA-004
or 17XXA-005). The program writes test patterns to the Bubble Memory to
check for bubble collapse errors (a "1" bit turning into a "0") and
pattern sensitivity problems with the Formatter/Sense Amplifier (FSA).
Before executing the test, the program checks to see if there are any
files on the bubble devices MBO: through MB3: and the user is asked to
confirm whether he wants the files deleted. The bubble devices must be
formatted in order for the test to execute properly. The bubble
memories were formatted at the factory and should not need to be
reformatted unless there is a problem with the module. Any errors found
during the test will be displayed on the screen and summarized at the
end of the test. If the test will not execute properly try formatting
the bubble memory using the File Utility Program (refer to Section 4§ of
the System Guide).

2. PIBTST

This program tests up to three Parallel Interface Modules (Option
17XXA-002). The program performs three separate tests including writing
to a port and reading back from the same port (Readback), writing to one
port and reading back on the other port (Loopback), and an Interrupt
test. When the program runs, the numbers of the modules under test are
displayed across the top of the screen and the tests that are executing
are displayed down the left side of the screen. In order to pass the
Loopback test, a special test cable (JF/PN 632968) must be connected
between the two ports on the module. If the user does not have a test
connector, the Readback and Interrupt tests may be run individually by
touching the PASS/FAIL block on the screen at the bottom of the column
corresponding to the module under test. At this point a second menu is
displayed. The user may run the tests individually on either port of
the selected module by touching the screen at the appropriate point.

-18-



System Diagnostics Software

3. MFXTST

This program tests up to two 1760A or 1761A Disk Drive Systems. Refer
to the section entitled "Options" in the 1722A System. Guide or the
information supplied with the 17604 or 1761A for instructions on switch
settings and connecting the unit to the 1722A. The program will check
the disk drive speed and disk detection logic, then seek, format, write
and readback data from a disk installed in each drive. The program will
erase any files on the disk. Refer to the 1760A/1761A Manual for more
information.

4. WDXTST

This program will test the 1765A/AB Winchester Disk Drive. The test
selections are displayed on the screen and are selected by touching the
desired menu item. The tests include a self test of the 1765A4/AB
Winchester controller board and a verification of all of the blocks on
the disk. If a bad block is found on the disk, that block is no longer
used for storing data and an alternate block is automatically assigned.

To use these diagnostic programs, load the System Diagnostic disk as
described in step 1 of the operating instructions in this section. When
the first menu appears, press the ABORT button on the Controller's front
panel.

When the FDOS> prompt appears, type the name of the desired program
followed by <RETURN>. The software prompts for additional information if
it is required. More information about the individual options may be
found in Section 4 or in the section entitled 'Options' of the 17224
System Guide.

TROUBLESHOOTING

When the System Diagnostic software encounters an error during the
execution of a test, an entry is made in an error log. If STOP ON FAIL
has been selected from the Main Menu, an error message is displayed on
the screen. This message includes the name of the module under test and
the particular subtest being executed when the error occurred.

Generally, the mocdule under test is at fault whenever an error occurs.
If an error is reported, check that the switch settings are correct on
the module in question (if applicable), then run the test again. If the
error condition persists, contact your local Fluke Service Center for
information about replacing the faulty module. A list of replacement
module part numbers and authorized Fluke Service Centers is included at
the end of this section.

-19-



System Diagnostics Software

If you are experiencing difficulty in getting the System Diagnostic
software to load and execute properly, the following paragraphs provide
some general guidelines for diagnosing problems with the 1722A.

These service instructions are for use by qualified
personnel only. To avoid electrical shock, do not
perform any servicing other than that contained in
the operating instructions unless you are qualified
to do so.

Power-up Problems

When the 17224 is first powered on, the fan on the rear panel starts up,
and two beeps can be heard; one from the 1722A chassis and one from the
keyboard if it is plugged in. If these things do not happen, check to
see that the line cord is properly installed and that the fuse is
intact. Also verify that the line voltage indicated on the rear panel
matches your line power source. If everything is in order, the power
supply is faulty.

If the fan is running but there is no beep from the chassis, either
the VGK or the PUP (power-up) assembly are faulty.

Display Problems

After the 1722A has been on for at least one minute, messages should be
visible on the display. If the display is completely blank, except for a
blinking cursor, try a cold start. Press the RESTART and ABORT switches
on the 1722A front panel simultaneously. If the problem persists, the
VGK, CRT, and video electronics are functional and the SBC is probably
faulty.

If there is no display at all after a power-up or cold start, but there

is a beep from the chassis, the VGK is functional, and either the CRT,
video electronics, or associated cables are faulty.

=20~



1

System Diagnostics Software

Floppy Disk Drive Problems

After the 1722A has executed the power-up self-test sequence, it

attempts to load the operating system (FDOS2.SYS) from the floppy disk.

The message "LOADING"™ should be displayed on the screen, and the disk
drive activity light on the front panel should come on. If the disk
drive activity light does not come on, either the disk drive or
assoclated cables are faulty.

If the disk drive activity light comes on, but the operating system does

not load, an error message appears on the screen. Refer to Sections 3
and 4 of the 1722A System Guide for a description of the self-test and
system error messages.

A sof't error is any single failure to read a block correctly. It can be
caused by improper seating of the disk or by a dust particle mcmentarily

passing under the read/write head. An occasional soft error is of no
concern. Ten successive soft errors are considered a hard error and
indicate a problem either with the disk or the disk drive.

In general, whenever a disk error occurs, the disk should be reseated by
opening and reclosing the disk drive door. If the problem persists, try
another disk. If this solves the problem, the original disk was faulty.

If the problem cannot be solved by using another disk, then the disk
drive is either faulty or out of calibration. One other possibility is
that the disk controller on the SBC is out of calibration. In either
case, calibration should only be performed by authorized service
personnel. Contact your local Fluke Service Center.

Keyboard Problems

During a power-up or cold start, the keyboard should emit an audible
tone, and both the CAPS LOCK and PAGE MODE indicators should light
momentarily. If this does not occur, the keyboard is faulty.

After the operating system is loaded, it may be necessary to use the
keyboard to access some of the diagnostic programs. If the keyboard
does not respond when a key is pressed, press <CTRL>/T to reset the
keyboard and display. If this doesn't help, unplug the keyboard from
the front panel and then plug it in again to perform a power-up reset
of the keyboard. If the problem still persists, the keyboard is
faulty.

-21=



System Diagnostics Software

Other Problems

Once the System Diagnostic software is loaded, if there are problems
with the appearance of the menus, the VGK may be faulty. The software
makes extensive use of block graphics and video attributes. If some of
the reverse video blocks or highlighted characters do not appear to be
correct, replace the VGK.

If the display does not respond when a menu block is touched, try
other menu blocks. Keep in mind the possibility of parallax error
as discussed in Section 2 of the 1722A System Guide. If the problem
persists, the Touch~Sensitive Display is faulty.

If you experience other problems with the 1722A that are not discussed
in this section, call your local Fluke Service Center for further
assistance.

REPLACEMENT PARTS

This list gives part numbers for all replacement modules in the 17224
Instrument Controller, as well as part numbers for the various
loopback cables and connectors required for the IEEE-488 and RS-232
tests.

DESCRIPTION PART NUMBER
34 Fuse, (115 Volt operation) 109199
24 Fuse, (230 Volt operation) 109173
Power Up Assembly (PUP) 704353
Power Supply 718064
Floppy Disk Drive 661629
Single Board Computer (SBC) 705285
Video/Graphics/Keyboard Interface (VGK) 661587
CRT and Video Electronics 718056
Touch-Sensitive Overlay 661678
Keyboard 718106
PIB Loopback Cable 632968
RS=232 Loopback Connector 731216
RS=232 Null Modem Cable Y1705
IEEE-488 Cable (shielded) . Y8021
System Diagnostic Disk (reorder 1722A4-2000)

FIELD SERVICE KIT

Additionally, a Field Service Kit is available which contains all the
above modules under Fluke P/N 729343. These kits are intended for use by
qualified Service Personnel. Using Module Exchange as backup support,
one kit should be sufficient to support approximately ten 1722A units.

-22a



——

1722A USER INFORMATION
Option 17XX-006/007
Memory Expansion Module

INTRODUCTION

The Option 17XX-006/007 Memory Expansion Modules provide
additional memory for the 1722A. This added memory can also be
configured as Electronic disk.

The Operating System treats memory configured as E-Disk as an

- electronic version of a floppy disk. This means that files are stored and

retrieved from E-Disk in a formatted fashion like a floppy disk. See the
File Utility Program in Section 4 of the System Guide for instructions
on how to configure E-Disk space.

The 17XX-006 Memory Expansion Module contains 256K bytes of
dynamic RAM; the 17XX-007 module contains 512K bytes. Any
combination of up to five modules can be installed in a 1722A at a time.
If all of the slots are filled with 17XX-007 boards, then the total
expansion memory added to the 1722A would be over 2.6M bytes.



User Iinformation
Memory Expansion Module

PRE-INSTALLATION CHECKOUT

Inspect the shipping carton for damage. Notify the shipper
immediately if the carton appears to have been damaged in shipping.
Unwrap the module and inspect it for damage. If everything seems to
be in order, go on to the next step, setting the board‘s address switch.

Board Addressing
In order for the Operating System to operate properly using expanded

memory, each memory board installed must have unique addresses set.
Each module has a memory switch, located in the drawing below.

e Jo
=" gome
2 12 }




User Information
Memory Expansion Module

The 1722A has five slots available for options. Expansion memory
modules can be installed into any or all of them. To assure proper
operation of diagnostics, the first module added should be given the
address for Unit One as shown in the table below. Subsequently added
modules are given addresses in ascending unit number order. The SW 1
address switch settings shown below are identical for Option -006
(256K bytes) or Option 007 (512K bytes).

UNIT NUMBER ADDRESS CODE SWITCH POSITIONS
1 2 3 4
1 1111 off off off oft
2 1101 off off on off
3 1011 off on off off
4 1001 off on on off
5 0111 on off off off
NOTES

1) “0” = on and “1” = off on the option’s address switch label.

2) Although the Controller may operate properly with
addresses set out of order, setting them in the recommended
order ensures that diagnostic software can correctly identify
Sfaulty components, and will prevent possible bus contention
problems when mixing -006 and -007 options.

Exampile:

Two -007 Options, and two 006 Options are to be installed. In this
case, we will set the addresses for the larger memory sizes first by
setting their switches to 1111 and 1101. Next, the first 006 option’s
switches are set to 1011, and the second one to 1001.

These settings leave a 256K byte gap between the memory addresses
occupied by the -006 modules. This gap is transparent when the
module is in use.




User Information
Memory Expansion Module

INSTALLATION AND CHECKOUT

L.

3.

Follow the directions in the Options Section titled “Installing
Hardware Options” to install the module into the Controller’s
card cage. Be sure to turn the power off.

To check the new memory module, power up the system and
load the Operating System software. Observe the amount of
memory message that appears when FDOS loads. It should
indicate the additional memory that is now available, both in
bytes and blocks. (I block = 512 bytes.)

To exercise the new memory, use the File Utility Program to
configure all available free blocks as E-Disk, then transfer a
large amount of files to the E-Disk, and see that they can be
read to the screen. If everything is in order, this is an adequate
check that the Memory Expansion Module is operational.
Section 4 of the 1722A System Guide, Devices and Files,
explains all the operations of the File Utility Program.

If any trouble develops, first recheck your work. Make sure
that the address selection switches are set properly, and that the
module is properly seated into the connector on the
motherboard. If everything seems to be in order, refer to
Appendix G, System Diagnostics, or call your Fluke Technical
Service Center for assistance in tracking down the trouble. The
Memory Expansion module is included in Fluke’s Module
Exchange Program.



1722A USER INFORMATION
Option 17XXA-008
|IEEE-488/RS-232C Interface

INTRODUCTION

This section of the 1722 A System Guide covers the Option 17X X A-008
IEEE-488/RS-232 Interface Module. The module provides the 1722A
Instrument Controller with one additional IEEE-488 port, and one
additional RS-232 port.

As shipped, the standard 1722A Instrument Controller has a single
IEEE-488 port and one RS-232 port. The IEEE-488 port has the device
name GP0: when used as a serial device (output only), and Port 0 when
used by a program as an instrument port. The standard configuration
RS-232 port has the device name KBI:.

The IEEE-488 port on the 008 option has the device name GP1: or
Port 1, and the RS-232 port has the device name K B2:. See Section 4 of
the System Guide for more information on devices.



User Information
|EEE-488/RS-232C Interface

PRE-INSTALLATION CHECKOUT

Inspect the shipping carton for damage. Notify the shipper
immediately if the carton appears to have been damaged in shipping.’
Unwrap the module and inspect it for damage. If everything seems to
be in order, go on to the next step, Installation.

INSTALLATION

1. Refer to the drawing below to locate and set the configuration
switches. The initial setup establishes the module’s IEEE-488
address as 0, and its function as “system controller”. This
switch setting also sets the RS-232 port to 4800 baud for power
up, but the baud rate can easily be changed later using the Set
Utility Program. See Section § of the System Guide for details.

NOTE
Both the standard IEEE-488 port and the one added by the -
008 option can be set up as “system controller”, because the
two ports are effectively two separate systems. However, if
both of them will be connected to the same bus, then one of the
ports must be set up as “controller in charge”.




User Information
|IEEE-488/RS-232C Interface

SWITCH 1
1 2 3 4 5 6 7 8 9 10
— | S2 St S0 SC A4 A3 A2 At
X unused
IEEE-488 ADDRESS
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15
IEEE-488 CONTROLLER
0 0 System Controlier
1 1 ldle Controlier
BAUD RATE
0 0 0 110
0 0 1 300
0 1 0 - 600
0 1 1 1200
1 0 o] 2400
1 0 1 4800
1 1 0 9600
1 1 1 19200




User Information
IEEE-488/RS-232C Interface

2. Once the switch has been set, use the directions in the Options
section “Installing Hardware Options” to install the -008
option into the 1722A.

3. Power up the Controller and test the new interface by using the
System Diagnostic software. Appendix G of the System Guide
explains how to use the System Diagnostic software to test the -
008 option.

4. In case of problems with the new module, recheck your work to
ensure that the board is fully seated in the card cage, and that
port connectors are attached securely. If everything is in order
but the failure continues, refer to Appendix G for
troubleshooting information, or call your local Fluke Service
Center. The IEEE-488/RS-232 Interface module is included in
Fluke’s Module Exchange Program.



1722A

INSTRUMENT CONTROLLER

System Guide

FLUKE
®




1722A

INSTRUMENT CONTROLLER

System Guide

FLUKE
®




WARRANTY

John Fluke Mfg. Co., Inc. (Fluke) warrants this instrument to be free from defects in
material and workmanship under normal use and service for a period of ninety (90) days
from date of shipment. Software is warranted to operate in accordance with its
programmed instructions on appropriate Fluke instruments. It is not warranted to be
error free. This warranty extends only to the original purchaser and shall not apply to
fuses, computer media, batteries or any instrument which, in Fluke's sole opinion, has
been subject to misuse, alteration, abuse or abnormal conditons of operation or
handling.

Fluke's obligation under this warranty is limited to repair or replacement of an
instrument which is returned to an authorized service center within the warranty period
and is determined, upon examination by Fluke, to be defective. If Fluke determines that
the defect or malfunction has been caused by misuse, alteration, abuse, or abnormal
conditions of operation or handling, Fluke will repair the instrument and bill purchaser
for the reasonable cost of repair. If theinstrument is not covered by this warranty, Fluke
will, if requested by purchaser, submit an estimate of the repair costs before work is
started.

To obtain repair service under this warranty purchaser must forward the instrument,
(transportation prepaid) and a description of the malfunction to the nearest Fluke
Service Center. The instrument shall be repaired at the Service Center or atthe factory,
at Fluke's option, and returned to purchaser, tranportation prepaid. The instrument
should be shipped in the original packing carton or a rigid container padded with at
least four inches of shock absorbing material. FLUKE ASSUMES NO RISK FOR IN-
TRANSIT DAMAGE.

THE FOREGOING WARRANTY IS PURCHASER'S SOLE AND
EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANY OF MERCHANTABILITY, FITNESS FOR ANY
PARTICULAR PURPOSE OR USE. FLUKE SHALL NOT BE LIABLE FOR
ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES OR LOSS WHETHER IN CONTRACT, TORT, OR OTHERWISE.

CLAIMS

Immediately upon arrival, purchaser shall check the packing container against the
enclosed packing list and shall, within thirty (30) days of arrival, give Fluke notice of
shortages or any nonconformity with the terms of the order. If purchaser fails to give
notice, the delivery shall be deemed to conform with the terms of the order.

The purchaser assumes all risk of loss or damage to instruments upon delivery by Fluke
to the carrier. If an instrument is damaged in-transit, PURCHASER MUST FILE ALL
CLAIMS FOR DAMAGE WITH THE CARRIER to obtain compensation. Upon request
by purchaser, Fluke will submit an estimate of the cost to repair shipment damage.

Fluke will be happy to answer all questions to enhance the use of this instrument. Please
address your requests or correspondence to: JOHN FLUKE MFG. CO., INC.,P.0.BOX
C9090, EVERETT, WA 98206, ATTN: Sales Dept. For European Customers: Fluke
(Holland) B.V.,P.O. Box 5053, 5004 EB, Tilburg, The Netherlands.



List of Software Versions

BASIC Interpreter Program 1.0
Edit Program 1.0
File Utility Program 1.0
Fluke Disk Operating System Program 1.0
Set Utility Program 1.0
System Generation Utility Program - 1.0
Time and Date Utility Program 1.0
NOTE

This publication describes the operation of the listed programs at the
levels of revision shown. Software programs may not be compatible in
other combinations. Consult your local Fluke Service Center to
determine compatibility of other combinations.

1722A

INSTRUMENT CONTROLLER

System Guide

P/N 716621

OCTOBER 1983 : FLI—' K E

©1983 John Fluke Mfg. Co., Inc.
All rights reserved. Litho in U.S.A.




1722A Instrument Controller




Contents

HOW TO USE THISMANUAL ................. 1-1
Introduction .......ccceiieiiiiiineroerneerasoanoannns 1-2
Organization ........ceeveeeeesernssesssorssorasesanss 1-3
Usage GUIdE ....viviiiienerrneroiorernsnsccsoasaonns 14
How to Read Syntax Diagrams .........c.ccevevnvnenn 1-5
Sample Syntax Diagram ...........cvvieiniiiennnns 1-6
Notation Conventions .......ccoceeeeeenesenncenacens At
SETTING UP THE CONTROLLER .............. 2-1
Introduction ........cviiiiiiiniiiiiiiiienenienenanns 2-2
Features ....ovvviiiiinrnniriinernisroeiennsscanennns 2-3
Physical Layout .........ccvivveennnens Cheeeeeeiiaae 24
Unpacking ....oovvvniereneerneneneseronneaneennnnas 2-6
Unpacking Checklist ......coviviiiiniiierinnneenna. 2-6
Installation .......coviiiiiiiniiennionnneencennaaanns 2-8
Environment ..........cciiieienecnsnnnnnneaneanss 2-8
Pre-Installation Checkout .............. eresnesenas 29
System Installation ............cciiiiiiiiiennnaneenns 2-14
Introduction ........viiiiiiiiiienenierennnnsnennns 2-14
Multiple Controller Systems ........ccevvvervnennann, 2-14
Situating the System Components ..........co000n... 2-16
Workbench Installation ...................00u... 2-16
Rack Mounting ........ocoiiiiiniiranrnnronennens 2-18
Connecting the IEEE488 Bus .............cc0vvenn. 2-19
Bringing the System Up .........cciiiiiiiiiiiininnn., 2-20
ConClUSION . vitiiiinrarrnetineerioneoreaneansansanns 2-22

i (continued on page ii)



CONTENTS, continued

3 SOFTWARE CONFIGURATION ............... 3-1
Introduction ......ciiiiiiiiiiiieiiiiiiieriieeraaens 3-2
Loading The System Software ...........ccvvivennnnnn 3-3

Bootstrap Loader .........coiiiiiiiiiiiiiiiieninan 3-3
Self-Test Error Messages ....coovvivrienensneneninns 34
Other EITors .. vvvvnirinernrieneertosasosonsnsenss 3-5
The Startup Command File ........................ 3-6
Settingthe TIme ......cvviiiiiiurieennerrensennsns 3-7
The Operating System ......covviiiireerinieeeennn. 39
Command Line Interpreter ............coivvenvenn, 3-10
Utility Programs ........cooeetiieennnennesannnnanns 3-10
Making a New Operating System ........coevuneveeenn. 3-12
Introduction .........eeiiiinerinirnsonnonsensenses 3-12
A Note About Software Compatibility ............... 3-12
Necessary Files ......ccoviiiiiiiiiiiniiniiennenn, 3-13
Optional Files ......ccvviiiiiiiiiiineriiienennnn. 3-13
Using the System Generation Utility ................. 3-14
ConClUSION . .vviivuirereeoienrncasenonsnsnscnonnanas 3-15

4 DEVICES ANDFILES ...................00o0t, 4-1

INtroduction ......covuivuriniooneoneanensnrosneensnss 4-2
DEVICES «vvvevvneennnsonnsrenssosnssonessssasnnnss 4-3
Files vviiriireiiinereensesensnrassnssnasenencns 4-5

System Level Files ............ccoovviiiiannn., 4-5
Other Files .. .iiiiiiiiiiiiiiiieiiiieranonerenes 4-5

DEVICES . iiiiternaeneeaessossssssnsssesnsnsnsonennnsns 4-6
RS-232 Ports (KBmn:) ..ivvriviinerninincneenensnans 4-6
IEEE-488 Bus Devices (GPn:) ..........oooivviin.t, 4-7
Floppy Disk Drives (MFn:) .........ccoiviiiinnnn, 4-7
Electronic Disk (EDO:) .. .viiiiiiniiiiiiiniinennnns 4-8
Bubble Memory (MBn) ...ovviiiiiiniiiinienenne. 4-8
Winchester Drive (WDn:) .....covviiiiiiiiiininnns, 4-8

Files .ivitiii ittt ittt iisetiiessasenansnnnnnnns 49
System Files ....ovvvniirniiiinniiiinennersanennnsns 4-9
Alias Files .. ...cvirieniiiiiniierieiirerncnennnanns 49
Command Files .......... e eeeerte e et et 49
The Startup Command File ........................ 49
Other Command Files .........oviiviiiiiiinnennn, 4-10
Machine Executable Files ............. ... ..., 4-10
Language-Dependent Files .............coviiinine. 4-10

Source Files ......ciiiiiiiiiiiiiinirirninrnnnnan 4-10
Object Files ................. et 4-10

i (continued on page iii)



CONTENTS, continued

The File Utility Program ............cciiiiiiinnnnnn. 4-11
INtroduction ........oviiiiiiiinnniiiiiniinnnneeens 4-11
Entering the File Utility Program ................... 4-11
The Help Command .......coiiiiiiiiiiiiinnnneennns 4-11
Directory Allocation .........cvvvviiiiiinnnnnnnnn. 4-13
Using the File Utility Program ............cccovvue.. 4-14

WildCards *and ? ....oiiieiiniiininnnnennnnnns 4-15
Protection States +and - ...........ccoiiiiinnn, 4-16
Switches I, D, and S .. .iiviiitiiiereinrernrnnens 4-17
Alphabetical Listing of Commands .................. 4-18
(no option) Transfer ........covvvvvrrinienennnnns 4-18
/A Assign the System Device .............covu.... 4-20
/B Binary Transfer .......c.ccvviiiiiiinnnnnnnnns. 4-20

/ C Configure Electronic Disk Space ............... 4-20
/D Deleting Files .......ccoiviiiininiinnnnnnnn. 4-21
/E Listing a Directory (Also /L and /Q) ........... 4-21

| F Format, Verify, and Zero a File Device ......... 4-24
/1 Individual Transfer ...........ccvivevninnennn. 4-25
JLLIStNg t\itiitinieiiieneeeiiiiinenernnenenns 4-25
/M Merging ASCII Files ...........cccevvvnnnnn. 4-26
/P Packing a File Structured Device .............. 4-27
/Q Quick Directory .........ccvviiiiiiiiiiiiinn.. 4-27
/R Renaminga File ...............coiiiiiiinnnn. 4-27
/S Scanning for Bad Blocks ...................... 4-27
/T Transferring Files Without Error Check ......... 4-28
/W Whole Copying a File Device ................. 4-28

[ BRIt v ttititiinieeeereneenrannnnesennnnnens 4-30
/|Z Zeroing a File Directory ...........cccvvvenn. 4-30
/+ /- Assigning Protection State ................. 4-31
Syntax Diagrams .......covvieiiiinrrrnnneneennnnns 4-32
Directly Executed Commands .................... 4-32
Directory Listing Commands ..................... 4-32
File Transfer (Copy) Commands .................. 4-33
File Rename Command ...........ccvvviiniennnns 4-33
File Merge Command ............cciiiiviinnnnn.. 4-34
Whole Copy Command .......coovveninenneennnens 4-34
File Deletion and Protection Commands ........... 4-34
List Bad Blocks Command ............ccc00vvennnn 4-35
Device Control Commands ..............cc0vuun.. 4-35
System MesSages . .vvvviriiiretineinennranraennennns 4-36
Conclusion . ..vuuiir ittt tetrnninereninenanas 4-39

iii (continued on page iv)



CONTENTS, continued

5 COMMUNICATIONS ...... ... iiiiiiiiiiiaen 5-1
INtroduction ......cveiueennenneenecnerannenenseaenns 5-2
The IEEE488 BUS ....covvieieriinernensnnnennnennans 5-3

Bus FUnctions ......eoceeeiiiineineneneneronieanas 54
Interface .......ciiuiiiiiiiiiiiiiiiireiieiiinenan 5-5
Bus Operating Modes ......cooviiiiiiiiinnneennnn. 5-5
Command Mode .......covviiiiniiiiininnennnnns 5-5
DataMode ....cooviiiriiiiiiiiiiiiiineiiearanes 5-6
Three-Wire Handshake ..................co00vit, 5-7
A Typical Instrumentation System ................... 5-7
SEQUENCE .\ vvvivverrnrenneraneeeunorsaosanasananss 5-8
Multiple Controller Systems ........ccevvevveennnannn 5-9
IEEE-488 Communications Under Program Control ..... 5-11
Example Commands from the BASIC Language ...... 5-12
Sample BASIC Program ...........ccoviinneiinnnnn 5-13
For More Information ..........ccoeveiivenennnannn, 5-15
Serial Communications .....vevverneeererenerennseanes 5-16
Set Utility Program ..............cceenunnnn. e 5-16
Using the Set Utility Program .................... 5-17
The Help Command .........ccoiiiiiinnnnnnnnn, 5-18
Command StrUCLUIE . ....vvvrirnnrnnensennsnannns 5-19
Syntax Diagram ........cciiiiiiiiiin i, 5-20
Device Selection ........coiiiiiiiiiniirieninanns 5-21
Setting Parameters ......ooevvveninerennnnanennns 5-21
Single Command Line Entry ...................0ot, 5-25
Error Messages ......ceeeeeeneronnernnesnaneannons 5-26
Serial Communications Under Program Control ......... 5-27
Sample BASIC Program ..............coo0iinn, 5-28
CONCIUSION +vvvevveererernseasonsanaensoncanonnsanes 5-31

6 CREATING AND EDITING PROGRAMS ........... 6-1
INtroduCtion ....iviiiiirnniiereerenrasearsassnssaons 6-2
Selecting a Programming Language .................... 6-3

BASIC ittt ittt iate i, 6-3
FORTRAN .. iiiiiiiiintiinrtenerennrennneanass 6-4
Assembly Language .........cciiiiiiiiiiiiiiennnn, 6-4
File Utility Program .........ciciieuiverennnnnnnnnnns 6-5
Command Line Interpreter .........cociiiiiiiieiennn. 6-5
Introduction ....c.viiviviinrienririerrterasnnsenses 6-5

Editing Features of the Command Line Interpreter .... 6-6

iv (continued on page v)



CONTENTS, continued

The Edit Program ............... P 6-7
Introduction ........covvvirernnenernnrenenneennans 6-7
Entering the Editor Program ............c..ce0vun.n. 6-8
Exiting the Editor Program ......................... 69
Operating Modes ........... e e seeree i e e 69
GlobalCommands ..........ccoiiiiiiennnnrnnnnnnnn 6-10
Most Used Commands .........ccccvvevnnrnenecrnnns 6-10

Cursor Positioning .........cciivieeinnnenn.. eeee 6-10
Text Insertion and Deletion ...........ccovuuvn.n.. 6-11
SubsStitution . ....cvoeititienenrrencanannnenennns 6-11
Making Text .......ciitiiiiiiiiiiiiiiinnnnennnns 6-12
Searching ........ciiiiiiiiiiiiinnienirinnnnnnns 6-12
Command Mode ......cviiiiiiiiiieniininnnnnnnns 6-15
MarKerS ..viieeieeineeeeeeseenasoonnoennnsnnes 6-15
The Yank Buffer ............cciitiiiiinininnnn.. 6-15
Search Commands ........coiveiverneecnnneenees 6-16
Metacharacters ........cvveeerenerrennnennnennns 6-17
Command Mode Commands ..........cccovveuennnnn 6-18
Cursor Positioning .........cccvvevneenrnrarnenns 6-18
Long Cursor Movements ..........covvivuneenaans 6-23
Search Commands .........coviieernenennnnnaenn 6-25
Marker Commands ............ievireinnnnnnnn. 6-27
Text Insertion .......cceveveeeeenenenenenenannns 6-28
Text SubStItULION .. ..v.vvieernnennrnnrenrennens 6-29
Case CONVErsiON ......coevevereceeeenoonnnansanns 6-30
Text Deletion Commands ...........ccovveviennnn. 6-30
Control Commands .......cooeviverennnenneenens 6-33
Target Commands .............cciiviiinninnnn.. 6-35
Global Commands ......c.voveeiveeennnneeennens 6-37
Edit Program Messages ...........ciiviiiiinenn... 6-44

170 To] 1113 L0 + W 6-45

AUTOMATING SYSTEM FUNCTIONS .......... 7-1

INtroduction .....ovviiinienernnenenneenonnsenonnnes 7-2

Command Files .......c.voiiiiiiiiiiiiiiiiiernnnenss 7-3
Special Characters ...........c.oiiiiieiinenrnnnnn. 74
Sample Command Line .......ccivviirnnrnninnsnnns 7-5
The Startup Command File ......................... 7-6
Linking to Other Command Files ................... 7-7

Establishing the Environment-

The BASIC SET SHELL Statement ................. 7-8

v (continued on page vi)



CONTENTS, continued

Allas File ... ..ttt it iiiiineieitnieneenenanns 79
Creating AlIases .......covviiivinnerinieneeennnaenns 79
Error Messages .......civviniiennnonneneencnennnas 7-11
Standard Aliases .........ccoiiiiiiiiiiiiiiiiiiaean 7-11

Automating Utiltiy Programs ............covvvivennnn. 7-15
The Time and Date Utility ..............cc0civnnn.. 7-15
Using the Time and Date Clock ..................... 7-15
Programming Language Commands ................. 7-16
Set Utility Program  .......civiiniininnnnnennnnnnns 7-17
File Utility Program ..........coiiiiiiinennennnnns 7-17

Sample Instrumentation System ..................0e... 7-18
Controlling the Sample System ..................... 7-20

Step 1: Start With a Flowchart ................... 7-20

Step 2: Establish Bus Addresses ................... 7-24

Step 3: Program the Modules ..................... 7-24

Step4: Concatenate ........ocoeevuvriernennnenns 7-27

Step 5: Debugging .........coiiiiiiiiiiiia., 7-27

Step 6. Document the Program ................... 7-28

Sample Program Listing ............c.cc0vviui.n.. 7-29

The Startup Command File ........................ 7-32
Conclusion ......coviiiiniiiiiiiniiisinsseniaaenenas 7-32

8 DISPLAY . it i i i ittt ittt 8-1

Introduction .........cciiiiiiiiiiiiiiieiirinannannnan. 8-2

The Character Plane ........ e 83
Character Sets .....civiivivnivnnnrnrentoneenaenannns 8-3
Custom Character Sets .......ooiiiirenrinnnneeanans 8-3
Character Graphics ..........coviviiieiiiiiiiinnnns 8-4
Programming a Character Graphics Display .......... 8-6

Program to Display Graphics Characters ........... 8-6
Program to Display One Touch-Sense Keypad ...... 8-7

Introduction To ANSI Standards ..............cco0een. 8-8
Special Display Control Characters .................. 8-9
Escape SeqUeNCes .......vieeuenressocssenancnennns 8-10

Numerically Defined Control Sequences ........... 8-11
Selective Parameters ........ccivviiniinnnnennnenn. 8-14
Field Attributes .........coviiiiiiinirnennenneenns 8-15
Character Attributes ..........ovviiiniiniennnnnn. 8-15
Non-Destructive Display Character ................ 8-17

The Graphics Plane ..........covviiiiiiiiiineninnnnn, 8-18
Introduction to Graphics Routines .................. 8-18
Addressing the Pixel Locations  ..................... 8-21

vi (continued on page vii)



CONTENTS, continued

Graphics Routines ..........ooiiiiiiiieiiiniinnnnn, 8-21
Summary of Commands ..........coviiiiiiiiinna.. 8-22
15 1 5 8-24
DRAW i iiiiiiiiiiitiiteiiiistssrannnens 8-25
ERAGRP ... ittt iiiinienrnnnnnnns 8-26
GRPOFF, GRPON ..........ccciiiiiiiiiiinnns. 8-27
MOVE ittt iiiiii i ieiiieeeninnanes 8-28
MOVER ..ttt ittt 8-29
PAN i it i ittt 8-30
g 500 8 PO 8-31
o 50 1 1 8-32
CONCIUSION .+ vvvtiisiennennnssenesensssonassnssaanss 8-33
APPENDICES .........ciiiiiiiiiiiiinennnnnens 9-1
A Specifications .........cciiiiiiiiiiiiiiiiiieany . A-1
B Options and ACCESSOTIES ......covveveronnnasans . B-1
C IEEE-488 Reference ........oovvvvevineenennnns . C-1
D GlOSSAIY ... vvtverenrnnrneeenseernencenanansas . D-1
E Custom Character Sets  ...........ccvvvveeenn. . E-1
F Primary Character Set ...... e eerea e F-1
INDEX

vii



Section 1
How To Use This Manual

CONTENTS
Introduction ........c.coiiiiiiiiiiiiiiriiiinnnnn.. 1-2
Organization .......cviiieernnnnnninneneneeeennnenes. 1-3
Usage GUIde ...vnniiitiiniiiiiiininnnnrennnnenns 14
How to Read Syntax Diagrams .............c.cuuun... 1-5
Sample Syntax Diagram ..............ccc0ivvinnnn. 1-6
Notation Conventions ..........oveeruiieeeernnneennn. 1-7

1-1



How To Use This Manual

INTRODUCTION

This manual is the primary reference for the Fluke 1722A Instrument
Controller. The 1722A System Guide is part of a manual set that
supports the Controller, and covers hardware and software.

The purpose of the System Guide is to provide an easy to use source of
information for a variety of users. Whether this is your first exposure
to programmable instrumentation, or whether you already have
extensive programming experience, our intention has been to
anticipate and meet your needs for accurate, well organized
information.

First-time users should read the Getting Started manual. Getting
Started is designed to help set up the Controller and begin using it. The
Fluke BASIC Programming Manual and other language manuals
describe how to use a programming language and its available software
tools.



How To Use This Manual

ORGANIZATION

Section 1 How to Use This Manual
Describes the organization of the System Guide, and the conventions
used in the manual.

Section 2 Setting up the Controller

Provides a first look at the Controller, and contains unpacking and set-
up information. It illustrates controls, indicators, and connectors, and
includes start-up procedures.

Section 3 Software Configuration

Describes the Operating System software, and the other programsona
new System disk.

Section 4 Devices and Files
Describes the system’s resources and how to use them. This section
contains a complete description of the File Utility.

Section 5 Communications
Tells how to use the Controller to send and receive information using
the ports for the IEEE-488 bus and the RS-232 interface.

Section 6 Creating and Editing Programs
Explains how to use the Editor program to write and modify
programs.

Section 7 Automating System Functions

Explains how to use the various software and hardware resources to
automate the functions of the Controller.

Section 8 Display
Explains how to use the Controller’s graphics capabilities to design
detailed and informative displays.

Section 9 Appendices
Contains useful reference material, including a list of options and
accessories and a glossary of terms.

The material in this manual is organized in categories of tasks, in the
order that most persons would perform those tasks. If more
information about a specific topic is needed, consult the Index.



How To Use This Manual

USAGE GUIDE
Evaluators

If you are evaluating the 1722A Instrument Controller for a particular
application, the section titled Setting Up the Controller describes the
general capabilities and functions of the unit. You might also read the
introductions to each of the other tab-divided sections to assess the
software packages and hardware configuration. The Specifications are
given in Appendix A.

Beginning System Designers

For those with little or no experience in designing a programmable
instrumentation system, Getting Started is the recommended place to
begin. This handy stand-alone volume with its accompanying disk will
familiarize you with the basic operations and layout of the Controller.
Then you can use the System Guide as a reference for a variety of
topics, or branch off to one of the language manuals (BASIC, Pascal,
etc.) If you need more familiarity with the IEEE-488 bus, see Section 5,
Communications, or Appendix C, IEEE-488 Interface References.
More information is available in Fluke Application Bulletin AB-36,
IEEE Standard 488 Digital Interface for Programmable
Instrumentation, and Fluke Technical Bulletin C0076,
Troubleshooting Information for IEEE-488 Systems.

Programmers

If you already have some experience in programming, the sections on
Software Configuration or Automating System Functions are a good
place to start. Section 4, Devices and Files, can help you become
familiar with the file conventions used in the 1722A. Y ou may also wish
to refer to the Communications section for information about the
IEEE-488 bus and the RS-232 port.

Operators

An Operator’s Guide has been included after the appendices in this
manual. The Guide shows the location and operation of all controls,
care of the floppy disk, routine maintenance procedures, and what to
do if things don’t go as expected. Additional copies can be ordered
using Fluke Part Number 718163.



How To Use This Manual

HOW TO READ SYNTAX DIAGRAMS

A syntax diagram is a graphical representation of how to construct a
valid command or statement in a programming language. It is a kind of
“shorthand” way of writing down all the rules for using the elements of
a language. Since they are used throughout this manual, learning how
to read them can be a great time saver.

(space)

(CTRL)/C

filename

e

(explanation)

Words inside ovals must be entered exactly as they are
shown.

Words inside boxes with rounded corners indicate a
single key must be pressed, such as RETURN or ESC.

This indicates a space in the statement. (Press the
spacebar.)

To create a control character, hold down the control key
(CTRL), then press the other key. This one isa Control C;
it causes a break in the program.

A box with lower-case words inside means that you
supply some information. In this case, you would enter a
filename.

Words in parentheses are explanations of some kind.
They give added information about the nearest block or
path, or indicate a default value.



How To Use This Manual

Sample Syntax Diagram

[ fie ]

From the left, any path that goes in the direction of the arrows is a
legitimate sequence for the parts of a statement. This sample shows the
correct syntax for naming a file. The translation is given below.

(no name) (default extension)

/W 7N

(no extension) [~

D

Bl
®

(maximum 6 characters) (maximum 3 characters)

A line exits the top of this diagram with no keyboard input. This
indicates that it is possible to not specify the filename or its
extension. In this case, the file would have no name, and the system
would assign a “default extension”.

Further down the diagram, you can see that there are other
possibilities. They are explained by the remarks, “maximum of 6
characters” for the name, and “maximum of 3 characters” for the
extension.

The filename can be any combination of letters, digits, the § sign,
and spaces (up to six characters), and the extension can be up to

three of those characters.

The filename and extension must be separated by a period, as
shown in the oval block at the top center.

The remark “no extension” means that it is not necessary to specify
an extension, even though a file name is given. Notice however,
that this remark occurs after the period, so the period is necessary if
a name is specified.

Here are some examples of valid filenames according to the syntax
illustrated in the diagram:

TESTIN.$3A 1722A.INC $$5558.55%



How To Use This Manual

NOTATION CONVENTIONS

The conventions listed here are used for illustrating keyboard entries
and to differentiate them from surrounding text. The braces,{} ;
brackets, [ ], and angle brackets, () ; are not part of the keystroke
sequence, but are used to separate parts of the sequence. Do not type
these symbols.

