

Agilent **PSA Series Spectrum Analyzers WLAN Measurement Personality**

Technical Overview with Self-Guided Demonstration Option 217

The PSA Series WLAN measurement personality, Option 217, provides a single solution for your 802.11a/b/g WLAN transmitter test measurements. You can test for standards conformance, standards verification and chipset/module integration, within a single highperformance spectrum analyzer that delivers leading edge flexibility, speed, and accuracy.

WLAN Measurement Personality

The PSA Series WLAN measurement personality supports 802.11b DSSS, CCK, and PBCC signals, 802.11a OFDM (Orthogonal Frequency Division Multiplexing) signals, and 802.11g OFDM and mixed-mode Extended Rate PHY (ERP) signals. The WLAN measurement personality (Option 217) analyzes standards-based signals according to IEEE mandated signal tests.

The pass/fail indicators quickly give a visual indication of standards conformance. For extra flexibility, user-defined limits on parameters such as spectral flatness, EVM, center frequency leakage, and more, allow for customization of pass/fail tests to more stringent constraints than those indicated by IEEE 802.11 standards, adding a level of margin between your product and the IEEE requirement.

Measurements such as EVM vs. symbol and EVM vs. carrier provide insight into signal impairments that would otherwise go unnoticed in signal testing. On a more aggregate level, measurements such as CCDF enable characterization of devices such as power amplifiers, over an entire data burst.

The PSA spectrum analyzer with Option 140 (40 MHz bandwidth digitizer) or Option 122 (80 MHz bandwidth digitizer) provides the analysis bandwidth necessary to test today's WLAN signals, while providing the flexibility for tomorrow's wide-bandwidth needs.

The WLAN measurement personality leverages the PSA's excellent feature set and superb RF performance, including integration and compatibility with the Agilent 89601A vector signal analyzer (VSA) software.

Table 1. WLAN measurement personality key features and benefits

Features	Benefits
ntuitive user interface and large, graphical display neasurement results with repeatable and	Easy-to-use- no need to hunt for accurate measurements.
Simplified setup for analysis of time-, frequency-, and modulation-domain characteristics of 302.11a/b/g wireless LAN signals	Reduced setup time enables quick and accurate measurements, and reduces configuration time when switching between formats.
Nide analysis bandwidth ready for future signal formats	Test test today's formats with the flexibility you need for tomorrow's signals.
/iew pass/fail indicators based on IEEE WLAN standards	Verify IEEE compliance quickly, easily, and accurately.
Customize signal parameters such as sub-carrier spacing, and guard intervals	Flexibility to adapt for non-standard WLAN signals
Automatic-demod of modulation type	An intelligent measurement engine that eliminates the need to manually change the modulation format from burst to burst.
Customize parameter limits based on your own tolerances	Maximize device data rate and range by ensuring device quality above and beyond the minimum required by IEEE standards.
Characterize and compare power amplifiers with wide-bandwidth CCDF measurements	Optimize power amplifier designs by correctly characterizing power statistics.
Evaluate and quantify the modulation characteristics of single carriers, pilot carriers, or aggregate nulti-carrier OFDM signal data	Troubleshoot individual portions of a signal or investigate pilot imperfections.
Excellent RF and performance	Quick spectral mask tests, test harmonics, test leakage.

Demonstration Preparation

This demonstration section provides stepby-step instructions for making 802.11a and 802.11b measurements. Screenshots of example measurements are included to help guide you make accurate measurements.

The following options are required for the ESG and the PSA Series in order to perform this demonstration.

All demonstrations use the PSA Series & E4438C ESG vector signal generator; keystrokes surrounded by [] indicate frontpanel hard keys; keystrokes surrounded by {} indicate soft keys on display.

Product type	Model number	Required options
ESG vector signal generator	E4438C firmware revision C.03.10	502, 503, 504, or 506 417 Signal Studio for 802.11 WLAN
PSA Series	E4443A, E4445A, E4440A	217, 122 or 140
PC		Signal Studio for 802.11 WLAN

Instructions

Connect the PC, PSA and ESG:

Connect a PC (loaded with the Signal Studio for 802.11 WLAN software and Agilent I/O library) to the E4438C ESG via GPIB or LAN.

The setup procedure used in this guide assumes the LAN interface is used. To use LAN interface from Signal Studio, set up LAN Client with I/O Configuration of Agilent I/O Library.

