
Programmer’s Guide

Publication Number 54622-97038
September 2002

For Safety information see the pages behind the Index.

© Copyright Agilent Technologies 2000-2002

All Rights Reserved

Agilent 54621A/22A/24A/41A/42A
Oscilloscopes and

Agilent 54621D/22D/41D/42D
Mixed-Signal Oscilloscopes

Programming the Oscilloscope

When you attach an interface module to the rear of the oscilloscope, it
becomes programmable. That is, you can hook a controller (such as a
PC or workstation) to it, and write programs on that controller to
automate oscilloscope setup and data capture.

The following figure shows the basic structure of every program you will
write for the oscilloscope.

Initialize

To ensure consistent, repeatable performance, you need to start the
program, controller, and oscilloscope in a known state. Without correct
initialization, your program may run correctly in one instance and not in
another. This might be due to changes made in configuration by previous
program runs or from the front panel of the oscilloscope.

• Program initialization defines and initializes variables, allocates
memory, or tests system configuration.

• Controller initialization ensures that the interface to the oscilloscope
(either GPIB or RS-232) is properly set up and ready for data transfer.

• Oscilloscope initialization sets the channel configuration and labels,
threshold voltages, trigger specification and mode, timebase, and
acquisition type.
ii

Capture

Once you initialize the oscilloscope, you can begin capturing data for
analysis. Remember that while the oscilloscope is responding to
commands from the controller, it is not performing acquisitions. Also,
when you change the oscilloscope configuration, any data already
captured will most likely be rendered.

To collect data, you use the :DIGitize command. This command clears
the waveform buffers and starts the acquisition process. Acquisition
continues until acquisition memory is full, then stops. The acquired data
is displayed by the oscilloscope, and the captured data can be measured,
stored in trace memory in the oscilloscope, or transferred to the
controller for further analysis. Any additional commands sent while
:DIGitize is working are buffered until :DIGitize is complete.

You could also put the oscilloscope into run mode, then use a wait loop
in your program to ensure that the oscilloscope has completed at least
one acquisition before you make a measurement. Agilent does not
recommend this because the needed length of the wait loop may vary,
causing your program to fail. :DIGitize, on the other hand, ensures that
data capture is complete. Also, :DIGitize, when complete, stops the
acquisition process so that all measurements are on displayed data, not
on a constantly changing data set.

Analyze

After the oscilloscope has completed an acquisition, you can find out
more about the data, either by using the oscilloscope measurements or
by transferring the data to the controller for manipulation by your
program. Built-in measurements include frequency, duty cycle, period,
and positive and negative pulse width.

Using the :WAVeform commands, you can transfer the data to your
controller. You may want to display the data, compare it to a known good
measurement, or simply check logic patterns at various time intervals in
the acquisition.
iii

In This Book

This Programmer’s Guide is your introduction to programming the
oscilloscope using an instrument controller. This book, with the Programmer’s

Reference, provides a comprehensive description of the oscilloscope’s
programmatic interface. The Programmer’s Reference is supplied as a
Microsoft Windows Help file on a 3.5" diskette.

The oscilloscope has a built-in RS-232-C port for programming. To program the
oscilloscope over GPIB, you need the N2757A GPIB Interface Module. You also
need an instrument controller that supports either the IEEE-488 or RS-232-C
interface standards, and a programming language capable of communicating
with these interfaces.

This book contains the following information:

Chapter 1 Introduction to Programming, gives a general overview of
oscilloscope programming.

Chapter 2 Programming Getting Started, shows a simple program, explains
its operation, and discusses considerations for data types.

Chapter 3 GPIB, discusses the general considerations for programming the
instrument over an GPIB interface.

Chapter 4 Programming over RS-232-C, discusses the general considerations
for programming the instrument over an RS-232-C interface.

Chapter 5 Programming and Documentation Conventions, describes the
conventions used in representing the syntax of commands throughout this book
and the Programmer’s Reference, and gives an overview of the oscilloscope
command set.

Chapter 6 Status Reporting, discusses the oscilloscope status registers and
how to use them in your programs.

Chapter 7 Installing and Using the Programmer’s Reference, tells how to
install the Programmer’s Reference online help file in Microsoft Windows, and
explains help file navigation.

Chapter 8 Programmer’s Quick Reference, lists all the commands and queries
available for programming the oscilloscope.

For information on oscilloscope operation, see the User’s Guide. For
information on interface configuration, see the documentation for the
oscilloscope interface module and the interface card used in your controller (for
example, the Agilent 82350A interface for IBM PC-compatible computers).
iv

Contents
1 Introduction to Programming

Talking to the Instrument 1-3
Program Message Syntax 1-4
Combining Commands from the Same Subsystem 1-7
Duplicate Mnemonics 1-8
Query Command 1-9
Program Header Options 1-10
Program Data Syntax Rules 1-11
Program Message Terminator 1-13
Selecting Multiple Subsystems 1-14

2 Programming Getting Started

Initialization 2-3
Autoscale 2-4
Setting Up the Instrument 2-5
Example Program 2-6
Using the DIGitize Command 2-7
Receiving Information from the Instrument 2-9
String Variables 2-10
Numeric Variables 2-11
Definite-Length Block Response Data 2-12
Multiple Queries 2-13
Instrument Status 2-13

3 Programming over GPIB

Interface Capabilities 3-3
Command and Data Concepts 3-3
Addressing 3-4
Communicating Over the Bus 3-5
Lockout 3-6
Bus Commands 3-6

4 Programming over RS-232-C

Interface Operation 4-3
Cables 4-3
Minimum Three-Wire Interface with Software Protocol 4-4
Extended Interface with Hardware Handshake 4-5
Configuring the Interface 4-6
Interface Capabilities 4-7
Lockout Command 4-8
Contents-1

Contents
5 Programming and Documentation Conventions

Command Set Organization 5-3
The Command Tree 5-6
Obsolete and Discontinued Commands 5-10
Truncation Rules 5-15
Infinity Representation 5-16
Sequential and Overlapped Commands 5-16
Response Generation 5-16
Notation Conventions and Definitions 5-17
Program Examples 5-18

6 Status Reporting

Status Reporting Data Structures 6-5
Status Byte Register (SBR) 6-8
Service Request Enable Register (SRER) 6-10
Trigger Event Register (TRG) 6-10
Standard Event Status Register (SESR) 6-11
Standard Event Status Enable Register (SESER) 6-12
Operation Status Register (OPR) 6-13
Arm Event Register (ARM) 6-13
Error Queue 6-14
Output Queue 6-15
Message Queue 6-15
Clearing Registers and Queues 6-15

7 Installing and Using the Programmer’s Reference

To install the help file under Microsoft Windows 7-3
To get updated help and program files via the Internet 7-4
To start the help file 7-5
To navigate through the help file 7-5

8 Programmer’s Quick Reference

Conventions 8-3
Suffix Multipliers 8-3
Commands and Queries 8-4
Contents-2

1

Introduction to Programming

Introduction to Programming

Chapters 1 and 2 introduce the basics for remote programming of an
oscilloscope. The programming instructions in this manual conform to
the IEEE488.2 Standard Digital Interface for Programmable
Instrumentation. The programming instructions provide the means of
remote control.

To program the oscilloscope you must add either a GPIB (N2757A)
interface, or program over the built-in RS-232-C interface on the rear
panel.

You can perform the following basic operations with a controller and an
oscilloscope:

• Set up the instrument.
• Make measurements.

• Acquire data (waveform, measurements, configuration) from the
oscilloscope.

• Send information (pixel images, configurations) to the oscilloscope.

Other tasks are accomplished by combining these basic functions.

Languages for Program Examples

The programming examples for individual commands in this manual are written in
HPBASIC 6.3 or C.
1-2

Introduction to Programming
Talking to the Instrument
Talking to the Instrument

Computers acting as controllers communicate with the instrument by sending
and receiving messages over a remote interface. Instructions for programming
normally appear as ASCII character strings embedded inside the output
statements of a host language available on your controller. The input statements
of the host language are used to read in responses from the oscilloscope.

For example, HPBASIC uses the OUTPUT statement for sending commands
and queries. After a query is sent, the response is usually read in using the
ENTER statement.

Messages are placed on the bus using an output command and passing the
device address, program message, and terminator. Passing the device address
ensures that the program message is sent to the correct interface and
instrument.

The following HP BASIC statement sends a command which turns on label
display.

OUTPUT < device address > ;":CHANNEL1:BWLIMIT ON"<terminator>

The < device address > represents the address of the device being programmed.
Each of the other parts of the above statement are explained in the following
pages.
1-3

Introduction to Programming
Program Message Syntax
Program Message Syntax

To program the instrument remotely, you must understand the command
format and structure expected by the instrument. The IEEE 488.2 syntax rules
govern how individual elements such as headers, separators, program data, and
terminators may be grouped together to form complete instructions. Syntax
definitions are also given to show how query responses are formatted. The
following figure shows the main syntactical parts of a typical program
statement.

Figure 1-1

Program Message Syntax

Output Command

The output command is entirely dependent on the programming language.
Throughout this manual, HPBASIC is used in most examples of individual
commands. If you are using other languages, you will need to find the
equivalents of HP BASIC commands like OUTPUT, ENTER, and CLEAR to
convert the examples. The instructions listed in this manual are always shown
between quotation marks in the example programs.

Device Address

The location where the device address must be specified is also dependent on
the programming language you are using. In some languages, this may be
specified outside the output command. In HP BASIC, this is always specified
after the keyword OUTPUT. The examples in this manual assume the
oscilloscope is at device address 707 . When writing programs, the address
varies according to how the bus is configured.
1-4

Introduction to Programming
Program Message Syntax
Instructions

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal, or C.
The only time a parameter is not meant to be expressed as a string is when the
instruction’s syntax definition specifies <block data>, such as <learn string>.
There are only a few instructions that use block data.

Instructions are composed of two main parts:

• The header, which specifies the command or query to be sent.

• The program data, which provide additional information needed to clarify
the meaning of the instruction.

Instruction Header

The instruction header is one or more mnemonics separated by colons (:) that
represent the operation to be performed by the instrument. The command tree
in chapter 5 illustrates how all the mnemonics can be joined together to form a
complete header (see chapter 5, “Programming and Documentation
Conventions”).

The example in Figure 1-1 is a command. Queries are indicated by adding a
question mark (?) to the end of the header. Many instructions can be used as
either commands or queries, depending on whether or not you have included
the question mark. The command and query forms of an instruction usually
have different program data. Many queries do not use any program data.

White Space (Separator)

White space is used to separate the instruction header from the program data.
If the instruction does not require any program data parameters, you do not
need to include any white space. In this manual, white space is defined as one
or more space characters. ASCII defines a space to be character 32 (in decimal).

Program Data

Program data are used to clarify the meaning of the command or query. They
provide necessary information, such as whether a function should be on or off,
or which waveform is to be displayed. Each instruction’s syntax definition shows
the program data, as well as the values they accept. The section “Program Data
Syntax Rules” in this chapter has all of the general rules about acceptable values.

When there is more than one data parameter, they are separated by commas(,).
Spaces can be added around the commas to improve readability.
1-5

Introduction to Programming
Program Message Syntax
Header Types

There are three types of headers:

• Simple Command headers

• Compound Command headers

• Common Command headers

Simple Command Header Simple command headers contain a single
mnemonic. AUTOSCALE and DIGITIZE are examples of simple command
headers typically used in this instrument. The syntax is:

<program mnemonic><terminator>

Simple command headers must occur at the beginning of a program message;
if not, they must be preceded by a colon.

When program data must be included with the simple command header (for
example, :DIGITIZE CHANNEL1), white space is added to separate the data
from the header. The syntax is:

<program mnemonic><separator><program data><terminator>

Compound Command Header Compound command headers are a
combination of two program mnemonics. The first mnemonic selects the
subsystem, and the second mnemonic selects the function within that
subsystem. The mnemonics within the compound message are separated by
colons. For example:

To execute a single function within a subsystem:

:<subsystem>:<function><separator>
<program data><terminator>

(For example :CHANNEL1:BWLIMIT ON)

Common Command Header Common command headers control IEEE
488.2 functions within the instrument (such as clear status). Their syntax is:

*<command header><terminator>

No space or separator is allowed between the asterisk (*) and the command
header. *CLS is an example of a common command header.
1-6

Introduction to Programming
Combining Commands from the Same Subsystem
Combining Commands from the Same Subsystem

To execute more than one function within the same subsystem, separate the
functions with a semicolon (;):

:<subsystem>:<function><separator><data>;
 <function><separator><data><terminator>

(For example :CHANNEL1:COUPLING DC;BWLIMIT ON)
1-7

Introduction to Programming
Duplicate Mnemonics
Duplicate Mnemonics

Identical function mnemonics can be used in more than one subsystem. For
example, the function mnemonic RANGE may be used to change the vertical
range or to change the horizontal range:

:CHANNEL1:RANGE .4

sets the vertical range of channel 1 to 0.4 volts full scale.

:TIMEBASE:RANGE 1

sets the horizontal time base to 1 second full scale.

CHANNEL1 and TIMEBASE are subsystem selectors and determine which
range is being modified.
1-8

Introduction to Programming
Query Command
Query Command

Command headers immediately followed by a question mark (?) are queries.
After receiving a query, the instrument interrogates the requested function and
places the answer in its output queue. The answer remains in the output queue
until it is read or another command is issued. When read, the answer is
transmitted across the bus to the designated listener (typically a controller).
For example, the query :TIMEBASE:RANGE? places the current time base
setting in the output queue. In HP BASIC, the controller input statement:

ENTER < device address > ;Range

passes the value across the bus to the controller and places it in the variable
Range.

Query commands are used to find out how the instrument is currently
configured. They are also used to get results of measurements made by the
instrument. For example, the command :MEASURE:RISETIME? instructs the
instrument to measure the rise time of your waveform and places the result in
the output queue.

The output queue must be read before the next program message is sent. For
example, when you send the query :MEASURE:RISETIME? you must follow
that query with an input statement. In HP BASIC, this is usually done with an
ENTER statement immediately followed by a variable name. This statement
reads the result of the query and places the result in a specified variable.

Read the Query Result First

Sending another command or query before reading the result of a query clears the
output buffer and the current response. It also generates a query interrupted error
in the error queue.
1-9

Introduction to Programming
Program Header Options
Program Header Options

You can send program headers using any combination of uppercase or lowercase
ASCII characters. Instrument responses, however, are always returned in
uppercase.

Program command and query headers may be sent in either long form (complete
spelling), short form (abbreviated spelling), or any combination of long form
and short form.
TIMEBASE:DELAY 1US - long form
TIM:DEL 1US - short form

Programs written in long form are easily read and are almost self-documenting.
The short form syntax conserves the amount of controller memory needed for
program storage and reduces I/O activity.

Command Syntax Programming Rules

The rules for the short form syntax are shown in chapter 5, “Programming and
Documentation Conventions.”
1-10

Introduction to Programming
Program Data Syntax Rules
Program Data Syntax Rules

Program data is used to convey a parameter information related to the command
header. At least one space must separate the command header or query header
from the program data.

<program mnemonic><separator><data><terminator>

When a program mnemonic or query has multiple program data, a comma
separates sequential program data.

<program mnemonic><separator><data>,<data><terminator>

For example, :CHANNEL:THRESHOLD POD1,TTL has two program data:
POD1 and TTL.

Two main types of program data are used in commands: character and numeric.

Character Program Data

Character program data is used to convey parameter information as alpha or
alphanumeric strings. For example, the :TIMEBASE:MODE command can be
set to normal, delayed, XY, or ROLL. The character program data in this case
may be NORMAL, DELAYED, XY, or roll. The command :TIMEBASE:MODE
DELAYED sets the time base mode to delayed.

The available mnemonics for character program data are always included with
the instruction’s syntax definition. See the online Programmer’s Reference for
more information. When sending commands, you may either the long form or
short form (if one exists). Uppercase and lowercase letters may be mixed freely.
When receiving query responses, uppercase letters are used exclusively.

Numeric Program Data

Some command headers require program data to be expressed numerically. For
example, :TIMEBASE:RANGE requires the desired full scale range to be
expressed numerically.

For numeric program data, you have the option of using exponential notation
or using suffix multipliers to indicate the numeric value. The following numbers
are all equal:

28 = 0.28E2 = 280e-1 = 28000m = 0.028K = 28e-3K.

When a syntax definition specifies that a number is an integer, that means that
the number should be whole. Any fractional part be ignored, truncating the
number. Numeric data parameters accept fractional values are called real
numbers.
1-11

Introduction to Programming
Program Data Syntax Rules
All numbers must be strings of ASCII characters. Thus, when sending the
number 9, you would send a byte representing the ASCII code for the character
9 (which is 57). A three-digit number like 102 would take up three bytes (ASCII
codes 49, 48, and 50). This is handled automatically when you include the entire
instruction in a string.

Embedded Strings

Embedded strings contain groups of alphanumeric characters, which are
treated as a unit of data by the oscilloscope. For example, the line of text written
to the advisory line of the instrument with the :SYSTEM:DSP command:

:SYSTEM:DSP "This is a message."

