
Keysight M9188A
PXI D/A Converter 16-Bit,
0-30 V, 0-20 mA

Programming
Guide

M9188A Programming Guide I

II M9188A Programming Guide

Notices
© Keysight Technologies 2014

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Keysight
Technologies as governed by United States
and international copyright laws.

Manual Part Number
M9188-90006

Edition
Edition 1, August 2014

Keysight Technologies
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Sales and Technical Support
To contact Keysight for sales and technical
support, refer to the "support" links on the
following Keysight web resources:
• www.keysight.com/find/M9188A

(product-specific information and
support, software and documentation
updates)

• www.keysight.com/find/assist
(worldwide contact information for
repair and service)

Information on preventing damage to your
Keysight equipment can be found at
www.keysight.com/find/tips.

Warranty
The material contained in this document is
provided “as is,” and is subject to change,
without notice, in future editions. Further,
to the maximum extent permitted by the
applicable law, Keysight disclaims all
warranties, either express or implied, with
regard to this manual and any information
contained herein, including but not limited
to the implied warranties of merchantabil-
ity and fitness for a particular purpose.
Keysight shall not be liable for errors or for
incidental or consequential damages in
connection with the furnishing, use, or
performance of this document or of any
information contained herein. Should Key-
sight and the user have a separate written
agreement with warranty terms covering
the material in this document that conflict
with these terms, the warranty terms in
the separate agreement shall control.

Technology Licenses
The hardware and or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend
U.S. Government Restricted Rights. Soft-
ware and technical data rights granted to
the federal government include only those
rights customarily provided to end user cus-
tomers. Keysight provides this customary
commercial license in Software and techni-
cal data pursuant to FAR 12.211 (Technical
Data) and 12.212 (Computer Software) and,
for the Department of Defense, DFARS
252.227-7015 (Technical Data - Commercial
Items) and DFARS 227.7202-3 (Rights in
Commercial Computer Software or Com-
puter Software Documentation).

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the likes
of that, if not correctly performed
or adhered to, could result in dam-
age to the product or loss of impor-
tant data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the likes of that, if not correctly
performed or adhered to, could
result in personal injury or death.
Do not proceed beyond a WARN-
ING notice until the indicated
conditions are fully understood
and met.

M9188A Programming Guide III

WARNING

If this product is not used as spec-
ified, the protection provided by
the equipment could be impaired.
This product must be used in a
normal condition (in which all
means for protection are intact)
only.

The types of product users are:
• Responsible body is the individual or

group responsible for the use and main-
tenance of equipment, for ensuring that
the equipment is operated within its
specifications and operating limits, and
for ensuring that operators are ade-
quately trained.

• Operators use the product for its
intended function. They must be trained
in electrical safety procedures and
proper use of the instrument. They must
be protected from electric shock and
contact with hazardous live circuits.

• Maintenance personnel perform rou-
tine procedures on the product to keep
it operating properly (for example, set-
ting the line voltage or replacing con-
sumable materials). Maintenance
procedures are described in the user
documentation. The procedures explic-
itly state if the operator may perform
them. Otherwise, they should be per-
formed only by service personnel.

• Service personnel are trained to work
on live circuits, perform safe installa-
tions, and repair products. Only properly
trained service personnel may perform
installation and service procedures.

Exercise extreme caution when a shock
hazard is present. Lethal voltage may be
present on cable connector jacks or test fix-
tures. The American National Standards
Institute (ANSI) states that a shock hazard
exists when voltage levels greater than 30V
RMS, 42.4V peak, or 60VDC are present.

A good safety practice is to expect that haz-
ardous voltage is present in any unknown
circuit before measuring.

Operators of this product must be protected
from electric shock at all times. The respon-
sible body must ensure that operators are
prevented access and/or insulated from
every connection point. In some cases, con-
nections must be exposed to potential
human contact. Product operators in these
circumstances must be trained to protect
themselves from the risk of electric shock.

Before operating an instrument, ensure that
the line cord is connected to a prop-
erly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers
for possible wear, cracks, or breaks before
each use.

When installing equipment where access to
the main power cord is restricted, such as
rack mounting, a separate main input power
disconnect device must be provided in
closed proximity to the equipment and
within easy reach of the operator.

For maximum safety, do not touch the prod-
uct, test cables, or any other instruments
while power is applied to the circuit under
test. ALWAYS remove power from the entire
test system and discharge any capacitors
before: connecting or disconnecting cables
or jumpers, installing or removing switching
cards, or making internal changes, such as
installing or removing jumpers.

Do not touch any object that could provide a
current path to the common side of the cir-
cuit under test or power line (earth) ground.
Always make measurements with dry hands
while standing on a dry, insulated surface
capable of withstanding the voltage being
measured.

The instrument and accessories must be
used in accordance with its specifications
and operating instructions, or the safety of
the equipment may be impaired.

CAUTION

• Do not exceed the maximum signal
levels of the instruments and
accessories, as defined in the
specifications and operating
information, and as shown on the
instrument or test fixture panels, or
switching card.

• Chassis connections must only be
used as shield connections for
measuring circuits, NOT as safety
earth ground connections.

• If you are using a test fixture, keep
the lid closed while power is
applied to the device under test.
Safe operation requires the use of a
lid interlock.

• Instrumentation and accessories
shall not be connected to humans.

To maintain protection from electric shock
and fire, replacement components in mains
circuits - including the power transformer,
test leads, and input jacks - must be pur-
chased from Keysight. Standard fuses with
applicable national safety approvals may be
used if the rating and type are the same.
Other components that are not
safety-related may be purchased from other
suppliers as long as they are equivalent to
the original component (note that selected
parts should be purchased only through
Keysight to maintain accuracy and function-
ality of the product). If you are unsure about
the applicability of a replacement compo-
nent, call an Keysight office for information.

WARNING

No operator serviceable parts
inside. Refer servicing to qualified
personnel. To prevent electrical
shock do not remove covers.

IV M9188A Programming Guide

Front and Rear Panels Symbols
The CE marking is the legal
required labeling for several EU
Directives of the European Union.

The CE marking shows that the product
complies with all relevant European Legal
Directives.

The RCM mark is a Compliance
Mark according to the ACMA
Labelling Requirement.

The KC mark shows that the product
complies with the relevant Korean
Compulsory Certification.

This symbol indicates
product compliance
with the Canadian Inter-

ference-Causing Equipment Standard
(ICES-001). It also identifies the product is
an Industrial Scientific and Medical Group 1
Class A product (CISPR 11, Clause 4).

This symbol indicates the time
period during which no hazard-
ous or toxic substance elements
are expected to leak or deterio-

rate during normal use. Forty years is the
expected useful life of the product.

Cleaning Precautions

WARNING

To prevent electrical shock, dis-
connect the Keysight Technolo-
gies instrument from mains before
cleaning. Use a dry cloth or one
slightly dampened with water to
clean the external case parts. Do
not attempt to clean internally. To
clean the connectors, use alcohol
in a well-ventilated area. Allow
all residual alcohol moisture to
evaporate, and the fumes to dissi-
pate prior to energizing the instru-
ment.

End of Life: Waste Electrical and Electronic Equipment (WEEE) Directive
2002/96/EC

This instrument complies with the WEEE Directive (2002/96/EC) marking
requirement. This affixed product label indicates that you must not discard
this electrical or electronic product in domestic household waste.

Product Category:

With reference to the equipment types in the WEEE directive Annex 1, this
instrument is classified as a “Monitoring and Control Instrument” product.

The affixed product label is as shown below.

Do not dispose in domestic household waste.

To return this unwanted instrument, contact your nearest Keysight Service
Center, or visit

www.keysight.com/environment/product

for more information.
M9188A Programming Guide V

THIS PAGE IS INTENTIONALLY LEFT BLANK.
VI M9188A Programming Guide

Table of Contents

What You Will Learn in this Programming Guide 1

Related Websites 2
Related Documentation 3
Understanding the Overall Process Flow 3

Before Programming, Install Hardware, Software, and Licenses 4

Understanding the Application Programming Interfaces (API) for
the M9188A PXI D/A Converter 6

IVI Instrument Classes (Defined by the IVI Foundation) 6
IVI Compliant or IVI Class Compliant 7
IVI Driver Types 8
IVI Driver Hierarchy 9
Instrument-Specific Hierarchies for the M9188A PXI D/A

Converter 11
Naming Conventions Used to Program IVI Drivers 12

Tutorial: Create a Project with IVI-COM Using C# 14

Step 1 – Create a “Console Application” 14
Step 2 – Add References 15
Step 3 – Add using Statements 17
Step 4 – Create Instances of the IVI-COM Drivers 18
Step 5 – Initialize the Driver Instances 19
Step 6 – Write the Program Steps 24
Step 7 – Close the Driver 26
Step 8 – Building and Running a Complete Example Program

Using Visual C# 26
Example Program 1: How to Print the Driver Properties and

Close the Driver Sessions 27

Understanding and Working with the M9188A PXI D/A
Converter 32

Product Overview 32
Output Mode 32
M9188A Programming Guide VII

Operating Mode 33
Event 34
Trigger Out 35
Clock IN/OUT 36
Synchronizing Multi Modules 36
Example Program 2: How to Output a DC signal, a Sine

Waveform, a Square Waveform, and a Triangle Waveform,
Using the Software Trigger 38

Example Program 3: How to Output an Arbitrary Waveform and
Create an Arbitrary Waveform from a File, Using the Software
Trigger 45

Example Program 4: How to Output a DC Signal, Using the EXT
Trigger 50

Example Program 5: How to Output an Event 54
Example Program 6: How to Output on Synchronization

(Master/Slave) 58

IVI-COM and IVI-C API References 65

Unsupported IVI-COM APIs 65
Unsupported IVI-C APIs 73

Glossary 82
VIII M9188A Programming Guide

What You Will Learn in this Programming Guide
What You Will Learn in this Programming Guide

This programming guide is intended for individuals who
write and run programs to control test- and- measurement
instruments. Specifically, in this programming guide, you will
learn how to use Visual Studio 2010 with the .NET
Framework to write IVI- COM Console Applications in Visual
C#. Knowledge of Visual Studio 2010 with the .NET
Framework and knowledge of the programming syntax for
Visual C# is required.

Our basic user programming model uses the IVI- COM driver
directly and allows customer code to:

• access the IVI- COM driver at the lowest level

• control the Keysight M9188A PXI D/A Converter

IVI- COM Console Applications that are
covered in this programming guide are
used to perform the basic functionality of
the M9188A PXI D/A Converter.