Make the necessary connections on the PSA and ESG

Perform the following steps to interconnect the PSA and ESG (see Figure 5 for a graphical overview):

- · Connect the ESG RF output port to the PSA RF input port
- Connect the ESG 10 MHz out to the PSA Ext Ref in port
- Connect the ESG event trigger 1 port to the PSA Ext trigger input (front panel) See figure 1 for diagram of this setup.

Figure 1. PSA and ESG configuration diagram.

Demonstration Preparation (continued)

E4438C Option 417 Signal Studio for 802.11 WLAN is a Windows[®] based utility that simplifies the creation of standards-based or customized 802.11a/b/g WLAN waveforms. The Signal Studio software is used to configure the 802.11 WLAN signal and then the parameters are downloaded into the ESG signal generator, which creates the desired waveform.

Configure the desired signal parameters using the Signal Studio for 802.11 WLAN software on a PC. Detailed instructions on how to use the software, including examples illustrating the configuration of test signals, are provided with the Signal Studio software.

Demo Instructions: 802.11a (OFDM) signal

Note the center frequency of the signal is under the Signal Generator Configuration area, and is labeled Fc. Set the center frequency to 5.24 GHz. This overrides the channel setting in the Signal Configuration area.

Instructions	Keystrokes	
Establish a communication link with the ESG vector signal generator:		
Preset the ESG.	[Preset]	
Check the IP address.	[Utility] {GPIB/RS-232/LAN} {LAN Setup} e.g.,{IP address 192.168.100.1}	
Run the Agilent Signal Studio for 802.11 WLAN.	Double-click on the 802.11 WLAN shortcut on the desktop or access the program via the Windows start menu	
Verify that the software is communicating with the instrument via the LAN TCP/IP link.	From the {Configuration} pull-down menu at the top of the Signal Studio program window, select {Sig Gen I/O}. Next, select TCP/IP and enter the hostname or IP address of the ESG in the address area. Finally, click Check.	
After performing this operation, the software should return succeed under connection status.	If this is the case, click on {Close}. If this is not the case, re-verify the instrument is connected and re-check the IP address and TCP/IP link.	

🛷 Agilent Signal Studio for 802.11 WLAN	
File Plot Configuration Help	
Signal Configuration Framed C Unframed	Payload Setup
Modulation: QAM64 C Multipoint Setup	MAC Header Setup
Data Rate. 54 (OFDM) Mbps	Service Field: 0
Format: OFDM Encoder: 3/4 Rate	Data Type: PN9 💌
Scrambler: On	Data Length: 512 Bytes
Oceanative la la literatione	Total Length: 546 Bytes
Channel: 1 - 2412 MHz Idle Interval: 110 us Subcarrier Setup	Multiframe Control
Signal Generation Setup	Increment Fragment Number
Oversampling Ratio: 5 Mirror Spectrum	Signal Information
Windowing Length: 16	Projected Length: 21400 Samples
Filter Type: None	Event 1 Mkr: 1st Symbol, Rising Edge Event 2 Mkr: RF Blanking, Active Low
Signal Generator Configuration	
Fc: 5.24 GHz Amplitude: -25 dBn	n Name: WLan Advanced
Calculate Download	Refresh

Figure 2. Signal Studio software setup parameters for generating an 802.11a signal.

Instructions	Keystrokes		
Configure the ESG to create an 802.11a signal:			
Calculate and download the waveform to the ESG vector signal generator.	Calculate button, then Download button, on the 802.11 WLAN Signal Studio software		
802.11a (OFDM) signal demonstration instructio	ns:		
Prepare the PSA for an 802.11a signal. Preset the PSA.	[System] {Power On/Preset} {Preset Type} {Factory} [Preset]		
Enter the WLAN mode in the analyzer.	[MODE] {More} (if necessary) {WLAN}		
Preset the measurement personality to a WLAN standard, in this case, 802.11a.	[Mode Setup] {Radio} {WLAN Std} {802.11a}		

Transmit power measurement

The transmit power measurement allows the user to accurately determine the total power in a specified bandwidth, and the power spectral density in the occupied channel. The results are clearly shown in large text, along with a graphical display of the spectrum.

The default measurement bandwidth for 802.11a is 16.6 MHz, but this setting is adjustable. The integration bandwidth is easily identified graphically by the white vertical band power markers on the spectrum display.

