515A Portable Calibrator

Instruction Manual

WARRANTY

Notwithstanding any provision of any agreement the following warranty is exclusive:
The JOHN FLUKE MFG. CO., INC., warrants each instrument it manufactures to be free from defects in material and workmanship under normal use and service for the period of 1 -year from date of purchase. This warranty extends only to the original purchaser. This warranty shall not apply to fuses, disposable batteries (rechargeable type batteries are warranted for 90-days), or any product or parts which have been subject to misuse, neglect, accident, or abnormal conditions of operations.

In the event of failure of a product covered by this warranty, John Fluke Mfg. Co., Inc., will repair and calibrate an instrument returned to an authorized Service Facility within 1 year of the original purchase; provided the warrantor's examination discloses to its satisfaction that the product was defective. The warrantor may, at its option, replace the product in lieu of repair. With regard to any instrument returned within 1 year of the original purchase, said repairs or replacement will be made without charge. If the failure has been caused by misuse, neglect, accident, or abnormal conditions of operations, repairs will be billed at a nominal cost. In such case, an estimate will be submitted before work is started, if requested.

Abstract

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS, OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. JOHN FLUKE MFG. CO., INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT, OR OTHERWISE.

If any failure occurs, the following steps should be taken:

1. Notify the JOHN FLUKE MFG. CO., INC., or nearest Service facility, giving full details of the difficulty, and include the model number, type number, and serial number. On receipt of this information, service data, or shipping instructions will be forwarded to you.
2. On receipt of the shipping instructions, forward the instrument, transportation prepaid. Repairs will be made at the Service Facility and the instrument returned, transportation prepaid.

SHIPPING TO MANUFACTURER FOR REPAIR OR ADJUSTMENT

All shipments of JOHN FLUKE MFG. CO., INC., instruments should be made via United Parcel Service or "Best Way"* prepaid. The instrument should be shipped in the original packing carton; or if it is not available, use any suitable container that is rigid and of adequate size. If a substitute container is used, the instrument should be wrapped in paper and surrounded with at least four inches of excelsior or similar shock-absorbing material.

CLAIM FOR DAMAGE IN SHIPMENT TO ORIGINAL PURCHASER

The instrument should be thoroughly inspected immediately upon original delivery to purchaser. All material in the container should be checked against the enclosed packing list. The manufacturer will not be responsible for shortages against the packing sheet unless notified immediately. If the instrument is damaged in any way, a claim should be filed with the carrier immediately. (To obtain a quotation to repair shipment damage, contact the nearest Fluke Technical Center.) Final claim and negotiations with the carrier must be completed by the customer.

The JOHN FLUKE MFG. CO., INC, will be happy to answer all applications or use questions, which will enhance your use of this instrument. Please address your requests or correspondence to: JOHN FLUKE MFG. CO., INC., P.O. BOX C9090, EVERETT, WASHINGTON 98206, ATTN: Sales Dept. For European Customers: Fluke (Holland) B.V., P.O. Box 5053, 5004 EB, Tilburg, The Netherlands.
*For European customers, Air Freight prepaid.
John Fluke Mfg. Co., Inc., P.O. Box C9090, Everett, Washington 98206

Table of Contents

SECTION TITLE PAGE
1 INTRODUCTION AND SPECIFICATIONS 1-1
1-1. INTRODUCTION 1-1
1-6. SPECIFICATIONS 1-2OPERATING INSTRUCTIONS2-1
2-1. INTRODUCTION 2-1
2-3. INSTALLATION. 2-1
2-5 REPACKAGING FOR SHIPMENT 2-1
2-7. INPUT POWER REQUIREMENTS 2-1
2-9. BATTERY OPERATION 2-1
2-16. OPERATING FEATURES. 2-2
2-18. GENERAL OPERATION 2-2
2-22. GUARDED OPERATION 2-3
2-25. APPLICATIONS 2-5
3THEORY OF OPERATION3-1
3-1. INTRODUCTION. 3-1
3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1
3-17. SIMPLIFIED CIRCUIT ANALYSIS 3-3
3-18. Introduction 3-3
3-20. Power Supply 3-3
3-25. Battery Pack and Battery Charger and Protection 3-3
3-31. AC Generator 3-4
3-42. Output Transformer 3-6
3-44. $\quad 100$ Volt Rectifier and Regulator 3-6
3-46. 100Volt Regulator 3-6
3-49. Linearity Switch 3-6
3-51. 10:1 Divider 3-6
3-53. Microvolt Control and 10,000:1 Divider 3-6
3-55. Decade Resistors 3-6
3-57. Output Switching 3-6
SECTION TITLE PAGE
4 MAINTENANCE 4-1
4-1. INTRODUCTION 4-1
4-3. SERVICE INFORMATION 4-1
4-6. GENERAL MAINTENANCE 4-1
47. Cleaning 4-1
4-9. Fuse Replacement 4-1
4-11. Lamp Replacement 4-5
4-13. MAINTENANCE ACCESS 4.5
4-15. Major Section Access 4-5
4-16. Plug-in Assembly Removal and Installation 4-5
4-17. Battery Removal and Replacement
4-5
4-5
4-19. PERFORMANCE CHECKS
4-5
4-22. Preliminary Operation
4-5
4-23. Line and Load Regulation Checks
4-5
4-25. Frequency Check
4-6
4-26. AC Output Accuracy Check
4-6
4-30. Variable DC Voltage and Linearity Checks
4-8
4-31. 100VDC Check
4-10
4-32. Resistance Check .
4-10
4-33. CALIBRATION PROCEDURES
4-10
4-34. Introduction
4-10
4-37. Regulator Alignment
-10
-10
4-38. \quad Reference Supply Alignment
4-11
4-11
4-39. FET Bias
4-39. FET Bias
4-12
4-12
4-40. Zero Set
4-12
4-41. Output Bias
4-12
4-42. Detector Bias
4-12
4-43. Comparator Balance
4-13
4-44. Frequency Adjust
4-13
4-45. Amplitude by Thermal Transfer
4-13
4-47. Variable DC Voltage and Linearity Calibration
4-15
4-48. $\quad 100$ Volts DC Calibrator
4-15
4-49. Resistance Adjustments
4-15
4-50. COMPENSATING COMPONENT SELECTION
4-52. TROUBLESHOOTING
4-16
4-16
4-54. Initial Troubleshooting
4-16
4-16
4-57. $\quad+18 \mathrm{~V}$ and -18 V Regulators
4-57. $\quad+18 \mathrm{~V}$ and -18 V Regulators
4-16
4-16
4-59. AC Generator Checks
4-59. AC Generator Checks 4-17
4-63. +10 Volt Checks 4-17
4-65. Rechargeable Battery Pack 4-17
5LIST OF REPLACEABLE PARTS5-1
5-1. INTRODUCTION 5-2
5-4. HOW TO OBTAIN PARTS 5-2
5-7 USE CODE EFFECTIVITY LIST 5-2

TABLE OF CONTENTS (Continued)

List of Illustrations

FIGURETITLEPAGE
2-1. Line Power Switch Locations 2-1
2-2. Front Panel Controls and Indicators 2-3
2-3. Guarded Measurement Connections 2-5
3-1. 515A Simplified Block Diagram 3-2
3-2. Reference Amplifier 3-6
4-1. Top View 4-2
42. Bottom View Guard Installed 4-3
43. Bottom View Guard Removed 4-4
4-4. DC Reference Equipment Connections 4-7
45. Thermal Transfer Equipment Connections 4-8
46. 10V DC And Less Testing 4-9
47. 100V DC Testing 4-11
48. Resistance Connections 4-11
5-1. Front Panel View 5-5
5-2. Rear Panel View 5-6
5-3. Top View 5-7
5-4. Bottom View 5-8
5-5. Assembled View 5-9

LIST OF ILLUSTRATIONS (Continued)

FIGURE TITLE PAGE
5-6. Main PCB Assembly 5-19
5-7. Battery Pack PCB Assembly 5-21
5-8. DC PCB Assembly 5-23
5-9. Adjustment PCB Assembly 5-24
6-1. Side-by-side Rack Mounting 6-2
6-2. Offset Rack Mounting 6-2
8-1. Main PCB Schematic 8-3
8-2. Battery Pack PCB Schematic 8-5
8-3. DC And Adjustment PCB Schematic 8.7

List of Tables

TABLE TITLE PAGE
2-1. Front Panel Controls and Indicators 2-4
4-1 Required Test Equipment 4-1
4-2. Load Regulation 4-6
4-3 Output Amplitude Accuracy 4-8
4-4. Linearity Tests 4-9
4-5. Resistance Tolerance 4-10
4-6.
A and B Jumper Selection 4-16
4-7. Operating Voltage Checks 4-16
4-8 AC Generator Checks 4-16
4-9
100V DC Checks 4-17
4-10. 10 Volt DC Checks 4-17
4-11 Battery PCB Checks 4-18
5-1. Final Assembly 5-3
5-2 Main PCB Assembly 5-10
5-3 Battery Pack PCB Assembly 5-21
5-4. DC PCB Assembly 5-22
5-5. Adjustment PCB Assembly 5-24
7 -I List of Abbreviations 7-1
7-2. Federal Supply Codes for Manufacturers 7-3
7-3. Fluke Technical Service Centers 7-10
74. Sales Representatives - Domestic 7-11
7-5. Sales Representatives - International 7-13

Introduction \& Specifications

1-1. INTRODUCTION

1-2. The Fluke Model 515A enables the field checking and/or calibration of the dc voltage, ac voltage and resistance ranges of high-accuracy voltmeters and multimeters. The Model 515A provides standards for dc voltage, ac voltage and resistance which maintain the basic accuracy over the temperature range of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. Self-contained batteries permit operation at sites remote from ac power, and also permit operating temperature of the unit to be maintained while in transit. Up to eight hours of battery operation is available from a single charge. The batteries are charged within the calibrator when connected to the ac line. A front-panel meter indicates the state of battery charge when in the battery-operated mode.

1-3. All instrument outputs are provided at a single set of terminals located on the front panel. Generally, connections to the instrument under test may be made one time for a complete series of tests. In addition, terminals are provided to allow guarding and shielding of test leads. Guarded connections reduce the effects of common mode voltages, while shielding reduces the effects of electrical noise. The
front panel also contains all operating controls which are color-coded to simplify output voltage and resistance selection.
14. DC voltage outputs are selectable in the ranges of 0-999 microvolts (continuous), 100 millivolts to 1 volt in 100 -millivolt steps, 1 volt to 10 volts in 1 -volt steps, and 100 volts. AC voltages are selectable 1,10 and 100 V rms at $400 \mathrm{~Hz}, 10 \mathrm{~V} \mathrm{rms}$ at 4 kHz , and 10 V rms at 50 kHz . Resistance is selectable at zero, $10,100,1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ and 10 M ohms. All pushbutton selection switches are mechanically interlocked so that only a single function can be selected.

1-5. Power source switching within the calibrator permits the unit to operate on $100 \mathrm{~V}, 115 \mathrm{~V}, 200 \mathrm{~V}$ or 230 V at 50 Hz to 440 Hz . The HI \& LO front panel terminals are of solid copper to reduce the effects of thermal emf. In addition, the voltage outputs are fully protected against short circuit, and the resistance output will provide for the application of up to 200 milliwatts or 100 V (dc or rms), whichever is less.

Resistance

Range:
Accuracy:
0Ω :
$10 \Omega-100 \Omega$:
$1 \mathrm{k} \Omega-1 \mathrm{M} \Omega$:
$10 \mathrm{M} \Omega$:

Power Rating:
Temperature Coefficient:
0Ω :
$10 \Omega-100 \Omega$:
$1 \mathrm{k} \Omega-1 \mathrm{M} \Omega$:
$10 \mathrm{M} \Omega$

General

Size:
Weight:
Operating Temperature:
Storage Temperature:
Relative Humidity:
Input Power:

Output Connectors:

Shock:
Vibration:
Altitude:
10Ω through $10 \mathrm{M} \Omega$ in decade steps plus zero setting
(@23 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 1 year; referred to zero ohms setting)
Residual Resistance; $<0.15 \Omega$
$\pm 0.06 \%$
$\pm 0.015 \%$
$\pm 0.075 \%$
0.2 Watt or 100 V (DC or RMS), whichever is less
$\left(0^{\circ} \mathrm{C}\right.$ to $18^{\circ} \mathrm{C}, 28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$); referred to residual resistance
$<+0.4 \% /{ }^{\circ} \mathrm{C}$
$< \pm 10 \mathrm{ppm}$
$< \pm 5 \mathrm{ppm}$
$< \pm 10 \mathrm{ppm}$
$31 / 2^{\prime \prime} H \times 81 / 2^{\prime \prime} W \times 16^{\prime \prime} D$
13 lbs.
$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$; to $+60^{\circ} \mathrm{C}$ with batteries removed
$<70 \%, 0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
$100 / 115 / 200 / 230 \mathrm{~V} \mathrm{ac}, \pm 10 \%,<10$ Watts, $50-440$ single
phase or internal batteries. Eight hours operation from batteries when fully charged. Charging is automatic during line operation. Front panel meter indicates condition of charge and battery/line operation.

4 binding posts for HI, LO, GUARD and CHASSIS
HI \& LO terminals are solid copper
$15 \mathrm{~g} ., 11 \mathrm{msec}$ half-sine wave
MIL-T-21200L Class 2 or Class 3
0 to 10,000 feet operating 50,000 feet non-operating

static awarengss

A Message From John Fluke Mfg. Co., Inc.

Some semiconductors and custom IC's can be damaged by electrostatic discharge during handling. This notice explains how you can minimize the chances of destroying such devices by:

1. Knowing that there is a problem.
2. Learning the guidelines for handling them.
3. Using the procedures, and packaging and bench techniques that are recommended.

The Static Sensitive (S.S.) devices are identified in the Fluke technical manual parts list with the symbol " ${ }^{(8)}$

The following practices should be followed to minimize damage to S.S. devices.

1. MINIMIZE HANDLING

2. KEEP PARTS IN ORIGINAL CONTAINERS UNTIL READY FOR USE.

3. DISCHARGE PERSONAL STATIC BEFORE HANDLING DEVICES. USE A HIGH RESISTANCE GROUNDING WRIST STRAP.

4. HANDLE S.S. DEVICES BY THE BODY

5. USE STATIC SHIELDING CONTAINERS FOR HANDLING AND TRANSPORT

6. DO NOT SLIDE S.S. DEVICES OVER ANY SURFACE

7. AVOID PLASTIC, VINYL AND STYROFOAM® IN WORK AREA

PORTIONS REPRINTED

 WITH PERMISSION FROM TEKTRONIX, INC. AND GENERAL DYNAMICS, POMONA DIV.
8. WHEN REMOVING PLUG-IN ASSEMBLIES, HANDLE ONLY BY NON-CONDUCTIVE EDGES AND NEVER TOUCH OPEN EDGE CONNECTOR EXCEPT AT STATIC-FREE WORK STATION. PLACING SHORTING STRIPS ON EDGE CONNECTOR HELPS TO PROTECT INSTALLED SS DEVICES.

9. HANDLE S.S. DEVICES ONLY AT A STATIC-FREE WORK STATION
10. ONLY ANTI-STATIC TYPE SOLDERSUCKERS SHOULD BE USED.
11. ONLY GROUNDED TIP SOLDERING IRONS SHOULD BE USED.

A complete line of static shielding bags and accessories is available from Fluke Parts Department, Telephone 800-526-4731 or write to:

JOHN FLUKE MFG. CO., INC.
PARTS DEPT. M/S 86 9028 EVERGREEN WAY EVERETT, WA 98204

Section 2

Operating Instructions

2-1. INTRODUCTION

2-2. This section contains operating instructions and applications information for the Model 515A. If any problem is encountered in operating the instrument, contact the nearest John Fluke Sales representative or write directly to John Fluke Mfg. Co., Inc. Please include the instrument serial number when writing.

2-3. INSTALLATION

2-4. The 515A is supplied with non-marring feet and tilt-down handle for bench or field use. Rack mounting kits are available for installation of the instrument in a standard 19 -inch rack. Each kit contains necessary hardware and detailed installation instructions.

2-5. REPACKAGING FOR SHIPMENT

2-6. This instrument was packed and shipped in a foampacked cardboard carton. If reshipment is required, the original container should be used, if available. Upon request, a new container can be obtained from the John Fluke Mfg. Co., Inc. Please include the instrument model number when requesting a new container.

2-7. INPUT POWER REQUIREMENTS

2-8. The 515A operates on $100,115,200$ or 230 volts, 50 to 440 Hz ac power. To convert the instrument from one ac line voltage to another, turn the power off and then place the line power switches in the desired configuration, as shown in Figure 2-1. To gain access to the line power switches, remove the top dust cover and guard. When changing the line power configuration from 100 V or 115 V to 200 V or 230 V ,
change the line fuse, F 1 from $1 / 4$ amplere to $1 / 8$ ampere, and vice versa. Also, change the line power marker on the rear panel to reflect the operating line voltage.

Figure 2-1. LINE POWER SWITCH LOCATIONS

WARNING

The ground pin on the three-prong power plug connects the instrument case to power ground. Insure that this pin is connected to a high-quality earth ground.

2-9. BATTERY OPERATION

2-10. The 515A contains rechargeable nickel-cadmium batteries which provide approximately eight hours of continuous operation remote from the ac power line. The batteries are protected from over-discharge, and are recharged whenever the 515 A is operated from the ac power line. Charging time is approximately 18 hours from the fully discharged condition.

Section 3

Theory of Operation

3-1. INTRODUCTION

3-2. The theory of operation for the 515A Portable Calibrator is arranged under two major headings. First is the Overall Functional Description which discusses the overall operation of the instrument in terms of the functional relationship of the major circuits. Second is the Simplified Circuit Analysis which deals with the internal operation of each major circuit in more detail. Block diagrams and simplified circuit diagrams are included in this section, schematic diagrams are included at the rear of the manual in Section 8.

3-3. OVERALL FUNCTIONAL DESCRIPTION

3-4. The 515A portable calibrator self-contained power source allows field operations with immediate use at a new location without a warm-up period because the selfcontained batteries power the calibrator during the transportation.

3-5. The 515A portable calibrator is shown in a simplified block diagram in Figure 3-1. The general operation of each major circuit is described in the following paragraphs.

3-6. Power is applied to the power supply (Main PCB) from either an external AC source or from the internal battery source. The AC input is controlled by two line switches so that any one of four possible AC voltages $(110,115,200,230)$ may be selected. Either the rectified AC input or the battery voltage is applied to the plus and minus 18 volt regulators for a controlled supply of ± 18 VDC to all circuits.

3-7. The Battery Charger and Protection circuit (Battery Pack PCB) has an input from the transformer secondary anytime that AC is applied to the instrument. This
input is rectified and applied to the batteries. If the AC input is removed while the power switch is on, the batteries automatically take over operation of the instrument. Fully charged batteries will operate the instrument for approximately eight hours. To prevent damage to the nickelcadmium batteries a protection circuit removes the batteries from the power supply input when they discharge to the point that might result in damage to them. Since the batteries recover when the load is removed, they will reapply voltage to the instrument if the POWER switch is left ON. This results in a cycling action with the BATTERY LEVEL meter alternating between the BAT OK and OFF positions. This cycling is a normal function of the battery system and does not signify a failure.

3-8. The AC Generator (Main PCB) produces an extremely stable 10 V rms , ac. The 10 V ac is output directly at $400 \mathrm{~Hz}, 4 \mathrm{kHz}$ and 50 kHz when selected by the output switching. The 10 V ac is applied to the output transformer for use in generating the 1 V ac or 100 V ac outputs at 400 Hz and the 100 V dc output. $\mathrm{A}+14.14214 \mathrm{~V}$ dc reference voltage ($\mathrm{V}_{\mathrm{REF}}$) is used as the reference for the AC Generator and for the -18 volts regulated power supply.

3-9. When either the 1 V ac or the 100 V ac at 400 Hz or the 100 V dc is selected by the switch positions, the 10 V ac 400 Hz from the AC Generator is fed to the output transformer primary (Main PCB). The two AC voltages are taken directly from the transformer secondary and output via the output switching. If the 100 V dc is selected, the 100 transformer output is routed to the 100 volt rectifier and regulator.

3-10. When selected the 100 volt rectifier and regulator (Main PCB) is input the 100 V ac 400 Hz signal from the output transformer where it is rectified, regulated and output. Regulation is based on an input from the 10 V dc regulator.

3-11. The 10 volt regulator (DC PCB) provides a precision, temperature-compensated 10 V dc. Outputs are provided to the 100 volt regulator, the linearity switch and the Microvolt Control when the individual circuit is selected for output.

3-12. The Linearity Switch (DC PCB) accepts the 10V dc from the regulator and divides it into eleven proportional steps for equal readings from zero to ten volts.

3-13. The output from the linearity switch is in turn divided by ten to the the 10:1 Divider Circuit (Main PCB) when the 1 volt dc scale is selected.

3-14. The Microvolt Control (DC PCB) and the 10,000: 1 Divider (Main PCB) work in conjunction to provide the microvolt output selected by the front panel dial. If the microvolt function is selected, the regulated 10 V dc is applied to the microvolt control circuitry where a portion equal to the dial setting is applied to the $10,000: 1$ Divider, resulting in a zero to 999 microvolt output.

3-15. The Decade Resistors (DC PCB) are precision resistors chosen by use of the Linearity Switch. It allows the operator to select the desired resistance for output to the output switching.

3-16. Output Switching (Main PCB) selects the desired output and places it on the output terminals.

3-17. SIMPLIFIED CIRCUIT ANALYSIS

3-18. Introduction

3-19. The following paragraphs contain a simplified circuit analysis of the blocks discussed previously on a functional level and illustrated in the Simplified block diagram, Figure 3-1. Each block description contains the name of the circuit board or boards on which it is physically located. Component designators referred to are found on the schematic diagrams located in Section 7.

3-20. Power Supply (Main PCB)

3-21. AC line power from A1J6 is applied to A1T1 through the POWER switch S1E and F and the line voltage selector switches S12 and S13. The primary of A1T1 consists of two windings which are interconnected for operation from either a $110,115,200$ or 230 volt ac line. Both primary windings are completely shielded to reduce capacitive coupling between the power line and the floating circuitry in the instrument. The shield is connected to chassis ground and power line ground through the power cord. The secondary of A1T1 consists of two separate windings both of which are shielded to eliminate the
generation of common mode signals that could appear at the OUTPUT terminals. This shield is connected to the guard. The center-tapped secondary winding provides ac power to rectifiers CR2 and CR3, CR4. The other secondary winding supplies ac power to the Battery Pack PCB and the meter, M1. Diodes CR1 \& CR26 rectify the ac voltage present during line operation to provide a fullscale LINE OPR indication on M1. DS1 and DS2 function to limit the maximum current used by the Battery Pack PCB during charging of the batteries.