Embedded strings may be delimited with either single (’) or double () quotes.
These strings are case-sensitive, and spaces act as legal characters just like any
other character.
1-12

Introduction to Programming
Program Message Terminator
Program Message Terminator

The program instructions within a data message are executed after the program
message terminator is received. The terminator may be either an NL (New Line)
character, an EOI (End-Or-Identify) asserted in the GPIB interface, or a
combination of the two. Asserting the EOI sets the EOI control line low on the
last byte of the data message. The NL character is an ASCII linefeed (decimal
10).

New Line Terminator Functions

The NL (New Line) terminator has the same function as an EOS (End Of String) and
EOT (End Of Text) terminator.
1-13

Introduction to Programming
Selecting Multiple Subsystems
Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon enables you to enter a new subsystem. For
example:

<program mnemonic><data>;
:<program mnemonic><data><terminator>

:CHANNEL1:RANGE 0.4;:TIMEBASE:RANGE 1

Combining Compound and Simple Commands

Multiple commands may be any combination of compound and simple commands.
1-14

2

Programming Getting Started

Programming Getting Started

This chapter explains how to set up the instrument, how to retrieve setup
information and measurement results, how to digitize a waveform, and
how to pass data to the controller.

Languages for Programming Examples

The programming examples in this manual are written in HPBASIC 6.3 or C.
2-2

Programming Getting Started
Initialization
Initialization

To make sure the bus and all appropriate interfaces are in a known state, begin
every program with an initialization statement. HP BASIC provides a CLEAR
command which clears the interface buffer:

CLEAR 707 ! initializes the interface of the instrument

When you are using GPIB, CLEAR also resets the oscilloscope’s parser. The
parser is the program which reads in the instructions which you send it.

After clearing the interface, initialize the instrument to a preset state:

OUTPUT 707;"*RST" ! initializes the instrument to a preset
state.

Information for Initializing the Instrument

The actual commands and syntax for initializing the instrument are discussed in the
common commands section of the online Programmer’s Reference.

Refer to your controller manual and programming language reference manual for
information on initializing the interface.
2-3

Programming Getting Started
Autoscale
Autoscale

The AUTOSCALE feature performs a very useful function for unknown
waveforms by setting up the vertical channel, time base, and trigger level of the
instrument.

The syntax for the autoscale function is:

:AUTOSCALE<terminator>
2-4

Programming Getting Started
Setting Up the Instrument
Setting Up the Instrument

A typical oscilloscope setup would set the vertical range and offset voltage, the
horizontal range, delay time, delay reference, trigger mode, trigger level, and
slope. An example of the commands that might be sent to the oscilloscope are:
:CHANNEL1:PROBE 10;RANGE 16;OFFSET 1.00<terminator>
:TIMEBASE:MODE NORMAL;RANGE 1E-3;DELAY 100E-6<terminator>

Vertical is set to 16V full-scale (2 V/div) with center of screen at 1V and probe
attenuation set to 10. This example sets the time base at 1 ms full-scale
(100 ms/div) with a delay of 100 ms.
2-5

Programming Getting Started
Example Program
Example Program

This program demonstrates the basic command structure used to program the
oscilloscope.

10 CLEAR 707 ! Initialize instrument interface
20 OUTPUT 707;"*RST" ! Initialize to preset state
30 OUTPUT 707;":TIMEBASE:RANGE 5E-4" ! Time base to 50 us/div
40 OUTPUT 707;":TIMEBASE:DELAY 0" ! Delay to zero
50 OUTPUT 707;":TIMEBASE:REFERENCE CENTER" ! Display reference at center
60 OUTPUT 707;":CHANNEL1:PROBE 10" ! Probe attenuation to 10:1
70 OUTPUT 707;":CHANNEL1:RANGE 1.6" ! Vertical range to 1.6 V full scale
80 OUTPUT 707;":CHANNEL1:OFFSET -.4" ! Offset to -0.4
90 OUTPUT 707;":CHANNEL1:COUPLING DC" ! Coupling to DC
100 OUTPUT 707;":TRIGGER:SWEEP NORMAL" ! Normal triggering
110 OUTPUT 707;":TRIGGER:LEVEL -.4" ! Trigger level to -0.4
120 OUTPUT 707;":TRIGGER:SLOPE POSITIVE" ! Trigger on positive slope
130 OUTPUT 707;":ACQUIRE:TYPE NORMAL" ! Normal acquisition
140 END

• Line 10 initializes the instrument interface to a known state.

• Line 20 initializes the instrument to a preset state.

• Lines 30 through 50 set the time base mode to normal with the horizontal
time at 50 ms/div with 0 s of delay referenced at the center of the graticule.

• Lines 60 through 90 set the vertical range to 1.6 volts full scale with center
screen at -0.4 volts with 10:1 probe attenuation and DC coupling.

• Lines 100 through 120 configure the instrument to trigger at -0.4 volts with
normal triggering.

• Line 130 configures the instrument for normal acquisition.
2-6

Programming Getting Started
Using the DIGitize Command
Using the DIGitize Command

The DIGitize command is a macro that captures data satisfying the
specifications set up by the ACQuire subsystem. When the digitize process is
complete, the acquisition is stopped. The captured data can then be measured
by the instrument or transferred to the controller for further analysis. The
captured data consists of two parts: the waveform data record and the preamble.

When you send the DIGitize command to the oscilloscope, the specified channel
signal is digitized with the current ACQuire parameters. To obtain waveform
data, you must specify the WAVEFORM parameters for the waveform data prior
to sending the :WAVEFORM:DATA? query.

The number of data points comprising a waveform varies according to the
number requested in the ACQuire subsystem. The ACQuire subsystem
determines the number of data points, type of acquisition, and number of
averages used by the DIGitize command. This allows you to specify exactly what
the digitized information contains.

Ensure New Data is Collected

When you change the oscilloscope configuration, the waveform buffers are cleared.
Before doing a measurement, send the DIGitize command to the oscilloscope to
ensure new data has been collected.

Set :TIMebase:MODE to NORMal when using :DIGitize

:TIMebase:MODE must be set to NORMal to perform a :DIGitize command or to
perform any WAVeform subsystem query. A "Settings conflict" error message will be
returned if these commands are executed when MODE is set to ROLL, XY, or
DELayed. Sending the *RST (reset) command will also set the time base mode to
normal.
2-7

Programming Getting Started
Using the DIGitize Command
The following program example shows a typical setup:
OUTPUT 707;":ACQUIRE:TYPE AVERAGE"<terminator>
OUTPUT 707;":ACQUIRE:COMPLETE 100"<terminator>
OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:FORMAT BYTE"<terminator>
OUTPUT 707;":ACQUIRE:COUNT 8"<terminator>
OUTPUT 707;":WAVEFORM:POINTS 500"<terminator>
OUTPUT 707;":DIGITIZE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:DATA?"<terminator>

This setup places the instrument into the averaged mode with eight averages.
This means that when the DIGitize command is received, the command will
execute until the signal has been averaged at least eight times.

After receiving the :WAVEFORM:DATA? query, the instrument will start passing
the waveform information when addressed to talk.

Digitized waveforms are passed from the instrument to the controller by sending
a numerical representation of each digitized point. The format of the numerical
representation is controlled with the :WAVEFORM:FORMAT command and may
be selected as BYTE, WORD, or ASCII.

The easiest method of transferring a digitized waveform depends on data
structures, formatting available and I/O capabilities. You must scale the integers
to determine the voltage value of each point. These integers are passed starting
with the leftmost point on the instrument’s display. For more information, see
the waveform subsystem commands and corresponding program code examples
in the online Programmer’s Reference.

Aborting a Digitize Operation Over GPIB

When using GPIB, you can abort a digitize operation by sending a Device Clear over
the bus (CLEAR 707).
2-8

Programming Getting Started
Receiving Information from the Instrument
Receiving Information from the Instrument

After receiving a query (command header followed by a question mark), the
instrument interrogates the requested function and places the answer in its
output queue. The answer remains in the output queue until it is read or another
command is issued. When read, the answer is transmitted across the interface
to the designated listener (typically a controller). The input statement for
receiving a response message from an instrument’s output queue typically has
two parameters; the device address, and a format specification for handling the
response message. For example, to read the result of the query command
:CHANNEL1:COUPLING? you would execute the HP BASIC statement:

ENTER <device address> ;Setting$

where <device address> represents the address of your device. This would
enter the current setting for the channel one coupling in the string variable
Setting$.

All results for queries sent in a program message must be read before another
program message is sent. For example, when you send the query
:MEASURE:RISETIME?, you must follow that query with an input statement.
In HP BASIC, this is usually done with an ENTER statement.

Sending another command before reading the result of the query clears the
output buffer and the current response. This also causes an error to be placed
in the error queue.

Executing an input statement before sending a query causes the controller to
wait indefinitely.

The format specification for handling response messages is dependent on both
the controller and the programming language.
2-9

Programming Getting Started
String Variables
String Variables

The output of the instrument may be numeric or character data depending on
what is queried. Refer to the specific commands for the formats and types of
data returned from queries.

The following example shows the data being returned to a string variable:
10 DIM Rang$[30]
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Rang$
40 PRINT Rang$
50 END

After running this program, the controller displays:

+40.0E-00

Express String Variables Using Exact Syntax

In HP BASIC 6.3, string variables are case sensitive and must be expressed exactly
the same each time they are used.

Address Varies According to Configuration

For the example programs in the help file, assume that the device being programmed
is at device address 707. The actual address varies according to how you configured
the bus for your own application.
2-10

Programming Getting Started
Numeric Variables
Numeric Variables

The following example shows the data being returned to a numeric variable:
10 OUTPUT 707;":CHANNEL1:RANGE?"
20 ENTER 707;Rang
30 PRINT Rang
40 END

After running this program, the controller displays:

40
2-11

Programming Getting Started
Definite-Length Block Response Data
Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data
to be transmitted over the system interface as a series of 8-bit binary data bytes.
This is particularly useful for sending large quantities of data or 8-bit extended
ASCII codes. The syntax is a pound sign (#) followed by a non-zero digit
representing the number of digits in the decimal integer. After the non-zero
digit is the decimal integer that states the number of 8-bit data bytes being sent.
This is followed by the actual data.

For example, for transmitting 4000 bytes of data, the syntax would be:

Figure 2-1

Definite-length block response data

The “8” states the number of digits that follow, and “00004000” states the
number of bytes to be transmitted.
2-12

Programming Getting Started
Multiple Queries
Multiple Queries

You can send multiple queries to the instrument within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable or
into multiple numeric variables. For example, you could read the result of the
query :TIMEBASE:RANGE?;DELAY? into the string variable Results$ with the
command:

ENTER 707;Results$

When you read the result of multiple queries into string variables, each response
is separated by a semicolon. For example, the response of the query
:TIMEBASE:RANGE?;DELAY? would be:

<range_value>; <delay_value>

Use the following program message to read the query
:TIMEBASE:RANGE?;DELAY? into multiple numeric variables and then display
them:
ENTER 707;Result1,Result2
PRINT 707;Result1,Result2

Instrument Status

Status registers track the current status of the instrument. By checking the
instrument status, you can find out whether an operation has been completed,
whether the instrument is receiving triggers, and more. Chapter 6, “Status
Reporting” explains how to check the status of the instrument.
2-13

3

Programming over GPIB

Programming over GPIB

This section describes the GPIB interface functions and some general
concepts. In general, these functions are defined by IEEE 488.1. They
deal with general interface management issues, as well as messages
which can be sent over the interface as interface commands.

For more information on connecting the controller to the oscilloscope,
see the documentation for the GPIB interface card you are using.

The optional Agilent N2757A GPIB Interface Module must be connected
to the oscilloscope to allow programming over GPIB.
3-2

Programming over GPIB
Interface Capabilities
Interface Capabilities

The interface capabilities of the oscilloscope, as defined by IEEE 488.1, are SH1,
AH1, T5, L4, SR1, RL1, PP0, DC1, DT1, C0, and E2.

Command and Data Concepts

The interface has two modes of operation:

• command mode

• data mode

The bus is in the command mode when the ATN line is true. The command mode
is used to send talk and listen addresses and various bus commands, such as a
group execute trigger (GET).

The bus is in the data mode when the ATN line is false. The data mode is used
to convey device-dependent messages across the bus. The device-dependent
messages include all of the instrument commands and responses.
3-3

Programming over GPIB
Addressing
Addressing

To set up the GPIB interface (optional Agilent N2757A GPIB Interface Module
must be connected to the oscilloscope), refer to the “To set up the I/O port to
use a controller” topic in the Utilities chapter of the User’s Guide.

• Each device on the GPIB resides at a particular address, ranging from 0 to 30.

• The active controller specifies which devices talk and which listen.

• An instrument may be talk addressed, listen addressed, or unaddressed by
the controller.

If the controller addresses the instrument to talk, the instrument remains
configured to talk until it receives an interface clear message (IFC), another
instrument’s talk address (OTA), its own listen address (MLA), or a universal
untalk command (UNT).

If the controller addresses the instrument to listen, the instrument remains
configured to listen until it receives an interface clear message (IFC), its own
talk address (MTA), or a universal unlisten command (UNL).
3-4

Programming over GPIB
Communicating Over the Bus
Communicating Over the Bus

Because GPIB can address multiple devices through the same interface card,
the device address passed with the program message must include not only the
correct interface select code, but also the correct instrument address.

Interface Select Code (Selects Interface)

Each interface card has a unique interface select code. This code is used by the
controller to direct commands and communications to the proper interface. The
default is typically 7 for GPIB controllers.

Instrument Address (Selects Instrument)

Each instrument on an GPIB must have a unique instrument address between
decimal 0 and 30. The device address passed with the program message must
include not only the correct instrument address, but also the correct interface
select code.

DEVICE ADDRESS = (Interface Select Code * 100) + (Instrument Address)

For example, if the instrument address for the oscilloscope is 4 and the interface
select code is 7, when the program message is passed, the routine performs its
function on the instrument at device address 704.

For the oscilloscope, the instrument address is typically set to 707.

See the documentation for your GPIB interface card for more information on
select codes and addresses.

Oscilloscope Device Address

The examples in this manual and in the online Programmer’s Reference assume the
oscilloscope is at device address 707.
3-5

Programming over GPIB
Lockout
Lockout

With GPIB, the instrument is placed in the lockout mode by sending the local
lockout command (LLO). The instrument can be returned to local by sending
the go-to-local (GTL) command to the instrument.

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE
488.2 defines many of the actions which are taken when these commands are
received by the instrument.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the
input and output buffers, reset the parser, and clear any pending commands. If
you send either of these commands during a digitize operation, the digitize
operation is aborted.

Interface Clear (IFC)

The interface clear (IFC) command halts all bus activity. This includes
unaddressing all listeners and the talker, disabling serial poll on all devices, and
returning control to the system controller.
3-6

4

Programming over RS-232-C

Programming over RS-232-C

This section describes the interface functions and some general concepts of the
RS-232-C interface. The RS-232-C interface on this instrument is
Hewlett-Packard’s implementation of EIA Recommended Standard RS-232-C,
Interface Between Data Terminal Equipment and Data Communications
Equipment Employing Serial Binary Data Interchange. With this interface, data
is sent one bit at a time and characters are not synchronized with preceding or
subsequent data characters. Each character is sent as a complete entity without
relationship to other events.

IEEE 488.2 Operates with IEEE 488.1 or RS-232-C

IEEE 488.2 is designed to work with IEEE 488.1 as the physical interface. When
RS-232-C is used as the physical interface, as much of IEEE 488.2 is retained as the
hardware differences will allow. No IEEE 488.1 messages such as DCL, GET, and END
are available.
4-2

Programming over RS-232-C
Interface Operation
Interface Operation

The oscilloscope can be programmed with a controller over RS-232-C using
either a minimum three-wire or extended hardwire interface. The operation and
exact connections for these interfaces are described in more detail in
subsequent sections of this chapter. When you are programming the
oscilloscope over RS-232-C with a controller, you are normally operating
directly between two DTE (Data Terminal Equipment) devices as compared to
operating between a DTE device and a DCE (Data Communications
Equipment) device.

When operating directly between two RS-232-C devices, certain considerations
must be taken into account. For three-wire operation, an XON/XOFF software
handshake must be used to handle handshaking between the devices. For
extended hardwire operation, handshaking may be handled either with
XON/XOFF or by manipulating the CTS and RTS lines of the oscilloscope. For
both three-wire and extended hardwire operation, the DCD and DSR inputs to
the oscilloscope must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the
oscilloscope to send data and a low on this line disables the oscilloscope data
transmission. Likewise, a high on the RTS line allows the controller to send data
and a low on this line signals a request for the controller to disable data
transmission. Because three-wire operation has no control over the CTS input,
internal pull-up resistors in the oscilloscope ensure that this line remains high
for proper three-wire operation.