(XXX)

(XXX)/y

[xxx]

XXX

{xxx}

(xxx)

Means “press the xxx key”.
Example: (RETURN) indicates the RETURN Kkey.

Means “hold down key xxx and then press y”.
Example: (CTRL)/C means to hold down the key
labeled CTRL and then press the key labeled C.

Indicates an optional input.

Example: [input filename] means to type the name of the
input filename if desired. If not, no entry isrequired, and a
default name will be used.

Means to type the name of the input as shown.
Example: BASIC means to type the program name
BASIC as shown.

Indicates a required user-defined input.
Example: {device} means to type a device name of your
choice, as in MFO: for floppy disk drive 0.

This construction has two uses:

1. As a separate word, (xxx) means that xxx is printed
by the program. Example: (date) means that the
program prints today’s date at this point.

2. Attached to a procedure or function name, (xxx)
means that xxx is a required input of your choice; the
parentheses are a required part of the input. Example:
TIME(parameter) means that a procedure
specification is the literal name TIME followed by a
parameter that must be enclosed in parentheses.



Section 2
Setting Up The Controller

CONTENTS
Introduction ........ oottt neiiinrnenennnnes 2-2
Features ....cvveiiiiiniiiinniiinnensennsncraasnnns 2-3
Physical Layout ........ccovviiiiiiieinieennnennnns ve. 24
Unpacking ..vvvvvnernnnerroeeroossoesennosnseenns 2-6
Unpacking Checklist ..........covviviiiiiiiiiis, 2-6
Installation .........cciiiiniiiniiniuirncnnnneneneanns 2-8
Environment .......ccveveievnrrnresnasnnnsncnanns 2-8
Pre-Installation Checkout ...........cc0vvivveanenn. 29
System Installation ..........c.cciiiiiiiiiiiiiiiinnen, 2-14
Introduction ........c.coviiiiiieniienieriinrnnacnns 2-14
Multiple Controller Systems .........ccciiivvunenn, 2-14
Situating the System Components ................... 2-16
Workbench Installation ...........ccvvviiiennnnen 2-16
Rack Mounting .......covvennivnnreonenonesannes 2-18
Connecting the IEEE488 Bus ....................... 2-19
Bringing the System Up ........ciiiiiiviiieniiereneen 2-20
ConcluSioN . ..vviiiieiriniininneesearrnsensraseanns 2-22



Setting Up The Controller

INTRODUCTION

2-2

The Fluke 1722A is a programmable Instrument Controller designed
to manage a multiple instrument system using the IEEE-488-1980
instrumentation bus. It is able to command and communicate with
various devices over this industry-standard bus.

User programs give the Controller the ability to collect data, process it,
make decisions, respond to instrument service requests, and to format
the results of these activities to meet the unique needs of the user.

The 1722A stores programs and the collected data on disk. A floppy
disk drive is a standard built-in feature of the Instrument Controller. A
general purpose RS-232 port is also standard; it permits the Controller
to send information out to many types of peripheral devices, including
modems and printers.

The programmer enters programs at a detachable keyboard. The
system communicates with the programmer by way of a CRT display.
After a program is entered, it can be stored in memory, on floppy disks
or hard disk for later use.

During operation, the keyboard can be detached. In this mode, the
operator uses the Touch-Sensitive Display to respond to directions
from the program, and to give inputs to the system.



Setting Up The Controller

FEATURES

w]

A 16-bit single-board microcomputer with 136K bytes of on-board
memory. Approximately half is available for storing user
programs.

Programmable graphics; 640 x 224 pixel resolution.

Video character enhancements that include double-size display,
highlighting, blinking, and reverse video.

A Touch-Sensitive Display for the operator; resolution to 60
finger-tip sized areas.

400K byte floppy disks for storage and back-up. Can be formatted
for either single or double sided operation.

Battery-supported real time and calendar clock (program-
accessible).

Standard IEEE-488-1980 Interface.
Standard RS-232-C Interface.

Composite video output for connection to an external video
monitor.

Detachable keyboard.
Rackmountable.
Extensive set of options for upgrading system capabilities as user

needs increase. Memory can be increased to approximately 2.7M
bytes; up to seven serial ports or six parallel ports can be added.

2-3



Setting Up The Controller

PHYSICAL LAYOUT

CARD CAGE POWER SUPPLY

AC INPUT

CATHODE RAY TUBE

DISK DRIVE

2-4



Setting Up The Controller
Physical Layout

TOUCH-SENSITIVE DISPLAY

DISK DRIVE DISK DRIVE
IN-USE IND\ICATOR

( \ 3
\ &

LL = LIQ IFF]

/
KEYBOARD PLUG

ABORT
RESTART PUSHBUTTON
PUSHBUTTON
POWER  POWER
CORD SWITCH CARD CAGE
FUSE BRIGHFNESS CONTROL

"
[ ~—

yA V4
iy, o)
= 1
= B o2
) — 3
- [==
‘B g4
&] g5
= g6
PR,
A A\ —
\ |EEE-488
SYSTEM GROUND TERMINAL CONNECTOR
RS-232-C
A ILTER
Slots IR FIL CONNECTOR
Single Board Computer 7
Video/Graphics/Keyboard Interface 2
Options 1,3,45,6
Memory Expansion Options 1,3,4,56
input/Output Options 1,35
Non-Input/Output Options 4,6



Setting Up The Controller

Unpacking

The 1722A is carefully packed for shipping to ensure that it arrives in
good condition. Unpack all the containers and check the packing
materials for accessories, cables, and manuals. Do not dispose of the
packing materials before inspecting for shipping damage. If this
inspection reveals damage or indicates that damage might have
occured, notify the shipping agent immediately. Then call a Fluke
Sales Office or Customer Service Office. Use this checklist to be sure
the shipment is complete:

Unpacking Checklist

2-6

Controller Mainframe

Keyboard

Power cord

System disk

Data disk

Diagnostic disk

Getting Started disk and manuals
System Guide

BASIC Programming Manual
Programming Worksheets (pad of 50)

CYVXNIAnAWN -~

It

Other options or accesories may be included with the shipment. Check
the contents against the original order to ensure that all items have
arrived. A list of options and accessories is given in Appendix B.

If the Controller needs to be shipped again at a later date, use the
original packing carton with all fillers properly in place. Fluke does not
recommend shipping the Controller in a substitute container. To
obtain an approved container, call any Fluke Sales Office.



Setting Up The Controller

Unpacking

2-7



Setting Up The Controller

INSTALLATION
Introduction

Any microprocessor-based piece of equipment is made up of two parts:
hardware and software. Installation usually involves a physical
installation and some sort of software configuration. This section
describes the physical installation of the 1722A Instrument Controller.
Software configuration is covered in Section 3.

Before using this section to install and checkout the Instrument
Controller, be sure you are familiar with the location of all the
connectors and controls. Doing so will assist you in setting up the
instrumentation system.

Environment

It is important to ensure that the location meets the environmental
requirements listed in the Specifications. Heat and humidity are two of
the worst enemies of electronic equipment, particulary the floppy disk
and its drive. Allow at least 10 cm (4 inches) between the back of the
unit and the wall to allow the fan to cool the unit adequately.

Floppy disks are more sensitive to storage environments than the
Instrument Controller. If a disk becomes colder than 10°C (50°F), or
warmer than 50°C (122°F), allow it to reach room temperature and
humidity before placing it in the Controller. The Check-Out
Instructions include other disk handling precautions.

CAUTION
Low humidity environments can contribute to static buildup.
Static discharges can permanently damage circuitry within
the 1722A, and erase information recorded on the floppy
disk. To prevent such damage, always make sure that the
humidity is above the minimum specified level and that the
instrument Is properly grounded.



Setting Up The Controller
Installation

Pre-Installation Checkout

L.

Place the 1722A on a suitable table. Check the label on the rear
panel to ensure that the unit is set up for the proper line voltage,
and that the proper fuse is in place. If either of them are incorrect,
notify your Fluke Technical Service Center.

Check to see that any ordered options are installed. If “installed”
was specified on your order, the options should already be in the
Controller. Otherwise they will be packed separately.

Install any options that were not specified to be factory-installed.
(Refer to the manual provided with the option.)

Release the door latch on the floppy disk drive by pressing in on the
top. Remove the protective shipping insert from the disk drive.

CAUTION
Do not attempt to operate the Controller before removing

the protective shipping Insert. Doing so can damage the disk
drive. '

Attach the keyboard and line cord. 1
Plug in the line cord and turn on
the power switch (rear panel). 0

Following the disk handling precautions on the next page, gently
insert the System disk (label up) into the disk drive.

NOTE

Floppy disks supplied by Fluke use reinforced center rings
to help seat the disk on the spindle. If floppy disks without
such rings are used, first insert the disk, and gently close the
door without latching it. Reopen the door slightly, then
close and latch it. This insures that the disk seats on the
spindle, and improves the reliability of reading and
recording data.



Setting Up The Controller
Floppy Disk Care

A Insert Carefully
Insertar
Inserer avec soin
Sorgfaitig Einsetzen
A ix X

Protect
Proteger
Protéger
Schutzen
® &

[ ]
10°C - 50°C
) 50°F - 122°F

Never
Nunca
Jamais

Nie

o %A

Never
Nunca
Jamais

Nie
Tl N

No

No
Non
Falsch
XK



Setting Up The Controller
Loading a Disk

7. When the disk is fully seated, latch the drive closed by pressing in
on the bottom of the latch.

PRESS TOP OF DOOR LATCH TO RELEASE

2-11



Setting Up The Controller
Power Up

8. Press RESTART and watch the display. It should read:

e D

FLUKE 1722A CONTROLLER
HELLO

BOOT Va.n

\
W ’ )

9. Verify that the version number is covered by this manual (see
frontispiece). If it is not, call a Fluke Customer Service Center for
advice.

10. Following this display, the 1722A performs a self-test that checks
out the internal circuitry. The display changes to read:

é )

4 )

FLUKE 1722A CONTROLLER
SELF-TEST IN PROGRESS _

2-12



Setting Up The Controller
Power Up

11. If the self test is not successful, an error message is displayed on the
screen. If this happens, recheck the previous steps. For continuing
failure, see the list of Self Test error messages in section 3. If
everything seems to be in order, service may be required. Contact
your Fluke Service Center.

12. After the self-test is successfully completed, the 1722A loads the
Operating System software into main memory from the System
disk. The display again changes to read:

~

~

FLUKE 1722A CONTROLLER
LOADING _

v,

13. When the Operating System has been loaded from the floppy disk
into memory, the system asks for the correct time and date to be
set. When this has been done, the prompt for the Fluke Disk
Operating System is displayed:

> =

FDOS Version x.vy
Total System Memory - nnn Kbvtes
E-Disk — n Kbytess free - nnn Kbvtes (nn blocks)

FDOS>

2-13



Setting Up The Controlier

14. If all these steps have been successful, the 1722A Instrument
Controller is fully functional, and the Pre-Installation Checkout is
complete. There is a more complete discription of the system’s
power up activities in the next section, Software Configuration.

NOTE
Altered system software may not ask for the time and date,
nor show the FDOS) prompt. The programmer can tell the
installer how the successfully loaded software will appear.

SYSTEM INSTALLATION
Introduction

Because of the versatility of the 1722A Instrument Controller, it is not
possible to give more than general guidelines on how to configure it
into a system. The drawing on the next page can help give a feel for the
possibilities. Please consult the Configuration Table in appendix B for
details.

Multiple Controller Systems

2-14

The IEEE-488 Instrumentation standard allows more than one
controller on the bus. However, only one may be designated as the
system controller at any one time. The drawing below shows how to set
switch 1 on the Single Board Computer module for the 1722A to be
designated either as a “system controller” or “controller in charge” at
power up. Refer to Section 5, Communications, for a complete
discussion, and directions on how to set up the 1722A in a system with
more than one controller.

1 2 E] 7 8 L]

SwW1

1 234 5 ¢ 7 8 9 V0
A4 A3 A2 A1 AD IEEE ADDRESS
sc SYSTEM CONTROLLER: OFF
sC CONTROLLER IN GHARGE = ON
= BAUD RATES 0 = OFF 1 = ON
== oo | I - 110
Y / 001 300
010 800
o1 1200
SINGLE BOARD T 100 2000
COMPUTER MODULE Ll e . ]
m 19200




Setting Up The Controller
System Installation

1722A INSTRUMENT CONTROLLER

I—ns-zsz-c—> gl (EcE-LEA
PROGRAMMABLE |

POWER SUPPLY

PRINTER
FREQUENCY
SYNTHESIZER
MICRO-SYSTEM DIGITAL
TROUBLESHOOTER MULTIMETER

MEASUREMENT

MODEM AND
CONTROL LINK

OTHER 1722A

CALIBRATOR

DATALOGGER

COUNTER




Setting Up The Controlier
System Installation

Situating the System Components

Like any system instrument, the 1722A can either be rack-mounted or
used on a bench. Rack mounting is preferred for more permanent
installations, or in those cases when the system will be set up in an
assembly-line application. Research and development facilities,
scientific or engineering laboratories, or in those places where the
Controller will be used in various locations, generally either do not
rack-mount the system, or else mount it into a moveable rack.

Wherever the installation site is, try to choose a location where the
display will not be subject to glare from overhead lights or windows.

Workbench Installation

2-16

Normally, little thought is given to planning how to set up a test fixture
on a work bench; wherever things fit is usually where they are put.
However, a little planning can make the installation much more
versatile, efficient, and pleasant to work with.

1. Find a location for the Controller where the Touch Sensitive
Display will be as close to eye level as possible. This will avoid
long reaches for the operator that can become tiring, and
ensures that a parallax error will not cause the operator to
touch the screen at the wrong location.

CHARACTER CHARACTER
FACE OF TUBE FACE OF TUBE
TOUCH SENSITIVE PANEL TOUCH SENSITIVE
PANEL

RIGHT WRONG




Setting Up The Controller
System Installation

2. Position the keyboard so that the programmer is able to sit

3.

4.

5.

6.

directly in front of the screen, rather than off to one side.

If repeated connecting and disconecting of instruments is going
to be done, make sure the back of the workbench is open and
not against a wall. This makes connectors on the rear panel
more easily accessible.

Arrange other instruments on the bench so they are easy to see
and operate.

To protect information on the floppy disks, never place an
oscilloscope, soldering iron, or other source of high voltage or
electromagentic fields near the disk or disk drives.

Keep the equipment cables neatly organized. Dressing the
cables ensures that long cables will not degrade signal quality
among the instruments, keeps the work area neat, and helps
trace any problems that might occur.

L

2-17



Setting Up The Controller
System Installation

Rack Mounting

2-18

Installing the Controller in an equipment rack requires more planning
than a bench top installation because it is more difficult to change if
things don’t work out. Here are a few things to keep in mind as you
plan a rack-mounted installation:

1.

Plan for a way that the keyboard can be easily used after the
installation. Even though the keyboard will not be attached

during normal operation, the keyboard may be needed laterto -

change programs. If the Controller can be left in the rack, time
and effort can be saved.

If the programs will have a high degree of interaction between
the operator and the Touch Sensitive Display, consider
mounting the Controller so that it will be at eye level from the
operator’s normal working position. If the operator stands, the
Controller should be mounted about 1.5 meters (5 feet) from
the floor. If the operator sits, then it can be mounted lower.
This will avoid long reaches and parallax errors.

If programs will not require much interaction, place the
instrument with which the operator will be working most
frequently directly at eye level, and fill the rack outward from
there with those instruments used less frequently.

To protect the information on the floppy disks, position any
instruments that radiate electromagnetic fields as far as
practicable from the Controller.

Observe good cable dress to ensure good signal quality and to
help trace any problems that might occur.




Setting Up The Controller
System Installation

Connecting the IEEE-488 Bus

One of the features of the IEEE-488 connector is that it is both a male
and female connector. Because of this, it is possible to stack all of the
connections (up to the maximum of 14) into one location, or to arrange
them in any other configuration desired. However, it is probably a
better idea to distribute the IEEE-488 connectors among the
instruments for two reasons:

1. In such an arrangement, the connectors do not extend as far,
and connector stress that could cause intermittent problems
later is eliminated.

2. Using a distributed connector pattern, it is easier to change any
connector’s position than if the bus connections were all at the
same place.

The IEEE-488 standard states that total cable length in a system should
not exceed 20 meters (about 60 feet), and that no single cable should
exceed four meters (12 feet). Allow 2 meters (6 feet) of cable per piece of
equipment.

Note
When it is shipped from the factory, the 17224 Instrument
Controller meets or exceeds the requirements of FCC part 15-J
and VDE 0871. To ensure continued compliance with these
standards, any cables connected must be shielded and
incorporate 360° metal connector bodies. These are available
Jrom John Fluke Mfg. Co. Inc. using these part numbers:

IEEE-488
2 meter: 658526
1 meter: 682401
4 meter: 682419

RS-232

2 meter: 706688
10 meter: 706846

2-19



Setting Up The Controller
System installation

BRINGING THE SYSTEM UP

? SYNTHESIZERN || ] F ]
\ - COUNTER

2-20

This section can be used in two ways. First, it can help you plan for the
eventual test configuration by providing some ideas about how to test
the system as it is built. Secondly, it provides some guidelines on
actually bringing the system up once it is designed.

Below is a representation of a “typical” instrumentation system. In the
guidelines that follow, this system is used as a sample of how to ensure

success in bringing the system up.

B

INSTRUMENT CONTROLLER

TRne -

FREQUENCY | {E=— |l b hlae

-------------

SERIAL PRINTER

UNIT UNDER TEST

This system has 5 devices connected:

~ 1722A Instrument Controller
6160B Frequency Synthesizer
1953A Digital Frequency Counter
1776A Serial Printer
Unit Under Test

All the devices except the Unit Under Test and the Serial Printer are
connected to the IEEE-488 bus. The printer connects to the RS-232
port, and the Unit Under Test connects to the measurement
instruments.



Setting Up The Controller
Bringing the System Up

In this example, a short software test routine should be written that
programs the synthesizer’s output frequency and then listens to the
frequency counter to see that it has measured the same value that was
programmed into the synthesizer. The last step in the test program
would be to send the results to the serial printer for a hard copy.

This same example system is used in Section 7, Automating System
Functions, to explain in detail how this test program would be
developed.

1. Set up the IEEE-488 bus addresses of each device on the bus.
This is usually done by installing or removing jumpers or by a
switch setting. The exact procedure depends on the instrument.

2. Connect the IEEE-488 instruments. One cable is required for
each instrument.

3. Connect the frequency counter to the synthesizer.

4. Power up the system, and run the test program. If it is
succesful, the test validates the bus. Also, the software that was
written for the test is a development tool for the actual system
that will result. It will have verified that the correct addresses
are programmed into the IEEE-488 instruments, and that the
programmer is able to talk and listen to each of the
instruments.

5. Turn the system off and connect the RS-232 printer. Then
power up the system and run a second test routine that sends
the data to the printer. This data may be the result of the test, or
it might simply be a short data file that includes a full character
set of the printer.

6. Power down again, and connect a known good unit as the Unit
Under Test. Run the second test routine, and see that the
correct readings result.

If all of these tests are successful, the instrumentation system is fully
functional. The value of setting up this kind of minimal system beforea
more comprehensive one is that it verifies both hardware and software,
and provides a building block approach to the final configuration.

2-21



Setting Up The Controller

CONCLUSION

2-22

In this section, the emphasis has been on physically setting up the
Controller. However, the instrumentation system cannot be set up
until the system software is configured, and the test programs are
written that verify the hardware installation.

In the next section, the next step in setting up the Controller,
configuring the software, is discussed. Section 6, Creating and Editing
Programs; and Section 7, Automating System Functions describe how
to program the Controller.



Section 3
Software Configuration

- CONTENTS

Introduction ..........c.ciiiiieiieeiinnennennrcnennss 3-2

Loading The System Software ..........cccevvvevenn.. 33
Bootstrap Loader .........c..iviiiiiiiiiiiniennnn. 3-3
Self-Test Error Messages ..........coiiviieniiinn.n. 34
Other Errors ...coiviiiiiiiiiniiiiiiinneneenconanas 3-5
The Startup Command File ........................ 3-6
Settingthe Time .........ciiiiiiiriinnenrenannnens 3-7
The Operating System .......coveiinninenenanannnan 39
Command Line Interpreter .........c.ccvvivenvevnnens 3-10
Utility Programs .........cvveieneninnenrernnnnnns 3-10

Making a New Operating System ...........cc0v... veve 3-12
Introduction .......ccoviiiiiiiiiiiiiii it 3-12
A Note About Software Compatibility ............... 3-12
Necessary Files .......cciiiiniiniiinininenennnns 3-13
Optional Files .......coiiiiiiiiiiiiiiiinenennnnn, 3-13
Using the System Generation Utility ................. 3-14

ConCluSIoON .. ..iivuiireierinereeneerennnnsacnsssnnns 3-15

3-1



Software Configuration

INTRODUCTION

3-2

The last section discussed how to set up the Instrument Controller
from a physical point of view. This section describes the software,
which, together with the hardware, make up a functional Instrument
Controller. The section includes a description of the software that is
shipped with each new Controller. The topics in this section are:

Loading the System Software
The Startup Command File
Setting the Time

The Operating System

The Command Line Interpreter
Utility Programs



LOAD

Software Configuration

ING THE SYSTEM SOFTWARE

Bootstrap Loader

When the Controller is powered up, a small program that is
permanently recorded in a memory has control of the internal
microprocessor. This program, the Bootstrap Loader, first says
“HELLO?”, then performs two very important functions:

O It checks out the Controller with a self test to make sure all the
hardware is operating properly.

o It loads the system software.

The Self test checks the memory, processor, and the interfaces.

TN
FLUKE 1722A CONTROLLER
SELF-TEST IN PROGRESS .
\_ J/

The benefit of this automatic test at power up is that if it is successful,
the Controller’s hardware is verified as operational and if a problem
occurs later, the hardware can be eliminated as the fault. If the test
fails, press RESTART and try again. If the problem persists, contact
your Fluke Customer Service Center.

3-3



Software Configuration

Self-Test Error Messages

3-4

If an error occurs during the self test, a message will be displayed that
takes the form:

FAILED: - xxx Test.

The xxx will be replaced by the failing component, and may be any of
the following:

- ROM Test

- RS-232 Port Test

- Memory Mapper Test

- Macrostore Memory Test

- On-board Memory Test

- IEEE Controller Test

- Floppy Disk Controller Test

All of these messages indicate a non-recoverable hardware failure. Try
resetting the Controller first, but if the error continues, make a note of
the test that failed, and contact your Fluke Service Representative.

After the Self test, the Bootstrap loader attempts to load the operating
system.

The Bootstrap loader searches for the system software on the floppy
disk, Electronic disk, then in the bubble memory if one is installed. If
the system software is found, it is loaded into main memory. The device
from which the system software was loaded is made the system device.
(For more information about the system device, see Section 4, Devices
and Files.)

As soon as the dperating system is loaded, it takes over from the
Bootstrap Loader, and the instructions recorded on the software disk
direct the controller’s activities from that point.



Other Errors

Software Configuration
Power Up

Some errors can occur during the power-up self-test, or anytime during
the operation of the Controller. They are always preceded by a
question mark indicating that they are “non-recoverable”; the
Controller continues to return the same error unless you take some
corrective action. These errors and the corrective action required are:

Message

? Disk Not Ready

? Illegal Directory

? Device Error

7 No System On Device

Meaning

Insert or reinsert the System disk.
Either there is no disk in the drive, orit
has been inserted incorrectly. Make
sure the disk drive door is latched.

The disk is faulty and must be replaced
before the Controller will operate
properly. It may be possible to save the
files from the bad disk by using the File
Utiltiy program.

The system is having difficulty reading
the floppy disk. Check to be sureitisa
System disk, and that it is inserted
properly. If so, RESTART and try
again. If the failure continues, try
another System disk.

The Controller does not recognize the
disk in the drive as a System disk. Try
another System disk. The wrong disk
may be inserted or it may be inserted
incorrectly.

3-5



Software Configuration
Power Up

The Startup Command File

3-6

On a standard System disk, the operating system loads a special
command file called STRTUP.CMD. A command file is a collection
of keyboard commands that would otherwise have to be typed in.
Command files serve to automate commonly performed functions.
For more details, see section 4.

The STRTUP.CMD file on a standard disk loads two more programs:
The Time and Date Utility and the BASIC Interpreter program.

The STRTUP.CMD file is easily changed. After gaining some
familiarity with the Controller, you may want to modify the startup file
to customize the Controller’s functions at power-up. There is a
complete description of how to do that in Section 7, Automating
System Functions.

a If the file STRTUP.CMD is found, it is loaded, and the FDOS
prompt will not have been displayed. Instead, the display reads:

FDOS Version 1.y
Total System Memory - nnn Kbytes
E~-Disk - n Kbytes free - nn Kbyvtes (n» blocks)

Startup Command File Exescution in Progress

Please Standbv...

0 Ifthefile STRTUP.CMD is not found, the Operating System takes
control. This would happen if the disk being loaded is not the
System Disk supplied with the Controller, or if the
STRTUP.CMD file has been renamed or deleted.

0 The STRTUP.CMD file on the System Disk supplied with the
1722A first checks the Time and Date Utility to see if the time has
been set. If it has, it loads the BASIC Interpreter program and
transfers control to it.



Software Configuration
Setting the Time

Setting the Time
o If the time clock has not previously been set, the display will next
read:

Enter date: DD-NM-YY

0 Type in today’s date in numeric form, starting with the day, then
the month, and then the year. The entries must be separated by a
hyphen or other non-numeric character. Use the DELETE key to
correct any mistakes. Press (RETURN) and the display reads:

Enter time! HH-MM

o Enter the time in 24-hour format: first the hour, then the minutes.

Separate the two by any non-numeric character. Press
(RETURN) to complete the operation.

The time on this clock is 8:20.
If it is before noon, enter 08 20;
if it is evening, enter 20 20.

3-7



Software Configuration
Power Up

3-8

0O Once the date and time have been set, the BASIC Interpreter
program is loaded. The display reads:

\.

)

Welcome to Fluke 1722A BASIC!

Ready

N

J

0 The “Ready” prompt indicates that the BASIC Interpreter
program is running in the Immediate Mode.

If all these things have happened as described, the Controller is
operating properly. The “Ready” prompt indicates that the Controller
has passed the Self Test, that the STRTUP.CMD program has run
properly, and that the Controller is now ready to receive commandsin
the BASIC language.

If you do not want to begin by programming in BASIC, it is a simple

matter to exit the BASIC Interpreter program, and begin working with

the Command Line Interpreter. To do that, type EXIT
(RETURN) . The prompt for the operating system is FDOS)

To get back to BASIC, just enter the word BASIC, and then
(RETURN)

Below is a description of the software modules that make up the
operating system on a new system software disk.



Software Configuration

The Operating System

Because the Instrument Controller is a programmed instrument, its
functions are controlled by a master operating program. Inthe 1722A,
this program is the Fluke Disk Operating System Program (filename
FDOS.SYS) The program’s name is usually shortened to ‘the
Operating System’.

The Operating System program controls the hardware components of
the Controller. It takes instructions from the keyboard or from a
program, and directs the functions of ports, manages the memory, and
manipulates files to convert the instructions into action.

The Operating System is a soft-loaded program, which means that it is
recorded on a disk, rather than being permanently in the memory. The
advantage of making the Operating System soft-loaded is that it can be
easily maintained and updated. Also, new software can easily be added
without having to install special hardware. Soft-loaded operating
systems are loaded at the beginning and remain in use while the
instrument is turned on.

For this reason, the Operating System file (normally the standard
1722A System disk) must be in place when the power is turned on, or

~ when the RESTART button on the front panel is pressed. However,

the file FDOS.SYS is not sufficient for proper bootup operation.
Other necessary files are:

ALIAS.SYS
MACRO.SYS
These files are explained in more detail in Sections 6 and 7.

Since it possible to relocate the Operating System into Electronic disk
or the optional Bubble memory, and since the Bootstrap loader looks
at these places besides the floppy disk drive, it is not necessary to have
the System disk physically in place to load the Operating System. In
fact, the loading process can be considerably speeded up by recording
the Operating System into memory, and loading from there rather
than from the disk.

3-9



Software Configuration
The Operating System

Command Line Interpreter

Utility Programs

The part of the operating system that receives instructions from the
keyboard is called the Command Line Interpreter. The Command
Line Interpreter can accept either single command lines (instructions)
from the keyboard, or the instructions contained in a Command file.
Instructions can be entered either in lower case or upper case. To
distinguish commands from other text, this manual shows only upper

case.

Automating the 1722A using Command Files is described in detail in
Section 7, Automating System Functions.

Four Utility programs are provided to assist you in configuring the
Controller and in developing software:

TIME

SET

FUP

The Time and Date Utility. [filename TIME.FD2]
This utility program is used to set or read the time and and
date maintained by the 1722A calendar/clock circuitry.
Once the clock is set to the correct time and date, it can be
used to imprint programs or data. It can also be used to
display the current setting. Battery power keeps it
accurate when the power is turned off. The Time and Date
Utility program is discussed in more detail in Section 7,
Automating System Functions.

The Set Utility. [filename SET.FD2])

This program changes the parameters at the RS-232 port.
These parameters govern the way information is sent and
received between the Controller and any devices
connected to the serial communications port. One
parameter, the length of time out, can also be changed for
the IEEE-488 port. The Set Utility program is discussed
in more detail in Section 5, Communications.

The File Utility program. [filename FUP.FD2]

- The File Utility is used to to create, delete, rename and

copy files, and to channel them between the various
devices in the Controller. The File Utility program is
described at the end of the next section, Devices and Files.



SYSGEN

Software Configuration
The Operating System

The System Generation program. [filename
SYSGEN.FD2]

This program is used to create operating system software
to support configurations that include options.

Other programs on the disk are:

EDIT

BASIC

The Editor program [filename EDIT.FD2]

A program used to create and edit other programs. The
Editor program is a powerful tool, designed to assist in
writing and changing programs. Among its many
features, it permits you to insert and delete varying
amounts of the programs (e.g., single characters, lines,
phrases), or to search for and replace an existing
character, line, phrase, or string. The Editor program is
described in a Section 6, Creating and Editing Programs.

This is the program that permits the Controller to run
BASIC language programs. The Fluke BASIC
Programming Manual that is supplied with the
Controller is a complete reference for the BASIC
language.



Software Configuration
Making a New Operating System

MAKING A NEW OPERATING SYSTEM
Introduction

The System Generation program is provided on the System Disk with
the filename SYSGEN.FD2. It is a tool for making a new Operating
System. When options are added, the Operating System must be
modified to include the programs that drive them. You must use the
System Generation program when these optional hardware modules
are installed:

Winchester hard disk drive

Parallel Interface module

Bubble Memory module

External Mini-floppy drive

Other modules as they are developed

A Note About Software Compatibility...

3-12

The System programs are software modules supplied with the
Controller as files on the System Disk. These machine-language
programs are interdependent and are compatible in the combinations
supplied with the Controller.

System programs are easily copied and erased, since they are treated as
any other file. The portability and copying ease of system software
allows you to take advantage of Fluke’s continuing program of
software development. However, it is possible to inadvertently record
incompatible modules onto the same disk. Therefore, it is important to
keep track of the various software modules on your disks.

Use caution when copying new or updated software to make sure that
the modules are recorded in the same combinations as the original
disk. If a mistake is made, the operating system may not load the
incompatible module, and display an error message.

Experienced programmers often suggest keeping a record of any
changes made to software disks, to keep mistakes to a minimum and to
make it easier to track down any problems that might occur. One way
to do this is to use the /L option of the File Utility program to print a
listing and keep it with the floppy disk.



Software Configuration
Making a New Operating System

Necessary Files

The System Generation program requires some files in order to build
the operating system. Before beginning, use the File Utility program to
make sure you have these files available:

SYSGEN.FD2 (the program that generates new FDOS2.SYS
files)

FDOS2 .LIB (library of modules to build FDOS2)

FDOS2 .CFG (used by SYSGEN to generate the prompts)

Optional Files

Many of the files provided on a new System disk do not need to be
included on a copy in order to have a complete, operational Controller.
The File Utility program itself is such a file. Remember, though, that if
the File Utilty program is included, you should also include the Help
file (FUP.HLP), because without it, a useful feature is lost. The
optional files are:

ALIAS .SYS

BASIC .FD2

TIME .FD2

SET .FD2

FUP .FD2 (if included, FUP.HLP is helpful)

EDIT .FD2

SYSGEN .FD2 (if included, FDOS2.LIB and FDOS2.CFG are
necessary)

MACRO .SYS

STRTUP .CMD

GRAPH .OBJ

PIB .OBJ

PIBLIB .OBJ

3-13



Software Configuration
Making a New Operating System

Using the System Generation Utility

Before beginning, decide if you want to keep a copy of the original
Operating System configuration. If so, make a backup copy using the
File Utility program whole copy option / W. Because the floppy disk
contains so much more information than the Electronic disk can
contain (without Memory Expansion modules) it is usually necessary
to do the backup in stages. The complete sequence is described in the
File Utility program Whole Copy option, /W.

3-14

Once the backup has been made, press RESTART and ABORT
simultaneously to simulate a cold start, and load either of the disks.

1.

2.

From the FDOS) prompt, type SYSGEN (RETURN).

When the program has loaded, the screen will display the
System Generation Utility program identification, then will list
the names of files it is linking to, and then begin asking if you
want various drivers.

Answer Y to those that are desired, otherwise N. It doesn’t
matter if you include drivers you won’t be using, but by not
including them, more memory space will be available for use by
your programs, and for Electronic disk.

After you answer all the questions, the program reads the
required software modules from the file named FDOS2.LIB,
and records them to FDOS2.SYS, replacing the current file
recorded there.

Press RESTART, and allow the new Operating System to
load. Test each module by using the File Utility program to
scan (/S), format (/F), or zero (/Z) the devices associated with
each driver.



Software Configuration

CONCLUSION

This section has described the programs that are recorded on the
System disk supplied with the 1722A. These programs are tools for the
system designer to use in setting up an instrumentation system. None
of these programs actually control an instrumentation system, but
facilitate writing those programs that do.

To make use of these programs requires using some other tools,
referred to as the system’s resources: devices and files.

The next section introduces these system resources, and explains how
to use each device and each type of file.

3-15



Section 4
Devices And Files

CONTENTS

Introduction ........cvieiiiiiiiiriniennernnarcnnannn 4-2
DEVICES v ittt iiiei ittt e e, 4-3
Files «vvvn it it it tieanenernnennennenses 4-5

DEVICES vttt ittt ii ittt et e 4-6
RS-232 Ports (KBI:) ..uvvrirnnrenennnnnronrnnennns 4-6
IEEE-488 Bus Devices (GPn:) ............coovvnenn.. 4-7
Floppy Disk Drives (MFn:) ..........c.ccciiieann.. 4-7
Electronic Disk (EDO:) .. .vvvvnrinrinriniinennennen 4-8
Bubble Memory (MBn:) .........cciviiiiiiiiennene. 4-8
Winchester Drive (WDn:) .......cviiiiiiiiinnnnn.. 4-8

FileS o viiviitiiiietnninnonnosossnannecnennnennenenns 4-9
System Files ......covvviiiiiiniiiininnnnnnenennns 4-9
Alias Files ...ttt iiiiiiaann, 4-9
Command Files .......coviiiiiiiinniniiiineeennnn. 49
The Startup Command File ........................ 49
Other Command Files ..............cccvviiiiiannn.. 4-10
Machine Executable Files .............c.civvuneun.n 4-10
Language-Dependent Files ......................... 4-10

The File Utility Program .......cviiiiivranrininnnnnes 4-11
Introduction ....... ..ottt iiiiiiinernennnnnanns 4-11
Entering the File Utility Program ................... 4-11
The Help Command ...........cciiiiiiiiiinnnnnn. 4-11
Directory Alocation .......vvvvvviinreneeennscannss 4-13
Using the File Utility Program ...................... 4-14
Alphabetical Listing of Commands .................. 4-18
Syntax Diagrams .....cviiieiiiiisinitessaonnssonns 4-32
System MesSages ....ovvvverniiiiirrinerennennaenas 4-36

ConCIUSION . .vnittii ittt tiissetitasnsentorncanennanas 4-39



INTRODUCTION

In the last section, the Instrument Controller was described as a
machine having two components; hardware and software. Together
they operate as an Instrument Controller. Both the software operating
instructions and the hardware are necessary parts of a working System
Controller. This section expands that view, and introduces a third
aspect of the Controller: the resources with which it will perform its
ultimate task of controlling an instrumentation system.

The resources of the Controller are its devices and files. A device can be
thought of as a storage location, like a file cabinet. Electronic files are
stored in the Controller’s devices just as hardcopy files are stored in file
cabinets. Devices and files are discussed together here because they are
so closely related. This section describes how to use the File Utility
program to manipulate devices and files. Section 7, Automating
System Functions, explains how to manipulate them under program
control.



Devices and Files
Introduction

Devices

Some terminology about device names is specific to the Controller.
The term “device” is used in several different ways; understanding the
distinctions is essential to effective programming.

Every IEEE-488 instrument is called a device, and the Controller sends
information out to a device address when it sends program data to the
instrument, or sends a command to the instrument to take a
measurement or to send back measurement data.

Besides that kind of device, the 1722 A has a number of internal devices.
In this context, a device is a hardware resource that can act as a source
or destination of data. There are two types of these Controller-specific
devices. One type is called “file-structured”, and can be thought of as a
location to store programs or data. These devices include the floppy
disk, Bubble memory, and E-Disk. In general, it can be said that only
this type of device can be assigned the function of “system device” (the
one the Controller assumes you mean if you do not specify a device).

The other kind of internal device is usually called “serial” to distinguish
it as a pipeline for information, rather than as a location of
information. Notice that the term “serial” has a slightly different
meaning than usual when it refers to a device. It may be that a serial
device sends serial data, but not necessarily. For example, the RS-232
port is a serial device, and is used to send serial data; the IEEE-488 port
is also a serial device, but the data is sent byte parallel.

On power up, a cold start, the bootstrap PROM checks the floppy disk
drive for the operating system program (FDOS). If it is not there, it
checks the other file-structured devices, first the Electronic Disk, and
then bubble memory. If there is no system software, an error message
indicates that there is “no system on device”.

When the RESTART button is pressed, the system performs a warm
start. A warm start differs from a cold start in that the memory is not
cleared nor is the self test performed; only the Operating System is
loaded. If there are any files stored in the Electronic disk, they remain
intact.

4-3



Devices and Files
Introduction

The table below defines each of the Controller’s devices. Notice that all
device names must have two alphabetic characters, followed by a
number, and ended with a colon. The colon must always be included
because it is part of the name.

DEVICE NAME SYSTEM RESOURCE
Standard System

KBO:

KB1:
GPO:
MFO;
EDO:

Keyboard (Input)
Display (Output)
RS-232 Port

IEEE-488 Port
Mini-Floppy Disk Drive
Electronic Disk

Optional Resources

KB2:
GP1:
MF1:-MF4:

MBO0:-MB3:
wDo0:, WD3:

Optional RS-232 Port
(Option -008)

Optional IEEE-488 Port
(Option -008)

Optional Floppy Drives
Optional Bubble Memory
Optional Fixed Disk Drives

TYPE

Serial

~ Serial

Serial
File-structured
File-structured

Serial

Serial

File-structured

File-structured
File-structured



Devices and Files

Files

A file is an organized record of related information. The file type can
usually be identified by its extension (the three characters following the
file’s name, and separated from the filename by a period). The 1722A
uses several types of files.

System Level Files

FILE TYPE EXTENSION DESCRIPTION"

System SYS Reserved for 1722A System Operations
Command CMD A collection of keyboard commands
FDOS FD2 Binary machine language
Configuration CFQ Used by SysGen to generate FD0S2
Help HLP Data file for Help screens
Place holder BAD Indicates bad areas during packing
Source BAS Default extension
Lexical BAL Results when a file is SAVELed
Backup BAK Created by System editor program
Source FTN FORTRAN

Other Files
Assembler Source ASM Output of ASMPP, input to ASM
Error File ERR Output of BC
Library LIB Input to LE, LM, and LL
General List LST Output of ASM, FC
Map File MAP Output of LL, LE
Object oBJ Output of BC, FC, ASM; input to LE, LL, LM
Preprocessor PRE Input to ASMPP
Temporary TMP Temporary file for BC, FC and LE

* Description abbreviations

ASM = Assembler

ASMPP = Assembler Pre-Processor
BC = BASIC compiler

FC = FORTRAN compiler

LE = Linkage Editor

LL = Linkage Loader

LM = Linkage Manager

4-5



Devices and Files

DEVICES
RS-232 Ports

KBO:

KB1:

KB2:

All of the KB devices are serial. They are RS-232 ports, and provide an
entry and exit point for serial communications between the Controller
and other RS-232 compatible equipment. RS-232is a designation for a
standard digital communications interface, and describes the
connector and voltage levels used in bit-serial communications. The
standard permits many of the operating characteristics to be changed,
to allow the connection of many types of equipment. Section 5,
Communications, gives more information about the standard, and
about how to change the Controller’s RS-232 port parameters.