3-22. The $\pm 18 \mathrm{~V}$ Regulators produce low ripple operating voltages for the instrument. Input voltage to the regulators is derived from CR2 when the instrument is linepowered or from batteries if the line power is not applied and the instrument is turned on. The -18 V Regulator receives its reference from the +14.14214 V Reference Supply in the AC Generator. Reference voltage for the +18 V Regulator is derived from the -18 V Regulator.

3-23. +18 V REGULATOR. The +18 V Regulator consists of Q1 through Q3. Q1 is the series-pass element. Q2 and Q3 control the base current of Q1 to maintain the +18 V dc output. Resistor R3 ensures intital turn-on of Q2 and Q3. The base of Q 3 is referenced to the -18 V Regulator through R10 and receives a sample of the +18 V dc output through R8 and R9. Any change in the +18 V dc output is therefore amplified by Q2 and Q3, which then alters the conduction of Q1 to maintain the regulated output. Variable resistor R 9 allows adjustment of the +18 V dc output.

3-24. -18V REGULATOR. The -18 V Regulator consists of Q4 through Q6. Q4 is the series-pass element. Q5 and Q6 control the base current of Q4 to maintain the -18 V dc output. R12 ensures intital turn-on of Q5 and Q6. The base of Q6 is referenced to the Reference Supply ($\mathrm{V}_{\mathrm{REF}}$) through R18, CR5, and CR6 and receives a sample of the -18 V dc output through R17. CR5 and CR6 compensate for the voltage temperature coefficient at the base of Q6. Output voltage from this supply is therefore, dependent upon $V_{\text {REF }}$ and the ratio of R17 to R16.

3-25. Battery Pack and Battery Charger and Protection (Battery Pack PCB)

3-26. The A3 Battery Pack PCB consists of the Battery Charger and Protection circuit on the PCB and two batteries, (BT1 and BT2) in the Battery Pack. This circuitry provides operation from the batteries in absence of line power, disconnects the batteries when they are in a low charge-state to prolong battery life and disconnects the batteries from the instrument circuitry and recharges them during line operation.

3-27. BATTERY OPERATION. When line power is removed and the POWER switch is ON, the batteries BT1 and BT2 are connected to the inputs of the $\pm 18 \mathrm{~V}$ Regulators through the Battery Charger and Protection circuit. The positive output of BT1 is applied through S1C to J5 where a divider consisting of R2, CR3 and R4 supplies the base of Q2 with a positive voltage. This voltage turns on Q2 which applies base current to Q1 and also turns it on. Conduction of Q1 applies the positive output BT1 through the series transistor Q3 to the input of the +18 V Regulator. The diode connection of Q3 prevents reverse current flow from the +18 V Regulator to the battery. The negative output of BT2 is applied through S1D to the series transistors Q5. Since a positive voltage is available at the emitter of Q4 through R8, Q4 is turned on in sequence with the conduction of Q1. This condition turns on Q5 and applies the negative output of BT2 through the series transistor Q6 to the input of the +18 V Regulator. The diode connection of Q6 prevents reverse current flow from the -18 V Regulator to the battery.

3-28. Should the batteries discharge to a state where they may be damaged, the series transistors Q1 and Q5 are automatically switched off. This is made possible through the use of zener diode CR3. As the output of BT1 decreases, the voltage at the base of Q2 reaches a point where the transistor can no longer furnish enough base current for Q1 to maintain conduction. Q1 is therefore cut-off and disconnects the output of BT1 from the +18 V Regulator. Sharp cut-off for Q1 is ensured by R6 which provides some of the base current for Q 2 . Once the voltage at the collector of Q1 begins to drop, base current to Q2 is further reduced, this sharply cutting off Q1. Since the conduction of Q4 and Q5 is slaved to the conduction of Q1, as described in the preceding paragraph, the negative output of BT2 is also disconnected from the -18 V Regulator.

3-29. Line Operation. When line power is applied, the batteries are disconnected from the $\pm 18 \mathrm{~V}$ Regulators and are recharged. Battery disconnection is caused by a -22 V battery disconnect voltage produced by CR3, CR4 and C1. This voltage is applied to a divider consisting of R3 and R4 in the Battery Pack PCB. Presence of a negative voltage at the base of Q2 turns it off and causes Q1 to turn off. Since Q 4 and Q 5 are slaved to Q 1 , they are also turned off and both batteries are disconnected from the $\pm 18 \mathrm{~V}$ Regulators. Diodes CR4 and CR5 limit the maximum negative base to emitter voltage at Q2 and Q5 during line operation.

3-30. Charging of the batteries is provided through full-wave rectifier CR1 in the Battery Pack PCB. AC
power for this rectifier is derived from the untal $\eta^{\circ} d$ secondary of T1. A2DS1 and DS2 function as a ballast to limit the maximum charging current. Zeners CR2 and CR6 in the Battery Pack PCB limit the maximum battery voltage during charging.

3-31. AC Generator (Main PCB)

$3-32$. The accurate 10 V ac and 14.14214 V dc outputs required are produced by the five circuits that make up the AC Generator. They consist of the oscillator, Peak AC to DC Converter, Sample and hold, Integrator, and the Reference Supply. All five circuits are located on the main PCB and are described individually in the following paragraphs.

3-33. Oscillator: The oscillator produces the constant amplitude 10 V rms, fixed frequency output signal. It is a bridged "T" oscillator formed by input amplifier Q18 through Q24, voltage controlled resistor FET Q26, and output amplifier Q25, Q27, Q28. Output amplitude is precisely maintained at 10 V rms by the integrator output voltage applied to Q26. Output frequency is dependent upon the component values in the bridged " T " feedback network.

3-34. Input amplifier Q18 through Q24 is the heart of the Oscillator. The differential pair of Q19 and Q21 receives two inputs derived from feedback networks connected to the Oscillator output. At 50 kHz the component values of R118, R119, C49, C50 and the setting of R95 determine the center output frequency. The 4 kHz frequency is controlled by the values of R122, R124, C51, C52 and the setting of R123. 400 Hz is controlled by R125, R128, C53, C54 and the setting of R127. The input to the base of Q21 is through the positive feedback network composed of R94 and R95. This feedback signal together with the conduction level of Q26 controls the output amplitude. Conduction of Q26 is dependent upon the voltage control signal applied to its gate. This signal is derived from the Integrator and is of such a level as to maintain the output signal at precisely 10 V mm . Q18 and Q20 combine the collector signals of Q19 and Q20 in the appropriate phase so that the output signal to Q22 base is twice that of what is normally obtained from adifferential input stage. The collector signal at Q23 is the first point at which a 10 V rms signal is available. Emitter follower Q24 drives the following output stage of Q27 and Q28. AC current in Q23 and Q24 is minimized by bootstrapping R88 and the emitter load of Q24 through C35 to the output.

3-35. The output amplifier of Q25 and Q27, Q28 is a complementary output stage. Temperature compensation of the bias current for Q27 and Q28 is provided through Q25 and the divider network of R99 through R101. Variable resistor R100 allows adjustment of this bias current. Output amplifiers Q27 and Q28 produce the output signal of the instrument. Average output current is limited by Q33-34 and Q31-32, respectively. The output signal is specified to 10 mA above which clipping and distortion may result.

3-36. Peak AC to DC Converter: The Peak AC to DC Converter is a wide band amplifier which compares the amplitude of the output signal to $\mathrm{V}_{\text {REF }}$ and produces a dc voltage equal to four times any negative difference. The circuitry consists of input divider R37 through R42, operational amplifier U3, Q8, and differential amplifier Q9 and Q10. Q11 and Q12 are emitter follower stages.

3-37. The input divider R 37 through R 42 is driven at one end by the rms output signal and by VREF at the other through S14. The center of this divider is applied to the input of U3. Except for a small interval of time during the negative most peak of the rms signal, a positive current is flowing into the input of the U3 amplifier; however, since the input resistance of U3 is extremely high and the current is of the proper polarity to forward bias CR9, it is conducted through CR9 and Q11 to -18 V . When the peak of the rms signal is more negative than $\mathrm{V}_{\text {REF }}$, the input current reverses direction and CR9 is cut-off. This signal condition is then amplified by U3 and Q8 through Q10, which produces an emitter current in Q12. The resulting current produces a voltage charge on C44 (with 400 Hz selected) that is four times the negative peak difference between the rms output and $\mathrm{V}_{\text {REF }}$. When 4 kHz is selected C43 is charged. C 42 is charged when 50 kHz is selected. Variable resistor R60 allows adjustment of the bias on CR9. R49 allows zero adjustment of the U3 amplifier input offset voltage.

3-38. Sample and Hold: The Sample and Hold circuit transfers the charge on C44, C43 or C42 to the input of the integrator. This circuit is operational only at 400 Hz \& 4 kHz . It is disabled on output frequencies above 20 kHz because the overall detection is sufficiently fast without sample and hold. The circuitry consists of Schmitt Trigger Q13, Q14, inverter amplifiers Q7 and Q15, Q16, and FET gate Q17.

3-39. Positive excursions of the pulse wave form at the base of Q13 correspond to when CR9 in the Peak AC to DC Converter is cut-off and a negative peak difference signal is being stored on the selected capacitor, C44, C43 or

C42. This positive going pulse is shaped by Schmitt Trigger Q13 and Q14. Normally, Q14 is conducting and Q13 is cut-off. Presence of a positive going input to Q13 turns it on and turns off Q14. The resulting positive pulse at the collector of Q14 subsequently has a duration equal to the conduction interval of Q13. This pulse is coupled through C 29 and turns on inverter Q15, Q16. The conduction of Q15 and the clamping action of Q16 produces a positive pulse through C45 or C46 (depending on frequency) and CR13, which is applied to the gate of Q17. This positive pulse occurs at the trailing edge of the Schmitt Trigger pulse and turns on Q17. Conduction of Q17 then transfers the voltage charge on $\mathrm{C} 44, \mathrm{C} 43$ or C 42 , as selected, to C64, which is at the input of the integrator. The rectifier action of CR13 and C40 produces a zero volt turn on signal at the gate of Q17 in the absence of pulses from the Schmitt Trigger. This is necessary because the Schmitt Trigger of Q13 and Q14 is disabled on output frequencies above 20 kHz by switch position S 11 H . Inverter Q 7 provides a positive pulse to Q17 which compensates for the small error caused by the gate to drain capacitance of Q17.

3-40. Integrator: The Integrator consisting of U4 and associated components produces an amplitude control voltage for the Oscillator that is dependent upon the error signal from Peak AC to DC Converter. U4 is a high gain, non-inverting amplifier whose input is derived from C64. Variable resistor R72 allows offset voltage compensation for U4. The network consisting of CR14 through CR16 and R78 functions as a clamping circuit which limits the maximum output voltage from U4. This circuit improves the recovery time of the Integrator upon initial turn-on.

3-41. Reference Supply: The Reference Supply produces an extremely stable reference voltage ($\mathrm{V}_{\mathrm{REF}}$) upon which the accuracy and stability of the AC Generator output is based. It consists of a high gain, high input impedance, differential amplifier U1 and a reference amplifier U2. The temperature coefficient of the base/emitter voltage for U 2 is accurately matched to the temperature coefficient of the zener element through factory selection of R22 and R23. Output voltage of this supply is scaled to +14.14214 V dc through selection of R30 and R31. Variable resistor R27 allows adjustment of VREF. The adjustment range of R27 is compensated through jumper selection of R25 and R29. The resulting stable reference at the collector of U 2 is applied to the non-inverting input of U1. The other input to U1 receives an equivalent voltage from the divider composed of R20 and R21. Any change in $\mathrm{V}_{\mathrm{REF}}$ is sensed at the base of U 2 which produces an amplified change at the non-inverting input to U1. This change then alters the conduction of U1 such that $\mathrm{V}_{\mathrm{REF}}$ is maintained at +14.14214 V dc.

3-42. Output Transformer (Main PCB)

3-43. The output transformer is only used when the $100 \mathrm{~V} \mathrm{dc}, 1 \mathrm{~V}$ ac 400 Hz or 100 V ac 400 Hz functions have been selected. The switch position picks either 1V ac or 100 V ac at 400 Hz from the tranformer secondary and routes it to the HI and LO outputs for switch position $7(1 \mathrm{~V} \mathrm{ac})$ or $9(100 \mathrm{~V} \mathrm{ac})$ or to the 100 V dc Regulator for switch position $5(100 \mathrm{~V} \mathrm{dc})$.

3-44. 100Volt Rectifier and Regulator (Main PCB)

3-45. When the 100 V dc output is selected one hundred volts AC 400 Hz is input from the output transformer. The AC is rectified by CR25 and applied to the emitter of Q29. The base is controlled by the collector current of Q30 whose base current is controlled by U5. Current limiting prevents damage to the equipment when the output is shorted. The +100 V adjustment can be given additional range, if required, by removing jumper C, which parallels R142. If the U5 Op Amp is changed and the +100 adjustment does not have sufficient range reverse the status of R142 by removing or installing Jumper C, as required.

3-46. 10 Volt Regulator (DC PCB)

3-47. Reference amplifier U2 functions as the primary reference element for the supply. U2 is a silic on NPN transistor connected in series with a zener diode. Both devices are mounted on a common substrate and enclosed in a single envelope, thereby achieving extremely close thermal coupling. The reference voltage, V_{I} (See Figure $3-2$) is the sum of the zener voltage, V_{Z} and the transistor base-to-emitter voltage, V_{be}. Temperature variations affecting V_{Z} are compensated for by corresponding changes in V_{be}. The result is a precision, temperature-compensated dc source.

Figure 3-2. REFERENCE AMPLIFIER
3-48. Variations in the 10 Volts are sensed at the base of U 2 , amplified, and applied to amplifier U1. The amp-
lified output of U1 controls the conduction of Q1 to maintain a constant 10 volts. Potentiometer R11 (CAL) is the primary calibration adjustment and is set to provide exactly 10 volts at the regulator output.

3-49. Linearity Switch (DC PCB)

3-50. The Linearity Switch circuitry provides a voltage divider to output a linear portion of the regulated 10 V dc. R12, R15, R18 and R21 form a constant output resistance ladder weighted $1 / 4,1 / 3,1 / 2$ and 1 respectively. By connecting various series and parallel combinations to the regulated 10 V dc and common the desired proportional voltage is output on pin 8 with a source resistance of 300 ohms. The switching network insures that the source resistance remains 300 ohms regardless of the switch position or current flow. The fixed and variable resistors paralleling the ladder resistors provide calibration.

3-51. 10:1 Divider (Main PCB)

3-52. The output of the Linearity Ladder is input to the 10:1 Divider for outputs from zero to one volt in tenth of volt increments. R145 and R148 are the divider while R143 and R144 are used for calibration.

3-53. Microvolt Control (DC PCB) and 10,000:1 Divider (Main PCB)

3-54. The microvolt front panel control varies R32 on the DC PCB for a proportional output from zero to ten volts. The proportional voltage is now divided by ten thousand at R146 and R148 and the result, between 0 and 999 microvolts with a 0.2 microvolt resolution, is output through the output switching. R147 is a calibration adjustment.

3-55. Decade Resistors (DC PCB)

3-56. Seven precision resistor provide an output from ten ohms to ten megohms in increments of powers of ten. Only the 10 Megohm output is adjustable. A zero ohm output is available for determining residual resistance in the leads, connectors and test equipment.

3-57. Output Switching

3-58. The outputs are selected by the positioning of the function switches. The ten function switches are mechanically ganged so that only one can be depressed at any one time. The schematic is drawn with the 10 V 50 kHz switch depressed. Switch contacts which are closed when the switch is open (not depressed) are drawn slanted to the right.

Section 4

Maintenance

4-1. INTRODUCTION

42. This section contains service and maintenance information for the Model 515A. The information is arranged under headings of "SERVICE INFORMATION, GENERAL MAINTENANCE, MAINTENANCE ACCESS, PERFORMANCE CHECKS, CALIBRATION PROCEDURES, COMPENSATING COMPONENT SELECTION, and TROUBLESHOOTING." Equipment required to service this instrument is listed in Table 4-1. If the recommended equipment is not available, substitute equipment having equivalent specification can be used.

4-3. SERVICE INFORMATION

44. Each instrument that is manufactured by the John Fluke Mfg. Co., Inc. is warranted for a period of one year upon delivery to the original purchaser. The WARRANTY is located at the front of the manual.
45. Factory authorized calibration and service for each Fluke product is available at various world-wide locations. A complete list of these authorized service centers is located at the rear of the manual. Shipping information is given in Section 2, paragraph 2-5. If requested, an estimate will be provided to the customer before any repair work is begun on instruments that are beyond the warranty period.

4-6. GENERAL MAINTENANCE

47. Cleaning

4-8. Periodically clean the 515A to remove accumulations of dust, grease or other contaminants using the following procedure:
a. Clean the front panel and exterior surfaces with anhydrous ethyl alcohol or a soft cloth dampened with a mild solution of detergent and water.
b. If cleaning of the interior is necessary use clean, dry air at low pressure (20 psi). If contaminants remain individual pcbs can be cleaned using warm water, however, any items likely to be affected by the water (batteries, meters, etc.) should be removed first. Excess water should be blown free with the clean dry air followed by a thorough drying. Do not use drying temperatures in excess of $50^{\circ} \mathrm{C}$. If any solvent is used, such as freon, it should be kept clear of any switches or potentiometers since it removes lubrication and shortens the life span dramatically.

4-9. Fuse Replacement

410. Input line power to the instrument is overload protected by a fuse installed on the rear panel. The type and rating of the fuse is also indicated on the rear panel. If replacement is necessary, use only the type fuse specified on the decal for 115 or 230 V ac line power.

Table 4-1; REQUIRED TEST EQUIPMENT

NOMENCLATURE	RECOMMENDED EQUIPMENT
Autotransformer	Variac
Multimeter	Fluke 8000A
Null Detector	Fluke 845
Voltage Divider	Fluke 720A
DC Voltage Standard/Null	
Detector	Fluke 335D
or	Fluke 332 or 343A
DC Voltage Standard and	and 845
Null Detector Combination	Fluke $540 \mathrm{~B}, \mathrm{~A} 54-2$
Thermal Transfer Standard	(Certified to $\pm 0.04 \%$ at
	$50 \mathrm{kHz} \cdot 100 \mathrm{kHz}$)
	Fluke 1900
Frequency Counter	Tektronix $543,1 \mathrm{A1}$,
Oscilloscope	X10 Probe
	ESI 242 D
Resistance Measuring System	$100,1 \mathrm{k}$ and $931 \mathrm{k} \pm 2 \%$
Resistive Loads	(Useable to 100 kHz)
	Fluke 931 B
AC Differential Voltmeter	Fluke 885A
DC Differential Voltmeter	Fluke 731B
DC Reference Standard	

Figure 4-1 TOP VIEW.

Figure 4-2. BOTTOM VIEW, GUARD INSTALLED

Figure 4-3. BOTTOM VIEW, GUARD REMOVED.

4-11. Lamp Replacement

4-12. Two ballast lamps designated DS1 and DS2 that are part of the Battery charger are installed on the Main PCB. These lamps are soldered to 3 pins on the main PCB to hold them firmly in place. Access to the lamps is provided after removal of the top dust cover and guard. Replacement requires no special tools. If replacement is necessary, use only GE-757 (FLUKE PART NO. 175265) or equivalent.

4 13. MAINTENANCE ACCESS

414. The following procedure is to be used to gain access to the interior sections of the Model 515A.

4-15. Major Section Access

a. Turn off and disconnect the Model 515A. Remove the top dust cover and guard. Access is provided to all adjustments and test points shown in Figure 4-1.
b. Remove the bottom dust cover. Access is now provided to assemblies shown in Figure 4-2.

4-16. Plug-In Assembly Removal and Installation

a. Locate the assembly to be removed using Figure 4-3.
b. Disconnect any wiring and then remove mounting screws.
c. Remove the plug-in assembly using a gentle rocking motion and an even pulling force.
d. Install the plug-in assembly in its correct position using a gentle rocking motion and steady downward pressure. Ensure that each mating connector is correctly aligned during installation.
e. Reconnect any wiring disconnected in step c. Each wire is labeled with a number which corresponds to a connector on the PCB.

4-17. Battery Removal and Replacement

418. The batteries are installed on the inside of the bottom guard as shown in Figure 4-3. If replacement is necessary, the entire Battery Pack, FLUKE PART NO. 284356, should be replaced. Proceed as follows:
a. Disconnect the four wires labeled 1 through 4 from A3 Battery Pack PCB. Refer to Figure 4-3. for location.
b. Remove the screws which secure the Battery Pack to the bottom dust cover and then remove the Battery Pack.
c. Install a new Battery Pack, FLUKE PART NO. 284356, on the bottom dust cover using the mounting screws removed in step b.
d. Connect the four Battery Pack wires to the A3 Battery Pack PCB. Each wire is labeled with a number which corresponds to a connector on the PCB.

4-19. PERFORMANCE CHECKS

420. The following checks can be used to verify most electrical specifications on the Model 515A. Each check includes an introduction which states the objectives and lists the required test equipment. Refer to Table 4-1 for the recommended equipment.
421. Should a trouble be discovered, first determine that the instrument does not require calibration. If calibration does not correct the problem, troubleshoot the instrument and repair as necessary.

4-22. Preliminary Operation

a. Connect the power cord through an autotransformer to line power. Set the autotransformer output to 115 V ac.
b. Set the POWER switch on the front panel to ON. The meter should indicate LINE OPR.
c. Set switches for $10 \mathrm{~V}, 400 \mathrm{~Hz}$ output.
d. Allow the instrument to operate for at least 30 minutes.

4-23. Line and Load Regulation Checks

424. This check provides a means of verifying the line and load regulation performance. Line voltage changes should not cause output variations greater than 10 ppm under full load. No load to full load changes should not cause output variations greater than those given in Table 42. The following test equipment is required to perform these checks.
425. Autotransformer
426. AC Differential Voltmeter
427. $1 \mathrm{k} \pm 5 \% 1 / 2 \mathrm{~W}$
$931 \mathrm{k} \pm 1 \%^{1 / 2} \mathrm{~W}$
$200 \mathrm{k} \pm 1 \% 1 / 2 \mathrm{~W}$

Table 4-2. LOAD REGULATION

APPLIED VOLTAGE AND FREQUENCY	LOAD REGULATION (ppm)	
10 V ac 400 Hz	1 k	40
10 V ac 4 kHz	1 k	40
10 V ac 50 kHz	1 k	80
100 V ac 400 Hz	931 k	150
100 V dc	200 k	5

a. Perform the steps given in paragraph 4-22.
b. Connect the 1 k load to the front panel HI and LO terminals.
c. Connect an ac digital or differential voltmeter to the front panel HI and LO terminals and record its indication.
d. Vary the autotransformer output setting from 102 to 128 V ac, observing that theoutput voltage does not change more than $\pm 100 \mathrm{uV}$.
e. Return the autotransformer setting to 115 V ac and disconnect the 1 k load from the OUTPUT terminals.
f. Record the terminal voltage between HI and LO with the ac digital or differential voltmeter.
g. Insure the 515 A is set to $10 \mathrm{~V}, 400 \mathrm{~Hz}$. Reconnect the 1 k load to the HI and LO terminals, observing that the output voltage does not change more than the limit specified in Table 4-2.
h. Repeat steps f and g for 4 kHz and 50 kHz .
i. Set the 515 A to 100 V ac 400 Hz .
j. Record the terminal voltage.
k. Connect the 931 k Resistor to the terminals (This value of 1 oad is for use with an input $\mathrm{Z}=1.1 \mathrm{M} \Omega$, i.e., a Fluke 8400 A). The output voltage should not change more than the limit specified in Table 4-2.