Modulation accuracy

Measurement displays such as constellation, EVM vs. symbol, and EVM vs. carrier provide insight into signal imperfections that are masked or not detectable in other measurements.

A numeric results screen gives a summary of modulation characteristics, as well as numerical values of test limits as defined by the IEEE standard, or as modified to fit a user's more stringent test requirements. If any test does not meet the limit, an indication is given next to the specific test that fails.

The numeric results screen shows these parameters, and their corresponding limit:

- Frequency error (17.3.9.4 transmit center frequency tolerance)
- Symbol clock error (17.3.9.5 symbol clock frequency tolerance)
- IQ Offset (17.3.9.6.1 transmitter center frequency leakage)
- Quadrature skew
- IQ gain imbalance

Figure 3. Transmit power measurement displays spectrum and numeric results of power parameters.

Instructions	Keystrokes
Transmit power measurement on the PSA:	
Activate the transmit power measurement.	[Measure] {Transmit Power}
Configure the PSA to trigger off the ESG vector signal generator.	[Meas Setup] {More 1 of 2} {Trig Source} {Ext Rear}

Instructions		Keystrokes	
,	Modulation accuracy on the PSA:		
	Access the modulation accuracy measurement.	[Measure] {Modulation Accuracy}	

Figure 4. Constellation of 54 Mbps OFDM signal showing overlayed 640AM and BPSK points.

Figure 5 shows the results summary screen. On the right side of the screen, the user can customize pass/fail limits to values different from the IEEE standard. For example, the user can set the maximum tolerable EVM limit at the 54 Mbits/s data rate to be -35.00 dB, rather than the default value of -25.00 dB.

Instructions	Keystrokes
View other results screens on the PSA:	
OFDM EVM view.	[Trace/View] {0FDM EVM}
Zoom in on a window of interest, for example, EVM vs. carrier.	[Next Window] [Zoom]
View the results summary screen.	[Trace/View] {Numeric Results}

🔆 Agilent WLAN Limit 48 Mbits/s -22.00 dB Ch Freq 5.24000 GHz **Modulation Analysis** 802**.**11a 54 Mbits/s RMS EVM -25.00 dB Max Avg Limit RMS EVM -44.41 dB -13.28 dB 0.00 dB FreqError 20.00 ppm -32.44 dBat sym 0 -3.64 dB at sym 15 Peak EVM N/A Frequency Error -4.16 mppm -119.95 mppm 20.00 ppm Sym Clock Err -0.85 ppm 3.19 ppm 20.00 ppm Symbol CLK -39.69 dB -24.87 dB IQ Offset -15.00 dB Error 20.00 ppm 1.32 ° N/A Quadrature Skew -0.08 ° IQ Gain Imbalance -0.50 dB 31.32 dB N/A IQ Origin 0ffset -15.00 dB More 2 of 2

Figure 5. Numeric results summarize key modulation accuracy parameters.

Keystrokes

Results summary screen on the PSA:

[Meas Setup] {More 1 of 2} {Limit} {More 1 of 2} {54 Mbits/s RMS EVM} {-35.00} {Enter}

Spectral flatness

The Spectral flatness measurement allows for IEEE standard-based pass/fail measurements, as specified by the IEEE 802.11a-1999 standard, section 17.3.9.6.2 transmit spectral flatness.

Transmit spectrum mask measurement

The spectrum emission mask measurement allows for IEEE standard-based pass/fail measurements, as specified by the IEEE 802.11a-1999 standard, section 17.9.3.2 transmit spectrum mask.

Instructions

Keystrokes

Spectral flatness on the PSA:

Access the spectral flatness measurement.

[Measure] {Spectral Flatness}

Figure 6. OFDM spectral flatness measurement across 52 carriers.

Figure 7. Transmit spectrum mask measurement showing IEEE defined limits.

CCDF measurement

To accurately perform a useful CCDF measurement of a device such as a power amplifier (PA), the measurement must be made on the data portion of the OFDM burst. In an 802.11g ERP-OFDM signal, the first portion of the burst includes training symbols to aid in coarse, and then fine, frequency estimation. This sequence occupies the first 16 µs of the burst. It is followed by the signal field, and then the data field. The signal field information is mapped onto all OFDM carriers, using BPSK modulation. The information in the data portion of the burst is then mapped onto 48 (not including 4 BPSK pilot carriers) carriers using BPSK, 160AM, and/or 640AM modulation.