Cables

Selecting a cable for the RS-232-C interface is dependent on your specific
application. The following paragraphs describe which lines of the oscilloscope
are used to control the operation of the RS-232-C bus relative to the
oscilloscope. To locate the proper cable for your application, refer to the
reference manual for your controller. This manual should address the exact
method your controller uses to operate over the RS-232-C bus.
4-3

Programming over RS-232-C
Minimum Three-Wire Interface with Software Protocol
Minimum Three-Wire Interface with Software Protocol

With a three-wire interface, the software (as compared to interface hardware)
controls the data flow between the oscilloscope and the controller. This provides
a much simpler connection between devices because you can ignore hardware
handshake requirements. The oscilloscope uses the following connections on
its RS-232-C interface for three-wire communication:

• Pin 7 SGND (Signal Ground)

• Pin 2 TD (Transmit Data from oscilloscope)

• Pin 3 RD (Receive Data into oscilloscope)

The TD (Transmit Data) line from the oscilloscope must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the
oscilloscope must connect to the TD line on the controller. Internal pull-up
resistors in the oscilloscope ensure the DCD, DSR, and CTS lines remain high
when you are using a three-wire interface.

No Hardware Means to Control Data Flow

The three-wire interface provides no hardware means to control data flow between
the controller and the oscilloscope. XON/OFF protocol is the only means to control
this data flow.
4-4

Programming over RS-232-C
Extended Interface with Hardware Handshake
Extended Interface with Hardware Handshake

With the extended interface, both the software and the hardware can control
the data flow between the oscilloscope and the controller. This allows you to
have more control of data flow between devices. The oscilloscope uses the
following connections on its RS-232-C interface for extended interface
communication (on a 25-pin connector):

• Pin 7 SGND (Signal Ground)

• Pin 2 TD (Transmit Data from oscilloscope)

• Pin 3 RD (Receive Data into oscilloscope)

The additional lines you use depends on your controller’s implementation of the
extended hardwire interface.

• Pin 4 RTS (Request To Send) is an output from the oscilloscope which can
be used to control incoming data flow.

• Pin 5 CTS (Clear To Send) is an input to the oscilloscope which controls data
flow from the oscilloscope.

• Pin 6 DSR (Data Set Ready) is an input to the oscilloscope which controls
data flow from the oscilloscope within two bytes.

• Pin 8 DCD (Data Carrier Detect) is an input to the oscilloscope which
controls data flow from the oscilloscope within two bytes.

• Pin 20 DTR (Data Terminal Ready) is an output from the oscilloscope which
is enabled as long as the oscilloscope is turned on.
4-5

Programming over RS-232-C
Configuring the Interface
The TD (Transmit Data) line from the oscilloscope must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the
oscilloscope must connect to the TD line on the controller.

The RTS (Request To Send) line is an output from the oscilloscope which can
be used to control incoming data flow. A high on the RTS line allows the
controller to send data, and a low on this line signals a request for the controller
to disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data Carrier
Detect) lines are inputs to the oscilloscope which control data flow from the
oscilloscope (Pin 2). Internal pull-up resistors in the oscilloscope assure the
DCD and DSR lines remain high when they are not connected.

If DCD or DSR are connected to the controller, the controller must keep these
lines and the CTS line high to enable the oscilloscope to send data to the
controller. A low on any one of these lines will disable the oscilloscope data
transmission. Dropping the CTS line low during data transmission will stop
oscilloscope data transmission immediately. Dropping either the DSR or DCD
line low during data transmission will stop oscilloscope data transmission, but
as many as two additional bytes may be transmitted from the oscilloscope.

Configuring the Interface

Use the controller mode when you operate the instrument with a controller over
RS-232-C. To set up the RS-232-C interface on the oscilloscope, refer to the “To
set up the I/O port to use a controller” topic in the Utilities chapter of the User’s
Guide.

Make sure that the RS-232-C settings on your oscilloscope match the settings
of your COM1 or COM2 port on your pc.
4-6

Programming over RS-232-C
Interface Capabilities
Interface Capabilities

The baud rate, stop bits, parity, handshake protocol, and data bits must be
configured exactly the same for both the controller and the oscilloscope to
properly communicate over the RS-232-C bus. The oscilloscope’s RS-232-C
interface capabilities are as follows:

• Baud Rate: 9600, 19,200, 38,400, or 57,600

• Stop Bits: preset to 1

• Parity: preset to None

• Protocol: DTR or XON/XOFF

• Data Bits: preset to 8

Protocol

DTR (Data Terminal Ready) With a three-wire interface, selecting DTR for
the handshake protocol does not allow the sending or receiving device to control
data flow. No control over the data flow increases the possibility of missing data
or transferring incomplete data.

With an extended hardwire interface, selecting DTR allows a hardware
handshake to occur. With hardware handshake, hardware signals control data
flow.

XON/XOFF XON/XOFF stands for Transmit On/Transmit Off. With this mode
the receiver (controller or oscilloscope) controls data flow and can request that
the sender (oscilloscope or controller) stop data flow. By sending XOFF (ASCII
17) over its transmit data line, the receiver requests that the sender disables
data transmission. A subsequent XON (ASCII 19) allows the sending device to
resume data transmission.

A controller sending data to the oscilloscope should send no more than 32 bytes
of data after an XOFF.

The oscilloscope will not send any data after an XOFF is received until an XON
is received.

Data Bits

Data bits are the number of bits sent and received per character that represent
the binary code of that character.

Information is stored in bytes (8 bits at a time) in the oscilloscope. Data can be
sent and received just as it is stored, without the need to convert the data.
4-7

Programming over RS-232-C
Lockout Command
Lockout Command

To lockout the front panel controls use the system command LOCK. When this
function is on, all controls (except the power switch) are entirely locked out.
Local control can only be restored by sending the command :SYSTEM:LOCK
OFF.

Restoring Local Control

Cycling the power will also restore local control, but this will also reset certain
RS-232-C states.
4-8

5

Programming and Documentation
Conventions

Programming and Documentation
Conventions

This chapter covers conventions used in programming the instrument,
as well as conventions used in the online Programmer’s Reference and
the remainder of this manual. This chapter also contains a detailed
description of the command tree and command tree traversal.
5-2

Programming and Documentation Conventions
Command Set Organization
Command Set Organization

The command set is divided into common commands, root level commands and
sets of subsystem commands. Each of the groups of commands is described in
the Programmer’s Reference, which is supplied as an online help file for
Microsoft Windows. See chapter 7, “Installing and Using the Programmer’s
Reference” for information on installing and using the help file.

The commands shown use upper and lowercase letters. As an example,
AUToscale indicates that the entire command name is AUTOSCALE. To speed
up the transfer, the short form AUT is also accepted by the oscilloscope. Each
command listing contains a description of the command and its arguments and
command syntax. Some commands have a programming example.

The subsystems are listed below:

Subsystem Description

ACQuire sets the parameters for acquiring and storing data

CALibrate provides utility commands for determining the state of the calibration factor
protection switch

CHANnel<n> controls all oscilloscope functions associated with individual analog
channels or groups of channels

Common commands defined by IEEE 488.2 standard common to all instruments
DIGital controls all oscilloscope functions associated with individual digital

channels
DISPlay controls how waveforms, graticule, and text are displayed and written on

the screen
EXTernal controls the input characteristics of the external trigger input

FUNCtion controls functions in the Measurement/Storage Module

HARDcopy provides commands to set and query the selection of hardcopy device and
formatting options

MARKer provides commands to set and query the settings of X-axis markers (X1 and
X2 cursors) and the Y-axis markers (Y1 and Y2 cursors).

MEASure selects automatic measurements to be made and controls time markers
POD controls all oscilloscope functions associated with groups of digital

channels.
Root controls many of the basic functions of the oscilloscope and reside at the

root of the command tree
SYStem controls some basic functions of the oscilloscope

TIMebase controls all horizontal sweep functions

TRIGger controls the trigger modes and parameters for each trigger type
WAVeform provides access to waveform data
5-3

Programming and Documentation Conventions
Command Set Organization
Table 5-1

Alphabetic Command Reference

 Command Subsystem Where used

ACKNowledge TRIGger:CAN
ACTivity CHANnel<n>
ACTivity Root level
ADDRess TRIGger:IIC:PATTern
AER Root level
AUToscale Root level
BAUDrate TRIGger:CAN:SIGNal
BAUDrate TRIGger:LIN:SIGNal
BLANk Root level
BWLimit CHANnel<n>
BWLimit EXTernal
BYTeorder WAVeform

CDISplay Root
CENTer FUNCtion
CLEAr DISPlay
CLEAr MEASure
CLOCk TRIGger:IIC:SOURce
CLOCk TRIGger:SPI
CLOCk TRIGger:SPI:SOURce
*CLS Common
COMPlete ACQuire
CONNect DISPlay
COUNt TRIGger:SEQuence
COUNt WAVeform
COUNter MEASure
COUPling CHANnel
COUPling TRIGger:EDGE

DATA DISPlay
DATA TRIGger:CAN:PATTern
DATA TRIGger:IIC:PATTern
DATA TRIGger:IIC:SOURce
DATA TRIGger:SPI:PATTERN
DATA TRIGger:SPI:SOURce
DATA WAVeform
DATE CALibrate
DATE SYSTem
DEFine MEASure
DEFinition TRIGger:CAN:SIGNal
DEFinition TRIGger:LIN:SIGNal
DELay MEASure
DELay TIMebase
DESTinatin HARDcopy

DEVice HARDcopy
DIGitize Root level
DISPlay CHANnel<n>
DISPlay DIGital
DISPlay FUNCtion
DISPlay POD
*DMC Common
DMINus TRIGger:USB:SOURce
DPLus TRIGger:USB:SOURce
DSP SYSTem
DUTycycle MEASure
DURation TRIGger:GLITch

EDGE TRIGger
EDGE TRIGger:SEQuence
*EMC Common
ERASe Root level
ERRor SYSTem
*ESE Common
*ESR Common
FACTors HARDcopy
FALLtime MEASure
FFEed HARDcopy
FIND TRIGger:SEQuence
FORMat HARDcopy
FORMat WAVeform
FRAMe TRIGger:SPI:SOURce
FRAMing TRIGger:SPI
FREQuency MEASure

*GMC Common
GRAYscale HARDcopy
GREaterthan TRIGger:DURation
GREaterthan TRIGger:GLITch
HFReject TRIGger
HOLDoff TRIGger
ID TRIGger:CAN:PATTern
ID TRIGger:LIN:SIGNal
*IDN Common
IMPedance CHANnel<n>
IMPedance EXTernal
INPut CHANnel<n>
INVert CHANnel<n>
LABel CALibrate

 Command Subsystem Where used

LABel CHANnel<n>
LABel DIGital
LABel DISPLay
LABList DISPlay
LENGth TRIGger:CAN:PATTern:DATA
LESSthan TRIGger:DURation
LESSthan TRIGger:GLITch
LEVel TRIGger:EDGE
LEVel TRIGger:GLITch
LINE TRIGger:TV
*LMC Common
LOCK SYSTem
*LRN Common

MERGe Root level
MODE ACQuire
MODE TRIGger:CAN:PATTern:ID
MODE MARKer
MODE TIMebase
MODE TRIGger
MODE TRIGger:TV

NREJect TRIGger
NWIDth MEASure

OFFSet CHANnel<n>
OFFSet FUNCtion
*OPC Common
OPEE Root level
OPER Root level
*OPT Common
ORDer DISPlay
OVERshoot MEASure
OVLenable Root level
OVLRegister Root level

PATTern TRIGger
PATTern TRIGger:CAN
PATTern TRIGger:DURation
PATTern TRIGger:SEQuence
PATTern TRIGger:SPI
PERiod MEASure
PERSistence DISPlay
PHASe MEASure

 Command Subsystem Where used
5-4

Programming and Documentation Conventions
Command Set Organization
*PMC Common
PMODe CHANnel<n>
POINts ACQuire
POINts WAVeform
POLarity TRIGger:TV
POLarity TRIGger:GLITch
POSition DIGital
POSition TIMebase
POSition TIMebase:WINDow
PREamble WAVeform
PREShoot MEASure
PRINt Root level
PROBe CHANnel<n>
PROBe EXTernal
PROTection CHANnel<n>
PROTection EXTernal
PWIDth MEASure

QUALifier TRIGger:DURation
QUALifier TRIGger:GLITch
QUALifier TRIGger:IIC:TRIGer

RANGe CHANnel<n>
RANGe EXTernal
RANGe FUNCtion
RANGe TIMebase
RANGe TIMebase:WINDow
RANGe TRIGger:DURAtion
RANGe TRIGger:GLITch
*RCL Common
REFerence FUNCtion
REFerence TIMebase
REJect TRIGger:EDGE
RESet TRIGger:SEQuence
RISetime MEASure
*RST Common
RUN Root level

SAMPlepoint TRIGger:CAN
*SAV Common
SCALe CHANnel<n>
SCALe FUNCtion
SCALe TIMebase
SCALe TIMebase:WINDow
SCRatch MEASure
SERial Root level
SETup SYSTem

 Command Subsystem Where used

SHOW MEASure
SIGNal TRIGger:CAN
SIGnal TRIGger:LIN
SINGle Root level
SKEW CHANnel<n>:PROBe
SLOPe TRIGger:EDGE
SLOPe TRIGger:SPI:CLOCk
SOUrce DISPlay
SOURce FUNCtion
SOURce MEASure
SOURce TRIGger:CAN
SOURce TRIGger:GLITch
SOURce TRIGger:IIC
SOURce TRIGger:LIN
SOURce TRIGger:SPI
SOURce TRIGger:TV
SOURce TRIGger:USB
SOURce WAVeform
SPAN FUNCtion
SPEed TRIGger:USB
SRATe ACQuire
*SRE Common
STANdard TRIGger:TV
STATus Root level
*STB Common
STOP Root level
SWEep TRIGger
SWITch CALibrate

TEDGe MEASure
TER Root level
THReshold CHANnel
THReshold DIGital
THReshold POD
THReshold TRIGger
TIMer TRIGger:SEQuence
TIMeout TRIGger:SPI:CLOCk
*TRG Common
TRIGger TRIGger:CAN
TRIGger TRIGger:IIC
TRIGger TRIGger:LIN
TRIGger TRIGger:SEQuence
TRIGger TRIGger:USB
*TST Common
TVALue MEASure
TVMode TRIGger:TV
TVOLt MEASure

 Command Subsystem Where used

TYPE ACQuire
TYPE WAVeform
TYPE TRIGger:IIC:TRIGger

UNITs CHANnel<n>
UNITs EXTernal
UNSigned WAVeform
VAMPlitude MEASure
VAVerage MEASure
VBASe MEASure
VECTors DISPlay
VIEW FUNCtion
VIEW Root level
VIEW WAVeform
VMAX MEASure
VMIN MEASure
VPP MEASure
VRMS MEASure
VTIMe MEASure
VTOP MEASure

*WAI Common
WIDth TRIGger:SPI:PATTERN
WINDow FUNCtion

X1Position MARKer
X1Y1source MARKer
X2Position MARKer
X2Y2source MARKer
XDELta MARKer
XINCrement WAVeform
XMAX MEASure
XMIN MEASure
XORigin WAVeform
XREFerence WAVeform
Y1Position MARKer
X1Y1source MARKer
Y2Position MARKer
YDELta MARKer
YINCrement WAVeform
YORigin WAVeform
YREFerence WAVeform

 Command Subsystem Where used
5-5

Programming and Documentation Conventions
The Command Tree
The Command Tree

The command tree shows all of the commands and the relationships of the
commands to each other. The IEEE 488.2 common commands are not listed as
part of the command tree because they do not affect the position of the parser
within the tree. When a program message terminator (<NL>, linefeed-ASCII
decimal 10) or a leading colon (:) is sent to the instrument, the parser is set to
the root of the command tree.

Command Types

The commands for this instrument are in three categories:

• Common commands
• Root level commands
• Subsystem commands

Common Commands The common commands are the commands defined by
IEEE 488.2. These commands control some functions that are common to all
IEEE 488.2 instruments.

Common commands are independent of the tree, and do not affect the position
of the parser within the tree. These commands differ from root level commands
in that root level commands place the parser back at the root of the command
tree.

Example:
*RST

Root Level Commands The root level commands control many of the basic
functions of the instrument. These commands reside at the root of the command
tree. Root level commands are always parsable if they occur at the beginning of
a program message, or are preceded by a colon.

