
Keysight Technologies
SystemVue
Electronic System-Level Design

Application Note

Creating C++ Algorithms in SystemVue

Using Model Builder

2

The SystemVue C++ Model Builder interface provides
a powerful mechanism for exploring signal processing
algorithms for communications system design. Modeling
in SystemVue can be performed several ways: using native
models in the SystemVue Graphical User Interface (GUI),
programming with inline (interpreted) math language,
or programming in a high-level compiled language (e.g.,
C++). Modeling in a high-level language offers several
advantages. It:

–– Provides the highest simulation speed

–– Enables greater transportability to/from other environ-
ments, with fewer licensing constraints

–– 	Allows existing Intellectual Property (IP) to be used at
a system-level, thereby enabling co-verification of IP
across Baseband, RF, and Test & Measurement domains

Overview

This application note outlines the process of packaging a
C++ model for use in SystemVue. This process consists of
just a few simple steps. Supported SystemVue users may
download the workspace associated with this application
note and access additional resources at:

–– Keysight Technologies, Inc. EEsof EDA Knowledge
Center (login required):

	 http://edocs.soco.keysight.com/display/eesofkcsysvue/
	 Using+the+Model+Builder+Interface

To follow this application note using SystemVue, the fol-
lowing software is suggested:

–– W1461BP SystemVue core environment, or higher
bundle

–– 	SystemVue release 2012.06, or higher

–– 	The W1718EP C++ Code Generator is not required,
but may be helpful

–– Microsoft Visual C++2010 Express Edition (free
download), or a more complete Microsoft Visual Studio
environment

–– To include an existing C++ model in a simulation

–– To make a model easy to re-use, or to create a
company library

–– 	To externalize key parameters or hide levels of hierar-
chy, for ease-of-use

When to use the SystemVue Model Builder Interface

–– 	To protect custom IP

–– 	For improved simulation speed, versus graphical or
interpreted languages

https://edadocs.software.keysight.com/login.action
https://edadocs.software.keysight.com/login.action

3

SystemVue uses CMake to create Model Builder projects
and Microsoft Visual Studio solutions. CMake is a cross-
platform build system that allows users to build source
code and generate projects for commonly used Integrated

Model Builder Architecture

Figure 1. The SystemVue model building flow. The focus of this
application note is highlighted in color.

Development Environments (IDEs) like Visual Studio and
Eclipse. CMake uses the concept of out-of-source builds.
SystemVue C++ Model Builder is layered on top of CMake
(Figure 1).

•	 Read 	 CMakeCache
•	 Modify	 CMakeLists.txt
•	 Write 	 CMakeCache	

•	 Makefiles
•	 Templates

4

About this C++ Model

This application note instantiates a C++ model for a
Quadrature Amplitude Modulation (QAM) modulation
mapper that creates QAM-1024, QAM-2048 and QAM-4096
symbols. SystemVue workspaces were created to use

Figure 2. This application note considers the additional steps necessary to package a modulation algorithm, written in C++, for use as a
custom model in SystemVue. The example itself is a symbol mapping algorithm for higher order QAM.

Figure 3. Shown here are the output constellations of the new C++ algorithm, as seen from a system-level analysis.

and test this new model (Figure 2). Additionally, I and Q
waveforms were captured at the output of the model for
verification. The resulting constellations are shown in
Figure 3.

5

The C++ Model Building Process in SystemVue

The model building process encompasses three main
steps. The remainder of this application discusses these
steps at a high level to better illustrate the process. The
steps are:

1.	Create a SystemVue Model Builder project

2.		Write a C++ dataflow model, accounting for any header
and template files

3.		Use the new library in SystemVue

Step 1.
Create a SystemVue Model Builder Project
1.	From the Action menu, select Create Model Builder

Project.

2.		Choose a name for the project, such as MyFuncsLib,
and enter it into the Name field. Next, choose a location
for the project.

3.		Click Create to start. A new instance of Visual Studio
will be opened with the created Model Builder Project
solution MyFuncsLib.sln.