In order to accurately characterize the PA, only the signal and data portions of the burst should be included. This can be done by adjusting the trigger parameters within the CCDF measurement.

OFDM bursts are variable in length. Therefore, the first task is to identify the total length of the burst. This can be done using the waveform measurement. Keystrokes: [Measure] {Waveform}

The total length of the burst can be found using markers. Place a marker on the left edge of the burst, to indicate the start of that burst. Then place a delta marker at the end of the same burst.

Instructions	Keystrokes		
CCDF measurement on the PSA:			
First, select the correct trigger source.	[Meas Setup] {Trig Source} {Ext Rear}		
Now, zoom in on the first burst only. Set the measurement time to 150 µs.	[Meas Setup] {Meas Time} {150 µs}		
Set a marker at the rising edge of the burst.	[Marker]		
Set another marker, using marker delta, at the falling edge of the burst. This will determine the total length of the burst.	[Marker] {Delta} {use the knob to place the marker at the falling edge of the burst}		

😤 Agilent 🛛 🛛 🕅 🕅 🕅 🕀 🕅	Marker
Ch Freq 5.24000 GHz IF: Wide Waveform (Time Domain) 802.11a	Select <u>1</u> 2 3 4
Marker 104.0 µs	Normal
Ref 0.00 dBm RF EnvelcDelta Mkr1-Mkr2 104.036µs	Norma
10.00 dB/ maxP	Delta
	Function, Off
Trig Ext:R 0.0000 us 150.00 us	Trace, RF Envelope
IF BW 22.0000 MHz 4126 samples 036.36 ns	
Mean Pwr (Entire Trace) Current Data	Off
-28.28 dBm Pk-to-Mean: 9.45 dB Max Pt: -18.83 dBm Min Pt: -110.16 dBm	More 1 of 2

CCDF measurement (continued)

In the measurement shown below, the burst is 104 μ s long. The training portion of the OFDM burst occupies the first 16 μ s. This determines the trigger offset that will be set for the CCDF measurement. Therefore, the CCDF measurement should only analyze the portion of the burst between 16 μ s and 104 μ s, for a total length of 88 μ s.

Instructions	Keystrokes
CCDF measurement on the PSA continued:	
Now, enable the CCDF measurement.	[Measure] {Power Stat CCDF}
Select the correct trigger source.	[Meas Setup] {Trig Source} {Ext Rear}
Select the appropriate measurement interval.	[Meas Setup] {Meas Interval} {88 µs}
Adjust the trigger offset.	[Trig] {Ext Rear} {Delay} {16 µs}

Now the CCDF measurement is correctly made.

🔆 Agilent	WLAN	Meas Setup
Ch Freq 5.2 CCDF	4000 GHz 802.11a Counts(k): 222	Meas BW 16.6000 MHz
Average Power	Gaussian Reference	Meas Interval 88.000 µs
-23.94 dBm 34.04%	10%	Counts 10.0000 Mpt
Peak Power -13.33 dBm	12	Wideband Setup
10.0% 3.82 dB 1.0% 7.37 dB	0.12	Trig Source, Ext Rear
0.01% 9.25 dB 0.01% 10.43 dB 0.001% 10.61 dB	0.0012	
0.0001% Peak 10.61 dB	0.00012, 0.0000	More 1 of 2

Figure 9. CCDF measurement performed over the data portion of an OFDM burst.

Demo Instructions (802.11b signal)

Many of the required measurements for 802.11b are procedurally similar to those for 802.11a. Some differences of 802.11b signal measurements are illustrated here.

Figure 10 shows the appropriate configuration for the ESG to create 802.11b signals.

刘 Agilent Signal Studio for 802.11 WLAN	
Eile <u>P</u> lot <u>C</u> onfiguration <u>H</u> elp	
Signal Configuration Modulation: CCK Modulation: CCK O Multipoint Setup Data Rate: 11(DSSS)	Payload Setup
Format	Data Type: PN9 💌
Scrambler: On 🔽 PBCC Encoder On	Data Length: 512 Bytes
Pwr Ramp: Linear 👻 Ramp Time: 2 us	Total Length: 546 Bytes
Channel: 1 - 2412 MHz Idle Interval: 100 us Cik Struct Setup	Multiframe Control Number of Frames: 1 Increment Seq Num Every 1 Frms Increment Fragment Number
Oversampling Ratio: 4 Mirror Spectrum	Signal Information Projected Length: 30496 Samples Event 1 Mkr: 1st Symbol, Rising Edge
Signal Concreter Configuration	Event 2 Mkr: RF Blanking, Active Low
Fc: 2.412 GHz Amplitude: -25 dBr	n Name: WLan Advanced
Calculate Download	Refresh

Figure 10. Signal Studio software setup parameters for generating an 802.11b signal.