The following basic functionality tests are covered:

• Example Program 1: How to Print Driver Properties and
Close Driver Sessions

• Example Program 2: How to Output a DC Signal, a Sine
Waveform, a Square Waveform, and a Triangle Waveform;
Using the Software Trigger

• Example Program 3: How to Output an Arbitrary
Waveform and Create an Arbitrary Waveform from a File;
Using the Software Trigger

• Example Program 4: How to Output a DC Signal; Using
the EXT Trigger

• Example Program 5: How to Output an Event

• Example Program 6: How to Output on Synchronization
(Master/Slave)
M9188A Programming Guide 1

What You Will Learn in this Programming Guide
Related Websites

• Keysight Technologies PXI and AXIe Modular Products
(http://www.keysight.com/find/modular)

• M9188A PXI D/A Converter
(http://www.keysight.com/find/M9188A)

• Keysight Technologies (http://www.keysight.com/)

• IVI Drivers and Components Downloads
(http://www.keysight.com/find/ivi)

• Keysight I/O Libraries Suite
(http://www.keysight.com/find/iosuite)

• GPIB, USB, and Instrument Control Products
(http://www.keysight.com/find/io)

• Keysighy VEE Pro (http://www.keysight.com/find/vee)

• Technical Support, Manuals, and Downloads
(http://www.keysight.com/find/support)

• Contact Keysight Test and Measurement
(http://www.keysight.com/find/contactus)

• IVI Foundation (http://www.ivifoundation.org/) - Usage
Guides, Specifications, Shared Components Downloads

• MSDN Online (http://msdn.microsoft.com/)
2 M9188A Programming Guide

What You Will Learn in this Programming Guide
Related Documentation

To access documentation related to the IVI Driver, use one
of the following:

Understanding the Overall Process Flow

• Write source code using Microsoft Visual Studio 2010 with
.NET Visual C# running on Windows 7.

• Compile Source Code using the .NET Framework Library.

• Produce an Assembly.exe file - this file can run directly
from Microsoft Windows without the need for any other
programs. When using the Visual Studio Integrated
Development Environment (IDE), the Console Applications
you write are stored in conceptual containers called
Solutions and Projects. You can view and access Solutions
and Projects using the Solution Explorer window (View >
Solution Explorer).

Document Link

Startup Guide[1]

Includes procedures to help you to unpack, inspect, install (software and
hardware), perform instrument connections, verify operability, and troubleshoot
your product. Also includes an annotated block diagram.

C:\Program Files\Keysight\M9188\
Help

Data Sheet[1]

In addition to a detailed product introduction, the data sheet supplies full
product specifications.

C:\Program Files\Keysight\M9188\
Help

LabVIEW Driver Reference (Online Help System)

Provides detailed documentation of the LabVIEW G Driver API functions.

C:\Program Files\Keysight\M9188\
LabVIEW Driver Help

[1] If these links do not work, you can find these items at:

C:\Program Files\Keysight\M9188 or C:\Program Files(x86)\Keysight\M9188
M9188A Programming Guide 3

Before Programming, Install Hardware, Software, and Licenses
Before Programming, Install Hardware, Software, and Licenses

1 Install Microsoft Visual Studio 2010 with .NET Visual C#
running on Windows 7.

The following steps, defined in the Keysight M9188A PXI
D/A Converter Startup Guide, M9188- 90001, but repeated
here must be completed before programmatically
controlling the M9188A PXI D/A Converter hardware with
these IVI drivers.

2 Unpack and inspect all hardware.

3 Verify the shipment contents.

4 Install the software. Note the following order when
installing software!

(If you run the installation .exe, all of these are installed
automatically.)

• Install Keysight IO Libraries Suite (IOLS), Version
16.3.17914.4 or newer; this installation includes
Keysight Connections Expert.

• Install the M9188A PXI D/A Converter driver software,
Version 1.0.0.0 or newer. Driver software includes all
IVI- COM, IVI- C, and LabVIEW G Drivers along with
Soft Front Panel (SFP) programs and documentation.

All of these items may be downloaded from the Keysight
product websites:

• http://www.keysight.com/find/iosuite

• http://www.keysight.com/find/ivi - download installers
for Keysight IVI- COM drivers

• http://www.keysight.com/find/M9188A

5 Install the hardware modules and make cable connections.
4 M9188A Programming Guide

Before Programming, Install Hardware, Software, and Licenses
6 Verify operation of the modules (or the system that the
modules create).

Once the software and hardware are installed and
verification of operation has been performed, the M9188A
is ready to be programmatically controlled.

NOTE Before programming or making measurements, conduct a Self-Test on the
M9188A PXI D/A Converter to make sure there are no problems with the
modules.
M9188A Programming Guide 5

Understanding the Application Programming Interfaces (API) for the M9188A PXI D/A Converter
Understanding the Application Programming Interfaces (API) for
the M9188A PXI D/A Converter

The following IVI driver terminology may be used throughout
this programming guide.

IVI [Interchangeable Virtual Instruments] - a standard
instrument driver model defined by the IVI Foundation that
enables engineers to exchange instruments made by different
manufacturers without rewriting their code.
www.ivifoundation.org

Currently, there are 13 IVI Instrument Classes defined by
the IVI Foundation. The M9188A PXI D/A Converter do not
belong to any of these 13 IVI Instrument Classes and are
therefore describes as “NoClass” modules.

IVI Instrument Classes (Defined by the IVI Foundation)

• DC Power Supply

• AC Power Supply

• DMM

• Function Generator

• Oscilloscope

• Power Meter

• RF Signal Generator

• Spectrum Analyzer

• Switch

• Upconverter

• Downconverter

• Digitizer

• Counter/Timer
6 M9188A Programming Guide

Understanding the Application Programming Interfaces (API) for the M9188A PXI D/A Converter
IVI Compliant or IVI Class Compliant

The M9188A PXI D/A Converter are IVI Compliant, but not
IVI Class Compliant; it does not belong to one of the 13 IVI
Instrument Classes defined by the IVI Foundation.

• IVI Compliant - means that the IVI driver follows
architectural specifications for these categories:

• Installation

• Inherent Capabilities

• Cross Class Capabilities

• Style

• Custom Instrument API

• IVI Class Compliant - means that the IVI driver
implements one of the 13 IVI Instrument Classes

• If an instrument is IVI Class Compliant, it is also IVI
Compliant

• Provides one of the 13 IVI Instrument Class APIs in
addition to a Custom API

• Custom API may be omitted (unusual)

• Simplifies exchanging instruments
M9188A Programming Guide 7

Understanding the Application Programming Interfaces (API) for the M9188A PXI D/A Converter
IVI Driver Types

• IVI Driver

• Implements the Inherent Capabilities Specification

• Complies with all of the architecture specifications

• May or may not comply with one of the 13 IVI
Instrument Classes

• Is either an IVI Specific Driver or an IVI Class Driver

• IVI Specific Driver

• Is an IVI Driver that is written for a particular
instrument such as the M9188A PXI D/A Converter

• IVI Class Driver

• Is an IVI Driver needed only for interchangeability in
IVI- C environments

• The IVI Class may be IVI- defined or customer- defined

• IVI Class- Compliant Specific Driver
8 M9188A Programming Guide

Understanding the Application Programming Interfaces (API) for the M9188A PXI D/A Converter
• IVI Specific Driver that complies with one (or more) of
the IVI defined class specifications

• Used when hardware independence is desired

• IVI Custom Specific Driver

• IVI Specific Driver that is not compliant with any one
of the IVI defined class specifications

• Not interchangeable

IVI Driver Hierarchy

When writing programs, you will be using the interfaces
(APIs) available to the IVI- COM driver.

The core of every IVI- COM driver is a single object with
many interfaces.

These interfaces are organized into two hierarchies:
Class- Compliant Hierarchy and Instrument- Specific
Hierarchy — and both include the IIviDriver interfaces.

• Class- Compliant Hierarchy - Since the M9188A PXI D/A
Converter does not belong to one of the 13 IVI Classes,
there is no Class- Compliant Hierarchy in its IVI Driver.

• Instrument- Specific Hierarchy

• The M9188A PXI D/A Converter instrument- specific
hierarchy has IKtM9188 at the root (where KtM9188 is
the driver name).

IKtM9188 is the root interface and contains references
to child interfaces, which in turn contain references to
other child interfaces. Collectively, these interfaces
define the instrument- specific hierarchy.

• The IIviDriver interfaces are incorporated into both
hierarchies: Class- Compliant Hierarchy and
Instrument- Specific Hierarchy.

The IIviDriver is the root interface for IVI Inherent
Capabilities which are what the IVI Foundation has
established as a set of functions and attributes that all IVI
M9188A Programming Guide 9

Understanding the Application Programming Interfaces (API) for the M9188A PXI D/A Converter
drivers must include — irrespective of which IVI
instrument class the driver supports. These common
functions and attributes are called IVI inherent
capabilities and they are documented in IVI- 3.2 —
Inherent Capabilities Specification. Drivers that do not
support any IVI instrument class such as the M9188A PXI
D/A Converter must still include these IVI inherent
capabilities.

IIviDriver

Close

DriverOperation

Identity

Initialize

Initialized

Utility
10 M9188A Programming Guide

Understanding the Application Programming Interfaces (API) for the M9188A PXI D/A Converter
Instrument-Specific Hierarchies for the M9188A PXI D/A
Converter

The following table lists the instrument- specific hierarchy
interfaces for the M9188A PXI D/A Converter.

Keysight M9188A PXI D/A Converter

Instrument-Specific Hierarchy

KtM9188 is the driver name

IKtM9188 is the root interface
M9188A Programming Guide 11

Understanding the Application Programming Interfaces (API) for the M9188A PXI D/A Converter
Naming Conventions Used to Program IVI Drivers

General IVI Naming Conventions

• All instrument class names start with “Ivi”

• Example: IviScope, IviDmm

• Function names

• One or more words use PascalCasing

• First word should be a verb

NOTE To view interfaces available in the M9188A PXI D/A Converter, right-click
the KtM9188Lib library file, in the References folder, from the Solution
Explorer window and select View in Object Browser.
12 M9188A Programming Guide

Understanding the Application Programming Interfaces (API) for the M9188A PXI D/A Converter
IVI-COM Naming Conventions

• Interface naming

• Class compliant: Starts with “IIvi”

• I<ClassName>

• Example: IIviScope, IIviDmm

• Sub- interfaces add words to the base name that match
the C hierarchy as close as possible

• Examples: IIviFgenArbitrary, IIviFgenArbitraryWaveform

• Defined values

• Enumerations and enum values are used to represent
discrete values in IVI- COM

• <ClassName><descriptive words>Enum

• Example: IviScopeTriggerCouplingEnum

• Enum values do not end in “Enum” but use the last
word to differentiate

Examples: IviScopeTriggerCouplingAC and
IviScopeTriggerCouplingDC
M9188A Programming Guide 13

Tutorial: Create a Project with IVI-COM Using C#
Tutorial: Create a Project with IVI-COM Using C#

This tutorial will walk through the various steps required to
create a console application using Visual Studio and C#. It
demonstrates how to instantiate two driver instances, set the
resource names and various initialization values, initialize
the two driver instances, print various driver properties to a
console for each driver instance, check drivers for errors
and report the errors if any occur, and close both drivers.