KBO: is both an entry and exit point for information between the
Controller’s program and the outside world. As an input port, it is the
Y1700 Keyboard. As an output, it is the display itself. KBO: is
sometimes called “the Console Device”. None of the operating
parameters of KBO: can be changed except the baud rate, but it should
only be changed when using an external terminal. Otherwise, an error
will result.

KBI1: is the built-in RS-232 port for connecting the 1722A to other
equipment that uses the standard interface. It is set to a standard
configuration on power up, and it can be customized to different
characteristics using the Set Utility program. See Section 5 for a
detailed discussion of this utility program. KB1: does not exist unless
the Video module is installed in the Controller.

This device name is used for an optional RS-232 port, and is used if
Option -008 (IEEE488 /| RS-232 Interface) is installed. It operates
exactly like KB1:. Consult the manual provided with the option for
more information.



Devices and Files
Devices

IEEE-488 Bus Devices

GPO:

GP1:

GPO: is the name for the IEEE-488 General Purpose Instrumentation
Bus. It is not necessary to specify a device name in a program that uses
the IEEE-488 bus for instrument control, but this device is included to
give more direct access to the port than by way of a program. One
application for GPO: is to use an IEEE-488 compatible printer as a
listing device. Rather than writing a “PRINT” program, information
can be sent out simply by specifying GPO: as the destination device.

The device name GP1: is used for the optional IEEE-488 port, and is
only implemented if Option -008 (IEEE-488 /| RS-232 Interface) is
installed. Its purpose and operation are identical to GPO:.

Floppy Disk Drives

MFO:

MF1:

The integral 5-1/4” floppy disk drive provides the Controller with
removable storage media (MF stands for mini-floppy). Using the
floppy disk drive, a collection of programs can be built up, so that for
each set of tests, a different floppy disk would be used.

Floppy disks must be formatted prior to use. Formatting is the process
of sectioning off the disk so that information written onto it is allocated
to the proper location, and so that the Controller is able to locate it
again after it is recorded. Floppy disks can be formatted either as
single- or double-sided (see File Utility program for details).

All floppy disk operations can be simplified by using File Utility
commands in a Command file, and by using the Controller’s Alias file.

The MFO: device is the default device at power up. It is possible to
designate another device as the location of system software, however.
See the discussion of the File Utility program’s Assign command.

MF2: MF3: MF4:

Four other disk devices can be connected to the Controller at the
IEEE-488 connector. The Fluke model 1760A is a single 5-1/4” unit,
and the 1761A has two drives. In this usage, each device will act similar
to MFQ:. Operation over the IEEE-488 bus is transparent to the user.

4-7



Devices and Files

Devices

Electronic Disk

EDO:

The EDO: device designates the Electronic Disk (E-Disk). The
programmer can designate portions of memory as “Electronic Disk”.
Any area of memory not used by the Operating System can be
designated as E-Disk. When E-Disk is used, it must first be configured,
a process that allocates how much space is to be used for E-Disk. For
details, see the File Utility program /C command later in this section.

Because the E-Disk device is implemented in random access memory,
it will perform any operation more than 100 times faster than if the
floppy disk is used. However, the memory is volatile, so any programs
or data stored in E-Disk are lost when the system is turned off.

Bubble Memory
MBO: - MB3:

These are the device names for Bubble Memory Options -004 and -005,
512 and 1024 blocks respectively. A block of memory is 512 bytes.

Regardless of the capacity of the Bubble Memory module(s) installed,
each module is a separate device, whose device designation is selected
by a switch setting on the board. Up to three Bubble Memory modules
can be installed in the 1722A card cage.

The optional Bubble Memory modules provide the Controller with a
large amount of additional non-volatile storage capacity.

Winchester Drive

WDO:

- WD3:

WDO: through WD3: are the devices associated with the Winchester
Disk Drive, an optional 5-1/4” hard disk. It is connected to the
Controller at the IEEE-488 connector, just as any optional floppy disk
drives would be. If a SM byte drive is installed, two devices are
available: WDO0: and WDI:. If the drive is the 10M byte version, all
four devices are available for additional on-line storage.

When a Winchester drive is added to a system, the System Generation
Utility program must be used to create new software to include the
necessary driver routines.



Devices and Files
Files

FILES

A file is a structured collection of information which the Controller can
use to hold programs or data for later use. Most of the files supplied
with the Controller contain programs. The program type is usually
indicated by the extension (three characters after the filename).
Extensions are always separated from the filename by a period.

System Files

System files have the SYS extension. Together, they make up the
collection of programs that are the Controller’s system operation
programs.

Alilas File

The alias file is a special type of system file that makes it possible to
condense long commands into shorter, more easily remembered ones.
The system alias file (filename ALIAS.SYS) is discussed in geater
detail in Sections 6 and 7.

Command Files

A Command file is a collection of keyboard commands. It has the
extension CMD. Using Command files makes it possible to automate
keyboard commands to the Operating System through the Command
Line Interpreter.

The Startup Command File

Command files are powerful tools of the 1722A because they make it
possible to customize the system. The Startup Command file (filename
STRTUP.CMD) is executed whenever the Controller is powered up or
RESTARTed.

The STRTUP.CMD file on the System disk supplied with the
Controller checks the time and date clock to see if it has been set, then
returns control to the Operating System. The Getting Started disk is
considerably different. Its Startup Commmand file loads the BASIC
Interpreter program, and then loads and runs a BASIC program called
the Getting Started program that demonstrates system operations
without operator intervention.



Devices and Files
Files

Other Command Files

In addition to the Startup Command file, others can be created to
automatically perform any sequence of keystrokes. The real usefulness
of a Command file is that it automatically performs commands that
otherwise would have to be keyed in individually each time the system
was used.

Command files are discussed in more detail in section 7, Automating
System Functions.

Machine Executable Files

These are binary machine language programs that can be run directly
by the microprocessor. They usually use the FD2 extension. Because
they are actual binary machine instructions, FD2 programs do not
have to be translated from a higher level language before the
microprocessor can perform their operations, as other programs must.

New files of this type are created using an optional linkage
editor/loader program.

FD2 files were called “Core Image Load” files in the 1720A, and used
the extension CIL.

Language-Dependent Files

Each programming language has unique properties just as human
languages do. Among these unique properties are the file types that
they use. In an effort to keep this discussion away from individual
languages, only generic file types are explained. For detailed
explanations of the file types used by a specific language, refer to the
individual programming language manual.

Source Files

Source files contain programs that are written in high-level language.
An optional assembler or compiler program translates source files into
an executable form.

Object Files

An object program is the result of the translation of a source program.
It may be an intermediate step to a machine-executable program, or it
may be a directly executable form of a program written in a high level-
language.

4-10



Devices and Files
FUPR)

THE FILE UTILITY PROGRAM
Introduction

The File Utility program is a utility software file supplied on the
System Disk with the file name FUP.FD?2. It gives the user control
over the files in any of the devices. A flexible structure provides other
useful capabilities. The examples in this section illustrate the many
ways that the File Utility program can be used.

Entering the File Utility Program

From the FDOS) prompt, type FUP (RETURN). The screen will
display the identification and prompt of the File Utility program:

FDOS> FuP
File Utility Program Version 1.y
FUP>

The Help Command

From the FUP) prompt, type ? (RETURN) to see a listing of the
command options.

This command causes the file FUP.HLP to be displayed. As supplied
on the System Disk, this file is a one-screen summary of command
options. An error message indicates if the file FUP.HLP is not found.

/( N\

Suigh

Assign system device .cco.. Cdeviced/a PACK ..vccucccacvvancnnaas Cdevicel/p
Conf igure E-Pisk ........ 2d0/0Csize) Proteet ...ccevaccvcennne Cfited/+Ci3
Copy 2 file .... CCdeviaed=ICfiladC/1] Quiek directory List ..... Cdeviaeld/q
Dolot® covvcescrancascnane Ctiled/aLi] Rename .ccccceccccvnne Ctiledeltilad/r
€rtended directory list ... Cdeviceld/e Scan for bad BDlockSs .cuoe Cdevicel/s
FOrmat ..ccosncasne Cdevieced/1Cs3(segs) Datfeat error shesking <fiteds{filed/t
Direstory LISt ccovvivvnaene Cdeviceld/l Unproteot cococvevsvvenns <tited/-CiI
forge .csseee CHitededtitedsCfiled)/n Whoie copy <devised=(ldevicellfilel/v

lore directery .. Cdevieel/xCsiisegsl

Wildeards1*?"® astohes single oharaster: 1.0.2 "alias.s?s” aatches “alfas.sis”
“a" aastohes any characterss i.e.? “¢.8as"” aatches all bhasic prograas
Indtvidualt place an "1™ after commands {.0.! ¢.bak/dis ®.1082/-1

)
o g,

4-11



Devices and Files
FUR)

4-12

All the command options are listed below with examples. There is an
explanation of each option later in this section.

USAGE EXAMPLE
Options
no option | Transfer MFO:TEST.BAK=EDO.TEST.BAS
/A Assign System Device EDO:/A
/B Binary File Copy MFO:FUP.SYS=MBO:FUP.SYS/B
/C Configure E-Disk EDO:/C (block size)
/D Delete a File TEST.TMP/D
/E Extended Directory MFO:/E or EDO./E or /E
/F Format a Disk EDO:/F or MFO:/F3
/L List Directory MFO:/L or KB1:=EDQ:/L or /L
/M Merge ASCII Files 'TEST.NEW=TEST.1, TEST.2/M
/P Pack a Device MFQ:/P or EDO:/P or /P
/Q Quick Directory EDO:/Q or MFO0:*.BAS/Q
/R Rename a File TEST.1=TEST.OLD/R
/S Scan for Bad Blocks MFO0:/S or /S
/T Transfer w/o Error Check | EDO:TEST.BAD=MFO:TEST.BAS/T
/W Whole Copy EDO:MFO0:/W
/X Exit FUP /X
/2 Zero File Directory EDQ:/Z or MFO:/Z or /Z
/+ Protect a File EDO0:1722A.INC/+
/- Unprotect a File MFO:RZDZ.WIZ/-
Switches
/FD, FS Format disk 1 or 2 sides | MFO0: /FD or MFO: /FS3
/| Individual Switch EDO: =MFO0: *.*/I|
Wildcards

*

?

Match all characters in field
Match single character

MFO: *.*/-1
EDO: =MF0: TEST?.BAS



Devices and Files
FUP)

Directory Allocation

Unless otherwise specified during formatting, all of the Controller’s
file-structured devices provide a directory that can contain 72
filenames. If more files are needed, the File Utility program can
allocate additional segments for directory space. Each additional
segment can also contain 72 entries.

This capability can be particularly valuable when large file-structured
devices are added (e.g. Winchester drive, RAM Expansion modules),
or in those cases where a great many small files are to be recordedona
floppy disk. Notice that when an Extended Directory Listing (/E) is
requested for a device with multiple directory segments, the segments
may be separated by (not used) entries, even if the device is packed.

The command for allocating additional directory space on the floppy
disk, E-Disk, or Bubble Memory is /F, followed by the number of
directory segments desired. Formatting Winchester disks requires
using the WDUTIL program provided with the hard disk drive.

4-13



Devices and Files

FUP)

Using the File Utility Program

If an option affects more than one device or file, the first must be the
destination, and the second the source. If no device is specified, the
system defaults to the SYO: device. If no filename is specified, the
system uses a null filename. Finally, if no extension is specified, the
system uses the BAS extension. When both a device and filename are
specified, they are separated by a colon ().

The complete name of a file takes the form:
dev:filename.ext

This is called a pathname. Often, a pathname can be specified without
directly naming each of its parts. This is done using defaults and
wildcards, which will be discussed in more detail later in this section.

CAUTION

if an existing file is specified as the destination, it will be
deleted without warning and replaced by information from
the specified source.

This manual uses upper case letters to indicate commands; however,
both upper- and lower-case entries are allowed. Each command line
must contain only one command.

All commands can be automated from FDOS through Command files
and aliases.



Devices and Files
FUP )

Wild Cards * and ?

A wild card is a character that can be used in place of another character
or string of characters. The File Utility program can use two wild cards
in the filename: the ? character, and the * character. Wild cards cannot
be used when specifying devices.

sk matches all characters from the wild card until another character
or the end of the filename or the extension.

Usage:

Example:

A* BAS would match AA.BAS, Al1.BAS, and
AA1.BAS.

* BAS matches all files with the BAS extension.
** matches all files.

To list all BAS files on the floppy disk:
*/ L

To delete everything stored in the E-Disk:
EDO:* */DI

? matches any character in that position.

Usage:

Example:

A?.BAS matches A1.BAS and AA.BAS, but not
AA1.BAS.

To print the BASIC files named TEST1, TEST2,
TEST3, TEST4, TESTS5, TEST6, TEST7, TEST9,
and TESTA that are currently recorded on the floppy
disk, using a serial printer conected to the RS-232
port:

KB1.=MFO:TEST?2.BAS/T

4-15



Devices and Files
FUP)

Protection States + and -

All files are assigned a protection state. A protected file (+ state) may
not be erased or rewritten. It is as if the protected file had a write
protection tab. If an attempt is made to erase or overwrite a protected
file, an error message indicates that the file must be unprotected before
continuing.

Newly created files are unprotected (- state), to allow them to be
changed easily. Once the file is complete, or in final form, it can be
made into a protected file to-prevent accidental erasure or write-over.

The protection states are shown in extended directory listings, and are
changed with the /+ and /- command options.

CAUTION
The protection state Is ignored during zeroing (/Z) and
tormatting (/F) floppy disks, and during configuring E-Disk
space (/C). These commands delete all flles assoclated with
the device regardiess of protection state. Be sure to backup
any desired files before using these options.

Example 1.
To change the protection state of a file called DUTCH.PIM on the
floppy disk:

MFO0:DUTCH.PIM/+
Example 2.
To unprotect all the files on the system device, using the individual

switch to insure a message before proceeding:

* %]

4-16



Devices and Files
FUP )

Switches |, D, and S

A switch modifies a command, and always follows it. Two are
available: the Individual switch and the Density switch.

The Individual switch permits individual selection of files to be copied,
transferred, deleted, and protected or unprotected. When the
Individual switch is used with a file deletion command, a message
indicates which files are protected.

When the Individual switch is used with the no option command,
separate the two device names with an = sign. The system requests
confirmation before completing the transfer. For more details about
the Individual switch, see the no option Transfer command, and the
/B, /D, /T, /4, and /- options. The Individual switch cannot be used
with a file merge (/M) command, nor with any commands that apply
only to a device, such as /A, /C, /S, or /P.

Example 1.
To delete selected BAK files from the E-Disk:

EDO:*.BAK/DI

Example 2.
To transfer selected files from the floppy disk to the display:

MFO0:*.*=KB0: /1

The “D” switch selects double- or single-sided formatting for the
floppy disk. For double-sided, use the argument D after the Format
option. For single-sided, use the argument S. See the /F option for
more details about formatting floppy disks, the /C option for
information about configuring the Electronic disk, and /Z for details
about zeroing the directory of any disk device.

Example
To format the floppy disk as single-sided, with 5 segments:

MFO0:/FS5

4-17



" Devices and Files
FUP > Commands

Alphabetical Listing of Commands
(no option) Transfer

4-18

If no option is specified, a communication channel is established
between the specified destination and source(s).

o Up to eight sources may be specified.

D When the destination is a file device (MF0Q:, EDO:) and no
destination filename is specified, the names of the source files are
used.

o If the source is not a file device (no name can be identified), the
resulting destination file will have the null name, unless one is
specifically named.

o If asingle file is named as the destination for multiple files, only the
last file specified will effectively be copied. Use the /M option to
merge files.

The examples below show the ways in which the no option Transfer
command can be used. A short description precedes each example.

Example 1.
To make a copy called FILE.NEW of FILE.OLD (both on the System
Device):

FILENEW=FILE.OLD (RETURN)

The result will be that two identical files exist, one called FILE.OLD,
the other called FILE.NEW.

Example 2.
The display (KBO:) is specified as destination, and T44.BAS on the

floppy disk (MFO0:) as source. This will display the file. Use Page Mode
if the file is longer than 16 lines.

KB0:=MF0:T44.BAS (RETURN)



Devices and Files
FUP ) Commands

Example 3.

This command is equivalent to Example 2, if the System Device is the
floppy disk, and the Console Device is KB0:. By using defaults, 13 of
the 17 keystrokes have been eliminated in transfering T44.BAS from
the floppy disk to the display. The default filename extension is BAS.

T44 (RETURN)
Example 4.
To transfer ASCII data from the keyboard (KB0:) to a printer
connected to an optional serial port 2 (KB2:) In this example, a
(CTRL)/Z would terminate the transfer.

KB2:=KB0: {(RETURN)

4-19



Devices and Files
FUP ) Commands

/A Assign the System Device

The /A command option assigns the named device as the the System
Device, SYO: (the default file device).

The example assigns the Mini-Floppy Drive (MFO0:).
MF0:/A (RETURN)

/B Binary Transfer

The Binary Transfer option is only implemented to assist those who
have become proficient using the Fluke 1720A Instrument Controller.
For normal transfer of 1722A programs and data, use the no option or
/T commands. No errors will result.

The 1720A /B option transfers binary-coded data, such as system and
utility software files, lexical-form BASIC programs and virtual array
files. Up to eight individual source files can be specified, and wild cards
can be used to increase the number.

This example uses wild cards to transfer a group of date-coded files (for
the month of July) named RAC from the Electronic disk (ED0:) onto a
floppy disk (MFO:).

‘

MF0:=EDO0:770783.RAC/B

/C Configure Electronic Disk Space

4-20

The /C option is followed by a number to indicate how many
blocks of Electronic disk are to be created. To determine how many
blocks maximum can be allocated, observe the FDOS power up
display. If the number argument is left out, the E-Disk will be de-
allocated. An argument of zero blocks (/CO0) also de-allocates the
Electronic disk.

After configuring E-Disk space, use the /F option if more than one
segment is desired.

NOTE
Though specified in blocks, space is allocated by the
page. Each page (4096 bytes) has 8 blocks, so the actual
number of blocks allocated will be a multiple of 8.



Devices and Files
FUP ) Commands

/D Deleting Files

The /D option is used to delete up to eight specified files (more using
wild cards). Deleting a file leaves a gap in the file structure. Refer to the
Pack (/P) command option. When no file is specified, the null file is
deleted. A single command line can be used to delete files from more
than one device.

This example uses wild cards to delete all files havinga . TST extension
from the System Device, and all files whose names start RZDZ from
the floppy disk.

* TST,MF0:RZDZ.*/D
/E Listing a Directory (Also /L and /Q)

There are three ways to list directories. As with all File Utility program
options, the device must first be specified unless the directory of the
System Device is desired. If no destination device is specified, the
Controller assumes that the directory is to be sent to the display.

Wild cards can be used with all three listings to see only files whose
names or extensions match, and the directory entry for a single file can
also be obtained by specifying the file in the command line.

/E yields an Extended Listing. The extended listing includes all
unused file areas and the protection state of each file.

Packing a File Structured Device, below, tells how to restructure
the disk to remove unwanted blank areas.

/L is the normal listing of all files on the specified device. It displays
all 5 fields, but does not include the unused areas.

/Q gives a Quick listing. It does not display the file size, nor the date
the file was last updated. The filenames and their extensions are
displayed, six columns across the screen, rather than one column as
in the other two types of directory listings.

421



Devices and Files
FUP > Commands

4-22

Here is a portion of the extended directory for a 1722A System
Disk:

FUP> MPUO/E
Dirsctory of MFO! an 15-Jul-83 at 08136
saae a1t size prot date
FDOS2 .8YS 319 (4] 1-Jul-83
MACRO .8YS 10 L+l 1-Jut-83
ALIAS .8YS 1 C+l 1-Jul-83
Fur F02 11 (£ 2] 1-Jul-83
BET FD2 10 (L] 4-Jul-83
TIME .FD2 2 [+l 1-Jul-83
BASIC .FD2 &3 L+l 1-Jul-83
. J

)

J

There are five ficlds: the name and extension of all the files
appear in the first two fields. The size field indicates the number of
blocks the file occupies. Each block is 512 bytes.

The prot field indicates the protection state of the file, and date is
the last date the file was updated.

Two entries may appear in the Extended Directory list that do not
appear in either the normal list or the quick listing;

(not'used) indicates a blank area within the structure of the disk,
left when a file was deleted. The Pack command /P packs all
unused blocks into the end of the segment. '

(temp ent) indicates that some problem occurred when a file was
open (being transferred or edited). Some typical examples would
be that the power was removed, or the RESTART button was
pressed during operation on an open file. The system places a
temporary entry in the segment to indicate that the file no longer
exists. To delete the temporary entry, pack the disk with the /P
command.



Devices and Files
FUP ) Commands

Here is what the screen looks like when a Quick Listing is done for the
MFQO: device:

4 O)

( A

Directory of MFO:

MACRO .SYS FDOS2 .SYS SET FD2 FuP .FD2 TIME .FD2 ASHMPP .FD2
ASHM .FD2 LE FD2 EDIT .FD2 LL .FD2 HOT FD2 GREP .FD2
BASIC .FD2 FDOS2 .DAT SYSGEN.FD2 GRAFIX, 08!

O /)

In this example, a quick listing is sent to the optional serial port 2
(KB2:) of the directory of the floppy disk (MF0:) and the Electronic
disk (EDO:):

KB2:=MF0:,ED0:/Q (RETURN)

4-23



Devices and Files
FUP ) Commands

/F Format a File Device

4-24

The /F option prepares a floppy disk (MFx:) or optional bubble
memory device (MBx:) to receive files by creating a completely new
magnetic structure on them. Because formatting writes new block
identification codes and standard data patterns throughout the device,
any device that is formatted will also be erased. Take care not to format
disks that have data or programs that you want to save.

When formatting the bubble memory or a floppy disk, a number can
follow the /F command to indicate the number of directory segments
to be established. For more information see the discussion “Directory
Allocation” at the beginning of this section. If no number is given, the
default is 1 segment, a useable amount for floppy disks, but restrictive
for the bubble memory, because it would not take full advantage of the
large amount of memory available. Since the directory for any one
segment can contain only 72 entries, selecting one segment results in a
maximum of 72 files, which is fine for most floppy disk applications,
but is not an efficient use of the mass storage available in bubble
memory or Winchester hard disks.

If a disk has suffered media damage, a message will display indicating
that it is not able to be formatted. If this happens, the disk is not
useable and should be replaced.

This option formats either floppy or Electronic disks, or Bubble
Memory devices.

Example 1:
This example formats, zeroes, and verifies a floppy disk:

MFO0:/F (RETURN)

Example 2:
This example formats a bubble memory device with 12 segments (864
possible files):

MBO0:/F12 (RETURN)

Example 3:
This example uses the double-sided switch to format a floppy disk as
double-sided, with 6 segments:

MFO0:/FD6



Devices and Files
FUP ) Commands

/| Individual Transfer

Besides its use as a command modifier, /I can be used alone to transfer
individual files. Just as with other transfer commands (no option, /B,
and /T), wildcards are allowed. If no destination is specified, the
default device is KBO:. If no source pathname is given, the System
Device SY0: and the null file are assumed.

Example:
This example transfers selected files from the E-Disk to the floppy
disk.

ED0:=MF0/I

/L Listing a Directory - See /E for all directory listings.

4-25



Devices and.Files
FUP » Commands

/M Merging ASCII Files

4-26

The /M option merges up to eight ASCII source files into one
destination file. Binary files, such as System and utility software files,
lexical form BASIC programs (BAL extension), and virtual array files
cannot be merged. The source files remain intact, unless the
destination has an identical filename (on the same device). Wild cards
and the Individual switch cannot be used.

When the destination is a non-file device, the /M option removes the
(CTRL)/Z character (ASCII EOF) from the end of all but the last file.

CAUTION
When merging two BASIC programs, duplicate line numbers
can cause problems. When the BASIC Interpreter program
encounters a duplicate line number, the latest occurrence of
that line number Is retained, and the previous occurrence is
deleted. Use the REN statement to renumber the programs to
different line number ranges before merging.

Here are two examples of how to make efficient use of the / M option:

Example 1.

This example creates a file on the floppy disk (MFO0:) called
PROGRM.T44. The new file contains TEST1.BAS and TEST2.BAS
from the floppy disk. The original files all remain intact.

MFO0:PROGRM.T4=MFO0:TEST1,TEST2/M (RETURN)

Example 2.

This example appends keyboard input directly to the end of an existing
file without creating a new one. The destination file DEST.CPT
contains the old file DEST.CPT followed by keyboard inputs. A
keyboard entry of (CTRL)/Z terminates the keyboard portion of the
input.

DEST.CPT=DEST.CPT,KB0:/M (RETURN)



Devices and Files
FUP ) Commands

/P Packing a File-Structured Device

The /P command option reorganizes a file-structured device. When
files are deleted, blank areas are left within the file structure. (See /F
for more information.) The /P option compacts these areas into one
contiguous space. It may be possible to make room for a file that
previously wouldn’t fit by packing the device. When this option is used,
the file structure is maintained. During packing, the keyboard is
disabled from display, but keystrokes are buffered. This feature makes
it possible, for example, to give the command /E during packing.
When packing is complete, the extended directory listing will display.

This example will pack the System Device:
/P (RETURN)

This example packs the Electronic disk and the floppy disk:
EDO0:,MF0:/P (RETURN?

/Q Quick Directory - See /E for all directory listings.
/R Renaming a File

The /R option is used to rename a file. It has no effect on the size or
location of a file, because it only operates on the directory.

This example renames the file TEST4.BAS on the System Device to
PROG.T4:

PROG.T4=TEST4/R (RETURN)

/S Scanning for Bad Blocks

The /S option scans a file-structured device for bad blocks, and sends a
result message to the specified destination. Each block is read and
checked for errors. A check character is compared with one recorded
with the block. Any mismatches cause an error message.

Scanning for bad blocks is done to check for a faulty floppy disk or
Bubble Memory device. If you are having trouble reading or recording
on a disk, use the /S option to determine if the disk is useable. If bad
blocks are indicated, attempt to transfer the files to another disk, then
discard the faulty one. Bad blocks are a result of wear, age, or abuse.

4-27



Devices and Files
FUP }» Commands

If no destination is specified for the result, any errors found will be
displayed on the console.

To scan the System Device and see the results displayed:
/S (RETURN)

This example scans the floppy disk and sends the results to serial
port 1:

KB1:=MFO0:/S (RETURN)

/T Transferring Files Without Error Check

Except for inhibiting error checks, this command is identical to the no-
option command. It transfers files just as the no-option command
does, but does not check for device errors. If errors should occur, they
are ignored, and the file is transfered as is. This option can be used to
create backup copies of files that are suspected to contain errors.

/W Whole Copying a File Device

4-28

The /W option transfers some or all of the files on a file device at one
time using a single command. This option simplifies duplicating a
floppy disk.

The source and destination devices should be different. (If they are the
same, the result would be merely to record a file back to the same place
it was read from.) To duplicate all or part of a floppy disk, first copy
files into EDO:. Then insert a formatted disk and copy from EDO: to
MFQO..

If the disk already contains files having the same name as those being
copied, the whole copy command deletes the existing file and replaces
it with the one being copied.

If E-Disk space is less than the total size of the files to be copied, break
the task into smaller parts by copying only some of the files on several
passes.



Devices and Files
FUP ) Commands

The display indicates the name of the file being copied. The whole copy
process can be terminated before all files are copied by typing
(CTRL) /C during the copy of the last file desired. The file copy in
progress will be completed before the operation stops.

CAUTION
If {CTRL)/P Is used to terminate a whole copy, the file copy
in progress Is aborted and the resulting partial file Is closed.
Use (CTRL)/C to terminate whole coples.

In this example, a whole copy is started by temporarily placing the
floppy disk contents into E-Disk storage. The wild card character
indicates the name of the first file to be copied. Note the display for the
last file copied, in case a second pass is needed.

EDO:=MFO:TEST.*/W (RETURN)

In the second part of the example, the floppy disk is exchanged for the
one which will contain the copied files. After noting the last file copied,
insert a disk that has been formatted (see / F). This command line then
copies the files to the disk from the E-Disk.

MF0:=EDO0:/W (RETURN)

If a second pass is needed, first zero the E-Disk (see /Z option below).
Now use the * wild card to start the whole copy again, beginning at the
first file that matches the wild card.

Notice the subtle difference in how the * wildcard character operatesin
a whole copy from its normal use in transferring, copying, deleting,
protecting, and so forth. When used with the Whole Copy option, the *
in the filename indicates that the copy is to begin with the first file that
matches the extension.

For example, the command MF0:=EDO0:¥*.BAS/W would not

necessarily copy all the files with the BAS extension, but would begin
the whole copy with the first file that had a BAS extension.

4-29



Devices and Files
FUP } Commands

/X Exit

This command exits the File Utility program, and returns control to
the shell.

/Z Zeroing a File Directory

4-30

The /Z command zeroes the directory of one or more file devices.

The result of the /Z option is similar to the /F option if the device is
already formatted: no files are accessible when the operation is
complete. However, formatting is more time-consuming, and is not
necessary if the intent is merely to delete all files from a device.

Zeroing is not equivalent to formatting. The files remain after zeroing a
directory, but they are not able to be accessed because there is no
directory. After zeroing, the device retains the prior format. The
Single- and Double-sided switches are ignored. '

Because zeroing deletes the directory of all files from the specified
device, the program requests an affirmative before proceeding. Entries
accepted as affirmative are YES, Y, yes, and y.

If a floppy disk or bubble memory are zeroed, the number of directory
segments does not need to be specified, because the current structure
remains intact. To change the structure, see the /F Format option.
This example zeroes the Electronic disk (EDO:)

EDO:/Z (RETURN)

This example zeroes the directory of the Electronic disk, and creates
four segments:

EDO:/Z4 (RETURN)



Devices and Files
FUP ) Commands

/+ and /- Assigning Protection State

The /+ and /- commands change the protection state of a file.
Directory listings indicate the current state inside brackets, and the
system automatically assigns the unprotected state (-) to newly created
files. A file must be unprotected before it can be deleted.

This example protects a file called SHDS.PAT that is currently
recorded in the bubble memory:

MBO0:SHDS.PAT/+ (RETURN)

This example uses a wild card to unprotect all files in the System device
having a TMP extension. The Individual switch ensures that
confirmation is given before the unprotection.

* TMP/-i (RETURN)

4-31



Devices and Files
Syntax Diagrams
FUP)

Syntax Diagrams
Directly Executed Commands

Directory Listing Commands

(kg (SY9: *%)
I destination | | source I
pathname pathname
’ -
N/

0O A pathname can include device + filename + extension.
O All directory listings can use wildcards.

O If the device is not specified in the source pathname, the system
device or the last device specified will be used.

O If no destination device is specified, the default is to KBO:.

4-32



Devices and Files
Syntax Diagrams
FUP)

File Transfer (Copy) Commands

(kBg) (null file)
destination | source
pathname pathname
destination ()
device N
| il RETURN
) 4 :]

Lo

/T

00 ¢

/T
O A pathname can include device + filename + extension.
O All transfer options can use the Individual Switch and wildcards.

O If the device is not specified in the source pathname, the system
device or the last device specified will be used.

O If no destination device is specified, the default is to KBO:.

File Rename Command

(null file) N\ (null file) Yo
=) ny RETURN
destination source
device pathname

4-33



Devices and Files
Syntax Diagrams
FUP)

File Merge Command

(null file) N (null file)
X —D —~(
| destination source

pathname pathname

o,
—

O Wild cards and the Individual switch are not allowed.

0O Each pathname must be separated by a comma.

Whole Copy Command

(SYE) N\ (SY#) (tirst file)

_ _f
destination source “
device device

(start)

RETURN |

o Wild cards are allowed for the source filenames.

File Deletion and Protection Commands

(null file)
RETURN '——
Lo
’
—

0 If device is not specified in the pathname, the system device or the
last device specified is used.

O The Individual switch can be used to insure confirmation is
requested before deleting or changing the protection state.

0O Wild cards are allowed.

|
|
|
4-34



Devices and Files
Syntax Diagrams

FUP )
List Bad Blocks Command
(KB#) (SY#:) q\
{ —/
destination | source
pathname device
E' RETURM :

'
—/
0 If device is not specified in the pathname, the system device or the
last device specified is used.
O Wild cards are allowed.

Device Control Commands

(sY#)
G
{deconfigure)
—(C 7
number of
—1  blocks —
\ \
o _.1 number of
segments
_.® {current) (current)

o L number of
H segments
()

e }—

4-35



Devices and Files
FUP ) messages

System Messages

Messages from the system are a normal part of operation, and do not
always signify that an error has been made, though they are generally
referred to as “error messages”. Here are the meanings of messages you
might see from time to time when using the File Utility program. The
messages are listed alphabetically:

4-36

MESSAGE

7 Device error

? Dsvice not ready

7 Devices do not match

T Directory overflow

7 Fite slready e1ists

? Fite protected

-3

Help file not available

MEANING

A non-recoverable error was detected
during transfer to or from the floppy
disk or Electronic disk. This may also
occur when writing on an unformatted
floppy or Electronic disk.

The device is not ready. This usually
means that the disk is not inserted, or
the disk drive door is not shut.

A rename was attempted for files not
on the same device.

Two many files exist for another to be
copied or transferred to the device
because the drectory is full. To recover,
first backup all files, then use the /F
option to reformat a disk with more
segments.

A rename was attempted using a file
name already in use.

The specified file has a + protection
state assigned to it. Use the /-
command option to unprotect the file
before deletion.

A “?” was entered and the file
FUP.HLP could not be located on the
System Device.



? Iltegal file/device name

? Ittegal directory

? Ittegal option

7 Xilegal option for device

? Incompatible format

? Input gqueue overflow

? No end-of-file

? No: room on device

? N6 such device

Devices and Files
FUP ) Messages

A name in the command contains too
many characters or contains characters
other than letters, numbers, spaces, or
‘6$” signs.

The directory on the device is faulty. If
the device is a floppy disk, it is
damaged and should be replaced.
Backup all files first using the /T
option.

The command option selected was not
recognized. This is usually caused by
typing errors.

A command was given that would be
legal for some other device, but not for
the one specified.

An option was specified for a device
that does not accept the format. For
example, attempting to configure the
E-Disk as double-density.

The RS-232 port was receiving data, -
and some of it was lost. Use the Set RS-
232 Utility program to slow down the
baud rate or to enable the Stall
Input/Output feature.

An ASCII source file was not
terminated with {CTRL)/Z. Can also
be caused by running out of storage
space before the ({CTRL)/Z is
transferred.

A copy or merge operation was
attempted, but the resulting file would
not fit on the specified device.

A device was specified that is not on the
list of recognized devices at the
beginning of this section. This is
usually caused by misspelling.

4-37



Devices and Files
FUP ) Messages

7 No such file

7 Not enough mesory

7 Mectium changed

? Numsber too large

7 Systes error

? Symtas error

? Too many files

7?7 Write protected

4-38

The file could not be found on the
device specified. This is usually caused
by misspelling, although the wrong
device may have been specified.

An attempt was made to configure
more E-Disk than is available in
memory.

The disk drive door was opened and
the disk removed during a read or
write operation.

The number specified in the command
is too large. This message occurs if the
number of directory segments specified
is more than the device is able to
contain.

This error should not occur under
normal use. It indicates an error in the
operating system or the File Utility
program. Contact a Fluke Service
Center and make an accurate report of
the conditions at the time the error
ocurred.

The form of the command input does
not match the requirements of a File
Utility program command. This is
normally caused by typing errors.

More than eight source files were
specified. Either break the task into
smaller parts, or use wild cards.

A write operation was attempted on
the floppy disk, but it has a write
protect tab.



Devices and Files

CONCLUSION

This section has described the Controller’s resources in some detail,
and explained how to use the File Utility program to manipulate files.
The devices can be thought of as names for the various hardware parts
of the system. Files are programs.

The next section, Communications, details the way that information
can be sent out of the Controller, or brought into it by means of two
industry-standard connection methods: the IEEE-488
Instrumentation Standard, and the RS-232C Digital Communciations
Interface.

4-39



- Section 5
Communications

CONTENTS
Introduction .........coiiiiiiiiiieiiieiieriinneeaann 5-2
The IEEE488 Bus .......ccivviiiiiiineiinnncennnnnn, 5-3
Bus Functions ..........coiiiiiiiinnnnnnennnennnns 54
Interface .......coiiiiiiiiiiiiiiienniennenennnnnnn 55
Bus Operating Modes .........ccoivviieiiieennnnn.. 5-5
Command Mode .......coiviiiiiiiinneneennennn. 5-5
DataMode .........cciiiiiiiiiiiinrinrannnnnn, 5-7
Three-Wire Handshake .......................... 5-7
A Typical Instrumentation System ................... 5-7
Sequence .......ciiiiiiiiiiii i it 5-8
Mutltiple Controller Systems .........c.ccevveennennn. 59
IEEE488 Communications Under Program Control ..... 5-11
Example Commands from the BASIC Language ...... 5-12
Sample BASIC Program ..........cciiviiennncnnnns 5-13
For More Information .............coieuivunnnnnnn. 5-15
Serial Communications ........coeeeieeenneenneennnnnn 5-16
Set Utility Program .......cciiiiiiiiiinnnnnncannns 5-16
Using the Set Utility Program .................... 5-17
The Help Command .......coiviieiiiiieccnennnns 5-18
Command Structure ...........cciitnenrnnnnen.. 5-19
Syntax Diagram .......ovieviinniienencneacnnnns 5-20
Device Selection ........cceiiiiiiiinnnneennnnnn 5-21
Setting Parameters .......cov0vieviiteionncennens 5-21
Single Command Line Entry ..................... 5-25
Error Messages .....veueenreeninsioinononasssnnnns 5-26
Serial Communications Under Program Control ......... 5-27
Sample BASIC Program .........cccvieiivnnnnennnne 5-28
Conclusion .....iiiiiiiiiiiiiiii i ittt e, 5-31



INTRODUCTION

5-2

The Controller communicates in two ways: by way of the IEEE-488
General Purpose Instrumentation Bus, and the EIA RS-232-C Data
Communications Interface.

These two standards were developed to serve two different purposes:
the IEEE-488 as a standard connection between measurement
instruments, and the RS-232 as a standard connection for serial data
communications.



Communications

THE IEEE-488 BUS

In 1975, the Institute of Electrical and Electronic Engineers (IEEE)
published a ‘““Standard Digital Interface for Programmable
Instrumentation Systems”. This standard was revised in 1978, and a
supplement was published in 1980. The IEEE-488 standard has gained
acceptance throughout the instrumentation industry because it
permits a wide variety of measurement equipment to be connected
easily to form a programmable instrumentation system. The 1722A
implements the most recent version, including the 1980 supplement.

The IEEE-488 standard describes a bus architecture and defines the
timing and handshaking that occurs on the bus. Devices connected to
the bus may be talkers, listeners, or controllers.

The 1722A is able to control up to 14 instruments directly from the
single standard IEEE-488 connector. An additional Interface module
can be added to allow the 1722A to control more instruments.

The next few pages describe how the interface operates. Much of this
discussion is theoretical, and has been included here to help first time
users visualize an instrumentation system. Though it may appear that
the operation of an IEEE-488 system is a complicated matter, in fact it
is quite easy to use, and most of the details of bus operation are
transparent to the user.



Communications

icre-LAB8

Bus Functions

5-4

The Controller establishes the role of each of the connected
instruments by sending commands to them and setting up the correct
communications channels. Each piece of equipment recognizes its own
address, which is set into it by configuration switches when the system
is assembled. Each connected instrument can then respond to polling
and receive or send data. Depending on its role in the system, each
instrument can also perform these functions:

m]

[m]

Handshaking to establish and confirm the connection

Single address talking or listening

Request service to notify the controller that a function is complete
Respond to poll to answer the controller's request for status
Clear to return to a default state

Trigger to respond to the controller's command to perform a
function

The controller can perform these functions:

u]

u]

Command devices to listen, talk, or perform a function
Trigger devices to perform a pre-programmed function
Clear devices to an initial state (defined by the device)

Poll devices for their status serially or in parallel
(one device at a time, or all at once)

Command devices to abort current operations
Command devices to enter the remote mode of operation

Pass control to another controller



Communications

Interface

There are 16 signal lines on the IEEE-488 bus; all are active low TTL
levels. The lines are divided into three categories:

1. Eight data lines
2. Three handshake lines
3. Five bus management lines

For your reference, Appendix C has a pinout diagram of the standard
interface connector and a description of each of the lines.