Example:
:AUTOSCALE
5-6

Programming and Documentation Conventions
The Command Tree
���URRW�

���&RPPDQGV�DSSO\�WR�$JLOHQW�������VHULHV�RQO\
���&RPPDQGV�DSSO\�WR�$JLOHQW�1����$�&$1�7ULJJHU�0RGXOH�RQO\

1RWH���6RPH�FRPPDQGV�DUH�VSHFLILF�WR�WKH�PL[HG�VLJQDO�RVFLOORVFRSH��
&RQVXOW�WKH�RQOLQH�3URJUDPPHU
V�5HIHUHQFH�IRU�PRUH�LQIRUPDWLRQ�

7,0HEDVH�

02'(
326LWLRQ
5$1*H
5()HUHQFH
6&$/H
:,1'RZ�
����326LWLRQ
����5$1*H
����6&$/H

:$9HIRUP�

%<7HRUGHU
&281W
'7
)250DW
32,1WV
35(DPEOH
6285FH
7<3(
816LJQHG
9,(:
;,1&UHPHQW
;25LJLQ
;5()HUHQFH
<,1&UHPHQW
<25LJLQ
<5()HUHQFH

+$5'FRS\�

'(67LQDWLRQ
)$&7RUV
))(HG
)250DW
*5$<VFDOH

32'�

',63OD\
7+5HVKROG

&/(DU�
&281WHU
'()LQH
'(/D\
'87<F\FOH�
)$//WLPH�
)5(4XHQF\�
1:,'WK�
29(5VKRRW�
3(5LRG�
3+$6H
35(6KRRW
3:,'WK�
5,6HWLPH�
6+2:�

6285FH
7('*H
79$/XH
9$03OLWXGH
9$9HUDJH
9%$6H
90$;
90,1
933
9506
97,0H
9723
;0$;
;0,1

0($6XUH�

*/,7FK�
����*5(DWHUWKDQ
����/(66WKDQ
����/(9HO
����32/DULW\
����48$/LILHU
����5$1*H
����6285FH

79�
����/,1(
����02'(
����32/DULW\
����6285FH
����67$1GDUG

6(4XHQFH�
����&281W
����('*(
����),1'
����3$77HUQ
����5(6HW
����7,0HU
����75,*JHU

,,&�
����75,*JHU�
�������48$/LILHU
�������
����6285FH�
��������&/2&N
��������'7
����3$77HUQ�
��������$''5HVV
��������'7

7<3(

('*(�
����&283OLQJ
����/(9HO
����5(-HFW
����6/23H
����6285FH

'85DWLRQ�
����*5(DWHUWKDQ
����/(66WKDQ
����3$77HUQ
����48$/LILHU
����5$1*H

+)5HMHFW
+2/'RII
02'(
15(-HFW
3$77HUQ
6:(HS

75,*JHU�

&+$1QHO�Q!�

%:/LPLW
&283OLQJ
',63OD\
,03HGDQFH
,19HUW
/$%HO
2))6HW
352%H

352%H�6.(:

3527HFWLRQ
5$1*H
6&$/H
81,7V

�

�

',63OD\�

&/(DU
'7
/$%HO
/$%/LVW
25'HU
3(56LVWHQFH
6285FH
9(&WRUV

$&4XLUH�

&203OHWH
&281W
02'(
32,1WV
65$7H
7<3(

6<67HP�

'$7(
'63
(55RU
/2&.
6(7XS
7,0(

$&7LYLW\
$(5
$87RVFDOH
%/$1N
&',6SOD\
',*LWL]H
0(5*H
23((
23(5

29/HQDEOH

29/5HJLVWHU
35,1W
581
6(5LDO
6,1*OH
67$7XV
6723
7(5
9,(:

�

�

&$/LEUDWH�

'$7(
/$%HO
6:,7FK
7(03HUDWXUH
7,0(

',*LWDO�Q!�

',63OD\
/$%HO
326LWLRQ
7+5HVKROG

&RPPRQ�&RPPDQGV��,(((�������

&/6
'0&
(0&
(6(
(65

65(
67%
75*
767
:$,

237
30&
5&/
567
6$9

*0&
,'1
/0&
/51
23&

0$5.HU�

02'(
;�3RVLWLRQ
;�3RVLWRQ
;'HOWD
<�3RVWLRQ
<�3RVLWLRQ
<'(/WD
;�<�VRXUFH
;�<�VRXUFH

63,�

����3$77HUQ�
��������'7
��������:,'WK
����6285FH�
��������&/2&N
��������'7
��������)5$0H�

����&/2&N�
��������6/23H
��������7,0HRXW
����)5$0LQJ

&$1�

���$&.1RZOHGJH

���3$77HUQ�
�������'7
�����������/(1*WK
�������,'
�����������02'(

����6$03OHSRLQW
����6,*1DO�
�������%$8'UDWH
�������'()LQLWLRQ
����6285FH
����75,*JHU

�

�

�

86%�
����6285FH�
�������'0,1XV
�������'3/XV
����63(HG
����75,*JHU
����

(;7HUQDO�

%:/LPLW
,03HGDQFH
352%H
3527HFWLRQ
5$1*H
81,7V

�

�����FPG�FGU

/,1�
����6,*1DO�
�������%$8'UDWH
�������'()LQLWLRQ
����6285FH���������

)81&WLRQ�

&(17HU
',63OD\
2))6HW
23(5DWLRQ
5$1*H
5()HUHQFH
6&$/H
6285FH
63$1
:,1'RZ
5-7

Programming and Documentation Conventions
The Command Tree
Subsystem Commands

Subsystem commands are grouped together under a common node of the
command tree, such as the TIMEBASE commands. Only one subsystem may be
selected at any given time. When the instrument is initially turned on, the
command parser is set to the root of the command tree, therefore, no subsystem
is selected.

Tree Traversal Rules

Command headers are created by traversing down the command tree. A legal
command header from the command tree would be :CHANNEL1:RANGE. This
is called a compound header. A compound header is a header made of two or
more mnemonics separated by colons. The mnemonic created contains no
spaces. The following rules apply to traversing the tree:

• A leading colon or a <program message terminator> (either an <NL> or EOI
true on the last byte) places the parser at the root of the command tree. A
leading colon is a colon that is the first character of a program header.

• Executing a subsystem command places you in that subsystem until a leading
colon or a <program message terminator> is found. In the Command Tree,
use the last mnemonic in the compound header as a reference point (for
example, RANGE). Then find the last colon above that mnemonic
(CHANNEL<n>). That is the point where the parser resides. Any command
below that point can be sent within the current program message without
sending the mnemonics that appear above them (for example, OFFSET).

Examples

The OUTPUT statements in the examples are written using HPBASIC 6.3. The
quoted string is placed on the bus, followed by a carriage return and linefeed
(CRLF).

Example 1:
OUTPUT 707;":CHANNEL1:RANGE 0.5 ;OFFSET 0"

The colon between CHANNEL1 and RANGE is necessary because
CHANNEL1:RANGE is a compound command. The semicolon between the
RANGE command and the OFFSET command is the required program message
unit separator. The OFFSET command does not need CHANNEL1 preceding
it, since the CHANNEL1:RANGE command sets the parser to the CHANNEL1
node in the tree.
5-8

Programming and Documentation Conventions
The Command Tree
Example 2:
OUTPUT 707;":TIMEBASE:REFERENCE CENTER ; DELAY 0.00001"

or
OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":TIMEBASE:DELAY 0.00001"

or
OUTPUT 707;":TIMEBASE:REFERENCE CENTER; :TIMEBASE:DELAY
0.00001"

In the first line of example 2, the subsystem selector is implied for the DELAY
command in the compound command. The DELAY command must be in the
same program message as the REFERENCE command, since the program
message terminator places the parser back at the root of the command tree.

Example 3:
OUTPUT 707;":TIMEBASE:REFERENCE CENTER; :CHANNEL1:OFFSET ’0’"

The leading colon before CHANNEL1 tells the parser to go back to the root of
the command tree. The parser can then see the CHANNEL1:OFFSET
command.
5-9

Programming and Documentation Conventions
Obsolete and Discontinued Commands
Obsolete and Discontinued Commands

Core Commands

Core commands are a common set of commands that provide basic oscilloscope
functionality on this oscilloscope and future Agilent 54600-series oscilloscopes.
Core commands are unlikely to modified in the future. If you restrict your
programs to core commands, the programs should work across product
offerings in the future, assuming appropriate programming methods are
employed.

Non-Core Commands

Non-core commands are commands that provide specific features, but are not
universal across all oscilloscope models. Non-core commands may be modified
or deleted in the future. With a command structure as complex as the
54620/40-series, some evolution over time is inevitable. Agilent’s intent is to
continue to expand command subsystems, such as the rich and evolving trigger
feature set.
5-10

Programming and Documentation Conventions
Obsolete and Discontinued Commands
Obsolete Commands

Obsolete commands are older forms of commands that are provided to reduce
customer rework for existing systems and programs. Generally, these
commands are mapped onto some of the Core and Non-core commands, but
may not strictly have the same behavior as the new command. None of the
obsolete commands are guaranteed to functional in future products. New
systems and programs should use the Core (and Non-core) commands.

Obsolete Commands

Obsolete Command Current Command Equivalent Behavior Differences

ANALog<n>:BWLimit CHANnel<n>:BWLimit

ANALog<n>:COUPling CHANnel<n>:COUPling

ANALog<n>:INVert CHANnel<n>:INVert

ANALog<n>:LABel CHANnel<n>:LABel

ANALog<n>:OFFSet CHANnel<n>:OFFSet

ANALog<n>:PROBe CHANnel<n>:PROBe

ANALog<n>:PMODe none

ANALog<n>:RANGe CHANnel<n>:RANGe

CHANnel:ACTivity ACTivity

CHANnel:LABel CHANnel<n>:LABel or DIGital<n>:LABel use CHANnel<n>:LABel for analog channels and
use DIGital<n>:LABel for digital channels

CHANnel:THReshold POD:THReshold or
DIGital<n>:THReshold

CHANnel2:SKEW CHANnel<n>:PROBe:SKEW

CHANnel<n>:INPut CHANnel<n>:IMPedance

CHANnel<n>:PMODe none

DISPlay:CONNect DISPlay:VECTors

DISPlay:ORDer none

ERASe CDISplay

EXTernal:INPut EXTernal:IMPedance

EXTernal:PMODe none

FUNCtion1, FUNCtion2 FUNCtion subsystem ADD not included
5-11

Programming and Documentation Conventions
Obsolete and Discontinued Commands
FUNCtion:VIEW FUNCtion:DISPlay

HARDcopy:DEVice HARDcopy:FORMat PLOTter, THINkjet not supported; TIF, BMP, CSV,
SEIko added

MEASure:LOWer MEASure:DEFine:THResholds MEASure:DEFine:THResholds can define
absolute values or percentage from 1% to 99% for
lower, middle, and upper thresholds on analog
channels.

MEASure:SCRatch MEASure:CLEar

MEASure:TDELta MARKer:TDELta

MEASure:THResholds MEASure:DEFine:THResholds MEASure:DEFine:THResholds can define
absolute values or percentage from 1% to 99% for
lower, middle, and upper thresholds on analog
channels.

MEASure:TMAX MEASure:XMAX

MEASure:TMIN MEASure:XMIN

MEASure:TSTArt MARKer:X1Position

MEASure:TSTOp MARKer:X2Position

MEASure:TVOLt MEASure:TVALue TVALue measures additional values such as db,
Vs, etc.

MEASure:UPPer MEASure:DEFine:THResholds MEASure:DEFine:THResholds can define
absolute values or percentage from 1% to 99% for
lower, middle, and upper thresholds on analog
channels.

MEASure:VDELta MARKer:VDELta

MEASure:VSTArt MARKer:Y1Position

MEASure:VSTOp MARKer:Y2Position

TIMebase:DELay TIMebase:POSition or
TIMebase:WINDow:POSition

TIMebase:POSition is position value of main time
base; TIMebase:WINDow:POSition is position
value of delayed time base window.

TRIGger:THReshold POD:THREshold or
DIGital<n>:THREshold

TRIGger:TV:TVMode TRIGger:TV:MODE

Obsolete Command Current Command Equivalent Behavior Differences
5-12

Programming and Documentation Conventions
Obsolete and Discontinued Commands
Discontinued Commands

Discontinued commands are commands that were used by previous
oscilloscopes, but are not supported by the 54620/40-series oscilloscopes.
Listed below are the Discontinued commands and the nearest equivalent
command available (if any).

Discontinued Commands

Discontinued Command Current Command Equivalent Comments

ASTore DISPlay:PERSistence INFinite

CHANnel:MATH FUNCtion:OPERation ADD not included

DISPlay:INVerse none

DISPlay:COLumn none

DISPlay:GRID none

DISPLay:LINE none

DISPlay:PIXel none

DISPlay:POSition none

DISPlay:ROW none

DISPlay:TEXT none

FUNCtion:MOVE none

FUNCtion:PEAKs none

HARDcopy:ADDRess none Only parallel printer port is supported. GPIB
printing not supported

MASK none All commands discontinued, feature not available

SYSTem:KEY none

TEST:ALL *TST

TRACE subsystem none All commands discontinued, feature not available

TRIGger:ADVanced subsystem Use new GLITch, PATTern or TV trigger modes

TRIGger:TV:FIELd TRIGger:TV:MODE

TRIGger:TV:TVHFrej none

TRIGger:TV:VIR none

VAUToscale none
5-13

Programming and Documentation Conventions
Obsolete and Discontinued Commands
Discontinued Parameters

Some previous oscilloscope queries returned control setting values of OFF and
ON. The 54620/40-series oscilloscopes only return the enumerated values 0
(for off) and 1 (for on).
5-14

Programming and Documentation Conventions
Truncation Rules
Truncation Rules

The truncation rule for the mnemonics used in headers and alpha arguments is:

The mnemonic is the first four characters of the keyword unless:

The fourth character is a vowel, then the mnemonic is the first three
characters of the keyword.

This rule is not used if the length of the keyword is exactly four characters.

Some examples of how the truncation rule is applied to various commands are
shown in the following table.

Table 5-2 Mnemonic Truncation

Long Form Short Form

RANGE RANG

PATTERN PATT

TIMEBASE TIM

DELAY DEL

TYPE TYPE
5-15

Programming and Documentation Conventions
Infinity Representation
Infinity Representation

The representation of infinity is 9.9E+37. This is also the value returned when
a measurement cannot be made.

Sequential and Overlapped Commands

IEEE 488.2 distinguishes between sequential and overlapped commands.
Sequential commands finish their task before the execution of the next
command starts. Overlapped commands run concurrently. Commands following
an overlapped command may be started before the overlapped command is
completed. All of the commands are sequential.

Response Generation

As defined by IEEE 488.2, query responses may be buffered for the following
conditions:

• When the query is parsed by the instrument.

• When the controller addresses the instrument to talk so that it may read the
response.

The responses to a query are buffered when the query is parsed.
5-16

Programming and Documentation Conventions
Notation Conventions and Definitions
Notation Conventions and Definitions

The following conventions and definitions are used in this manual and the online
Programmer’s Reference in descriptions of remote operation:

Conventions

< > Angle brackets enclose words or characters that symbolize a program code
parameter or an interface command.

::= is defined as. For example, <A> ::= indicates that <A> can be replaced by
 in any statement containing <A>.

| or. Indicates a choice of one element from a list. For example, <A> |
indicates <A> or , but not both.

... An ellipsis (trailing dots) indicates that the preceding element may be repeated
one or more times.

[] Square brackets indicate that the enclosed items are optional.

{ } When several items are enclosed by braces, one, and only one of these elements
must be selected.

Definitions

d ::= A single ASCII numeric character, 0-9.

n ::= A single ASCII non-zero, numeric character, 1-9.

<NL> ::= Newline or Linefeed (ASCII decimal 10).

<sp> ::= <white space>

<white space>

::= 0 through 32 (decimal) except linefeed (decimal 10). The nominal value is 32
(the space character).
5-17

Programming and Documentation Conventions
Program Examples
Program Examples

The BASIC program examples given for commands in the online Programmer’s

Reference were written using the HPBASIC 6.3 programming language. The
programs always assume the oscilloscope is at address 7 and the interface is at
address 7 for a program address of 707. If a printer is used, it is always assumed
to be at address 701.

In these examples, give special attention to the ways in which the command or
query can be sent. The way the instrument is set up to respond to a command
or query has no bearing on how you send the command or query. That is, the
command or query can be sent using the long form or short form, if a short form
exists for that command. You can send the command or query using upper case
(capital) letters or lower case (small) letters. Also, the data can be sent using
almost any form you wish. If you are sending a timebase range value of 100 ms,
that value could be sent using a decimal (.1), or an exponential (1e-1 or 1.0E-1),
or a suffix (100 ms or 100MS).

As an example, set the sweep speed to 100 ms by sending one of the following:

• Commands in long form using the decimal format.
OUTPUT 707;":CHANNEL1:RANGE .1"

• Commands in short form using an exponential format.
OUTPUT 707;":CHAN1:RANG 1E-1"

• Commands using lower case letters, short forms, and a suffix.
OUTPUT 707;":chan1:rang 100 mV"

Including the Colon Is Optional

In these examples, placing the colon as the first character of the command is
optional. The space between RANGE and the argument is required.
5-18

6

Status Reporting

Status Reporting

Figure 6-1 is an overview of the oscilloscope’s status reporting structure.
The status reporting structure allows monitoring specified events in the
oscilloscope. The ability to monitor and report these events allows
determination of such things as the status of an operation, the availability
and reliability of the measured data, and more.

• To monitor an event, first clear the event, then enable the event. All
of the events are cleared when you initialize the instrument.

• To generate a service request (SRQ) interrupt to an external
controller, enable at least one bit in the Status Byte Register.

The Status Byte Register, the Standard Event Status Register group, and
the Output Queue are defined as the Standard Status Data Structure
Model in IEEE 488.2-1987.

IEEE 488.2 defines data structures, commands, and common bit
definitions for status reporting. There are also instrument-defined
structures and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if the
queue is not empty. For registers, the summary bit is set if any enabled
bit in the event register is set. The events are enabled with the
corresponding event enable register. Events captured by an event
register remain set until the register is read or cleared. Registers are read
with their associated commands. The *CLS command clears all event
registers and all queues except the output queue. If you send *CLS is
sent immediately after a program message terminator, the output queue
is also cleared.
6-2

Status Reporting
Figure 6-1

Status Reporting Overview Block Diagram

The status reporting structure consists of the registers in figure 6-1.
6-3

Status Reporting
Table 6-1 is a list of the bit definitions for the bit in the status reporting data
structure.