• Step 1. Create a "Console Application"

• Step 2. Add References

• Step 3. Add using Statements

• Step 4. Create an Instance

• Step 5. Initialize the Instance

• Step 6. Write the Program Steps (Create a Square
Waveform Output)

• Step 7. Close the Instance

At the end of this tutorial is a complete example program
that shows what the console application looks like if you
follow all of these steps.

Step 1 – Create a “Console Application”

1 Launch Visual Studio and create a new Console
Application in Visual C# by selecting: File > New > Project
and select a Visual C# Console Application.

Enter “M9188Properties” as the Name of the project and
click OK.

NOTE Projects that use a Console Application do not show a Graphical User
Interface (GUI) display.
14 M9188A Programming Guide

Tutorial: Create a Project with IVI-COM Using C#
2 Select Project and click Add Reference. The Add Reference
dialog appears.

For this step, Solution Explorer must be visible (View >
Solution Explorer) and the “Program.cs” editor window must
be visible – select the Program.cs tab to bring it to the
front view.

Step 2 – Add References

In order to access the M9188A PXI D/A Converter driver
interfaces, a reference to its driver (DLL) must be created.

1 In Solution Explorer, right- click on References and select Add
Reference.

2 From the Add Reference dialog, select the COM tab.

3 Click on any of the type libraries under the “Component
Name” heading and enter the letter “I”. (All IVI drivers
begin with IVI so this will move down the list of type
libraries that begin with “I”.)

NOTE When you select New, Visual Studio will create an empty Program.cs file
that includes some necessary code, including using statements. This
code is required, so do not delete it.
M9188A Programming Guide 15

Tutorial: Create a Project with IVI-COM Using C#
4 Scroll to the IVI section and, using Shift- Ctrl, select the
following type libraries then select OK.

IVI KtM9188 1.0 Type Library

NOTE • If you have not installed the IVI driver for the M9188A PXI D/A
Converter (as listed in the previous section titled “Before Programming,
Install Hardware, Software, and Licenses”), its IVI driver will not appear
in this list.

• Also, the TypeLib Version that appears will depend on the version of the
IVI driver that is installed. The version numbers change over time and
typically increase as new drivers are released.

• To get the IVI drivers to appear in this list, you must close this Add
Reference dialog, install the IVI drivers, and come back to this section
and repeat “Step 2 – Add References”.

NOTE When any of the references for the M9188A PXI D/A Converter are added,
the IVIDriver 1.0 Type Libary is also automatically added. This is
visible as IviDriverLib under the project Reference; this reference
houses the interface definitions for IVI inherent capabilities which are
located in the file IviDriverTypeLib.dll (dynamically linked library).
16 M9188A Programming Guide

Tutorial: Create a Project with IVI-COM Using C#
5 These selected type libraries appear under the References
node, in Solution Explorer, as:

Step 3 – Add using Statements

All data types (interfaces and enums) are contained within
namespaces. (A namespace is a hierarchical naming scheme
for grouping types into logical categories of related
functionality. Design tools, such as Visual Studio, can use
namespaces which makes it easier to browse and reference
types in your code.)

The C# using statement allows the type name to be used
directly. Without the using statement, the complete
namespace- qualified name must be used. To allow your
program to access the IVI driver without having to type the
full path of each interface or enum, type the following
using statements immediately below the other using
statements; the following example illustrates how to add
using statements.

To access the IVI drivers without having to specify or type the full
path of each interface or enum

These using statements should be added to your program:

using Ivi.Driver.Interop;
using Keysight.KtM9188.Interop;

NOTE Your program looks the same as it did before you added the References,
but the difference is that the IVI drivers that you added References to are
now available for use. To allow your program to access the IVI drivers
without specifying full path names of each interface or enum, you need to
add using statements to your program.
M9188A Programming Guide 17

Tutorial: Create a Project with IVI-COM Using C#
Step 4 – Create Instances of the IVI-COM Drivers

There are two ways to instantiate (create an instance of) the
IVI- COM drivers:

• Direct Instantiation

• COM Session Factory

Since the M9188A PXI D/A Converter is considered a
NoClass module (because it does not belong to one of the 13
IVI Classes), the COM Session Factory is not used to create

instances of its IVI- COM drivers. So, the M9188A PXI D/A
Converter IVI- COM driver uses direct instantiation.

To create driver instances

The new operator is used in C# to create an instance of the
driver.

IKtM9188 driver = new KtM9188();

NOTE You can create sections of code in your program that can be expanded and
collapsed by surrounding the code with #region and #endregion
keywords. Selecting the – and + symbols allows the region to be collapsed
and expanded.

Collapsed Expanded
18 M9188A Programming Guide

Tutorial: Create a Project with IVI-COM Using C#
Step 5 – Initialize the Driver Instances

Initialize() is required when using any IVI driver; it
establishes a communication link (an “I/O session”) with an
instrument and it must be called before the program can do
anything with an instrument or work in simulation mode.

The Initialize() method has a number of options that
can be defined (see Initialize Options below). In this
example, we prepare the Initialize() method by defining
only a few of the parameters, then we call the
Initialize() method with those parameters:

To determine the ResourceName

• If you are using Simulate Mode, you can set the Resource
Name address string to:

string resourceDesc = "%";

• If you are actually establishing a communication link (an
“I/O session”) with an instrument, you need to determine
the Resource Name address string (VISA address string)
that is needed. You can use an IO application such as
Keysight Connection Expert, National Instruments
Measurement and Automation Explorer (MAX), or you can
use the Keysight product’s Soft Front Panel (SFP) to get
the physical Resource Name string.

Using the M9188A Soft Front Panel, you might get the
following Resource Name address string.
M9188A Programming Guide 19

Tutorial: Create a Project with IVI-COM Using C#
string resourceDesc = "PXI17::12::0::INSTR";

Set the Initialize()Parameters

string resourceDesc = "PXI20::0::0::INSTR";
string initOptions = "QueryInstrStatus=true,
Simulate=false, DriverSetup= Model=,
Trace=false";
bool idquery = true;
bool reset = true;

Module Name M9188A PXI D/A Converter

Slot Number 14

VISA Address PXI17::12::0::INSTR

NOTE Although the Initialize() method has a number of options that can
be defined (see Initialize Options below), we are showing this example
with a minimum set of options to help minimize complexity.
20 M9188A Programming Guide

Tutorial: Create a Project with IVI-COM Using C#
Call the Initialize() Method with the Set Parameters

// Initialize the driver
driver.Initialize(resourceDesc, idquery, reset,
initOptions);
Console.WriteLine("Driver Initialized\n");

The above example shows how IntelliSense is invoked by
simply rolling the cursor over the word “Initialize”.

Understanding Initialize Options

The following table describes options that are most
commonly used with the Initialize() method.

NOTE One of the key advantages of using C# in the Microsoft Visual Studio
Integrated Development Environment (IDE) is IntelliSense. IntelliSense is a
form of auto-completion for variable names and functions and a
convenient way to access parameter lists and ensure correct syntax. This
feature also enhances software development by reducing the amount of
keyboard input required.
M9188A Programming Guide 21

Tutorial: Create a Project with IVI-COM Using C#
Property Type and Example Value Description of Property

string ResourceName =
PXI[bus]::device[::function][::INSTR]

string ResourceName =
"PXI17::12::0::INSTR";

ResourceName

The driver is typically initialized using a physical resource
name descriptor, often a VISA resource descriptor.

See the above procedure:

“To determine the ResourceName”

bool IdQuery = true; IdQuery

Setting the ID query to false prevents the driver from
verifying that the connected instrument is the one the driver
was written for because if IdQuery is set to true, this will
query the instrument model and fail initialization if the
model is not supported by the driver.

bool Reset = true; Reset

Setting Reset to true tells the driver to initially reset the
instrument.
22 M9188A Programming Guide

Tutorial: Create a Project with IVI-COM Using C#
If these drivers were installed, additional information can be
found under “Initializing the IVI- COM Driver” from the
following:

KtM9188A IVI Driver Reference

string OptionString =
"QueryInstrStatus=true, Simulate=true,

OptionString

Setup the following initialization options:

• QueryInstrStatus=true
(Specifies whether the IVI specific driver queries the
instrument status at the end of each user operation.)

• Simulate=true
(Setting Simulate to true tells the driver that it should not
attempt to connect to a physical instrument, but use a
simulation of the instrument instead.)

• Cache=false
(Specifies whether or not to cache the value of
properties.)

• InterchangeCheck=false
(Specifies whether the IVI specific driver performs
interchangeability checking.)

• RangeCheck=false
(Specifies whether the IVI specific driver validates
attribute values and function parameters.)

• RecordCoercions=false
(Specifies whether the IVI specific driver keeps a list of
the value coercions it makes for ViInt32 and ViReal64
attributes.)

DriverSetup= Trace=false"; • DriverSetup=
(This is used to specify settings that are supported by the
driver, but not defined by IVI. If the Options String
parameter (OptionString in this example) contains
an assignment for the Driver Setup attribute, the Initialize
function assumes that everything following
'DriverSetup=' is part of the assignment.)

• Model=M9188A
(Instrument model to use during simulation.)

• Trace=false
(If false, an output trace log of all driver calls is not saved
in an XML file.)

Property Type and Example Value Description of Property
M9188A Programming Guide 23

Tutorial: Create a Project with IVI-COM Using C#
Start > All Programs > Keysight Instrument Drivers > IVI-COM-C
Drivers > KtM9188 Dynamic DAC

Step 6 – Write the Program Steps

At this point, you can add program steps that use the driver
instances to perform tasks.

Example: Using the Soft Front Panel to Write Program Commands

You may find it useful when developing a program to use
the instrument's Soft Front Panel (SFP) "Driver Call Log";
this driver call log is used to view a list of driver calls that
have been performed when changes are made to the controls
on the soft front panel.

In this example, open the Soft Front Panel for the M9188A
PXI D/A Converter and perform the following steps:

1 Set Output Channel 1 to DC Voltage mode

2 Enable Output Channel 1’s output relay

3 Enable the output
24 M9188A Programming Guide

Tutorial: Create a Project with IVI-COM Using C#
Property Type and Example Value Description of Property

KtM9188 is the driver name used by the SFP. driver is the instance of the driver that is used in this
example. This instance would have been created in, “Step 4
– Create Instances of the IVI-COM Drivers”.