Bus Operating Modes

The bus operates in either command or data mode. A controller uses
the command mode to control the various instruments connected to
the bus. A talker or a controller uses the data mode to transfer
information or device dependent commands on the Data I/O lines.
The three handshaking signals officiate transfers on the bus.

Command Mode

The controller places the system into Command Mode by sending an
attention signal. All devices on the bus must then interpret the data
byte as a command message. Only a controller may issue commands.

There are four types of commands:

1. Addressed Commands (all devices are addressed to listen).
These are used to control a selected group of devices. The
command is preceded by a device address, because only those
devices previously commanded to listen must respond.

2. Universal Commands (all devices).
These commands are used to control all system devices. They
do not need to be preceded by an address because all devices
that are able to must respond to them.



Communications
itti-LAa

5-6

3. Addresses (all devices).
The controller uses these commands to designate devices as
talkers or listeners.

4. Secondary Commands (all devices are enabled by a primary
address or command).
These are the second byte of a two byte address, and are used
by the controller to implement “extended” talk and listen
functions. Secondary commands are used to send a second
address if the primary address has been accepted as part of the
address command.

Each type of command has a specific function in the activity of the bus,
and they are all designated by three letter mnemonics. All of these bus
functions are implemented in each of the programming languages
available for the 1722A. In some cases, a single command performs
more than one function; for example, the Fluke Enhanced BASIC
command TRIG (Trigger) addresses a set of instruments as listeners
and then triggers them.

Appendix C contains a complete listing of the Command Messages.
Refer to the appropriate programming language manual for
information about how to implement each of the commands in a given
language.



Communications

Data Mode

The controller places the system into the data mode by setting the
attention line false. In this condition, all devices treat the information
on the bus as data. This data can originate from either a talker or the
controller. Data can flow from device to device on the bus (talker to
listener) in any mutually understood code or format, or the 1722A can
act as an interpreter, accepting data from the talker and sending it out
to a listener.

Three-Wire Handshake

All IEEE-488 bus devices use a three-wire handshake to manage the
exchange of data. The signals are:

DAV- (Data Valid)
NRFD- (Not Ready For Data)
NDAC- (Not Data Accepted)

A Typical Instrumentation System

The typical system shown below was first introduced in Section 2 to
illustrate how to set up a system. The same example system is used here
to illustrate how the IEEE-488 interface can handle a variety of tasks.
In Section 7, the same sample setup shows how to automate these
functions.

IEce-L88

ey
INSTRUMENT CONTROLLER

v FREQUENCY | =
SYNTHESIZER\

SERIAL PRINTER

UNIT UNDER TEST



Communications

In this example system, a sequence of events describes how a specific
measurement task would be accomplished. In general terms, the
Controller programs the instruments and initiates the measurements.
The resulting data is returned to the Controller, which then routes it to
the serial printer for printout.

Sequence

5-8

1. The Controller initializes the interface devices.

2. The Controller commands all devices to set their internal
conditions to a predefined state by sending a device clear
message.

3. The Controller sends the listen address and program data to
the frequency synthesizer. The program data tells the
frequency synthesizer the output frequency and level.

4. The Controller sends the unlisten command to the synthesizer,
then sends the listen address and program data for the
frequency counter. (Function and range, for example.)

5. The Controller sends a program code to trigger the
measurement.

6. The Controller sends the unlisten command, addressesitself to
listen, then sends the talk address of the measurement device.

7. When it completes its internal measurement cycle, the
frequency meter sends a request for service to the Controller.
When its request is recognized, it sends (talks) the
measurement data to the addressed listener, the Controller.

8. Under program control, the Controller gathers the
measurement data and sends it via the RS-232 port to the
printer (first addressing the printer as a listener, as before).

This example shows how a typical system is connected and describes
the way the Controller directs the tests. The program required to
actually do these steps depends on the programming language used.
Each programming language manual includes examples such as this
one to assist the programmer. In Section 7, Automating System
Functions, a BASIC language program is developed that will show
how a test program might be written to test this system.



Communications

The basic system can be expanded by adding options to the Controller
so that many more instruments can be connected. These options
provide a great deal of flexibility to the system designer. For example,
the RS-232 ports could be used to transmit the data via a modem to a
larger computer for analysis. Because of this flexibility, it is
recommended that you consult your Fluke representative in the early
design stages so the final system will perform efficiently in your
application.

Multiple Controller Systems

At power up, the 1722A can be designated either as the “system
controller” or as a “controller in charge”. The system controller is the
only connected device that is able to manipulate the control lines
INTERFACE CLEAR and REMOTE ENABLE. The controller in
charge is the controller that has had control passed to it either by the
system controller or the prior controller in charge. A switch on the
Single Board Computer module (slot 7) designates the power up
condition of the 1722A either as the system controller or as the
controller in charge. The other switches of SW1 set the 1722A default
baud rate (the rate used unless changed by the SET Utility program),
and the 1722A’s IEEE-488 bus address. Refer to the drawing below to
set the switch.

o1 2 3 4 ©® 6 7 & 9 W
. b N
- ;
! - sW1
!:-lﬂ | 1] 234 | 8 7 8 9 1w

0

1]

[
[LH]
040

]
&0
[l
()i

5
Y’ 1 A4 A3 A2 A1 A0 | IEEE ADDRESS
— sc SYSTEM CONTROLLER: OFF
sc CONTROLLER IN CHARGE = ON
BAUD RATES 0 = OFF 1 = ON
SINGLE BOARD 000 ] e 110
COMPUTER MODULE | | oo ) 300
010 600
o1 N 1200
100 | 2400
T Ty ] T B T -
110 T T T Tes00 ]
11 19200

5-9




Communications

IEEE-488 BUS ADDRESS SWITCH SETTINGS

Switch Position

6 7 8 9 10

00000
0 00O 1
00010
0 0 01

1

00

1

0
00101

0

01000
01001

0101

0

o101 1

10000
10001

10010

0011
0 00

1

1

0101

1

1000
100 1

1

1

Address

10
1
12
13
14
15
16
17
18
19

23
24

25

27

&8

Up Position (ON)

1
0

Down Position (OFF)

5-10



Communications

IEEE-488 COMMUNICATIONS UNDER PROGRAM CONTROL

Each programming language available for the 1722A Instrument
Controller includes specific commands to handle the IEEE-488
communications. The standard was developed to permit the easy
connection of an instrumentation sytem, but two important rules
should always be kept in mind as you begin programming:

1. There may be any number of listeners at a given time.
2. There may only be one talker at a time.

There are other constraints, but these mostly depend on the
capabilities of the connected instruments. An example is the Fluke
8502A Digital Voltmeter, which must be allowed a three-second wait
between the time it is reset and the time it is programmed. Be sure to
adhere to the requirements of each particular instrument to simplify
your programming task.,

5-11



Communications
(tic-LB8

Example Commands from the BASIC Language

5-12

Here is a synopsis of the commands used in Fluke BASIC to control
communications over the IEEE-488 bus. For complete definitions and
requirements, see the BASIC Programming Manual.

INIT Initializes the bus.

CLEAR 8 n Addresses the specified device number as a listener,
and issues a selective device clear.

WALT Followed by a number, suspends program execution
for the length of time indicated (milliseconds).

INPUT 3@ n A command string (in quotes) following this command
addresses the instrument as a listener, and programs it.

PRINT @ n A variable follows this command to address the
instrument as a talker, and return the measurement
data to the Controller.



Sample BASIC Program

This sample program shows how the most important bus commands
would be included in a BASIC language program to take a reading
from the Fluke 8502A Digital Voltmeter. Some features of the
program are:

0

10
20
30
40
50
60
70
8c
90
100
110
120
130
140
150
160

Communications

Between resetting the meter and sending it program data, thereisa
5-second wait to allow the meter to stabilize.

Ten readings are taken to insure accuracy of the returned

measurement data.

A 3-second wait is inserted between the last reading and the display

of measurement data.

! Program for 8502A DVHM

DIM R ()
INIT PORT O
CLEAR & 2
WaIT 5000
PRINT & 2, "VR2TO"
FOR 1% = 1% T0 10%
PRINT & 2, 7"
INPUT @ 2y R (1IX)
NEXT I%
WAIT 3000
FOR I%Z = 1%Z TO 10%
PRINT 1%Z3 R (I%)
NEXT 1%
END

e bam dee smy e aew cme sem tme Sew tE e SEe

dimension array
initalize the bus

clear instrument 2 (dvm)
let dvme settle

progras dva

loop for 10 readings
trigaer dva

get readings send to array
return for next reading
(et bus settle

Loop to display readinas
print value of 1

return for next value

5-13



Communications
ILEi-LBa

Here is a line-by-line explanation of the sample program:

10
20
30
40
50

70

80

90

100

110

120

130
140
150

Program identification.

Blank line for readability.

Dimensions an array called R to hold up to ten readings (0-9).
Initializes Port 0, the built-in IEEE-488 bus.

Clears and addresses as a listener the DVM whose address is 2.
(Set up by switches in the instrument.)

Wait for 5 seconds to allow the DVM enough time to respond to
the clear signal, and to set up internally as a listener.

Programs the instrument with the command “VR2T0”, which
this particular instrument reads to mean, ‘use 10 volts DC scale,
and take single readings synchronously with the line (60 Hz).

Sets up aninteger counter (I) within a ‘FOR-NEXT’ loop that will
take ten readings, and return them to the Conroller.

Addresses 2 as a listener, and sends a “?” which triggers the
measurement.

Addresses 2 as a talker, and puts the returned reading into the
location specified by 1% within array ‘R’.

Program returns to line 80, which increments the value of 1%, so
that as the FOR-NEXT loop is repeated, the next reading goes to
the next available location in the array R. After ten passes
through the loop, the program continues at line 120.

All measurements are complete, so this program step waits 3
seconds for the bus to settle.

Sets up another FOR-NEXT loop to display all ten readings.
Prints each value of 1% within the array R.

Sends program back to line 130 to increment 1%, and display the
next reading,



Communications
{tEE-LB8

In actual practice, this program could be greatly simplified. It is shown
here for illustration purposes only, although it could be used as is.
Some of the simplifications might be:

0 Trigger the DVM ten times, but then send a command to have it
average the readings (many programmable instruments include
such mathematical abilities). The DVM would then return the
average, rather than ten readings.

0 If the meter is unable to perform the mathematics, have it return all
ten readings, but finish this subroutine with a branch to an
averaging subroutine, and display only the average.

For More Information

System designers and programmers who are unfamiliar with the IEEE-
488 standard should obtain a copy of Fluke Application Bulletin 36
(IEEE Standard 488-1978 Digital Interface for Programmable
Instrumentation), and Technical Bulletin C0076 (7Troubleshooting
Information for IEEE-488 Systems). These publications provide the
background needed to set up an IEEE-488 system. Appendix C of this
manual provides useful reference material covering the interface
connector, handshaking protocol, commands, and message formats.

For an in-depth study of the IEEE-488 standard, a copy can be
obtained by writing to the Institute of Electrical and Electronic
Engineers, Inc., 345 East 47th Street, New York, NY, 10017.

5-15



Serial Communications
Set Utility Program

SERIAL COMMUNICATIONS

The RS-232 ports are connection points for devices that use the
Electronic Industy Association‘s RS-232C Data Communications
Interface Standard. Since it was first published, the RS-232 standard
has gained wide acceptance among manufacturers because it allows
various brands of equipment to use serial data communications to pass
information.

The standard describes the physical connector, the signals on each pin
of the connector, timing requirements, and the voltage levels of the
signals.

The standard allows variations to accomodate different applications.
Therefore, the 1722A software includes a program called the Set
Utility program that permits changing the values of the parameters at
the port.

Set Utility Program

5-16

The purpose of the Set Utility program is to configure the Instrument
Controller to enable it to communicate with virtually any other piece
of equipment that uses the RS-232 standard. The port parameters are
set to default values when the Operating System is loaded, and some
applications will not require changing the defaults.

These are the port characteristics that can be changed:
O Baud Rate

O Number of Data Bits

O Number of Stop Bits

O Parity

O End of Line and End of File Terminators

O Stall Input/Output Enable/Disable

O Time Out Value



Serial Communications
Set Utility Program

Using the Set Utility Program
Here is how to use the Set Utility program:

1. From the FDOS) prompt, enter:
SET (RETURN)

2. The screen will display the prompt:

FDOS> BET
Set Version x.v

SET>

3. Specify the port to be changed, and use the command chart on
the next page to change the desired parameter(s).

4. Ifyouwould like to see the current parameters of a port, use the
List command. As with all Set Utility program commands,
specify the device first. Once the device has been specified, the
Set Utility program will assume that device until another is
specified.

KBI: LIST (RETURN) -or- KBI1: LI (RETURN)
This example illustrates the default parameters:

-
e N

SET> KB1:LI

Device KB17
Baud Rate 94600
Data Bits 8
Parity Even
Stop Bits 1

End of Line 10

End of Fite 26
Statll Inout disabled
Stall Output enabled
Time Out 0

\ /

5. To exit the Set Utility program, type:

EXIT (RETURN) -or- EX (RETURN) -or- (CTRL})/Z

5-17



Serial Communications
Set Utility Program

The Help Command

A help command lists all the available parameter selections. Type

?(RETURN) to see this display:

(/’

~

( ™)
Cosmand Arguaent Function Ex1ample
BR 7511101134.3+130+300+600+1200+1800 Set Baud Rate BR 2400

2000+2400+3600+4200+7200,9600+19200

o8 Sr6s748 Data Bits DB 8
KBn? Select Device KBD:
EOF <0 through 253> (decimal) or *<chard’ End of Fite EOF 26
EOL <0 through 235> (decimal) or "<chard>* End of Line EOL 10
EX or EXIT Exit to FDOS EX
Ll or LIST List Configuration LI
re EVENs Ev ODDs O+ NONEs N Parity PB NONE
§B 1y 1.5y 2 Stop Bits S8 1
81 ENABLE« Ev DISABLE:s D Statl Input S1 E
50 ENABLEy Ev DISABLEs D Stall Output S0 E
T0 <0 through 233> (seconds) Time Out T0 5

. _/

5-18



Serial Communications
Set Utility Program

Command Structure

The Set Utility program features a straightforward and flexible
command structure. Afterselecting a device, the current settings can be
listed and changed in any order.

O Commands can be entered singly or combined into a multiple
command line,

O Both upper- and lower-case entries are accepted.
O All commands are terminated by {RETURN).
0 All commands can be automated by command files.

0 Parameters controlled by the program can be set independently for
each serial port.

O Plain language messages prevent setting parameters improperly

(out of allowable range, incorrect syntax, unspecified device, etc).
A table of all messages is given on page 5-26.

5-19



Set Utility Program
Syntax Diagram

Syntax Diagram

The syntax diagram below illustrates the proper syntax for all of the
commands available in the Set Utility program.

{no parameter: EX,LI)

O Any number of parameters can be specified for a port, as long as
each command is separated by a comma or a space.

0 The command line cannot exceed 80 characters (the capacity of
one line on the screen). If more are needed, use two separate
command lines.

O A single command line can be used to set parameters for more than
one device as long as a comma precedes each device name after the
first one.

O Any number of commands are allowed on the same command line
as long as each is separated by a comma or space.

5-20



Set Utility Program
Setting Parameters

Device Selection

A port device must be selected before the Set Utility program will
accept other commands. Device selection can be made a part of the
single command line. Once the device is selected, subsequent
commands affect that device until another is specified.

If a command is entered before specifying a device, the “no device
specified” message is displayed.

Attempting to specify a device other than KB0:, KBI1:, or KB2 will
cause the “illegal device” message to be displayed.

All command inputs except baud rate are ignored for KBO: (the
console device).

If the KBI: port is already in use for an external monitor, its
parameters‘s cannot be changed, but will return the “illegal device”
message.

Setting Parameters
Baud Rate (BR)

Baud rate is the speed of information transfer. This command changes
the baud rate of the selected port to that specified by the command
argument.

In the following example, the baud rate of the optional Serial Port 2 is
set to 2400 baud:

KB2: BR 2400 (RETURN)

NOTE
The baud rate of the keyboard and display is 19.2 Kilobaud.
Setting KBO0: to any other baud rate immediately disables both
the keyboard and the display. This condition can only be
remedied by pressing RESTART.

5-21



Set Utility Program
Setting Parameters

5-22

Character Length (DB)

The data bit command sets the number of data bits that will be
included in each character.

When character length is set to a value shorter than the actual data‘s
character length, the lower data bits (least significant) are used.

If the character length is set to a value higher than the actual data, the
remaining (most significant) bits are set to zero.

The following example selects Serial Port 1, and sets the character
length to 7 bits:

KBI1: DB 7 (RETURN)
Parity Bit (PB)

Parity is a method of error detection that adds an extra bit after the last
data bit of each word. This bit is set so that the total number of 1-bits in
each word is always even or odd. The parity command defines a parity
bit to be generated and checked for the selected port.

The command argument NONE or N eliminates the generation and
checking of the parity bit.

During input, parity is checked as defined by the Set Utility for each
character. If an error is detected, it is identified to the operating system
as a device error. This error can only be cleared by closing the channel
associated with the serial port.

During output, parity is generated as defined by the Set Utility
program, and appended to each character.

In this example Serial Port 2 is selected, and set up to generate and
check 1or even parity:

KB2: PB EVEN (RETURN}



Set Utility Program
Setting Parameters

Stop Bit (SB)

The stop bit command defines the number of bit-cell time periods
between characters transmitted to external equipment that requires
additional settling or synchronization time. This command does not
affect incoming data.

The following example defines a transmission word spacing of 1.5 bit-
cell time periods for Serial Port 1:

KB1: SB 1.5 (RETURN?

Stall Characters (SlI, SO)

Stall Input and Stall Output implement the RS-232 X-ON and X-OFF
capabilities. These two commands tell the transmitter to stop and then
to resume sending the data.

Stall Input only affects data being received at the serial port. When it is
enabled, the Controller sends X-OFF (decimal 19) when its input
buffer is 3/4 full. When the buffer has been emptied to the 1/4 full
point, the Controller transmits X-ON (decimal 17).

Stall Output only affects data being sent from the Controller. When
Stall Output is enabled, receipt of an X-OFF character causes the
Controller to suspend transmission until it receives X-ON.

This sample shows how both Stall Input and Stall Output would be
enabled for Serial Port 1:

KBI1: SI E, SO E (RETURN)

5-23



Set Utility Program
Setting Parameters

5-24

Length of Time Out (TO)

The Time Out parameter affects both input and output data. During
input, if no data is received within the length of time specified by the
parameter, the Controller resumes processing, rather than waiting
indefinitely.

When the 1722A sends data through a serial port, it does so by fillinga
buffer, and creating a path betwen the buffer and the port. If the buffer
should become full, the Controller waits for the time specified by the
Time Out parameter. If the buffer has notstarted to empty by then, the
attempted data transfer is abandoned.

This parameter insures that the Controller will not wait indefinitely for
a data transfer in either direction. Instead, it abandons the attempt and
continues processing.

Time Out is specified in seconds (0 to 255). The longest time out, 255
seconds, equals 4 minutes, 15 seconds.

NOTE

The Time Out value can also be used to change this
parameter at the IEEFE-488 ports. For this usage,
specify the GPx: device, and specify the parameter
as usual. This is the only IEEE-488 parameter that
can be modified using this utility program.

In this example, the Time Out parameter for KBI: is set to 15
seconds.

KBI: TO 15 (RETURN?



Set Utility Program
Setting Parameters

Terminator Characters (EOL, EOF)

The terminator commands EOL and EOF define characters that will
be used to identify the end of a line or file. When received with
incoming data, a terminator generates an interrupt if enabled by the
user program,

EOL only affects data input: All Carriage Return and Line Feed
characters are deleted, but when the terminator character is received, a
Carriage Return, Line Feed sequence is appended. (The system does
not add a second Carriage Return or Line Feed if that character is the
terminator.) The resulting data is in the internal format of 1722A data.

EOF affects both input and output data:

0 During input, each file terminator defined by Set is converted to
(CTRL)/Z (ASCII 26).

0O During output, each {CTRL)/Z character is converted to the file
terminator defined by the Set Utility.

This example shows a command line that defines a question mark as
line terminator, and the ASCII character 4 (EOT code or
(CNTRL)/D) as a file terminator for a port that was previously
defined:

EOL ¢ EOF 4 (RETURN)
Single Command Line Entry

During experimentation, one normally changes the parameters one at
a time in order to find the correct combination for the device that is to
be communicating with the Controller. During the development of
working software, however, it becomes increasingly important to
begin thinking about how to speed things up. Since any keyboard
entries can become part of a command file, it is efficient to make one
entry in the command file set the parameters needed at the RS-232
port.

This example illustrates how all of the above commands could be
combined into a single command line to change the parameters at a
serial port:

KBI: BR 2400 DB 7 PB E SB 1.5 EOL ‘” EOF 4 SI E SO E TO 15 EX
(RETURN)

5-25



Set Utility Program
Messages

Error Messages

Messages from the system are a normal part of operation, and do not
always signify that an error has been made, though they are generally
referred to as “error messages®. Here are the meanings of messages you
might see from time to time when using the Set Utility program:

5-26

MESSAGE

7 Argusent aissing

7 Argument out of range

7 Bad argument

7 Ittegal device

7 No device specified

7 Unknown command

?7 Attribute cannot be changed

MEANING

A command was entered without the
argument necessary to complete its
meaning.

A command argument was entered
which was beyond the range of
acceptable values.

A command argument was entered
which was not in the list of acceptable
arguments for that command.

KB2: was selected when an external
terminal was in use.

A command was entered before
specifying a device.

A command was entered that was not
recognized.

A parameter was specified that cannot
be changed for that port.



Serial Communications
Under Program Control

Serial Communications Under Program Control

To automatically set the parameters of the serial ports, acommand file
must be written that® uses Set Utility program commands. The
parameters cannot be modified by programs written in high level
languages (BASIC, Fortran). Once the port parameters are established
by the Command file, however, programs written in any language can
get information into and out of the port.

Keep in mind that the command file must first enter the Set Utility
program, and after parameters are changed, must exit it. Here is a
portion of a command file that does just that;

SET

KB1: BR 24D0+DB 7+PB E+SB 1.51S1 E+S0 EsTO 15
EXIT

The following table illustrates the commands used in the BASIC and
FORTRAN languages to send and receive information via the serial
port. Notice that both languages include commands to first open the
channel, then either to send or recieve data through it. For more
information, consult the manual that covers the programming
language you are using.

BASIC
To send: To receive:
OPEN "KB1:" AS NEW FILE 1 OPEN KBit: AS FILE 14
PRINT #1s “TESTING" PRINT AsS
FORTRAN
CALL OPEN (2y "KB1:":s 4y Os IERR) READ (2,20) A
WRITE (2y 10) lERR 20 FORMAT (F1D.4)
10 FORMAT ( "ERROR CODE: *,IS) CALL CLOSE (2y» lERR)

5-27



Serial Communications
Sample Program

Sample BASIC Program

This sample program shows how theszmportant commands would be

included in a BASIC language progra

that reads information froma

floppy disk in device MFO:, and sends it out to a serial impact printer,
like the Fluke model 1776A. Some features of the program are:

0

m]

250
260

280
290
300
310
320
330
340
350

5-28

Prompts the operator for the name of the file to be printed.

Handles the most common error: specifying a file that doesn’t

exist.

Regardless of the size of the file, outputs the entire file, and stops

when printing is complete. -

! Program to print a specified file
1}

QDIR !
PRINT
PRINT °*ENTER FILENAME® H
INPUT As !
IF As = "" THEN 60TO 330 !
ON ERROR &0TO 180 H
CLOSE 1 !
OPEN AS$ AS FILE 1 !
CLOSE 2 !
OPEN 'KB1:°® AS NEW FILE 2 !
PRINT #2sCHRS(12X) !
INPUT LINE #1s AS !
PRINT #2, AS !
L}

60T0 140
]

! # Error Handler #
! ERR (system variable) = Last error
)

! - Error 303 File Not Found -
IF ERR = J05 THEN RE\UME 230 ELSE 270 !
PRINT °*FILE NOT FOUND - TRY AGAIN’

WAIT 1000 \ 6070 30 '
l

! - Error 307 End of File -

IF ERR = 307 THEN RESUHE 280 ELSE RESUME
PRINT "TRANSFER COMPLETE®

CLOSE 1+ 2 \ END !
1]

' ~ All Other Errors -

PRINT °ERROR - CANNOT TRANSFER FILE® !
PRINT °*RETURNING TO BASIC'
CLOSE s 2 !

END :

tist files

display prompt
filename is variable AS
graceful exit
error handler

make sure channel is closed
now open it.
make sure channel is closed

now open it. KR1: is printer
send form feed to printer
put one line of file into AS
output the line to printer
repeat until done

retry if file not found

pause 1 secy start again

310 ! halt if EOF

close channelsy halt

halt for att other errors

close channels
hatt



Serial Communications
Sample Program

Leaving out the comment lines, here is a line-by-line explanation of
how this program operates:

30

40
50
60
70

80

90

100
110
120
130

The program begins by doing a quick directory listing to display
the files that are available for printing.

Puts a blank line on the screen for readability.

Displays the prompt message.

Assigns the response to the prompt as string variable A.

If there is a null string (no input) terminated by a (RETURN),
this line provides a graceful exit. This is used, for example, if the
directory listing indicates the file you want to print is not on this
disk.

Beginning of the error handler. Any error encountered sends the
program to line 300, where the error type is discovered, and
various exits are provided depending on the error type.

The CLOSE command is insurance that a previously opened
channel is closed prior to reopening. To OPEN an already open
channelis an error; to CLOSE one that hasn’t been opened is not.
After this ‘insurance’ command, the following line opens the file
designated as variable A as file 1, for input.

Opens the file.

Again, a command to insure the channel is closed before opening.
Serial port KBI1: is opened as an output.

The printer (File 2) is sent a Top Of Form command, so that
printing will start at the beginning of a sheet.

5-29



Serial Communications
Sample Program

5-30

140
150
160

220
230
240

260

270

280

300

Each line of the file is input and sent to AS.
Each line is sent out to #2, the printer.

The return to line 140 gets the next line, so it can be PRINTed by
line 150. -

The error handler begins here. Error 305 is returned if there is no
file with the name of the one specified as AS$. If the error is 305,
then a message will be displayed at line 230, and allow a retry.

Prints the message that the file was not found.

After a one second wait, goes back to line 30 to display the
directory again.

The error was not 305, so now it is checked to see if it was 307, the
End of File. This is the exit when the entire file has been printed.
All other errors fall through to ending routine that closes the
channels and stops.

If the EOF was the error, prints the message that the transfer is
complete.

Closes the previously opened channels, sends the program to the
END statement to stop.

If the error was neither End of File or File Not Found, then it is
some other error that makes it impossible to transfer the file. In
this case, a message is printed, the channels are closed, and the
program stops. This line could be enhanced by incorporating the
actual error number for debugging purposes if this program is
included within some longer one.

This program illustrates how the important BASIC language
commands can be used to send data out the Serial port. While it is not
comprehensive, it does show some good programming techniques.
(And it works!)



Communications

Before using the RS-232 port, be sure to confirm two things:

1. The other end uses the DCE connector, rather than DTE. The
1722A Instrument Controller is a Data Terminal Equipment,
and the other end must be a Data Communications
Equipment. The connector is different for each end. Note that
DTE and DCE do not refer to the sex of the connector, but to
the electrical connection of the Write Data and Read Data
lines.

2. All parameters match. Use the Set Utility program to change
any that do not.

CONCLUSION

This section has described the two ways that the Instrument Controller
communicates with other pieces of equipment using worldwide
standard connection and protocol methods. It has also shown how to
make use of the essential BASIC language commands to send and
receive information over its instrumentation bus and serial data
communications bus.

The next section, Creating and Editing Programs, will show how to

begin writing your own routines with a view to automating the
functions of the Instrument Controller.

5-31



Section 6
Creating And Editing Programs

CONTENTS

Introduction .........c.ciiiiiiiiiiiin ittt 6-2

Selecting a Programming Language .................... 6-3
BASIC i i e 6-3
FORTRAN .. ittt ittt iiinannennns 64
Assembly Language ..............iiiiiiiiiiiinnnn. 64

File Utility Program .........c.coviviieinennennnenenn. 6-5

Command Line Interpreter .............ccovviiiennnn. 6-5
Introduction ......coiiiiiniieriiineirrennneeennnns 6-5
Editing Features of the Command Line Interpreter .... 6-6

The Edit Program ...........cciiiiiiiiiiininnnnnnn. 6-7
Introduction ........ciiiiiiiiiriniiiiiirennennnnns 6-7
Entering the Editor Program ....................... 6-8
Exiting the Editor Program ......................... 6-9
Operating Modes ........c.oivviiiiniiiininennnnn.. 6-9
Global Commands ........covivivieninnrnneennenns 6-10
Most Used Commands .........coieriivnennrnnnnnn. 6-10
Command Mode .........civiiiiiiiiiiinnnnnennnns, 6-15
Command Mode Commands ...............c00vuus, 6-18
Edit Program Messages ...........vvveveiinnnnnnnn. 6-44

L0703 T0) L 1T ) 6-45

6-1



Creating And Editing Programs

INTRODUCTION

6-2

The 1722A Instrument Controller is a special purpose computer, and
like any computer, its instructions must be given in very precise
language. This section is designed to assist you in the task of writing
precise instructions.

There are a number of different facilities for writing and editing
programs. From Immediate mode BASIC, the command EDIT
presents a range of possibilities. This is the Editor of choice for
programs written in BASIC, because it is so well adapted to the task,
and because it is readily available, once you are “in BASIC”.

For creating other types of programs, such as Command files or Alias
files, the System Editor program (filename EDIT.FD?2) is easier to get
at. Also, you will have to use the System Editor if you are
programming in FORTRAN or some other language that does not
provide editing functions.

This section discusses these main topics:

Selecting a Programming Language

Creating Programs Using the File Utility Program
The Command Line Interpreter

The Editor Program



Creating And Editing Programs

SELECTING A PROGRAMMING LANGUAGE

There are three languages that can be used for programming the
1722A. Here is a guide to help in selecting the most appropriate
language for any particular application.

BASIC

BASIC is an acronym for Beginners All-Purpose Symbolic Instruction
Code. The BASIC language is used for about 909 of all programming
applications because it is fairly common, is easy to learn, and provides
most of the capabilities that are desired for instrumentation systems.
There are really two forms of the BASIC language: the normal
interpreted version, and a special compiled version.

Interpreted BASIC version is an enhanced version of the BASIC
language that is common to most computers. It has a built-in editor,
Immediate Mode Commands, and runs programs interactively. These
features make program development easy and straightforward, even
for inexperienced users. Because it is the language of choice for most
applications, the interpreted version of BASIC is included with every
1722A.

Compiled BASIC is essentially the same language in a compiled form
to increase its execution speed. Compiled BASIC programs are written
using the System Editor program. They can be created in a more
structured form than conventional line-oriented BASIC programs.
The programs are compiled into a form that runs much faster than an
equivalent interpreted BASIC program. Compiled BASIC should be
used in applications where additional speed or a modular structure is
needed while retaining the familiar BASIC language elements.
Compiled BASIC is available as an optional accessory software
package which contains the software required to create and maintain
Compiled BASIC programs.

6-3



Creating And Editing Programs
Selecting a Programming Language

FORTRAN

FORTRAN is also an acronym. It stands for Formula Translator.
FORTRAN is a useful language for scientific applications because of
the ease with which it manipulates numbers. BASIC provides most of
the same capabilities, but FORTR AN may be the better choice if many
of your current programs are already writtenin FORTRAN, if you are
experienced in programming in FORTRAN, or if the operation
requires greater speed. Because it is a compiled language, FORTRAN
offers high speed, but, like all compiled languages, it is more
complicated to work with.

Assembly Language

6-4

Assembly Language provides the programmer with access to all of the
capabilities of the TMS-99000 processor used in the 1722A. Assembly
Language programs can usually be both faster and shorter than
programs written in any other language. In addition, specialized
Input/Output and data conversion functions not otherwise available
sometimes must be written in Assembly. The penalty for this flexibility
is that Assembly Language programs usually take longer to design, to
write, and to debug than programs written in higher-level
programming languages.

When greater performance is required for a program written in a
higher-level language it is usually possible to replace time-consuming
operations with a faster Assembly language subroutine. This can be a
cost-effective solution if the amount of Assembly code is small
compared to the total size of the program.



Creating And Editing Programs
Light Editing

FILE UTILITY PROGRAM

It is possible to create, but not edit, programs using the File Utility
program. To implement this capability, use the File Utility program
command in the form:

(filename)= KB0: (RETURN)

Now, any keystrokes made will be filed at the System Device, and given
the filename specified. The end of the file must be indicated to the File
Utility program by the command (CTRL)/Z (EOF).

This facility is not used for creating long or complex programs because
there is no way to edit them. If an incorrect keystroke is not seen
immediately, it is necessary to either re-write the entire file, or else use
an editor program to correct it.

COMMAND LINE INTERPRETER
Introduction

The central program, FDOS, is always present in the system’s memory,
and its facilities are used by other programs. For example, when a
program written in BASIC is running, one is tempted to say “a BASIC
program is running”, but that would be inaccurate because it is actually
the BASIC Interpreter program that is running. It calls upon the
Operating System to provide file manipulation and other
Input/Output. The execution of a program and the Operating System
is interleaved.

In the same way, when the utility programs are in use, they direct the
activities of FDOS. The Operating System takes control only when:

1. The utility program requests an I/ O operation.
2. A severe hardware or software error occurs.
3. The FDOS) prompt is displayed.

An important feature of the Operating System is its Command Line
Interpreter. As its name implies, this is the portion of the Operating
System that accepts keyboard commands and acts on them. It permits
us to type FUP, for example, and be understood as saying, “Hello,
Operating System, what I want you to do is go out to the floppy disk
and find a program called the File Utility program. Read it into
memory, and pass control of the microcomputer to it.” The File Utility
program returns control when it receives the Exit command /X.

6-5



Creating And Editing Programs
Light Editing

Editing Features of the Command Line Interpreter

When a command line is being written, some rudimentary editing
functions are available. These features of the Operating System are
great time savers, because they speed up the creation of Command files
and access to utility programs. All the commands described are
available from from FDOS, BASIC, and the TIME, SET and File
Utility programs.

(CTRL)/F and (CTRL)/R

These are mnemonically named commands for “Forward” and
“Reverse”. (CTRL)/R causes the last line entered to be displayed
again, and repeats until the first command has been reached. When a
former command has been displayed, it is available for editing, thus
providing the Controller with an elegant way to avoid much repetitious

typing.

Example:
Since the Controller was turned on, these commands were entered:

FUP
RS232.CMD
/X

TIME

03 06 83

14 35

The first use of {CTRL) /R would display 14 35, the next 03 06 83, the
next TIME, then /X, RS232.CMD, and finally FUP. If (RETURN) is
pressed when any of these are displayed (the cursor can be anywhere on
the line), the system accepts the command just as if it had been typed in.
If you wanted to get back to the line “RS232.CMD” to run the
program, rather than having the File Utility program display it, you
would use {CTRL) /R until the display showed that line, then press
(RETURN). If you go all the way back to the line reading “FUP” by
mistake, just use {CTRL)/F to go forward.

These commands are circular. If (CTRL) /R were pressed once more
after “FUP” was displayed, the next thing to be displayed would be
14 35.



Creating And Editing Programs
Light Editing

Any time that (CTRL)/R or (CTRL)/F are used to display a
previously entered command, the command can be edited using the
arrow keys, DEL LINE and DEL CHAR keys, the DELETE key, or
the backspace (back to left margin), or LINE FEED (to end of line).
Once the line has been edited, pressing RETURN with the cursor
anywhere on the line will cause the command to be executed.

Other editing features of the Command Line Interpreter are:

(CTRL)/U
(CTRL)/T

(CTRL) /P

(CTRL)/Z
(CTRLY/C

(DELETE)

Key Repeat

Erases the current line.

Clears the screen, and positions the prompt on the
first line.

Aborts whatever operation is in progress, and returns
control to the Operating System (FDOS prompt).

Used as the End Of File (EOF) command.

Interrupts an operation, and may abort it depending
on the operation in progress.

Deletes the character at the cursor position and
moves the cursor left one position. This action stops
at the prompt.

All keys, including control characters, repeat when
held down.

THE EDIT PROGRAM

Introdu

ction

The Edit program is supplied on the System disk as a file named
EDIT.FD2. This editor is a visual one, as opposed to “blind” editors.
That is, the file is displayed as you edit it.

The Edit program provides a complete set of commands for
performing these functions:

m}

m]
]
(w]

Inserting Text

Searching, Replacing, and Marking Text

Positioning the Cursor

Changing Editor Modes

6-7



Creating And Editing Programs
Start Editing

Entering the Editor Program

From the FDOS) prompt, type:
EDIT (RETURN) or EDIT (filename) (RETURN)

In the first case, no file is specified. If this method is used as the entry to
the Editor, a filename must be specified later, when exiting the
program. The reverse is true if a filename is specified as you enter; one
must not be specified as you exit. If different filenames are given, the
result would be that two files would be created; the one specified at the
beginning of the editing session will be empty.

As always, if no device name is specified, the default is to the System
Device.

In this example, the file named FILE.NEW was specified:

[EDITING FILE "FILE.NEW" Cnew filel ] ]

If the file already exists, the bracketed “new file” would not be included
on the display.

If no file has been specified, only the cursor appears on the top line.

The rest of the display depends on the file contents, but if the file is
being created, the display has omega symbols on the left, indicating
empty lines.

~

((EDITING FILE "FILE.NEW" )
Q
Q
Q
Q
Q2
Q
Q




Creating And Editing Programs
Stop Editing

Exiting the Editor Program

There are several ways to exit the Editor program. The most
commonly used are:

O First record the changed file, then exit the Edit program:

(ESC) :w (RETURN) write the file
(ESC) :q (RETURN) exit the Editor

o Exit without recording the changes to the file:
(ESC) :q! (RETURN)

Other commands permit reading a file into the display while editing
another file.

Operating Modes

The Editor has two modes of operation. The Insertion mode is the
default, and is primarily used for inserting text, although it does allow
a certain amount of cursor and text manipulation. The Command
mode is used for more powerful cursor and text manipulation,
searching, and exiting the program.

Many Edit program commands result in a temporary return to the
Insertion mode. When these commands are used, (ESC) is the return
to Command mode. The purpose of these commands is to save the time
involved in exiting the Command mode, doing the insertion, then
returning to Command mode.

To change from Insertion to Command mode:
(ESC):@ (RETURN)

To change from Command to Insertion mode:
:@ (RETURN)

When either change mode command is given, the new operating mode
becomes the default.

On the first entry to the Edit program, Insertion mode is the default. If
Command mode is desired, the EDIT command can be modified by
using the -c switch. The entire command to enter the Edit program in
Command mode and begin editing FILE.NEW would read:

EDIT -c FILE.NEW (RETURN)




o

Creating And Editing Programs
Edit — Modes

Global Commands

Global commands operate in either mode. After they are executed, the
Editor returns to the default mode. They are used to read or write a file,
and check the status of the Editor. Global commands are always
preceded by a colon (:). The most commonly used ones are:

:w  Writes the file.

:q Quits the Editor and returns to the Operating System.

:q!  Quits the Editor without any changes from the current editing
session.

: Reads another file in during editing.

'S Substitutes one string of characters for another.

NOTE

When in the Insertion mode, the Global command prefix is{ESC):.

Most Used Commands

The entire command structure of the Editor program contains some
redundancy; also, some commands are used infrequently enough to
not require a complete discussion. Most programs can be created and
edited using only a few of the available commands. The full capabilities
of the Edit program are presented at the end of this section.

Cursor Positioning

6-10

In the Insertion mode, the four arrow keys on the six-key auxilliary
keypad move the cusor in the direction shown by one space or one line.

In the Command mode, these keys can be preceded by a number to
move longer distances. For example, 20—+ would move the cursor 20
places right, and 20! would move it down 20 lines.