Table 6-1 Status Reporting Bit Definition

Bit Description Indicates
PON Power On Power is turned on.
URQ User Request Whether a front-panel key has been pressed.
CME Command Error Whether the parser detected an error.
EXE Execution Error Whether a parameter was out of range, or

inconsistent with the current settings.
DDE Device Dependent Error Whether the device was unable to complete an

operation for device dependent reasons.
QYE Query Error If the protocol for queries has been violated.
RQL Request Control Whether the device is requesting control.
OPC Operation Complete Whether the device has completed all pending

operations.
OPER Operation Status Register If any of the enabled conditions in the Operation

Status Register have occurred.
RQS Request Service That the device is requesting service.
MSS Master Summary Status Whether a device has a reason for requesting

service.
ESB Event Status Bit If any of the enabled conditions in the Standard

Event Status Register have occurred.
MAV Message Available If there is a response in the output queue.
MSG Message An advisory has been displayed.
TRG Trigger Whether a trigger has been received.
WAIT TRIG Wait for Trigger Instrument is armed and ready for trigger.
OVLR Overload Event Register If an overload is sensed on a 50Ω input.
RUN Instrument running That the instrument is not stopped
6-4

Status Reporting
Status Reporting Data Structures
Status Reporting Data Structures

Figure 6-2 brings together the different status reporting data structures
mentioned in this chapter and shows how they work together. To make it
possible for any of the Standard Event Status Register bits to generate a
summary bit, the bits must be enabled. These bits are enabled by using the *ESE
common command to set the corresponding bit in the Standard Event Status
Enable Register.

To generate a service request (SRQ) interrupt to an external controller, at least
one bit in the Status Byte Register must be enabled. These bits are enabled by
using the *SRE common command to set the corresponding bit in the Service
Request Enable Register. These enabled bits can then set RQS and MSS (bit 6)
in the Status Byte Register.
6-5

Status Reporting
Status Reporting Data Structures
Figure 6-2

Status Reporting Data Structures

6HUYLFH�

5HTXHVW

*HQHUDWLRQ

6HUYLFH�5HTXHVW�(QDEOH�5HJLVWHU�

6HW�E\�65(�

5HDG�E\�65("

6WDQGDUG�(YHQW�6WDWXV�(QDEOH�5HJLVWHU

6HW�E\�(6(�

5HDG�E\�(6("

2XWSXW�4XHXH

6WDWXV�%\WH�5HJLVWHU

4XHXH�1RW�(PSW\

5HDG�E\�6HULDO�3ROO

5HDG�E\�67%"

7ULJJHU

4XHU\�(UURU

'HYLFH�'HSHQGHQW�(UURU

([HFXWLRQ�(UURU

&RPPDQG�(UURU

3RZHU�2Q
8VHU�5HTXHVW

2SHUDWLRQ�&RPSOHWH

6WDQGDUG�(YHQW�6WDWXV�5HJLVWHU��

5HDG�E\�(65"

/
R
J
LF
D
O�
2

5

/
R
J
LF
D
O�
2

5

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

��

������;���������������������������������
���VWDWXV��FGU

� � � �� (6% 0$9

546

066

�

�

�

�

�

�

�

�

�

�

� ���
6-6

Status Reporting
Status Reporting Data Structures
Figure 6-2 (continued)

Status Reporting Data Structures

��� �� �� �� �� �� ���������

:DLW

7ULJ

2SHUDWLRQ

6WDWXV�(QDEOH

5HJLVWHU

2SHUDWLRQ

6WDWXV

5HJLVWHU

�

5XQ

$UP

5HJ$(5" 5XQ�ELW�VHW�LI�

VFRSH�QRW�VWRSSHG

23(5"

23((

23(("

� �������

�

2YHUORDG�(YHQW

(QDEOH�5HJLVWHU

2YHUORDG�(YHQW

5HJLVWHU

29/5"

29/

29/"

&KDQ�

� �������

�

23(5 75*0$9(6%
546

06*

75*

5HJ 7(5"
7ULJJHU�(YHQW

5HJLVWHU

65(

65("

67%" 6WDWXV�%\WH

5HJLVWHU

6HUYLFH�5HTXHVW

(QDEOH�5HJLVWHU

2XWSXW

4XHXH

654 ���VWDWXV�FGU

� �������

�

6WDQGDUG�(YHQW

6WDWXV�(QDEOH�5HJLVWHU

6WDQGDUG�(YHQW

6WDWXV�5HJLVWHU

(65"

(6(

(6("

321 854 (;(''(4<(54/ 23&&0(

&KDQ�&KDQ�&KDQ�
([W

7ULJ

29/5

�2YHUORDG�UHJLVWHU�RQ�������VHULHV�RQO\
6-7

Status Reporting
Status Byte Register (SBR)
Status Byte Register (SBR)

The Status Byte Register is the summary-level register in the status reporting
structure. It contains summary bits that monitor activity in the other status
registers and queues. The Status Byte Register is a live register. That is, its
summary bits are set and cleared by the presence and absence of a summary
bit from other event registers or queues.

If the Status Byte Register is to be used with the Service Request Enable
Register to set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the
summary bits must be enabled, then set. Also, event bits in all other status
registers must be specifically enabled to generate the summary bit that sets the
associated summary bit in the Status Byte Register.

The Status Byte Register can be read using either the *STB? Common Command
or the GPIB serial poll command. Both commands return the decimal-weighted
sum of all set bits in the register. The difference between the two methods is
that the serial poll command reads bit 6 as the Request Service (RQS) bit and
clears the bit which clears the SRQ interrupt. The *STB? command reads bit 6
as the Master Summary Status (MSS) and does not clear the bit or have any
affect on the SRQ interrupt. The value returned is the total bit weights of all of
the bits that are set at the present time.

The use of bit 6 can be confusing. This bit was defined to cover all possible
computer interfaces, including a computer that could not do a serial poll. The
important point to remember is that, if you are using an SRQ interrupt to an
external computer, the serial poll command clears bit 6. Clearing bit 6 allows
the oscilloscope to generate another SRQ interrupt when another enabled event
occurs.

No other bits in the Status Byte Register are cleared by either the *STB? query
or the serial poll, except the Message Available bit (bit 4). If there are no other
messages in the Output Queue, bit 4 (MAV) can be cleared as a result of reading
the response to the *STB? command.

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the
sum of the two weights. Since these bits were not enabled to generate an SRQ,
bit 6 (weight = 64) is not set.
6-8

Status Reporting
Status Byte Register (SBR)
Example The following example uses the *STB? query to read the contents of the
oscilloscopes Status Byte Register.

10 OUTPUT 707;"*STB?" !Query the Status Byte Register
20 ENTER 707;Result !Place result in a numeric variable
30 PRINT Result !Print the result
40 End

The next program prints 112 and clears bit 6 (RQS) of the Status Byte Register.
The difference in the decimal value between this example and the previous one
is the value of bit 6 (weight = 64). Bit 6 is set when the first enabled summary
bit is set and is cleared when the Status Byte Register is read by the serial poll
command.

Example The following example uses the HP BASIC serial poll (SPOLL) command (GPIB
only) to read the contents of the oscilloscopes Status Byte Register.

10 Result = SPOLL(707)
20 PRINT Result
30 END

Use Serial Polling to Read Status Byte Register

Serial polling is the preferred method to read the contents of the Status Byte Register
because it resets bit 6 and allows the next enabled event that occurs to generate a
new SRQ interrupt.
6-9

Status Reporting
Service Request Enable Register (SRER)
Service Request Enable Register (SRER)

Setting the Service Request Enable Register bits enable corresponding bits in
the Status Byte Register. These enabled bits can then set RQS and MSS (bit 6)
in the Status Byte Register.

Bits are set in the Service Request Enable Register using the *SRE command
and the bits that are set are read with the *SRE? query.

Refer to figure 6-2.

Example The following example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request
Enable Register.
OUTPUT 707;"*SRE 48"

This example uses the parameter 48 to enable the oscilloscope to generate an
SRQ interrupt under the following conditions:

• When one or more bytes in the Output Queue set bit 4 (MAV).

• When an enabled event in the Standard Event Status Register generates a
summary bit that sets bit 5 (ESB).

Trigger Event Register (TRG)

This register sets the TRG bit in the status byte when a trigger event occurs.

The TRG event register stays set until it is cleared by reading the register or
using the *CLS command. If your application needs to detect multiple triggers,
the TRG event register must be cleared after each one.

If you are using the Service Request to interrupt a program or controller
operation, you must clear the event register each time the trigger bit is set.
6-10

Status Reporting
Standard Event Status Register (SESR)
Standard Event Status Register (SESR)

The Standard Event Status Register (SESR) monitors the following oscilloscope
status events:

• PON - Power On

• URQ - User Request

• CME - Command Error

• EXE - Execution Error

• DDE - Device Dependent Error

• QYE - Query Error

• RQC - Request Control

• OPC - Operation Complete

When one of these events occur, the event sets the corresponding bit in the
register. If the bits are enabled in the Standard Event Status Enable Register,
the bits set in this register generate a summary bit to set bit 5 (ESB) in the
Status Byte Register.

You can read the contents of the Standard Event Status Register and clear the
register by sending the *ESR? query. The value returned is the total bit weights
of all of the bits that are set at the present time.

Example The following example uses the *ESR query to read the contents of the Standard
Event Status Register.

10 OUTPUT 707;"*ESR?"
20 ENTER 707;Result !Place result in a numeric variable
30 PRINT Result !Print the result
40 End

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the
sum of the two weights.
6-11

Status Reporting
Standard Event Status Enable Register (SESER)
Standard Event Status Enable Register (SESER)

To allow any of the Standard Event Status Register (SESR) bits to generate a
summary bit, you must first enable that bit. Enable the bit by using the *ESE
(Event Status Enable) common command to set the corresponding bit in the
Standard Event Status Enable Register (SESER).

Set bits are read with the *ESE? query.

Example Suppose your application requires an interrupt whenever any type of error
occurs. The error related bits in the Standard Event Status Register are bits 2
through 5. The sum of the decimal weights of these bits is 60. Therefore, you
can enable any of these bits to generate the summary bit by sending:
OUTPUT 707;"*ESE 60"

Whenever an error occurs, it sets one of these bits in the Standard Event Status
Register. Because the bits are all enabled, a summary bit is generated to set bit
5 (ESB) in the Status Byte Register.

If bit 5 (ESB) in the Status Byte Register is enabled (via the *SRE command),
an SRQ service request interrupt is sent to the external computer.

Disabled Standard Event Status Register bits respond but do not generate a
summary bit.

Standard Event Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit to the
Status Byte Register.
6-12

Status Reporting
Operation Status Register (OPR)
Operation Status Register (OPR)

This register hosts the RUN bit (bit 3), the WAIT TRIG bit (bit 5), and the OVLR
bit (bit 11).

• The RUN bit is set whenever the instrument is not stopped.

• The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates
that the trigger is armed.

• The OVLR bit is set whenever a 50Ω input overload occurs (54640-series
only)

• If any of these bits are set, the OPER bit (bit 7) of the Status Byte Register
is set. The Operation Status Register is read and cleared with the OPER?
query. The register output is enabled or disabled using the mask value
supplied with the OPEE command.

Arm Event Register (ARM)

This register sets bit 5 (Wait Trig bit) in the Operation Status Register and the
OPER bit (bit 7) in the Status Byte Register when the instrument becomes
armed.

The ARM event register stays set until it is cleared by reading the register with
the AER? query or using the *CLS command. If your application needs to detect
multiple triggers, the ARM event register must be cleared after each one.

If you are using the Service Request to interrupt a program or controller
operation when the trigger bit is set, then you must clear the event register after
each time it has been set.
6-13

Status Reporting
Error Queue
Error Queue

As errors are detected, they are placed in an error queue. This queue is first in,
first out. If the error queue overflows, the last error in the queue is replaced
with error 350, Queue overflow. Any time the queue overflows, the least recent
errors remain in the queue, and the most recent error is discarded. The length
of the oscilloscope’s error queue is 30 (29 positions for the error messages, and
1 position for the Queue overflow message).

The error queue is read with the SYSTEM:ERROR? query. Executing this query
reads and removes the oldest error from the head of the queue, which opens a
position at the tail of the queue for a new error. When all the errors have been
read from the queue, subsequent error queries return 0, No error.

The error queue is cleared when:

• the instrument is powered up,

• the instrument receives the *CLS common command, or

• the last item is read from the error queue.
6-14

Status Reporting
Output Queue
Output Queue

The output queue stores the oscilloscope-to-controller responses that are
generated by certain instrument commands and queries. The output queue
generates the Message Available summary bit when the output queue contains
one or more bytes. This summary bit sets the MAV bit (bit 4) in the Status Byte
Register.

The output queue may be read with the HP Basic ENTER statement.

Message Queue

The message queue contains the text of the last message written to the advisory
line on the screen of the oscilloscope. The length of the oscilloscope’s message
queue is 1. The queue is read with the SYSTEM:DSP? query. Note that messages
sent with the SYSTem:DSP command do not set the MSG status bit in the Status
Byte Register.

Clearing Registers and Queues

The *CLS common command clears all event registers and all queues except
the output queue. If *CLS is sent immediately following a program message
terminator, the output queue is also cleared.
6-15

Status Reporting
Clearing Registers and Queues
Figure 6-3

Status Reporting Decision Chart
6-16

7

Installing and Using the Programmer’s
Reference

Installing and Using the Programmer’s
Reference

The Programmer’s Reference is supplied as an online help file readable
with the Microsoft Windows help viewer. Sample programs for the
oscilloscopes are included in the Examples subdirectory.

This chapter explains how to install the help file on your system,
discusses the text and program files, and explains how you can get the
programs and help file via the Internet.
7-2

Installing and Using the Programmer’s Reference
To install the help file under Microsoft Windows
To install the help file under Microsoft Windows

The Programmer’s Reference help file requires Microsoft Windows 95/98/NT or
greater running on an IBM-compatible PC. The file uses the Microsoft Windows
help viewer, WINHELP.EXE.

1 Insert the “Programmer’s Reference” floppy disk into the floppy disk
drive of your PC.

2 Select Start | Run from the Windows taskbar, then type in the
following:

<drive>:\setup.exe

where <drive> is your floppy disk drive letter.

3 Follow the instructions on screen to complete the installation.
The installer copies the help file to a directory named:

C:\Program Files\Agilent 54620_40-Series Programmer’s Reference

You can choose a different directory if desired. It also creates a Start Program
group that you can use to open the help file with the Microsoft Windows help
viewer.
7-3

Installing and Using the Programmer’s Reference
To get updated help and program files via the Internet
To get updated help and program files via the Internet

The latest versions of the help and example program files are available via the
internet.

1 Log on to your Internet service.
2 Connect to www.agilent.com/find/5462xsw.
3 Under the “Software Updates” heading in the web page, click on the

“54620/40-Series Oscilloscope Programming Reference Help File,” then
follow the instructions on the web page to download the help file.
7-4

Installing and Using the Programmer’s Reference
To start the help file
To start the help file

To open the help file under Microsoft Windows, double-click the Programmer’s
Reference icon in the Programmer’s Reference program group in the Program
Manager.

The help file requires the program WINHELP.EXE for Microsoft Windows
95/98/NT or greater. The properties for the Program Manager icon are set to
expect this file in the Windows directory.

To navigate through the help file

• Navigate through the help file by clicking on highlighted text and
buttons.
See your Microsoft Windows documentation for more information.
7-5

8

Programmer’s Quick Reference

Introduction

The Programmer’s Quick Reference provides the commands and queries
with their corresponding arguments and returned formats for the
oscilloscopes. The arguments for each command list the minimum
argument required. The part of the command or query listed in
uppercase letters refers to the short form of that command or query. The
long form is the combination of the uppercase and lowercase letters. Any
optional parameters are listed at the end of each parameter listing.
8-2

Programmer’s Quick Reference
Conventions
Conventions

The following conventions used in this guide include:

Suffix Multipliers

The following suffix multipliers are available for arguments.

For more information regarding specific commands or queries, please refer to
the online Programmer’s Reference help file.

< > Indicates that words or characters enclosed in angular brackets
symbolize a program code parameter or an GPIB command.

::= "is defined as." <A>::= indicates that <A> can be replaced by in any
statement containing <A>.

| "or" Indicates a choice of one element from a list. For example, <A> |
 indicates <A> or but not both.

... Indicates that the element preceding the ellipses may be repeated
one or more times.

[] Indicates that the bracketed items are optional.

{ } Indicates that when items are enclosed by braces, one, and only
one of the elements may be selected.

{N,..,P} Indicates selection of one integer between N and P inclusive.

EX::= 1E18 M::= 1E-3

PE::= 1E15 U::= 1E-6

T::= 1E12 N::= 1E-9

G::= 1E9 P::= 1E-12

MA::= 1E6 F::= 1E-15

K::= 1E3 A::= 1E-18
8-3

Programmer’s Quick Reference
Commands and Queries
Commands and Queries

The following tables facilitate easy access to each command and query for the
oscilloscopes. The commands and queries are divided into separate categories
with each entry alphabetized.