IKtM9188 driver = new KtM9188();

//Set the Output Channel 1 to DC
Voltage mode with 10V level

driver.Outputs.get_Item("Output1").Sta
ndardWaveform.ConfigureFunction(KtM918
8OutputModeVoltage,KtM9188StdWaveformD
C,10,0,0,1000,50);

//Enable Output Channel 1?? output
relay

driver.Outputs.get_Item("Output1").Ena
bled = True;

//Enable the output

driver.Trigger.Initiate();

driver.Trigger.SendSoftwareTrigger();

Or you could even configure channel with this:

//Set the Output Channel 1 to Voltage
mode

driver.Outputs.get_Item("Output1").Out
putMode =
KtM9188OutputModeEnum.KtM9188OutputMod
eVoltage;

//Set the Output Channel 1 to DC mode

driver.Outputs.get_Item("Output1").Sta
ndardWaveform.Function =
KtM9188StdWaveformEnum.KtM9188StdWavef
ormDC;

//Set the Output Channel 1 to output
10V

driver.Outputs.get_Item("Output1").Sta
ndardWaveform.Amplitude = 10;
M9188A Programming Guide 25

Tutorial: Create a Project with IVI-COM Using C#
Step 7 – Close the Driver

Calling Close() at the end of the program is required by
the IVI specification when using any IVI driver.

Important! Close() may be the most commonly missed
step when using an IVI driver. Failing to do this could mean
that system resources are not freed up and your program
may behave unexpectedly on subsequent executions.

{

 if (driver != null && driver.Initialized)
 {
 #region Close Driver Instances
 driver.Close();
 Console.WriteLine("Driver Closed");
 #endregion
 }
}

Step 8 – Building and Running a Complete Example Program
Using Visual C#

Build your console application and run it to verify it works
properly.

1 Open the solution file SolutionNameThatYouUsed.sln in Visual
Studio 2010.

2 Set the appropriate platform target for your project.

In many cases, the default platform target (Any CPU) is
appropriate. But, if you are using a 64- bit PC (such as
Windows 7) to build a .NET application that uses a 32- bit
IVI- COM driver, you may need to specify your project's
platform target as x86.

3 Choose Project > ProjectNameThatYouUsed Properties and
select Build | Rebuild Solution.
26 M9188A Programming Guide

Tutorial: Create a Project with IVI-COM Using C#
Alternate: From the Debug menu, click Start Debugging or
press the F5 key.

Example programs may be found by selecting:

C:\Program Files\IVI Foundation\IVI\Drivers\KtM9188\
Examples

or

C:\Program Files (x86)\IVI Foundation\IVI\Drivers\KtM9188\
Examples

Example Program 1: How to Print the Driver Properties and
Close the Driver Sessions

The following example code builds on the previously
presented “Tutorial: Create a Project with IVI- COM Using
C#” and demonstrates how to instantiate driver instances,
set the resource names and various initialization values,
initialize the two driver instances, print various driver
properties for each driver instance, check drivers for errors
and report the errors if any occur, and close the drivers.
M9188A Programming Guide 27

Tutorial: Create a Project with IVI-COM Using C#
28 M9188A Programming Guide

Tutorial: Create a Project with IVI-COM Using C#
Example Program 1: How to Print the Driver Properties and Close the Driver Sessions

// Copy the following example code and compile it as a C# Console Application
// Example__KtM9188_PrintProperties.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
using Keysight.KtM9188.Interop;
#endregion

namespace KtM9188_PrintProperties
{
 class Program
 {
 [STAThread]
 public static void Main(string[] args)
 {
 Console.WriteLine(" PrintProperties");
 Console.WriteLine();
 KtM9188 driver = null;

 try
 {
 #region Initialize Driver Instances
 driver = new KtM9188();

 // Edit resource and options as needed. Resource is ignored if option Simulate=true
 string resourceDesc = "PXI17::12::0::INSTR";

 string initOptions = "QueryInstrStatus=true, Simulate=false, DriverSetup= Model=,
Trace=false";

 bool idquery = true;
 bool reset = true;

 // Initialize the driver. See driver help topic "Initializing the IVI-COM Driver"
for additional information
 driver.Initialize(resourceDesc, idquery, reset, initOptions);
 Console.WriteLine("Driver Initialized\n");
 #endregion

 #region Print Driver Properties
 Console.WriteLine("Identifier: {0}", driver.Identity.Identifier);
 Console.WriteLine("Revision: {0}", driver.Identity.Revision);
 Console.WriteLine("Vendor: {0}", driver.Identity.Vendor);
 Console.WriteLine("Description: {0}", driver.Identity.Description);
 Console.WriteLine("Model: {0}", driver.Identity.InstrumentModel);
 Console.WriteLine("FirmwareRev: {0}", driver.Identity.InstrumentFirmwareRevision);
 Console.WriteLine("Serial #: {0}", driver.System.SerialNumber);
 Console.WriteLine("\nSimulate: {0}\n", driver.DriverOperation.Simulate);
M9188A Programming Guide 29

Tutorial: Create a Project with IVI-COM Using C#
 #endregion

 #region Perform Tasks
 // TO DO: Exercise driver methods and properties.
 // Put your code here to perform tasks with module.
 #endregion

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (driver != null && driver.Initialized)
 {
 #region Close Driver Instances
 driver.Close();
 Console.WriteLine("Driver Closed");
 #endregion
 }
 }

 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

30 M9188A Programming Guide

Tutorial: Create a Project with IVI-COM Using C#
NOTE Disclaimer

© 2014 Keysight Technologies. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this
Sample Application (and/or any modified version) in any way you find
useful, provided that you agree that Keysight Technologies has no
warranty, obligations or liability for any Sample Application Files.

Keysight Technologies provides programming examples for illustration
only. This sample program assumes that you are familiar with the
programming language being demonstrated and the tools used to create
and debug procedures.

Keysight Technologies support engineers can help explain the
functionality of Keysight Technologies software components and
associated commands, but they will not modify these samples to provide
added functionality or construct procedures to meet your specific needs.
M9188A Programming Guide 31

Understanding and Working with the M9188A PXI D/A Converter
Understanding and Working with the M9188A PXI D/A
Converter

Product Overview

The M9188A is a PXI based Dynamic Digital Analog
Converter (Dynamic DAC). The module consists of four
isolated banks. Each isolated bank has 4 DAC channels,
resulting in a total of 16 DAC channels within one module.

Every DAC channel is capable of supplying voltages between
0 V DC and 30 V DC at a 16- bit resolution. Each channel
can also generate current between 0 mA and +20 mA at a
16- bit resolution. Pre- defined waveforms (such as sine,
square, and triangle) can be configured using the M9188A
SFP or IVI driver. Every DAC channel also has its own
1 MSa memory for playing back arbitrary waveforms
(user- defined waveforms) that are pre- downloaded from a
host controller. This module is built into a single compact
3U PXI slot.

Output Mode

There are two main output modes — voltage and current.

Every channel can be configured to output voltage or
current. All channels output can be enabled individually or
simultaneously.

Output voltage range = 0 to 30 V;
Accuracy[1] spec is + (0.1% + 5 mV).

NOTE You cannot change the settings (output mode, function, frequency, duty
cycle, amplitude, offset, phase shift) on-the-fly. Channel output must be
disabled and enabled again for new settings to take effect.
32 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
Output current range = 0 to 20 mA;
Accuracy[1] spec is + (0.15% + 10 µA).

Operating Mode

There are two operating modes — Level (Static or DC) and
Playback (Dynamic or AC).

• In LEVEL mode, every channel can be configured to
output a static DC voltage or current. The output level
can take effect immediately (software trigger) or when
externally triggered (PXI, PXIStar or EXT trigger).

• In PLAYBACK mode, every channel can be configured to
output a pre- defined waveform (sine, square, triangle) or
arbitrary waveform (user define waveform
pre- downloaded into memory through host PC).

When you configure a channel, you must select:

1 Voltage or Current output mode, and

2 Level or Playback mode

Using Level Mode

To use a channel to output DC, you need to decide whether
it will be a voltage or current, and set the level. You can
select voltage mode, and set any output level between 0 to
+30 V. If you select current mode, output level can be
between 0 to +20 mA.

Output voltage range = 0 to 30 V.

Output current range = 0 to 20mA.

Using Playback Mode

To use a channel to output waveform, you need to decide
whether it will be a voltage or current waveform. This
module can generate three standard waveforms: sine, square,

[1] For official accuracy and other specifications, kindly refer to M9188A
Datasheet.
M9188A Programming Guide 33

Understanding and Working with the M9188A PXI D/A Converter
and triangle. You can also create your own custom waveform
(arbitrary or user- defined) using module SFP. Size of the
waveform cannot exceed 1 MSa.

There are two playback modes — Continuous or Burst. The
default is continuous. The amplitude and offset cannot be set
such that they combine to exceed the instrument's capability.
Whichever one you set last in this situation will be modified
to remain within the instrument's limits.

Continuous Mode

• Waveform data is first downloaded from the host
controller to the module memory.

• Upon trigger reception, the module will update the DAC
with the waveform memory data at a rate determined by
the sample clock.

• At the end of the waveform memory, the module
automatically loopbacks to the start of the waveform.

• The cycle will continue until the software commands it to
stop (output disabled).

Burst Mode

• Waveform data is first downloaded from the host
controller to the module memory.

• Upon trigger reception, the module will update the DAC
with wthe aveform memory data at a rate determined by
the sample clock.

• At the end of the waveform memory, the module
automatically loopbacks to the start of the waveform.

• The output will stop when the Burst Count set is reached.

Event

• When EVENT is set to OFF — the module needs to be set
to receive PXI Bus Trigger or external hardware trigger.
In other words, Software is not a valid mode when
EVENT is OFF. You will have to select either PXI Bus
trigger or External hardware trigger.
34 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
• When EVENT is set to “EXT” — the module is set to send
external trigger OUT (via Trigger I/O SMB) when any
channel output is set to enabled. (In this condition, all
channels in the module will automatically go into
Software mode before setting the destination value (EXT).
See more in the “Trigger Out” section.

• When EVENT is set to “PXI<n>” — the module is set to
send external trigger OUT (via PXI Bus Trigger) when any
channel output is set to enabled. (In this condition, all
channels in the module will automatically go into
Software mode before setting the destination value (EXT
or PXI<n>). See more in the “Trigger Out” section.

Trigger Out

A Trigger Out signal is provided on the front panel trigger
I/O SMB connector (EXT) or PXI Bus trigger. The output
trigger pulse is TTL compatible and a standard width of
250ns (typical).