The lower-case letter “w” moves the cursor to the right by one word. If
a number precedes the “w”, the cursor moves right by the number of
words specified.

The lower-case letter “b” moves the cursor back by one word. If a
number precedes the letter “b”, the cursor moves back by that number
of words. '



Creating And Editing Programs
Edit — Most Used Commands

Text Insertion and Deletion

In the Insertion mode, any characters typed are displayed and the
cursor is moved right one position. The {DEL LINE) and (DEL
CHAR) keys on the auxiliary keypad delete characters or the entire
line to the right of the cursor without moving the cursor. The
(DELETE) key (just above {(RETURN)) erases single characters to
the left of the cursor, and moves the cursor left one position.

In the Command mode, typing the lower-case letter “a” returns
operation to the Insertion mode. Anything typed in strikes over the
already existing text, but it is displayed again when the (ESC) key is
pressed. The upper-case letter “A” is a command to add whatever text
follows, starting at the end of the line the cursor is on. To stop inserting
text, press (ESC).

To delete text in the Command mode, position the cursor anywhere on
the line and type (CTRL) /U; the entire line is deleted. (DEL CHAR)»
and (DEL LINE) operate just as they do in Insertion mode. If a
number precedes them, that number of characters or lines to the right
of or down from the cursor are deleted. Similarly, the (DELETE) key
| can be preceded by a number. For example, the command
3(DELETE) deletes three characters to the left of the cursor.

Substitution

The substitution (s) command replaces whatever text is to the right of
the cursor with a specified character. The form is [n]s {char} where [n]
is the number of characters to be substituted, and {char} is the
character to be substituted.

In this example, a time delay of 200 milliseconds was found to be
inadequate for a program, so the number 200 will be substituted for
1000. With the cursor positioned under the 2 of 200 the command
451000 changes the 200 to 1000, leaving the cursor at the end of the line.

60 WAIT 200 — 451000 —_— 60 WAIT 1000_

All Command mode returns to Insertion mode are terminated by

6-11




Creating And Editing Programs
Edit — Most Used Commands

Marking Text

Invisible markers can be placed anywhere in the text from the
Command mode. There can be 26 such markers in any file, one for each
lower-case letter in the alphabet. The command ma places a marker
named “a” at the cursor position. To return to that position after
subsequent editing, use the command ‘a.

Searching

6-12

Searching can only be done from the Command mode. The Find (F)
command operates only on the current line, and searches for a
character to the left of the cursor. The entire command takes the form
[n]F {char}, where n is a number of occurrences prior to the cursor
position, and {char} is the character to be searched for. In this example
of a line from a BASIC language program, the command F10 would
leave the cursor at the line number:

O DIM A$ (5Zs 5%)

The second type of search looks for patterns rather than single
characters. Each of the command characters must be preceded by
(ESC). The three command characters that the search command can
begin with are:

| searches forward throughout the buffer.

? searches backward throughout the buffer.

! searches forward to the end of the file.

Whichever character begins the command, search commands always
take the form [cc] {pat} where cc is the command character, and {pat}
is the pattern to search for. The pattern searches are repeatable by

using the lower-case letter n to continue searching in the same
direction, and the upper-case N to reverse direction of the last search.



Creating And Editing Programs
Edit — Most Used Commands

In this example, the programmer wants to find all those occurrences in
a program where something is to be printed in normal size letters. The
cursor is postioned at the end of line 20. The command !PRINT NS
would first locate the PRINT statement in line 400. The lower-case
letter n (next) would then locate the next occurance at line 9000.

20 NS$ = ES$ + "p"

400

6-13



The System Editor

Creating And Editing Programs

INSERTION MODE COMMAND TABLE

ACTION

RESULT

COMMENTS

Cursor Positioning

—

|

(BACKSPACE),
or
(CTRL/MH)

{LINE FEED)
or
(CTRL)J

Move cursor right one
position.

Move cursor left one
position.

Move cursor up one line.

Move cursor down one line.

Move cursor to the beginning

of the line.

Move cursor to the last
position in the line.

Ignored if cursor is at the last
position on the line.

Ignored if cursor is at the left
margin.

Cursor remains in same
position on next line unless it
is shorter; then it goes to the
end of the line.

Acts the same as '

Deletion Commands

(DEL CHAR)
or
{CTRL D)

{DELETE)

(DEL LINE)
or
{CTRL E)

6-14

Delete character at the cursor

position.

Delete character to the left of

the cursor.

Delete text from the cursor to

the end of the line.



Creating And Editing Programs
Edit — Command Mode

Command Mode

The Command Mode of the System Editor program provides for rapid
cursor placement, complex searches, deletions, and text marking. It
includes commands to move sections of a file into a “yank” buffer, so it
can be placed back into the file at another location. Many commands
provide a temporary return to the Insertion mode. These commands
must be terminated by (ESC) to return to the Command mode.

Markers
Each of the lower case letters on the keyboard can be used as a marker.
Markers are invisible, so if they will be used extensively, it is probably a
good idea to keep a tally sheet handy to aid in remembering where each
marker is placed.

To place a marker named “a” into a file, move the cursor to the desired
position, then give the command ma.

Now that marker “a” is in place, you can always return to that spot by a
search command. The marker is also used with yank buffers and delete
commands (see below.)

There is no provision for deleting markers. However, they are not
recorded with the file and so do not remain after the current editing
session. Also, the same marker can be moved simply by placing it
someplace else. The last placement is the one remembered by the
Editor program.

The Yank Buffer

A yank buffer is a location in memory available to store information.
Information is taken from the cursor location to a specified marker.

The yank buffer is one of the Editor’s more powerful features because it
can be used to relocate portions of a program as an aid to modifying it.
For example, if part of a program has inadvertently been left out, and
to include it requires restructuring the program, use the yank buffer to
move sections of the program from the screen and into memory, then
replace them as the new section is written. Another good use for the
yank buffer is as a holding area for a frequently written line of code,
such as a tightly formatted PRINT statement or a very long line.

A}

ya removes text from the cursor to marker a.

p  puts the buffer back into the text after the character where the
cursor is positioned.

P  puts the buffer back into the text before the character where the
cursor is positioned.

3

6-15



Creating And Editing Programs
Edit — Command Mode

Search Commands

6-16

Searches can be performed from the cursor position either backwards
or forwards in a file. The search can be for markers, strings of
characters, lines or line positions, or to a string that matches a
metacharacter.

To search for the first occurrence in a file of the word PRINT, the
command most commonly used would be: |PRINT

Other variations are to use the command characters / and ? to search
forward and backward on the current page.

The lower case letter n finds the next PRINT statement.

The upper case letter N locates the previous PRINT statement.



Metacharacters

Creating And Editing Programs
Edit — Command Mode

Metacharacters describe patterns of characters that may be more
complex than words or simple strings of characters. Metacharacters
are similar to wild cards, but are only used with search commands.

A (caret)

$ (dollar)

[]

o

*

7

(dot)

Matches any single character in the line.
Example: ta.k matches talk, task, and tank, but not
take.

Matches at the beginning of a line.

Example: APRINT would locate all the PRINT
statements in a program, as long as there were no line
numbers.

Matches at the end of a line.
Example: RESUME 5808 would locate all the lines in
a program that RESUME:s to line 580.

(brackets) Match constructed patterns.

(dash)

(bang)

(star)

Example: [13579] matches any single-digit odd
number. [Pp]rint matches both Print and print.

With the bracket metacharacter, specifies a range of
characters (in ASCII order) as a character class.
Examples: [0-9] matches any single digit.

[- ~] matches all printable characters

(ASCII ‘blank’ to tilde)

Matches any character not in a specified character
class.
Example: [!a-zA-Z] matches everthing that is not a
letter.

The closure character; matches zero or more
repetitions of character(s) matched by preceding
patterns. .

Examples: X* matches zero or more upper-case X’s in
a row,

(.*) matches anything between parantheses.

(backslash) The escape operator; causes the character inmediately

following to be treated as a literal character, even if it is
a metacharacter.

Example: The pattern \$ matches the dollar sign, not
the ‘end of line’ metacharacter. \matches the backslash
character.

6-17



Creating And Editing Programs
Editor Commands

Command Mode Commands

The command mode provides complex cursor positioning, pattern
searches, text replacement, deletion, and insertion. In the section that
follows, each command is explained, and a five line section of a
program is used for the examples. The example program lines are
shown double-spaced to better illustrate the movements involved; in
actual practice, programs do not allow empty lines as shown here:

10 DIM A$ (5%, 5%

20 TRACE ON 110: AS$ ()
30 FOR 1% = 0% TO 5%

40 AS$ (I%Zs O%) = CHRS (ASCII (* *)) + 1%

50 GoOsuUB 110

Cursor Positioning
Moving the Cursor Forward
Command: [n]- -or- [n]l -or- [n] (SPACE)

6-18

Purpose:

Example:

To move the cursor to the right n characters.

The cursor is at the beginning of line 30.
The command 12— moves it to the equals sign:

30 FOR 1%-= 0% TO 5%

[n]i

Command:
Purpose: To move the cursor to column n.
Example: The cursor is under ‘C’ of CHRS (column 19) on line

40.
The command 38-movesit to column 38 (thel of 1%).

40 A$ (I%» O%) = CHR$ (ASCII (' *)) + 1%



Command:

Purpose:

Example:

Example:

Command:

Purpose:

Example:

Creating And Editing Programs
The System Editor
Moving the Cursor Forward

[n]w -and- n[W]

Lower-case: To move the cursor forward on a line the
specified number of words.
Upper-case: Operates on strings.

A word is made up of alphabetic and numeric
characters, and ends with a space, tab, or punctuation
mark, or symbols such as $, %, or &. A string can
include symbols in addition to the alphanumeric
characters. The cursor is left at the beginning of the
word or string.

The cursor is at the beginning of line 30.
The command 2w leaves the cursor under the word TO:

30 FOR IZ = 0% TO 5%

The cursor is at the left margin of line 30.
The command 6W moves it to the 5 of 5%

30 FOR 1Z = 0% 10 51

[n)e -and- [n]E

Lower-case: To move to the end of the specified word.
Upper-case: To move to the end of the specified string.

The cursor is at the beginning of line 30. The command
2e positions it at the R of FOR.

30 FOR I% = 0% TO 5%
A

6-19



Creating And Editing Programs

The System Editor

Moving the Cursor Forward

Command:

Purpose:

Example:

Command:

Purpose:

Example:

6-20

[n] $ -or- [n] (LINEFEED) -or- [n] (CTRL)/J

To move the cursor forward to the last position of line
n; the current line if n = 1, or if no number is used.

The cursor is at the left margin on line 30.

The command 3$ moves it forward to the end of line 50:
10 DIM AS (5Zs S%)
20 TRACE ON 110s A$ )

30 FOR 1% = DX TO 52

A$ (IX» O%Z) = CHRS (ASCI1 (* *)) + I%

gosue 110

[n] + -or- [n] (RETURN) -or- [n] (CTRL) /M

To move the cursor forward to the left margin n lines
down; if n = 1, the next line down.

The cursor is at the end of line 20.
The command 2+ moves it to the beginning of line 40:

10 DIM AS$ (5Zsy 5X)

20 TRACE ON 110y AS O

30 FOR 1% = D% TO0 5%

40 AS (1%, O%) = CR$ (ASCII (* *)) + I%

2

B 11



Creating And Editing Programs
Moving the Cursor Backward

Moving the Cursor Backward

Command:

Purpose:

Example:

Command:

Purpose:

Example:

[n]b -and- [n]B

Lower-case: To move the cursor backward to the
beginning of a specified word.
Upper-case: To move the cursor backward to the
beginning of a specified string.

The cursor is under the R of ‘FOR’ of line 30.
The command 1b moves it to the 3 of 30:

30 FOR 1% = O% 7O 5%

[n]* -or- [n] (BACKSPACE) -or- [n] (CTRL)/H

To move the cursor from the current position to the left
margin of the nth line up. If n = 1, the cursor moves to
the left margin of the current line. The current line is
also used if no number or zero are given.

The cursor is at the end of line 50.

The command 3* moves the cursor to the beginning of
line 30:

10 DIM AS$ (5%s 5%)
20 TRACE ON 110y AS O

30 FOR I% = 0% 70 5%

AS$S (IZ%sy O%) = CHRS (ASCII (* ")) + I%

50\ 60Su8 110

6-21



Creating And Editing Programs
Moving the Cursor Backward

Command:
Purpose:

Example:

Command:

Purpose:

Example:

6-22

[n] - -or- [n] (RETURN) -or- [n]
To move to the left margin of the nth line up.

The cursor is at left margin of line 50.
The command 2- moves it to the left margin of line 30.
10 DIM AS (3%, 5%)
20 TRACE ON 110y AS O
30 FOR 1% = 0% TO 5%
40 A$ (IXs 0%) = CHR$ (ASCII (' *)) + I%

S0 e6&osuB 110

[n}+ -or- [n]k

Moves the cursor up n lines. Attempts to keep cursor
positioned in the same location on the new line. If the
target line is shorter, cursor moves to last position.

The cursor is under the ‘A’ of ASCII in line 40.
The command 31 moves the cursor to the last position
of line 10:

10 DOIM AS$ (5%s 5%

20 TRACE ON 110 [AS O

30 FOR 1% = 0% TQ 5,

480 AS (1%4y 0%) = R$ C(ASCII (' °)) + I%

50 GOosSuB 110



Creating And Editing Programs
Moving the Cursor Down
and to End of Buffer

Moving the Cursor Down
Command:[n]y -or- [n]j

Purpose: To move the cursor down n lines. If the cursor cannot
be kept in the same position because the target line is
shorter, it will be placed at the last position.

Example: The cursor is at the last position of line 20.
The command 2} moves it to the space after CHRS in
line 40: :

10 DIM A$ (3%s 3%

20 TRACE ON 110y AS ()_

30 FOR I%X = 0% TO 51‘1‘
40 As$ (I%Zy 0%) = CHR ASCII ¢* ")) + 1Xx

50 60suB 110

Long Cursor Movements
Moving to the End of the Buffer

Command: [n]g

Purpose: To move the cursor to line n of the buffer. If n is not
specified, the cursor moves to the last line in the buffer.

Example: Line 50 is the last line in the buffer. No matter where

the cursor is situated, the command g moves the cursor
to the beginning of line 50.

01 ANY LINE IN_BUFFER

S0 GOSUB 110

6-23



Creating And Editing Programs

6-24

Long Cursor Movements

Moving to the End of the File

Command:

~ Purpose:

Example:

[n]G

Moves the cursor to the specified line of the current file.
If not specified, the cursor goes to the last line of the
file.

Same as lower-case if the entire file is in the buffer.

Moving By Screenfuls

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

Example:

Command:

Purpose:

H
To move the cursor to the top line of the screen. (High)
L

To move the cursor to the bottom line of the screen.
(Low)

[n] (CTRL)/F

On extremely long files, moves forward by an entire
screenful (15 lines). The [n] indicates the number of
screenfuls to go forward.

The sample program lines are about 80 lines ahead in

the file. The command 5 (CTRL) /F will position the
cursor in the general vicinity of the program. (5 x 15 75)

[n]{CTRL) /B

To move backwards by screenfuls, as in the prior
command.



Creating And Editing Programs
Search Commands

Search Commands
Searching for a Single Character

Command:

Purpose:

Example:

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

[n] f {c}
To move the cursor forward to the nth occurrence of a
character on the same line. If the character does not
occur the number of times specified, the command is
ignored.

The cursor is at the left margin position on line 40.
The command 2f$ leaves it under the $ of ‘CHRY’

40 AS$ (I%s O%) = CHRS (ASCII (* *)) + IX

S0 60S

[n] F {c}

Same as prior command, except searches backwards
for the character.

[n]t {c}

Same as [n] f {c} except leaves the cursor at the left of
the character specified.

[n] T {c}

Same as [n] f {c} except searches backward, and leaves
cursor at the right of the specified character.

6-25



Creating And Editing Programs
Search Commands

6-26

Searching For a Pattern

Command:

Purpose:

Example:

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

/ {pat}

Moves the cursor forward to the beginning of the
specified pattern. The pattern may be anywhere
between the current position and the end of the buffer.
If the pattern does not occur, the cursor remains, and
the message PATTERN NOT FOUND is displayed.
The cursor is at the first position of line 10.

The command /5% positions the cursor at the 5 of 5%
on the same line:

10 DIM AS (3%s 3%
v—

?{pat}

Same as prior command, but searches from present
position backwards to beginning of buffer.

!{pat}

Same as / {pat}, except searches forward to the end of
the file.

n

To find the next occurence of a pattern specified by the
original /, ?, or ! command.

N

Same as n(ext), but in opposite direction of the
original /, ?, or ! search.



Creating And Editing Programs
Marker Commands

Marker Commands
Placing a Marker

Command:

Purpose:

Example:

m[x]

To place an invisible marker in the text at the cursor
position. The [x] must be a lower-case alphabetical
character. If the same label is used a second time, the
first one is deleted. All markers are deleted if the file is
written (w), or when the Editor is quit (q).

Place a marker named c at the string ‘CHRS’
Position the cursor at the ‘C’, and type mc.

Finding a Marker

Command:

Purpose:

Example:

*[x]

To find a previously defined marker. If no marker by
that name exists, the message “Mark not set” is
displayed.

The cursor is at the beginning of line 10.
The command ‘c moves the cursor to the previously
defined marker at ‘CHRS$’ on line 40.

0O DIM A$ (5% 5%

TRACE ON 110y AS O
OR I%Z = 0% YO 5%
40 AS y 04) = CHRS (ASCII (* ")) + 1%

50 6&o0sus 110

6-27



Creating And Editing Programs

Text Insertion

Text Insertion

Text can only be inserted from the insertion mode. However, for
convenience, many Command mode commands provide a shortcut
entry to and return from the Insertion mode. The return to Command
mode is one keystroke: (ESC) Here are the commands:

Command:

Purpose:

Example:

Command:

Purpose:

Example:

6-28

a-or- A

To append text to existing lines. To terminate the
insertion, use (ESC). If upper-case, first moves the
cursor to the end of the current line.

A comment is to be added to line 10.
Use the upper-case ‘A’ command to position the cursor
at the end of the line, and enter Insertion mode.

10 DIM AS$ (5% 5%).

Text can now be inserted. Space over and begin the
comment with an exclamation point.

10 DIM (10,50) ! dimension @ 5 by 5 arrav-

To terminate the insertion, press (ESC)

1-or-1

To insert text at the cursor, moving other text off to the
right. The upper-case operates the same as lower case,
but first moves cursor to beginning of current line.
Terminate the insertion with (ESC).

In typing line 40, the word ‘ASCII’ was inadvertently
left out. The remainder of the line is all right. Position
the cursor at the space between the parantheses and
type the single letter command i.

40 AS$ (I%» O%) = CHRS ((° *)) + 1%

Now type the word ASCII. The result will be:

40 AS (1% D%) = CHR$ (ASCII_(' ')) + 1%

Terminate the insertion by typing (ESC)



Text Substitution

Command:

Purpose:

Example:

Command:

Purpose:

Example;

Creating And Editing Programs
Text Substitution

[n]s

The substitute command. The number of characters
specified are substituted at the cursor.

The word ASCII is accidentally typed as EBCDIC.
With the cursor positioned at the A of ASCII, the
command 6s will substitute EBCDIC for whatever
characters follow until (ESC) is pressed. The cursor is
left at the position following the substitution.

40 AS$ (I%s 0O%) = CHRS (EBCDIC (* °*)) + I%

The result will read:
40 AS$ (I%,0%> = CHR$ (ASCII_C* *)) + I%

ric]

The replacement command allows whatever character
is at the cursor to be replaced by the specified
character. This command differs from the substitute
command in not entering the Insertion mode, except
for the single character replaced. There is no need to
press (ESC) to return to Command mode (you never
left it).

In line 10, the array to be dimensioned was given the
arguments (7%, 5%). To change the 7 to a 5, position
the cursor under the 7 and type the command r5.

10 DIM AS (7%, 5%)

The result will be:
10 DIM AS (5%, 7%)

6-29



Creating And Editing Programs
Case Conversion

Case Conversion

Command: [n]~™

Purpose: To change the case of a number of characters, either
upper- to lower-case, or vice versa.

Example: On line 40, ASCII was mistakenly typed ascii.
40 AS$ (I%s O%) = CHRS$ (ascii)) + IZ

Position the cursor at the first character, and give the
command 57 The cursor moves past the inverted text:

40 A$ (IZs 0%) = CHR$ (ASCII)) + I1IX

Text Deletion Commands

Small amounts of text can be deleted from the Insertion mode. The
Command mode expands the possibilities, and permits deletion of text
in varying amounts.

Deleting By Character Amounts

Command: [n] (DEL CHAR) -or- [n]x -or- [n] <CTRL) /D -or-
[n]s (ESC)

Purpose: Delete a specified number of characters (not spaces)
after the cursor.

Example: In line 20, everything following TRACE ON is to be

deleted. Position the cursor at the space following
TRACE ON, and give the command 7x.

20 TRACE ON_110y AS O

The new line will read:

20 TRACE ON..

6-30



Command:

Purpose:

Command:

Purpose:

Command:

Purpose:

Command:

Example:

\
I

Creating And Editing Programs
Text Deletion

[n] (DELETE) -or- n[X]

Same as[n]x, except deletes from the cursor backwards.

[n]d ("]

To delete all text from the cursor to the end of the nth
line prior to the cursor. If n= 1, this command uses the
cursor line.

[n]d[$]

Same as prior command, but deletes from the cursor
forward.

[n]s (ESC)

This command is a special side-effect of the substiution
command [n]s. It deletes the specified number of
characters forward from the cursor. A block marker [
is momentarily visible at the location to be deleted to,
until (ESC’ is pressed. If any keystrokes are made
before the (ESC) terminator, the characters will write
over whatever is currently at those positions. See also
the [n]s substitute command.

The cursor is on line 40. To delete the word ASCII and

the space and left paranthesis after it, use the command
7s (ESC)

40 AS$ (1%, O%) = CHRS (ASCII (§))> + IX%

The result will be:

40 A% (I%Zy OXZ) = CHRS (D) + IZ

6-31



Creating And Editing Programs

Text Deletion

Deleting By Line Amounts

Command:

Purpose:

Example:

Command:

Purpose:

Example:

[n]d] -or- [n]<CTRL) /U

Delete the current line, and forward the number of
lines specified.

The cursor is in the middle of line 10.
The command 3dl deletes lines 10, 20, and 30. An
epsilon symbol is left on the deleted lines:

€
€
€
40 A$ (I%s 0%) = CHRS (ASCII (° *))> + I%

50 GOSUB 110

[n]D -or- [n] <CTRL)/D

To delete forward from the cursor position to the end
of the nth line down.

As in the previous example, except that not all of line
10 is deleted. the Command 3D results in:

10 DIM AS$ (5%, 3%

€

€

40 AS (1%s 0%) = CHRS (ASCII (* ")) + I

50 &0SuUB 110

Deleting to a Marker

Command:

Purpose:

6-32

d'[x]

Delete from the cursor foward or backward to the
specified marker.



Creating And Editing Programs
Control Commands

Control Commands
Opening a New Line

Command:

Pufpose:

Example:

Command:

Purpose:

0
Opens a line below the cursor line, and switches to
Insertion mode. Notice that the cursor line is
momentarily erased, but returns when the screen
repaints on leaving the Insertion mode (ESC).

A line is to be added between lines 10 and 20. Position
the cursor anywhere on line 10, and press the letter o
key.

10 DIM A$ (5%y 54

20 TRACE ON 110y AS O

o

Same as the lower-case command, except the line is
opened above the cursor.

6-33



Creating And Editing Programs
Control Commands — Joining Lines

6-34

Joining

Open Lines

Command: J

Purpose:

Example:

Joins the cursor line to the line below.

Lines 40 and 50 are to be combined into one line.
Position the cursor anywhere on line 40, and give the
command (must be upper case; lower case j is
equivalent to the down arrow).

40 AS$ (1%s 0%9 = CHR$S (ASCII (' *)) + I%

50 GOSUBR 110

The result will be:

40 A$ (I%y O%) = CHR$ (ASCII (° *)) + I% S0 GOSUB 110
Complete the new line by using (DEL CHAR) to
remove the line number 50, then separate the two

statements by a backslash (\).

40 A% (I%4y 0%) .= CHR$ (ASCII)) + IX \ GOSUB 140

Command: (CTRL)/L -or- {CTRL)/R

Purpose:

These commands eliminate unused lines by repainting
the screen. Any epsilon characters that have been
generated during an editing session will be dropped.

Translating Upper and Lower Case
Command: (CTRL) /A

Purpose:

This command is a toggle that maps upper case to
lower case and vice versa. It is only active in the
Insertion mode, and can be helpful for editing
FORTRAN programs or others that must be all upper-
case. It allows one to enter lower-case commands (most
of the Edit program’s commands are lower-case) while
entering upper case text.



Creating And Editing Programs
Target Commands

Target Commands

Target commands have two parts, the command itself and a “target”
that specifies the extent of the command. The command determines
the action to be taken, such as deleting or yanking. The target specifies
the direction and number of characters that the action will be
performed on. Targets are the same cursor motions that were
presented earlier, “w” for word, for example. The user can delete a
word of text by the command “dw”. The “w” specifies that the deletion
will take place over a cursor motion of one word to the right.

By entering the command twice for the “d” and “¢” commands, the
action will take place on the entire line. For example, the command
“4dd” would delete four lines of text.

The table below explains the three Target commands:

Change text from cursor to  [n]c {target}

target (Enters Insertion mode:

terminate with (ESC)).

Delete from cursor to target. [n]d {target}

Yank from cursor to target. y[n] {target}

6-35



Creating And Editing Programs
Target Commands

The table below shows each of the Targets, and indicates the cursor
movement for each of them:

CURSOR MOVEMENT TARGET
Left margin of current line. A

Last character of current line. $

One space to the right. (SPACE)
To specified column. n]|

Forward to the nth occurrence of ¢.  f {c}

Forward to the character prior to F{c}
the nth occurrence of c.

Forward to the character after the t{c}
nth occurrence of c.

Back to the character after the T{cl
nth occurence of c.

Beginning of next word. w
Beginning of next string. w

End of next word. e

‘End of next string. E
Beginning of previous word. b
Beginning of previous string. B

To a marker. *[mark]

6-36



Creating And Editing Programs
Global Commands

Global Commands

Global commands are available from either the Insertion or the
Command mode. They perform these functions:

0 Read from files into the buffer.

O Write from the buffer into a file.

O Page through a file.

D Toggle the default mode.

Check amount of available memory space.

0 Display the software version.

o Exit to the the operating system.

All the Global commands must be preceded by a colon (;). From the

Insertion mode, they are preceded by (ESC): All Global commands
are terminated by (RETURN) or (ESC).

6-37



Creating And Editing Programs

Global Commands

Before using any of the Global commands, be sure you are familiar

with these terms:

\
|

|
il
I

T
.} N

ll l \"‘\

i

m

'I
!J

Y

Gl

[

6-38

| __— File: A complete package of

information, either data or a program,
recorded in a file-structured device.
The file may be shorter or longer than
the buffer, but is generally longer. If it
is longer, that portion that doesn’t fit is
retained on the disk.

Buffer: An area of memory that the file
is brought into for editing. Notice that
the buffer may not be large enough to
contain the entire file. This is
important, because some of the global
commands assist you in manipulating
portions of the file in and out of the
buffer.

Screen: The 15 lines of the buffer that
are displayed at any given time.



Creating And Editing Programs
Global Commands

Editing an Existing File

Command:

Purpose:

Example:

Command:

Purpose:

Example:

:e {filename.ext}

Reads the named file and opens a temporary file where
changes will be recorded. If there is no file by the name
specified, a message is displayed. This command is
equivalent to exiting the Edit program, and reentering
it from FDOS with the command EDIT {filename}.

Work has been finished on one file, and you wish to
save it and edit another. File the first one, but do not
exit the Edit program. To do this, use the Global
command :w to record the first file, then the :e
{filename} command to begin editing the next.

:e! {filename.ext}

Discards any changes to file being currently edited,
then begins editing the named file. This command is
equivalent to using the :q! command to exit the editor
without changing the file, and re-entering it from
FDOS with the EDIT {filename} command.

During editing, it is discovered that the wrong file is
being corrected. To exit without incorporating any
changes, but stay in the Edit program, re-file the first
program, and use the :e! {filename} command to bring
in the second.

Paging Through a File

Command:

Purpose:

‘P

Writes out the current contents of a buffer into the
output file, then loads the next page into the buffer,
displaying the first 15 lines. This command is
equivalent to :w followed by :r (see next page).

6-39



Creating And Editing Programs
Global Commands

6-40

Reading a File into the Buffer

Command:

Purpose:

Example:

Command:

Purpose:

Example:

Command:

Purpose:

Example:

:r {filename}

To read one file, and write it (or portions of it) out to
another file. The :r command is normally followed by a
:w command to facilitate merging files.

A subroutine has already been developed,
debugged,and incorporated into a file named
ACDC.BAS. It has been found to have application
within another program currently being developed.
While creating the new file (call it SYNCH.BAS, for
example), read in ACDC using the :r command, and
delete everything except the desired subroutine. Now
write the new file using the :w command.

:R_{filename}

Same as the lower-case :r command, except that :p will
work without creating a temporary file.

A program is being created, and it is thought that a
particular subroutine can be incorporated. Use the :R
command to bring the file to the buffer. This command
allows you to page through the file without modifying
it. :

r -or- :R

Read from the current input file, inserting text at the
current cursor position. These commands are the same
as the other :r commands, except that no filename is
specified, so the file currently being edited is used.

A program in development has been designed with
cascaded loops, or with many repetitive lines of code.
Write the module to a file, then use the :r command to
repetitiously read it back to the screen.



Creating And Editing Programs
Global Commands

Substituting Patterns of Text

Command:

Purpose:

Example:

Command:

Purpose:

:s/ {oldpat} / {newpat} /

Substitute one pattern for another. The patterns may
be words, strings, or expressions. The substitution
begins at the current cursor position, and continues to
the end of the buffer.

During program development, it became necessary to
renumber the starting line of a subroutine. AllGOSUB
statements must be changed to reflect the new line
number. If the old line number was 1040, and the new
line number is 1060, use the command:

:S/ {oldpat} / {newpat} /

Same as the lower case example, except that this
command operates on the entire file, not just the buffer
contents.

Writing From the Buffer Into a File

Command:

Purpose:

:w {filename}

Writes the contents of the buffer to the named file. If
the output file is the same as the the current input file, it
is not necessary to specify a filename. This is the
normal command to record a new or revised program
to a file, either prior to exiting or before reading (see :r)
a new file to the buffer for editing.

6-41



Creating And Editing Programs
Global Commands

6-42

Toggling the Default Mode

Command:

Purpose:

Example:

@

This command changes the default mode between
Insertion and Command modes. Use the Insertion
mode for most normal keyboard entries of programs,
and light editing, like deletions and small cursor
movements. Use the Command mode for large
movements, searches, replacements, marking text, and
other more complicated editing.

To switch to Insertion mode from Command mode:
:@ (RETURN) -or- :@ (ESC?

To switch to Command mode from Insertion mode:
(ESC>:@ (RETURN) -or- (ESC):@ (ESC)

Checking Memory Space

Command:

Purpose:

Example:

m

Displays the size of the text in the buffer, the amount of
text in the yank buffer, and the amount of memory
space still available. The information is displayed on
the top line of the screen, and is given in bytes.

During an editing session in which a long program has
been entered, it is desired to check the amount of
memory remaining before continuing. If the text size is
approaching the size of the memory remaining, it may
be necessary to either clear the yank buffer before
proceeding (see the Command mode command Y). The
other alternative is to write the current buffer to the
file, then continue (see the Global command :w).



Creating And Editing Programs
Global Commands

When the :m command is given, the top line of the
display shows:

Text size: 437y Yank size! Os Space remaining: 36392

This display would indicate that only 437 bytes of the
buffer are in use, the yank buffer is clear, and that
nearly 37 Kbytes of buffer space is still available.

Displaying the Software Version

Command: v

Purpose: To check the Edit program version. This is not used
during normal Editing, but can be checked if needed as
an aid to tracking down a problem that is suspected to
be due to software incompatibility.

Exit to the Operating System

Command: g

Purpose: Returns to the Operating System when an editing
session is complete.

Command: :q!

Purpose: Same as the normal quit command, except that no
changes are recorded to the file.

Example: During an editing session, some changes have been
made to the wrong program, and the revision would be
catastrophic if implemented, but would be a major
effort to correct. Use the :q! command to return to the
Operating System. Now the File Utility program can
be used to locate the correct program. If the filename of
the correct program is known, use the :e! {filename}
command. (See Editing an Existing Program, above.)

6-43



Creating And Editing Programs
The System Editor

Edit Program Messages

6-44

Because of the many commands and options that the Edit program
provides, it is likely that some error messages will occur during editing
sessions. The list below explains what each of the messages means, and
is a guide to corrective actions.

MESSAGE MEANING

Itlegal mark name A mark name was given that is not a
lower-case alphabetic character.

Mark not set A mark was specified that has not
yet been assigned.

Invalid target The command does not exist, or has
been entered incorrectly. Insure that
the command is constructed

properly.

T e R RN LI A bld  The substitution command was ill-
formed in some way. Can be caused
by an improper character or added
spaces in the command.

Invalid target A Target command has been given
for a target that does not exist.
Check that the target is available,
and that the command has been
constructed properly.

Yank buffer empty An attempt was made to put onto
the screen the contents of an already
empty yank buffer,

Can*t open new output An attempt was made to record the
 during ‘e’dit buffer to a file other than the input
file.



MESSAGE

No output fite

No previous pattern

File medium swapped

CONCLUSION

Creating And Editing Programs
The System Editor

MEANING

A new file is being created, but no
name was specified when the editing
session was started. To write out the
buffer to a file, you must specify a
filename using the :w or :q
commands.

A next pattern command ({ESC> N)
was attempted when no pattern was
first searched for.

The disk drive door was opened, and
the floppy disk removed during
editing.

This section has described how to use the System Editor program as a
tool for creating and modifying programs. While the descriptions are
accurate and complete, the best way to become familiar with the Edit
program is to actually use it. This section can be used as a guide while
you are trying out the various commands, and will be a useful reference

as you gain experience.

The next section shows how to use the various tools available to
automate the functions of the 1722A Instrument Controller.

6-45



Section 7
Automating System Functions

CONTENTS
Introduction ......coiiiiiiiiiiiiiiiiii it 7-2
Command Files .........oiiiiiiiiiiniiiiiiiinnnnns. 7-3
Special Characters ........coiiviiniinninnennnnnns 74
Sample Command Line ...................00vvnnnn. 7-5
The Startup Command File ........................ 7-6
Linking to Other Command Files ................... 7-7
Establishing the Environment-
The BASIC SET SHELL Statement .................. 7-8
Alias File ... i e i 7-9
Creating AlIases . ...vvivrivrnnrnrenerinnsensnnnnnss 7-9
Error Messages .....iviivirnnennrnnenennnnnnnnnens 7-11
Standard ALIases ......covvviiiiineiriiieierenenann. 7-11
Automating Utility Programs ......................... 7-15
The Time and Date Utility ..................c0vu... 7-15
Using the Time and Date Clock ..................... 7-15
Programming Language Commands ................. 7-16
Set Utility Program ........c.cciiiinnreneennnnnns 7-17
File Utility Program ...........ccovtiieennnnnnennn. 7-17
Sample Instrumentation System ...........c00vuinnnn.. 7-18
Controlling the Sample System ..................... 7-20
Step 1: Start With a Flowchart ................... 7-20
Step 2: Establish Bus Addresses ................... 7-24
Step 3: Program the Modules ..................... 7-24
Step 4: Concatenate .........ccvvvuvinnvneeneanns 7-27
Step 5: Debugging ......coviiiiieniinnininnennes 7-27
Step 6: Document the Program ................... 7-28
Sample Program Listing ........................... 7-29
The Startup Command File ........................ 7-32
ConClUSION 4 iiurirnitnitn e iineanetesenreneonneness 7-32



Automating System Functions

INTRODUCTION

The power of the 1722A Instrument Controller is a direct function of
its programmability. This section describes how to program the
Controller to perform its various functions automatically. The major
topics in this section are:

Command Files

The Startup Command File

Linking to Other Command Files

Establishing an Environment - the BASIC SET SHELL Statement
Alias Files

Automating Utility Programs

Sample Instrumentation System

7-2



Automating System Functions

COMMAND FILES

The Operating System recognizes the contents of any file with the
extension .CMD as a string of ASCII characters (keyboard
commands) to the Command Line Interpreter. This feature provides
an advantage to the user by allowing a series of keyboard entries, such
as those required by a utility program, to be stored as a file. When such
a file is active, it can control the utility program without requiring a
long string of keyboard entries each time it is used.

In the following example a command file has been written that presets
Port 1 to a state required by a printer connected there. The file is called
SETPRT.CMD and is created from FDOS using the edit command.
All of the Set Utility commands used in this example are defined in
Section 5, and the edit program is described in Section 6.

Any time the command file is active it can be aborted by {CTRL)/C,
or by pressing the front-panel ABORT switch. The message
“Command file aborted” is displayed, and control of the system
returns to the shell program.

7-3



Automating System Functions

Command Files

Special Characters

Certain characters take on a new meaning when they occur in a
command file. This section explains each of these characters, and then
gives the interpretation of one command line from the Startup
Command file provided on the System disk.

!

{}

7-4

Substituted by a line entered from the keyboard. Using an
exclamation point permits the creation of interactive
command files. When an exclamation point occurs in a
command file, later commands are not acted on until the
(RETURN) that terminates the input.

Causes the line immediately following to be displayed, untila
(RETURN), tilde, or exclamation point. An exclamation
point or tilde can be put on the displayed line to cancel the
display without a (RETURN). In this way, the Command file
can be made to wait for operator input before proceeding.

Any characters between braces is displayed. If the left brace
does not have a matching right brace, everything after the left
one will be displayed. These characters are used to display
portions of the Command file to allow easy debugging.

A metacharacter that is substituted by an argument passed to
the command file either from the keyboard or another
command file.

A metacharacter that is followed by a single digit (0-9), to be
substituted by a portion of the argument passed to the
command file either from the keyboard or another command
file. A portion is defined as a string of characters between the
space and end-of-line delimiters. $0 returns the name of the
command file (to invoke it repetitiously); $1 returns the first
portion of the argument, $2, the second, and so on. If no digit
follows the dollar sign, it is passed through unchanged.

The tilde clears any previous entry from the Touch-Sensitive
Display, and waits for the screen to be touched. Command files

cannot decode the location where the screen was touched.



Automating System Functions
Command Files

The backslash is the escape operator. Any character following
it is interpreted literally. &\ $5.00, for example, displays as
$5.00. There are two special cases of this character:

\e

converts to (ESC)

\b
converts to (BEL)

Sample Command Line

Assume this command line occured in a Command file:

&\e[8; 22H\¢[SmTOUCH\e[1m SCREEN TO CONTINUE\b\eLm“Thank You.
The meaning of this line is:

Print at cursor position 8,22 (line 8, position 22), the word “TOUCH”
blinking (escape 5Sm), and print “SCREEN TO CONTINUE” in high
intensity (escape 1m), sound a tone ( \ b), and wait for the screen to be
touched (~). When the screen is touched, print, “Thank You” on the
same line.



Automating System Functions
Command Files

The Startup Command File

The file named STRTUP.CMD runs automatically whenever the
system is powered up. Like all Command files, the Startup file can be
run by typing its name from the FDOS) prompt; the extension is
unneccesary. The special thing about the Startup Command file is that
the Operating System looks for this file whenever the Controller is
powered up or reset.

There are two major results of this feature. First, it allows the intial
setup and configuration of the 1722A to be preprogrammed; and
second, it permits the keyboard to be disconnected from the Controller
once the programs have been developed to the point that they run
properly without it.

NOTE

While developing the Startup Commandfile, do not
name it STRTUP.CM D until it has been tested as a
Command file with some other name. If there is a
problem, e.g., an unending loop is inadvertently
created, it is much easier to correct the error if it only
occurs when the file is intentionally run, rather than
every time the Controller is turned on.



Automating System Functions
Command Files

Linking to Other Command Files

Assume that a Startup Command file looks like this:

SET

KB1: BR600, PB E, TO 30
EXIT

TEST1.CMD

BASIC

RUN “RS232.SEL”

This Command file would begin by running the Set RS-232 Utility
program, establish the baud rate, parity bit, and time out parameters
for port KBI1:. Then it exits the Utility program and performs the
keyboard commands contained in TEST1.CMD, another Command
file. When TEST1 is complete (whatever it might be), control reverts to
the Startup Command file, which loads the BASIC Interpreter and
runs the program RS232.SEL.