The arguments for each command list the minimum argument required. The
part of the command or query listed in uppercase letters refers to the short form
of that command or query. The long form is the combination of the uppercase
and lowercase letters. The NR1 and NR3 formats refer only to the Query Return
values. Input arguments are not restricted by these formats.

These commands also show specific information about how command operates
on a particular oscilloscope model. For additional information, refer to the
online oscilloscopes Programmer’s Reference help file.

Command Query Options and Query Returns
:ACQuire:COMPlete <complete> :ACQuire:COMPlete? <complete> ::= 100; an integer in NR1 format
:ACQuire:COUNt <count> :ACQuire:COUNT? <count> ::= an integer from 1 to 16383 in NR1 format
:ACQuire:MODE <mode> :ACQuire:MODE? <mode> ::= {RTIMe | ETIMe}
n/a :ACQuire:POINts? 2,000; an integer in NR1 format.
n/a :ACQuire:SRATe? <point_argument> ::=sample rate (samples/s) in NR3 format
:ACQuire:TYPE <type> :ACQuire:TYPE? <type> ::= {NORMal | AVERage | PEAK}
:ACTivity :ACTivity? <return value> ::= <edges>, <levels>

<edges> ::= presence of edges (32-bit integer in NR1 format)
<levels> ::= logical highs or lows (32-bit integer in NR1 format)

n/a :AER? {0 | 1}; an integer in NR1 format
:AUToscale n/a n/a
:BLANk <source> n/a <source> ::= {CHANnel<n>} | FUNCtion | MATH} for 546xxA

<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | POD{1 | 2} |
FUNCtion | MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

n/a :CALibrate:DATE? <return value> ::= <day>,<month>,<year>; all in NR1 format
:CALibrate:LABel <string> :CALibrate:LABel? <string> ::= quoted ASCII string up to 32 characters
n/a :CALibrate:SWITch? {PROTected | UNPRotected}
n/a :CALibrate:TIME? <return value> ::= <hours>,<minutes>,<seconds>; all in NR1

format
:CDISplay n/a n/a
:CHANnel<n>:BWLimit
{{0 | OFF} | {1 | ON}}

:CHANnel<n>:BWLimit? {0 | 1}
<n> ::= 1-2 or 1-4 in NR1 format

:CHANnel<n>:COUPling
<coupling>

:CHANnel<n>:COUPling? <coupling> ::= {AC | DC | GND} for 54620-series
<coupling> ::= {AC | DC} for 54640-series
<n> ::= 1-2 or 1-4 in NR1 format

:CHANnel<n>:DISPlay
 {{0 | OFF} | {1 | ON}}

:CHANnel<n>:DISPlay? {0 | 1}
<n> ::= 1-2 or 1-4 in NR1 format
8-4

Programmer’s Quick Reference
Commands and Queries
:CHANnel<n>:IMPedence
<impedence>

:CHANnel<n>:IMPedence? <impedence> ::= {ONEMeg} for 54620-series
<impedence> ::= {ONEMeg | FIFTy} for 54640-series
<n> ::= 1-2 or 1-4 in NR1 format

:CHANnel<n>:INVert
 {{0 | OFF} | {1 | ON}}

:CHANnel<n>:INVert? {0 | 1}
<n> ::= 1-2 or 1-4 in NR1 format

:CHANnel<n>:LABel <string> :CHANnel<n>:LABel? <string>::= any series of 6 or less ASCII characters enclosed in
quotation marks
<n> ::= 1-2 or 1-4 in NR1 format

:CHANnel<n>:OFFSet <offset>
[suffix]

:CHANnel<n>:OFFSet? <offset> ::= Vertical offset value in NR3 format.
[suffix] ::= {V | mV}
<n> ::= 1-2 or 1-4; in NR1 format

:CHANnel<n>:PROBe
<attenuation>

:CHANnel<n>:PROBe? <attenuation> ::= Probe attenuation ratio in NR3 format
<n> ::= 1-2 or 1-4r in NR1 format

:CHANnel<n>:PROBe:SKEW
<skew_value>

:CHANnel<n>PROBe:SKEW? <skew_value> ::= -100 ns to +100 ns in NR3 format
<n> ::= 1-2 in NR1 format, for 54640-series only

:CHANnel<n>:PROTection[:CLEAR] :CHANnel<n>:PROTection? {NORM | TRIP}
<n> ::= 1-2 in NR1 format, for 54640-series only

:CHANnel<n>:RANGe <range>
[suffix]

:CHANnel<n>:RANGe? <range> ::= Vertical full-scale range value in NR3 format.
[suffix] ::= {V | mV}
<n> ::= 1-2 or 1-4 in NR1 format

:CHANnel<n>:SCALe <scale>
[suffix]

:CHANnel<n>:SCALe? <scale> ::= Vertical units per division value in NR3 format.
[suffix] ::= {V | mV}
<n> ::= 1-2 or 1-4 in NR1 format

:CHANnel<n>:UNITs <units> :CHANnel<n>:UNITs? <units> ::= {VOLTs | AMPeres}
<n> ::= 1-2 or 1-4 in NR1 format

*CLS n/a n/a
:DIGital<n>:DISPlay {{0 | OFF} |
{1 | ON}}

:DIGital<n>:DISPlay? {0 | 1}
<n> ::= 0-15; an integer in NR1 format

:DIGital<n>:LABel <string> :DIGital<n>:LABel? <string>::= any series of 6 or less ASCII characters enclosed in
quotation marks
<n> ::= 0-15; an integer in NR1 format

:DIGital<n>:POSition <position> :DIGital<n>:POSition? <n> ::= 0-15; an integer in NR1 format
<position> ::= 0-7 if display size = large, 0-15 if size = medium, 0-
31 if size = small

:DIGital<n>:THReshold
<value>[suffix]

:DIGital<n>:THReshold? <n> ::= 0-15; an integer in NR1 format
<value> ::= {CMOS | ECL | TTL | <user defined value>}
<user defined value> ::= value in NR3 format from -8.00 to +8.00
[suffix] ::= {V | mV | uV}

:DIGitize [<source>[,...,<source>]] n/a <source> ::= {CHANnel<n> | FUNCtion |MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | POD1 | POD2 |
FUNCtion |MATH} for 546xxD
<source> can be repeated up to 5 times.
<n> ::= 1-2 or 1-4 in NR1 format

:DISPlay:CLEar n/a n/a

Command Query Options and Query Returns
8-5

Programmer’s Quick Reference
Commands and Queries
:DISPlay:DATA [format][,][area]
<display data>

:DISPlay:DATA? [format][,][area] <format> ::= {TIFF} (command only)
<area> ::= {GRATicule} (command only)
<format> ::= {TIFF | BMP} (query only)
<area> ::= {GRATicule | SCReen} (query only)
<display data> ::= data in IEEE 488.2 # format

:DISPlay:LABel {{0 | OFF} | {1 | ON}} :DISPlay:LABel? {0 | 1}
:DISPlay:LABList #80000524
<binary block>

:DISPlay:LABList? <binary block> ::= a time-ordered list of 75 labels. Each label can
be a maximum of 6 characters followed by a comma.

:DISPlay:PERSistence <value> :DISPlay:PERSistence? <value> ::= {MINimum | INFinite}}
:DISPlay:SOURce <value> :DISPlay:SOURce? <value> ::= {PMEMory{0 | 1 | 2}}
:DISPlay:VECTors {{1 | ON} | {0 | OFF}} :DISPlay:VECTors? {1 | 0}
*DMC <macro label>,<macro
definition>

n/a <macro label> ::= quoted ASCII string
<macro definition> ::= block data in IEEE 488.2 # format

*EMC {{0 | OFF} | {1 | ON}} *EMC? {0 | 1}
*ESE <mask> *ESE? <mask> ::= 0 to 255; an integer in NR1 format

 Bit Weight Enables
7 128 PON - Power On
6 64 URQ - User Request
5 32 CME - Command Error
4 16 EXE - Execution Error
3 8 DDE - Device Dependent Error
2 4 QYE - Query Error
1 2 TRG - Trigger Query
0 1 OPC - Operation Complete

:EXTernal:BWLimit <bwlimit> :EXTernal:BWLimit? <bwlimit> ::= {0 | OFF}
:EXTernal:IMPedance <value> :EXTernal:IMPedance? <impedence> ::= {ONEMeg} for 54620-series

<impedence> ::= {ONEMeg | FIFTy} for 54640-series
:EXTernal:PROBe <attenuation> :EXTernal:PROBe? <attenuation> ::= probe attenuation ratio in NR3 format
:EXTernal:PROTection[:CLEAR] :EXTernal:PROTection? {NORM | TRIP}
:EXTernal:RANGe
<range>[<suffix>]

:EXTernal:RANGe? <range> ::= vertical full-scale range value in NR3 format
<suffix> ::= {V | mV}

:EXTernal:UNITs <units> :EXTernal:UNITs? <units> ::= {VOLTs | AMPeres}
n/a *ESR? <status> ::= 0 to 255; an integer in NR1 format
:FUNCtion:CENTer <frequency> :FUNCtion:CENTer? <frequency> ::= the current center frequency in NR3 format.

The range of legal values is from 0 Hz to 25.00 GHz.
:FUNCtion:DISPlay {{0 | OFF} | {1 |
ON}}

:FUNCtion:DISPlay? {0 | 1}

:FUNCtion:OFFSet <offset> :FUNCtion:OFFSet? <offset> ::= the value at center screen in NR3 format.
The range of legal values is +/-10 times the current sensitivity of
the selected function.

:FUNCtion:OPERation <operation> :FUNCtion:OPERation? <operation> ::= {SUBTract | MULTiply | INTegrate | DIFFerentiate
| FFT}

Command Query Options and Query Returns
8-6

Programmer’s Quick Reference
Commands and Queries
n/a :MARker:XDELta? <return_value> ::= X cursors delta value in NR3 format
:MARKer:Y1Position
<positon>[suffix]

:MARKer:Y1Position? <positon> ::= Y1 cursor position value in NR3 format
[suffix] ::= {V | mV | dB}
<return_value> ::= Y1 cursor positon value in NR3 format

:MARKER:Y2Position
<positon>[suffix]

:MARKer:Y2Position? <positon> ::= Y2 cursor position value in NR3 format
[suffix] ::= {V | mV | dB}
<return_value> ::= Y2 cursor positon value in NR3 format

n/a :MARKer:YDELta? <return_value> ::= Y cursors delta value in NR3 format
:MEASure:CLEar n/a n/a
:MEASure:COUNter [<source>] MEASure:COUNter? [<source>] <source> ::= {CHANnel<n>} for 546xxA

<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 |} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::=counter frequency in Hertz in NR3 format

:MEASure:DEFine DELay, <edge
spec1, edge spec2>

:MEASure:DEFine? DELay edge_spec1 ::= [<slope>] <occurrence>
edge_spec2 ::= [<slope>] <occurrence>
<slope> ::= {+ | -}
<occurrence> ::= integer

:MEASure:DEFine THResholds,
<threshold spec>

:MEASure:DEFine? THResholds <threshold spec> ::= {STANdard} | {<threshold mode>,<upper>,
<middle>,<lower>}

<threshold mode> ::= {PERCent | ABSolute}
:MEASure:DELay [<source1>]
[,<source2>]

:MEASure:DELay? [<source1>]
[,<source2>]

<source1,2> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= floating-point number delay time in seconds
in NR3 format

:MEASure:DUTYcycle [<source>] :MEASure:DUTYcycle? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= ratio of positive pulse width to period in NR3
format

:MEASure:FALLtime [<source>] :MEASure:FALLtime? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= time in seconds between the lower and upper
thresholds in NR3 format

:MEASure:FREQuency [<source>] :MEASure:FREQuency?
[<source>]

<source> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= frequency in Hertz in NR3 format

:MEASure:NWIDth [<source>] :MEASure:NWIDth? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= negative pulse width in seconds-NR3 format

:MEASure:OVERshoot [<source>] :MEASure:OVERshoot? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= the percent of the overshoot of the selected
waveform in NR3 format

Command Query Options and Query Returns
8-8

Programmer’s Quick Reference
Commands and Queries
:MEASure:PERiod [<source>] :MEASure:PERiod? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= waveform period in seconds in NR3 format

:MEASure:PHASe [<source1>]
[,<source2>]

:MEASure:PHASe? [<source1>]
[,<source2>]

<source1,2> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= the phase angle value in degrees in NR3
format

:MEASure:PREShoot [<source>] :MEASure:PREShoot? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= the percent of preshoot of the selected
waveform in NR3 format

:MEASure:PWIDth [<source>] :MEASure:PWIDth? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= width of positive pulse in seconds in NR3
format

:MEASure:RISEtime [<source>] :MEASure: RISEtime? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= rise time in seconds in NR3 format

:MEASure:SHOW {1 | ON} :MEASure:SHOW? {1}
:MEASure:SOURce [<source1>]
[,<source2>]

:MEASure:SOURce? <source1,2> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source1,2> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= {<source> | NONE}

:MEASure:TEDGe
<slope><occurrence>[,<source>]

:MEASure:TEDGe? <slope> ::= direction of the waveform
<occurrence> ::= the transition to be reported.
<source> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= time in seconds of the specified transition

n/a :MEASure:TVALue? <value>,
[<slope>]<occurrence>
[,<source>]

<value> ::= voltage level that the waveform must cross.
<slope> ::= direction of the waveform when <value> is crossed.
<occurrence> ::= transitions reported.
<return_value> ::= time in seconds of specified voltage crossing
in NR3 format
<source> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:MEASure:VAMPlitude [<source>] :MEASure:VAMPlitude?
[<source>]

<source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= the amplitude of the selected waveform in
volts in NR3 format

:MEASure:VAVerage [<source>] :MEASure:VAVerage? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= calculated average voltage in NR3 format

Command Query Options and Query Returns
8-9

Programmer’s Quick Reference
Commands and Queries
:MEASure:VBASe [<source>] :MEASure:VBASe? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<base_voltage> ::= voltage at the base of the selected waveform
in NR3 format

:MEASure:VMAX [<source>] :MEASure:VMAX? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= maximum voltage of the selected waveform in
NR3 format

:MEASure:VMIN [<source>] :MEASure:VMIN? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= minimum voltage of the selected waveform in
NR3 format

:MEASure:VPP [<source>] :MEASure:VPP? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= voltage peak-to-peak of the selected
waveform in NR3 format

:MEASure:VRMS [<source>] :MEASure:VRMS? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= calculated dc RMS voltage in NR3 format

n/a :MEASure:VTIMe?
<vtime>[,<source>]

<vtime> ::= displayed time from trigger in seconds in NR3 format
<return_value> ::= voltage at the specified time in NR3 format
<source> ::= {CHANnel<n> | FUNCtion | MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion |
MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:MEASure:VTOP [<source>] :MEASure:VTOP? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= voltage at the top of the waveform in NR3
format

:MEASure:XMAX [<source>] :MEASure:XMAX? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= horizontal value of the maximum in NR3 format

:MEASure:XMIN [<source>] :MEASure:XMIN? [<source>] <source> ::= {CHANnel<n> | FUNCtion | MATH}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value> ::= horizontal value of the maximum in NR3 format

:MERGe <pixel memory> n/a <pixel memory> ::= {PMEMory{0 | 1 | 2}}
*OPC *OPC? ASCII ""1"" is placed in the output queue when all pending device

operations have completed.
:OPEE <n> :OPEE? <n> ::= 16-bit integer in NR1 format
n/a :OPER? <n> ::= 16-bit integer in NR1 format
n/a *OPT? <return_value> ::= n, A.XX.XX

n identifies the module.
XX.XX identifies the module software revision.
N2757A, A.XX.XX

Command Query Options and Query Returns
8-10

Programmer’s Quick Reference
Commands and Queries
OVLenable <mask> OVLenable? <mask> ::= 8-bit integer in NR1 format as shown, 54640-series
only:

Bit Weight Input
4 16 External Trigger
3 8 Channel 4
2 4 Channel 3
1 2 Channel 2
0 1 Channel 1

n/a OVLRegister? <value> ::= integer in NR1 format, 54640-series only. See
OVLenable for <value>

*PMC n/a n/a
:POD<n>:DISPlay {{0 | OFF} | {1 | ON}} :POD<n>:DISPlay? {0 | 1}

<n> ::= 1-2 in NR1 format
:POD<n>:THReshold <type>[suffix] :POD<n>:THReshold? <n> ::= 1-2 in NR1 format

<type> ::= {CMOS | ECL | TTL | <user defined value>}
<user defined value> ::= value in NR3 format
[suffix] ::= {V | mV | uV }

:PRINt [parameter][,parameter]] :PRIN? [parameter][,parameter] x
4]

<parameter> ::= {HIRes | LORes | TIFF | PCL | BMP | PARallel |
DISK | FACTors | NOFactors}
<parameter> can be repeated up to 5 times.