Step 2.
Write C++ Dataflow Model

Creating Source and Header Template Files

1.	On the Solution Explorer window in Visual Studio, open
the CMakeLists.txt file in the SystemVue-MyFuncsLib
project.

2.		Update this file by uncommenting the following lines.
Then, change the name of the model.

Before changes After changes

#SVU_CREATE_MODEL
(MyCustomModel)

#	 MyCustomModel.h
#	 MyCustomModel.cpp

SVU_CREATE_MODEL
(Mapper_H)

Mapper_H.h
Mapper_H.cpp

3.	Save the change. Right click on the Install project in the
Solution Explorer window and click Rebuild. Accept all
warning messages to reload SystemVue-MyFuncsLib
project.

4.		The SystemVue Model Builder can now automatically
generate two template sources (.h and .cpp) for the
user’s easy modification.

Writing the Header File
1. On the Solution Explorer window in Visual Studio,

open the Mapper_H.h template file in the SystemVue-
MyFuncsLib project Header Files folder. The content of
Mapper_H.h is as follows:

#pragma once
#include “ModelBuilder.h”

class Mapper_H : public KeysightEEsof::DFModel
{
public:
	 // This Macro is required for all classes derived from DFModel
	 DECLARE_MODEL_INTERFACE(Mapper_H);

	 // Constructor to initialize parameters
	 Mapper_H();
	
	 //-------- Function Overloads --------
	 virtual bool	 Run();

	 // Ports
	 KeysightEEsof::CircularBuffer< double > input, output;
	
	 // Parameter
	 double Gain;
};

2. To modify a Mapper_H.h file, perform the following
steps:

	 Step 1.
	 The class must be derived from

“KeysightEEsof::DFModel”.

	 Step 2.
	 Add a macro with the public access level, 	
DECLARE_MODEL_INTERFACE(ClassName);	

	 Change the ClassName to the name of the class in this
example, “Mapper_H.” The declaration should be

DECLARE_MODEL_INTERFACE(Mapper_H);

6

	 Step 3.
	 Add any data member needed, with the following

guidlines:

I/O ports
If the data member acts as an input or output port, then
it must be among one of the following types:

double, double *, int, int*, std::complex<double>,
std::complex<double> *,

 or a supported CircularBuffer data type.

Within the SystemVue documentation, more information
about the CircularBuffer data type is available
in the section entitled “C++ User Compiled Models.”
The pointer data members will act as multi-rate ports,
whereas scalar data members will act as uni-rate ports,
and all CircularBuffer data types can act as multi-rate
port with default rate of 1. Optionally, the user can also
add an unsigned rate variable, or call the SetRate()
method of a CircularBuffer data type.

	 Parameters
If the data member acts as a parameter, then it must be
among one of the following types:

double, double *, int, int*, std::complex<double>,
	 std::complex<double> *, and char *.

The pointer data members (except char *) will act as an
array parameter, char * will act as string parameter.
Scalar data members will act as non-array parameters.
For each array parameter, choose an unsigned variable
that holds the number of elements in the array (refer to
the documentation for further details).

Otherwise, choose any valid C++ data type for a mem-
ber that is not an I/O port or parameter.

	 Step 4.
At the very least, override the public virtual method
bool Run() of the base class. The Run() method
is called for each execution of the model during simula-
tion. Optionally, the user could override virtual methods,
Setup(), Initialize(), and Finalize().

3. The modified header file looks like the following:

#pragma once
#include “ModelBuilder.h”

class Mapper_H : public KeysightEEsof::DFModel
{
public:
	 DECLARE_MODEL_INTERFACE (Mapper_H)

	 //-------- Function Overloads --------
	 bool Run();
	 bool Initialize();
	 virtual bool Setup();

	 enum ModulationType {QAM1024, QAM2048 , QAM4096};

	 //-------- Ports and Parameters --------
	 KeysightEEsof::CircularBuffer<bool> m_input;
	 KeysightEEsof::CircularBuffer< std::complex<double > > m_output;

	 int nSymbolLength;
	 ModulationType ModType;
	
protected:
	 int GetTableIndex(int iSymbolLength);
	 double Normalize(int iSymbolLength, std::complex<double>* pxTable);

private:
	 double m_dQAM1024Norm, m_dQAM2048Norm, m_dQAM4096Norm; };

extern	 std::complex<double> QAM_1024[256];
extern	 std::complex<double> QAM_2048[512];
extern	 std::complex<double> QAM_4096[1024];

	 Step 5.
	 As shown in the modified header file below, the
GetTableIndex and Normalize protected
member functions were added. Three private member
variables were also added in this model implementa-
tion. The user can add any other methods that may be
desired.