Notice that the Command file can bring in another Command file. It is
possible, for example, for TEST1.CMD to call still another Command
file, say TEST2.CMD. Up to four of these branches are possible. If the
fourth Command file calls still a fifth, the first is lost, and any
subsequent commands that it contains will not be executed.

Assume that the program named RS232.SEL is a BASIC language
program that presents test selections to the operator. By using the
BASIC statement SET SHELL, a program can be designed that
returns to RS232.SEL when the ABORT button is pressed. Otherwise,
the system would return to FDOS, which provides no possibility for
operator input other than RESTART, ABORT, or both (a cold start).
None of these is of much value, since it means that the test must start
again from the beginning, loading the Operating System and the
Startup Command file.



Automating System Functions
Command Files

ESTABLISHING THE ENVIRONMENT -
THE BASIC SET SHELL STATEMENT

Part of the power of the 1722A Instrument Controller is the
opportunity it affords the programmer to completely structure a
programming environment. This capability is a result of the Fluke
Enhanced BASIC language statement SET SHELL.

The SET SHELL statement is covered in detail in the BASIC
Programming Manual, but deserves mention here because it is so
intimately connected with programming the Controller.

‘Assume the Startup Command file has these lines:

BASIC

SET SHELL“MFO0:BASIC”
RUN “PROG!”

RUN “PROG2?2”

On power up, this Command file loads the BASIC Interpreter
program, and sets the system to a BASIC Environment. Next, it loads
and runs a BASIC language program called PROG1. No matter what
happens during execution of PROGI, including a “fatal error”,
recovery can be made by pressing the ABORT button. The result is
that PROG2 would be immediately executed. Upon completion, or
when the ABORT button is again pressed, the SET SHELL statement
returns control to the BASIC Interpreter program. This is what is
meant by establishing the BASIC environment, and is in fact a
variation of what the Getting Started disk does.

The Immediate mode BASIC statement SET SHELL (with no
arguments) resets the shell to the Operating System. Notice, however,
that when the BASIC Interpreter program executes this statement, it
does not immediately return to the FDOS prompt, but to the BASIC
Ready prompt. Now, the EXIT command can be used to return to the
Operating System. When the shell is set to BASIC, any EXIT
commands merely exit the current program, and return you to the
BASIC shell, just like pressing RESTART.

Be careful not to use commands like “SET SHELL TIME”. Doing so
will set the environment to the Time and Date Utility program, which
will continually ask you the time of day, rather than doing anything
productive.



Automating System Functions
The Alias Files

ALIAS FILE

An alias, as the name implies, is a way to call something by a different
name. The purpose of an alias is to provide another programming
shortcut to help simplify the creation of programs for the 1722A.

During programming, you may want to shorten repeatedly used
commands (or command lines) by using an alias. Aliases are recorded
on the System disk in a file called ALIAS.SYS. The standard aliases
provided with the Controller can be seen easily by displaying this file.
You can use the System Editor program to add your own aliases or to
modify the standard ones.

Aliases provide another powerful feature of the Command Line
Interpreter. By observing which commands are being entered
repetitiously, a collection of shortened commnds can be created and
recorded in the file named ALIAS.SYS. The alias file is part of the
system software, and its contents become a part of the vocabulary of
the Command Line Interpreter during software loading. Since this is
true, aliases can be used within the Startup Command file, which does
not become active until after the software is loaded.

Aliases are operational whenever the FDOS) prompt is displayed.
They can only be used from the FDOS Command Line Interpreter.

Creating Aliases

By adding to the system alias file (ALIAS.SYS), you will be able to
abbreviate many commonly used commands into a single keystroke or
a short sequence of keystrokes. Be certain to observe the correct
syntax. Here is the required syntax for constructing an alias:




Automating System Functions
The Alias Files

The command may contain the following metacharacters:
0 Use the $ character to pass multiple arguments.
O Use the ? character to pass a single argument line.
According to the required syntax, the alias
cp fup $2=§1
translates into: FUP pathname2 = pathnamel (a useful copy alias).

When the alias is used, the syntax is:

O Ifthe alias takes arguments, then each argument must be separated
by a space.

According to this syntax, to use the copy alias in the previous example,
you would type:

cp FILE1 FILE2 (RETURN)
to copy the contents of FILEI to FILE2.
o The alphabetic case of an alias is significant, allowing you to use,
for example, D to delete files without using the individual switch,

and d to delete them but asking for confirmation first.

O Ifthe? or $ characters are used to pass arguments, they can accept
any character as the argument. ‘

7-10



Automating System Functions
The Alias Files

Error Messages

During software loading, error messages indicate if the alias file is too
long, or if an 1/O error occurs during the time that the alias table is
being built. In either case, the table is valid up to the point of the error.
The error messages are:

?7Alias #ile too long
7Unable to read alias file

Standard Aliases
If the file ALIAS.SYS is displayed, it will look like this:

£ fup 7

dir fup 7/1

qdir fup 7/

edir fup 7/e

protect fup 72/+

unprotect fup ?2/-
ack fup 7/p
i1l fup ?7/di

list fup KBO:?

assign fup 7/a

copy fup s2=¢1

? fup alias.sys

b basic

[} edit 7

[ set

t time

Each short express}ons on the left can be used instead of the longer
expression on the right. These standard aliases shorten often-used File

Utility program commands into brief, easily remembered keystroke
sequences.

7-11



Automating System Functions
The Alias File

Each of the aliases supplied on the System disk are explained here. The
form of the alias indicates how it is used, and the equivalent shows the
keystrokes that would normally have to be entered instead of the alias.

f Form: f {command} Equivalent: FUP
{command}
/X

The first alias, f, uses the ? metacharacter as an argument to the
command fup, so that the effect of the alias is to enter the File Utility
program, perform the FUP command indicated, and return to FDOS.
If there is no argument, the metacharacter acts asa (RETURN), and
the effect is simply to enter the File Utility program.

dir Form: dir {pathname} Equivalent: FUP
{pathname}/L
/X

Enters the File Utility program and lists the contents of a device that is
indicated by the ? metacharacter.

qdir Form: qdir {pathname} Equivalent: FUP
{pathname} /Q
/X

The most frequently used directory listing command, this alias is the
same as dir, except does the Quick Listing of the named device. Use the
* wildcard in the filename field to list only the files with the desired
extension, or in the extension field to find all the files with a given
filename. Note that wildcards are not allowed in the device field.

edir Form: edir {device} Equivalent: FUP
{device} /E
/X

Yields the Extended Directory listing of the named device.

pack Form: pack {device} Equivalent: FUP
{device} /P
/X

Packs the named device to remove {not used) and {temp ent) entries
to make more room in the directory.



Automating System Functions
The Alias File

protect Form: protect {pathname} Equivalent: FUP
{pathname} /+
/X

Protects the named files. Use wild cards and the defaults to extend the
capabilities of this alias.

unprotect Form: unprotect {pathname} Equivalent:

FUP
{pathname}/-
Removes the protection of the named files.
kil Form: kill {pathname} Equivalent: FUP
{pathname} / DI
/X

Enters the File Utility program, and uses the ? metacharacter to delete
the named file. Notice that the Individual switch is used to be certain
that confirmation is requested for each file to be deleted. In aliases of
this sort, it is important to make use of the Individual switch, because
otherwise, kill *.* would delete all unprotected files without the “really
delete...?” message.

list Form: list {filename} Equivalent: FUP
KB0:={filename}
/X

Enters File Utility, and uses the ? metacharacter to display a named
file.

assign Form: assign {device}  Equivalent: FUP
{device} /a

Enters File Utility, and assigns as SYQ: (the System device) the device
that matches the ? metacharacter.

7-13



Automating System Functions
The Alias Files

7-14

copy Form: cp {source} {destination} Equivalent: FUP
{filel1=file2}
/X

This copy alias accepts two arguments: $2 is the source device:file.ext,
and $1 is the destination. To use this alias to copy a file called
TEST.BAS from MFO: to EDO:, the construct would be:

COPY MFO:TEST.BAS EDO0: (RETURN)
Notice that this alias contains an ingenious method of getting around
the normal system requirement of first specifying the destination and
then the source. The technique used in this alias will probably interest

you if you have experience in systems that require specifying the source
before the destination.

? Form: ? Equivalent: FUP
ALIAS.SYS
/X

This alias displays the file which holds its own definition.

b BASIC

This alias saves keystrokes, and simply loads the BASIC Interpreter
program.

e EDIT ?

Loads the System Editor program, and displays the first lines of the
specified file.

8 SET

This alias provides a single-keystroke access to the SET Utility
program.

t TIME

This alias provides a single-keystroke access to the Time and Date
Utiltiy program.



Automating System Functions
Time Stamping

AUTOMATING UTILITY PROGRAMS
The Time and Date Utility

When a new 1722A arrives, one of the first things that is normally done
is to use the Time and Date Utility program to set the internal clock.
This clock can later be used by programs to perform an activity at a
specified time, or to report the time when a condition was met or when
a piece of data was gathered.

The Time and Date Utility is a machine-language program supplied on
the System Disk with the file name TIME.FD2. When TIME.FD2 is
loaded into memory, it requests the user to set the time and date of the
internal time clock. (See section 3, Software Configuration, for details
about how to set the time and date.) When called from an active
command file, the Time and Date Utility program does not request
input unless status shows that the clock has lost power since the last
time it was set.

Using the Time and Date Clock

The command language of the Controller permits Command files to
use the Time and Date Utility program. The TIME command can be
modified by the arguments -p and -f.

TIME -p  Prints the current setting of the clock.

TIME -f  Forces the clock to display the current settings and wait
for input, just as if the clock had not been previously set.

To automatically date and time stamp a piece of information or a
program, a Command file can use either command shown above.
However, if the -f argument is used, be sure that the keyboard is
connected to accept operator input.

Notice that these arguments are the only place in the Controller’s
Utility programs where lower-case letters are required, rather than
optional. -



Automating System Functions
Time Stamping

Programming Language Commands

Each programming language available for use with the Controller
provides commands that can be used to read out the time and date. The
table below is a synopsis of these commands. For more information,
refer to the individual programming manuals.

BASIC
TIMES Returns the actual time of day.

STIMES$ Same as TIMES, but includes seconds.

TIME Indicates in scientific notation the number of milliseconds
since the previous midnight.

DATES Returns the actual date.

FORTRAN

TIME Returns the number of milliseconds since the previous
midnight as a long integer (INTEGER *4).

DATE Returns the date as an integer in a 16-bit format.

ATIME The current time as an ASCII string in 24 hour format
(hh:mm:ss).

ADATE Current date as a 10-byte ASCII string (dd-Mmm;yy).

ITIME Returns the current time as an array of three integers in 24
hour format. (hh:mm:ss).

IDATE  Returns the current date as an array of three integers
(dd mm yy).

-

7-16



Automating System Functions
Automating Utilities

Set Utility Program

There are no programming language commands to access the Set
Utility program. Therefore, if it is necessary to change any of the port
parameters for a given connection, use a Command file. The BASIC
language statement SET SHELL will return to the program after
executing the Utility program commands. This can usually be
accomplished as part of the Startup Command file, but some
installations may require changing parameters in mid-program. An
example of this case would be a program that communicates by way of
a modem and data switch arrangement to two different front-end
processors.

File Utility Program

Like the Set Utility program, there are no commands in the
programming languages for the File Utility program. And also
similarly, Command files can be used, as can the BASIC language SET
SHELL statement. If it is necessary to work with the File Utility
program from within an active program, be sure to provide a return to
the shell you wish to work in. Otherwise, the only way out of the
program is to press RESTART.

7-17



Automating System Functions
Programming the Controller

SAMPLE INSTRUMENTATION SYSTEM

7-18

v FREQUENCY | =

In this section, the sample instrumentation system first introduced in
sections 2 and § is used once again. In section 2, the sample system was
used to introduce how a system would be physically configured and
tested. Section 5 used it to demonstrate programming techniques using
both RS-232 and IEEE-488 communications. In this section, the
sample system is used to demonstrate how a complete program for an
instrumentation system would be developed.

iy

(0" se)

INSTRUMENT CONTROLLER

SYNTHESIZER

SERIAL PRINTER

UNIT UNDER TEST

RS-232 Port: IEEE-488 Instrumentation Bus:
1776B Serial Impact Printer 1722A Instrument Controller

6071A Frequency Synthesizer
1953B Frequency Counter



Automating System Functions
Programming the Controller

The Unit Under Test is the undefined subject instrument. It doesn’t
matter what the UUT is; by its connection we can assume that it will
respond to a varying input frequency by varying its output frequency.
The Frequency Synthesizer is going to send a signal at some frequency,
and the Frequency Counter will read the result, sending it back to the
Controller.

One other instrument is connected in the sample system: the 1776B
Serial Impact printer. In this example, the printer will be used to give a
hardcopy of the test results. The printer, of course, is not necessary for
system operation, but is included to fill out the example program we
will be developing.

7-19



Automating System Functions
First, a Flowchart

Controlling The Sample System

Step 1: Start With a Flowchart

7-20

Developing a flowchart is a necessary part of developing software;
unfortunately, it is often not done because it sounds like an easy task to
string together a few lines of code and get some kind of meaningful
result. However, there are several good reasons to write a flowchart
before writing a program:

o First, with a flowchart to guide your efforts, you will write more
efficient programs, and be less likely to get sidetracked.

O Second, program debugging can be greatly simplified if a flowchart
is available that shows what the program is supposed to do.

O Third, the flowchart provides a valuable piece of documentation if
you want to modify or use parts of the program later.

O Fourth, the flowchart will help others understand and/or modify
your program.

The flowchart is a graphical representation of how the program will
proceed. It translates an algorithm into a visual aid, so that the
interactions among the various parts of the program can easily be seen.
It also provides a valuable first step in the programming task, because
it breaks the job down into manageable modules, each of which can be
written in order, and then linked together.



Automating System Functions
First, a Flowchart

The flowchart for the sample instrumentation system might look
something like this:

on. v’ m| L

7-21



Automating System Functions

7-22

First a Flowchart

As program development progresses, update the flowchart to
incorporate new ideas and program capabilitites. While the example
program was being written, four flowcharts were drawn, each one
showing slightly more refinement and detail.

When the program was complete, a final flowchart was drawn to show
how the actual program worked. The first flowchart can be thought of
simply as a guide for program writing, and the final flowchart as a
document that shows how the program operates.

The final flowchart for the sample is shown on the next page.



Automating System Functions
First, a Flowchart

| i |

ON ERROR

Command File

BASIC
RUN"FRQNCY.TST"

Set Up Module
a Error Vector
O Dimension Array A$

HANDLER

O Clear Bus
O Close Channels
O Clear Screen

o Continue
o Exit

CONTINUE

RANGE 1

o Escape Sequences
o Link to Grafix

a Clear Screen

a Box Subroutine

v

First Screen
Identifies
Program

Frequency
Synthesizer Module'

J §

o Clear bus
0 Select Range

RANGE 2

y

Frequency Counter
Module

O Take 10 Readings

a0 Send to Array

Transfer Module
o FILE

Filing Module
O File a$
MF@:FRQNCY.DAT!
O Return to
Transfer Module

Printer Module

O Print at KB1:
a Return to
Transfer Module

0 PRINT
0 CONTINUE

Exit Module
s Clear Bus
O Close Channels
0 Clear Screen

o
\ o

/_4 '
END

CONTINUE

7-23



Automating System Functions
First a Flowchart,
Then Begin Programming

Step 2: Establish Bus Addresses

The next step in developing a program for this system will be to
establish the addresses of all the IEEE-488 instruments. All Fluke
instruments are set by rear-panel switches, and usually conform to an
easily-remembered scheme. In both the Synthesizer and Counter of
this example, the address switches are binary-weighted; the manual
provided with the instrument gives complete details on how to set its
address.

In the sample system, bus addresses are set up as follows:

01 Frequency Synthesizer
02 Frequency Counter

Step 3: Program the Modules

7-24

Programming even this simple system can be too complex without
proper planning. Be judicious; program by parts, then link the parts
together. In this example, follow the flowchart to program the various
modules.

Setup Module

The Setup Module starts the program by establishing variables and
strings that will be used later. This module is sometimes thought of as
“housekeeping”. Here are some of the things that such a module can be
used for:

O Establish the location of the error handler routine.
O Assign the name of the array that will hold the test data.

O Assign escape sequences as variables to saving typing later in the
program.

o Link to an object file, so that there is no need to access the disk later
when the file is used.

o Define subroutines that will be used throughout the program. This
program will use such a subroutine to draw the operator selection
boxes using the graphics plane.



Automating System Functions
First a Flowchart,
Then Begin Programming

First Screen

For most programs, it is a good practice to incorporate an
introductory screen to identify the program to the operator, and to ask
for the screen to be touched when the test setup is ready. This insures
that the correct disk is loaded, and gives the operator confidence that
everything is under control.

Frequency Synthesizer Module

This module is the first selection screen, and will do these things:

O Present the range selections available.

O Provide an exit selection in case the operator notices that the
wrong program has been loaded, or for some other reason wants to
quit testing when this screen is displayed.

O Accept the selection, and use it to: 1) Address the Synthesizer as a
listener, 2) put it into remote mode so it can be set by command
rather than its front panel switches, and 3) program the desired
output frequency.

O Ask the operator to wait while the synthesizer is being
programmed.

Frequency Counter Module

When the synthesizer has been programmed, the counter will be told to
begin reading the frequency output by the UUT, and report the
resulting measurement data back to the Controller. This portion of the
program will:

O Indicate that the test is in progress.

O Address the Counter as a talker.

O Put the Counter into remote mode so it will be set by Controller
commands rather than by its front panel switches.

o Trigger the readings.

O Collect the resultant data.

7-25



Automating System Functions
Program by Modules

7-26

Transfer Module

The Transfer Module is included so the operator can select where to
transfer the measurement data. It can be filed and/or printed, or
discarded by continuing the test or exiting. This module will:

0 Display the test results.

0 Display selections for the Operator and accept the selection to
branch to the File or Print modules, to continue the program at the
Frequency Synthesizer Module, or to exit with no further testing.

Filing Module

If the operator elects to file the data, a channel is opened to the floppy
disk, and the data is recorded there. When filing is complete, the
program returns to the Transfer Module. Notice that in this sample
system, the data can only be filed once. In a real application, a virtual
array would probably be used in order to increase the amount of test
data that could be filed.

Printer Moduie

If the operator wishes to print the data, the program branches to the
Printer Module, and returns to the Transfer Module. In a real
application, this module would probably send an entire data file to the
printer, rather than just the array that contains the single set of test
data.

Error Handler

This module insures that if an error occurs while the program is
running, the program itself can handle it, rather than halting. It
displays a message to the operator that an error has occurred, some
information about the error, and requests a decision whether to
continue or exit. If Continue is selected, the program returns to the
Frequency Synthesizer Module. If Exit is selected, it goes immediately
to the exit module.

Exit Module

The Exit Module can be as short as one line: END. In this program,
however, two lines are used that include six separate commands, five of
which are “housekeeping”. The housekeeping commands clear the bus,
close all channels, and erase the display.



Automating System Functions
Program by Modules
Then Concatenate

Step 4: Concatenate

Now that each portion of the program has been written and found to
operate properly, they are linked together, or concatenated. During
the writing phase, the line numbers in each of the modules were given
the same first digit, and they were assigned in the range that the
eventual program would use them. For example, the Setup Module
was assigned numbers in the 100 to 199 range; the frequency counter
module 200 to 399, and so on.

Each module was recorded to a filename that recalled its place in the
order of things: Setup module to NEW1.BAS, First Screen module to
NEW2.BAS, Frequency Synthesizer module to NEW3.BAS, and so
forth. It is a simple matter to use the File Utility program to merge the
modules. Then, when the program is loaded using the BASIC
Interpreter program, the line numbers can be renumbered using the
REN statement.

Step 5: Debugging

Many programmers write all the code, then start debugging. While this
approach may seem to be more efficient, in the long run it only leads to
trouble. Fix the little problems as they arise so they are less likely to
have larger effects later on.

For example, the program might seem to work, but have you tried
asking the Synthesizer to output it’s maximum frequency? Minimum?
Before a program for this system is really up and running, we have to be
sure that it will accept any parameters. Perhaps the operator can be
instructed not to choose the highest range of the Synthesizer, because
the program still needs a little work. It is probably a better idea,
though, to eliminate those selections if that part of the program is still
being tested.

7-27



Automating System Functions
Debug the Program
and Document Your Work

Step 6:

7-28

Unfortunately, debugging is something of an arcane art. The
techniques used are not easily taught or learned, so most programmers
develop techniques of their own through experience. The BASIC
Programming Manual includes a section on debugging, and discusses
many proven techniques.

One technique is to “comment out” the program lines that cannot be
used until the actual system is set up. All that is involved is to put an
exclamation point immediately after the line number that you don’t
want as part of the program. During the development of the Frequency
Test program, for example, all the lines containing IEEE-488
commands were commented out because they would cause errors until
the IEEE instruments were connected. This technique leaves the
program relatively intact, and it is a simple matter to re-include any
dropped lines later.

Another technique is to insert GOTO statements to route program
execution around known areas. This could be used, for example, to not
include the First Screen module to save time. Another frequently used
technique is to put a RETURN statement at the first line of an
unfinished subroutine.

Document the Program

Be sure to adequately document your work. This is one of the last steps,
but one which you can work on as the program evolves. No program
should be undocumented. This means you! Someday, you will no
longer be with the Bitty Widget Corporation, but will have moved on
to the Mighty Widget Programming Consortium. What happens to
program maintenance when the Author leaves, but his programs don’t
give a hint as to how they work? As technology advances, all your
efforts will be thrown out if someone else is not able to look at the code
and see what you had in mind.

Not every line needs a comment, but leave some clues at least. Every
programmer, at some time, has needed to re-invent a routine simply
because it was more work to figure out what his predecessor had done
than it was to start from scratch.



10

20

30

40

S0

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
3so
390
400
410
420
430
440
450
460
470
480
490
300
510
520
330
540
330
560
570
5680
390

<wou
<dat
<ide

This
4070
Note

The
Then
to ¢

All

Err

- e e 1 W S s T T L S ST e A W T % te b e

ON ERR
DIM A<
BPS =

ESS =

PRINT

LINK
GRPOFF
GOTO 4
1)

! Se
! pr
4

MOVE (
MOVE «(
PLOTR
PLOTR
PLOTR
PLOTR
GRPON
RETURN
]

!
!
PRINT
PRINT
PRINT
KRX =
!
!
!
PRINT
XBZ =
XGX =
XGX =
PRINT
PRINT

Automating System Functions
Sample Program Listing

L ] FREQUENCY TEST PROGRAMN [ K 2

r nase>
e writtend>
ntification> C[test disk?: filename francu.tstl

rrosraem rerforus & freauency test in two ranses for the
/1A freauency suynthesizer and a 19353A freauency counter.
'Y

The 1953 Counter sust have ortion C installed for Ranse 2.
Rande 1 is 20 MHz cutrut, ranve 2 is 200 MHz.

The synthesizer is IEEE-488 sddress 01, the counter is 02.

rrosrase taskes ten meassurements and stores them in an arras.
the rasults are diserlaved, and tha orerator decides whather
ile or print the array, continue testing. or exit.

orerator selections sre made bu touchins the screen.

~ Setur fModule -

or vector, array for data. escare saquences, link to "grarh"
OR GOTO 1510

112) m3in memorv arrasw to rcv datas
CHR$(?) beep

CHR$(27) + “C29"
ES$;CHRS$(27)+"L781";

erase screen
clear the scraen, disable cursaor

GRAPH.OBJ" link to srasrhics obiect file

\ ERAGRP (0X) grarhics rlane off, then erase
70 display first screen

lection Box Subroutine

aws @ box around TS0 keus

XGZ,YGX) ! current position is defined
XGZ,YGX) ! current rosition is defined
(802, 0X, 1X) ! erior to the sosub comaands
(0%, -S0%Z, 1X)

(-80%, 0X, 1X) ! box is 80 x 50 rixels

(0Z, 50X, 1%)

- First Screen -

BP$3 ES$; CPOS (6,34)3"FREQUENCY TEST";

CPOS (8,20)1"Check all connections, and srrly rower to tha"j;
CPOS (9,20)i"test Instruments. Touch the screen when readu.";
KEY \ WAIT FOR KEY \ KRX = KEY ! resat tso \ wait \ get kay

- Fresuency Sunthesizer fModule -

ES$3 \ GRPOFF \ ERAGRP (02)

340X \ YGX = 130X \ GOSUB 340

3602 \ YGX = 100X \ GOsuB 3460 ! draw three boxss
360% \ YGXZ = 30X \ GOSUB 340

CP08(2,20)3"PLEASE SELECT FREQUENCY SYNTHESIZER RANGE™}

CPOS (7,23)% "RANGE 13 20 MHz":

7-29



Automating System Functions
Sample Program Listing

600 PRINT CPOS (11,25)3"RANGE 23 200 MHz"“3
610 PRINT CPOS (13,37): “EXIT™:

620 KRX = KEY \ WAIT FOR KEY \ KRX = KEY ! sat resronse

630 IF KRX = 17X OR KRXZ = 27X THEN 480 ! rande 1 selected
640 IF KRX = 37X OR KRXZ = 47X THEN 710 ! ranse 2 selected
650 IF KRX = 56X OR KRX = 57X OR KRX = 58X THEN 1470 ! exit
660 PRINT BP$} ESS ! invalid - rerest
670 MAIT 646 \ PRINT BP$3 \ BOTO 550

680 RX = 1§ ! rande 1 prodras data?
690 PD$ = “FR20OMZ.APLV* ' 20 MHz @ 1.0 v

700 GOYO 710

7210 RX = 2 ! rende 2 rrosram dats?
720 PD$ = "FR200MZ.AP1V* ' 200 MHz @ 1.0 v

730 !

740 ! Selection sade, 50 rrosras instrusents

750 !

760 GRPOFF \ ERAGRP (0X%)
770 PRINT ES$3 CPOS (4,32)3 “ - PLEASE WALIT - ";
780 PRINT CPOS (6,23)1"Prosranming Svnthesizer for Ranse “iRX

790 INIT PORT © ' initialize the bus

800 CLEAR @1 ! clesr sunthesizer

810 REMOTE ¢ 1 @ 2 't both to remote

820 PRINT @i, PDS$ ! send prosram dats

830 MAIT 466

840 !

850 ! ~ Freauency Counter Module -

860 !

870 PRINT CPOS (6,15)3" Mezsurenent In Prosress bt |

880 CLEAR @2
890 FOR IX = 1 70 10

f00 PRINT @2, "FOR2A0SOMiHIT" ! chnnl A, 10ms, 8Cc courle, one samrle
fi1ac ! ! ser. ocutrut, SRQ@:, trigger

920 PRINT CP0S(16,40)31%; ! disrlays which count is beins done
930 WAIT 500 ! takes 8 reading everw half second
940 INPUT @2, ACIY) ! puts the messurements into srraw
950 NEXT IX

?60 !

970 ! ~ Transfer flodule -

980 !

990 ERAGRP (0X) \ GRPOFF

1000 PRINT BP$: ES¢: CPOS (2,1)3"TEST RESULTS:"3 ! forust for disrlaus

1010 PRINT CPOS (4.0) ! 2 rows: 5 columns

1020 PRINT USING “HN.HHNNAAAAY, A(1,.5), ! srraw elements 1-5
'

1030 PRINT USING “K#.#uNNAAAA", A(6..10), arrasy elements 6-10
1040 ¢
1050 X6z 76X \ YGX 90X \ GOSuB 360

= =
1060 XGX = 225X \ YGX = 90X \ GOSUB 340
1070 XB6X = 376X \ YBX = 90X \ GOSUB 360 ! draw the boxes
1080 XB6X = 330X \ YBX = 90X \ GOSUB 3460
1090 PRINY CPOS (12,14)3 “FILE"3ICPOS(12,32)"PRINT"ICP0S(12,49);"CONTINUE"
1100 PRINY CPOS (12,7003 “EXIT"
1110 PRINT CPOS (16,33)} “Plesse Touch Selection”}
1120 KRX = KEY \ WAIT FOR KEY \ KRX = KEY
1130 IF KRX = 41X OR KRX = 42X THEN 1210 ! file A in "FRONCY.DAT™
1140 IF KRX = 44X OR KRX = 45X THEN 1320 ! print the arrayv
1150 IF KRX = 47X OR KRX = 48X THEN 540 ! back to test
1160 IF KRX = 49X OR KRX = S0XZ THEN 1460 ! eaxit
1170 PRINT ES$: BP$} \ WAIT 666 \ GOTO 1000 ! invalid - rerest
1180 !

7-30



1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
13500
1510
13520
1530
1340
1550
1560
1570
1380
1590
1600
1610
1620
1630
1640
1650

Automating System Functions
Sample Program Listing

H - Flling Module -

1

PRINT ES$; CPO8 (4,30)1"“0One moment, filins";

WAIT 2000

CLOSE 1§

OPEN "MFOIFRAQNCY.DAT™ AS NEW FILE 1 ! filensme “francy.dst”
PRINT M1, USING “HWH.RHRHAAAAY, A(1,.10) ! store array elements 1-10
PRINT ES$3 CPOS (4,20)3 “Dats has been filed - returning to menu"s3

1]

QGIT 750 \ GOTO 990 ! return to transfer module
]

!
L]

- Printer Module _

GRPOFF

PRINT ESS$, CPO8 (4,30); “One moment, rrintins”;

1]

CLOSE 1§ H - - - notet - - - 1
OPEN 'KB13’ AS NEW FILE 1 ! ba sure to check rort raraseters !
PRINT #1, CHR$(12X) ! before msking this selection. H

PRINT #1. “TEST RESULTS"™

PRINT #1, USING "H#.HNH#NAAAA", A(1,.10)

PRINT ES$; CP0S(4,20); “Data has been printed - returning to msenu“s;
CLOSE 1

WALIT 750 \ GOTO 990

[)

H - Exit Module -

[}

CLEAR @1 \ CLOSE ALL

PRINT ES$: CHR$(27)+"[?8h" \ GRPOFF \ ERAGRP (0X) \ END
)

!
!
GRPOFF \ ERAGRP (0X) \ PRINT ESS

XGX = 300X \ YGX = 1302 \ GOSUB 340 ! draw the boxes
XGX = 300X \ YGX = 40X \ GOSUB 360

PRINT CPOS (3,3)} “Suystems Error -"j

PRINT CPOS (4.5)} “Check instruments and connections";

PRINT CPOS (35,.5); “bafore continuinse.";

PRINT BP$: CPOS (10,40)3 "CONTINUE":

PRINT CPOS (13,42)3 “EXIT"3

KRX = KEY \ WAIT FOR KEY \ KRX = KEY

IF KRX = 26X OR KRX = 34X THEN 1610 ELSE 14620 t continue
GRPOFF \ ERAGRP (DX). \ PRINT ES¢ \ RESUME 990

IF KRX = 46X OR KRX = 354X THEN RESURE 1470 4 axit

1

- Error Handler Module -

éRINT EE$3 BPS: \ WAIT 666 \ GOTO 1550 t invalid -~ reresat
]

7-31



Automating System Functions
A Stand-alone System

The Startup Command File

One final thing is needed to make the resulting program truly stand-
alone: the Startup Command file that will make all the rest happen
from power up. In this sample programming session, the Command
file will be the last thing written. It is a relatively minor portion of the
entire task; but without it, it would be necessary to leave the keyboard
attached to get the program operating. With it, the keyboard can be
detached entirely, and the program will run on its own whenever the
disk is loaded and power applied.

To complete the automation of this program, the Startup command
file must do two things:

O Load the BASIC Interpreter program.
O Run the Frequency Test program, FRQTST.BAS
Here is what the file STRTUP.CMD should look like:

BASIC
RUN “FRQTST”

CONCLUSION

7-32

This section has given guidelines on Automating the 1722 A Instrument
Controller. It has used a sample instrumentation system to show how
to write and develop programs that will be useful for a system of this
sort. Larger systems are of course possible; in fact up to 15 instruments
can be connected onto the same IEEE-488 bus. If another Controller is
one of them, 15 more are possible, and so on. No matter how big the
final system is to be, the guidelines given here should make the
programming task much easier.

Start with a flowchart. It will be a valuable guide once you’re down
inside all those GOSUBs and FOR-NEXTs. Program in small
amounts, then concatenate. Test each module; test each parameter;
test each selection. Make sure the program works as you designed it to
do. Finally, document your efforts. If you stay with the same company,
your task will be much easier if you don’t have to relearn the program
before you can update it. If you leave the company, your successor will
have a lot less trouble figuring out how the program was supposed to
operate.



Section 8

Display

CONTENTS
INtroduction .....oviiiiiieiiiinennrnrnnreiieeiinnans 8-2
The Character Plane ..........ccciiiiiiiiiennnnnnnnns 8-3
Character Sets ......vviiiiinirinerrnerennrennennns 8-3
Custom Character Sets ......ooiviiviinrinneennnenss 8-3
Character Graphics .......cvovvvreniiinnnrnnnennnens 84
Programming a Character Graphics Display .......... 8-6
Program to Display Graphics Characters ........... 8-6
Program to Display One Touch-Sense Keypad ...... 8-7
Introduction To ANSI Standards ..........cevvvenvnnn. 8-8
Special Display Control Characters .................. 8-9
Escape Sequences ......cvevieeneereenennnnornnenns 8-10
Numerically Defined Control Sequences ........... 8-11
Selective Parameters ........ccveiiieriennnenennn. 8-14
Field Attributes ........ccvvieiiinneerrnnnnnennnn 8-15
Character Attributes ........ccoovvivnnnnneennnn.. 8-15
Non-Destructive Display Character ................ 8-17
The Graphics Plane .........cciviiiiiiiiinnnnnnnnnn. 8-18
Introduction to Graphics Routines .................. 8-18
Addressing the Pixel Locations ..................... 8-21
Graphics ROULINES ....vviiiieirnnrenneenneeaneenns 8-21
Summary of Commands ...............cciiiiunnn.. 8-22
ConcluSIon ...viitiiiiiiiiii i ieriaiiriaanaaeas 8-33



INTRODUCTION

The 1722A Instrument Controller features a display that can provide a
great deal of visual information to the operator. Dot-addressable
graphics, coupled with the state-of-the-art Touch Sensitive Display,
makes it possible to design displays that are meaningful and
interesting, and that provide a high degree of interaction between the
operator and the Controller.

The 1722A supports all of the features incorporated in the 1720A, but
expands the display capabilities by using more of the ANSI Standard
controls, and by incorporating a set of graphics routines contained in
the Object file “GRAPH.OBJ” on the System disk.

The 1722A includes 256 displayable characters in two character sets.
The 128 characters in the standard set are the full ASCII set, and the
alternate character set can be customized for characters in languages
other than English, or for custom applications such as logos or other
special symbols.



The Display
The Character Plane

THE CHARACTER PLANE

Display information is stored in two separate sections of memory, the
character plane and the graphics plane. Each display memory is
independent; that is, they can be enabled or disabled separately. When
both are enabled, displayed characters can be made either opaque or
transparent to the graphics portion of the display.

A pad of 50 Programming Worksheets is provided with the Controller.
The grids printed on the sheets are helpful in the design of displays that
use the Touch-Sensitive Display. Columns and rows are indicated for
both normal- and double-size characters, and each of the 60 touch-
sense key locations is clearly marked.

Character Sets

The character set EPROM contains two character sets. The primary
character set is ASCII, with some Greek characters and commonly
used symbols. The table in appendix F shows the display responses for
the primary character set.

Custom Character Sets

Depending on the revision level of the Video-Graphics-Keyboard
module, the alternate character set may be a duplicate of the primary
set, or may be a selection of non-English characters and additional
symbols.

The character EPROM is a readily available 2732 type, which can be
programmed with very little effort to display any character set desired.
Appendix E of this manual explains how to design a custom character
set, and includes a short BASIC program that displays all the
characters in both character sets. When the program is run, the
primary set is displayed in double size characters. When you touch the
screen, the alternate set is displayed. The program toggles between
displaying first one set then the other, to allow you to compare them.

8-3



The Display
The Character Plane

Character Graphics

Besides individual characters, straight horizontal and vertical lines can
also be included in displays on the character plane. An example of this
usage is the program “MASTER.BAS” on the Getting Started disk.
This program uses only the character plane. The graphics plane could
easily display this grid, but is only needed for displays where diagonal
lines or motion simulation are used, as in the program called “WOW”
on the Getting Started Disk. In fact, the program titled “TOUCH” on
the Getting Started Disk displays all 60 touch sense locations using the
Graphics plane. The Graphics plane is discussed in more detail later in
the section.

The table on the next page shows the graphics characters that are
contained in the character set EPROM. With character graphics
enabled, the characters 0 through 9 and the colon (:) result in the
display of these symbols.



1722A DISPLAY RESPONSE

The Display
The Character Plane

CHARACTER NORMAL SIZE

DOUBLE SIZE

FUNCTION

0 0

)]
B B 0 B B 2 O 2 8 O3

EHE=L I BES I 40 SE=JET

Top Right Corner

Top Left Corner

Bottom Right Corner

Bottom Left Corner

Top Intersect

Right Intersect

Left intersect

Bottom Intersect

Horizontal Line

Vertical Line

Crossed Line

NOTES:
To enable Graphics Mode, send the display ESC [ 3p or ESC [?3h

1.

2
3.
4

To disable Graphics Mode, send the display ESC [ 2p or ESC [?3I

In Graphics Mode, characters in the left column are displayed as shown.

Use the character names as defined to construct illustrations that do not change
form between normal and double size.

8-5




The Display
The Character Plane

Programming a Character Graphics Display

Two sample Interpreted BASIC programs are used here to illustrate
how to create a display using the 1722A Character Graphics capability.
The first program displays all of the graphics characters, first in normal
size, then in double size. The second program uses the characters to
display an area the size of approximately one touch-sensitive key. Both
of the programs make use of escape sequences to clear the screen and
put it into character graphics mode. The first program also uses an
escape sequence to make use of double-size character mode. These
control sequences are descibed in more detail later in the section.

Program to Display Graphics Characters

8-6

10 E$ = CHRS(27) + "[” \ CL$ = ES$ + "2U"

20 PRINT CLS; ES$ + "3p"; CPOS(8,24); COSUB 30

30 PRINT CLe:; ES$ + “1;3p"; CPOS(4,9); \ QOSUB 30

40 PRINT Et + "525"1(1.‘ \ GDTD 20

50 PRINT 0o 1 3 4 5 7 8 9 - "

&0 PRINT\ PRINT\ PRINT * Please Touch the Screen”;
70 WAIT FOR KEY \ KX = KEY \ RETURN

In the first program, the first line establishes an escape sequence
variable E$ as ASCII 27 + the left bracket character. This sequence
saves typing the entire escape sequence later in the program. The
second part of line 10 establishes a variable CL$ (clear) as the escape
sequence just defined (¢ESC)) +“[2J”. This sequence will be used later
in the program to clear the screen before each of the displays.

Line 20 clears the screen, then enables the graphics display (3p). The
line ends by sending the program to the subroutine at line 50, which
now prints the characters 0 through 9 and the colon (:), resulting ina
display of the 10 graphics characters.

When the subroutine is stopped by touching the screen, the program
returns to line 30, where the screen is again cleared, and the escape
sequence given the parameters to go to double size, and to once again
enable the graphics display (1;3p).

The display toggles between normal- and double-size characters for
comparison. The program stops when (CTRL) /C is pressed.



Program to Display One Touch-Sens.e Keypad

The Display
The Character Plane

This second sample program uses the graphics characters to draw a
box the size of one touch-sense keypad. Notice that the program begins

by assigning the escape sequences.

10 E$ = CHRS$(27) = “t' \ CLS = ES$ + 2J
20 PRINT CLS; E$ + 3p

30 PRINT CPDS(4.40)J lBBBBBO"

40 PRINT CPOS(S5, 40);

50 PRINT CPOS(é6. 40); "3883882"

60 PRINT CPOS(8,37); "Touch to exit"”
70 WAIT FOR KEY -

80 PRINY E$ + g“

90 PRINT CPOS(8,37): * Thlnk ou. "
100 WAIT 2000 \ PRINT CL$ \

The display resulting from this sample program looks like this:

> )
Touch to Exit_
\. J
\ J




The Display
ANSI Standards

INTRODUCTION TO ANSI STANDARDS

The American National Standards Institute publishes ANSI Standard
X3.4, which describes the American Standard Code for Information
Interchange, or ASCII. Sinceits initial publication in 1968, ANSI X3.4
has become the industry accepted standard for defining a 7-bit
character code.