The module can be set to send trigger out pulse via EXT or
PXI Trigger Bus.

• If EXT Trigger out is selected, a pulse is sent through the
front panel SMB trigger I/O connector. The slope to
respond to a trigger signal can be rising or falling edge.

• If PXI Bus trigger is selected, trigger signal will be sent
through the PXI Trigger Bus to the specified destination
module. There are eight unique trigger lines (PXI0,
PXI1,...PXI7).
M9188A Programming Guide 35

Understanding and Working with the M9188A PXI D/A Converter
Clock IN/OUT

The external clock (via the EXT CLK SMB connector located
at front panel), which is software programmable, allows
either synchronization between two modules or to an
external reference 10 MHz clock.

• By default, the EXT CLK is programmed to “EXT CLK
IN”. At this state, the module's sampling clock frequency
at EXT CLK IN will be set to 10 MHz.

• Master and Slave Devices - this is when you want to
synchronize between two modules. One module is
designated as the master and another one as the slave.
The master will be programmed to EXT CLK OUT, while
the slave to EXT CLK IN. By doing this, the slave module
reference clock will be set to the 10 MHz clock signal
from the master module. Since there is only one EXT CLK
SMB connector on each module, only one slave module is
possible.

There can be three selections of the 10 MHz system
reference clock:

• Module internal clock (default)

• PXI clock

• External input clock

Synchronizing Multi Modules

Sample base clock for the M9188A is fixed to 2 MHz to
achieve 2 MSa/s sampling rate as shown in Figure 1 as the
maximum allowed sampling rate for each channel is 500
kSa/s.
36 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
Figure 1 Maximum allowed sampling rate for each channel in every
bank

The sample base clock is generated from the FPGA PLL
using the 10 MHz reference clock and use in the module
itself of send through the trigger lines to another module for
multi module synchronization. Figure 2 shows an example of
a sample clock which is generated from the module or can
be from other module through the trigger lines.
M9188A Programming Guide 37

Understanding and Working with the M9188A PXI D/A Converter
Figure 2 Example of synchronizing multiple modules with trigger sig-
nal and sample clock

To illustrate, a trigger signal is input from another trigger
line and set to trigger on positive edge. As soon as a trigger
signal is detected, sampling will start on the next clock
cycle. In this example, the sampling clock is derived from
base clock by a dividing factor of two. And output signal is
shown by connecting the points of sampling.

Example Program 2: How to Output a DC signal, a Sine
Waveform, a Square Waveform, and a Triangle Waveform,
Using the Software Trigger

The following example code demonstrates how to instantiate
a driver instance, set the resource name and various
initialization values, initialize the driver instances:

1 Apply changes to hardware

2 Output waveform

2MHz Sample
Base Clock

Trigger
Signal

Sample Clock
derived from

(eg. Base Clock/2)

Sampling points
based on

 sampling clock
38 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
3 Report errors if any occur, and close the drivers
M9188A Programming Guide 39

Understanding and Working with the M9188A PXI D/A Converter
Pseudo-code of How to Output a DC signal, a Sine Waveform, a
Square Waveform, and a Triangle Waveform, Using the Software
Trigger

1 Configure hardware Trigger Source to “Software”

2 Configure Output Channel 1 to DC mode

• Voltage mode (10 Volt)

3 Configure Output Channel 2 to Sine Wave mode

• Voltage mode (OffsetLevel 20 Volt and Amplitude
10 Volt)

• 1 kHz

• 0 degree phase shift

4 Configure Output Channel 3 to Square Wave mode

• Voltage mode (OffsetLevel 15 Volt and Amplitude
3 Volt)

• 500 Hz

• 0 degree phase shift

• 70% duty cycle

5 Configure Output Channel 4 to Triangle Wave mode

• Current mode (OffsetLevel 0.01A and Amplitude 0.02A)

• 2 kHz

• 90 degree phase shift

6 Configure and turn on Output Channel relay

7 Output waveform

Example Program 2: How to Output a DC signal, a Sine Waveform, a Square Waveform, and a Triangle
Waveform, Using the Software Trigger

// Copy the following example code and compile it as a C# Console Application
// Example__KtM9188_StdWaveForm_SoftwareTrigger.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
using Keysight.KtM9188.Interop;
#endregion
40 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
namespace KtM9188_StdWaveForm_SoftwareTrigger
{
 class Program
 {
 [STAThread]
 public static void Main(string[] args)
 {
 Console.WriteLine(" StdWaveForm_SoftwareTrigger");
 Console.WriteLine();
 KtM9188 driver = null;

 try
 {
 #region Initialize Driver Instances
 driver = new KtM9188();

 // Edit resource and options as needed. Resource is ignored if option
Simulate=false
 string resourceDesc = "PXI20::0::0::INSTR";

 string initOptions = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=, Trace=false";

 bool idquery = true;
 bool reset = true;

 // Initialize the driver. See driver help topic "Initializing the IVI-COM
Driver" for additional information
 driver.Initialize(resourceDesc, idquery, reset, initOptions);
 Console.WriteLine("Driver Initialized\n");
 #endregion

 #region Software Trigger Settings
 Console.WriteLine("Configuring trigger source to Software\n");
 driver.Trigger.Source = ("Software");
 #endregion

 #region Output Channel Settings - Output1 DC
 Console.WriteLine("Configuring Output1...");

 Console.WriteLine("Output mode: Voltage");
 (driver.Outputs.get_Item("Output1")).OutputMode =
KtM9188OutputModeEnum.KtM9188OutputModeVoltage;

 Console.WriteLine("Waveform function: DC");
 (driver.Outputs.get_Item("Output1")).StandardWaveform.Function =
KtM9188StdWaveformEnum.KtM9188StdWaveformDC;

 Console.WriteLine("DC amplitude: 10 Volts\n");
 (driver.Outputs.get_Item("Output1")).StandardWaveform.Amplitude = 10;
 #endregion
M9188A Programming Guide 41

Understanding and Working with the M9188A PXI D/A Converter
 #region Output Channel Settings - Output2 Sine Wave
 Console.WriteLine("Configuring Output2...");

 Console.WriteLine("Output mode: Voltage");
 (driver.Outputs.get_Item("Output2")).OutputMode =
KtM9188OutputModeEnum.KtM9188OutputModeVoltage;

 Console.WriteLine("Waveform function: Sine");
 (driver.Outputs.get_Item("Output2")).StandardWaveform.Function =
KtM9188StdWaveformEnum.KtM9188StdWaveformSine;

 Console.WriteLine("Sine OffsetLevel: 20 Volts");
 (driver.Outputs.get_Item("Output2")).StandardWaveform.OffsetLevel = 20;

 Console.WriteLine("Sine Amplitude: 10 Volts");
 (driver.Outputs.get_Item("Output2")).StandardWaveform.Amplitude = 10;

 Console.WriteLine("Sine Frequency: 1KHz");
 (driver.Outputs.get_Item("Output2")).StandardWaveform.Frequency = 1000;

 Console.WriteLine("Sine PhaseShift: 0 Degree\n");
 (driver.Outputs.get_Item("Output2")).StandardWaveform.PhaseShift = 0;
 #endregion

 #region Output Channel Settings - Output3 Square Wave
 Console.WriteLine("Configuring Output3...");

 Console.WriteLine("Output mode: Voltage");
 (driver.Outputs.get_Item("Output3")).OutputMode =
KtM9188OutputModeEnum.KtM9188OutputModeVoltage;

 Console.WriteLine("Waveform function: Square");
 (driver.Outputs.get_Item("Output3")).StandardWaveform.Function =
KtM9188StdWaveformEnum.KtM9188StdWaveformSquare;

 Console.WriteLine("Square OffsetLevel: 15 Volts");
 (driver.Outputs.get_Item("Output3")).StandardWaveform.OffsetLevel = 15;

 Console.WriteLine("Square Amplitude: 3 Volts");
 (driver.Outputs.get_Item("Output3")).StandardWaveform.Amplitude = 3;

 Console.WriteLine("Square Frequency: 500Hz");
 (driver.Outputs.get_Item("Output3")).StandardWaveform.Frequency = 500;

 Console.WriteLine("Square PhaseShift: 0 Degree");
 (driver.Outputs.get_Item("Output3")).StandardWaveform.PhaseShift = 0;

 Console.WriteLine("Square DutyCycle: 70 Percent\n");
 (driver.Outputs.get_Item("Output3")).StandardWaveform.DutyCycleHigh = 70;

 #endregion
42 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
 #region Output Channel Settings - Output4 Triangle Wave

 Console.WriteLine("Configuring Output4...");

 Console.WriteLine("Output mode: Current");
 (driver.Outputs.get_Item("Output4")).OutputMode =
KtM9188OutputModeEnum.KtM9188OutputModeCurrent;

 Console.WriteLine("Waveform function: Triangle");
 (driver.Outputs.get_Item("Output4")).StandardWaveform.Function =
KtM9188StdWaveformEnum.KtM9188StdWaveformTriangle;

 Console.WriteLine("Triangle OffsetLevel: 0.01 A");
 (driver.Outputs.get_Item("Output4")).StandardWaveform.OffsetLevel = 0.01;

 Console.WriteLine("Triangle Amplitude: 0.02 A");
 (driver.Outputs.get_Item("Output4")).StandardWaveform.Amplitude = 0.02;

 Console.WriteLine("Triangle Frequency: 2KHz");
 (driver.Outputs.get_Item("Output4")).StandardWaveform.Frequency = 2000;

 Console.WriteLine("Triangle PhaseShift: 90 Degree\n");
 (driver.Outputs.get_Item("Output4")).StandardWaveform.PhaseShift = 90;
 #endregion

 #region Connect Output Relay
 Console.WriteLine("Enabling Output1 output relay");
 (driver.Outputs.get_Item("Output1")).Enabled = true;

 Console.WriteLine("Enabling Output2 output relay");
 (driver.Outputs.get_Item("Output2")).Enabled = true;

 Console.WriteLine("Enabling Output3 output relay");
 (driver.Outputs.get_Item("Output3")).Enabled = true;

 Console.WriteLine("Enabling Output4 output relay\n");
 (driver.Outputs.get_Item("Output4")).Enabled = true;
 #endregion

 #region Output On Software Trigger
 Console.WriteLine("Put hardware into wait for trigger state\n");
 driver.Trigger.Initiate();

 Console.WriteLine("Send software trigger to hardware\n");
 driver.Trigger.SendSoftwareTrigger();
 #endregion
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
M9188A Programming Guide 43

Understanding and Working with the M9188A PXI D/A Converter
 {
 if (driver != null && driver.Initialized)
 {
 #region Close Driver Instances
 driver.Close();
 Console.WriteLine("Driver Closed");
 #endregion
 }
 }
 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