	 Step 6.
	 Three complex array type variables were declared for

the mapping table with external linkage. They are visible
from files other than the one in which it’s defined.

7

Using Custom Models Inside SystemVue
Before the user proceeds to modify the Mapper_H.cpp
C++ source code, it may be helpful to review the context of
an individual model within the SystemVue runtime simula-
tion process.

The code in DEFINE_MODEL_INTERFACE instantiates
the model information, including such things as ports,
model names, and descriptions. This allows SystemVue to
draw the schematic symbol and display the part properties.
In the SystemVue dataflow simulator, the values of the
model parameters are set based on the user’s input on
each schematic instance. As shown in Figure 4, the
setup() method of each model is then invoked to tell
the dataflow simulator the input and output data rates,
as well as the sample rate, if the model is a timed source.
Once SystemVue knows the data rates of each model, the
dataflow scheduler computes a static schedule of the sys-
tem and allocates sufficient buffers for inter-model com-
munication. Then, before simulation, the initialize()
method is called for each model to allocate memory space
and initialize values, among other things. Next, the run()
method is called, according to the schedule. During a
run(), a model reads samples from its input circular
buffers, performs its scientific computation, and then
writes output samples to its output circular buffers. After
simulation, finalize()is called for each model to clean
up their allocated memory.

Figure 4. The execution flow of a C++ model within the dataflow
simulator, at runtime.

Writing the .cpp Source File
1.	On the Solution Explorer window in Visual Studio, open

the Mapper_H.cpp file in the SystemVue-MyFuncsLib
project Source Files folder. The initial content of
Mapper_H.cpp was generated by SystemVue from a
template and is as follows:

#include “Mapper_H.h”

#ifndef SV_CODE_GEN
DEFINE_MODEL_INTERFACE (Mapper_H)
{	
	 ADD_MODEL_INPUT(input);
	 ADD_MODEL_OUTPUT(output);
	 ADD_MODEL_PARAMETER(Gain);
	 return true;
}
#endif

Mapper_H::Mapper_H()
{
	 Gain = 0;
}

//---
//	 Run

//		 Here we do the math	
//---
bool Mapper_H::Run()
{
	 output[0] = Gain * input[0];
	 return true;
}

2.	This Mapper_H.cpp file must be modified by performing
the following steps:

Step 1.
Include the Mapper_H.h header file and any other
headers that the code requires. Then, use the following
macro:

DEFINE_MODEL_INTERFACE(ClassName)
		 {
		 }

to attach data members to ports or parameters (e.g., to
define the interface to the simulator). Where ClassName
is the name of the class in question (e.g., the user’s
class), the following macros can be used to attach a
data member to a port or a parameter:

ADD_MODEL_INPUT(class_data_member);
// to attach class_data_member to an input port

ADD_MODEL_OUTPUT(class_data_member);
// to attach class_data_member to an output port

ADD_MODEL_ENUM_PARAM(class_data_member);
// to attach class_data_member

8

	 Step 2.
Once the headers and classes have been declared, the
functionality of the user’s model should be added in the
Run() method.

3. If the reader is following along with these instructions,
a modified Mapper_H.cpp file can be downloaded from
the Keysight EEsof EDA Knowledge Center at:

	 http://edocs.soco.keysight.com/display/eesofkcsysvue/
	 Using+the+Model+Builder+Interface

4. Recompile the Dynamic Link Library (DLL) by right-
clicking mouse on INSTALL and selecting Build from the
dropdown menu.

Step 3.

Use the New Library in SystemVue

Use the SystemVue Library Manager to load the new
DLL and use the custom model. This can be done by first
opening the SystemVue Library Manager from the Tools/
Library Manager menu. When the DLL has been loaded,
the SystemVue Parts Selector shows the new library in the
list of libraries. Select this library and place the new model
on a schematic, as shown in Figure 5. More complete
documentation is available on the Library Manager, or by
watching the “Discovering Model Builder” video at:

www.youtube.com/watch?v=p-H-2a2L1JI.