*RCL <value> n/a <value> ::= {0 | 1 | 2}
*RST n/a See reset values in the online Programmer’s Reference.
:RUN n/a n/a
*SAV <value> n/a <value> ::= {0 | 1 | 2}

:SERial? <return value> ::= unquoted string containing serial number
:SINGle n/a n/a
*SRE <mask> *SRE? <mask> ::= sum of all bits that are set, 0 to 255; an integer in NR1

format. <mask> ::= following values:
Bit Weight Enables
7 128 OPER - Operation Status Register
6 64 Not Used
5 32 ESB - Event Status Bit
4 16 MAV - Message Available
3 8 Not used
2 4 MSG - Message
1 2 USR - User
0 1 TRG - Trigger

n/a :STATus? <display> {0 | 1}
<display> ::= {CHANnel<n> | DIGital0,...,DIGital15 | FUNCtion
|MATH};
<n> ::= 1-2 or 1-4 in NR1 format

Command Query Options and Query Returns
8-11

Programmer’s Quick Reference
Commands and Queries
n/a *STB? <value> ::= 0 to 255; an integer in NR1 format, as shown in the
following:

Bit Weight Name Condition
7 128 OPER

0 = no enabled operations status conditions occurred
1 = an enabled operation status condition occurred

6 64 RQS/MS
0 = instrument has no reason for service
1 = instrument is requesting service

5 32 ESB
0 = no event status conditions occurred
1 = enabled event status condition occurred

4 16 MAV
0 = no output messages are ready
1 = an output message is ready

3 8 ----
0 = not used

2 4 MSG
0 = no message has been displayed
1 = message has been displayed

1 2 USR
0 = no enabled user event conditions have occurred
1 = an enabled user event condition has occurred

0 1 TRG
0 = no trigger has occurred
1 = a trigger occurred

:STOP n/a n/a
:SYSTem:DATE <date> :SYSTem:DATE? <date> ::= <year>, <month>, <day>

<year> ::= 4-digit year in NR1 format
<month> ::= {1,..,12 | JANuary | FEBruary | MARch | APRil | MAY
| JUNe | JULy | AUGust | SEPtember | OCTober | NOVember |
DECember}
<day> ::= {1,..31}

:SYSTem:DSP <string> n/a <string> ::= up to 254 characters as a quoted ASCII string
n/a :SYSTem:ERRor? <error> ::= an integer error code

<error string> ::= quoted ASCII string.
See error values in the online Programmer’s Reference.

:SYSTem:LOCK :SYSTem:LOCK? <value> ::= {ON | OFF}
:SYSTem:SETup <setup_data> :SYSTem:SETup? <setup_data> ::= data in IEEE 488.2 # format.
:SYSTem:TIME <time> :SYSTem:TIME? <time> ::= hours, minutes, seconds in NR1 format
n/a :TER? {0 | 1}
:TIMebase:MODE <value> :TIMebase:MODE? <value> ::= {MAIN | WINDow | XY | ROLL}
:TIMebase:POSition <pos> :TIMebase:POSition? <pos> ::= time from the trigger event to the display reference

point in NR3 format

Command Query Options and Query Returns
8-12

Programmer’s Quick Reference
Commands and Queries
:TIMebase:RANGe <range_value> :TIMebase:RANGe? <range_value> ::= 50 ns through 500 s in NR3 format for 54620-
series
<range_value> ::= 10 ns through 500 s in NR3 format for 54640-
series

:TIMebase:REFerence
{LEFT | CENTer | RIGHt}

:TIMebase:REFerence? <return_value> ::= {LEFT | CENTer | RIGHt}

:TIMebase:SCALe <scale_value> :TIMebase:SCALe? <scale_value> ::= scale value in seconds in NR3 format
:TIMebase:WINDow:POSition
<pos>

:TIMebase:WINDow:POSition? <pos> ::= time from the trigger event to the delayed view
reference point in NR3 format

:TIMebase:WINDow:RANGe
<range_value>

:TIMebase:WINDow:RANGe? <range value> ::= range value in seconds in NR3 format for the
delayed window

:TIMebase:WINDow:SCALe
<scale_value>

:TIMebase:WINDow:SCALe? <scale_value> ::= scale value in seconds in NR3 format for the
delayed window

*TRG n/a n/a
:TRIGger:CAN:ACKNowledge
<value>

:TRIGger:CAN:ACKNowledge? <value> ::= {{0 | OFF} | {1 | ON}} with N2758A CAN Trigger module
attached

:TRIGger:CAN:PATTern:DATA
<value>, <mask>

:TRIGger:CAN:PATTern:DATA? <value> ::= integer or <string> with N2758A CAN Trigger module
attached
<mask> ::= integer or <string>
<string> ::= "0xnn...n" where n ::= {0,...,9 | A,...,F} for hexadecimal,
or
<string> ::= #Hnn...n where n ::= {0,...,9 | A,...,F} for hexadecimal, or
<string> ::= #Bnn...n where n ::= {0 | 1} for binary

:TRIGger:CAN:PATTern:DATA:
LENGth <length>

:TRIGger:CAN:PATTern:DATA:
:LENGth?

<length> ::= integer from 1 to 8 in NR1 format with N2758A CAN
Trigger module attached

:TRIGger:CAN:PATTern:ID <value>,
<mask>

:TRIGger:CAN:PATTern:ID? <value> ::= integer or <string> with N2758A CAN Trigger module
attached
<mask> ::= integer or <string>
<string> ::= "0xnn...n" where n ::= {0,...,9 | A,...,F} for hexadecimal,
or
<string> ::= #Hnn...n where n ::= {0,...,9 | A,...,F} for hexadecimal, or
<string> ::= #Bnn...n where n ::= {0 | 1} for binary

:TRIGger:CAN:PATTern:ID:MODE
<value>

:TRIGger:CAN:PATTern:ID:MODE? <value> ::= {STANdard | EXTended} with N2758A CAN Trigger
module attached

:TRIGger:CAN:SAMPlepoint
<value>

:TRIGger:CAN:SAMPlepoint? <value> ::= {60 | 62.5 | 68 | 70 | 75 | 87.5} in NR3 format with N2758A
CAN Trigger module attached

:TRIGger:CAN:SIGNal:BAUDrate
<baudrate>

:TRIGger:CAN:SIGNal:BAUDrate? <baudrate> ::= {10000 | 20000 | 33300 | 50000 | 62500 | 83300 | 100000
| 125000 | 250000 | 500000 | 800000 | 1000000}

:TRIGger:CAN:SIGNal:DEFinition
<value>

:TRIGger:CAN:SIGNal:DEFinition? <value> ::= {CANH | CANL | RX | TX | DIFFerential}

:TRIGger:CAN:SOURce <source> :TRIGger:CAN:SOURce? <source> ::= {CHANnel<n> | EXTernal} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 |} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:CAN:TRIGger <condition> :TRIGger:CAN:TRIGer? <condition> ::= {SOF} without N2758A CAN Trigger module
attached
<condition>::= {SOF | DATA | ERRor | IDData | IDEither | IDRemote}
with N2758A CAN Trigger module attached

:TRIGGER:DURation:GREaterthan
<greater than time> [suffix]

:TRIGger:DURation:GREaterthan? <greater than time> ::= floating-point number from 5 ns to 10
seconds in NR3 format
[suffix] ::= {s | ms | us | ns | ps}

Command Query Options and Query Returns
8-13

Programmer’s Quick Reference
Commands and Queries
:TRIGGER:DURation:LESSthan
<less than time> [suffix]

:TRIGger:DURation:LESSthan? <less than time> ::= floating-point number from 5 ns to 10seconds
in NR3 format
[suffix] ::= {s | ms | us | ns | ps}

:TRIGger:DURation:PATTern
<value>, <mask>

:TRIGger:DURation:PATTern? <value> ::= integer or <string>
<mask> ::= integer or <string>
<string> ::= ""0xnnnnnn"" n ::= {0 ,...., 9 | A ,...., F}

:TRIGger:DURation:QUALifier
<qualifier>

:TRIGger:DURation:QUALifier? <qualifier> ::= {GREaterthan | LESSthan | INRange | OUTRange |
TIMeout}

:TRIGger:DURation:RANGe
<greater than time> [suffix],
<less than time> [suffix]

:TRIGger:DURation:RANGe? <greater than time> ::= min duration from 10 ns to 9.99 seconds
in NR3 format
<less than time> ::= max duration from 15 ns to 10 seconds in NR3
format
[suffix] ::= {s | ms | us | ns | ps}

:TRIGger:[EDGE:]COUPling {AC | DC
| LF}

:TRIGger:COUPling? {AC | DC | LF}

:TRIGger:[EDGE:]LEVel
<level> [,<source>]

:TRIGger:[EDGE]:LEVel?
[<source>]

For internal triggers, <level> ::= .75 x full-scale voltage from
center screen in NR3 format.
For external triggers,
 <level> ::= 2 volts with probe attenuation at 1:1 in NR3 format.
For digital channels (546xxD only),

<level> ::= 8 V.
<source> ::= {CHANnel<n> | EXTernal} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | EXTernal } for
546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:[EDGE:]REJect {OFF | LF |
HF}

:TRIGger:REJect? {OFF | LF | HF}

:TRIGger:[EDGE:]SLOPe <polarity> :TRIGger:[EDGE]:SLOPe? <polarity> ::= {POSitive | NEGative}
:TRIGger:[EDGE:]SOURce <source> :TRIGger:[EDGE]:SOURce? <source> ::= {CHANnel<n> | EXTernal} for 546xxA

<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 | EXTernal} for
546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGGER:GLITch:GREaterthan
<greater than time> [suffix]

:TRIGger:GLITch:GREaterthan? <greater than time> ::= floating-point number from 5 ns to 10
seconds in NR3 format
[suffix] ::= {s | ms | us | ns | ps}

:TRIGGER:GLITch:LESSthan
<less than time> [suffix]

:TRIGger:GLITch:LESSthan? <less than time> ::= floating-point number from 5 ns to 10 seconds
in NR3 format
[suffix] ::= {s | ms | us | ns | ps}

:TRIGger:GLITch:LEVel <level>
[<source>]

:TRIGger:GLITch:LEVel? For internal triggers, <level> ::= .75 x full-scale voltage from
center screen in NR3 format.
For external triggers ,

 <level> ::= 2 volts with probe attenuation at 1:1 in NR3 format.
For digital channels (546xxD only), <level> ::= 6 V.
<source> ::= {CHANnel<n> | EXTernal} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:GLITch:POLarity
<polarity>

:TRIGger:GLITch:POLarity? <polarity> ::= {POSitive | NEGative}

:TRIGger:GLITch:QUALifier
<qualifier>

:TRIGger:GLITch:QUALifier? <qualifier> ::= {GREaterthan | LESSthan | RANGe}

Command Query Options and Query Returns
8-14

Programmer’s Quick Reference
Commands and Queries
:TRIGger:GLITch:RANGe
<greater than time> [suffix],
<less than time> [suffix]

:TRIGger:GLITch:RANGe? <greater than time> ::= start time from 10 ns to 9.99 seconds in
NR3 format
<less than time> ::= stop time from 15 ns to 10 seconds in NR3
format
[suffix] ::= {s | ms | us | ns | ps}

:TRIGger:GLITch:SOURce <source> :TRIGger:GLITch:SOURce? <source> ::= {CHANnel<n> | EXTernal} for 546xxA;
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 } for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:HFReject {{0 | OFF} | {1 |
ON}}

:TRIGger:HFReject? {0 | 1}

:TRIGger:HOLDoff <holdoff_time> :TRIGger:HOLDoff? <holdoff_time> ::= 60 ns to 10 s in NR3 format
:TRIGger:IIC:PATTern:ADDRess
<value>

:TRIGger:IIC:PATTern:ADDRess? <value> ::= integer or <string>
<string> ::= ""0xnn"" n ::= {0 ,...., 9 | A ,...., F}

:TRIGger:IIC:PATTern:DATA
<value>

:TRIGger:IIC:PATTern:DATA? <value> ::= integer or <string>
<string> ::= ""0xnn"" n ::= {0 ,...., 9 | A ,...., F}

:TRIGger:IIC:[SOURce:]CLOCk
<source>

:TRIGger:IIC:[SOURce:]CLOCk? <source> ::= {CHANnel<n> | EXTernal} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 } for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:IIC:[SOURce:]DATA
<source>

:TRIGger:IIC:[SOURce:]DATA? <source> ::= {CHANnel<n> | EXTernal} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 } for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:IIC:TRIGger:QUALifier
<value>

:TRIGger:IIC:TRIGger:QUALifer? <value> ::={EQUal | NOTequal | LESSthan | GREaterthan}

:TRIGger:IIC:TRIGger[:TYPE]
<type>

:TRIGger:IIC:TRIGger[:TYPE]? <type> ::= {STARt | STOP | READ7 | READEeprom | WRITe7 |
WRITe10 | NACK | RESTart}

:TRIGger:LIN:SIGNal:BAUDrate
<baudrate>

:TRIGger:LIN:SIGNal:BAUDrate? <baudrate> ::= {2400 | 9600 | 19200}

:TRIGger:LIN:SIGNal:DEFinition
<value>

:TRIGger:LIN:SIGNal:DEFinition? <value> ::= {LIN | RX | TX}

:TRIGger:LIN:SOURce <source> :TRIGger:LIN:SOURce? <source> ::= {CHANnel<n> | EXTernal} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:LIN:TRIGger <condition> :TRIGger:LIN:TRIGger? <condition> ::= {SYNCbreak}
:TRIGger:MODE <mode> :TRIGger:MODE? <mode> ::= {EDGE | GLITch | PATTern | CAN | DURation | IIC |

SEQuence | SPI | TV | USB}
<return_value> ::= {<mode> | <none>}
<none> ::= query returns “NONE” if the :TIMebase:MODE is ROLL
or XY

:TRIGger:NREJect {{0 | OFF} | {1 |
ON}}

:TRIGger:NREJect? {0 | 1}

:TRIGger:PATTern <value>,
<mask> [,<edge source>, <edge>]

:TRIGger:PATTern? <value> ::= 32-bit integer or <string>
<mask> ::= 32-bit integer or <string>
<string> ::= "0xnnnnnn"; n ::= {0,...,9 | A,...,F}
<edge source> ::= {DIGital0,..,DIGital15 | CHANnel<n> | NONE}
<edge> ::= {POSitive | NEGative}
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:SEQuence:COUNt
<count>

:TRIGger:SEQuence:COUNt? <count> ::= integer in NR1 format

Command Query Options and Query Returns
8-15

Programmer’s Quick Reference
Commands and Queries
:TRIGger:SEQuence:EDGE{1 | 2}
<source>, <slope>

:TRIGger:SEQuence:EDGE{1 | 2}? <source> ::= {CHANnel<n> | EXTernal} for the 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15} for the 546xxD
<slope> ::= {POSitive | NEGative}
<n> ::= 1-2 or 1-4 in NR1 format
<return_value>::= query returns “NONE” if edge source is
disabled

:TRIGGER:SEQuence:FIND
<resource1>[,<operator>
[,<resource2>]]

:TRIGGER:SEQuence:FIND? <resource1> ::= {PATTern1 | EDGE1}
<operator> ::= {ENTered | EXITed | AND | NONE}
<resource2> ::= {PATTern1 | EDGE1 | NONE}

:TRIGger:SEQuence:PATTern
{1 | 2}<value>, <mask>

:TRIGger:SEQuence:PATTern{1 |
2}?