CAUTION!

100 V ac present on the output terminals at this time.

1. Set the 515 A to 100 V dc.
m. Record the voltage between HI and LO with the dc digitaloor differential voltmeter.
n. Connect the $200 \mathrm{k} \Omega$ resistor to the terminals. (This value of load is for use with a dc voltmeter with an input R greater than $20 \mathrm{M} \Omega$). The output voltage should not change more than limit in Table 4-2.

CAUTION!

100 V dc present on the output terminals at this time.
o. Disconnect the test equipment from the front panel terminals.

4-25. Frequency Check

a. Connect the input of a frequency counter to the front panel OUTPUT terminals. Use the period mode if maximum resolution is desired.
b. Select the 10 V ac 50 kHz function on the portable calibrator.
c. Verify the frequency is between 47.5 kHz and 52.5 kHz (19 to $21 \mu \mathrm{sec}$ period)
d. Select the 10 V ac 4 kHz function on the portable calibrator.
e. Verify the frequency is between 3.96 kHz and 4.04 kHz (247.5 to $252.5 \mu \mathrm{sec}$ period).
f. Select the 10 V ac 400 Hz function on the Portable Calibrator.
g. Verify the frequency is between 396 Hz and 404 Hz (2475 to $2525 \mu \mathrm{sec}$ period).

4-26. AC Output Accuracy Check

427. The check provides a means of verifying the amplitude accuracies given in Table 4-3. It consists of two different methods; dc reference and thermal transfer. The test equipment required to perform these checks is listed at the beginning of each method.
428. DC REFERENCE: This method is the more limited of the two since the frequency response of the Peak AC to DC Converter is not checked.

TEST EQUIPMENT:

1. DC Voltage Standard / Null Detector
a. Turn off the Model 515A and remove the top dust cover.
b. Make the equipment connections shown in Figure 4-4.
c. Set the dc voltage standard output to +14.14214 V dc with a null detector sensitivity of 1 V .
d. Turn on the Model 515A and allow it to operate for at least 30 minutes.
e. Increase the null detector sensitivity and record its indication. Maximum offset is +140 uV .
f. Turn off the Model 515A and disconnect the test equipment. Replace the upper dust cover. Within the limitation given above, all ac accuracies will now be within those listed in Table 4-3.

Figure 4-5. THERMAL TRANSFER EOUIPMENT CONNECTIONS
429. THERMAL TRANSFER: This method provides a better check than that in 4-28.

TEST EQUIPMENT:

1. DC Voltage Standard.
2. Thermal Transfer Standard (Certified to $\pm 0.01 \%$ from 400 Hz to 50 kHz .
a. Make the equipment connections shown in Figure 4-5.
b. Set the dc voltage standard output to 10 V dc.
c. Perform dc to ac transfer at 10 V for 400 Hz , 4 kHz , and 50 kHz , observing that the thermal transfer amplitude accuracies given in Table 43 are achieved.

Table 4-3. OUTPUT AMPLITUDE ACCURACY

OUTPUT	TOLERANCE
10 V ac 400 Hz	$\pm 0.04 \%$
10 V ac 4 kHz	$\pm 0.04 \%$
10 V ac 50 kHz	$\pm 0.1 \%$

d. Because of current or loading limitations the Portable Calibrator 1 and 100 volt ranges cannot be verified by the thermal transfer method. If a precision verification of the ratio transformer outputs is required, standardize and use a 931B as a transfer standard. The 1 V ac 400 Hz range should read $1 \mathrm{~V} \pm 500 \mu \mathrm{~V}$ and the 100 V ac 400 Hz range, $100 \mathrm{~V} \pm 60 \mathrm{mV}$.

NOTE!

The 931B may be standardized against a stable AC source such as the Fluke 5200A. Use a Fluke 540B and a Fluke 335D to standardize the 5200A at 1 volt and 100 volts, 400 Hz .

4-30. Variable DC Voltage and Linearity Checks

a. \quad Connect the equipment as shown in Figure 4-6. Insure the self-cal test for the Voltage Divider and calibration of the DC Transfer Standard against a standard cell is performed the same day, and prior to, the performance test. Zero the Null Detectors prior to starting the test.
b. Set the transfer standard for a 10 volt output.
c. Set the Voltage Standard to 11 volts and vary untill a null is obtained on Null Detector I. Monitor Detector I throughout the test, varying the voltage as required to maintain the null.
d. Select the 10 V dc function on the Portable Calibrator and set the output multiplier switch to the X 1 position. Set the voltage divider to 0.999999X.
e. Verify there is a null $\pm 300 \mu$ volts on Null Detector II.

Figure 4-6. 10 VDC AND LESS TESTING.
f. Set the Output Multiplier switch and Voltage Divider to the figures shown in Table $4-4$ and verify the reading on Null Detector II.
g. \quad Select the 1 V dc function on the Portable Calibrator and set the Output multiplier switch to X1.

Table 4-4. LINEARITY TESTS

OUTPUT MULTIPLIER SWITCH SETTING	VOLTAGE DIVIDER SETTING	NULL DETECTOR II READING
X.9	.9000000	null $\pm 270 \mu$ volts
X. 8	.8000000	null $\pm 240 \mu$ volts
X.7	.7000000	null $\pm 210 \mu$ volts
X. 6	.6000000	null $\pm 180 \mu$ volts
X.5	.5000000	null $\pm 150 \hat{\mu}$ volts
X.4	.4000000	null $\pm 120 \mu$ volts
X. 3	.3000000	null $\pm 90 \mu$ volts
X.2	.2000000	null $\pm 60 \mu$ volts
X.. 1	.100000	null $\pm 30 \mu$ volts

o. Reconnect the Portable Calibrators leads as shown in Figure 4-6.
p. Wait for the thermals from the operators hands to subside and record the reading on Null Detector II.
q. Algebraically add the figures obtained in steps p and r. The result should be $0 \pm 2 \mu$ volts.
r. Set the μ volt counter to 1000μ volts and the Voltage Divider to 0001000.
s. Algebraically add the reading on Null Detector II and the reading obtained in step p. The result should be $0 \pm 2 \mu$ volts.
t. Set the μ volt counter and Voltage Divider at 700μ volts (.0000700), 500μ volts (.0000500), 200μ volts (.0000200) and 100μ volts or (.0000100) in turn. At each setting the Algebraic sum of the Null Detector II reading and the thermal reading obtained in step p should be $0 \pm 2 \mu$ volts.

4-31. 100 Volts DC Check

a. Connect the equipment as shown in Figure 4-7.

CAUTION!

The Transfer Standard and Null Detector I will be "floating" at +110 volts dc. Operate the Transfer Standard and Null Detector I under battery power if these type of units are available.
b. Select the 100 V dc function on the Portable Calibrator.
c. Select a 10 V dc output from the Transfer Standard.
d. Set the Voltage Standard to 110 V dc initially and then adjust for a null $\pm 5 \mu$ volts on Null Detector I. Adjust the Voltage Standard as required during the test to maintain the null on Null Detector I.
e. Set the Voltage Divider to .999999X.
f. Verify Null Detector II reads a null ± 3 millivolts.

4-32. Resistance Check

a. Connect the equipment as shown in Figure 4-8.
b. Select the ohms function on the 515 A and set the Output Multiplier Switch to 0.
c. Determine the residual resistance with the Resistance Measurement System.
d. \quad Verify the resistance values shown in Table 4-5 subtracting the residual resistance obtaired in step c from the value read.

NOTE!

Through disuse the Output Multiplier Switch contacts may become contaminated and cause out-oftolerance readings on the 10Ω range. Vigorously exercise the switch to remove these contaminants prior to verifying calibration of the 10 ohm range.

Table 4-5. RESISTANCE TOLERANCE

515A SETTING	TOLERANCE
0	Residual Resistance $<150 \mathrm{~m} \Omega$
10	$\xrightarrow{\text { Reading minus }} \begin{aligned} & \text { Residual }\end{aligned}=9.994-10.006 \Omega$
100	$=99.94-100.06 \Omega$
1 K	$=.99985 \mathrm{~K}-1.00015 \mathrm{~K} \Omega$
10 V	$=9.9985 \mathrm{~K}-10.0015 \mathrm{~K} \Omega$
100K	$=99.985 \mathrm{~K}-100.015 \mathrm{~K} \Omega$
1000K	$=999.85 \mathrm{~K}-1000.15 \mathrm{~K} \Omega$
10 M	$=9.9925-10.0075 \mathrm{M} \Omega$

433. CALIBRATION PROCEDURES

4-34. Introduction

435. The Model 515A Portable Calibrator requires Calibration annually, or whenever repairs have been made which affect the electrical characteristics. Calibration should be performed after a 30 minute operating period and at an ambient temperature of $23^{\circ} \mathrm{C} \pm 1^{\circ}$.
436. All calibration test points and adjustments are shown in Figure 4-1 and 4-2. These calibrations points are accessible after removal of the top and bottom dust covers. and the top guard. Required test equipment is listed in Table 4-1.

Figure 4-7. 100 VDC TESTING

Figure 4-8. RESISTANCE CONNECTIONS

4-37. Regulator Alignment

a. Remove the top dust cover and guard. Adjustment and test point location are shown in Figure 4-1.
b. Connect the power cord through an auto-transformer to line power. Set the autotransformer output to 115 V ac or the applicable supply voltage.
c. Turn on the Model 515A and allow it to operate for 30 minutes.
d. Connect the input of the voltmeter to +18 V t.p. and circuit common.
e. \quad Adjust +18 V (R9) for $+18 \pm 0.2 \mathrm{~V}$ dc at +18 V t.p.
f. Connect the dc voltmeter input to -18 V t.p. observing that the voltage is $-18 \pm 0.5 \mathrm{~V}$ dc. There is no adjustment for the -18 voltage.
g. Disconnect the dc voltmeter input from -18 V
t. p.

4-38. Reference Supply Alignment

a. Make the equipment connections shown in Figure 4-4.
b. \quad Set the Voltage Standard output to +14.14214 V dc with a Null Detector sensitivity of 1V.
c. Increase the null detector sensitivity and adjust.
$V_{R}(\mathrm{R} 27)$ for a $0 \pm 70 \mu \mathrm{~V}$ indication on the null detector.

NOTE!

If this adjustment cannot be made, refer to paragraph 4-50 for range compensation of R27.
d. Disconnect the test equipment.

439. FET Bias

a. Connect the input of the voltmeter to CONT t.p. and circuit common. Select 50 kHz operation.
b. Adjust 50 kHz CONT (R90) for $-2.5 \pm 0.2 \mathrm{~V}$ dc at CONT t. p.
c. Disconnect the voltmeter input from CONT t.p.

440. Zero Set

a. Connect the voltmeter input to CONV. t. p. and circuit common at COM t. p.
b. Adjust CONV (R49) for $0 \pm 100 \mu \mathrm{~V}$ at CONV t. p.
c. Connect the dc voltmeter input to INT t.p. and circuit common at COM t. p.
d. Adjust INT. (R72) for $0 \pm 100 \mu \mathrm{~V}$ at INT t.p.
e. Disconnect the voltmeter from the instrument.

4-41. Output Bias

a. Connect a shorting jumper between CAL t. p. and circuit common.
b. Connect the input for the voltmeter to BIAS t. p. $(+)$ and -18 V t. p. (-).
c. Adjust BIAS (R100) for $90-100 \mathrm{mV}$ dc between BIAS t.p. and -18 V t.p.
d. Disconnect the voltmeter and shoring jumper from the instrument.

4-42. Detector Bias

a. Select the 10 V ac 50 kHz function in the 515 A .
t. Sei the controls of a de coupled oscilloscope to provide a .01 V vertical sensitivity with an established 0 V reference (Modí: 5i5A circuit common) on the display.
c. Comect the inpet "hrcugh X10 probe to DET, t. p. Connect the probe ground clip to circuit common.
d. Adjust the oscilloscope sweep speed to view at least two complete cycles of the peaked waveform at DET TP.
e. Adjust DET (R60) until the peak of the waveform is at $100 \pm 10 \mathrm{mV}$ in respect to circuit common. Use the 50 mV or 100 mV vertical sensitivity.
f. Select the 10 V ac 4 kHz function and observe the amplitude of the peak. Readjust R60 if the signal is not 90 mV or greater.
g. Select the 10 V ac 400 Hz function and observe the amplitude of the peak. Readjust R60 if the signal is not 90 mV or greater.

NOTE!

If any adjustment is made, check previous steps to insure that all three readings are greater than 90 mv .
h. Disconnect the oscilloscope

4-43. Comparator Balance

a. Connect the input of an ac differential voltmeter to the front panel OUTPUT terminals.
b. Record the ac output voltage.
c. Switch S14 to the opposite position (white dot not showing) and record the ac voltmeter indication.
d. Adjust BAL (R37) for a maximum shift of 0 ± 50 $\mu \mathrm{V}$ in output voltage of each setting of S14.
e. Set S14 to "white dot position" and disconnect the ac differential voltmeter.

4-44. Frequency Adjust
a. Connect the input of a frequency counter to the front panel OUTPUT terminals (Use period mode for maximum resolution.
b. Connect the input of the voltmeter to CONT t. p. $(+)$ and circuit common.
c. Select the 10 V ac 50 kHz function on the 515 A .
d. Adjust 50 kHz (R95) for a frequency reading between 48.75 kHz and 51.25 kHz (19.5 to 20.5 $\mu \mathrm{sec}$ period).
e. Verify that CONT t. p. reads -2.5 to 0.2 V dc. Adjust 50 kHz CONT (R90) if required and verify frequency is still within tolerance.
f. Select the 10 V ac 4 kHz function.
g. Adjust 4 kHz (R123) for a frequency reading between 3.98 kHz and 4.02 kHz (248.75 to 251.25 $\mu \mathrm{sec}$ period).
h. Adjust 4 kHz control (R125) for $-2.5 \pm 0.2 \mathrm{~V}$ dc at CONT t. p. Verify the frequency is still within tolerance.
i. Select the 10 V ac 400 Hz function.
j. Adjust 400 Hz (R127) for a frequency reading between 398 Hz and 402 Hz (2487.5 to 2512.5 $\mu \mathrm{sec}$ period).
k. Adjust 400 Hz CONT (R129) for $-2.5 \pm 0.2 \mathrm{~V}$ dc at TP CONT. Verify the frequency is still within tolerance.

4-45. Amplitude by Thermal Transfer

446. The Model 515A is now calibrated to meet amplitude accuracy specifications related to a dc reference accurate to $\pm 15 \mathrm{ppm}$. If an amplitude accuracy related to a thermal transfer is required, perform the following procedure:
a. Make the equipment connections shown in Figure 45.

NOTE

Transfer accuracy of the thermal transfer
standard must be certified to at least $\pm 0.01 \%$ from 400 Hz to 50 kHz .
b. Set the dc Voltage Standard output to the 10 V dc, and 515 A to $10 \mathrm{~V}-400 \mathrm{~Hz}$.
c. Perform dc to ac transfer, observing the ac amplitude error.
d. Adjust BAL (R37) for a 10 V rms output from the Model 515A.
e. \quad Set 515 A to 50 kHz and perform d.c. to a.c. transfer.
f. Adjust C74 (inside shield box, center of main PCB on top side) for 10 V rms output.
g. \quad Set 515 A to 4 kHz and perform d.c. to a.c. transfer.
h. See that output is now $10 \mathrm{~V} \mathrm{rms} \pm .01 \%$ of that at 400 Hz .

4-47. Variable DC Voltage and Linearity Calibration.
a. \quad Connect the equipment as shown in Figure 4-6. Insure the self-cal test for the voltage divider and calibration of the DC Transfer Standard against a standard cell is performed the same day, and prior to the calibration procedure. Zero the Null Detectors. Insure the bottom dust cover is removed and the bottom guard installed on the Portable Calibrator. If the guard is not installed, air currents and hand capacity will effect the readings.

NOTE

The adjustments used in paragraph 4-47, unless specified otherwise, are through an access hole in the bottom guard, which must be installed. Low thermal leads should be used.
b. Set the Transfer Standard for a 11 volt output.
c. Set the Voltage Standard to 10 volts and vary until a null is obtained on Null Detector I. Monitor Null Detector I throughout the test, varying the voltage Standard as required to maintain the null.
d. Select the 10 V dc function on the Portable Calibrator and set the output Multiplier switch to the X1 position. Set the voltage divider to 0.999999 X.
e. Adjust +10 V (R11) for a null $\pm 10 \mu$ volts on Null Detector II.

NOTE

The following linearity adjustments are highly interactive. If during adjustment the four controls cannot be brought into tolerance by the end of the fourth pass, recheck the 10 -volt calibration and set the reading closer to a null.
f. Set the output multiplier switch to X. 4 and the voltage divider to .4000000 .
g. Adjust 4 V (R14) for a null $\pm 12 \mu$ volts on Null Detector II.
h. Set the output multiplier switch to X. 3 and the voltage divider to .300000 .
i. \quad Adjust 3 V (R17) for a null $\pm 9 \mu$ volts on Null Detector II.
j. Set the Output Multiplier Multiplier Switch to X. 2 and the voltage divider to .2000000 .
k. Adjust 2 V (R20) for a null $\pm 6 \mu$ volts on Null Detector II.

1. Set the Output Multiplier Switch to X. 1 and the voltage Divider to .1000000 .
m. Adjust 1V (R23) for a null $\pm 3 \mu$ volts on Null Detector II.
n. Repeat steps f through m until all eight steps can be performed to the listed tolerances without making any adjustments.
o. Set the Output Multiplier Switch to X.5, X.6, X.7, X. 8 and X. 9 in turn, verifying that Null Detector II reads a null $\pm 150 \mu$ volts, $\pm 180 \mu$ volts, $\pm 210 \mu$ volts $\pm 240 \mu$ volts or $\pm 270 \mu$ volts respectively. There are no adjustments for these readings, they are dependent upon the settings performed in the previous steps.
p. \quad Select the 1V dc Function on the Portable Calibrator and set the output multiplier switch to X 1 .
q. \quad Set the voltage divider to .1000000 .
r. Adjust 1V dc (R144) on the top left front of the main pcb for a null $\pm 1 \mu$ volt on Null Detector II.
s. \quad Select the μ volts function on the Portable Calibrator and set the μ volt counter to 000μ volts.

NOTE

The μ volt dial reads 000 for both zero and 1000 $\mu \nu o l t s$. For a zero reading insure the dial is turned fully counter-clockwise against the stop. For a reading of 1000μ volts, the dial is turned clockwise past 999 until the dial reads 000.
t. Set the voltage divider to .0000000 .
u. Disconnect the Portable Calibrators HI input lead and connect it to the LO terminal.
v. Wait for thermals from the operators hands to subside and record the reading on Null Detector II. (Must be $<1 \mu \mathrm{~V}$.)
w. Reconnect the Portable Calibrators leads as shown in Figure 46.
x. Wait for the thermals from the operators hands to subside and record the reading on Null Detector II.
y. Algebraically add the figures obtained in steps v and x. The result should be $0 \pm 1 \mu$ volts.
z. If the Algebraic sum does not equal a null $\pm 1 \mu$ volt mechanically adjust the potentiometer dial until it reads a null $\pm 1 \mu$ volt at the zero dial position.

NOTE

The pot can be mechanically served by loosening the set screws on the coupler that connect the shaft and the front panel counter, repositioning the pot, and retightening the set screws.
aa. Set the μ volt counter to 1000μ volts and the Voltage Divider to 0001000 .
ab. Algebraically add the reading on Null Detector II and the reading obtained in Step x. The result should be $0 \pm 2 \mu$ volts. If not, adjust $\mu \mathrm{V}$ (R147) on the top left front of the Main pcb until the algebraic sum equals $0 \pm 2 \mu$ volts.
ac. \quad Set the μ volt counter and Voltage Divider at 700 μ volts (.0000700), 500μ volts (.0000500), 200 μ volts (.0000200) and 100μ volts (.0000100) in turn. At each setting the Algebraic sum of the Null Detector II reading and the thermal reading obtained in step x should be $0 \pm 2 \mu$ volts.

NOTE!

There are no adjustments for the μ volt linearity dial. If the readings are not in tolerance, the Portable Calibrator requires repair.

4-48. 100 Volts DC Calibration

a. Connect the equipment as shown in Figure 4-7.

CAUTION:

The Transfer Standard and Null Detector I will be "floating" at +110 volts dc. Operate the transfer Standard and Null Detector I under battery power if these type of units are available.
b. Select the 100 V dc function on the Portable Calibrator.
c. \quad Select a 10 V dc output from the Transfer Standard.
d. Set the voltage Standard to 110 V dc initially and then adjust for a null $\pm 5 \mu$ volts on Null Detector 1 . Adjust the Voltage Standard as required during the test to maintin the null on Null Detector I.
e. Set the voltage divider to .999999 X .
f. Adjust 100 V (R141) on the top left front of the main pcb for a null $\pm 50 \mu$ volts on Null Detector II.

4-49. Resistance Adjustments

a. Connect the equipment as shown in Figure 4-8.
b. Select the ohms function on the 515A and set the Output Multiplier Switch to 0.
c. Obtain the residual resistance with the Resistance Measurement System.

NOTE!

Through disuse, the Output Multiplier Switch contacts may become contaminated and cause out of tolerance readings at the 10Ω step. Vigorously exercise the switch to remove these contaminants prior to verifying calibration of 10 ohms.
d. Verify the resistance values shown in table 45, subtracting the residual resistance obtained in step c from the value read. There is no adjustment for settings 0 through 1 megohm. The 10 megohm value may be adjusted by varying $10 \mathrm{M} \Omega$ (R30 on the adjustment PCB) through the access slot in the bottom guard.

NOTE!

If a Resistance Measurement System is not available, the resistance can be measured by a comparison method. Check the reading of some known resistance with a precision DVM, such as a Fluke 8400, and then check the resistance of the Portable Calibrator.

4-50. COMPENSATING COMPONENT SELECTION

451. Replacement of U2(Main PCB) and associated matched components in the Reference Supply will require selection of jumpers A and B. These jumpers compensate the adjustment range of V_{R} (R27). Select of jumpers is done as follows:
a. Turn off the Model 515A and set V_{R} (R27) fully counterclockwise.
b. Locate jumpers A and B using Figure 4-1 and reconnect any cut jumpers.
c. Turn on the Model 515A and make the equipment connections shown in Figure 4-4.
d. \quad Set the Voltage Standard output to $+14.14214 V$ dc with a null sensitivity of 1 V .
e. Increase the null detector sensitivity and record the offset voltage.
f. \quad Cut jumpers A and B per Table 4-6.
g. Adjust V_{R} (R27) for a $0 \pm 70 \mu \mathrm{~V}$ indication on the null detector.