Instructions	Keystrokes
Prepare the PSA for an 802.11b signal:	
Preset the PSA.	[System] {Power On/Preset} {Preset Type} {Factory} [Preset]
Enter the WLAN mode in the analyzer.	[MODE] {More} (if necessary) {WLAN}
Preset the measurement personality to a WLAN standard, in this case, 802.11b.	[Mode Setup] {Radio} {WLAN Std} {802.11b}

Transmit spectrum mask measurement

Instructions Keystrokes Prepare the PSA for an 802.11b signal:

Access the spectrum emission mask measurement.

[Measure] {Spectrum Emission Mask}

Figure 11. Transmit spectrum mask measurement showing IEEE defined limits.

Modulation accuracy

Instructions

Keystrokes

Modulation accuracy on the PSA:

Access the modulation accuracy measurement.

View the results summary screen.

[Measure] {Modulation Accuracy} [Trace/View] {Numeric Results}

Figure 12. Constellation of an 11 Mbps 802.11b signal.

🔆 Agilent		WLAN		Trace/View
Ch Freq : Modulation Accur	2.41200 GHz racy 802.11	Averages: 5	PASS	I/Q Measured Polar Graph
Equlizer 21.	00000 chips			I (0 E
	Max Min	Âvg	Limit	1/ U Error
RMS EVM	0.57 %	0.51 %	16.00 %	
Peak EVM	1.69 % at chip 242	9 1.47 % at chip 2503	N/A	OFDM EVM
1k Chips EVM	1.06 %	0.88 %	35.00 %	
RMS Mag Error	0.41 %	0.36 %	N/A	
Peak Mag Error	-1.37 % at chip 248	2 -0.27 % at chip 2567	N/A	Demod Bits
RMS Phase Error	0.23 °	0.21 °	N/A	
Peak Phase Error	-0.95 ° at chip 250	8 -0.19° at chip 2405	N/A	
Frequency Error	-1.44 mppm	-782.67 µррм	25.00 ppm	Numeric
Chip Clock Err	1.53 ppm	1.43 ppm	25.00 ppm	Results
IQ Offset	-35.63 dB	-35.66 dB	N/A	
Quadrature Skew	-0.06 °	-0.03 °	N/A	
IQ Gain Imbalance	-0.04 dB	-0.03 dB	N/A	
Carrier Suppression	26.63 dB	26.66 dB	15.00 dB	

Figure 13. 802.11a numeric results.

Key Specifications

Description	Specifications	Supplemental information
Supported standards	802.11a 802.11g ERP-OFDM 802.11g DSSS-OFDM 802.11b 802.11g DSSS/CCK/PBCC	
Modulation formats	BPSK, QPSK, 16QAM, 64QAM	(auto detect or manual override)
Capture length	5.12 seconds	(20 MHz span)
Amplitude accuracy		
Absolute amplitude accuracy Center frequency = 2.442 GHz	±0.86 dB	±0.17 dB (typical)
Absolute amplitude accuracy Center frequency = 5.240 GHz	±1.78 dB	±0.7 dB (typical)
Transmit spectral mask accuracy or relative power accuracy	±0.30 dB	
Modulation accuracy Residual EVM (20 averages)		
Equalizer training = chan est se	eq + data eq	≤ –48 dB (0.4%) (nominal) < –45 dB (0.56%) (nominal)
802.11b	54	
Equalizer on		\leq 0.4% dB (nominal)
Equalizer off		≤ 1.0% dB (nominal)

Ordering Information

PSA Series spectrum analyzer

E4443A	3 Hz to 6.7 GHz
E4445A	3 Hz to 13.2 GHz
E4440A	3 Hz to 26.5 GHz
E4446A	3 Hz to 44 GHz
E4447A	3 Hz to 42.98 GHz
F4448A	3 Hz to 50 GHz