<value> ::= integer or <string>
<mask> ::= integer or <string>
<string> ::= ""0xnnnnnn"" n ::= {0 ,..., 9 | A ,..., F}

:TRIGGER:SEQuence:RESet
<resource1>[,<operator>
[,<resource2>]]

:TRIGGER:SEQuence:RESet? <resource1> ::= {PATTern{1 | 2} | EDGE{1 | 2} | TIMer | NONE}
<operator> ::= {ENTered | EXITed | AND | NONE}
<resource2> ::= {PATTern{1 | 2} | EDGE{1 | 2} | TIMer | NONE}

:TRIGGER:SEQuence:TIMer
<time_value>

:TRIGGER:SEQuence:TIMer? <time_value> ::= time from 100 ns to 10 seconds in NR3 format

:TRIGGER:SEQuence:TRIGger
<resource1>[,<operator>
[,<resource2>]]

:TRIGGER:SEQuence:TRIGger? <resource1> ::= {PATTern2 | EDGE2}
<operator> ::= {ENTered | EXITed | AND | COUNt | NONE}
<resource2> ::= {PATTern2 | EDGE2 | NONE}

:TRIGger:SPI:CLOCk:SLOPe
<slope>

:TRIGger:SPI:CLOCk:SLOPe? <slope> ::= {NEGative | POSitive}

:TRIGger:SPI:CLOCk:TIMeout
<time_value>

:TRIGger:SPI:CLOCk:TIMeout? <time_value> ::= time in seconds in NR1 format

:TRIGger:SPI:FRAMing <value> :TRIGger:SPI:FRAMing? <value> ::= {CHIPselect | NOTChipselect | TIMeout}
:TRIGger:SPI:PATTern:DATA
<value>, <mask>

:TRIGger:SPI:PATTern:DATA? <value> ::= integer or <string>
<mask> ::= integer or <string>
<string> ::= "0xnnnnnn" where n ::= {0,...,9 | A,...,F}

TRIGger:SPI:PATTern:WIDth
<width>

:TRIGger:SPI:PATTern:WIDth? <width> ::= integer from 4 to 32 in NR1 format

:TRIGger:SPI:SOURce:CLOCk
<source>

:TRIGger:SPI:SOURce:CLOCk? <value> ::= {CHANnel<n> | EXTernal} for the 546xxA
<value> ::= {CHANnel<n> | DIGital0,...,DIGital15} for the 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:SPI:SOURce:DATA
<source>

:TRIGger:SPI:SOURce:DATA? <value> ::= {CHANnel<n> | EXTernal} for the 546xxA
<value> ::= {CHANnel<n> | DIGital0,...,DIGital15} for the 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:SPI:SOURce:FRAMe
<source>

:TRIGger:SPI:SOURce:FRAMe? <value> ::= {CHANnel<n> | EXTernal} for the 546xxA
<value> ::= {CHANnel<n> | DIGital0,...,DIGital15} for the 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:SWEep <sweep> :TRIGger:SWEep? <sweep> ::= {AUTLevel | AUTO | NORMal} for 54620-series
<sweep> ::= {AUTO | NORMal} for 54640-series

:TRIGger:TV:LINE <line number> :TRIGger:TV:LINE? <line number> ::= integer in NR1 format.
:TRIGger:TV:MODE <tv mode> :TRIGger:TV:MODE? <tv mode> ::= {Field<n> | ALLFields | LINE | ALLLines |

LINEField<n> | LINEAlt | LINEVert}
<n> ::= 1-2 in NR1 format

:TRIGger:TV:POLarity <polarity> :TRIGger:TV:POLarity? <polarity> ::= {POSitive | NEGative}
:TRIGger:TV:SOURce <source> :TRIGger:TV:SOURce? <source> ::= {CHANnel<n>}

<n> ::= 1-2 or 1-4 integer in NR1 format

Command Query Options and Query Returns
8-16

Programmer’s Quick Reference
Commands and Queries
:TRIGger:TV:STANdard <standard> :TRIGger:TV:STANdard? <standard> ::= {GENeric | NTSc | PAL | PALM | SECam}
:TRIGger:TV:TVMODE <mode> :TRIGger:TV:TVMODE? <mode> ::= {Field<n> | ALLFields | LINE | ALLLines | LINEField<n>

| LINEAlt | LINEVert}
<n> ::= 1-2 in NR1 format

:TRIGger:USB:SOURce:DMINus
<source>

:TRIGger:USB:SOURce:DMINus? <source> ::= {CHANnel<n> | EXTernal} for the 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15} for the 546xxD
<slope> ::= {POSitive | NEGative}
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:USB:SOURce:DPLus
<source>

:TRIGger:USB:SOURce:DPLus? <source> ::= {CHANnel<n> | EXTernal} for the 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15} for the 546xxD
<slope> ::= {POSitive | NEGative}
<n> ::= 1-2 or 1-4 in NR1 format

:TRIGger:USB:SPEed <value> :TRIGger:USB:SPEed? <value> ::= {LOW | FULL}
:TRIGger:USB:TRIGer <value> :TRIGger:USB:TRIGger? <value> ::= {SOP | EOP | ENTersuspend | EXITsuspend | RESet}
n/a *TST? <result> ::= 0 or non-zero value; an integer in NR1 format
:VIEW <source> n/a <source> ::= {CHANnel<n> | PMEMory{0 | 1 | 2} | FUNCtion |

MATH} for 546xxA
<source> ::= {CHANnel<n> | DIGital0,...,DIGital15 |
PMEMory{0 | 1 | 2} | FUNCtion | MATH} for 546xxD
<n> ::= 1-2 or 1-4 in NR1 format

*WAI n/a n/a
:WAVeform:BYTeorder <value> :WAVeform:BYTeorder? <value> ::= {LSBFirst | MSBFirst}
na :WAVeform:COUNt? <count> ::= an integer from 1 to 16383 in NR1 format
n/a :WAVeform:DATA? <binary block length bytes>, <binary data>

For example, to transmit 2000 bytes of data, the syntax would be:
 #800002000<2000 bytes of data><NL>
8 is the number of digits that follow
00002000 is the number of bytes to be transmitted
<2000 bytes of data> is the actual data

:WAVeform:FORMat <value> :WAVeform:FORMat? <value> ::= {WORD | BYTE | ASCII}
:WAVeform:POINts <# points> :WAVeform:POINts? [MAXimum] <# points> ::= {100 | 250 | 500 | 1000 | 2000 | MAXimum}
n/a :WAVeform:PREamble? <preamble_block> ::= <format NR1>, <type NR1>, <points

NR1>,<count NR1>, <xincrement NR3>, <xorigin NR3>,
<xreference NR1>, <yincrement NR3>, <yorigin NR3>,
<yreference NR1>
<format> ::= an integer in NR1 format:
 0 for BYTE format
 1 for WORD format
 2 for ASCii format
<type> ::= an integer in NR1 format:
 2 for AVERage type
 0 for NORMal type
 1 for PEAK detect type
<count> ::= Average count, or 1 if PEAK detect type or NORMal;
an integer in NR1 format

:WAVeform:SOURce <source> :WAVeform:SOURce? <source> ::= {CHANnel<n> | POD1 | POD2 | FUNCtion |MATH}
<n> ::= 1-2 integer in NR1 format

n/a :WAVeform:TYPE? <return_mode> ::= {NORM | PEAK | AVER}

Command Query Options and Query Returns
8-17

Programmer’s Quick Reference
Commands and Queries
:WAVeform:UNSigned
{{0 | OFF} | {1 | ON}}

:WAVeform:UNSigned? {0 | 1}

:WAVeform:VIEW <view> :WAVeform:VIEW? <view> ::= {MAIN}
n/a :WAVeform:XINCrement? <return_value> ::= x-increment in the current preamble in NR3

format
n/a :WAVeform:XORigin? <return_value> ::= x-origin value in the current preamble in NR3

format
n/a :WAVeform:XREFerence? <return_value> ::= 0 (x-reference value in the current preamble

in NR1 format)
n/a :WAVeform:YINCrement? <return_value> ::= y-increment value in the current preamble in

NR3 format
n/a :WAVeform:YORigin? <return_value> ::= y-origin in the current preamble in NR3 format
n/a :WAVeform:YREFerence? <return_value>::= y-reference value in the current preamble in

NR1 format

Command Query Options and Query Returns
8-18

Index
A

Analyzing Data iii
Arm event Register (ARM) 6-13
AUToscale Command 2-4

B

Basic Operations 1-2
Baud Rate 4-6
Block Response Data 2-12
Bus Commands 3-6

C

Capturing Data iii
Clear

Events 6-2
Queue 6-15
Register 6-15

CME 6-11
Command Tree 5-6
Commands 1-5

Alphabetic reference 5-4
Combining 1-7, 1-14
ENTER 1-9
Listing of 8-4
Organization 5-3
Types 5-6

Common Commands 5-6
Communication 1-3
Conventions 5-17, 8-3

D

DDE 6-11
Definitions 5-17
Description 1-9
Device Address 1-4, 3-5
Device Clear Command 3-6
DIGitize Command iii, 2-7
DTR 4-7

E

Enabling Events 6-2
ENTER Command 1-9, 2-9
Error Queue 6-14
ESB 6-10, 6-12
Events

Clearing 6-2
Enabling 6-2

EXE 6-11

G

GPIB Interface 3-2
Addressing 3-4
Command Mode 3-3
Data Mode 3-3
Instrument Address 3-5
Interface Select Code 3-5

H

Handshake Protocol 4-6
Header Types 1-6
Help File 7-4

Installing 7-3
Navigating 7-5
Running 7-5

HIST 6-13

I

Infinity 5-16
Initialization ii, 2-3
Instructions 1-5

Commands 1-5
Header 1-5, 1-6
Program Data 1-5
Queries 1-5
White Space 1-5

Instrument Address 3-5
Interface Clear Command 3-6
Interface Select Code 3-5
Internet FTP Access 7-4

L

Local Lockout 3-6, 4-8
Lockout 3-6, 4-8
LTEST 6-13

M

MASK 6-13
Master Summary Status (MSS) 6-8
MAV 6-10, 6-15
Message Queue 6-15
MSG 6-15

N

Numeric Variables 2-11

O

OPC 6-11
Operation Status Register (OPR) 6-13
Oscilloscope Set Up 2-5
Output Queue 6-2, 6-15
OUTPUT Statement 1-3, 1-4
Overlapped Commands 5-16

P

PON 6-11
PROG 6-13
Program Data 1-5

Syntax Rules 1-11
Program Example 5-18
Program Header Options 1-10
Program Message Syntax 1-4
Program Message Terminator 5-8

Q

Queries 1-5, 1-9
Listing of 8-4
Multiple 2-13

Query Response 5-16
Queue Overflow Error 6-14
Queues

Clearing 6-15
QYE 6-11
Index-1

Index
R

Registers
Clearing 6-15

Response Generation 5-16
Root Level Commands 5-6
RQC 6-11
RS232 Interface 4-2

Cables 4-3
Capabilities 4-7
Configuration 4-6
Extended Interface 4-5
Three-Wire Interface 4-4

S

Sequential Commands 5-16
Service Request Enable Register

(SRER) 6-5, 6-10
Service Request Interrupt (SSRQ) 6-2
SRQ 6-2
Standard Event Status Enable Register

(SESER) 6-5, 6-12
Standard Event Status Register (SESR)

6-2, 6-5, 6-11, 6-12
Status Byte Register (SBR) 6-2, 6-5, 6-8
Status Registers 2-13
Status Reporting 6-2
Status Reporting Data Structure

Bit Definitions 6-4
String Variables 2-10
Subsystem 5-3
Subsystem Commands 5-6
Suffix Multipliers 8-3
Syntax Rules 1-11

T

Tree Traversal Rules 5-8
Trigger Event Register (TRG) 6-10
Truncation Rules 5-15

U

URQ 6-11

W

WAIT TRIG 6-13
White Space 1-5

X

XON/XOFF 4-7
Index-2

Safety
Notices
This apparatus has been
designed and tested in accor-
dance with IEC Publication 1010,
Safety Requirements for Mea-
suring Apparatus, and has been
supplied in a safe condition.
This is a Safety Class I instru-
ment (provided with terminal for
protective earthing). Before
applying power, verify that the
correct safety precautions are
taken (see the following warn-
ings). In addition, note the
external markings on the instru-
ment that are described under
"Safety Symbols."

Warnings
• Before turning on the instru-
ment, you must connect the pro-
tective earth terminal of the
instrument to the protective con-
ductor of the (mains) power
cord. The mains plug shall only
be inserted in a socket outlet
provided with a protective earth
contact. You must not negate
the protective action by using an
extension cord (power cable)
without a protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient protec-
tion.

• Only fuses with the required
rated current, voltage, and spec-
ified type (normal blow, time
delay, etc.) should be used. Do
not use repaired fuses or short-
circuited fuseholders. To do so
could cause a shock or fire haz-
ard.

• If you energize this instrument
by an auto transformer (for volt-
age reduction or mains isola-
tion), the common terminal must
be connected to the earth termi-
nal of the power source.
Agilent Technologies Inc.
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197,
• Whenever it is likely that the
ground protection is impaired,
you must make the instrument
inoperative and secure it against
any unintended operation.

• Service instructions are for
trained service personnel. To
avoid dangerous electric shock,
do not perform any service
unless qualified to do so. Do not
attempt internal service or
adjustment unless another per-
son, capable of rendering first
aid and resuscitation, is present.

• Do not install substitute parts
or perform any unauthorized
modification to the instrument.

• Capacitors inside the instru-
ment may retain a charge even if
the instrument is disconnected
from its source of supply.

• Do not operate the instrument
in the presence of flammable
gasses or fumes. Operation of
any electrical instrument in such
an environment constitutes a
definite safety hazard.

• Do not use the instrument in a
manner not specified by the
manufacturer.

To clean the instrument
If the instrument requires clean-
ing: (1) Remove power from the
instrument. (2) Clean the exter-
nal surfaces of the instrument
with a soft cloth dampened with
a mixture of mild detergent and
water. (3) Make sure that the
instrument is completely dry
before reconnecting it to a
power source.
 U.S.A.
Safety Symbols

Instruction manual symbol: the
product is marked with this sym-
bol when it is necessary for you
to refer to the instruction man-
ual in order to protect against
damage to the product..

Hazardous voltage symbol.

Earth terminal symbol: Used to
indicate a circuit common con-
nected to grounded chassis.

!

Notices
© Agilent Technologies, Inc.

2000-2002
No part of this manual may be
reproduced in any form or by
any means (including electronic
storage and retrieval or transla-
tion into a foreign language)
without prior agreement and
written consent from Agilent
Technologies, Inc. as governed
by United States and interna-
tional copyright laws.

Manual Part Number
54622-97038, September 2002

Print History
54622-97038, September 2002
54622-97030, March 2002
54622-97027. November 2001
54622-97026, December 2000
54622-97013, August 2000
54622-97001, May 2000

Agilent Technologies, Inc.
1601 California Street
Palo Alto, CA 94304 USA

Restricted Rights Legend
If software is for use in the per-
formance of a U.S. Government
prime contract or subcontract,
Software is delivered and
licensed as “Commercial com-
puter software” as defined in
DFAR 252.227-7014 (June 1995),
or as a “commercial item” as
defined in FAR 2.101(a) or as
“Restricted computer software”
as defined in FAR 52.227-19
(June 1987) or any equivalent
agency regulation or contract
clause. Use, duplication or dis-
closure of Software is subject to
Agilent Technologies’ standard
commercial license terms, and
non-DOD Departments and
Agencies of the U.S. Govern-
ment will receive no greater
than Restricted Rights as
defined in FAR 52.227-19(c)(1-2)
(June 1987). U.S. Government
users will receive no greater
than Limited Rights as defined in
FAR 52.227-14 (June 1987) or
DFAR 252.227-7015 (b)(2)
(November 1995), as applicable
in any technical data.

Document Warranty
The material contained in
this document is provided
“as is,” and is subject to
being changed, without
notice, in future editions.
Further, to the maximum
extent permitted by applica-
ble law, Agilent disclaims
all warranties, either
express or implied, with
regard to this manual and
any information contained
herein, including but not
limited to the implied war-
ranties of merchantability
and fitness for a particular
purpose. Agilent shall not be
liable for errors or for inci-
dental or consequential
damages in connection with
the furnishing, use, or per-
formance of this document
or of any information con-
tained herein. Should Agi-
lent and the user have a
separate written agreement
with warranty terms cover-
ing the material in this docu-
ment that conflict with these
terms, the warranty terms in
the separate agreement
shall control.

Technology Licenses
The hardware and/or software
described in this document are
furnished under a license and
may be used or copied only in
accordance with the terms of
such license.
WARNING

A WARNING notice
denotes a hazard. It calls
attention to an operating
procedure, practice, or
the like that, if not
correctly performed or
adhered to, could result
in personal injury or
death. Do not proceed
beyond a WARNING
notice until the indicated
conditions are fully
understood and met.

CAUTION

A CAUTION notice
denotes a hazard. It calls
attention to an operating
procedure, practice, or
the like that, if not
correctly performed or
adhered to, could result in
damage to the product or
loss of important data. Do
not proceed beyond a
CAUTION notice until the
indicated conditions are
fully understood and met.
Trademark Acknowledgements
Windows and MS Windows are
U.S. registered trademarks of
Microsoft Corporation.

	Title page
	Programming the Oscilloscope
	In This Book

	Contents
	1 Introduction to Programming
	Talking to the Instrument
	Program Message Syntax
	Combining Commands from the Same Subsystem
	Duplicate Mnemonics
	Query Command
	Program Header Options
	Program Data Syntax Rules
	Program Message Terminator
	Selecting Multiple Subsystems

	2 Programming Getting Started
	Initialization
	Autoscale
	Setting Up the Instrument
	Example Program
	Using the DIGitize Command
	Receiving Information from the Instrument
	String Variables
	Numeric Variables
	Definite-Length Block Response Data
	Multiple Queries
	Instrument Status

	3 Programming over GPIB
	Interface Capabilities
	Command and Data Concepts
	Addressing
	Communicating Over the Bus
	Lockout
	Bus Commands

	4 Programming over RS-232-C
	Interface Operation
	Cables
	Minimum Three-Wire Interface with Software Protocol
	Extended Interface with Hardware Handshake
	Configuring the Interface
	Interface Capabilities
	Lockout Command

	5 Programming and Documentation Conventions
	Command Set Organization
	The Command Tree
	Obsolete and Discontinued Commands
	Truncation Rules
	Infinity Representation
	Sequential and Overlapped Commands
	Response Generation
	Notation Conventions and Definitions
	Program Examples

	6 Status Reporting
	Status Reporting Data Structures
	Status Byte Register (SBR)
	Service Request Enable Register (SRER)
	Trigger Event Register (TRG)
	Standard Event Status Register (SESR)
	Standard Event Status Enable Register (SESER)
	Operation Status Register (OPR)
	Arm Event Register (ARM)
	Error Queue
	Output Queue
	Message Queue
	Clearing Registers and Queues

	7 Installing and Using the Programmer’s Reference
	To install the help file under Microsoft Windows
	To get updated help and program files via the Internet
	To start the help file
	To navigate through the help file

	8 Programmer’s Quick Reference
	Conventions
	Suffix Multipliers
	Commands and Queries

	Index
	Notices