Table 4-6. A \& B JUMPER SELECTION

OFFSET VOLTAGE V_{R} t.p.	CLIP JUMPER
0 to 0.00571	None
0.00572 to 0.01141	A
0.00142 to 0.01712	B
0.01713 to 0.02182	$\mathrm{~A} \& \mathrm{~B}$

NOTE!

The Model 515A should be recalibrated using the procedures given in paragraph 4-33 through 4-49.

4-52. TROUBLESHOOTING

453. The following information is provided to assist in locating troubles in the Model 515A. It is recommended that the theory of operation in Section 3 be completely understood before attempting any troubleshooting.

4-54. Initial Troubleshooting

455. Troubleshooting begins by first performing a thorough inspection for improperly seated plug-in assemblies, loose wires, physically damaged parts, or other obvious problems. The next step is to insure that the instrument is being operated correctly, but fails to meet specifications. Performance checks especially designed for this purpose are given in paragraphs 4-19 through 4-32.
456. Once it is determined that a malfunction exists, all operating voltages should be checked as shown in Table 4-7 and Figure 41. During these checks, the instrument must be operated from nominal line power. The Rechargeable Battery Pack can be checked using the information in paragraph 4-66.

Table 4-7. OPERATING VOLTAGE CHECKS

TEST POINT	voltage (VDC)	CIRCUITRY CHECKED
+18 UN t.p.	$\begin{gathered} +23 V+4 V, \\ -2 V \end{gathered}$	AC INPUT (T1, CR2)
-18UN t.p.	$\begin{gathered} -23 V+4 V \\ -2 V \end{gathered}$	AC INPUT (T1, CR2)
-18 t.p.	$-18 \pm 0.5 \mathrm{~V}$	-18V REGULATOR (Refer to Para. 4-57)
+18 t. p.	+18 $\pm 0.2 \mathrm{~V}$	+18V REGULATOR (Refer to Para. 4-57)
$V_{R} \mathrm{t.p}$	+14.14214V	REFERENCE SUPPLY

4-57. +18 V and -18 V Regulators

458. The regulated power supplies are interconnected to each other and to V_{R}, the +14.14214 V Reference Supply. A fault in one supply can cause all three to produce incorrect outputs at the same time. The -18 V Regulator is referenced to V_{R} by R18 through CR5 \& CR6. The +18 V Regulator is referenced to the -18 V by R 10 . But the V_{R} circuit is powered by the +18 V Regulator. To facilitate locating a fault, interrupt this interconnection: If the $+18 \mathrm{~V},-18 \mathrm{~V}$, and V_{R} are all low (the most common trouble) connect an external dc voltage of +14.0 V between CR5 and CR6 to COM. Diode CR6 will be back-biased, thus the -18 V Regu-

Table 4-8. AC GENERATOR CHECKS

CHECK POINT	NORMAL INDICATION	FAULT ANALYSIS
OSC t.p.	10 V RMS	If abnormal check CONT t.p.
CONT t.p.	$-2.5 \pm 0.2 \mathrm{~V} \mathrm{dc}$	A. If OSC TP is high or low and TPV is $\pm 0.6 \mathrm{~V}$, trouble is in the oscillator.
		B. Check INT t.p. If CONT t.p. is at some other voltage.
INT t.p	$0 \pm 100 \mu \mathrm{~V}$	A. If CONT t.p. is not +0.6 V and INT t.p. is +10 mV or more, trouble is in the INTEGRATOR.
		B. If CONT t.p. is more positive then -5 V and INT t.p. is -10 mV or more, trouble is in the INTEGRATOR.
		C. If CONT t.p. is not +0.6 V and INT t.p. is 0 V or negative, trouble is in the peak AC to DC CONVERTER or SAMPLE AND HOLD.
		D. If CONT t.p. is more positive then -5 V and INT t.p. is $O V$ or positive, trouble is in the Peak AC to DC CONVERTER or SAMPLE AND HOLD.
		E. If the waveform and peak voltage at SAMPLE t.p. is not as shown, the trouble is in the Peak AC to DC CONVERTER
		$\begin{aligned} & 400 \mathrm{~Hz}-250 \mathrm{mV} \\ & 4 \mathrm{kHz}-200 \mathrm{mV} \\ & 50 \mathrm{kHz}-50 \mathrm{mV} \end{aligned}$

lator $+\mathrm{V}_{\mathrm{R}}$ interconnection is opened. Alternately, the end of R10 going to -18 volts can be opened and connected to an external -18 V dc power supply.

4-59. AC Generator Checks

460. The voltage checks given in Table 4-8 and Figure $4-1$ can be used to isolate a trouble to a major circuit. General troubleshooting of the major circuit should then reveal the exact source of trouble. Circuit voltages are given on the schematic diagram. Select the 10 V ac 400 Hz function on the 515A

4-61. +100 DV Voltage

462. The voltage checks given in Table 4-9 and Figure $4-1$ can be used to isolate troubles to a section of the +100 VDC circuit. Select the 100 Volt DC function on the 515A.

Table 4-9. 100 V DC CHECKS

CHECK POINT (On Main PCB)	NORMAL INDICATION	FAULT ANALYSIS
+100UN t.p	120 to 130 V dc (no load)	A. If +100 UN t.p. is low, check the bridge rectifier and input.
	105-115V (with $200 \mathrm{k} \Omega$ load)	B. If normal, check +100 V t.p.
+100 V t.p.	100 V dc	A. If $+100 \mathrm{~V} d \mathrm{~d}$ is high or low, check the +10 V at pin 10, J11.
		B. If normal check Q29, Q30, U5, and the status of jumper C. NOTE!
		If inexplicable readings occur during the DC voltage tests, confirm that J1 (DC PCB) J11 (Main PCB) is properly aligned on the connectors.
		C. If normal check output switching network.

4-63. +10 Volts Checks

464. The voltage checks given in Table 4-10 and Figure $4-3$ can be used to isolate troubles in the $+10 .+1$ and μ volts circuits. If the output is not correct when any of these three voltages are selected, perform the steps in Table 4-10.

Table 4-10. 10 VOLT DC CHECKS

CHECK POINT (On DC PCB)	NORMAL INDICATION	FAULT ANALYSIS
+10V t.p.	$+10 \mathrm{~V} \mathrm{dc}$	A. If +10 V t.p. is high or low proceed to +V t.p. B. If +10 V t.p and both the +10 and +1 volt outputs faulty check the linearity circuits. C. If +10 V t.p. and the +1 volt output are normal, while the +10 volt output is fault, check the output switching. D. If +10 t.p. and the +10 volt output is normal while the +1 volt output is faulty, check the 10:1 Divider and output switching.
+V t.p.	0.4 V to 2 V less than the regulated +18 V . Dependent upon setting of linearity ladder. Voltage drop is smallest at end of ladder and increases to maximum at the center of the ladder	A. If $+V t . p$.is equal to the regulated +18 volts, no current is being drawn by the regulator and it is faulty. B. If voltage is more than 2 V below the regulated +18 V at +V t.p. check the supply path and check for excessive current being drawn by the the +10 V Regulator, (Q1, V1, etc.)

4-65. Rechargeable Battery Pack

4-66. Operating voltages for the battery pack circuitry can be checked using the following procedure:
a. Connect the power cord through an autotransformer to line power. Set the autotransformer output to 0 V . Battery meter must read in the green.
b. Make the voltage checks on the A3 Battery Pack PCB as shown in Table 4-11.

Table 4-11. BATTERY PCB CHECKS

TEST POINT (On Battery PCB)	NORMAL INDICATION (VCD)
TP 4	+19.2 to +25
TP 5	-19.2 to -25
TP 1	$+0.1 \mathrm{~V} \pm .02 \mathrm{~V}$
TP3	0.2 to 0.4 V less than
TP2	$+0.65 \pm .05 \mathrm{~V}$

NOTE: Use output LO as circuit common.
c. Connect the dc voltmeter to A3TP 1 and slowly increase the autotransformer output. The voltage at TP1 should increase from +0.1 V dc to approximately +25 V dc at a line voltage between 30 and 90 V ac.
d. Set the autotransformer output to 115 V ac.
e. Connect the dc voltmeter input to A3TP2 and slowly decrease the autotransformer output. The voltage at TP2 should increase from -25 V dc to +0.6 V dc at a line voltage between 90 and 30 V ac.
f. Turn off the Model 515A and disconnect the power cord.
g. Disconnect wire \#1 from P1 on the A3 Battery Pack PCB.
h. Connect the output of a dc power supply set to +24 V dc to P1 on the A3 Battery Pack PCB. Connect the power supply common to the LO terminal on the front panel.
i. Turn on the Model 515A and slowly decrease the power supply output until the meter on the front panel swings abruptly to the left.
j. Record the power supply output voltage. The Model 515A should turn-off at a power supply output between 18.5 and 19.5 V dc.
k. Increase the power supply output until the meter on the front panel abruptly swings to the right. The Model 515A should turn on at a power supply output that is 1.2 V above the value recorded in step j .

1. Turn off the Model 515A and disconnect the power supply. Reconnect wire \#1 to P1 on the A3 Battery Pack PCB.

Section 5 Lists of Replaceable Parts

TABLE OF CONTENTS

REFERENCE
DESIGNATOR \quad ASSEMBLY NAME/NUMBER \quad PART NO. \quad PAGE

5-1. INTRODUCTION

5-2. This section contains an illustrated parts breakdown of the instrument. Components are listed alphanumerically hy assembly. Electrical components are listed by item number. Each listed part is shown in an accompanying illustration.

5-3. Parts lists include the following information:
a. Reference Designation or Item Number.
b. Description of each part.
c. Fluke Stock Number.
d. Federal Supply Code for Manufacturers (See (Appendix A for Code-to-Name list.)
e. Manufacturer's Part Number or Type.
f. Total Quantity per assembly of component.
g. Recommended Quantity: This entry indicates the recommending number of spare parts necessary to support one to five instruments for a period of two years. This list presumes an availability of common electronic parts at the maintenance site. For maintenance for one year or more at an isolated site, it is recommended that at least one in each assembly in the instrument be stocked. In the case of optional sub-assemblies, plug-ins, etc., that are not always part of the instrument, or are deviations from the basic instrument model, the REC QTY column lists the recommended quantity of the item in that particular assembly.
h. Use Code is provided to identify certain parts that have been added, deleted or modified during production of the instrument. Each part for which a use code has been assigned may be identified with a particular instrument serial number by consulting the Use Code Effectivity, paragraph 5-7.

5-4. HOW TO OBTAIN PARTS

5-5. Components may be ordered directly from the manufacturer by using the manufacturer's part number, or from the John Fluke Mfg. Co., Inc. factory or authorized representative by using the FLUKE STOCK NUMBER. In the event the part you order has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instructions, if necessary.

5-6. To ensure prompt and efficient handling of your order, include the following information:
a. Quantity.
b. FLUKE Stock Number.
c. Description.
d. Reference Designation or Item Number.
e. Printed Circuit Board Part Number.
f. Instrument Model and Serial Number.

5-7. USE CODE EFFECTIVITY LIST

USE
CODE
SERIAL NUMBER EFFECTIVITY

Table 5-1. FINAL ASSEMBLY

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	MFG FED SPLY CDE	$\begin{gathered} \text { MFG } \\ \text { PARTNO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
	FINAL ASSEMBLY	515A	89536				
	Front Panel View (Figure 5-1)						
1	Bezel Frame	363093	89536	363093	1		
2	Binding Post, copper, red	380147	32767	825-65	1		
3	Binding Post, copper, black	380154	32767	825-45	1		
4	Binding Post, brass, blue	275578	32767	825-55	1		
5	Binding Post, brass, white	275586	32767	825-25	1		
6	Bracket	383133	89536	383133	1		
7	Bushing, Snap	160499	96881	422 FF	1		
8	Decal Set	381038	89536	381038	1		
9	Dial, Digital	383141	89536	383141	1		
10	Front Panel	383034	89536	383034	1		
11	Knob Assembly	341396	89536	341396	1		
12	Meter, D'Arsonval	266494	82538	TS10	1		
13	Nameplate, S/N	393975	89536	393975	1		
14	Shorting link	190728	24655	0938-9751	1		
15	Shaft, Extension	381046	89536	381046	1		
	Rear Panel View (Figure 5-2)						
F1	Fuse, fast acting, $1 / 4 \mathrm{amp}$	109314	71400	AGC	1		
XF1	Fuse, Holder	407775	75915	341-001 AL	1		
A1J5	Connector, AC, Power	284166	82389	EAC301	1		
A1T1	Xfmr, power	383208	89536	383208	1		
16	Bezel, frame	363093	89536	363093	1		
17	Foot, rear panel	391367	89536	391367	2		
18	Rear Panel	383042	89536	383042	1		
	Top View (Figure 5-3)						
A2	Main PCB Assembly (See Figure 5-6)	378786	89536	378786	1		
1/75							5-3

Table 5-1. FINAL ASSEMBLY, continued

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	$\begin{array}{\|l} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{array}$	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\left\|\begin{array}{l} \text { TOT } \\ \text { OTY } \end{array}\right\|$	REC OTY	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
19	Cable Assembly	384255	89536	384255	1		
20	Couple, Switch Extension	269670	89536	269670	3		
21	Guard, left side	383083	89536	383083	1		
22	Guard, right side	383091	89536	383091	1		
23	Side, chassis	383059	89536	383059	2		
24	Tube, switch extension	381053	89536	381053	1		
25	Tube, switch extension	381061	89536	381061	1		
26	Tube, switch extension	381079	89536	381079	1		
27	Wire Assembly	384354	89536	384354	1		
	Bottom View (Figure 5-4)						
A3	Battery Pack PCB Assembly (See Fig. 5-7)	307876	89536	307876	1		
A4	DC PCB Assembly (See Fig. 5-8)	378794	89536	378794	1		
T2	Xfmr, output	383190	89536	383190	1		
28	Dial Assembly	383174	89536	383174	1		
	Assembled View (Figure 5-5)						
29	Cover, bottom	383075	89536	383075	1		
30	Cover, top	383067	89536	383067	1		
31	Decal, bottom cover	381319	89536	381319	1		
32	Decal, knob, spun finish	285221	89536	285221	2		
33	Decal, side trim	363010	89536	363010	2		
34	Foot, bail, stand	292870	89536	292870	4		
35	Grip, handle	284836	89536	284836	2		
36	Guard, Bottom	383117	89536	383117	1		
37	Guard, Top	383109	89536	383109	1		
38	Handle	310045	89536	310045	1		
39	Insert, Non-skid Foot	104260	89536	104260	4		
40	Knob, femal half, black	309054	89536	309054	2		

Table 5-1. FINAL ASSEMBLY, continued

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE	TOT OTY	REC OTY	USE
41 BT1, BT2	Knob, male half, black Battery Pack Assembly Not illustrated - attached to inside of item 37 Battery Pck (not illustrated) Cordset (not illustrated)	$\begin{aligned} & 309047 \\ & 307900 \\ & 284356 \\ & 363481 \end{aligned}$	$\begin{gathered} 89536 \\ 89536 \\ 03508 \\ 70903 \end{gathered}$	309047 307900 PPS 1082 PH390			
(2) (3) ${ }^{3}$ (4)		Bos				(15)	

NOTE: Components not marked with an Item Number are common hardware.

Figure 5-1. FRONT PANEL VIEW

NOTE: Components not marked with an Item Number are common hardware.

Figure 5-3. TOP VIEW

Figure 5-4. BOTTOM VIEW

NOTE: Components not marked with an Item
Number are common hardware.

Table 5-2. MAN PCB ASSEMBLY

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$	$\begin{array}{\|l} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{array}$	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { OTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
	MAIN PCB ASSEMBLY Figure 5-6	378786	89536	378786	REF		
C1	Cap, elect, $2 \mathrm{uF}+75 /-10 \%, 50 \mathrm{~V}$	105197	56289	$\begin{gathered} 30 \mathrm{D} 205 \mathrm{G} 050 \\ \text { BA4 } \end{gathered}$	1		
C2,C3	Cap, elect, $220 \mathrm{uF}+100 /-10 \%, 40 \mathrm{~V}$	178616	73445	ET221X040A01	2		
$\begin{aligned} & \mathrm{C} 4, \mathrm{C} 5, \\ & \mathrm{C} 9, \mathrm{C} 28, \\ & \mathrm{C} 32 \end{aligned}$	Cap, Ta, $2.2 \mathrm{uF} \pm 20 \%, 20 \mathrm{~V}$	161927	56289	196D225X0020	5		
$\begin{aligned} & \mathrm{C} 6, \mathrm{C} 8, \\ & \mathrm{C} 10, \\ & \mathrm{C} 12, \end{aligned}$							
$\begin{aligned} & \mathrm{C} 13, \\ & \text { C14, } \\ & \text { C17, } \\ & \text { C20, } \\ & \text { C23 } \end{aligned}$	Cap, fxd cer, 0.05 uF $+80 /-20 \%, 25 / 50 \mathrm{~V}$	148924	32897	5855Y5U503Z	9		
C7,C35	Cap, Ta, $4.7 \mathrm{uF} \pm 20 \%, 20 \mathrm{~V}$	161943	56289	196D475X0020	2		
$\left\lvert\, \begin{aligned} & \text { C11, } \\ & \text { C18, } \\ & \text { C30 } \end{aligned}\right.$	Cap, fxd mica, $33 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	160317	72136	DM15E330J	3		
C15, $\mathrm{C} 21 .$							
$\begin{aligned} & \mathrm{C} 21, \\ & \mathrm{C} 22, \\ & \mathrm{C} 24, \end{aligned}$							
$\begin{aligned} & \text { C25, } \\ & \text { C26, } \\ & \text { C34, } \\ & \text { C36, } \\ & \text { C64 } \end{aligned}$	Cap, fxd, cer, $0.01 \mathrm{uF} \pm 20 \%, 100 \mathrm{~V}$	149153	56289	$\begin{gathered} \mathrm{C} 023 \mathrm{~B} 101 \mathrm{~F} 103 \\ \mathrm{M} \end{gathered}$	9		
C16	Cap, fxd mica, $4 \mathrm{pF} \pm 5 \%$	190397	72136	DM15C040K	1		
$\begin{aligned} & \mathrm{C} 27, \\ & \mathrm{C} 59 \end{aligned}$	Cap, fxd mica, $47 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	148536	72136	DM15E470J	2		
C29	Cap, fxd, cer, $180 \mathrm{pF} \pm 10 \%$, 1 KV	105890	71590	BB60181KS3N	1		
C31	Cap, fxd, cer, $20 \mathrm{pF} \pm 10 \%, 500 \mathrm{~V}$	106369	32897	$\begin{gathered} 831-000 \mathrm{~T} 2 \mathrm{HO} 0 \\ 200 \end{gathered}$	1		
C33	Cap, fxd, mica, $22 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	148551	71236	DM15C220J	1		
$\begin{aligned} & \text { C37, } \\ & \text { C38 } \end{aligned}$	Cap, mylar, $0.22 \mathrm{uF} \pm 10 \%, 250 \mathrm{~V}$	194803	73445	C280AE/A220K	2		

Table 5-2. MAIN PCB ASSEMBLY, continued

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	$\begin{array}{\|l\|l\|} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{array}$	MFG PART NO. OR TYPE	$\left\|\begin{array}{l} \text { TOT } \\ \text { QTY } \end{array}\right\|$	REC OTY	USE
C40,	Cap, Ta, $3.3 \mathrm{uF} \pm 10 \%, 15 \mathrm{~V}$	182808	56289	150D330X9015	2		
C41	Cap, fxd, cer, $3.3 \mathrm{pF} \pm 10 \%, 500 \mathrm{~V}$	106377	32897	$861-000 \mathrm{~T} 2 \mathrm{H} 0-$ 3 R 3	1		
$\begin{aligned} & \text { C42, } \\ & \text { C61 } \end{aligned}$	Cap, fxd, cer, $0.025 \mathrm{uF} \pm 20 \%, 100 \mathrm{~V}$	168435	56289	C023B101H253 MU	2		
$\begin{aligned} & \text { C43, } \\ & \text { C44 } \end{aligned}$	Cap, fxd, cer, $0.05 \mathrm{uF} \pm 20 \%, 100 \mathrm{~V}$	149161	56289	55C23A1	2		
C45	Cap, fxd, mica, $270 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	148452	14655	CD15FD271J03	1		
C46	Cap, fxd, mica, $3000 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	161786	71236	DM19F302J	1		
C47	Cap, Ta, $0.33 \mathrm{uF} \pm 5 \%, 20 \mathrm{~V}$	271338	56289	$\left\|\begin{array}{c} 150 \mathrm{D} 033 \mathrm{X} 5020 \\ \text { A2 } \end{array}\right\|$	1		
$\begin{aligned} & \mathrm{C} 49 \\ & \mathrm{C} 50 \end{aligned}$	Cap, fxd, mica, $270 \mathrm{pF}, \pm 1 \%, 500 \mathrm{~V}$	179010	14655	CD15F271J2			
$\begin{aligned} & \text { C51, } \\ & \text { C52 } \end{aligned}$	Cap, fxd, mica, $3300 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	148320	14655	C019FB32J	2		
$\begin{aligned} & \text { C53, } \\ & \text { C54 } \end{aligned}$	Cap, fxd, met polycarbonate, $0.033 \mathrm{uF} \pm 5 \%$, 100 V	310474	01281	X463UW33351	2		
C55	Cap, fxd, met polycarbonate, $5 \mathrm{uF} \pm 10 \%, 50 \mathrm{~V}$	313254	84411	X463UW5059.50	1		
C57	Cap, fxd, plstc, $1 \mathrm{uF} \pm 20 \%$, 200V	106450	84411	TYPE X6635	1		
C58	Cap, fxd, mica, $5 \mathrm{pF} \pm 10 \%, 500 \mathrm{~V}$	148577	72136	DM15C050K	1		
C60	Cap, fxd, mica, $2 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	175208	72136	DM15E020J	1		
C62	Cap, fxd, mica, $56 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	148528	14655	DC15F560J	1		
C63	Cap, plstc, $0.0047 \mathrm{uF} \pm 20 \%, 200 \mathrm{~V}$	106054	56289	192 P 47202	1		
C66	Cap, fxd mylar, $0.15 \mathrm{uF} \pm 10 \%, 200 \mathrm{~V}$	222620	14655	DMF 1P15	1		
$\begin{aligned} & \text { C67, } \\ & \text { C68 } \end{aligned}$	Cap, Ta, $330 \mathrm{uF} \pm 10 \%, 6 \mathrm{~V}$	193011	56289	$\left\|\begin{array}{c} \text { 150D337X9006 } \\ \text { S2 } \end{array}\right\|$	2		
C70	Cap, plstc, $2.2 \mathrm{uF} \pm 10 \%, 10 \mathrm{CV}$	306522	73445	$\begin{gathered} \mathrm{C} 280 \mathrm{MCH} / \mathrm{A} 2 \\ \mathrm{M} 2 \end{gathered}$	1		
C71	Cap, fxd, met polycarbonate, $0.033 \mathrm{uF} \pm 10 \%$ 100 V	288894	84411	X463UW. 03391	1		
$\begin{aligned} & \text { C72, } \\ & \text { C73 } \end{aligned}$	Cap, elect, $10 \mathrm{uF}+50 /-10 \%, 25 \mathrm{~V}$	170266	25403	ET100X025A2	2		