44 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
Example Program 3: How to Output an Arbitrary Waveform
and Create an Arbitrary Waveform from a File, Using the
Software Trigger

The following example code demonstrates how to instantiate
a driver instance, set the resource name and various
initialization values, initialize the driver instances:

1 Apply changes to hardware

2 Output waveform

3 Report errors if any occur, and close the drivers
M9188A Programming Guide 45

Understanding and Working with the M9188A PXI D/A Converter
46 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
Pseudo-code of How to Output an Arbitrary Waveform and Create
an Arbitrary Waveform from a File, Using the Software Trigger

1 Configure hardware Trigger Source to “Software”

2 Creating 30 V peak- to- peak arbitrary sine waveform and
configure it to Output Channel 5

3 Load custom arbitrary waveform from file (.csv) to Output
Channel 6

4 Configure and turn on Output Channel relay

5 Output waveform

Example Program 3: How to Output an Arbitrary Waveform and Create an Arbitrary Waveform from a
File, Using the Software Trigger

// Copy the following example code and compile it as a C# Console Application
// Example__KtM9188_ArbWaveForm_SoftwareTrigger.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
using Keysight.KtM9188.Interop;
#endregion

namespace KtM9188_ArbWaveForm_SoftwareTrigger
{
 class Program
 {
 [STAThread]
 public static void Main(string[] args)
 {
 Console.WriteLine(" ArbWaveForm_SoftwareTrigger");
 Console.WriteLine();
 KtM9188 driver = null;

 try
 {
 #region Initialize Driver Instances
 driver = new KtM9188();

 // Edit resource and options as needed. Resource is ignored if option
Simulate=true
 string resourceDesc = "PXI20::0::0::INSTR";
M9188A Programming Guide 47

Understanding and Working with the M9188A PXI D/A Converter
 string initOptions = "QueryInstrStatus=true, Simulate=true, DriverSetup=
Model=, Trace=false";

 bool idquery = true;
 bool reset = true;

 // Initialize the driver. See driver help topic "Initializing the IVI-COM
Driver" for additional information
 driver.Initialize(resourceDesc, idquery, reset, initOptions);
 Console.WriteLine("Driver Initialized\n");
 #endregion

 #region Software Trigger Settings
 Console.WriteLine("Configuring trigger source to Software\n");
 driver.Trigger.Source = ("Software");
 #endregion

 #region Output Channel Settings - Output5 ArbCreate

 double[] ArbData = new double[1500];

 Console.WriteLine("Configuring Output5...");

 Console.WriteLine("Output mode: Voltage");
 (driver.Outputs.get_Item("Output5")).OutputMode =
KtM9188OutputModeEnum.KtM9188OutputModeVoltage;

 // Compute peak to peak 30V Sine Wave
 for (int i = 0; i < 1500; i++)
 {
 ArbData[i] = 15 + (15 * Math.Sin(2 * Math.PI * ((double)i / 1500)));
 }

 Console.WriteLine("Configuring Arbitrary data\n");
 (driver.Outputs.get_Item("Output5")).ArbitraryWaveform.Create(ref
ArbData);

 #endregion

 #region Output Channel Settings - Output6 ArbCreateFromFile
 Console.WriteLine("Configuring Output6...");

 Console.WriteLine("Output mode: Voltage");
 (driver.Outputs.get_Item("Output6")).OutputMode =
KtM9188OutputModeEnum.KtM9188OutputModeVoltage;
48 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
 // Configuring Arbitrary data
 Console.WriteLine("Configuring Arbitrary data from file \
"CombineWaveVoltage_8500.csv\"\n");

(driver.Outputs.get_Item("Output6")).ArbitraryWaveform.CreateFromFile("CombineWaveVoltag
e_8500.csv", 8500);
 #endregion

 #region Connect Output Relay
 Console.WriteLine("Enabling Output5 output relay");
 (driver.Outputs.get_Item("Output5")).Enabled = true;

 Console.WriteLine("Enabling Output6 output relay\n");
 (driver.Outputs.get_Item("Output6")).Enabled = true;
 #endregion

 #region Output On Software Trigger
 Console.WriteLine("Put hardware into wait for trigger state\n");
 driver.Trigger.Initiate();

 Console.WriteLine("Send software trigger to hardware\n");
 driver.Trigger.SendSoftwareTrigger();
 #endregion

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (driver != null && driver.Initialized)
 {
 #region Close Driver Instances
 driver.Close();
 Console.WriteLine("Driver Closed");
 #endregion
 }
 }
 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

M9188A Programming Guide 49

Understanding and Working with the M9188A PXI D/A Converter
Example Program 4: How to Output a DC Signal, Using the
EXT Trigger

The following example code demonstrates how to instantiate
a driver instance, set the resource name and various
initialization values, initialize the driver instances:

1 Apply changes to hardware

2 Wait for trigger to output DC

3 Report errors if any occur, and close the drivers

50 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
Pseudo-code of How to Output a DC Signal, Using the EXT Trigger

1 Configure hardware Trigger Source to “EXT”

2 Output Channel 1 to DC mode

• Voltage mode (10 Volt)
M9188A Programming Guide 51

Understanding and Working with the M9188A PXI D/A Converter
3 Configure and turn on Output Channel relay

4 Wait for trigger to output DC

Example Program 4: How to Output a DC Signal, Using the EXT Trigger

// Copy the following example code and compile it as a C# Console Application
// Example__KtM9188_DC_EXTTrigger.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
using Keysight.KtM9188.Interop;
#endregion

namespace KtM9188_DC_EXTTrigger
{
 class Program
 {
 [STAThread]
 public static void Main(string[] args)
 {
 Console.WriteLine(" DC_EXTTrigger");
 Console.WriteLine();
 KtM9188 driver = null;

 try
 {
 #region Initialize Driver Instances
 driver = new KtM9188();

 // Edit resource and options as needed. Resource is ignored if option
Simulate=true
 string resourceDesc = "PXI20::0::0::INSTR";

 string initOptions = "QueryInstrStatus=true, Simulate=true, DriverSetup=
Model=, Trace=false";

 bool idquery = true;
 bool reset = true;

 // Initialize the driver. See driver help topic "Initializing the IVI-COM
Driver" for additional information
 driver.Initialize(resourceDesc, idquery, reset, initOptions);
 Console.WriteLine("Driver Initialized\n");
 #endregion

 #region EXT Trigger Settings
 Console.WriteLine("Configuring trigger source to EXT\n");
 driver.Trigger.Configure("EXT",
KtM9188TriggerSlopeEnum.KtM9188TriggerSlopePositive);
52 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
 #endregion

 #region Output Channel Settings
 Console.WriteLine("Configuring Output1...");

 Console.WriteLine("Output mode: Voltage");
 (driver.Outputs.get_Item("Output1")).OutputMode =
KtM9188OutputModeEnum.KtM9188OutputModeVoltage;

 Console.WriteLine("Waveform function: DC");
 (driver.Outputs.get_Item("Output1")).StandardWaveform.Function =
KtM9188StdWaveformEnum.KtM9188StdWaveformDC;

 Console.WriteLine("DC amplitude: 10 Volts\n");
 (driver.Outputs.get_Item("Output1")).StandardWaveform.Amplitude = 10;
 #endregion

 #region Connect Output Relay
 Console.WriteLine("Enabling Output1 output relay\n");
 (driver.Outputs.get_Item("Output1")).Enabled = true;
 #endregion

 #region Wait for trigger
 Console.WriteLine("Put hardware into wait for trigger state\n");
 driver.Trigger.Initiate();
 #endregion

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (driver != null && driver.Initialized)
 {
 #region Close Driver Instances
 driver.Close();
 Console.WriteLine("Driver Closed");
 #endregion
 }
 }

 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

M9188A Programming Guide 53

Understanding and Working with the M9188A PXI D/A Converter
Example Program 5: How to Output an Event

The following example code demonstrates how to instantiate
a driver instance, set the resource name and various
initialization values, initialize the driver instances:

1 Apply changes to hardware

2 Output Event output pulse

3 Report errors if any occur, and close the drivers

54 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter

M9188A Programming Guide 55

Understanding and Working with the M9188A PXI D/A Converter
Pseudo-code of How to Output an Event

1 Configure hardware Trigger Source to “Software”

2 Configure hardware Event destination to “EXT”

3 Output Event output pulse

Example Program 5: How to Output an Event

// Copy the following example code and compile it as a C# Console Application
// Example__KtM9188_EVENT.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
using Keysight.KtM9188.Interop;
#endregion

namespace KtM9188_EVENT
{
 class Program
 {
 [STAThread]
 public static void Main(string[] args)
 {
 Console.WriteLine(" DC_EVENT");
 Console.WriteLine();
 KtM9188 driver = null;

 try
 {
 #region Initialize Driver Instances
 driver = new KtM9188();

 // Edit resource and options as needed. Resource is ignored if option
Simulate=true
 string resourceDesc = "PXI20::0::0::INSTR";

 string initOptions = "QueryInstrStatus=true, Simulate=true, DriverSetup=
Model=, Trace=false";

 bool idquery = true;
 bool reset = true;

 // Initialize the driver. See driver help topic "Initializing the IVI-COM
Driver" for additional information
56 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
 driver.Initialize(resourceDesc, idquery, reset, initOptions);
 Console.WriteLine("Driver Initialized\n");
 #endregion

 #region Software Trigger Settings
 Console.WriteLine("Configuring trigger source to Software\n");
 driver.Trigger.Source = ("Software");
 #endregion

 #region Event Destination Settings
 Console.WriteLine("Configuring event Destination to EXT\n");
 driver.Event.Destination = ("EXT");
 #endregion

 #region Output Event Output Pulse
 Console.WriteLine("Send out Event output pulse\n");
 driver.Trigger.SendSoftwareTrigger();
 #endregion

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (driver != null && driver.Initialized)
 {
 #region Close Driver Instances
 driver.Close();
 Console.WriteLine("Driver Closed");
 #endregion
 }
 }

 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

M9188A Programming Guide 57

Understanding and Working with the M9188A PXI D/A Converter
Example Program 6: How to Output on Synchronization
(Master/Slave)

The following example code demonstrates how to instantiate
two driver instance, set the resource name and various
initialization values, initialize the two driver instances:

1 Apply changes to Master and Slave hardware

2 Output on Synchronization

3 Report errors if any occur, and close the drivers

58 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
M9188A Programming Guide 59

Understanding and Working with the M9188A PXI D/A Converter
Pseudo-code of How to Output on Synchronization
(Master/Slave)