Figure 5. After loading the DLL for the new library, it is added to the SystemVue parts selector. The new model is the ready to be
placed on a schematic.

https://edadocs.software.keysight.com/login.action
https://edadocs.software.keysight.com/login.action
http://www.youtube.com/watch?v=p-H-2a2L1JI.

9

Conclusion	

Writing a new signal processing model in C++ in
SystemVue is easy and requires just a few steps. Once
the “scientific” portion of the model has been defined (not
shown in this document), the user simply needs to start
a new model building project from the SystemVue GUI,
update the templates with some model parameters (e.g.,
filenames, data rates and other basic information) and then
merge the algorithm code into the modified template files.
Using Cmake to control the C++ IDE (e.g., Visual Studio
2010) completes the compilation and prepares the DLL for
SystemVue. The final steps involve importing the DLL into
the SystemVue Library Manager and then verifying the
model in simulation.

Further Reading

Workspace files
Supported users can download additional files from
Knowledge Center (login required) at
http://edocs.soco.keysight.com/display/eesofkcsysvue/
Using+the+Model+Builder+Interface

Videos
The following video tutorials videos may be of assistance:

Discovering Model Builder
www.youtube.com/watch?v=p-H-2a2L1JI

Discovering C++ Code Generation
www.youtube.com/watch?v=oTaUiVTyJeo

Discovering Model Configurations
www.youtube.com/watch?v=LEEibGvIDvc

Tutorials
In the documentation for SystemVue 2012.06 (or later),
a more complete step-by-step tutorial is available
under “Tutorials/Algorithm Design/C-plus-plus Model
Development.” Supported users can access this tutorial
electronically at http://edocs.soco.keysight.com/display/
sv201206/C+Plus+Plus+Model+Development, or within the
installed documentation in the SystemVue release.

Documentation
Additional documentation is available for these and other
modeling topics:

–– Renaming ports/parameters/models

–– Adding descriptions to parameters/models

–– 	Adding multi-rate, array and string/file type parameters

–– 	Adding simulation errors, warnings and other informative
messages for the custom model

–– 	Fixed-point modeling

–– 	Pre- and post-processing the custom model before
and after the simulation (e.g., setup, initialize, finalize
methods)

For more information about SystemVue,
please visit us on the web:
Product Information
www.keysight.com/find/eesof-systemvue

Request a 30-day Evaluation
www.keysight.com/find/eesof-systemvue-evaluation

Downloads
www.keysight.com/find/eesof-systemvue-latestdownloads

Helpful Videos
www.keysight.com/find/eesof-systemvue-videos

https://edadocs.software.keysight.com/login.action
https://edadocs.software.keysight.com/login.action
https://edadocs.software.keysight.com/login.action
https://edadocs.software.keysight.com/login.action
www.keysight.com/find/eesof-systemvue-evaluation
www.keysight.com/find/eesof-systemvue-latestdownloads
www.keysight.com/find/eesof-systemvue-videos

myKeysight

www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty
Keysight’s commitment to superior product quality and lower total cost
of ownership. The only test and measurement company with three-year
warranty standard on all instruments, worldwide.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to five years of protection and no budgetary surprises to ensure your
instruments are operating to specification so you can rely on accurate
measurements.

www.keysight.com/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2008
Quality Management System

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product
breadth, combined with channel partner convenience.

www.keysight.com/find/eesof-systemvue

For more information on Keysight
Technologies’ products, applications or
services, please contact your local Keysight
office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 0800 000154
Sweden 0200 882255
Switzerland 0800 805353

Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)

United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-07-10-14)

10 | Keysight | SystemVue Electronic System-Level Design - Application Note

This information is subject to change without notice.
© Keysight Technologies, 2012 – 2014
Published in USA, August 2, 2014
5991-1417EN
www.keysight.com

www.keysight.com/find/mykeysight
www.keysight.com/find/ThreeYearWarranty
www.keysight.com/find/AssurancePlans
www.keysight.com/quality
www.keysight.com/find/channelpartners
www.keysight.com/find/eesof-systemvue
www.keysight.com/find/contactus
www.keysight.com/find/contactus
www.keysight.com