Table 5-2. MAIN PCB ASSEMBLY, continued

Table 5-2. MAIN PCB ASSEMBLY, continued

$\left\lvert\, \begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}\right.$	DESCRIPTION	FLUKE STOCK NO.	$\begin{array}{\|l} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{array}$	$\begin{gathered} \text { MFG } \\ \text { PART NO. } \\ \text { OR } \\ \text { TYPE } \end{gathered}$	TOT QTY	REC QTY	$\left\lvert\, \begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}\right.$
$\left\lvert\, \begin{aligned} & \text { Q3,Q19 } \\ & \text { Q21 } \end{aligned}\right.$	Xstr, Si, NPN	218081	04713	MPS6520	3		
$\begin{aligned} & \text { Q5,Q7 } \\ & \text { thru } \\ & \text { Q10, } \\ & \text { Q27, } \\ & \text { Q32 } \end{aligned}$	Xstr, Si, PNP	195974	04713	2N3906	7		
$\begin{array}{\|l\|} \text { Q6,Q11 } \\ \text { Q18, } \\ \text { Q20 } \end{array}$	Xstr, Si, PNP	229898	04713	MPS6522	4		
$\begin{aligned} & \text { Q17, } \\ & \text { Q26 } \end{aligned}$	Xstr, Si, N-channel FET	261388	04713	SPF179	2		
$\begin{array}{\|l\|l} \text { Q22, } \\ \text { Q23 } \end{array}$	Xstr, Si, PNP	225599	12040	2N4250	2		
Q29	Xstr, Si, PNP	266619	07263	2N4888	1		
Q30	Xstr, Si, NPN	370684	04713	MPS-A42	1		
Q31	Xstr, Si, NPN	150359	95303	2N3053	1		
R1,R4, R13, R101	Res, fxd, comp, $6.8 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148098	01121	CB6825	4		
R2	Res, met film, $6.98 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	261685	91637	MFF1-8	1		
R3,R7, R16, R68	Res, fxd, comp, $1.8 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	175042	01121	CB1825	4		
R5, R14, R19	Res, fxd, comp, $270 \pm 5 \%, 1 / 4 \mathrm{~W}$	160804	01121	CB2715	3		
$\begin{aligned} & \text { R6, } \\ & \text { R15 } \end{aligned}$	Res, fxd, comp, $180 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	193441	01121	CB1845	2		
R8	Res, met film, $54.9 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	271353	91637	MFF1-85492	1		
R9, R95, R123, R127	Res, var, $10 \mathrm{~K} \pm 10 \%$, $1 / 2 \mathrm{~W}$	309674	11236	360T 103A	4		
R10	Res, met film $63.4 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	235382	91637	MFF1-8	1		
/75							5-13

Table 5-2. MAIN PCB ASSEMBLY, continued

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	$\begin{aligned} & \text { MFG } \\ & \text { PART NO. } \\ & \text { OR } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
R11, R75, R76, R84, R88	Res, fxd, comp, $22 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148130	01121	CB2235	5		
$\begin{aligned} & \mathrm{R} 12, \\ & \mathrm{R} 97 \end{aligned}$	Res, fxd, comp, 5.6K $\pm 5 \%$, 1/4W	148080	01121	CB5625	2		
R17	Res, met film, $57.6 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	289116	91637	MFF1-8	1		
R18	Res, met film, $45.3 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	234971	91637	MFF1-845R32F	1		
R20	Res, met film, $51.1 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	309757	91637	MFF1-8	1		
R21	Res, met film, $49.9 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	293456	91637	MFF1-8	1		
R22, R23, R30, R31 and U2	Ref Amp Assy	397869	89536	397869	1		
R24	Res, met film, $2.49 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	309732	91637	MFF 1-8	1		
R25	Res, met film, $1.05 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	293530	91637	MFF1-8	1		
R26	Res, met film, $107 \pm 1 \%, 1 / 8 \mathrm{~W}$	309716	91637	MFF1-8	1		
R27	Res, var, $100 \pm 10 \%, 1 / 2 \mathrm{~W}$	275735	11236	360T101A	1		
R28	Res, met film, $200 \pm 1 \%, 1 / 8 \mathrm{~W}$	309724	91637	MFF1-8	1		
R29	Res, met film, $10 \pm 1 \%, 1 / 8 \mathrm{~W}$	268789	91637	MFF1-8	1		
R37	Res, var, $20 \pm 20 \%, 1 / 2 \mathrm{~W}$	275727	11236	360T200B	1		
R38	Res, met film, $40.2 \pm 1 \%, 1 / 8 \mathrm{~W}$	245373	91637	MFF1-8	1		
R39	Res, met film, $100 \pm 1 \%, 1 / 8 \mathrm{~W}$	168195	91637	MFF 1-81000F	1		
$\begin{aligned} & \text { R40, } \\ & \text { R41 } \end{aligned}$	Res, network, 14K, 14K	293506	18612	310865	1		
R42	Res, met film, $33.2 \pm 1 \%, 1 / 8 \mathrm{~W}$	199950	91637	MFF1-8	1		
R43, R54, R57, R64	Res, fxd comp, 100K $\pm 5 \%, 1 / 4 \mathrm{~W}$	148189	01121	CB1045	4		

Table 5-2. MAIN PCB ASSEMBLY, continued

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	$\begin{array}{\|l\|} \hline \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{array}$	MFG PART NO. OR TYPE	\|TOT	$\left\|\begin{array}{l} \text { REC } \\ \text { QTY } \end{array}\right\|$	$\left\|\begin{array}{l} \text { USE } \\ \mathrm{CDE} \end{array}\right\|$
$\begin{aligned} & \text { R44, } \\ & \text { R45, } \\ & \text { R93, } \\ & \text { R152, } \\ & \text { R156 } \end{aligned}$	Res, fxd, comp, $1 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148023	01121	CB1025	5		
R46	Res, met film, $13.7 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	236752	91637	MFF1-8	1		
$\begin{aligned} & \text { R47, } \\ & \text { R74 } \end{aligned}$	Res, met film, $453 \pm 1 \%, 1 / 8 \mathrm{~W}$	267393	91637	MFF1-8	2		
$\begin{aligned} & \mathrm{R} 48, \\ & \mathrm{R} 73 \end{aligned}$	Res, met film, $1 \mathrm{M} \pm 1 \%, 1 / 8 \mathrm{~W}$	268797	91637	MFF1-8	2		
$\begin{aligned} & \text { R49, } \\ & \text { R72 } \end{aligned}$	Res, var, $1 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{~W}$	276691	11236	360T105A	2		
R52	Res, fxd, comp, $2.4 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$	221945	01121	CB2455	1		
R53	Res, fxd, comp, $470 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	188441	01121	CB4745	1		
$\begin{aligned} & \text { R55, } \\ & \text { R58, } \\ & \text { R70, } \\ & \text { R111, } \\ & \text { R112 } \end{aligned}$	Res, fxd, comp, 47K $\pm 5 \%$, 1/4W	148163	01121	CB4735	5		
R56	Res, fxd, comp, $360 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	234690	01121	CB3645	1		
R59	Res, fxd, comp, $12 \mathrm{~K} \pm 5 \%$, 1/4W	159731	01121	CB1235	1		
R60	Res, var, $1000 \pm 10 \%, 1 / 2 \mathrm{~W}$	275750	11236	360T 102A	1		
R61	Res, fxd, comp, $27 \mathrm{~K} \pm 5 \%$, 1/4W	148148	01121	CB2735	1		
$\begin{aligned} & \text { R62, } \\ & \text { R85, } \\ & \text { R99 } \end{aligned}$	Res, fxd, comp, $8.2 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	160796	01121	CB8225	3		
R63	Res, fxd, comp, $100 \pm 5 \%, 1 / 4 \mathrm{~W}$	147926	01121	CB1015	1		
R65, R67, R78, R87, R91, R92, R149, R150	Res, fxd, comp, 10K $\pm 5 \%$, 1/4W	148106	01121	CB1035	8		
R66	Res, fxd, comp, $91 \pm 5 \%, 1 / 4 \mathrm{~W}$	221887	01121	CB9105	1		
R69	Res, fxd, comp, $820 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	220541	01121	CB8245	1		

Table 5-2. MAIN PCB ASSEMBLY, continued

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$	DESCRIPTION	FLUKE STOCK NO.	$\begin{array}{\|l\|l\|} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{array}$	MFG PART NO. OR TYPE	\|lot	REC OTY	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
R71	Res, fxd, comp, $6.2 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	221911	01121	CB6225	1		
R77	Res, fxd, comp, $2.2 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$	198390	01121	CB2255	1		
R79	Res, fxd, comp, $36 \mathrm{~K} \pm 5 \%$, 1/4W	221929	01121	CB3635	1		
$\begin{aligned} & \text { R80, } \\ & \text { R81 } \end{aligned}$	Res, met film, $1 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	168229	91637	MFF1-81991F	1		
$\begin{aligned} & \text { R82, } \\ & \text { R83 } \end{aligned}$	Res, met film, $1.47 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	293654	91637	MFF1-8	2		
R86	Res, fxd, comp, $510 \pm 5 \%$, 1/4W	218032	01121	CB5115	1		
R89	Res, met film, $4.53 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	260331	91637	MFF1-8	1		
R90	Res, var, 1K	393728	89536	393728	1		
R94, R118, R122, R196	Res, met film, $41.2 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	289538	91637	MFF1-8	4		
R98	Res, fxd, comp, $4.7 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148072	01121	CB4725	1		
R100	Res, var, $2 \mathrm{~K} \pm 10 \%, 1 / 2 \mathrm{~W}$	309666	11236	360T202A	1		
$\begin{aligned} & \text { R102, } \\ & \text { R104 } \end{aligned}$	Res, fxd, comp, $5.6 \pm 5 \%, 1 / 4 \mathrm{~W}$	208033	01121	CB56G5	2		
R103	Res, fxd, deposited, carbon, $0.50 \pm 5 \%, 1 / 4 \mathrm{~W}$	381954	80031	CR251-45P.5TS	1		
$\begin{aligned} & \text { R105, } \\ & \text { R106 } \end{aligned}$	Res, met film, $30.1 \pm 1 \%, 1 / 8 \mathrm{~W}$	296665	91637	MFF1-830R1J	2		
R110	Res, fxd, comp, $56 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	170738	01121	CB5635	1		
R114	Res, fxd, comp, $2.7 \pm 5 \%, 1 / 4 \mathrm{~W}$	246744	01121	CB2705	1		
R115	Res, fxd, comp, $1 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$	182204	01121	CB1055	1		
R116	Res, fxd, comp, $390 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	193383	01121	CB3945	1		
R117	Res, fxd, comp, $2.2 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$	198390	01121	CB2255	1		
R119	Res, met film, $2.55 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	325498	91637	MFF1-8	1		
R120	Res, fxd, comp, $51 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	193334	01121	CB5135	1		
R121	Res, fxd, comp, $620 \pm 5 \%$, $1 / 4 \mathrm{~W}$	221903	01121	CB6215	1		
$\begin{aligned} & \text { R124, } \\ & \text { R128 } \end{aligned}$	Res, met film, $2.43 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	312637	91637	MFF1-8	2		

Table 5-2. MAIN PCB ASSEMBLY, continued

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{gathered}$	```MFG PART NO. OR TYPE```	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
$\begin{aligned} & \text { R125, } \\ & \text { R129 } \end{aligned}$	Res, var, $500 \pm 10 \%$, 12\% W	325613	11236	360T500A	2		
R130	Res, fxd, comp, $10 \pm 5 \%, 1 / 4 \mathrm{~W}$	147868	011.21	CB1005	1		
R131	Res, fxd, comp, $4.3 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	193375	01121	CB4325	1		
R132	Res, fxd, comp, $30 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	193417	01121	CB3035	1		
R133	Res, fxd, comp, $68 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148171	01121	CB6835	1		
R134	Res, fxd, comp, $560 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	220533	01121	CB5645	1		
R135	Res, fxd , comp, $22 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$	221986	01121	CB2265	1		
$\begin{aligned} & \text { R136, } \\ & \text { R137 } \end{aligned}$	Res, met film, $49.9 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	268821	91637	MFF 1-849R92F	2		
$\begin{aligned} & \text { R138, } \\ & \text { R139 } \end{aligned}$	Res, divider set	384677	89536	384677	1		
R140	Res, met film, $71.5 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	291435	91637	MFF1-871R5	1		
R141	Res, var, $100 \pm 10 \%, 0.5 \mathrm{~W}$	381913	32997	3299W1-101	1		
R142	Res, met film, $57.6 \pm 1 \%, 1 / 8 \mathrm{~W}$	305946	91637	MFF 1-857R6	1		
R143	Res, met film, $681 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	381517	91637	MFF1-8	1		
$\begin{aligned} & \text { R144, } \\ & \text { R147 } \end{aligned}$	Res, var, $200 \mathrm{~K} \pm 10 \%, 0.5 \mathrm{~W}$	381921	32997	3299W1-204	2		
$\begin{aligned} & \text { R145, } \\ & \text { R148 } \end{aligned}$	Res, driver, set	384685	89536	384685	1		
R146	Res, met film, $3.24 \mathrm{M} \pm 1 \%, 1 / 2 \mathrm{~W}$	394478	91637	MFF1-2	1		
R151	Res, fxd, comp, $75 \pm 5 \%, 1 / 4 \mathrm{~W}$	246736	01121	CB7505	1		
R153	Res, met film, $200 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	261701	91637	MFF1-8	1		
$\begin{aligned} & \text { R154, } \\ & \text { R155 } \end{aligned}$	Res, fxd, comp, $7.5 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	193326	01121	CB7525	2		
R157	Res, comp, $11 \pm 5 \%, 1 / 4 \mathrm{~W}$	221861	01121	CB1105	1		
S1	Switch, power (Rear portion)	381129	89536	381129	1		
S1 thru S11	Switch Assy. pushbutton (Front Module)	381095	89536	381095	1		
S10	Switch, pushbutton (Rear portion)	381103	89536	381103	1		

Table 5-2. MAIN PCB ASSEMBLY, Continued.

Table 5-3. BATTERY PACK PCB ASSEMBLY

Figure 5-7. BATTERY PACK PCB ASSEMBLY

Table 5-4. DC PCB ASSEMBLY

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	MFG PART NO. OR TYPE	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	USE
	DC PCB ASSEMBLY	378794	89536	378794	REF		
	Figure 5-8						
A5	ADJ, PCB Assembly (See Table 5-5)	384651	89536	384651	1		
C1, C3	Cap, Ta, $1 \mathrm{uF} \pm 20 \%, 35 \mathrm{~V}$	161919	56289	196D105X0035	2		
C2	Cap, fxd, mica, $100 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	148494	71263	DM15F101J	1		
C4	Cap, plstc, $0.1 \mathrm{uF} \pm 10 \%$, 250V	161992	73445	C280AE/A100K	1		
CR1	Diode, FET, current reg	348482	17856	E505	1		
CR2	Diode, zener, 5.6 V	277236	07910	1N752A	1		
Q1	Xstr, Si, NPN	218396	04713	2N3904	1		
R1	Res, fxd, comp, $100 \pm 5 \%$, 1/4W	147926	01121	CB1015	1		
R2	Res, ww, card, $4.22 \mathrm{~K} \pm 0.5 \%, 1 / 2 \mathrm{~W}$	311761	89536	311761	1		
R3	Res, ww, card, $10 \mathrm{~K} \pm 0.5 \%, 1 / 2 \mathrm{~W}$	195776	89536	195776	1		
R4	Res, ww, card, $1.27 \mathrm{~K} \pm 0.1 \%, 1 / 2 \mathrm{~W}$	341628	89536	341628	1		
R5 thru R10	1						
$\begin{aligned} & \text { R12, } \\ & \text { R15, } \\ & \text { R18, } \\ & \text { R21 } \end{aligned}$	Res, set, linearity ladder	384669	89536	384669	1		
R13	Res, met film, $182 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	241091	91637	MFF1-8	1		
R16	Res, met film, $215 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	289470	91637	MFF1-8			
R19	Res, met film, $365 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	289520	91637	MFF1-8	1		
R22	Res, fxd, met film, $715 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	236836	91637	MFF1-87153F	1		
R24	Res, ww, card, $10 \pm 0.01 \%, 1 / 2 \mathrm{~W}$	384370	89536	384370	1		
R25	Res, ww, Herm, $100 \pm 0.01 \%, 1 / 2 \mathrm{~W}$	384552	89536	384552	1		
R26	Res, ww, Herm, $1 \mathrm{~K} \pm 0.01 \%, 1 / 2 \mathrm{~W}$	384560	89536	384560	1		
R27	Res, ww, Herm $10 \mathrm{~K} \pm 0.01 \%, 1 / 2 \mathrm{~W}$	384578	89536	384578	1		
R28	Res, ww, Herm, $100 \mathrm{~K} \pm 0.01 \%, 1 / 2 \mathrm{~W}$	384586	89536	384586	1		
R29	Res, ww, Herm, $1 \mathrm{M} \pm 0.01 \%$, 1 W	384594	89536	384594	1		
R31	Res, met film, $9.980 \mathrm{M} \pm 0.1 \%$	380972	01281	AR90	1		

Table 5-4. DC PCB ASSEMBLY, continued

Figure 5-8. DC PCB ASSEMBLY

Table 5-5. ADJUSTMENT PCB ASSEMBLY

Figure 5-9. ADJUSTMENT PCB ASSEMBLY

Section 6

Option \& Accessory Information

6-1. INTRODUCTION

6-2. This section of the manual contains information pertaining to the options and accessories available for the 515A Portable Calibrator. Each of the options and accessories are described under separate major headings containing the Model or Option number. The option descriptions contain applicable operating and maintenance instructions and field installation procedures.

6-3. ACCESSORIES

6-4. Front Panel Dust Cover (M03-203-700)

6-5. The front panel dust cover is a molded plastic snapon accessory which fits over the front panel of the 515A. The dust cover provides protection fro the front panel controls and is useful when storing or transporting the Portable Calibrator.

6-6. \quad Side-by-Side Rack Mount (M00-200-618)

6-7. Use the following procedure to install two 515A Portable Calibrators side-by-side in a standard 19-inch equipment rack. For an illustration of the mounting procedure, refer to Figure 6-1.
a. Remove the decals from the handle connectors and remove the handles from the instruments.
b. 1 Remove the metal decal trim from the side of the instruments.
c. Remove the bottom cover and guard from the instruments.
d. Connect the two instruments together and attach the rack ears as shown in Figure 6-1.
e. Replace the bottom cover and guard.

6-8. Offset Rack Mounting (MOO-200-619)

6-9. Use the following procedure to install one 515A Portable Calibrator in the offset configuration. For an illustration of the mounting procedure, refer to Figure 6-2.
a. Remove the decals from the handle connectors and remove the handle from the instrument.
b. Remove the metal decal trim from the side of the instrument.
c. Assemble the offset connector.
d. Attach the two rack ear connectors to the instrument positioning the offset connector either right or left, as desired.

6-10. OPTIONS

6-11. There are no options available for the 515A Portable Calibrator.

Figure 6-1. SIDE-BY-SIDE RACK MOUNTING

Figure 6-2. OFFSET RACK MOUNTING

Section 7 General Information

$7-1$. This section of the manual contains generalized user information as well as supplemental information to the List of Replaceable Parts contained in Section 5.