1 Configure hardware Trigger Source:

• “Software” for Master hardware

• “PXI1” for Slave hardware

2 Configure Master hardware Event destination to “PXI1”

3 Configure Master hardware as Sync Master at “PXI0” and
Slave hardware as Sync Slave at “PXI0”

4 Configure Master Output Channel 1 to Sine Wave mode

• Voltage mode (OffsetLevel 20 Volt and Amplitude 10
Volt)

• 1 kHz

• 0 degree phase shift

5 Configure Slave Output Channel 1 to Sine Wave mode

• Voltage mode (OffsetLevel 2 Volt and Amplitude 1 Volt)

• 1 kHz

• 0 degree phase shift

6 Configure and turn on Output Channel relay

7 Apply wait for trigger for Master and Slave hardware

8 Configure Master hardware to Send software trigger and
output Event output pulse to PXI1

Example Program 6: How to Output Event (Master/Slave)

// Copy the following example code and compile it as a C# Console Application
// Example__KtM9188_Synchronization.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
using Keysight.KtM9188.Interop;
#endregion

namespace KtM9188_Synchronization
{
 class Program
 {
 [STAThread]
 public static void Main(string[] args)
 {
 Console.WriteLine(" Synchronization");
60 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
 Console.WriteLine();
 KtM9188 MasterDriver = null;
 KtM9188 SlaveDriver = null;

 try
 {
 #region Initialize Driver Instances
 MasterDriver = new KtM9188();
 SlaveDriver = new KtM9188();

 // Edit resource and options as needed. Resource is ignored if option
Simulate=true
 string MasterResourceDesc = "PXI20::0::0::INSTR";
 string SlaveResourceDesc = "PXI20::10::0::INSTR";

 string initOptions = "QueryInstrStatus=true, Simulate=true, DriverSetup=
Model=, Trace=false";

 bool idquery = true;
 bool reset = true;

 // Initialize the driver. See driver help topic "Initializing the IVI-COM
Driver" for additional information
 MasterDriver.Initialize(MasterResourceDesc, idquery, reset, initOptions);
 Console.WriteLine("Master Driver Initialized");

 SlaveDriver.Initialize(SlaveResourceDesc, idquery, reset, initOptions);
 Console.WriteLine("Slave Driver Initialized\n");
 #endregion

 #region Trigger Settings
 Console.WriteLine("Configuring Master trigger source to Software");
 MasterDriver.Trigger.Source = ("Software");

 Console.WriteLine("Configuring Slave trigger source to PXI1\n");
 SlaveDriver.Trigger.Configure("PXI1",
KtM9188TriggerSlopeEnum.KtM9188TriggerSlopePositive);
 #endregion

 #region Master Event Destination Settings
 Console.WriteLine("Configuring Master Event Destination to PXI1\n");
 MasterDriver.Event.Configure("PXI1");
 #endregion

 #region Master Slave Settings

 Console.WriteLine("Configuring Master's Sync mode to Master mode at PXI0");
 MasterDriver.Sync.Configure(KtM9188SyncModeEnum.KtM9188SyncModeMaster,
"PXI0", true);

 Console.WriteLine("Configuring Slave's Sync mode to Slave mode at PXI0\n");
 SlaveDriver.Sync.Configure(KtM9188SyncModeEnum.KtM9188SyncModeSlave,
"PXI0", true);
 #endregion

 #region Output Channel Settings - Master Output1
 Console.WriteLine("Configuring Master Output1...");

 Console.WriteLine("Output mode: Voltage");
M9188A Programming Guide 61

Understanding and Working with the M9188A PXI D/A Converter
 (MasterDriver.Outputs.get_Item("Output1")).OutputMode =
KtM9188OutputModeEnum.KtM9188OutputModeVoltage;

 Console.WriteLine("Waveform function: Sine");
 (MasterDriver.Outputs.get_Item("Output1")).StandardWaveform.Function =
KtM9188StdWaveformEnum.KtM9188StdWaveformSine;

 Console.WriteLine("Sine OffsetLevel: 20 Volts");
 (MasterDriver.Outputs.get_Item("Output1")).StandardWaveform.OffsetLevel =
20;

 Console.WriteLine("Sine Amplitude: 10 Volts");
 (MasterDriver.Outputs.get_Item("Output1")).StandardWaveform.Amplitude =
10;

 Console.WriteLine("Sine Frequency: 1KHz");
 (MasterDriver.Outputs.get_Item("Output1")).StandardWaveform.Frequency =
1000;

 Console.WriteLine("Sine PhaseShift: 0 Degree\n");
 (MasterDriver.Outputs.get_Item("Output1")).StandardWaveform.PhaseShift =
0;
 #endregion

 #region Output Channel Settings - Slave Output1
 Console.WriteLine("Configuring Slave Output1...");

 Console.WriteLine("Output mode: Voltage");
 (SlaveDriver.Outputs.get_Item("Output1")).OutputMode =
KtM9188OutputModeEnum.KtM9188OutputModeVoltage;

 Console.WriteLine("Waveform function: Sine");
 (SlaveDriver.Outputs.get_Item("Output1")).StandardWaveform.Function =
KtM9188StdWaveformEnum.KtM9188StdWaveformSine;

 Console.WriteLine("Sine OffsetLevel: 2 Volts");
 (SlaveDriver.Outputs.get_Item("Output1")).StandardWaveform.OffsetLevel =
2;

 Console.WriteLine("Sine Amplitude: 1 Volts");
 (SlaveDriver.Outputs.get_Item("Output1")).StandardWaveform.Amplitude = 1;

 Console.WriteLine("Sine Frequency: 1KHz");
 (SlaveDriver.Outputs.get_Item("Output1")).StandardWaveform.Frequency =
1000;

 Console.WriteLine("Sine PhaseShift: 0 Degree\n");
 (SlaveDriver.Outputs.get_Item("Output1")).StandardWaveform.PhaseShift = 0;
 #endregion

 #region Connect Output Relay
 Console.WriteLine("Enabling Master Output1 output relay");
 (MasterDriver.Outputs.get_Item("Output1")).Enabled = true;

 Console.WriteLine("Enabling Slave Output1 output relay\n");
 (SlaveDriver.Outputs.get_Item("Output1")).Enabled = true;
 #endregion

 #region Wait For Trigger
 Console.WriteLine("Put Master hardware into wait for trigger state");
 MasterDriver.Trigger.Initiate();
62 M9188A Programming Guide

Understanding and Working with the M9188A PXI D/A Converter
 Console.WriteLine("Put Slave hardware into wait for trigger state\n");
 SlaveDriver.Trigger.Initiate();
 #endregion

 #region Master Software Trigger and Event out
 Console.WriteLine("Master hardware send Software trigger and send out Event
PXI1\n");
 MasterDriver.Trigger.SendSoftwareTrigger();
 #endregion

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (MasterDriver != null && MasterDriver.Initialized)
 {
 #region Close Driver Instances
 MasterDriver.Close();
 Console.WriteLine("Master Driver Closed");
 #endregion
 }
 if (SlaveDriver != null && SlaveDriver.Initialized)
 {
 #region Close Driver Instances
 SlaveDriver.Close();
 Console.WriteLine("Slave Driver Closed");
 #endregion
 }
 }
 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

M9188A Programming Guide 63

Understanding and Working with the M9188A PXI D/A Converter
64 M9188A Programming Guide

IVI-COM and IVI-C API References
IVI-COM and IVI-C API References

For a list of all IVI- COM and IVI- C APIs please refer to the
KtM9188A IVI Driver Reference Help File.

The KtM9188A IVI Driver Reference Help File can be found in
Start > All Programs > Keysight Instrument Drivers > IVI-COM-C
Drivers > KtM9188 Dynamic DAC

Unsupported IVI-COM APIs

The IVI- COM APIs that are not supported are shown below.

KtM9188 IVI Driver Reference Keysight Technologies

IIviDriverOperation.ClearInterchangeWarnings Method�

-NOT SUPPORTED- Clears the list of interchangeability warnings that the IVI specific driver maintains.�

Namespace:�Ivi.Driver.Interop

Assembly:�Ivi.Driver.Interop (in Ivi.Driver.Interop.DLL)

Syntax

Visual Basic

Public Sub ClearInterchangeWarnings (_
)

C#

public void ClearInterchangeWarnings(
)

Visual C++

HRESULT ClearInterchangeWarnings(
);
M9188A Programming Guide 65

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

IIviDriverOperation.GetNextInterchangeWarning Method

-NOT SUPPORTED- Returns the oldest warning from the interchange warning list. Records are only added
 to the list if InterchangeCheck is True.

Namespace: Ivi.Driver.Interop
Assembly: Ivi.Driver.Interop (in Ivi.Driver.Interop.DLL)

Syntax

Visual Basic

Public Function GetNextInterchangeWarning (_
) As String
C#

public string GetNextInterchangeWarning(
)

Visual C++

HRESULT GetNextInterchangeWarning(
BSTR* retval

);

Return Value

A string describing the oldest interchangeability warning or empty string if no warrnings remain.
66 M9188A Programming Guide

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

IIviDriverOperation.InterchangeCheck Property

-NOT SUPPORTED- If True, the driver maintains a record of interchangeability warnings. If the driver does
 not support interchangeability checking, attempts to set InterchangeCheck to True return an error.

Namespace: Ivi.Driver.Interop
Assembly: Ivi.Driver.Interop (in Ivi.Driver.Interop.DLL)

Syntax

Visual Basic

Public Property InterchangeCheck As Boolean
C#

public bool InterchangeCheck { get; set; }
Visual C++

HRESULT get_InterchangeCheck(
VARIANT_BOOL* val

);
HRESULT put_InterchangeCheck(

VARIANT_BOOL val
);
M9188A Programming Guide 67

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

IIviDriverOperation.RecordCoercions Property

-NOT SUPPORTED- If True, the driver keeps a list of the value coercions it makes for ViInt32 and ViReal64
 attributes. If the driver does not support coercion recording, attempts to set RecordCoercions to True will
 return an error.

Namespace: Ivi.Driver.Interop
Assembly: Ivi.Driver.Interop (in Ivi.Driver.Interop.DLL)

Syntax

Visual Basic

Public Property RecordCoercions As Boolean

C#

public bool RecordCoercions { get; set; }
Visual C++

HRESULT get_RecordCoercions(
VARIANT_BOOL* val

);
HRESULT put_RecordCoercions(

VARIANT_BOOL val
);
68 M9188A Programming Guide

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

IIviDriverOperation.ResetInterchangeCheck Method

-NOT SUPPORTED- Resets the interchangeability checking algorithms of the driver so that methods and
 properties that executed prior to calling this function have no affect on whether future calls to the driver
 generate interchangeability warnings.