Another ANSI standard, X3.41, describes recommended code
extension techniques for use with ASCIIL. In essence, the standard
specifies how to represent ASCII in an 8-bit environment.

The 1722A Instrument Controller implements both ANSI standard
X3.4 and applicable code extension techniques form ANSI standard
X3.41. This compliance assures the upward compatibility of Fluke
products as well as the ability of the Controller to communicate
effectively with the products of other manufactures.



The Display
ANSI Standards

Special Display Control Characters

Eleven of the ASCII characters are interpreted by the Video-Graphics-
Keyboard module (VGK) as display control characters. In addition to
these eleven control characters, two others (ASCII 24 and 26,
CANCEL and SUBSTITUTE) are used by the system’s
microprocessor to cancel a display control. These codes are not sent on
to the VGK module.

The display control characters as summarized in the next table, must
be preceeded by an escape sequence.

ASCII DISPLAY CONTROL CHARACTERS

(CTRL) | ASCIl | MNEMONIC RESULT
0 NUL Null; no action.
G 7 BEL Sounds a tone.
H 8 BS Moves the cursor left one column, if it is not
already positioned at the leftmost column.
| 9 HT Moves the cursor to the next tab stop, (every
8 columns).
J 10 LF All of these commands move the cursar to the
K 11 VT next line down in the same column. The display
L 12 FF scrolls up if the cursor is on the bottom line.
M 13 CR Moves the cursor to the beginning of the current
line.
N 14 SO Selects alternate character set.
15 Sl Selects the standard character set.
24 CAN Cancels a display control.
26 SUB Substitutes a character sequence if sent as
part of the sequence.
27 ESC Starts a display control character sequence.

8-9



The Display
ANSI! Standards

Escape Sequences

8-10

Besides display control characters, the ANSI Standard also specifies a -
set of Code Extension Techniques (Escape Sequences) which can be
used in controlling the display. These techniques use commands in the
form:

(ESC) [ {parameter 1} ; {parameter 2} ; {parameter n} {terminator}

O The (ESC? [ is called the Control Sequence Identifier. All control
sequences except scrolling commands begin with this identifier.

O The parameters may be either numeric or selective. If the sequence
uses numeric parameters, and no number is given, zero is normally
assumed. Cursor controls assume 1 if no number is given.

O The terminator is always an alphabetic character.
Any number of commands can be specified within a given command

set as long as each is separated by a semicolon (;). Ill-formed
parameters are ignored.



The Display
ANSI Standards

Numerically-Defined Display Control Sequences

The 1722A uses the same display controls as those used for the 1720A,
and some additional ones. Many of the sequences shown in the table on
the next page are equivalent to ANSI Standard Selective Parameter
Sequences, which are discussed later in this section.

The default condtions are indicated by an asterisk (*).

8-11



The Display
ANSI Standards

DISPLAY CONTROL SEQUENCES

CONTROL
FUNCTION SEQUENCE COMMENTS
Cursor Controls

Up n lines {ESC)[nA The cursor stops at the edge
Down n lines (ESC)[nB if the number given as an argu-
Right n columns {ESC)[nC ment results in movement past
Left n columns {ESC)[nD the edge of the screen.
Direct to line, column [(ESC)[l; c H
Scroll down one line [{ESC)D
Scroll up one line (ESC)M
Scroll to start new line [(ESC)E

Erasing

To end of display
To start of display
All of display

To end of line
To start of line
All of line

Attributes

Attributes Off*
High Intensity
Underline
Blinking
Reverse image

Cursor Status

Request cursor position
Cursor position report

Size of Characters

Normal
Double

Character Graphics

Disabled*
Enabled

8-12

(ESC) [J or (ESC)[0J
(ESC) [14
(ESC) [2J

(ESC)[K or (ESC)[0K
(ESC)[1K
(ESC)[2K

{ESC)[m or (ESC)[0m
(ESC)[1m
(ESC)[4m
(ESC) [5m
(ESC)[Tm

(ESC)[6n
(ESC)[I, ¢ R

(ESC)[p or (ESC)[0p
{ESC)[lp

(ESC)[2p
(ESC)[3p

For a program to make use
of the report, a logical input
channel must exist between the
program and KBO:

These commands affect the
entire display.

These commands also affect
the graphics plane.



The Display
ANSI Standards

DISPLAY CONTROL SEQUENCES (cont)

CONTROL
FUNCTION SEQUENCE COMMENTS
Keyboard
Enabled* {ESC)[4p Even when disabled, the key-
Disabled (ESC)[5p board can respond to control
codes. To exit a locked condi-
tion, use (CTRL)/T to unlock
the keyboard, reset the screen
to normai-size characters, home
the cursor (upper left), and dis-
able the graphics plane.
Cursor Type
Blinking Underscore” | (ESC)[0x
Steady Underscore {ESC)[1x
Blinking Block {ESC)[2x
Steady Block {ESC)[3x

*Indicates the default conditions.

8-13



The Display
ANSI Standards

Selective Parameters

Selective parameters are defined with a number followed by a letter.
These parameters are always a string with the first character a question
mark (?), and the second a numeric character between 1 and 8. The
terminator is either the lower case letter ‘b’ (RESET or high), or the
lower-case letter ‘I' (SET or low). As with numerically defined
parameters, selective parameters are always started with the “Control
Sequence Identifier”, (ESC)|.

0 To SET a mode, the terminator is the lower case letter ‘h’.
0o To RESET a mode, terminate with a lower case letter ‘I’.

The table below summarizes the ANSI Standard Selective parameters.
The defaults are indicated by an asterisk (*).

SUMMARY OF MODE SELECTIONS

MODE RESET (1) SET (h)
(! Field Attributes® Character Attributes
22 Single Size* Double Size
73 Disable Character Graphics* Enable Character Graphics
?4 Keyboard Unlocked* Keyboard Locked
?5 Opaque to Graphics* Transparent to Graphics
76 Disable Character Display Enable Character Display*
27 Disable Graphics Display Enable Graphics Display*
78 Disable Cursor Display Enable Cursor Display*

*Indicates the default conditions.

8-14



The Display
ANSI Standards

Field Attributes

The field attributes are identical to the non-transparent field attributes
used on the 1720A. When this mode is RESET, all attributes, such as
blinking or inverse video, are defined for a field on the display before
the characters themselves are placed there. Both Field and Character
attributes use the numeric parameter escape sequences.

NOTE:
The refresh scanning rate exceeds the rate that characters are
written to the screen. Therefore, in the field attribute mode, the
underlining and reverse image commands will cause the entire
remaining display to momentarily exhibit the attribute until
the attributes-off command ((ESC)[m or (ESC)[0m) is
recieved.

To avoid the “flashing” associated with this phenomenon, first

position the cursor to the location for the attributes-off
command, then return it to the location for the attributes and
the message to be displayed.

The entire display is either in field or character attribute mode; field
mode is the default.

Character Attributes

In the character attribute mode, attributes are associated with
individual characters rather than with an area of the display. These
attributes do not use a display position, so it is possible to highlight a
single character within a word, for example.

If the ANSI Standard Mode “?1” is SET (h), then 1720A-type field
attributes are disabled, and character attributes are enabled.

In the character attribute mode, displays need not include the leading
and trailing spaces on the display associated with field attributes.
Additionally, new enhancements can be added without resetting
previously set ones. (They are “sticky”.) As new enhancements are sent
to the display, they are added to an already existing list until they are
reset by the reset enhancements command (ESC) [0m. When the set
mode command is first received, the screen is cleared, and the cursor is
homed.

As shown in the next table, many of the selective parameters have
equivalent numerically defined parameter control sequences. The
default conditions are indicated by an asterisk (¥*).

8-15



The Display
ANSI Standards

SELECTIVE PARAMETER DISPLAY CONTROLS

EQUIVALENT NUMERIC SEQUENCE

MODE
FUNCTION SELECTION

Attribute Mode

Field* (ESCH (711

Character {ESC)[?1h
Character Size

Normal* {ESC)[?2

Double size {ESC)[?72h
Character Graphics

Disable* (ESC) [73I

Enable {ESC)[?3h
Keyboard
Unlocked* (ESC) [24]
Locked {ESC) [?4h
Opaque to Graphics* (ESC) 751
Transparent to Graphics | (ESC)[?5h
Character Display

Disabie (ESC)[?6l

Enable* (ESC)[?6h
Graphics Plane

Disabie” (ESC)[?7I

Enable (ESC)[?7h
Cursor Display

Disable (ESC)[?8l

Enable* (ESC)[78h

No equivalent.

(ESC)[0p
(ESC) [1p

Similar to (ESC)[2p and (ESC)[3p,
except that these commands do not
affect the graphics plane.

(ESC)[4p
(ESC)[5p

When this command is received, any
graphics displays that cross display
character cells are hidden behind the
character cell, an area 8 pixels wide and
14 high. This mode is used to make
characters stand out from surrounding
graphics displays. There is no equivalent
capability for the 1720A Controlier.

This mode causes displayed characters
to be transparent to the graphics
display. Any graphics displays that
cross a character cell are not ob-
structed by the cell. Select this mode
to blend characters into the graphics
display.

No equivalents.

No equivalents.

No equivalents.

*Indicates the default conditions.

8-16



The Display
ANSI Standards

Non-Destructive Display Character

Sometimes you may want to call attention to a word or phrase on the
display by switching between two sets of attributes. An example would
be using highlighting and normal attributes to give the appearance of
blinking without having the word actually go away. In character
attribute mode, a “non-destructive” character is used. It takes the
form:

(ESC)=
This character is called non-destructive because it can be specified for
the same location as the character which it will be modifying. When it is

recieved, the character attributes of the current character position are
replaced with the most recent attribute specification.

8-17



The Display
The Graphics Plane

THE GRAPHICS PLANE

Information to be displayed is held in two separate portions of
memory: the character plane and the graphics plane. Both of them can
be turned on and off using the ANSI Standard Control Sequences just
described. Additionally, the graphics plane can be turned on and off
using two of the routines in the Object File named “GRAPH.OBJ”.

To use the Graphics Routines described in theis section, your program
must link to them. For example, using the BASIC Interpreter line

LINK “GRAPH”

early in the program will link the graphics routines and enable them to
be used throughout the program.

If you will be compiling the program with the BASIC Compiler, do not
include the LINK “GRAPH?” statement in the program. Instead, use
the Linking Loader (LL) to link your program‘s object file with the
graphics routines as shown here:

LLY I {program namel, BSLOAD. GRAPH
LL)> O {program name)
LLY 6

Introduction to the Graphics Routines

The display memory is divided into a character plane, and a graphics
plane. Either plane can be enabled or disabled independently.

The graphics workspace is an array of dots called pixels, a contraction
of the words picture elements. In the horizontal direction, there are
2048 pixels, and in the vertical direction, there are 256. The display
screen provides a window into the graphics workspace that is 640 dots
wide and 224 dots high. The window can be positioned anywhere over
the graphics plane. Here is where it starts out:

IRRASRIRRRERARARRAREIRRN

T

e

..........

..........

!
FHTT 1
|

8-18



The Display
The Graphics Plane

If the window position is moved beyond the edges of the graphics
plane, the display wraps around to the opposite edge. For example,
assume that these lines have been drawn in the graphics area:

- . ! ] I 1 T1TT T T
e T e T
sangl B [: A _,_ﬁ—” SN i: j | SRS
1 ' dj + A"FH I 1 A
: % = S9ueNe SUNe r -
o< s
-r § 1 H
+ t4 - t

This is what happens when you move the wmdow to overlap the right
hand boundary of the workspace:

: 555
ottt it

Because of the wraparound effect, the resulting display will be:

8-19



The Display
The Graphics Plane

The next drawing illustrates what would happen if the window is
positioned so that it overlaps both a vertical and horizontal edge of the
graphics workspace. First, assume that these symbols have been place
in the four corners of the display, and the window positioned as shown:

1722, 144ﬂ

peata
rIILIL .
———
T
Tt

il
|

DESURSRREESSS

i i
' |

8-20

The resulting display would be:

> N
_ v

A ®

X
_ ~

This result may be either useful or surprising, depending on what you
had in mind as you designed the display. Note that the effect does not
hold true for the lower left reference corner of the window, which
cannot be moved outside the graphics workspace.




The Display
The Graphics Plane

Addressing the Pixel Positions

Dot positions are addressed by their X,Y coordinates. In the first
drawing, the display window was positioned so that its lower left
corner was at position 0,0 (the default starting position); the lower
right is at 639,0; upper left is at 0, 223, and the upper right corner is at
639,223. In the last drawing, the current position has been moved so
the lower left corner of the display is at 1722, 144.

Pixels can be turned on or off anywhere within the window. The rest of
this section describes the set of routines that control turning the pixels
on and off, and moving the current position.

Graphics Routines

All the graphics routines are recorded on the System disk in a file
named GRAPH.OBJ, and in a library file named GRAPH.LIB.

Some of the routines turn the display on or off, and others move the
“current position”. Though the current pixel position is not displayed
(as a cursor shows the current position in the character plane), the
initial current position is always 0,0. As you can see by the drawings,
position 0,0 is the lower left corner of the display. The upper right
corner of the display window is position 639, 223. The upper right
corner of the entire graphics plane is at location 2047, 255.

As a program moves the pixel position, or pans the window around the
workspace, the routines keep track of the changing current position.

All the routines can be linked to programs generated by the BASIC
Interpreter and the BASIC and FORTRAN Compiler programs.

8-21



The Display
The Graphics Plane

Summary of Commmands

The table that follows describes each of the graphics routines. Note
that all the arguments must be integers; this means that in a BASIC

the % symbol. In FORTRAN, variable types are determined by the
first character in the variable name (Integers I though N), or by using

the TYPE statement. See the particular progamming language manual
for full details.

SUMMARY OF GRAPHICS ROUTINES

language program, for example, the arguments must be followed by
|

COMMAND PURPOSE
DOT (X, Y, {type}) Draws a single dot at X, Y, returns to the
current position.
DRAW (X1, Y1, X2, Y2, {type}) Draws a line from X1, Y1 to X2, Y2.
ERAGRP ({type}) Erases the entire graphics plane..
GRPOFF Disables the graphics plane.
GRPON Enables the graphics plane.
MOVE (X, Y) Moves to absolute position X, Y.
MOVER (Xoffset, Yoffset) Moves relative to amount specified by
the offset.
PAN (X, Y) Sets display window position to X, Y.
PLOT (X, Y.{type}) Plots from current position to X, Y.
PLOTR (Xoffset, Yoffset, {type}) Plots relative to amount specified by
the offset.
*Type: -1 = INVERSE
0 =BLACK
1 = WHITE

8-22



The Display
The Graphics Plane

o0 The values of the X and Y arguments may not exceed 2047, and
may only be negative in the relative commands MOVER and
PLOTR.

O The X argument is the number of pixels in the horizontal direction.
Since the screen is 640 pixels wide, the center is 320 pixels from the
left edge.

O The Y argument is the number of pixels in the vertical direction.
The screen is 224 pixels high, so the center is 112 pixels from the
bottom edge.

0 The ‘Type’ argument determines whether the routine paints white
on black (1), black onto white (0), or the inverse of the color
already at that position (-1).

In the pages that follow, each of the routines is described in detail, and
some suggestions are given about the kinds of things that each of them
can be used for. Some of the descriptions include program examples.
The example listings are all shown as they would appear in programs
written for the BASIC Interpreter.

8-23




The Display
Graphics Routines

DOT

8-24

Usage: DOT(X, Y, {type})

Description:

This routine places a single dot at the specified coordinates, then
returns to the current pixel, position. Because this routine returns to
the former pixel position it is useful in the construction of detailed
charts or graphs that require pixel resolution and are generated by a
mathematical formula that calculates each point from the same
position.

Example:

This BASIC program uses DOT to draw a sine wave. It first asks for
“Amplitude”, and then for “Period”. The amplitude is the peak-to-
peak pixel amplitude of the sine wave that will be drawn. The period is
used for frequency and sampling rate. Notice that the program does
not allow a period of less than 1. Selecting periods less than five result
in waveforms whose resolution is too coarse for the wave to be
observable.

LINK "QRAPH"

ERAGRP (O%) \ CRPDN

PRINT CHR$(27) + "[2J"

PRINT CPOS (14,0); "Amplitude";

link to graphics i
erase, turn on graphics
clear character plane
input amplitude

INPUT A amplitude: dots peak-to—-peak
PRINT CPDS (15,0): "Period"; input period (samglzng rate)
INPUT P eriod: no. of dots/cycle

= 0 is illegal
clear character plane
x across display
calculate y
integerize and offset y

IF P = 0 THEN &0
HR

DI dot at calc’ed position
NEXT X% continue calculation
0TO 40 next value



The Display
Graphics Routines

DRAW .
Usage: DRAW(X]1, Y1, X2, Y2, {type})

Description;

This routine draws a line from absolute position X1, Y1 to another
absolute location, X2, Y2. If the final position is beyond the edge of the
graphics plane, the line will end at the edge. The current pixel position
is updated to X2,Y2 or the edge of the plane.

Example:
Current position is 0,0. To draw a white diagonal line across the
display, use:

DRAW(OY%, 0%, 639%, 223% 1%4)

8-25



The Display
Graphics Routines

ERAGRP
Usage: ERAGRP {type}

Description:

This routine erases the entire graphics plane to the color indicated by
{type}, either white, black, or the reverse of the color before erasing.
Any data within the plane will be deleted. The character plane is
unaffected.

Example:

At the beginning of a program, use ERAGRP to prepare the Graphics
plane for the display.

8-26



The Display
Graphics Routines

GRPOFF, GRPON

Description:

These routines turn the graphics portion of a display off and on. The
memory is left intact; the routines only determine if the graphics plane
is displayed or not. The character plane is unaffected.

Example:

A selection display has just been presented to the operator. When the
selection has been made, a new display is presented that contains new
graphics. Rather than using ERAGRP to erase the graphics plane,
however, it is desired to leave the contents alone because the test results
update the display for the next selection. In this case, use GRPOFF to
turn off the graphics display. When the display is updated, the program
uses GRPON to display the change.

8-27



The Display
Graphics Routines

MOVE

8-28

Usage: MOVE(X, Y)

Description:

This routine moves the current pixel location without drawing. If
either X or Y are outside of the graphics plane, the move stops at the
corresponding edge.

Example:

A program has just drawn a diagonal line from the bottom left to the
upper right corner of the screen. Now, to “lift the pencil” to get back to
0,0, use the MOVE routine:

MOVE (O, O%)



The Display
Graphics Routines

MOVER
Usage: MOVER(Xoffset, Yoffset)

Description:

This is the relative move routine. It moves the current pixel position to
a relative position within the graphics plane. The move is done without
drawing; if the new position is outside the graphics plane, the move
stops at the corresponding edge.

Example:

A program is being designed that draws two figures that may appear
any place on the display. The second figure must appear immediately
to the right of the first. After the first figure is drawn, use the relative
move routine to move the current position relative to the ending
location of the first figure.

8-29



The Display
Graphics Routines

PAN

8-30

Usage: PAN(X, Y)

Description:

The PAN routine moves the window around the graphics workspace.
The reference is the lower left corner of the display window. Positive
arguments move the reference corner to the right and up. Negative
arguments move the reference corner left and down. PAN does not
affect the current pixel position.

Example:

During a measurement session, data has been collected by a program,
and has become part of a data file. The operator then elects to view the
results of the day. The program inserts the raw data into a subroutine
that creates and draws a chart that cannot fit in one window. Use the
PAN routine to permit viewing the entire chart. Left and right arrow
keys.can/be|made part of the display, to allow positioning the window
at any area of interest.



The Display
Graphics Routines

PLOT
Usage: PLOT(X, Y, {typel)

Description:

This routine draws a line from the current position to the location
indicated by the X and Y arguments. (Also see DRAW.) PLOT uses
the current position as the starting place to begin drawing, rather than
defining the starting position, as DRAW does. The current pixel
position is updated to X,Y.

Example:

Use PLOT rather than DRAW in those instances where the starting
position will be unknown, but a line is desired from one place to some
other position. This routine can be used in constructing some types of
graphs, like pie-charts. As the program collects data, the value of the
data would be inserted into a Relative Move statement, and the PLOT
statement would draw the line from the starting point to the calculated
position (which then becomes the new current position).

8-31



The Display
Graphics Routines

PLOTR

8-32

Usage: PLOTR(Xoffset, Yoffset, {type})

Description:

The relative plot routine draws a line from the current position to the
location indicated by the Xoffset and Y offset arguments; it is similar to
DRAW, except that as it returns to the starting position, continues
drawing; it doesn’t “lift the pencil”.

Example:

A triangular figure is to be drawn, and it may appear anywhere within
the graphics plane. Use the Plot Relative routine to draw the figure
relative to any starting position. This example draws a triangle that will
be black if the field is white, and white if the surroundings are black:

PLOTR(&0%, &60%, -1%)
PLOTR(&60%:, -60%, -1%)
PLOTR(-120%, 0%, -1%)



The Display
Graphics Routines

CONCLUSION

This section has described the many features of the 1722A display. The
display is specifically designed for ease of use by both the programmer
and the operator. While maintaining compatibility with the display
capabilities of its predecessor, the 1720A Controller, the 1722A
incorporates a greatly expanded set of graphics and display-control
features.

Taken as a whole, the 1722A boasts one of the most comprehensive
display packages in the instrumentation industry. When the
possibilities of the software are combined with the unique touch-
sensitive screen, the result is a powerful set of tools for the programmer
and operator alike.

8-33



Section 9

Appendices

CONTENTS
A Specifications ........ciiiiiiiiiiiiie i i A-1
B Options and AcCesSOTIES .........vvvvuvevennnnn.. B-1
C IEEE488 Reference .........ccviviviiiennnnnnnns C-1
D GloSSATY .+ vttt iii ittt it eieerneennnennnas D-1
E Custom Character Sets  .......covvvennvrnnrennenn. E-1
F Primary Character Set ................ccivvunn... F-1

9-1



CRT DISPLAY

Scanning Method ...................

Refresh Rate

........................

CharacterMemory ..................

CRT Screen

Character Capacity ..................
Standard Character Set ..............

CharacterCell ......................
Character Enhancements ............

Cursor .....

Raster Size

.........................

Graphics Screen Capacity ...........
Graphics Memory Capacity ..........

ENVIRONMENTAL

Operating

WITHDISKMEDIA ................

WITHOUT
HUMIDITY

~ Storage

DISK MEDIA ...........

WITHDISK MEDIA ................

EMI and RFI

GENERAL
Dimensions

Emissions ..............

Appendix A
Specifications

Non-interlaced raster scan.
50 or 60 Hz, selectable.

1280 bytes of dedicated display memory. 16
lines of 80 characters.

High-contrast green phosphor, low profile,
rectangular. 8.6 cm x 20.3 cm (3.4 in x 8.0
in).

16 x 80 cells, or 8 x 40 cells.

96 Standard ASCII characters, graphics
characters, match, and other useful
symbols.

7 x 9 dots in an 8 x 14 dot matrix.
Reverse video, blinking, underlining, and
highlighting.

Blinking, underline, block, or suppressed.
7.6 cmx 19 cm (3.0 in x 7.5 in).

650 x 224 pixels.
64K bytes (2048 x 256 pixels). Independent
of main memory.

10°C to 40°C (50°F to 104°F).
0°C to 40°C (32°F to 104°F).
20% to 80% (non-condensing).

10°C to 52°C (50°F to 126°F); 8% to 90%
humidity (non-condensing).
-20°C to 60°C (-5°F to 140°F); 5% to 85%
humidity (non-condensing).

Tested to FCC Part 15, Subpart J, Class B;
VDE 0871, Class B; CISPR 11-1975.

13 cm H x 43 cm W x 55 cm L (plus teet)
(525 in H x 17.0 in W x 21.5 in L). See
Outline Dimensions.



Specifications

Weight
CONTROLLER .......... PP 15.5 kg (34 Ibs).
KEYBOARD ............cccovvuetn 1.4 kg (3 Ibs).
Power .............ccciiiiiiiiiinnn, 175W max.
VOLTAGE ........... ..., 120V ac 50-60Hz use 1'2amp AGC fuse
240V ac 50-60 Hz use % amp AGC fuse
POWER DISSIPATION ............ 175W max.

q  THESE HOLES USED FOR MOUNTING OF FEET. CAN BE USED FOR
NON STRUCTUAL INSTRUMENT MOUNTING.

2 ALLOW 2 MINIMUM AT REAR AND CRT SIDE OF INSTRUMENT FOR
AIRFLOW.

f=——— 8.00 (REF)

3.40 N — 4158
(REF) - / o 2PLS

‘ !;v O [=R=] _L
& axe 16.076 — e 463
FRONT

5.228 MAX
J,
1

O® e
L

17.000 MAX




Specifications

1.10 e
(REF)T ’ 20.110
- -4 . ?
N | %.6505.228
@ A — - 200 (REF)
[ | —
1.42 . 8-32X3/8
—=rvp~ 17.272 e 5 PLS TYP
SIDE
40 21600 6.00
MAX MAX MAX
" - i
1.500 (REF) ¢ 6-32X1/4 L -800 (REF)
4PLS TYP
[ b
7.000 H|| AR
2PLS B o INTAKE
TYP /e 15.200
I
- |
14.000
2PLS !
TYP ! Dj:\
'
L
i "’
L
Yl 4 i
E - E- 1
1 [] ¥
AIR EXHAUST N
2,25 15.982 —] 6-32x1/4
(REF) 4 PLS
20.480
BOTTOM



Appendix B
Options and Accessories

These items are not included in the shipment unless ordered at the same
time as the Controller. If specified on the order, options will be
installed at the factory. Otherwise, they may be packaged separately.

This list was complete at the time this manual was printed; however,
because of Fluke’s ongoing program of hardware and software
development, other options or accessories may become available
between reprintings of the manual. Contact your local Fluke
representative for the latest information about available options.

OPTIONS

All options are listed by their dash number, the unique three-digit
identifier appended to the model number to yield a part number. For
example, to order the -004 option, 256K Byte Bubble Memory
Expansion Module, you would use P/N 1722A-004.

Memory Expansion

Memory Expansion options greatly increase the available on-line
storage capabilitites of the Controller. Memory Expansion Modules
can be placed in any of the five unused options slots in the card cage.
The maximum dynamic RAM configuration increases the total on-line
system memory to about 2.6 Megabytes; Bubble Memory can provide
up to approximately 1.3 Meagbytes. Combinations are possible; please
consult the configuration guide for complete details.

004 256K byte Bubble Memory
-005 512K byte Bubble Memory
-006 256K byte RAM Expansion
-007 512K byte RAM Expansion

B-1



Options and Accessories

Interface Additions

Optional Interface options expand the Input/Output possibilities of
the Controller. They may only be used in card cage slots 1, 3, and 5.

-002 Parallel Interface
-008 IEEE-488/RS-232C Interface
009 Dual Serial Interface

Note
When it is shipped from the factory, the 1722A Instrument
Controller meets or exceeds the requirements of FCC part 15-J
and VDE 0871. To ensure continued compliance with these
standards, any cables connected must be shielded and
incorporate 360° metal connector bodies. These are available
from John Fluke Mfg. Co. Inc. using these part numbers:

IEEF-488
1 meter: 658526
2 meter: 682401
4 meter: 682419

RS-232
2 meter: 706688
10 meter: 706846

Software

B-2

For increased flexibility, these software options are available to allow
programming the Controller in languages other than Interpreted
BASIC, which is supplied as the standard programming language.
Each language option is supplied as a floppy disk with an
accompanying Programming manual.

-201 Assembly Language Software Development System
-202 FORTRAN Software Development System
-203 Compiled BASIC Software Development System



Options and Accessories

Option Contfiguration Table

OPTIONS

SLOTS
1
Reserved for Video/Graphics/Keyboard Interface 2
° ° . ° ° 3
. . 4
. . . ) ° . . 5
° [ 6
Reserved for Single Board Computer 7

e = Allowable Siot for Option



Options and Accessories

ACCESORIES
Y1700 Keyboard

Y1706 Ten-pack of Blank Unformatted floppy disks (Certified)

P/N 533547
Pad of 50 Programmers Worksheets

Y1711 Reinforced Shipping Case

IEEE-488 Cables

Y8021 Shielded, 1 meter

Y8022 Shielded, 2 meters

Y8023 Shielded, 4 meters
RS-232C Interface Cables

Standard (For DCE devices)
Y1707 2 meter
Y1708 10 meter

Null Modem (For other DTE devices)
Y1703 4 meter
Y1705 0.3 meter

Printer Cable

For connecting a Fluke model 1776A Serial Printer.
Y1709 2 meter

Parallel Interface Cable
Y1717 2 meter

Rack Mount Kits
Y1790 Rack Mount Kit with 24-inch slides

Y1791 Rack Mount Kit for 1780A without slides

MO00-260-610 18-inch rack slides
MO00-280-610 24-inch rack slides



Options and Accessories

PERIPHERALS

All the peripherals listed here are separate products, and can be
ordered by the model numbers shown.

1760A
1761A
1771A
1775B
1776B
1780A

Disk Drive System, 400K Byte

Dual Disk Drive System, 800K Byte
Intelligent Digital Plotter

Serial Impact Printer (IEEE-488 Interface)
Serial Impact Printer (RS-232C Interface)

InfoTouch Display

B-5



Appendix C

IEEE-488 References

|EEE-488-1978 Instrument Ports (Port 0 and Port 1)

SHIELD SRQ NDAC DAV DI

ATN

IFC NRFO EQ

04 D

0103 '

102
Dlo1

1

O

1211109 8 7 65 4 3 2

1

24232221201918 17 1615 14 13}; @

L

GND | GND| GND | REN| DI0O7 | DIOS
i3] 9 7
LOGIC GND GND GND DI08 DIO6
GND 10 8 6
BUS PIN SIGNAL DEFINITION

1 D101 Data input and output lines,

2 DIO2 bidirectional and active-low,

3 D103 D108 is most significant. Data

DATA 4 DIO4 transfers are 8-bit parallel and byte
BUS 13 DIO5S serial.

14 D106

15 DIO7

16 D108

11 ATN Attention. Activiated by the

23 ATN Return 1722A when peripheral devices are
being assigned as listeners and
talkers. The 1722A assumes it is
the only source of this signal.

10 SRQ Service request. Any peripheral

22 SRQ Return device on the Instrument Bus can
request the attention of the 1722A
Controiler by setting SRQ active

MANAGEMENT low.
BUS 9 IFC ! Intertace ciear. Set by the 1722A

21 IFC Return to place all instruments on the
bus in a predetermined reset
state. The 1722A assumes that it
is the only source of this signali.

17 REN Remote enabie. Causes ail
responding instruments on the Bus
to ignore their front panel
controls and operate under remote
control via signals and control
messages received over the Bus.

C-1




|EEE-488 References

ASCIl and IEEE-488 Mnemonic Abbreviations

ACK
ASCII

ATN
BEL
8s
CAN
CR
DCL
DCn
DEL
DiOn
DLE
ENQ
EOF
EOI
EOT
ESC
ETB
ETX
FF
GET
GND
GTL
HT
{EEE

IFC
LF
LLO
MLA

Acknowledge

American Standard Code for
Information Interchange
Attention

Bell

Backspace

Cancel

Carriage Return

Device Clear

Device Control 1,2, 3, or 4
Delete

Data tnput/Output 1 through 8
Data Link Escape

Enquiry

End of File

End or Indentify

End of Transmission
Escape

End of Transmission Block
End of Text

Form Feed

Group Execute Trigger
Ground

Go To Local

Horizontal Tab

Institute of Electricat and
Electronic Engineers
Interface Clear

Line Feed

Local Lockout

My Listen Address

MSA
MTA
NAK
NDAC
NRFD
NUL
OSA
OTA
PCG
PPC
PPD
PPE
PPRn
PPU
REN
RS
sbc
S

o)
SOH
SP
SPD
SPE
SRQ
STB
STX
TCT
UNL
UNT
us

My Secondary Address
My Talk Address
Negative Acknowledge
Not Data Accepted

Not Ready For Data

Null

Other Secondary Address
Other Talk Address
Primary Command Group
Parailel Poll Configure
Parallel Poll Disable
Paraliel Poll Enable
Parailel Poll Response 1 through 8
Parailel Poll Unconfigure
Remote Enable

Record Separator
Selected Device Clear
Shift In

Shift Out

Start of Heading

Space

Serial Poll Disable

Seria! Poil Enable

Service Request

Status Byte

Start of Text

Take Control

Unlisten

Untalk

Unit Separator




IEEE-488 References

nn
ACCItTEE-486-
BINARY | wMessaGe |oev. I | | I BINARY MESSAGE |DEV.
i Y
ASCl DECIMAL | OCTAL | HE) 7654 2200 1 1aTn Teuelwn .ASCN 'DECIMAL | OCTAL lHEX 7554 3510 aTH T 0.
NUL 0 000 oo 0000 D000 —_ @ 64 100 40 0100 040C
SOH 1 001 01 0000 0001 GTL A 85 101 41 0100 oM
STX 2 002 02 0000 0010 —_— B 66 102 42 C€*00 0y
ETX 3 003 03 0000 0011 w —_— C 87 103 43 0100 0ixt
EOT 4 004 04 . 0000 0100 5 sDC D 68 104 44 0100 000 MTA 4
ENQ 5 005 05 0000 0101 b3 PPC E 69 105 45 0100 021 MTA 5
ACK 6 006 06 0000 0110 2 —_ F 70 106 46 0100 0" vl MTA &
BEL 7 007 [ehy 0000 0111 : —_ G Al W i UTOU e MTA 7
8s 8 010 08 0000 1000 b GET H 72 110 48 G100 100U MTA )
HT 9 ot 08 9000 1001 n TCT | 73 1 49 0100 10! MTA .
or v 012 GA 0000 1010 k4 — J 74 12 4A 0100 1ng MTA W
VT " 013 on Q000 1011 (&} _ K 75 13 48 0100 10 MTA "
FE 12 014 oC 0000 1100 = — L 6 114 4 0100 10 MTA 12
CR 13 o015 oD 06000 1101 _— M 77 115 4D 0100 1101 MTA 13
s0 14 018 0FE 0000 1110 e N 78 16 4E 0100 1116 5 MTA 14
S 15 Q17 OF 0000 1111 — o] 79 7 4f 0100 1111 @ MTA 15
{ILE 16 020 10 0001 0000 — P 80 120 30 G101 0N Z MTA 16
DCh 17 021 11 0001 0001 7 LLO Q 81 121 51 0101 0001 x MTA 17
oCc2 18 022 12 0001 0010 [=] —_— R 82 122 52 0101 0010 3 MTA 18
[alex) 19 023 13 0001 0011 ,:Z( — S 83 123 53 Q1 oG = MTA 19
=
DC4 20 024 14 0001 §100 S DCL T 84 124 54 9101 0100 MTA 20
NAK 21 025 15 000t 0101 O PPU u 85 125 55 0101 0101 MTA 21
SYN 22 026 16 0001 0110 _4 ——— v 86 126 56 0101 0110 MTA 22
ETB 23 027 1w 0061 0111 ; —_ w 87 127 57 0101011 MTA 23
@
CAN 24 030 18 0001 1000 S SPE X 88 130 58 0101 1000 MTA 24
&M 25 031 19 0001 1001 z SPD Y 89 131 59 0101 1001 MTA 25
sUB 26 032 1A 000t 1010 2 —_— Z 90 132 5A 0101 1010 MTA 26
ESC 27 033 1B 0001 1611 —_ [ 91 133 58 0101 1C11 MTA 27
FS 28 034 C 0001 1100 — A 92 134 5C 9101 100 MUA 28
GS 29 035 10 0001 1101 —_ i 93 135 50 0101 1101 MTA 29
RS 30 036 1E 0001 1110 —_— ~ 94 136 SE 0101 1410 MTA 30
us 31 037 1F 0001 t111 —_— - 25 137 5F 0101 1111 UNT
SP 32 040 20 0010 0000 MLA 0 . 96 140 66 G119 0000 MSA 0
t 33 041 21 0010 0001 MLA \ “ 97 141 61 U110 0001 MSA 1
34 042 22 0010 0010 MLA 2 b 98 142 62 0110 0010 MSA 2
" 35 043 23 0010 0011 MLA 3 c 99 143 63 0110 0011 MSA 3
S 36 044 24 0010 0100 MLA 4 d 100 144 64 0110 0100 MSA 4
L 37 045 25 0010 0101 MLA 5 € 101 145 65 0110 0101 MSA 5
& 38 046 26 0010 0110 MLA 6 ! 102 146 66 0110 0110 MSA 6
39 047 27 co10 0111 MLA T g 103 147 7 01100111 MSA 7
{ 40 048 28 0010 1000 MLA 8 n 104 150 68 MsA 8
) 41 049 29 0010 1001 MLA 9 ' 105 151 89 0110 1001 MSA 9
N a2z 050 2A 0010 1010 MLA Y i 106 152 BA 0110 1010 MSA 10
43 us1 28 04010 1091 MLA b Kk 107 153 68 LARIUR TR . MSA LAl
44 054 2c 0010 1100 & MLA 1M | 108 154 6C 011 % MSA 2
45 055 2D 0010 1101 E_ff, MLA 13 m 109 155 60 Q110 = MSA 13
46 056 2E 0010 1110 o MLA | 12 n 110 156 6E 0110 1110 z nmsa |
/ 47 Q57 2F 0010 1111 Ia] LA T s 11 157 sl DARIURBR R ,“) MSA 15
0 48 060 | a0 9011 0000 I MA ] e v 12 160 Wl - N
1 49 061 31 0011 0001 E MLA 17 q 113 161 G < MSA 17
2 50 062 32 0011 0010 ; MLA 18 r 114 162 o i 9 MSA 13
3 51 063 Kk 00113611 . MLA 19 5 115 ha [VARREVIERR Q MSA 9
4 52 064 34 0011 9100 ML A U i 16 164 ) 0111 0200 & MSA 20
5 53 065 35 0011 0107 MLA 27 [ my 165 75 [ARRRIN MSA
6 54 066 6 0011 0110 MLA 22 v 18 166 76 [ARRECARD) MSA
7 55 967 37 0011 g1t MLA 23 w 119 167 77 LARBNVARRI MSA
8 56 070 38 0011 1000 MLA 24 x 120 170 B MEA e
9 57 o7l 39 0011 1001 MLA | 2o y 121 171 79 MSA 25
B 58 072 3A 0011 1010 MLA 26 z 122 172 A MSA 26
59 073 3B 0011 1011 MLA 27 B 123 i3 [ HERRIREEERI ACA 27
< 80 a4 30 0111 1000 MLA | 8 124 174 ‘L GreT UG A B
= 61 075 30 (AR IR RIVE] MLA 29 . 125 17s o [CARRIRRITA] MSA o9
> 62 076 3€ 0011 1110 mLA | 30 ~ 126 176 7t CAREIRRRLH MSA 30
7 63 077 3F 011 11y LN DEL 127 177 75 [CAREIRREE

C-4



Appendix D
Glossary

ABORT

Front panel push switch that causes the Controller to terminate the
current program and return to the shell without clearing memory or
performing the power-up self-test. When pressed simultaneously with
RESTART, causes the system to perform a cold start.

address
A coded number representing the location of an item. Examples
include bus address and program address.

Address command
A bus command from a controller commanding an instrument at a
designated address to talk or listen.

Addressed command
A bus command from a controller intended for all instruments that
have been addressed as talker or listener.

alias
A shortened or more familiar form of a command. In the 1722A, all
aliases must be recorded on a file named ALIAS.SYS.

application program

A user written program designed te perform specified functions in a
working environment.

array

A collection of data items, organized as a row x column matrix.

array element identifier

The subscript of an array variable that identifies the row and column of
the desired array element. In the expression: A$(3,5), (3,5) is the array
element identifier, referring to row 3, column 5.

ASCII

Acronymn for American Standard Code for Information Interchange.
ASCII is a standardized code set of 128 characters, including full
alphabetic (upper and lowercase), numerics, and a set of control
characters.

D-1



Glossary

asynchronous data

Information transmitted at random times, normally one characterata
time, and at predefined, self-clocking baud rates. See synchronous
data.