A or amp	ampere	hf	high frequency	$(+)$ or pos	positive
ac	alternating current	Hz	hertz	pot	potentiometer
af	audio frequency	IC	integrated circuit	p-p	peak-to-peak
a/d	analog-to-digital	if	intermediate frequency	ppm	parts per million
assy	assembly	in	inch(es)	PROM	programmablle read-only
AWG	american wire gauge	intl	internal		memory
B	bel	1/0	input/output	psi	pound-force per square inch
bcd	binary coded decimal	k	kilo (10^{3})	RAM	random-access memory
${ }^{\circ} \mathrm{C}$	Celsius	kHz	kilohertz	rf	radio frequency
cap	capacitor	$\mathrm{k} \Omega$	kilohm(s)	rms	root mean square
ccw	counterclockwise	kV	kilovolt(s)	ROM	read-only memory
cer	ceramic	If	low frequency	s or sec	second (time)
cermet	ceramic to metal(seal)	LED	light-emitting diode	scope	oscilloscope
ckt	circuit	LSB	least significant bit	SH	shield
cm	centimeter	LSD	least significant digit	Si	silicon
cmrr	common mode rejection ratio	M	mega (10 ${ }^{6}$)	serno	serial number
comp	composition	m	milli (10^{-3})	sr	shift register
cont	continue	mA	milliampere(s)	Ta	tantalum
crt	cathode-ray tube	max	maximum	tb	terminal board
cw	clockwise	mf	metal film	tc	temperature coefficient or
d/a	digital-to-analog	MHz	megahertz		temperature compensating
dac	digital-to-analog converter	min	minimum	tcxo	temperature compensated
dB	decibel	mm	millimeter		crystal oscillator
dc	direct current	ms	millisecond	tp	test point
dmm	digital multimeter	MSB	most significant bit	u or μ	micro (10^{-6})
dvm	digital voltmeter,	MSD	most significant digit	uhf	ultra high frequency
elect	electrolytic	MTBF	mean time between failures	us or $\mu \mathrm{s}$	microsecond(s) (10-6)
ext	external	MTTR	mean time to repair	uut	unit under test
F	farad	mV	millivolt(s)	v	volt
${ }^{\circ} \mathrm{F}$	Fahrenheit	mv	multivibrator	v	voltage
FET	Field-effect transistor	$\mathrm{M} \Omega$	megohm(s)	var	variable
f	flip-flop		nano (10^{-9})	vco	voltage controlled oscillator
freq	frequency	na	not applicable	vhf	very high frequency
FSN	federal stock number	NC	normally closed	vif	very low frequency
g	gram	(-) or neg	negative	w	watt(s)
G	giga (10^{9})	NO	normally open	ww	wire wound
gd	guard	ns	nanosecond	xfmr	transformer
Ge	germanium	opnl ampl	operational amplifier	xstr	transistor
GHz	gigahertz	p	pico (10^{-12})	xtal	crystal
gmv	guaranteed minimum value	para	paragraph	xtlo	crystal oscillator
gnd	ground	pcb	printed circuit board	Ω	ohm(s)
H	henry	pF	picofarad	μ	micro (10^{-6})
hd	heavy duty	pn	part number		

Federal Supply Codes for Manufacturers

D9816	02533	04713	06665
Westermann Wilhelm Augusta-Anlage	Leigh Instruments Ltd.	Motorola Inc.	Precision Monolithics
Mannheim-Nackarau Germany	Frequency Control Div. Don Mills, Ontario, Canada	Semiconductor Group Phoenix, Arizona	Sub of Bourns Inc. Santa Clara, Califormia
00199 (0			
Marcon Electronics Corp	02606	05236	06666
Kearny, New Jersey	Fenwal Labs Division of Travenal Labs	Jonathan Mfg. Co. Fullerton, Califomia	General Devices Co. Inc. Indianapolis, Indiana
00213	Morton Grove, Illinois		
Nytronics Comp. Group Inc.		05245	06739
Darrlingon, South Carolina		Corcom Inc.	Electron Corp.
	0266	Libertyville, Illinois	Littleton, Colorado
00327	Bunker Ramo-Eltra Corp.		
Welwyn International Inc.	Amphenol NA Div.	05276	06743
Westlake, Ohio	Broadview, Illinois	ITT Pomona Electronics Div.	Gould Inc. Foil Div.
00656	02735	Pomona, California	Eastlake, Ohio
Aerovox Corp.	RCA-Solid State Div.		
New Bedford, Massachusetts	Somerville, New Jersey		06751
		05277	Components Inc.
00686	02799	Westinghouse Elec. Corp.	Semcor Div.
Film Capacitors Inc.	Arco Electronics Inc.	Semiconductor Div.	Phoenix, Arizona
Passaic, New Jersey	Chatsworth, California	Youngwood, Pennsylvania	
00779	03508	05397	06776
AMP, Inc.	General Electric Co.	Union Carbide Corp.	Robinson Nugent Inc.
Harrisburg, Pennsylvania	Semiconductor Products\& Batteries Aubum, New York	Materials Systems Div. Cleveland. Ohio	New Albany, Indiana
01121			06915
Allen Bradley Co.	03797	05571	Richco Plastic Co.
Milwaukee, Wisconsin	Genisco Technology Corp. Eltronics Div.	Sprague Electric Co. (Now 56289)	Chicago, Illinois
01281	Rancho Dominquez, Calif.		06961
TRW Electronics \& Defense Sector		05574	Vernitron Corp.
Lawndale, California	03877	Viking Connectors Inc	Piezo Electric Div.
	Gilbert Engineering Co.Inc	Sub of Criton Corp.	Bedford, Ohio
01295	Incon Sub of Transitron	Chatsworth, Calif.	
Texas Instruments Inc.	Electronic Corp.		06980
Semiconductor Group	Glendale, Arizona	05820	Varian Associates Inc.
Dallas,Texas		EG \& G Wakefield Engineering	Eimac Div.
	03888	Wakefield, Massachusetts	San Carlos, California
01537	KDI Electronics Inc.		
Motorola Communications \&	Pyrofilm Div.	05972	07047
Electronics Inc.	Whippany, New Jersey	Loctite Corp.	Ross Milton Co., The
Franklin Park, Illinois		Newington, Connecticut	Southampton, Penna.
	03911		
01686	Clairex Corp.	06001	07138
RCL Electronics/Shallcross Inc.	Clairex Electronics Div.	General Electric Co.	Westinghouse Electric Corp.
Electro Components Div.	Mount Vemon, New York	Electric Capacitor Product Section	Industrial \& Government
Manchester, New Hampshire		Columbia, S. Carolina	Tube Div.
	03980		Horseheads, New York
01884	Muighead Inc.	06141	
Sprague Electric Co. (Now 56289)	Mountainside, New Jersey	Fairchild Weston Systems Inc. Data Systems Div.	07233 Benchmark Technology Inc.
(Now 56289)	04009	Sarasota, Florida	City of Industry, Calif.
01961	Cooper Industries, Inc.		
Varian Associates Inc.	Arrow Hart Div.	06192	07239
Pulse Engineering Div.	Hartord, Connecticut	La Deau Mfg. Co.	Biddle Instruments
Convoy, Connecticut		Glendale, California	Blue Bell, Penna.
	04217		
02111	Essex International Inc.	06229	07256
Spectrol Electronics Corp.	Wire \& Cable Div.	Electrovert Inc.	Silicon Transistor Corp.
City of Industry, California	Anaheim, California	Elmsford, New York	Sub of BBF Inc. Chelmsford, Massachusetts
02114	04221	06383	
Amperex Electronic Corp.	Midland-Ross Corp.	Panduit Corp.	07261
Ferrox Cube Div.	Midtex Div.	Tinley Park, Illinois	Avnet Corp.
Saugerties, New York	N. Mankato, Minnesota		Culver City, Califomia
		06473	
02131	04222	Bunker Ramo Corp.	07263
General Instrument Corp.Government	AVX Corp.	Amphenol NA Div.	Fairchild Camera \& Instrument
Systems Div.	AVX Ceramics Div.	SAMS Operation	Semiconductor Div.
Westwood, Massachusetts	Myrtle Beach, S. Carolina	Chatsworth, Califomia	Mountain View, Califomia
02395	04423	06555	07344
Sonar Radio Corp.	Telonic Berkley Inc.	Beede Electrical Instrument	Bircher Co. Inc., The
Hollywood, Florida	Laguna Beach, Califomia	Penacook, New Hampshire	Rochester, New York

Federal Supply Codes for Manufacturers (cont)

07557	09423	11711	12954
Campion Co. Inc.	Scientific Components Inc.	General Instrument Corp.	Microsemi Corp.
Philadelphia, Penna.	Santa Barbara, Califomia	Rectifier Div.	Components Group
		Hicksville, New York	Scottsdale, Arizona
07597	09579		
Burndy Corp.	CTS of Canada, Ltd	11726	12969
Rochester, New York	Streetsville, Ontario	Qualidyne Corp.	Unitrode Corp. Lexington, Massachusetts
	09922	Santa Clara, Califomia	
07716	Burndy Corp.	12014	13050
TRW Inc. (Can use 11502)	Norwalk, Connecticut	Chicago Rivet \& Machine Co.	Potter Co.
IRC Fixed Resistors/		Naperville, Illinois	Wesson, Mississippi
Burlington, Iowa	09969 Dale Electronics Inc.	12040	13103
07792	Dale Electronics Inc. Yankton, South Dakota	National Semiconductor Corp. Danbury, Connecticut	Thermalloy Co., Inc. Dallas, Texas
Lerma Engineering Corp.			
Northampton, Massachusetts	09975	12060	13327
	Burroughs Corp.	Diodes Inc.	Solitron Devices Inc.
07810	Electronics Components	Northridge, Califomia	Tappan, New York
Bock Corp.	Detroit, Michigan		
Madison, Wisconsin	10059	12136	13511 Bunker-Ramo Corp.
07933	Barker Engineering Corp.	PrC Industries Inc.	Amphenol Cadre Div.
Raytheon Co.	Kenilworth, New Jersey	Camden, New Jersey	Los Gatos, California
Semiconductor Div.			
Mountain View, Calif.	10389	12300	13606
	Illinois Tool Works Inc.	AMF Canada Ltd.	Sprague Electric Co.
	Licon Div.	Potter-Brumfield	(Use 56289)
08235 Tristor Comer	Chicago, Illinois	Guelph, Ontario, Canada	
Industro Transistor Corp.			13689
Long Island City, New York		12323	SPS Technologies Inc.
	CTS of Asheville	Practical Automation Inc.	Hatfield, Pennsylvania
Spectra-Strip	Skyland, N. Carolina	Sheiton, Connecticut	13919
An Eltra Co.		12327	Burr-Brown Research Corp.
Garden Grove, Calif.		Freeway Corp.	Tucson, Arizona
	11236	Cleveland, Ohio	
08530	CTS Corp.		14099
Brooklyn, New York	Beme Div.	12443	Semtech Corp.
	Berne, Indiana	Budd Co.,The	Newbury Park, Califomia
08718	11237	Plastics Products Div.	14140
ITT Cannon Electric	CTS Corp of Califomia	Phoenixville, Pennsylvania	McGray-Edison Co.
Phoenix Div.	Paso Robles Div.	12581	Commercial Development Div.
Phoenix, Arizona	Paso Robles, Califomia	Hitachi Metals Inemational Ltd.	Manchester, New Hampshire
08806	11295		14193
General Electric Co.	ECM Motor Co.	Big Rapids, Missour	Cal-R-Inc.
Minature Lamp Products	Schaumburg, Illinois		Santa Monica, California
Cleveland, Ohio		12615	
	11358	US Terminals Inc.	American Components Inc.
Nylomatic	Columbia Broadcasting System	Cincinnati, Ohio	an Insilco Co. RPC Div.
Fallsington, Penna.	CBS Electronic Div.	12617	Conshohocken, Pennsylvania
	Newburyport, Massachusetts	Hamlin Inc.	
08988		Lake Mills, Wisconsin	14298
Skottie Electronics Inc.	11403		ACIC Inc.
Archbald, Pennsylvania	Vacuum Can Co.Best Coffee Maker Div.	12697	Sub of Insilco Corp.
	Chicago, Illinois	Clarostat Mfg. Co. Inc.	Research Triangle Park, NC
Airco Inc.		Dover, New Hampshire	14329
Airco Electronics	11502	12749	Wells Electronics Inc.
Bradford, Penna.	TRW Inc. TRW Resistive Products Div.	James Electronic Inc.	South Bend, Indiana
09023	Boone, North Carolina	Chicago, llinois	14482
Cornell-Dublier Electronics		12856	Watkins-Johnson Co.
Fuquay-Varina, N. Carolina	11503	MicroMetals Inc.	Palo Alto, Califomia
09214 General Electric Co. Semiconductor Products Dept. Aubum, New York	Keystone Columbia Inc.	Anaheim, Califomia	
	Freemont, Indiana		Microsemi Corp.
		Metex Corp.	Santa Ana, Califomia
		Edison, New Jersey	14655
09353	Teledyne Relays Teledyne	12895	Comell-Dublier Electronics
C and K Components Inc.	Industries Inc.	Cleveland Electric Motor Co.	Div. of Federal Pacific
Newton, Massachusetts	Hawthome, California	Cleveland, Ohio	Electric Co. Govt Cont Dept. Newark, New Jersey

Federal Supply Codes for Manufacturers (cont)

14704	16733	18927	23936
Crydom Controls	Cablewave Systems Inc.	GTE Products Corp.	William J. Purdy Co.
(Division of Int Rectifier)	North Haven, Connecticut	Precision Material Products	Pamotor Div.
El Segundo, Califomia		Business Parts Div.	Burlingame, California
	16742	Titusville, Pennsylvania	
14752	Paramount Plastics		24347
Electro Cube Inc.	Fabricators Inc.	19315	Penn Engineering Co.
San Gabriel, Califomia	Downey, Califomia	Bendix Corp., The Navigation \& Control Group	S. El Monte, Califomia
14936	16758	Terboro, New Jersey	24355
General Instrument Corp.	General Motors Corp.		Analog Devices Inc.
Discrete Semi Conductor Div.	Delco Electronics Div.	19451	Norwood, Massachusetts
Hicksville, New York	Kokomo, Indiana	Perine Machinery \& Supply Co.. Kent, Washington	24444
	17069		General Semiconductor
14949	Circuit Structures Lab	19613	Industries, Inc.
Trompeter Electronics	Burbank, Califomia	Minnesota Mining \& Mfg. Co.	Tempe, Arizona
Chatsworth, California		Textool Products Dept.	
	17117	Electronic Product Div.	24655
15412	Electronic Molding Corp.	Irving, Texas	Genrad Inc.
Amtron	Woonsocket, Rhode Island		Concord, Massachusetts
Midlothian, Illinois		19647	
	17338	Caddock Electronics Inc.	24759Lenox-Fugle Electronics Inc.
15542	High Pressure Eng. Co. Inc.	Riverside, California	South Plainfield, New Jersey
Scientific Components Corp.	Oklahoma City, Oklahoma		
Mini-Circuits Laboratory Div.		19701	24796
Brooklyn, New York	17545	Mepco/Centralab Inc.	AMF Inc.
	Atlantic Semiconductors Inc.	A N. American Philips Co.	Potter \& Brumfield Div.
15636	Asbury Park, New Jersey	Mineral Wells, Texas	San Juan Capistrano, Calif.
Elec-Trol Inc.			
Saugus, Califomia	17745	20584	24931
	Angstrohm Precision, Inc.	Enochs Mfg. Inc.	Specialty Connector Co.
15782	Hagerstown, Maryland	Indianapolis, Indiana	Greenwood, Indiana
Bausch \& Lomb Inc.			
Graphics \& Control Div.	17856	20891	25088
Austin, Texas	Siliconix Inc. Santa Clara, Califomia	Cosar Corp. Dallas, Texas	Siemen Corp. Isilen, New Jersey
15801	18178	21317	25099
Fenwal Eletronics Inc.	E G \& Gvactee Inc.	Electronics Applications Co.	Cascade Gasket
Div. of Kidde Inc.	St. Louis, Missouri	El Monte, Califomia	Kent, Washington
Framingham, Massachusetts			
	18324	21604	25403
15818	Signetics Corp.	Buckeye Stamping Co.	Amperex Electronic Corp.
Teledyne Inc. Co. Teledyne Semiconductor Div.	Sacramento, Califomia	Columbus, Ohio	Semiconductor \& Micro-Circuit Div. Slatersville, Rhode Island
Mountain View, Califomia	18520	21845	
	Sharp Electronics Corp.	Solitron Devices Inc.	25706
15849	Paramus, New Jersey	Semiconductor Group	Daburn Electronic \& Cable Corp.
Useco Inc.		Rivera Beach, Florida	Norwood, New Jersey
(Now 88245)	18542		
	Wabash Inc.	22526	26629
	Wabash Relay \& Electronics Div.	DuPont, EI DeNemours \& Co. Inc.	Frequency Sources Inc.
International Business	Wabash, Indiana	DuPont Connector Systems	Sources Div.
Machines Corp.		Advanced Products Div.	Chelmsford, Massachusetts
Essex Junction, Vermont	18565	New Cumberland, Pennsylvania	
	Chomerics Inc.		
16245	Wobum, Massachusetts	22767	26806
Conap Inc.		ITT Semiconductors	American Zettler Inc.
Olean, New York	18612	Palo Alto, California	Irvine, California
	Vishay Intertechnology Inc.		
16258 Space-Lok Inc. Burbank, Califomia	Vishay Resistor Products Group	22784	
	Malvem, Pennsylvania	Palmer Inc. Cleveland, Ohio	National Semiconductor Corp. Santa Clara, Califomia
	18632		
	Norton-Chemplast	23050	27167
Codi Corp. Linden, New Jersey	Santa Monica, Califomia	Product Comp. Corp.	Corning Glass Works Corning
		Mount Vemon, New York	Electronics Wilmington, North Carolina
$\begin{aligned} & 16469 \\ & \text { MCL Inc. } \\ & \text { LaGrange, Illinois } \end{aligned}$	18677	23732	
	Scanbe Mfg. Co.	Tracor Applied Sciences Inc.	27264
	Div. of Zero Corp. El Monte, California	Rockville, Maryland	Molex Inc. Lisle, Illinois
16473 Cambridge Scientific Industries Div. of Chemed Corp. Cambridge, Maryland	18736 Voltronics Corp. East Hanover, New Jersey	23880 Stanford Applied Engineering Santa Clara, California	27440 Industrial Screw Products Los Angeles, California

Federal Supply Codes for Manufacturers (cont)

27745	30800	33297	49956
Associated Spring Barnes Group Inc.	General Instrument Corp.	NEC Electronics USA Inc.	Raytheon Company
Syracuse, New York	Capacitor Div.	Electronic Arrays Inc. Div.	Executive Offices
	Hicksville, New York	Mountain View, Califomia	Lexington, Massachusetts
27956			
Relcom (Now 14482)		33919	50088
	31019	Nortek Inc.	Thomson Components-Mostek Corp.
28198	Solid State Scientific Inc.	Cranston, Rhode Island	Carrollton, Texas
Positronic Industries	Willow Grove, Pennsylvania		
Springfield, Missouri		34333	50120
	31091	Silicon General Inc.	Eagle-Picher Industries Inc.
28213	Alpha Industries Inc.	Garden Grove, Califomia	Electronics Div.
Minnesota Mining \& Mfg. Co.	Microelectronics Div.		Colorado Springs, Colorado
Consumer Products Div.	Hatfield, Pennsylvania		
3M Center		34225	50157
Saint Paul, Minnesota	31323	Advanced Micro Devices	Midwest Components Inc.
	Metro Supply Company	Sunnyvale, Califormia	Muskegon, Mississippi
28425	Sacramento, Califomia		
Serv-O-Link		34359	
Euless, Texas	31448	Minnesota Mining \& Mfg. Co.	50541
	Army Safeguard Logistics Command	Commercial Office Supply Div.	Hypertronics Corp.
28478			
Deltrol Corporation	31746	34371	50579
Deltrol Controls Div.	Cannon Electric	Harris Corp.	Litronix Inc.
Milwaukee, Wisconsin	Woodbury, Tennessee	Harris Semicondr:ctor Products Group	Cupertino, Califormia
28480	31827	Melbourne, Florida	51167
Hewlett Packard Co.	Budwig		Aries Electronics Inc.
Corporate HQ	Ramona, California	34649	Frenchtown, New Jersey
Palo Alto, California		Intel Corp.	
	31918	Santa Clara, Califomia	
28484	ITT-Schadow		51372
Emerson Electric Co. Gearmaster Div. McHenry, Illinois	Eden Prairie, Minnesota	34802	Verbatim Corp.
		Electromotive Inc.	Sunnyvale, California
		Kenilworth, New Jersey	
	32293		51406
28520	Intersil	34848	Murata Erie, No. America Inc.
Heyco Molded Products Kenilworth, New Jersey	Cupertino, California	Hartwell Special Products	(Also see 72982)
		Placentia, California	Marietta, Georgia
	32539		
29083	Mura Corp.	35009	51499
Monsanto Co. Santa Clara, Califomia	Westbury, Long Island, N.Y.	Renfrew Electric Co. Ltd.	Amtron Corp.
		IRC Div.	Boston, Massachusets
	32559	Toronto, Ontario, Canada	
29604	Bivar		51605
Stackpole Components Co. Raleigh, North Carolina	Santa Ana, Califomia	36665	CODI Semiconductor Inc.
		Mitel Corp.	Kenilworth, New Jersey
	32767	Kanata, Ontario, Canada	
	Griffith Plastics Corp.		51642
29907	Burlingame, Califomia	37942	Centre Engineering Inc.
Omega Engineering Inc.		Mallory Capacitor Corp.	State College, Pennsylvania
Stamford, Connnecticut	32879	Sub of Emhart Industries	
	Advanced Mechanical Components	Indianapolis, Indiana	51791
30035	Northridge, California		Statek Corp.
Jolo Industries Inc.		39003	Orange, Califomia
Garden Grove, Califormia	32897	Maxim Industries	
	Murata Erie North America Inc.	Middleboro, Massachusetts	
30146	Carlisle Operations		51984
Symbex Corp.	Carlisle, Pennsylvania	40402	NEC America Inc.
Painesville, Ohio		Roderstein Electronics Inc.	Falls Church, Virginia
	32997	Statesville, North Carolina	
30148	Bourns Inc.		52063
AB Enterprise Inc.	Trimpot Div.	42498	Exar Integrated Systems
Ahoskie, North Carolina	Riverside, California	National Radio Melrose, Massachusetts	Sunnyvale, California
30161	33096		52072
Aavid Engineering Inc.	Colorado Crystal Corp.	43543	Circuit Assembly Corp.
Laconia, New Hampshire	Loveland, Ce'orado	Nytronics Inc.(Now 53342)	Irvine, Califomia
30315	33173	44655	52152
Itron Corp.	General Electric Co.	Ohmite Mfg. Co.	Minnesota Mining \& Mfg.
San Diego, Califomia	Owensboro, Kentucky	Skokie, Illinois	Saint Paul, Minnesota
30323	33246	49671	52333
Illinois Tool Works Inc.	Epoxy Technology Inc.	RCA Corp.	API Electronics
Chicago, Illinois	Billerica, Massachusetts	New York, New York	Haugpauge, Long Island,New York

Federal Supply Codes for Manufacturers (cont)

52361	54590	58104	64155
Communication Systems	RCA Corp.	Simoo	Linear Technology
Piscataway, New Jersey	Electronic Components Div. Cherry Hill, New Jersey	Atlanta, Georgia	Milpitas, Califormia
52525		58474	64834
Space-Lok Inc.	55026	Superior Electric Co.	West M G Co.
Lerco Div.	American Gage \& Machine Co.	Bristol, Connecticut	San Francisco, Calif.
Burbank, California	Simpson Electric Co. Div. Elgin, Illinois	59124	65092
52531		KOA-Speer Electronics Inc.	Sangamo Weston Inc.
Hitachi Magnetics	55112	Bradford, Pennsylvania	Weston Instruments Div.
Edmore, Missouri	Plessey Capacitors Inc. (Now 60935)		Newark, New Jersey
		59640	65940
52745	55261	Supertex Inc.	Rohm Corp \& Whatney
Timco	LSI Computer Systems Inc.	Sunnyvale, Califormia	Irvine, Califormia
Los Angeles, Califormia	Melville, New York		
		59660	65964
52763	55285	Tusonix Inc.	Evox Inc.
Stetner-Electronics Inc.	Bercquist Co.	Tucson, Arizona	Bannockburm, Illinois
Chattanooga, Tennessee	Minneapolis, Minnesota	59730	66150
52769	55576	Thomas and Betts Corp.	Entron Inc.
Sprague-Goodman Electronics Inc.	Synertek	Iowa City, Iowa	Winslow Teltronics Div.
Garden City Park, New York	Santa Clara, Califomia	59831	Glendale, New York
	55680	Semtronics Corp.	66608
52771	Michicon/America/Corp.	Watchung, New Jersey	Bering Industries
Moniterm Corp.	Schaumburg, Illinois		Fremont, Califomia
Amatrom Div.		60395	
Santa Clara, California	56282	Xicor Inc.	70290
	Utek Systems Inc.	Milpitas, Califormia	Almetal Universal Joint Co.
52840	Olathe, Kansas		Cleveland, Ohio
Western Digital Corp.		60399	
Costa Mesa, California		Torin Engineered Blowers	70485
	56289	Div. of Clevepak Corp.	Atlantic India Rubber Works Inc.
53021	Sprague Electric Co.	Torrington, Connecticut	Chicago, Illinois
Sangamo Weston Inc.(See 06141)	North Adams, Massachusetts		70563
	56365	60705	Amperite Company
53217	Square D Co.	Cera-Mite Corp.	Union City, New Jersey
Technical Wire Products Inc.	Corporate Offices	(formerly Sprague)	
53342	56375	60935	Belden Corp.
Opt Industries Inc.	DAL Industries Inc.	Westlake Capacitor Inc.	Geneva, Illinois
Phillipsburg, New Jersey	Wescorp Div.	Tantalum Div.	
	Mountain View, Califomia	Greencastle, Indiana	71002
53944			Bimbach Co. Inc.
Glow-Lite	56481	61804	Farmingdale, New York
Pauls Valley, Oklahoma	Shugart Associates	M/A Com Inc.	
	Sub of Xerox Corp. Sunnyvale, California	Burlington, Massachusetts	71034 Bliley Electric Co.
54294		61857	Erie, Pennsylvania
Shallcross Inc.	56708	SAN-O Industrial Corp.	
Smithfield, North Carolina	Zilog Inc. Campbell, California	Bohemia, Long Island, NY	71183 Westinghouse Electric Corp.
54453		61935	Bryant Div.
Sullins Electronic Corp.	56856	Schurter Inc.	Bridgeport, Connecticut
San Marcos, Califomia	Vamistor Corp. of Tennessee Sevierville, Tennessee	Petaluma, Califomia	71400
54473		62351	Bussman Manufacturing
Matsushita Electric Corp.	56880	Apple Rubber	Div. McGraw-Edison Co.
(Panasonic)	Magnetics Inc.	Lancaster, New York	St. Louis, Missouri
Secaucus, New Jersey	Baltimore, Maryland	62793	71450
54583	57026	Lear Siegler Inc.	CTS Corp.
TDK	Endicott Coil Co. Inc.	Energy Products Div.	Elkhart, Indiana
Garden City, New York	Binghamton, New York	Santa Ana, California	
	57053	63743	
Piher Intermational Corp.	Gates Energy Products	Ward Leonard Electric Co.Inc.	Fountain Valley, Califomia
Arington Heights, Illinois	Denver, Ohio	Mount Vemon, New York	
			71482
54937	58014	64154	General Instrument Corp.
DeYoung Mfg. Bellevue, Washington	Hitachi Magnalock Corp. (Now 12581)	Lamb Industries Portland, Oregon	Clare Div. Chicago, Illinois