Options

 To add options to a product, use the following ordering scheme:

 Model
 E444xA (x = 0, 3, 5, 6, 7 or 8)

 Example options
 E4440A-B7J

 E4448A-1DS
 E4448A-1DS

Measurement personalities

E444xA-226	Phase noise	E444
E444xA-219	Noise figure, requires 1DS	
E444xA-241	Flexible digital modulation analysis	
E444xA-BAF	W-CDMA, requires B7J	E444
E444xA-210	HSDPA, requires B7J and BAF	
E444xA-202	GSM w/ EDGE, requires B7J	
E444xA-B78	cdma2000, requires B7J	E444
E444xA-214	1xEV-DV, requires B7J and B78	
E444xA-204	1xEV-DO, requires B7J	
E444xA-BAC	cdmaOne, requires B7J	PC
E444xA-BAE	NADC, PCD, requires B7J	
E444xA-217	WLAN, requires 122 or 140	E444
E444xA-211	TD-SCDMA	
E444xA-215	External source control	E444
E444xA-266	Programming code	
	compatibility suite	
		E444

Hardware

E444xA-1DS	100 kHz to 3 GHz built-in
E444xA-B7J E4440A-122	Digital demodulation hardware 80 MHz bandwidth digitizer
	(E4440A/43A/45A only, excludes 140. H70)
E4440A-140	40 MHz bandwidth digitizer (E4440A/43A/45A only,
E444xA-123	excludes 122, H/U) Switchable MW preselector bypass (E4440A/43A/45A
E111×A 121	only, excludes AYZ)
E444xA-AYZ	External mixing (E4440A/46A/47A/48A only, excludes 123)
E4440A-BAB	Replaces type-N input connector APC 3.5 connector (E4440A only)
E444xA-H70	70 MHz IF output, excludes 122, 140, not
E444xA-H26	Highband preamplifier, requires 1DS

PC software

144xA-230	BenchLink web remote
	control software
1440A-233	N5530S measuring receiver
	software & license requires
	B7J, E4443A/45A/40A only
1440A-235	Wide bandwidth digitizer
	external calibration wizard,
	requires 122

Accessories

E444xA-1CM	Rack mount kit
E444xA-1CN	Front handle kit
E444xA-1CP	Rack mount with handles
E444xA-1CR	Rack slide kit
E444xA-015	6 GHz return loss measure-
ment	
	accessory kit
E444xA-045	Millimeter wave accessory kit
E444xA-0B1	Extra manual set including
	CD ROM

Warranty and service

Standard warranty is three years.

R-51B-001-5C	Warranty Assurance Plan,	
	Return to Agilent, 5 years	

Calibration¹

R-50C-011-3	Calibration Assurance Plan,
	Return to Agilent, 3 years
R-50C-011-5	Calibration Assurance Plan,
	Return to Agilent, 5 years
R-50C-016-3	Agilent Calibration +
	Uncertainties + Guardbanding,
	3 years
R-50C-016-5	Agilent Calibration +
	Uncertainties + Guardbanding,
	5 years
AMG	Agilent Calibration +
	Uncertainties + Guardbanding
	(accredited calibration)
A6J	ANSI Z540-1-1994 Calibration
R-50C-021-3	ANSI Z540-1-1994 Calibration,
	3 years
R-50C-021-5	ANSI Z540-1-1994 Calibration,
	5 years
UK6	Commercial calibration
	certificate with data
	To be ordered with PSA
E444xA-0BW	Service manual, assembly level
N7810A	PSA Series calibration
	application software

^{1.} Options not available in all countries.

Product Literature

Selecting the Right Signal Analyzer for Your Needs, selection guide, literature number 5968-3413E

PSA Series, brochure, literature number 5980-1283E

PSA Series, data sheet, literature number 5980-1284E *PSA Series,* configuration guide, literature number 5989-2773EN

Self-Guided Demonstration for Spectrum Analysis, product note, literature number 5988-0735EN

Phase Noise Measurement Personality, technical overview, literature number 5988-3698EN

Noise Figure Measurement Personality, technical overview, literature number 5988-7884EN

External Source Measurement Personality, technical overview, literature number 5989-2240EN

Flexible Modulation Analysis Measurement Personality, technical overview, literature number 5989-1119EN

W-CDMA and HSDPA Measurement Personalities, technical overview, literature number 5988-2388EN