BASIC

Beginner’s All-purpose Symbolic Instruction Code, a general purpose,
high-level language that has been widely accepted because of its
versatility and the ease with which it can be learned. Fluke BASIC has
added commands for instrument control.

baud rate

The serial transfer rate in bits per second including all framing bits used
to identify the start and end of characters or messages.
binary

A number system based on zero (0) and one (1) representations. It is
often used to represent data or instruction codes. There are only two
numbers, so digital computers can use binary for their operations
because each number can be represented as the state (on or off) of a
transistor.

bit

A contraction of binary digit. A bit is either a one or a zero and
respresents the smallest single unit of computer information. Bits are
often used in groups of eight to represent ASCII characters.

block
Memory size equal to 512 bytes.

bootstrap

A short program permanently recorded in ROM whose only function
is to read an operating system program from bulk storage into system
memory and transfer control to it.

buffer
A temporary storage area in main memory used to store data.



Glossary

bulk storage

bus

A device attached to a computer that can store much more program or
data information than the computer’s main memory can hold. the
Instrument Controller incorporates two types of bulk storage: floppy
disk and hard disk. Also called mass storage.

The IEEE-488-1978 standardized interconnection system used for
connecting instruments. Also, bus can refer to any set of parallel
connections that have the same meaning for each unit connected to
them.

Bus address

byte

A 7-bit code placed on the IEEE-488 bus in command mode to
designate an instrument as a talker or listener.

A grouping of eight bits of information into a coded representation of
all or part of a number or instruction. Often a 7-bit ASCII character is
referred to as a byte, with the eighth bit available for parity if needed.
Bytes are commonly considered as 8-bit storage areas to represent
ASCII characters.

chaining

A method of operating a program that is larger than available main
memory. The technique is to break the program into smaller elements,
and call in the next element from bulk storage as each succeeding
element is completed. Requires highly modular programming to be
effective. See structured programming,.

channel

A communication path opened between an application program and a
file or a system device.

character plane

The portion of the display memory that is used for displaying the
normal- and double-sized characters. The character set includes the
upper- and lower- case alphabet, the ten numerals, and punctuation.
See graphics plane.

D-3



Glossary

character string
A grouping of ASCII characters.

cold start

The power-up activities of the Controller. These include clearing all
memory including E-Disk, performing a self-test, and loading the
operating system. A cold-start occurs when the system is powered up,
or when RESTART and ABORT are pressed simultaneously.

Command file

A file that, when designated active by FDOS, is used as a substitute for
keyboard inputs. In Fluke Instrument Controllers, a command file
with the name STRTUP.CMD is processed each time the Controller is
initialized by a cold start or power-on.

Command mode

An IEEE-488 term indicating that a controller has set the ATN
- (attention) line. In this mode, instruments on the bus are addressed or
unaddressed as talkers and listeners.

constants
Fixed values which may be floating-point, integer, or string data types.

control character

Used to produce specific actions such as terminating program
execution, exiting from the Editor, halting and restarting scrolling.

controller

A device connected to a bus capable of designating instruments as
talkers or listeners by using bus message sequences. A device does not
need to be programmable to act as a controller. However, only a
controller can examine the data or status of instruments to determine
appropriate conditions for designation changes. There can be only one
active controller on a bus at one time.

CPU

Central processing unit, the controlling instruction and data precessor
in any computer system. In the Fluke Instrument Controller, the CPU
is the microprocessor and its supporting components‘located on the
Single Board Computer module.

D-4



Glossary

CRT
Cathode Ray Tube, the display screen on the Instrument Controller
front panel.

current position

The pixel location defined by X,Y coordinates in the graphics plane
that is the starting position for turning the beam on or off to paint a
line, or to move to another location. On power up, the current location
is X0, YO.

cursor

The visible pointer on the CRT display that allows the user to
recognize the position being pointed to by the system software.

data
Numerical information that has been collected for interpretation by a
program.

data base
A stored and defined collection of data that is made available for
report generation or further calculations by a program.

Data Base Management System (DBMS)

Any systematic approach to storing, updating, and retrieving
information as a common data base for many users.

data file
A file holding either random or sequential access information.
Contrasted to a program file.

Data lines
Eight of the sixteen bus lines which carry either data or multiline bus
messages (Universal, Addressed and Address commands).

Data mode

The default mode of the bus when the controller has left the ATN
(attention) line false. All transfers of data or instructions are between
instruments.

D-8



Glossary

data processing

The ability to perform calculations on collected data and formatting it
into.readable reports.

debugging

Any method of detecting and correcting syntax and structure errors in
a program.

default

That option which system software selects when the user does not
specify an option.

device

A hardware resource that can act as a source or destination of data. In
this manual, device is used in two different ways: 1. To represent the
internal devices recognized by the Operating System. In this usage, the
Controller’s devices are identified by two letters, a number, and a
colon. For example, MFO: identifies the mini-floppy drive. 2. The
symbol "@” followed by a number from 0 to 30 represents external
devices, such as instruments connected to the IEEE-488 bus. The
BASIC language statement “PRINT @ 2” followed by program data
would address instrument 2 as a listener device, and send it program
data.

Device Address
A number used by a program to designate an external device for data
transfer.

Display control

An ANSI-standard character sequence of ASCII characters which
produces a desired display effect such as cursor position or reverse
image. '

E-Disk

Fluke Trade Mark for the Electronic disk, a memory configuration
that makes use of memory as if it were a file-structured device. See
Electronic Disk.



Glossary

editor

A system software program that enables a user to generate and update
an application program.

EIA
Electronic Industries Association, publishers of standard RS-232-C
for serial data ports.

Electronic Disk

A portion of the memory designated as a file-structured device. Part of
the system’s dynamic RAM memory is configured so that it
functionally emulates a floppy disk. The electronic disk is about 100
times faster than the floppy disk and has no moving parts to wear or
cause noise.

EPROM

Erasable Programmable Read Only Memory. A ROM that can be
erased and reprogrammed by an equipment manufacturer using
specialized equipment. '

Escape sequence

A string of characters including an escape (ESC) character, a numeric
parameter and a function code which is recognized as a Display
control.

expression

A combination of data-names, numeric literals, and named constants,
joined by one or more arithmetic operators in such a way that the
expression as a whole can be reduced to a single numeric value.

Extended Listener

A listener instrument that requires a two-byte address. See secondary
commands.

Extended Talker

A talker instrument that requires a two-byte address. See secondary
commands.

D-7



Glossary

FDOS

file

Floppy Disk Operating System program. FDOS is the executive
monitor program of the 1722A Instrument Controller, and is supplied
as a file on the System Disk with the filename FDOS2.SYS. Usually
called “the Operating System”, FDOS is the Controller’s central
program. When any other program is exited, FDOS takes control
(unless the BASIC statement SET SHELL has been used to change the
environment). The purpose of FDOS is to load other programs.

A collection of related information designated by name as a unit.

file-structured device

Any bulk memory device where programs and data may be stored and
retrieved via a system directory.

File Utility Program (FUP)

The file management program provided with the standard Fluke
Instrument Controller software package. Provided on the system disk
as a file with the name FUP.FD2, this utility program permits
directory listing, transferring, deleting, and renaming files, and
formatting, packing, and zeroing the Controller’s devices.

firmware

flag

Computer programs and data that are recorded in permanent meméry.
See ROM.

A symbol that indicates a status condition. System flags can be used to
indicate the presence of command files or to indicate a state of system
readiness.



Glossary

floating-point variable

A representation of a general-purpose number. They are characterized
by wide range (up to 308 places from decimal) and high resolution (up
to 15 places). When displayed without modification, up to seven of the
digits are displayed, with the last one rounded if necessary. If the
decimal is out of range of the display, an exponent of ten is included to
bring it to just left of the first number. For example, .00123456789 is
displayed as 0.1234567e-02, and 1234567.89 is displayed as 1234568.
Note that the inexactness of floating-point representation occasionally
must be considered. For example, IF 7*(1.7)=1 will evaluate false. See
integer.

floppy disk

A bulk storage recording device that uses a flexible mylar disk similar
to recording tape to record programs and data. The location of
information on the disk is identified by track (distance from center)
and sector (pie-shaped radial subdivision).

flowchart

FUP

A pictorial, symbolic representation of a program. Various shapes
represent commands, computations, or decisions. A flowchart is the
recommended step between an algorithm specification and program
writing. It facilitates understanding and debugging because it breaks
the program down into logical, sequential modules.

See File Utility Program

graphics plane

The portion of the display memory where the lines and patterns
displayed by the graphics routines are stored. The area is measured in
pixels, rather than bytes. One pixel is the smallest amount of graphics
information that can be stored or displayed. The graphics plane is 2048
pixels long and 256 high. The display provides a moveable window
looking into the graphics plane. The window is 640 by 224 pixels. See
character plane.

handshaking

Refers to the 3-wire hardware protocol used to exchange data on the
bus. The three bus lines (DAV, NRFD, and NDAC) indicate a remote
instrument’s readiness to send or receive data.

D-9



Glossary

hexadecimal

A number system based on 16 digits. Sometimes called hex, the system
uses A, B, C, D, E, and F, to represent the numbers above 9.

high-level language

Any programming language that requires conversion through a
compiler or interpreter into machine code instructions. Examples of
high-level languages are BASIC and FORTRAN.

Institute of Electrical and Electronic Engineers, Inc., 345 East 47th
Street, New York, NY, 10017. The IEEE is the publisher of Standard
488-1978 used for interconnecting instruments to the Fluke Instrument
Controller through the bus.

IEEE-488-1978

A bus standard agreed upon by participating instrument
manufacturers for the interconnections of instruments into a
functional system. Also known as the GPIB (General Purpose
Instrumentation Bus). The standard is published and maintained by
the IEEE.

Immediate mode

A method to use BASIC directly as each line is typed in rather than
storing a sequence of lines as a program for later execution. In
Immediate Mode, line numbers are not used and each line is executed
as soon as the RETURN key is pressed.

Instrument Controller

In an IEEE-488 system, designates the piece of equipment that asserts
control over the bus, and which establishes the roles of other connected
euipment as listeners or talkers.

integer variable

A representation of an exact number. They are characterized by
limited range (32768 to 32767) and numeric resolution. Integers are
normally used for event counting, and for comparisions where
exactness is required. See also floating-point.



Glossary

interface

A hardware and software connection of a device to a system. For

example, in the Fluke Instrument Controller, the DMA/Floppy

Interface is needed for the system to gain access to the floppy disk.
interpreter

A system software program that interprets the statements of a high-
level language program (such as BASIC), producing and executing
machine code.

lexical file

An intermediate form of an application program that occupies less
space and eliminates some processing steps for the Fluke BASIC
Interpreter. Line numbers are represented in binary format and all
commands and operators are reduced to binary form. Lexical files
always have “.BAL” extensions.

listener

A bus device designated by a controller to receive data or instructions
from a designated talker or controller. There can be more than one
listener on a bus at the same time.

loader

A program which places another program into main memory for
execution.

logical expression

An expression containing variables, constants, function references,
etc., separated by logical operators and parentheses.

logic operator

A functions that performs comparions, selections, matching, etc. In
BASIC, the logical operators are AND, OR, NOT, and XOR. These
are used for either Boolean operation or for bit-manipulation.

machine code

The coded bit-patterns of directly executable machine-dependent
computer instructions, represented by numbers or binary patterns.

D-11




Glossary

machine-dependent program

A program that operates on a particular model of computer.

machine-independent program
A program that operates on any computer system that has the
necessary hardware and supporting software.

main memory

The RAM memory from which the microcomputer directly executes
all instructions and which is used for fast, intermediate storage of data
or programs.

main memory array

An array that is stored in main memory.

management lines
Five of the sixteen lines on an IEEE-488 bus. The lines are ATN
(Attention), IFC (Interface Clear), REN (Remote Enable), EOI (End
Or Identify), and SRQ (Service Request), and call for an immediate
and specific action, or flag a condition existing on the bus.
Operating System
A computer program that manages the resources of computer through
task scheduling, I/ O handling, and file management. See FDOS.
operator
A term for symbols within an application program (such as + or <)
that identify operations to be performed.
Operator’'s Keyboard
The Touch-Sensitive Display.

parallel poll

A method of simultaneously checking the status of up to eight
instruments on a bus by assigning each instrument a data line to
transmit a service request.

D-12



Glossary

parity
A method of error detection that uses one extra bit for each unit of
information (such as a byte). The parity bit is set to one or zero so that
the total number of one-bits in the byte is even or odd.

pathname

The full designation of a file. The three parts are the device name, file
name and extension. The first two are separated by a colon, and the last
two by a period.

pixel
Acronym for picture element; the smallest amount of visual
information that the display is able to resolve; one dot.

port

A connection point used for data transfer. See interface.

Primary command

An ASCH character typically used as a bus eommand.

program

Any meaningful sequence of computer instructions that cause a system
to accomplish a desired task.

PROM

Programmable Read Only Memory, a memory IC that can be
recorded by an equipment manufacturer using specialized equipment.

protection state

Files prepared on the Controller are assigned a value, either + or - to
indicate the intent of the author either to prevent or allow alteration. A
file with the + state is protected and will not be written over. A - state
indicates that the file may be altered if desired. All newly created files
are assigned the — state, All files supplied on the System disk with the
Controller are protected. The File Utiltiy Program includes commands
for changing the protection state of files.

protocol

A set of rules for exchange of information between a system and a
device or between two systems.

D-13



Glossary

RAM

Random Access Memory. Through common usage, the term has come
to mean the high-speed volatile semiconductor memory that is
normally used for system and user memory.
random access
A method of obtaining inforamtion out of memory; each word of a file
can be accessed via its own discrete address. See also sequential access.
raster

The scanning pattern of an electron beam on a CRT display. A raster
display uses the same scan pattern all the time, forming images by
turning the beam on and off at appropriate times.

RESTART

Front panel switch that resets the system. When pressed alone,
RESTART causes a warm start. When pressed at the same time as
ABORT, causes the system to perform a cold start.

ROM

Read Only Memory, used for permanently recorded computer
programs and data.

RS-232-C

A digital communications standard agreed upon by participating
manufacturers of data communication equipment for the transfer of
serial digital data between data communication equipment (DCE) and
data terminal equipment (DTE). The 1722A is a DTE device. The
standard is published and maintained by the Electronic Industries
Association.

scientific notation

A system for describing real or integer numbers via a shorthand form
of floating-point notation.

Secondary command

IEEE488 bus commands used to increase the address length of
extended talkers and listeners to two bytes.

D-14



Glossary

serial data

Information transmitted one bit at a time over a single wire at a
predefined baud rate.

sequential access

~ A method of accessing data in a file by looking at each piece of data, in
order, until a match is found. See also random access.

serial poll

A method of sequentially determining which instrument on a bus has
requested service. One instrument at a time is checked via the eight
data lines.

serial port

An external connector that conforms to the industry standard RS-232-
C. Normally, asynchronous ASCII codes are used unless otherwise
desired.

SET Utility Program

The program that changes the parameters of the 1722A’s serial
communications ports. Supplied on the System Disk with the filename
SET.FD2, this program permits configuring the Controllerso it is able
to communicate with other devices that implement the RS-232 Serial
Data Communications standard. Parameters that can be changed
include baud rate, parity bit, number of bits per character, stall input
and output characters, and time out value.

shell

The Controller’s environment, either defaulted to FDOS or changed
by the BASIC language SET SHELL statement. When RESTART is
pressed, the Controller returns to the program named by the SET
SHELL statement, rather than to the bootstrap loader PROM.

simple variable

Fluke BASIC program variable that is either an integer or floating-
point value (not a character string) and contains only one value (not
dimensional).



Glossary

soft-sectored

In floppy disks, the beginning of every sector on a disk is determined by
checking certain data patterns. Hard-sectored disks have
predetermined sector beginnings designated by a physical marker,
such as a hole.

software
Computer programs and data recorded and used on a medium that can
be erased and rewritten by program command.

source

This term has two meanings: 1. The pathname where information
presently resides when using a File Utility Program command that
moves a file from one place to another; the input side of the channel. 2.
An instrument connected to the bus and transmitting either command
mode or data mode information.

string variable
An expression that represents collections of characters that may or
may not be numeric.

structured programming

A method of programming which require an initial design process to
lay out the program structure in a modular form. Structured
programming minimizes ‘spaghetti code’ programs by keeping GOTO
statements to a minimum and by using subroutines to structure the
program into discrete, easily readable modules.

subroutine

A section of a program that performs a specific function on request of
the main program or another subroutine. Subroutines are used in
BASIC via the GOSUB statement.

synchronous data

Digital information transmitted in predetermined message block sizes
with a clock signal to synchronize the receiver. See asynchronous data.

syntax

The proper grammar required for an interpreter to recognize and
execute a program statement.

D-16



Glossary

syntax diagram

A pictorial representation of the grammar required for the execution
of a program statement.

system

Any interconnection of instruments or other devices that cooperate to
accomplish a task. A controller is an essential part of a system
whenever the designations of talkers and listeners needs to be changed
during the task. A controller is a necessary part of any system that
requires data processing or a centralized control point.

System Device

The designated file-structured device on the Controller that acts as the
primary file storage module. The floppy disk or electronic disk may be
designated as the system device by the File Utility program’s Assign
option. The floppy disk drive (MFO:) is the default system device.

system directory

The listing of program and data files on a bulk storage, file structured
device. '

system memory

Those portions of the Random Access Memory allocated for use by the
operating system and utilities or BASIC Interpreter.

system software

The collection of programs used to handle file management procedures
on a system.

Talker

An IEEE-488 connected instrument that has been designated by the
controller on the bus to send data to listeners.

Time and Date Utility Program

The program that sets the time and date of the Controller’s real time
clock. Supplied on the System Disk with the filename TIME.FD2, this
program accepts the time and date by keyboard inputs, and transmits
the information to the real-time clock. With battery back-up, the clock
maintains the correct time and takes into account leap years. The clock
can be used to time and date stamp programs or data collected by
programs, or to perform an operation at a specified time.

D-17



Glossary

Touch-Sensitive Display
The combination of the display screen and the touch-sensitive panel
which acts as the operator’s keyboard.

warm start

The activities the Controller performs when the RESTART switch is
pressed: ceases the current operation and returns to the shell. See cold
start.

Universal command
A message sent across the data lines of a bus that affects all connected
instruments whether or not they are designated as listeners.

user memory
Area reserved in main memory for storage and execution of user-
written application programs and data.

variable

A representation of a quantity, or the quantity itself, which can assume
any of a given set of values. A variable may be integer, string, or
floating point value designators.

virtual array

A matrix stored on a file-structured storage medium as a random
access file. Virtual arrays can be integer, string, or floating-point arrays
with one or two dimensions. Once a virtual array file has been opened
and the virtual array has been dimensioned, the array elements are
handled by the programmer exactly as they are in main memory array.

yank buffer

A temporary memory location where the System Editor program can
store data “yanked” from a file.



Appendix E
Custom Character Sets

This appendix describes the relationships among data in the Character
EPROM (U32), ASCII codes received as input, and the images
displayed on the 1722A screen. This information and an EPROM
programmer allow you to create custom character sets for your 1722A.

Character cell dot patterns are stored in a 2732A type EPROM. The
standard character set capacity is 128 characters. The alternate
character set capability provides an additional 128 characters for a
total of 256 characters. Each character uses 16 of the PROM’s
locations (0 though F). In both the standard and the alternate
character set modes, 115 characters can be displayed directly. Eleven of
the remaining characters are displayed through the Character
Graphics Mode.

Depending on the revision level of the Video-Graphics-Keyboard
module, the character sets may be identical, or the alternate font may
contain a selection of symbols and non-English characters. Each
character is contained in a cell 8 dots wide by 14 dots high. Since every
dot in each character cell can be displayed, all character codes are
available for graphics.

CAUTION
Leave character position 32 (decimal) blank. ASCII character
32 is the space character. Erase operations write this character
on the screen, so position 32 must be left blank.



Custom Character Sets

E-2

The rules by which standard ASCII display characters are defined
follow. This information is provided for reference as you design any
characters you wish.

O Standard ASCII characters are 9 dots high and up to 7 dots wide.

0 The topmost row is left blank to provide the spacing between the
lines. :

O The leftmost column is left blank for spacing between characters.
o Row D is reserved for underlines.

Upper-case characters, numerals, and symbols like the percent and
dollar signs, brackets and braces, conform to these rules:

1. They start on row 1.

2. They extend to row 9.
O Lower-case letters with ascenders (like the letter ‘h’) start at row 2.
0 Lower-case letters with descenders (like ‘g’) extend down torow D.
O Other characters (like ‘a’ or the symbol ‘@’) start on row 4.
Sixteen bytes are reserved in the EPROM for each character cell. The
first byte corresponds to the top row of dots in the cell. The fourteenth

byte corresponds to the bottom row. The last two bytes are not used,
because the hardware does not address these locations.

The hexadecimal EPROM address of each byte is its ASCII code in
hexadecimal followed by its byte number within the cell. For example,
412 is the EPROM address of the third row of ASCII character
number 41 (A). A 1-bit corresponds to a displayed dot.



Custom Character Sets

EXAMPLE
This example shows how the capital letter H (ASCII 48) is encoded.

ADDRESS 1722A DISPLAY CODE
iN ROM BYTE
84218421

480 . e o o o o 00
481 [ ¢ o ¢ o o 41
482 [ e ¢ o o o 41
483 . e o o o o 41
484 . . . 41
485 . 7F
486 . ¢ o o o o 41
487 . o o o o o 41
488 ] e o o o o 41
» 489 . e o o o o 41
48A e o ® ¢ ¢ o o o 00
488 ® o o 0 0 0 o o 00
48C ¢ o 6 0 0 0 o o 00
48D e o ¢ o o o o o 00
48E e o o o o o o o 00
48F e o o o s 0 o o 00

E-3




Custom Character Sets

THINGS TO KEEP IN MIND

E-4

Before starting, program the first 128 locations in the new EPROM
with the standard Character set. Set aside the EPROM that is
presently in the Controller. Now program the new character set
into the last 128 locations of the copy. Taking these measures will
ensure that if an error is made, you will still be able to use the
original EPROM in the 1722A. Not only is the display needed in
order to perform diagnostics, but the original EPROM must be in
place if you ever need to send the module in for exchange.

Thirteen character codes in each character set are interpreted as
control codes. Eleven of the characters in these locations can be
displayed in the Character Graphics Mode. To select this mode,
send the sequence ESC [2p.

In the Character Graphics Mode, character patterns are selected

for display from the EPROM start addresses listed in the table
below.

CHARACTER GRAPHICS MODE EPROM START ADDRESSES

CHARACTER
RECEIVED EPROM PATTERN START ADDRESS (HEXADECIMAL)
STANDARD ALTERNATE
Y 000 800
1 070 870
2 080 880
3 090 890
4 0AO 8A0
5 0B0 8B0
6 0Co 8C0
7 oDO 8D0
8 OEO 8EO0
9 OF0 8F0
: 110 910
NOTE

The alternate character set contains the double-size graphics
characters, so it is necessary to send the escape sequence for
double size when addressing these locations.



Custom Character Sets

EPROM INSTALLATION PROCEDURE

CAUTION

You may violate your warranty if you damage the 1722A during
the following procedure. To be sure that your warranty stays
intact, any Fluke Service Center will be pleased to install the
new EPROM.

Once the PROM has been programmed, use this procedure to install it:

1.
2.

4.

Set the 1722A Power switch to OFF and disconnect line power.

Remove the card cage cover (Phillips head screws) and slide
out the Display Module from slot number 2.

Use a proper IC removal tool to remove the standard character
set EPROM (U32).

NOTE

Save the standard EPROM. If the 1722 A should need repair, it
must have the standard character set EPROM installed. The
Fluke Service Center will need it for proper diagnostic
displays. If you return a 1722 A for repair without a standard
character set EPROM, you'll probably be charged for a new
one. ‘

Use an IC installation tool to install the custom character set
EPROM.

Reinstall the Display Module and the rear cover.
Connect line power and turn on the power.

Test the new PROM by using the sample BASIC language
program on the next page to display both character sets. The
program works by displaying the primary character set when
you command “RUN”, and the second when you touch the
screen. Both fonts are displayed in double-size to let you see the
characters more clearly, and the program toggles between the
two character sets for comparison.



Custom Character Sets

10 ON CTRL/C @OTO 200
20 ES =CHR$(27) + "[" \ BL$¢ = “ " \ FLX = 0
30 PRINT ES$ + "1p*;

40 JIF FL% = 1 THEN 70 .
S0 PRINT CPOS(1,0); "Standard - Touch Screen for Alternate”
60 @OTO 80

70 PRINT CPOS(1,0); "Alternate -~ Toucth Screen for Standard"
80 PRINTY CPDS(2.4);

90 FOR I = 1 TO & \ PRINT CHRS (I); \ NEXT I

100 FOL I = 7 TO 13 \ PRINT BLS; \ NEXT I

110 FOR I = 14 TO 26 \ PRINT CHRS (1); \ NEXT 1 \ PRINT BLS;

120 FOR I = 28 TO 31 \ PRINT CHRS (I); \ NEXT 1

130 PRINT CPOS(4,4); FOR I = 32 TO 63 \ PRINT CHRS (I); \ NEXT I
140 PRINT CPOS(6.4); FOR I = 64 TO 95 _\ PRINT CHRS$ (I); \ NEXT 1
130 PRINT CPOS5(8.4); FOR I = 96 TO 127 \ PRINT CHRS$ (I); \ NEXT I
160 WAIT FOR KEY \ ON KEY €0OTO 170

170 WK% = REY \ IF FLs = O THEN 180 ELSE 190

180 PRINT CHR$(14%); FLX% = 1 \ GOTO 40

190 PRINT CHR$(15%); FL. = O \ GDTD 40

200 PRINT CHR$(27) + “[P" \ END

E-6



EPROM Programming Worksheet

Address

|
|
TMOO WP O®~NOONHWN=0

|
|
TMOODPOO®~NONHEWN 2O

8 4 2 1

|
|
TMOOWPOONONHWN—-O

|
i
MTMOODMPOO®NOALWN=O

1

8

This page can be photocopied for aiding in the design of custom
character sets.



EPROM Programming Worksheet

@ | Vbt
]

P SR U S N T S T O I A O (R A B |
-

o

~

)

i

o

<t

- —
POoOraumosTmONOoOOCODOOWLL
o -

e TL L T T R O N N I B
©

< L

Data

OrNOTVOMNMNODOLCODOOWLW
| T S T Y Y T Y N O T I T |
| T T T Y Y Y H N (R B B

Address (8 4 2 18 4 2 1

OraNMOMSTVONODOOTLN OO W LW
| T O T e T e e I T T
| N N

OraNOYTVwOMNODOLCOD OO WLW
| O R R T R T T T B
L e T T T e R T S T



Appendix F
Primary Character Set

. ASCIl & BUS CODES

B’Bs 00 00 00 00 01 0 01 012éEi
Bs 0 0 1 1 0 0 1 128
BITS B4 0 1 0 1 0 1 0 124
B3 B2B8' B SYMBOLS
-
] 0|16 100 32 20 | 48 30 64 40 B-O 50 96 60| 112 70
.
0 00 o] NUL [ ] SpP 0 P
NUL DLE SPACE MLAC | O MLAE @ MTAO | P MTA18 MSAO | P MSA16
1 1 17 1" a3 21 | 49 3 65 41 | 81 51 a7 61 113 kal
0001 B 1 ! 1 A Q a
SOH GTL | DC1 ! MLA T |1 MLA17 A MTA1 | Q MTA17 a MSA1| q MSA17
2 2|18 129 34 22 32 66 42| 82 52 62] 114 72
”
0010 Y T 2 B R b r
STX DC2 MLAZ | 2 MLA18 B MTA2 | R MTA18 b MSA2| r MSA18
3 3|18 13 35 23 | 51 33 67 43|83 53 a9 83| 115 73
00 11 ] v # 3 c S c s
ETX DC3 13 MLA3 | 3 MLA19 C MTA3 | S MTA19 c MSA3| s MSA1S
4 4|20 14 36 24 | 52 34 &8 44 | 84 54 100 64| 116 74
0100 € b 4 D T
EOT SDC | DCa s MLA4 | 4 MLA20Q D MTA4 | T MTA20 d MSA4 | t MSA20
5 5|21 15 37 25 | 83 asy &9 45 85 55 101 6 | 117 75
010 1 X % 5 E v e u
ENQ PPC|NAK PPURl % MLAS | § MLA21 E MTAS5 | U MTA21 e MSAS5 | u MSA21
6 6|22 16 38 26| 54 36Q 70 46 | 86 56 102 66| 118 76
oc110| = v & 6 F v f v
ACK SYN & MLAG | 6 MLA2Z2R F MTAS | V MTA22 1 MSAB | v MSA22
7 7123 170 39 27 | 55 I N 47 | 87 57 103 67 119 77
,
01 11 BEL w 7 G w w
BEL ETB . MLA7 | 7 MLA23R G MTA7 { W MTA23 ] MSA7 | w MSA23
8 824 18 40 28| 56 38 72 48 | 88 58 104 68| 120 78
1000 BS Q 8 H X X
> BS GET | CAN SPE ( MLAB | 8 MLA24 H MTAB | X MTAZL R MSA8 | x MSA24
9 8|25 19 ¢ 29 | 57 39Q 73 49 | 89 58 105 8| 121 79
10 01 HT | v 9 I Y i
HT TCT | EM ) MLA9 | 9 MLAZSQ | MTA9 | ¥ MTA25 i MSA9 | x MSA25
10 Al26 1A 42 2A |58 3A 74 4A | 90 5A 106 6A | 122 TA
N R
1010 LF — : J Y 4 z
LF SUG . MLAO | ¢ MLA26 J MTA10 | Z MTA26 i MSAI0| 2z MSA26
11 B| 27 1B 43 28 | 59 a8 75 4B | 58 107 68 | 123 78
1011 ESC + ; K
VT ESC + MLA11 | MLA27 K MTAtt | [ MTA27 k MSA11 { MSA27
12 [of 23 1CQ 44 2C | 60 3c 76 4C |92 5C 108 6C | 124 . 7C
1100 FF t , < \ H
FF FS N MLAI2 | < MLA28 L MTA12{ \ MTA28 | MSat12| | MSA28
13 [o] 2] 10 45 2D |6 30 77 4D | 93 5D 109 6D 125 7D
1101 CR | + - = M m }
CR GS - MLA13 | = MLA29f M MTA13 ] MTA2Z9] m  Msaia | } MSA29
14 E{ 30 2E 46 2E | 62 3E 78 4E | 94 S5E 110 6E | 126 7€
1110 SO > . > N A n ~
MLAT4 | > MLA30 N MTA14 | A MTA3C n MSA14 ~ MSA30
15 fFln 1F a7 2F] 63 IF 79 4F | 95 5F 1m 6F 127 F
1111 | - / ? o — o |
Si uUs / MLA1S| ? UNL o] MTA15 | — uut o MSA1S | RUBOUT
23 22 2' 2° JADDRESSED UNIVERSAL LISTEN TALK SECONDARY ADDRESSES
COMMANDS COMMANDS ADDRESSES ADDRESSES OR COMMANDS
decimal 3 2% hex
KEY & 1722A DISPLAY
& MLAG it
ASCII (ii-LA8




ABORT, 7-7
Accessories, B-4

Alias file
Creating Aliases, 7-9
Defined, 4-9, 7-9
Standard Aliases, 7-11

BASIC
Compiler Program, 6-3
Entry from FDOS, 3-8
Environment (SET SHELL), 7-8
Interpreter Program, 6-3
Prompt, 3-8

Baud Rate
Changing, 5-9, 5-21
Default, 5-21

Bootstrap Loader, 3-3
Character Graphics, 8-4, 8-6
Character EPROM, E-1
Cold Start, 4-3

Command Files
Creating, 7-3
Defined, 4-9, 7-3
Startup Command File, 3-6, 4-9, 7-6, 7-32

Command Line Interpreter
Defined, 3-10
Editing Features of, 6-6
Special Characters in Command Files, 7-4

Commands
Command File, 7-4
Edit Program, 6-8 - 6-43
FDOS, 6-5
File Utility Program, 4-11, 4-18 - 4-31
Set Utility Program, 5-17, 5-21 -~ 5-25

Index

Communications
IEEE-488, 5-3 (Sample Program, 5-13)
RS-232, 5-16 (Sample Program, 5-28)

Configuration
Iltustrated, 2-15
Table, B-3

Connecting
IEEE-488 Bus, 2-19, 5-8
RS-232 Cable, 5-31

Connector, IEEE-488 Pinout C-1
Controller in Charge (switch), 2-14, 5-9
Definitions, D-1

Devices
Defined, 4-3
Electronic Disk, 4-8
IEEE-488, 4-7
Mini-Floppy, 4-7
Optional, 4-4
RS-232, 4-6
Standard, 4-4
System Device, 4-3
Winchester Drive, 4-8

Display (section 8)
Characters, 8-3-8-17
Graphics, 8-18
Planes, 8-3,8-18

Edit Program (System Editor)
Command Mode, 6-15
Control Commands, 6-33
Error Messages, 6-44
Essential Commands, 6-10
Global Commands, 6-37
Insertion Mode, 6-9 (table, 6-14)
Marker Commands, 6-27
Search Commands, 6-25
Target Commands, 6-35
Yank Buffer, 6-15



Index

Editor Program (BASIC), 6-2
Electronic Disk (E-Disk), 4-8

Environment, Physical
Floppy Disks, 2-8
Specifications, A-1

Environment, Programming
SET SHELL Statement, 7-8

Error Messages - see System Messages
Exteﬁsions (file types), 4=5

Features, 2-3

Filenames, 1-6, 4-14

File Types (also see extensions)
Alias File, 7-9
Command Files, 7-3

File Utility Program (section 4)
Automating, 7-17
Commands, (described), 4-18

(table), 4-12
(syntax), 4-32
Entering, 4-11
Exiting, 4-30
Help Command, 4-11
Messages, 4-36
Syntax Diagrams, 4-32

Fuse, 2-5, A-2
Glossary, D-1

Graphics
Character Graphics, 8-4-8-7
Link to Object File, 8-18
Plane, 8-18
Routines, 8-22-8-32

Hardware
Configuration, 2-4, 2-5
Options, B-1
Physical Layout, 2-4

IEEE-488-1978
Address Switch, 2-14, 5-9
Automating a System, 7-18
Connector Pinout, C-1
Defined, 5-3
References, C-1
Sample Program, 7-29
Setting up a System, 2-14, 7-18

Installation (section 2)
Bench Mounting, 2-16
Bringing the System Up, 2-20
Rack Mounting, 2-18
Sample System, 2-20

Keyboard, 2-5, 2-17

Manual Usage, 1-4 (also see Getting Started p.20)

Multiple Controller Systems, 2-14, 5-9

Notation
Keyboard Inputs, 1-7
Syntax Diagrams, 1-5

Operating System
Command Line Interpreter, 3-10, 6-5
How to Create New System Disks, 3-12
Options, B-1, B-2
Parallax Error, 2-16
Pathname, 4-14
Physical Layout
Front Panel, 2-5

Interior, 2-4
Rear Panel, 2-5



Power
Input, 2-4
Specifications, A-2
Switch, 2-5

Programming
Command Files, 7-3
Communications, 5-12, 5-27
Sample System, 7-18
Selecting a Language, 6-3

Prompt
BASIC, 3-8
FDOS, 2-13
File Utility Program, 4-11
Set Utility Program, 5-17
Time and Date Utility Program, 3-7

Rack Mounting, 2-18
RESTART, 3-3, 3-9, 4-3
Sample Programs
IEEE-488, 5-13
RS-232, 5-28
System, 7-29
Self Test, 3-3

Serial Port
Setting Parameters, 5-17

Setting
IEEE-488 Bus Address, 5-9
The Time, 3-7
RS-232 Port Parameters, 5-21

Software, 3-9, 6-3
Optional Languages, B-2

Startup ‘Command F ile, 3-6

Static, 2-8

Index

Syntax Diagrams
Defined, 1-5
How to Read, 1-5
File Utility Program, 4-32 - 4-35
Set Utility Program, 5-20
Creating and Using Aliases, 7-9, 7-10

System Controller (switch), 59
System Generation Utility Program, 3-14

System Messages
Alias File, 7-11
File Udlity Program, 4-36 - 4-38
Self-test, 3-4
Set Utility Program, 5-26
System Editor Program, 6-44

Time and Date Utility Program
Setting the Time, 3-7
Use in Command Files, 7-15
Use in Programs, 7-15
Touch Sensitive Display, 8-3
24-Hour Format, 3-7
Unpacking, 2-6
Utility Programs
File Utility, 4-11, 7-17
Set Utility, 5-16, 7-17
System Generation Ultility, 3-12
Time and Date Utility, 3-7, 7-15
Warm Start, 4-3

Winchester Device, 4-8

Workbench Installation, 2-16






	sys fc
	Fluke 1722A System
	p1008
	p1009
	p1010
	p1011
	p1188
	p1189
	p1190
	p1191
	p1192
	p1193
	p1194
	p1195
	p1196
	p1197
	p1198
	p1199
	p1200
	p1201
	p1202
	p1203
	p1204
	p1205
	p1206
	p1207
	p1208
	p1209
	p1210
	p1211
	p1212
	p1213
	p1214
	p1215
	p1216
	p1217
	p1218
	p1219
	p1220
	p1221
	p1222
	p1223
	p1224
	p1225
	p1226
	p1227
	p1228
	p1230
	p1231
	p1232
	p1233
	p1234
	p1235
	p1236
	p1238
	p1239
	p1240
	p1241
	p1242
	p1243
	p1244
	p1245
	p1246
	p1247
	p1248
	p1249
	p1250
	p1251
	p1252
	p1253
	p1254
	p1255
	p1256
	p1257
	p1258
	p1259
	p1260
	p1261
	p1262
	p1263
	p1264
	p1265
	p1266
	p1267
	p1268
	p1269
	p1270
	p1271
	p1272
	p1273
	p1274
	p1276
	p1277
	p1278
	p1279
	p1280
	p1281
	p1282
	p1283
	p1284
	p1285
	p1286
	p1287
	p1288
	p1289
	p1290
	p1291
	p1292
	p1293
	p1294
	p1295
	p1296
	p1297
	p1298
	p1299
	p1300
	p1301
	p1302
	p1303
	p1304
	p1305
	p1306
	p1307
	p1308
	p1309
	p1310
	p1311
	p1312
	p1313
	p1314
	p1316
	p1317
	p1318
	p1319
	p1320
	p1321
	p1322
	p1323
	p1324
	p1325
	p1326
	p1327
	p1328
	p1329
	p1330
	p1331
	p1332
	p1333
	p1334
	p1335
	p1336
	p1337
	p1338
	p1339
	p1340
	p1341
	p1342
	p1343
	p1344
	p1345
	p1346
	p1348
	p1349
	p1350
	p1351
	p1352
	p1353
	p1354
	p1355
	p1356
	p1357
	p1358
	p1359
	p1360
	p1361
	p1362
	p1363
	p1364
	p1365
	p1366
	p1367
	p1368
	p1369
	p1370
	p1371
	p1372
	p1373
	p1374
	p1375
	p1376
	p1377
	p1378
	p1379
	p1380
	p1381
	p1382
	p1383
	p1384
	p1385
	p1386
	p1387
	p1388
	p1389
	p1390
	p1391
	p1392
	p1394
	p1395
	p1396
	p1397
	p1398
	p1399
	p1400
	p1401
	p1402
	p1403
	p1404
	p1405
	p1406
	p1407
	p1408
	p1409
	p1410
	p1411
	p1412
	p1413
	p1414
	p1415
	p1416
	p1417
	p1418
	p1419
	p1420
	p1421
	p1422
	p1423
	p1424
	p1425
	p1426
	p1427
	p1428
	p1429
	p1430
	p1431
	p1432
	p1433
	p1434
	p1435
	p1436
	p1437
	p1438
	p1439
	p1440
	p1441
	p1442
	p1443
	p1444
	p1445
	p1446
	p1447
	p1448
	p1449
	p1450
	p1451
	p1452
	p1453
	p1454
	p1455
	p1456
	p1457
	p1458
	p1460
	p1462
	p1463
	p1464
	p1466
	p1467
	p1468
	p1469
	p1470
	p1472
	p1474
	p1475
	p1476
	p1477
	p1478
	p1479
	p1480
	p1481
	p1482
	p1483
	p1484
	p1485
	p1486
	p1487
	p1488
	p1489
	p1490
	p1491
	p1492
	p1493
	p1494
	p1495
	p1496
	p1497
	p1498
	p1499
	p1500
	p1501
	p1502
	p1504
	p1505
	p1506

	rc3