Federal Supply Codes for Manufacturers (cont)

71590	73445	75378	79727
Mepco/Centralab	Amperex Electronic Corp.	CTS Knights Inc.	C-W Industries
A North American Philips Co.	Hicksville, New York	Sandwich, Illinois	Southampton, Pennsylvania
Fort Dodge, Iowa 73559			
	73559	75382	79963
71707	Carlingswitch Inc.	Kulka Electric Corp.	Zierick Mfg. Corp.
Coto Corp.	Harford, Connecticut	(Now 83330)	Mount Kisco, New York
Providence, Rhode Island		Mount Vemon, New York	
	73586		80009
71744	Circle F Industries		Tektronix
General Instrument Corp.	Trenton, New Jersey	75915	Beaverton, Oregon
Lamp Div/Worldwide		Tracor Littlefuse	
Chicago, Illinois	73734	Des Plaines, Illinois	80031
	Federal Screw Products Inc.		Mepco/Electra Inc.
71785	Chicago, Illinois	76854	Morristown, New Jersey
TRW Inc.		Oak Switch Systems Inc.	
Cinch Connector Div.	73743	Crystal Lake, Illinois	80032
Elk Grove Village, Illinois	Fischer Special Mfg. Co. Cold Spring, Kentucky	77122	Ford Aerospace \& Communications Corp. Westem Development
71984		TRW Assemblies \& Fasteners Group	Laboratories Div.
Dow Corning Corp.	73893	Fastener Div.	Palo Alto, California
Midland, Michigan	Microdot	Moutainside, New Jersey	
	Mt. Clemens, Mississippi		80145
72005		77342	LFE Corp.
AMAX Specialty Metals Corp.	73899	AMF Inc.	Process Control Div.
Newark, New Jersey	JFD Electronic Components	Potter \& Brumfield Div.	Clinton, Ohio
	Div. of Murata Erie	Princeton, Indiana	
72136	Oceanside, New York		80183
Electro Motive Mfg. Corp.		77542	Sprague Products
Florence, South Carolina	73905	Ray-O-Vac Corp	(Now 56289)
	FL Industries Inc.	Madison, Wisconsin	
72228	San Jose, Califomia		80294
AMCA Intemational Corp.		77638	Boums Instruments Inc.
Continental Screw Div.		General Instrument Corp.	Riverside, California
New Bedford, Massachusetts	73949	Rectifier Div.	
	Guardian Electric Mfg. Co.	Brooklyn, New York	80583
72259	Chicago, Illinois		Hammerlund Mfg. Co. Inc.
Nytronics Inc.			Paramus, New Jersey
New York, New York	74199	77900	
	Quam Nichols Co.	Shakeproof Lock Washer Co.	80640
72619	Chicago, Illinois	(Now 78189)	Computer Products Inc.
Amperex Electronic Corp.			Stevens-Amold Div.
Dialight Div.	74217	77969	South Boston, Mass.
Brooklyn, New York	Radio Switch Co.	Rubbercraft Corp. of CA Ltd.	
	Marlboro, New Jersey	Torrance, Califomia	81073
			Grayhill Inc.
72653	74306	78189	La Grange, Illinois
G C Electronics Co.	Piezo Crystal Co.	Illinois Tool Works Inc.	
Div. of Hydrometals Inc.	Div. of PPA Industries Inc.	Shakeproof Div.	81312
Rockford, Illinois	Carlisle, Pennsylvania	Elgin, Illinois	Litton Systems Inc. Winchester Electronics Div.
72794		78277	Watertown, Connecticut
Dzus Fastner Co. Inc.	74542	Sigma Instruments Inc.	
West Islip, New York	Hoyt Elect.Instr. Works Inc. Penacook, New Hampshire	South Braintree, Mass.	81439 Therm-O-Disc Inc.
72928		78290	Mansfield, Ohio
Gulton Industries Inc.	74840	Struthers Dunn Inc.	
Gudeman Div.	Illinois Capacitor Inc.	Pitman, New Jersey	81483
Chicago, Illinois	Lincolnwood, Illinois		International Rectifier Corp. Los Angeles, Califomia
72982	74970	78553	
Murata Erie N. America Inc.	Johnson EF Co.	Eaton Corp.	81590
Erie, Pennsylvania	Waseca, Minnesota	Engineered Fastener Div. Cleveland, Ohio	Korry Electronics Inc. Seattle, Washington
73138	75042		
Beckman Industrial corp.	TRW Inc.	78592	81741
Helipot Div.	IRC Fixed Resistors	Stoeger Industries	Chicago Lock Co.
Fullerton, California	Philadelphia, Pennsylvania	South Hackensack, New Jersey	Chicago, Illinois
73168	75297		82227
Fenwal Inc.	Litton Systems	79136	Airpax Corp.
Ashland, Massachusetts	Kester Solder Div. Chicago, Illinois	Waldes Kohinoor Inc. Long Island City, New York	Cheshire Div. Cheshire, Connecticut
73293			
Hughes Aircraft Co.	75376	79497	82240
Electron Dynamics Div.	Kuzz-Kasch Inc.	Western Rubber Co.	Simmons Fastner Corp.
Torrance, Califomia	Dayton, Ohio	Goshen, Indiana	Albany, New York

Federal Supply Codes for Manufacturers (cont)

Federal Supply Codes for Manufacturers (cont)

95573	97540	98278	99378
Campion Laboratories Inc.	Whitehall Electronics Corp.	Malco A Microdot Co.	ATLEE of Delaware Inc.
Detroit, Michigan	Master Mobile Mounts Div. Fort Meyers, Florida	South Pasadena, California	N. Andover, Massachusetts
95712		98291	99392
Bendix Corp.	97913	Sealectro Corp.	Mepco/Electra Inc.
Electrical Comp. Div.	Industrial Electronic	BICC Electronics	Roxboro Div.
Franklin, Indiana	Hardware Corp. New York, New York	Trumbill, Connecticut	Roxboro, North Carolina
95987		98372	99515
Weckesser Co. Inc.	97945	Royal Industries Inc.(Now 62793)	Electron Products Inc.
(Now 85480)	Pennwalt Corp. SS White Industrial Products	98388	Div. of American Capacitors Duarte, California
96733	Piscataway, New Jersey	Lear Siegler Inc.	
SFE Technologies		Accurate Products Div.	99779
San Fernando, California	$\begin{aligned} & 97966 \\ & \text { CBS } \end{aligned}$	San Deigo, Califomia	Bunker Ramo- Eltra Corp. Barnes Div.
96853	Electronic Div.	99120	Lansdown, Pennsylvania
Gulton Industries Inc. Measurement \& Controls Div.	Danvers, Massachusets	Plastic Capacitors Inc. Chicago, Illinois	99800
Manchester, New Hampshire	98094		American Precision Industries
	Machlett Laboratories Inc.	99217	Delevan Div.
96881	Santa Barbara. California	Bell Industries Inc.	East Aurora, New York
Thomson Industries Inc.		Elect. Distributor Div. Sunnyvale, California	99942
Port Washington, New York	Rubber-Teck Inc.		Mepco/Centralab
97525	Gardena, California		A North American Philips Co.
EECO Inc. Santa Ana, Califomia			Milwaukee, Wisconsin

U.S. SALES OFFICE AREAS

AL, Huntsville
John Fluke Mfg. Co., Inc. 4920J Corporate Drive Huntsville, AL 35805-6202 (205) 837-0581

AZ, Phoenix

John Fluke Mfg. Co., Inc.
2211 S. 48th Stree
Suite B
Tempe, AZ 85282
(602) 438-8314

Tucson
(602) 790-9881

CA, Southern
John Fluke Mfg. Co., Inc. P.O. Box 19676

Irvine, CA 92713-9676
16969 Von Karman
Suite 100
Irvine, CA 92714
(714) 863-9031

Burbank

John Fluke Mfg. Co., Inc.
2020 N. Lincoln Street
Burbank, CA 91504
(213) 849-7181

Northern

John Fluke Mfg. Co., Inc. 2300 Walsh Ave., Bldg. K Santa Clara, CA 95051
(408) 727-0513

San Diego
(619) 292-7656

CO, Denver

John Fluke Mfg. Co., Inc.
14180 East Evans Ave.
Aurora, CO 80014
(303) 695-1000

CT, Hartford

John Fluke Mfg. Co., Inc.
Glen Locken East
41-C New London Turnpike
Glastonbury, CT 06033
(203) 659-3541

DC, Washington
(301) 770-1570

FL, Clearwater
(813) 799-0087

Miami
(305) 462-1380

Orlando

John Fluke Mfg. Co.,Inc
940 N. Fern Creek Ave.
Orlando, FL 32803
(305) 896-4881

Tampa
(813) 251-9211

GA, Atlanta

John Fluke Mfg. Co., Inc 2700 Delk Rd., Suite 150 Marietta, GA 30067 (404) 953-4747

IL, Chicago
John Fluke Mfg. Co., Inc. 1150 West Euclid Ave.
Palatine, IL 60067
(312) 705-0500

IN, Indianapolis
John Fluke Mfg. Co., Inc 8777 Purdue Rd.
Suite 101
Indianapolis, IN 46268
(317) 875-7870

LA, Baton Rouge
(504) 924-1203

New Orleans
(504) 455-0814

MA, Boston
John Fluke Mfg. Co., Inc. Middlesex Tech Center 900 Middlesex Turnpike Building 8
Billerica, MA 01821
(617) 663-2400

MD, Baltimore
(301) 792-7060

Rockville

John Fluke Mfg. Co., Inc. 5640 Fishers Lane Rockville, MD 20852 (301) 770-1570

MI, Detroit
John Fluke Mfg. Co., Inc. 33031 Schoolcraft Livonia, MI 48150 (313) 522-9140

MN, Bloomington

John Fluke Mfg. Co., Inc. 1801 E. 79th St., Suite 9 Bloomington, MN 55420 (612) 854-5526

MO, St. Louis
John Fluke Mfg. Co., Inc. 11756 Borman Drive Suite 160
St. Louis, MO 63146
(314) 993-3805

NC, Greensboro
John Fluke Mfg. Co., Inc. 1310 Beaman Place Greensboro, NC 27408 (919) 273-1918

NJ, Paramus
John Fluke Mfg. Co., Inc.
P.O. Box 930

Paramus, NJ 07653-0930
West 75 Century Road
Paramus, NJ 07652
(201) 262-9550

NM, Albuquerque
(505) 881-3550

NY, Rochester
John Fluke Mfg. Co., Inc.
4515 Culver Road
Rochester, NY 14622
(716) 323-1400

OH, Cleveland
John Fluke Mfg. Co., Inc.
7830 Freeway Circle
Middleburg Heights, OH 44130 (216) 234-4540

Dayton

John Fluke Mfg. Co., Inc.
5450 Far Hills Avenue
Suite 111
Kettering, OH 45429
(513) 436-2224

OK, Northeast (918) 749-0190

OR, Portland

(503) 227-2042

PA, Philadelphia
John Fluke Mfg. Co., Inc.
200 Lindenwood Drive
Malvern, PA 19355
(215) 647-9550

Pittsburgh
(412) 261-5171

TX, Austin
(512) 459-3344

Dallas
John Fluke Mfg. Co., Inc.
1801 Royal Lane
Suite 307
Dallas, TX 75229
(214) 869-0311

El Paso
(915) 533-3508

Houston
(713) 240-5995

San Antonio
John Fluke Mfg. Co., Inc.
10417 Gulfdale
San Antonio, TX 78216
(512) 340-0498

UT, Salt Lake City
(801) 268-9331

WA, Seattle
John Fluke Mfg. Co., Inc.
5020 148th Ave. N.E.
Suite \#110
Redmond, WA 98052
(206) 881-6966
U.S. Government Specialists

Army (301) 770-1570, MD (203) 837-0581, AL

Navy (714) 863-9031, CA (301) 770-1570, MD

USAF (513) 436-2224, OH
(512) 340-2621, TX

Security (301) 770-1570, MD

Service Center Areas

CA, Burbank (213) 849-4641
CA, Santa Clara (408) 727-0513
CO, Denver (303) 695-1000
FL, Orlando (305) 896-4881
IL, Chicago (312) 705-0500
MD, Rockville (301) 770-1576
NJ, Paramus (201) 262-9550
TX, Dallas (214) 869-2848
WA, Everett (206) 356-5560

For more information on Fluke products or Sales Offices you may dial (800) 426-0361 toll-free in most of the U.S.A. From Alaska, Hawaii, or Washington phone (206) 356-5400. From Canada and other countries phone (206) 356-5500.

INTERNATIONAL SALES OFFICES

Argentina
Coasin S.A.
Virrey del Pino 4071 DPTO E-65
1430 CAP FED
Buenos Aires, Argentina
Tel: 54-1-552-5248
TLX: (390) 22284 COASN AR
Asia
Fluke Asia Ltd.
Shun Tak Centre, Room 1501
200 Connaught Road
Central, Hong Kong
Tel: 8525482116
TLX: (780) 87058 FLUKE
FAX: (852) 5-479863

Australia •

Elmeasco Instruments Pty, Ltd
P.O. Box 30

Concord, N.S.W. 2137
Australia
Tel: 61-2-736-2888
TLX: (790) 25887 A/B: ELSCOAA 25887
FAX: 61-2-733663
Elmeasco Instruments Pty, Ltd
P.O. Box 623

12 Maroondah Highway
Ringwood, Victoria 3134
Australia
Tel: 61-3-879-2322
LXX: (790) 30418 A/B: ELTENTAA 30418
FAX: (61) (3) 879-4310
Elmeasco Instruments Pty, Ltd
P.O. Box 274

Salisbury, Queensland 4107
Australia
Tel: 61-7-875-1444
TLX: (790) 44062 A/B: ELMQLDAA44062
Elmeasco Instruments Pty, Ltd
P.O. Box 154

Prospect, South Australia 5082
Tel: 61-8-344-9000 TLX: (790) A/B:87519
Elmeasco Instruments Pty, Ltd
P.O. Box 413

Scott House
46-48 Kings Park Road
West Perth, Western Australia 6005
Australia
Tel: 61-9-481-1500
TLX: (790) 94765 A/B: ASECSAA 94765
FAX: (61) (9) 322-2075

Austria ■

Walter Rekirsch Elektronische
Gerate $\mathrm{GmbH} \& \mathrm{Co}$.
Vertrieb KG
Obachgasse 28
1220 Vienna, Austria
Tel: 43-222-25-36-26
TLX: (847) 134759
FAX: 43-222-25-72-75

Bahrain

Basma W.L.L.
P.O. Box 5701

Manama, Bahrain
Tel: 973-251364; TLX: (955) 9003
FAX: (965) 245218

Bangladesh •

Motherland Corporation
24 Hatkhola Road, Tikatuli
Dacca-3, Bangladesh
Tel: 257249
TLX: (950) 642022 PCO BJ
Cable: "MOTHERLAND" DACCA

Belgium \quad.

N.V. Philips

Industrial \& Electro-Acoustic Systems
5600 MD Eindhoven
The Netherlands
Tel: 040-785539
Tlx: 35000 phtc nl
Fax: 040-785651

Bolivia •

Coasin Bolivia S.R.L.
Casilla 7295
La Paz, Bolivia
Tel: 591-2-40962
TLX: (336) 3233 COALAP BV
Cable: COALAP

Brazil •
ATP/Hi-Tek Eletronica Ltda
Al. Amazonas 422,
Alphaville, 06400, Barueri
Sao Paulo, Brazil
Tel: 55-11-421-5477;
TLX: (391) 1171413 HITK BR

Brunei \bullet

Rank O'Connor's SDN BHD
No. 8 Blk D
Sufri Shophouse Complex
Mile 1 Jalan Tutong
Bandar Seri Begawan
Negara Brunei Darussalam
Tel: 673-2-23109 or 23557
TLX: (799) BU 2265 RANKOC

Canada

Fluke Electronics Canada Inc.
101, 1144 - 29th Avenue N.E.
Calgary, Alberta T2E 7P1
Canada
Tel: (403) 291-5215
Fax: (403) 291-5219
Fluke Electronics Canada Inc.
400 Britannia Road East
Unit \#1
Mississauga, Ontario L4Z 1X9
Tel: (416) 890-7600
Fax: (416) 890-6866
Fluke Electronics Canada Inc
1255 Trans Canada Hwy
Suite 130
Dorval, Quebec
H9P 2V4 Canada
Tel: (514) 685-0022
TLX: (514) 685-0039
Fluke Electronics Canada Inc.
1690 Woodward Drive
Suite 216
Ottawa, Ontario
K2C 3R8 Canada
Tel: (613) 723-9453
Fax: (613) 723-9458

Chile

Intronica Chile, Ltda.
Casilla 16228 (Mail)
Santiago 9, Chile
Tel: 56-2-2321886
TLX: (332) 346351 INTRON CK
China, Peoples Republic of \bullet
Fluke International Corporation
P.O. Box 9085

Beijing
People's Republic of China
Tel: 86-01-65-7281
TLX: (716) 222237 FBSC CN
Instrimpex - Fluke Service Center
57, Xisi Dong Da Jie
Xicheng-qu
Beijing
Peoples Republic of China
Tel: 86-01-65-7281

Colombia •

Sistemas E Instrumentacion, Ltda
Carrera 13, No. 37-43, Of. 401
Ap. Aereo 29583
Bogota DE, Colombia
Tel: 57-232-4532
TLX: (396) 45787 COASN CO

Cyprus \quad

Chris Radiovision, Ltd
P.O. Box 1989

Nicosia, Cyprus
Tel: 357-21-66121; TLX: (826) 2395

Cyprus, Northern

Ucok Buroteknik
2C \& 2D Muftu Ziyai Street
Lefkosa, Northern Cyprus
Mersin 10, Turkey
Tel: 90-741-357-20-71777
TLX: (821) 57267
Czechoslovakia ■
Amtest Associates, Ltd.
Amtest House
75-79 Guildford Street
Chertsey, Surrey KT16 9AS

England

Tel: 44-9328-68355
TLX: (851) 928855 AMTEST G
Fax: 44-9328-61919

Denmark a
Tage Olsen A/S
Ballerup Byvej 222
2750 Ballerup
Denmark
Tel: 45-2-658111
TLX: (855) 35293 TOAS DK

Eastern European Countries

Amtest Associates, Ltd.
Amtest House
75-79 Guildford Street
Chertsey, Surrey KT16 9AS
England
Tel: 44-9328-68355
TLX: (851) 928855 AMTEST G
Fax: 44-9328-61919
German Branch Office
Amtest Associates, Ltd.
Zugspitzstrasse 2A
P.O. Box 1107

8011 Vaterstetten
West Germany
Tel: 49-81-067117, TLX: (841) 528332

Ecuador •

Proteco Coasin Cia., Ltda
P.O. Box 228-A

Ave. 12 de Octubre 2285
y Orellana
Quito, Ecuador
Tel: 593-2-529684
TLX: (393) 22085 ESIND
Egypt
Electronic Engineering Liaison Office
P.O. Box 2891 Horreya

11361 Heliopolis, Cairo
Egypt
Tel: 20-2-695705, TLX: (927) 22782

England

N.V. Philips

Industrial \& Electro-Acoustic Systems
5600 MD Eindhoven
The Netherlands
Tel: 040-785539
Tlx: 35000 phtc nl
Fax: 040-785651
Fiji •
Awa New Zealand Limited
37 Freeston Road
Walu Bay, P.O. Box 858
Suva, Fiji
Tel: 679-312079, TLX: (792) FJ2347
FAX: 679-314379
Finland -
Instrumentarium Elektroniika
P.O. Box 64

02631 Espoo 63
Finland
Tel: 358-0-5281
TLX: (857) 124426 HAVUL SF
FAX: (358) 0-5021073
Teletex: (857) 8-100155 INSTRUE

rance -

M.B. Electronique S.A

606, Rue Fourney
P.O. Box 31

78530 BUC, France
Tel: 33-1-39-56-81-31
TLX: (842) 695414
Fax: (33) (1) 3956-53-44
German Branch Office
Amtest Associates, Ltd.
Zugspitzstrasse 2A
P.O. Box 1107

8011 Vaterstetten
West Germany
Tel: 49-81-067117
TLX: (841) 528332

Germany, West

N.V. Philips

Industrial \& Electro-Acoustic Systems
5600 MD Eindhoven
The Netherlands
Tel: 040-785539
TIx: 35000 phtc nl
Fax: 040-785651

Greece

Hellenic Scientific Representations Ltd.
11, Vrassida Street
Athens 612, Greece
Tel: 30-1-7211140, TLX: (863) 219330

Hong Kong ${ }^{\bullet}$
Schmidt \& Co (H.K.), Ltd
18th Floor, Great Eagle Centre
23 Harbour Road
Wanchai, Hong Kong
Tel: 852-5-8330-222
TLX: (780) 74766 SCHMC HX
FAX: 852-5-8918754