GSM with EDGE Measurement Personality, technical overview, literature number 5988-2389EN

cdma2000 and 1xEV-DV Measurement Personalities, technical overview, literature number 5988-3694EN

1xEV-DO Measurement Personality, technical overview, literature number 5988-4828EN

cdmaOne Measurement Personality, technical overview, literature number 5988-3695EN WLAN Measurement Personality, technical overview, literature number 5989-2781EN

NADC/PDC Measurement Personality, technical overview, literature number 5988-3697EN

TD-SDCMA Measurement Personality, technical overview, literature number 5989-0056EN

80/40 MHz Bandwidth Digitizer, technical overview, literature number 5989-1115EN

Programming Code Compatibility Suite, technical overview literature number 5989-1111EN

PSA Series Spectrum Analyzers Video Output (Option 124), technical overview, literature number 5989-1118EN

PSA Series Spectrum Analyzers, Option H70, 70 MHz IF Output, product overview, literature number 5988-5261EN

Optimizing Dynamic Range for Distortion Measurements, product note, literature number 5980-3079EN

PSA Series Amplitude Accuracy, product note,

literature number 5980-3080EN

PSA Series Swept and FFT Analysis, product note,

literature number 5980-3081EN

PSA Series Measurement Innovations and Benefits, product note, literature number 5980-3082EN

PSA Series Spectrum Analyzer Performance Guide Using 89601A Vector Signal Analysis Software, product note, literature number 5988-5015EN

89650S Wideband VSA System with High

Performance Spectrum Analysis, technical overview, literature number 5989-0871EN

BenchLink Web Remote Control Software, product overview, literature number 5988-2610EN

IntuiLink Software, Data Sheet, Literature Number 5980-3115EN

89600 Series Vector Signal Analyzers, brochure, literature number 5980-0723E

Agilent N5530S Measuring Receiver System, technical overview, literature number 5989-1113EN

Application literature

Spectrum Analysis Basics, application note 150, literature number 5952-0292

Using Extended Calibration Software for Wide Bandwidth Measurements, PSA Option 122 & 89600 VSA, application note 1443,

literature number 5988-7814EN

8 Hints for Millimeter Wave Spectrum Measurements, application note, literature number 5988–5680EN

Spectrum Analyzer Measurements to 325 GHz with the Use of External Mixers, application note 1453, literature number 5988-9414EN

EMI, application note 150-10, literature number 5968-3661E

Vector Signal Analysis Basics, application note 150-15, literature number 5989-1121EN

www.agilent.com

www.agilent.com/find/psa

	www.lxistandard.org
myAgilent	www.agilent.com/find/myagilent A personalized view into the information most relevant to you.
	myAgilent

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Three-Year Warranty

LX

www.agilent.com/find/ThreeYearWarranty

Beyond product specification, changing the ownership experience. Agilent is the only test and measurement company that offers three-year warranty on all instruments, worldwide

Agilent Assurance Plans

www.Agilent.com/find/AssurancePlans

Five years of protection and no budgetary surprises to ensure your instruments are operating to specifications and you can continually rely on accurate measurements.

www.agilent.com/quality

Agilent Electronic Measurement Group DEKRA Certified ISO 9001:2008 Quality Management System

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

Canada Brazil Mexico United States	(877) 894 4414 (11) 4197 3600 01800 5064 800 (800) 829 4444
Asia Pacific	
Australia China Hong Kong India Japan Korea Malaysia Singapore Taiwan	1 800 629 485 800 810 0189 800 938 693 1 800 112 929 0120 (421) 345 080 769 0800 1 800 888 848 1 800 375 8100 0800 047 866
Other AP Countries	(65) 375 8100
Europe & Middle East	
Belgium Denmark Finland France	32 (0) 2 404 93 40 45 45 80 12 15 358 (0) 10 855 2100 0825 010 700* *0.125 €/minute
0	40 (0) 7001 404 000

49 (0) 7031 464 6333 Germany Ireland 1890 924 204 972-3-9288-504/544 Israel 39 02 92 60 8484 Italy 31 (0) 20 547 2111 Netherlands 34 (91) 631 3300 Spain Sweden 0200-88 22 55 United Kingdom 44 (0) 118 927 6201

For other unlisted countries:

www.agilent.com/find/contactus (BP-09-27-13)

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2013 Published in USA, November 25, 2013 5989-2781EN