India

Hinditron Services Pvt., Ltd.
69/A.L. Jagmohandas Marg
Bombay 400 006, India
Tel: 91-22-8121316, 8125344
TLX: (953) 1175326 HSPL IN
Bangalore Office
Hinditron Services Pvt., Ltd
8th Main Road
33/44A Raj Mahal Vilas Extension
Bangalore 560 080, India
Tel: 91-812-363139
TLX: (953) 08452741
Cable: TEKHIND BANGALORE
Calcutta Office
Hinditron Services Pvt. Ltd.
5th Floor, Castle House
5/1A, Hungerford St.
Calcutta 700 017, India
Tel: 91-33-432628
TLX: (953) 214153
New Delhi Sales
Hinditron Services Pvt. Ltd
204-206 Hemkunt Tower
98 Nehru Place
New Delhi, 110019, India
Tel: 91 (11) 6410380 or 6414493
TLX: (953) 3161458 HSPL IN
New Delhi Service
Hinditron Services Pvt., Ltd.
Field Service Center
15, Community Centre
Panchshila Park
New Delhi 110 017, India
Tel: 910116433675
Cable: Tekcentre Delhi
Hyderabad Office
Hinditron Services Pvt. Ltd.
Field Service Center
Emerald Complex, 5th Floor
1-7-264
14 Sarojini Devi Road
Secunderabad 500 003, India
Tel: 91842821117
TLX: (953) 04256973 HSPL IN
Indonesia •
P.T. Lamda Triguna
P.O. Box 6/JATJG

Jakarta, 13001
Indonesia
Tel: 6221819536
TLX: (796) 46171 LAYARIA
ran \quad -
Arma Baynelmeleli Co., Ltd.
P.O. Box 951570

Pasdaran-Tehran
Tel: 98-21-248717, TLX: (951) 213648
Ireland
N.V. Philips

Industrial \& Electro-Acoustic Systems
5600 MD Eindhoven
The Netherlands
Tel: 040-785539
Tlx: 35000 phtc nt
Fax: 040-785651
Israel \quad -
R.D.T. Electronics Engineering Ltd.
P.O. Box 43137

Tel Aviv 61430
Israel
Tel: (3) 972-3-483211
TLX: (922) 371452 RDT IL
Fax: 972-3-492190
Italy ■
Sistrel S.p.A.
Via le Erminio Spalla 41
00142 Rome, Italy
Tel: 39-6-504-1367, TLX: (843) 625857
Fax: (39) 6-504137

Milan Office
Sistrel S.p.A
Via Pelizza da Volpedo 59
20092 Cinisello Balsamo
Milan, Italy
Tel: 39-2-6181893, TLX: (843) 334643
Fax: (39) 2-6182440
Naples Office
Sistrel S.p.A.
Via Cintia
Parco S. Paolo 35
80126 Naples, Italy
Tel: 39-81-7678700
Fax: (39) 81-7661361

Japan ${ }^{\circ}$

John Fluke Mfg. Co., Inc.
Japan Branch
Sumitomo Higashi Shinbashi Bldg.
1-1-11 Hamamatsucho
Minato-ku, Tokyo 105, Japan
Tel: 81-3-434-0181
TLX: (781) 2424331 FLUK JPJ
FAX: 81-3-434-0170
Osaka Sales Office
John Fluke Mfg. Co., Inc.
Japan Branch
Katsushige Building
2-45 Kohraibashi
Higashi-ku, Osaka 541
Japan
Tel: 81-6-229-0871 FAX: 81-6-229-1098
Korea, Republic of ${ }^{-}$
Myoung Corporation
Yeo Eui Do P.O. Box 14
Seoul, Korea
Tel: 82-2-784-9942 MYOUNG
TLX: (787) K24283
FAX: (82) 2-784-2387

Kuwait

AI Bahar International Group
P.O. Box 26672 Safat

13127 Safat, Kuwait
Kuwait, Arabian Gulf
Tel: 965-848601, 847598
TLX: (959) 44822
Lebanon and Jordan \quad -
Mabek (Electronics Division)
P.O. Box 13-5657

Beirut, Lebanon
Tel: 812523
TLX: (923) 22889 LIBANK LE

Malaysia •

Mecomb Malaysia Sdn Bhd
P.O. Box 24

46700 Petaling Jaya, Selangor, Malaysia
Tel: 60-3-774-3422
TLX: (784) MA37764 MECOMB
Fax: (6) 03-774-3414

Malta \quad.

Fabian Enterprises
20, Msida Road
Gzira, Malta
Tel: 513283/40216, TLX: (838) 1837

Mexico

Mexicana de Electronica
Industrial, S.A. (Mexel)
Diagonal No. 27
Entre Calle de Eugenia Y Ave
Colonia del Valle
C.P. 03100, Mexico

Tel: (905) 660-4323
TLX: (383) 1771038 FAIRME
Executone De Monterrey, S.A.
Ave. Gonzalitos NTE 545
Monterrey N.L., Mexico
Tel: 90-5-480400, 472625
TLX: (383) 382659

Morocco m

Angle Boulevard Emile Zola et
Rue Rethel
P.O. Box 2007 Casa

Casablanca
Morocco
Tel: 212-24-13-38, TLX: (933) 28879 M

Nepal \bullet

Associated Enterprises
GPO Box 790, Pyaphal Tole
Kathmandu, Nepal
Tel: 13868, TLX: (947) 2568 (ASOENT NP)

Netherlands

N.V. Philips

Industrial \& Electro-Acoustic Systems
5600 MD Eindhoven
The Netherlands
Tel: 040-785539
Tlx: 35000 phtc ni
Fax: 040-785651

New Zealand •

Auckland Office
Northrop Instruments \& Systems, Ltd.
459 Khyber Pass Road
Private Bag, Newmarket
Auckland 1, New Zealand
Tel: 64-9-501-801, 501-219
TLX: (791) 21570
FAX: 64-9-543430
Wellington Office
Northrop Instruments \& Systems Ltd
Information Technology Group
First Floor, Northrop Bldg.
189-191 Willis Street
P.O. Box 2406

Wellington, New Zealand
Tel: 64-4-856-658
TLX: (791) 3380
Christchurch Office
Northrop Instruments \& Systems Ltd
Information Technology Group
110 Mandeville Street
P.O. Box 8388

Christchurch, New Zealand
Tel: 64-3-488-874
TLX: (791) 480

Norway ■

Morgenstierne \& Co A/S
Konghellegate 3
P.O. Box 6688, Rodelokka

Oslo 5, Norway
Tel: (2) 356110, TLX: (856) 71719
Oman -
OHI Telecommunications LLC
P.O. Box 889

Muscat, Oman
Tel: 968-603606
TLX: (926) 5052 TELECOM ON

Pakistan •

International Operations (PAK), Ltd.
505 Muhammadi House
I.I. Chundrigar Road
P.O. Box 5323, Karachi, Pakistan

Tel: 92-21-221127, TLX: (952) 24494 PIO PK

Peru

mportaciones y Representaciones
Electronicas S.A.
Avda. Franklin D. Roosevelt 105
Lima 1, Peru
Tel: 51-14-28-8650
TLX: (394) 25663 PE IREING
Philippines, Republic of \bullet
Spark Radio \& Electronics, Inc.
Greenhills P.O. Box 610
San Juan, Metro Manila, Zip 3113
Philippines
Tel: 63-2-775192, 704096
TLX: (722 or 732) 27901 RLA PH

Portugal ■

Decada Espectral
Equipamentos de Electronica
Av. Bombeiros Voluntarios
Lote 102B, Miraflores/Alges
1495 Lisbon, Portugal
Tel: 351-1-4103420, TLX: (832) 15515

Romania E

Amtest Associates Ltd.
Amtest House
75-79 Guildford Street
Chertsey, Surrey KT16 9AS

England

Tel: 44-9328-68355, TLX: (851) 928855
FAX: 44-9328-61919

Saudi Arabia ■

Electronic Equipment Marketing Co.
P.O. Box 3750

Riyadh, Saudi Arabia
Tel: 966-1-477-1650
TLX: (928) 401120 ZUHAIR SJ

Scotland
N.V. Philips

Industrial \& Electro-Acoustic Systems
5600 MD Findhoven
The Netherlands
Tel: 040-785539
Tlx: 35000 phtc ni
Fax: 040-785651
Singapore, Republic of \bullet
Rank O'Connor's (PTE) Ltd.
O'Connor House
98 Pasir Panjang Road
Singapore 0511
Republic of Singapore
Tel: 65-4737944, TLX: (786) RS21023 OCONSIN Coasin Uruguaya S.A.
FAX: 4724508 CABLE CINECOM SINGAPORE

South Africa ${ }^{\bullet}$

Protea PNI
P.O. Box 39127

Bramley 2018
Republic of South Africa
Tel: 27-11-786-3647
TLX: (960) 4-24409 SA
FAX 27-11-786-1807

Spain \quad -

ESSA
Equipos y Sistemas S.A.
C/Apolonio Morales, 13-B
Madrid 16, Spain
Tel: 34-1-458-0150
TLX: (831) 42856 EYS E

Sri Lanka •

Computerlink Data Systems, Ltd.
331 Union Place
Colombo 2, Sri Lanka
Tel: 94-1-28641
TLX: (954) 22455 COLINK CE

Sweden

N.V. Philips

Industrial \& Electro-Acoustic Systems
5600 MD Eindhoven
The Netherlands
Tel: 040-785539
Tlx: 35000 phte ni
Fax: 040-785651
Switzerland ■
Traco Electronic AG
Jenatschstrasse 1
8002 Zurich
Switzerland
Tel: 41-1-201-0711
TLX: (845) 815570 TRCOCH

Syria

Mabek (Electronics Division)
P.O. Box 4238

Damascus, Syria

Taiwan •

Schmidt Electronics Corp.
5th FI, Cathay Min Sheng
Commercial Building,
344 Min Sheng East Road
Taipei Taiwan R.O.C
Tel: 886-2-501-3468
TLX: (785) 11111 SCHMIDT
Fax: (886) 2-502-9692

Thailand

Measuretronix Ltd.
2102/63 Ramkamhaeng Rd.
Huamark Bangkok 10240
Thailand
Tel: 66 (2) 3742516, 3741632
TLX: (788) 82796 HUAMARK TH

Tunisia ■

Selep S.A.R.L.
6, Rue de Sparte
Tunis - 1000 RP
Tunisia
Tel: 216-1-248093, TLX: (934) 13030

Turkey \quad

Erkman Elektronik Aletler
Ticaret Anonim Sirketi
Necatibey Cad 92/3
Karakoy, Istanbul, Turkey
Tel. 90 (11) 441546, TLX: (821) 24399

United Arab Emirates a
Haris AI-Afag, Ltd.
P.O. Box 8141

Kamal Hamza Bldg
Traffic Police Road
Dubai, U.A.E.
Tel: 971-4-283625
TLX: (958) 48168 AFAQEM
AI-Sanani Cen. Trad. Est.
P.O. Box 7187

Abu-Dhabi, U.A.E.
Tel: 971-2-821370, TLX: (958) 23966
Uruguay \bullet
Coasin Uruguaya S.A.
Casilla de Correo 1400
Libertad 2529
Montevideo, Uruguay
Tel: 598-2-789204, 789015
TLX: (398) UY23010 COAUR
USSR
Amtest Associates Ltd.
Amtest House
75-79 Guildford Street
Chertsey, Surrey KT16 9AS
England
Tel: 44-9328-68355, TLX: (851) 928855
FAX: 44-9328-61919

Venezuela •

Coasin C.A.
Calle 9 Con Calle 4, Edif Edinurbi
Apartado de Correos NR-70.136
Los Ruices
Caracas 1070-A, Venezuela
Tel: 58 (2) 241-03-09
TLX: (395) 21027 EMVEN VC

Yugoslavia :

Amtest Associates Ltd
Amtest House
75-79 Guildford Street
Chertsey, Surrey KT16 9AS
England
Tel: 44-9328-68355, TLX: (851) 928855
FAX: 44-9328-61919
■ Supplied and Supported by -
Fluke (Holland) B.V.
P.O. Box 2269

5600 CG Eindhoven
The Netherlands
Tel: (040) 45805, TLX: (844) 51846
FAX: 31-40-457515

- Supplied and Supported by -

Fluke International Corporation
P.O. Box C9090

Everett, WA 98206 U.S.A.
Tel: (206) 356-5500
TLX: 185103 FLUKE UT
FAX: 206-356-5116

The following countries are
represented by:
Fluke (Holland) B.V.
P.O. Box 2269

5600 CG Eindhoven
The Netherlands
Tel: (040) 45805, TLX: 51846
FAX: 31-40-457515

Abu Dhabi	Mauritania
Afghanistan	Menorca
Albania	Mongolia
Algeria	Niger
Angola	Nigeria
Benin	Qatar
Bornholm	Rodhos
Botswana	Russia
Chad	Sardinia
Corsica	Saudia Arabia
Czechoslavakia	Scotland
Dubai	Senegal
Ethiopia	Sierra Leone
Guinea	Somalia
Ibiza	Togo
Iceland	Upper Volta
Iraq	Wales
Kuwait	Wstn Sahara
Liberia	Yemen
Libya	Zaire
Luxembourg	Zambia
Maderia	Zimbabwe
Mallorca	

U.S.A.

CA, Burbank	Canada, Calgary	India, Bangalore
John Fluke Mfg. Co., Inc.	Fluke Electronics Canada Inc.	Hinditron Services Pvt. Ltd.
(213) 849-4641	Tel: (403) 291-5215	Tel: 363139
	Fax: (403) 291-5219	TLX: (953) 845741
CA, Santa Clara		
John Fluke Mig. Co., Inc.	Canada, Mississauga	India, Bombay
(408) 727-8121	Fluke Electronics Canada Inc.	Hinditron Services Pvt. Ltd.
	Tel: (416) 890-7600	Tel: 6300043
CO, Denver John Fluke Mfg. Co., Inc. (303) 695-1000	Fax: (416) 890-6866	TLX: (953) 11-72247
	Canada, Montreal	India, New Delhi
	Fluke Electronics Canada Inc.	Hinditron Services Pvt. Ltd.
FL, Orlando	Tel: (514) 685-0022	Tel: 6433675
John Fluke Mig. Co.,Inc. (305) 896-4881	Fax: (514) 685-0039	TLX: (953) 316458
IL, Palatine	Canada, Ottawa	India, Secunderbad
	Fluke Electronics Canada Inc.	Hinditron Services Pvt. Ltd.
John Fluke Mig. Co., Inc.	Tel: (613) 723-9453	Tel: 821117
(312) 705-0500	Fax: (613) 723-9458	TLX: (953) 1556973
MD, Rockville	Chile, Santiago	Indonesia, Jakarta Pusat
John Fluke Mfg. Co.,Inc.	Intronica Chile Ltda.	P.T. Lamda Triguna
(301) 770-1576	Tel: 2321886	Tel: 8195365
NJ, Paramus	TLX: (332) 346351	TLX: 46171 LAYARIA
John Fluke Mfg. Co., Inc. (201) 262-9550	China, Peoples Republic of Instrimpex - Fluke Service Center	Israel, Tel Aviv R.D.T. Electronics Engineering Ltd.
TX, Dallas	Tel: 65-7281	Tel: 483211
John Fluke Mfg. Co., Inc. (214) 869-0311	Colombia, Bogota	TLX: (922) 371452
	Sistemas E Instrumentacion, Ltda.	Italy, Milan
WA, Seattle	Tel: 232-4532	Sistrel S.p.A.
John Fluke Mfg. Co., Inc.	TLX: (396) 45787	Tel: 6181893
(206) 356-5560	Denmark, Ballerup	
Other Countries	Tage Olson A/S	Japan, Tokyo
	Tel: 658111	John Fluke Mfg. Co., Inc.
Argentina, Buenos Aires	TLX: (855) 35293	Japan Branch
		Tel: 434-0181
Coasin S.A. Tel: 552-5248	Ecuador, Quito	TLX: (781) 242-4331
TLX: (390) 22284	Tel: 526759	Myoung Corp.
Australia, Brisbane	TLX: (393) 2865	
Tel: 552-5248	Egypt and Sudan Electronic Engineering Liaison Ofc	Tel: 784-9942 TLX: MYOUNG K24283
Australia, Concord	Tel: 2455705	Malaysia, Selangor
Elmeasco Instruments Pty Ltd.Tel:$736-2888$	TLX: (927) 22782	Mecomb Malaysia Sdn. Bhd.
	England, Chertsey, Surrey	TLX: (784) MA37764
TLX: (790) AA25887		
Australia, Ringwood Elmeasco Instruments Pty. Ltd. Tel: 879-2322 TLX: (790) AA36206	Tel: 68355	Mexico
	England, Watford, Herts	Mexicana de Electronica
	Fluke (Great Britain) Ltd	Industrial, S.A. (Mexel)
	Tel: 40511	Tel: 5-660-4323
Austria, Vienna	TLX: (851) 934583	TLX: (383) 1771038
Walter Rekirsch Elektronische Gerate GmbH \& Co. Tel: 253626 TLX: (847) 134759	Finland Instrumentarium Elektronikka Tel: 358-0-5281 TLX: (857) 124426	Netherlands, Tilburg Fluke (Nederland) B.V. Tel: 352455 TLX: (844) 52683
Belgium, Brussels Fluke (Belgium) NV/SA Tel: 2164090 TLX: (846) 26312	France M.B. Electronique S.A. Tel: 1-39-56-81-31 TLX: (842) 695414	New Zealand, Auckland Northrop Instruments \& Systems Ltd. Tel: 501-801 TLX: (791) NZ21570
Brazil, Sao Paulo Hi-Tek Eletronica Ltda. Tel: 421-5477 TLX: (1391) 1171413	Greece, Athens Hellenic Scientific Representations Tel: 7211140 TLX: (863) 219330	New Zealand, Wellington Northrop Instruments \& Systems Ltd. Tel: 856-658
	Hong Kong, Wanchai Schmidt \& Co (H.K.) Ltd. Tel: 8330-222 TLX: (780) 74766	TLX: (791) NZ3380
		Norway, Osio
		Morgenstierne \& Co. A/S
		Tel: 356110
		TLX: (856) 71719

Canada, Calgary
Fluke Electronics Canada Inc Tel: (403) 291-5215
Fax. (403) 291-5219

Fluke Electronics Canada Inc. Tel: (416) 890-7600
Fax: (416) 890-6866

Fluke Electronics Canada Inc.
Tel: (514) 685-0022

Canada, Ottawa
Fluke Electronics Canada Inc.
Tel: (613) 723-9453
Fax: (613) 723-9458
ile, Santiago

Tel: 2321886
TLX: (332) 346351
na, Peoples Republic of Instrimpex - Fluke Service Center

Colombia, Bogota
Tel: 232-4532
TLX: (396) 45787
enmark, Ballerup
Tage Olson A/S
TV: 65811

Ecuador, Quito
Proteco Coasin Cia., Ltda
Tel: 526759

Egypt and Sudan
Electronic Engineering Liaison Ofc
Tel: 2455705

England, Chertsey, Surrey
Amtest Associates, Ltd
Tel: 68355
ngland, Watord, Herts
Britain)

TLX: (851) 934583

Instrumentarium Elektronikka
Tel: 358-0-5281
TLX: (857) 124426
M.B. Electronique S.A

Tel: 1-39-56-81-31
TLX: (842) 695414
Greece, Athens
Hellenic Scientific Representations
I. 721140
ong Kong, Wanchai
Schmidt \& Co (H.K.) Ltd

LX: (780)

India, Bangalore
Hinditron Services Pvt. Ltd
Tel: 363139
TLX: (953) 845741

Hinditron Services Pvt. Ltd.
Tel: 6300043
ndia, New Delh
Hinditron Services Pvt. L.td.
Tel: 6433675
ndia, Secunderbad
Hinditron Services Pvt. Ltd.

TLX: (953) 1556973
donesia, Jakarta Pusat
P.T. Lamda Triguna

Tel: 8195365
R.D.T. Electronics Engineering Ltd.

Tel: 483211
TLX: (922) 371452

Sist 6181003 .
TLX: (843) 334643
Japan, Tokyo
Co.,
Japan Branch
TLX: (781) 242-4331
Korea, Republic of
oung Corp.
TLX: MYOUNG K24283
Malaysia, Selangor
Mecomb Malaysia Sdn. Bhd.
Tel: 3-743422
TLX: (784) MA37764

Mexicana de Electronica
Industrial, S.A. (Mexel)
TIX: (383) 1771038

Netherlands, Tilburg
Fluke (Nederland) B.V. Tel: 352455
LX: (844) 52683

Northrop Instruments

Tel: $501-801$
TLX: (791) NZ21570

Nealand, Wellingto
Systid
Tel: 856-658
TLX: (791) NZ3380

Morgenstierne \& Co. A/S TLX: (856) 71719

Pakistan, Karachi
International Operations (PAK), Ltd
Tel: 221127, 239052
TLX: (952) 24494
Peru, Lima
Importaciones Y Representaciones
Electronicas S.A.
Tel: 288650
TLX: (394) 25663
Philippines
Spark Radio \& Electronics Corp.
Tel: 2-775192
TLX: (722) 27901
Portugal, Lisboa
Equipamentos de Electronica e
Cientificos, SARL.
Tel: 2103420
TLX: (832) 15515
Republic of Singapore
Rank O'Connor's (PTE) Limited
Tel: 4737944
TLX: (786) RS21023
Republic of South Africa, Bramley
Protea PNI
Tel: 11-786-3647
TLX: (960) 4-24409

Spain, Madrid

Equipos y Sistemas S.A.
Tel: 458-0150
TLX: (831) 42856
Sweden, Vallingby
Kaliber AB
Tel: 380350
TLX: (854) 14077
Switzerland, Zurich
Traco Electronic AG
Tel: 2010711
TLX: (845) 815570
Taiwan, Taipei
Schmidt Electronics Corp.
Tel: 5013468
TLX: (785) 11111
Thailand, Bangkok
Measuretronix Ltd
Tel: 374-2516
TLX: (788) 82796
Turkey, Istanbul
Erkman Elektronik Aletler
Tel: 441546
TLX: (821) 24399
Uruguay, Montevideo
Coasin Uruguaya S.A
Tel: 789015
TLX: (398) UY23010
Venezuela, Caracas
Coasin C.A.
Tel: 241-0309
TLX: (395) 21027
West Germany, Ismaning/Munich
Fluke (Deutschland) GmbH
Tel: 9605240
TLX: (841) 0522472

Schematic Diagrams

FIGURE NO.	NAME	DWG. NO.	PAGE
$8-1$	Main PCB Schematic (A2)	$515 \mathrm{~A}-1001$	$8-3$
$8-2$	Battery Pack PCB Schematic (A3)	$510 \mathrm{~A}-1003$	$8-4$
$8-3$	DC (A4) and Adjustments (A5)	$515 \mathrm{~A}-1002 \&$	$8-5$
	PCB Schematic	$515 \mathrm{~A}-1003$	

1. ALL RESISTANCES IN OHMS \& ALL CADACITANCES IN MICROFARADS UNLESS OTHERWISE NOTED.
2. PCB VOLTAGES MEASURED DURING BATTERY OPERATION.
3. LAST CR, CRG LAST R, R10 LAST Q, QG
4. POWER SUPPLY COMMON

4 SELECTED P/N 346270
5 PCB FUSE. REPLACE WITH \#34 AWG WIRE.
6. ALL RESISTANCES IN OHMS \& ALL

CADACITANCES IN MICROFAR
7. A4: LAST C, C4