Namespace: Ivi.Driver.Interop
Assembly: Ivi.Driver.Interop (in Ivi.Driver.Interop.DLL)

Syntax

Visual Basic

Public Sub ResetInterchangeCheck (_
)

C#

public void ResetInterchangeCheck(
)

Visual C++

HRESULT ResetInterchangeCheck(
);
M9188A Programming Guide 69

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

IIviDriverUtility.Disable Method

--NOT SUPPORTED-- Quickly places the instrument in a state where it has no, or minimal, effect on the
 external system to which it is connected. This state is not necessarily a known state.

Namespace: Ivi.Driver.Interop
Assembly: Ivi.Driver.Interop (in Ivi.Driver.Interop.DLL)

Syntax

Visual Basic

Public Sub Disable (_
)

C#

public void Disable(
)

Visual C++

HRESULT Disable(
);
70 M9188A Programming Guide

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

IIviDriverUtility.ErrorQuery Method

--NOT SUPPORTED-- Queries the instrument and returns instrument specific error information. This
 function can be used when QueryInstrumentStatus is True to retrieve error details when the driver
 detects an instrument error.

Namespace: Ivi.Driver.Interop
Assembly: Ivi.Driver.Interop (in Ivi.Driver.Interop.DLL)

Syntax

Visual Basic

Public Sub ErrorQuery (_ByRef ErrorCode As Integer _ByRef ErrorMessage As String _
)

C#

public void ErrorQuery(ref int ErrorCode,ref string ErrorMessage
)

Visual C++

HRESULT ErrorQuery(
long* ErrorCode,
BSTR* ErrorMessage

);

Parameters

ErrorCode
Instrument error code

ErrorMessage
Instrument error message
M9188A Programming Guide 71

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

IIviDriverUtility.ResetWithDefaults Method

--NOT SUPPORTED-- Does the equivalent of Reset and then, (1) disables class extension capability
 groups, (2) sets attributes to initial values defined by class specs, and (3) configures the driver to option
 string settings used when Initialize was last executed.

Namespace: Ivi.Driver.Interop
Assembly: Ivi.Driver.Interop (in Ivi.Driver.Interop.DLL)

Syntax

Visual Basic

Public Sub ResetWithDefaults (_
)

C#

public void ResetWithDefaults(
)

Visual C++

HRESULT ResetWithDefaults(
);
72 M9188A Programming Guide

IVI-COM and IVI-C API References
Unsupported IVI-C APIs

The IVI- C APIs that are not supported are shown below.

KtM9188 IVI Driver Reference Keysight Technologies

KTM9188_ATTR_INTERCHANGE_CHECK Attribute

-NOT SUPPORTED- If True, the driver maintains a record of interchangeability warnings. If the driver does
 not support interchangeability checking, attempts to set InterchangeCheck to True return an error.

Attribute Tree Node: \KtM9188\Inherent IVI Attributes\User Options\Interchange Check
Declaration: KtM9188.h
Implementation: KtM9188.dll

Syntax

Visual C++

#define KTM9188_ATTR_INTERCHANGE_CHECK 1050021
ViStatus KtM9188_GetAttributeViBoolean(ViSession Vi,ViConstString RepCapIdentifier,ViAttr AttributeID,ViBoolean* AttributeValue
);

ViStatus KtM9188_SetAttributeViBoolean(ViSession Vi,ViConstString RepCapIdentifier,ViAttr AttributeID,ViBoolean AttributeValue
);

Parameters

Vi
The ViSession handle that you obtain from the IviDriver_init or IviDriver_InitWithOptions function.
 The handle identifies a particular instrument session.

RepCapIdentifier
Must be VI_NULL or an empty string. This attribute is not defined on a repeated capability.

AttributeID
Must be KTM9188_ATTR_INTERCHANGE_CHECK.

AttributeValue (GetAttribute)
Returns the current value of the attribute. The user must specify the address of a variable that has
 the same data type as the attribute.

AttributeValue (SetAttribute)
The value to which to set the attribute.
M9188A Programming Guide 73

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

KTM9188_ATTR_RECORD_COERCIONS Attribute

-NOT SUPPORTED- If True, the driver keeps a list of the value coercions it makes for ViInt32 and ViReal64
 attributes. If the driver does not support coercion recording, attempts to set RecordCoercions to True will
 return an error.

Attribute Tree Node: \KtM9188\Inherent IVI Attributes\User Options\Record Value Coercions
Declaration: KtM9188.h
Implementation: KtM9188.dll

Syntax

Visual C++

#define KTM9188_ATTR_RECORD_COERCIONS 1050006

ViStatus KtM9188_GetAttributeViBoolean(ViSession Vi,ViConstString RepCapIdentifier,ViAttr AttributeID,ViBoolean* AttributeValue
);

ViStatus KtM9188_SetAttributeViBoolean(ViSession Vi,ViConstString RepCapIdentifier,ViAttr AttributeID,ViBoolean AttributeValue
);

Parameters

Vi
The ViSession handle that you obtain from the IviDriver_init or IviDriver_InitWithOptions function.
 The handle identifies a particular instrument session.

RepCapIdentifier
Must be VI_NULL or an empty string. This attribute is not defined on a repeated capability.

AttributeID
Must be KTM9188_ATTR_RECORD_COERCIONS.

AttributeValue (GetAttribute)
Returns the current value of the attribute. The user must specify the address of a variable that has
 the same data type as the attribute.

AttributeValue (SetAttribute)
The value to which to set the attribute.
74 M9188A Programming Guide

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

KtM9188_ClearInterchangeWarnings Function

-NOT SUPPORTED- Clears the list of interchangeability warnings that the IVI specific driver maintains.

Function Tree Node: \KtM9188\Utility\Clear Interchange Warnings
Declaration: KtM9188.h
Implementation: KtM9188.dll

Syntax

Visual C++

ViStatus KtM9188_ClearInterchangeWarnings(ViSession Vi
);

Parameters

Vi
The ViSession handle that you obtain from the IviDriver_init or IviDriver_InitWithOptions function.
 The handle identifies a particular instrument session.

Return Value

Success or failure code.
M9188A Programming Guide 75

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

KtM9188_Disable Function

--NOT SUPPORTED-- Quickly places the instrument in a state where it has no, or minimal, effect on the
 external system to which it is connected. This state is not necessarily a known state.

Function Tree Node: \KtM9188\Utility\Disable
Declaration: KtM9188.h
Implementation: KtM9188.dll

Syntax

Visual C++

ViStatus KtM9188_Disable(ViSession Vi
);

Parameters

Vi
The ViSession handle that you obtain from the IviDriver_init or IviDriver_InitWithOptions function.
 The handle identifies a particular instrument session.

Return Value

Success or failure code.
76 M9188A Programming Guide

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

KtM9188_error_query Function

--NOT SUPPORTED-- Queries the instrument and returns instrument specific error information. This
 function can be used when QueryInstrumentStatus is True to retrieve error details when the driver
 detects an instrument error.

Function Tree Node: \KtM9188\Utility\Error Query
Declaration: KtM9188.h
Implementation: KtM9188.dll

Syntax

Visual C++

ViStatus KtM9188_error_query(ViSession Vi,ViInt32* ErrorCode,ViChar[] ErrorMessage
);

Parameters

Vi
The ViSession handle that you obtain from the IviDriver_init or IviDriver_InitWithOptions function.
 The handle identifies a particular instrument session.

ErrorCode
Instrument error code

ErrorMessage
Instrument error message

Return Value

Success or failure code.
M9188A Programming Guide 77

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

KtM9188_GetNextCoercionRecord Function

-NOT SUPPORTED- Returns the oldest record from the coercion record list. Records are only added to the
 list if RecordCoercions is True.

Function Tree Node: \KtM9188\Utility\Get Next Coercion Record
Declaration: KtM9188.h
Implementation: KtM9188.dll

Syntax

Visual C++

ViStatus KtM9188_GetNextCoercionRecord(ViSession Vi,ViInt32 CoercionRecordBufferSize,ViChar[] CoercionRecord
);

Parameters

Vi
The ViSession handle that you obtain from the IviDriver_init or IviDriver_InitWithOptions function.
 The handle identifies a particular instrument session.

CoercionRecordBufferSize
The number of bytes in the ViChar array that the user specifies for the CoercionRecord parameter.

CoercionRecord
The coercion record string shall contain the following information: (1) The name of the attribute that
 was coerced. This can be the generic name, the COM property name, or the C defined constant. (2)
 If the attribute is channel-based, the name of the channel. The channel name can be the specific
 driver channel string or the virtual channel name that the user specified.(3) If the attribute applies to
 a repeated capability, the name of the repeated capability. The name can be the specific driver
 repeated capability token or the virtual repeated capability name that the user specified.(4) The
 value that the user specified for the attribute.(5) The value to which the attribute was coerced.

Return Value

Success or failure code.
78 M9188A Programming Guide

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

KtM9188_GetNextInterchangeWarning Function

-NOT SUPPORTED- Returns the oldest warning from the interchange warning list. Records are only added
 to the list if InterchangeCheck is True.

Function Tree Node: \KtM9188\Utility\Get Next Interchange Warning
Declaration: KtM9188.h
Implementation: KtM9188.dll

Syntax

Visual C++

ViStatus KtM9188_GetNextInterchangeWarning(ViSession Vi,ViInt32 InterchangeWarningBufferSize,ViChar[] InterchangeWarning
);

Parameters

Vi
The ViSession handle that you obtain from the IviDriver_init or IviDriver_InitWithOptions function.
 The handle identifies a particular instrument session.

InterchangeWarningBufferSize
The number of bytes in the ViChar array that the user specifies for the InterchangeWarning
 parameter.

InterchangeWarning
A string describing the oldest interchangeability warning or empty string if no warnings remain.

Return Value

Success or failure code.
M9188A Programming Guide 79

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

KtM9188_ResetInterchangeCheck Function

-NOT SUPPORTED- Resets the interchangeability checking algorithms of the driver so that methods and
 properties that executed prior to calling this function have no affect on whether future calls to the driver
 generate interchangeability warnings.

Function Tree Node: \KtM9188\Utility\Reset Interchange Check
Declaration: KtM9188.h
Implementation: KtM9188.dll

Syntax

Visual C++

ViStatus KtM9188_ResetInterchangeCheck(ViSession Vi
);

Parameters

Vi
The ViSession handle that you obtain from the IviDriver_init or IviDriver_InitWithOptions function.
 The handle identifies a particular instrument session.

Return Value

Success or failure code.
80 M9188A Programming Guide

IVI-COM and IVI-C API References
KtM9188 IVI Driver Reference Keysight Technologies

KtM9188_ResetWithDefaults Function

--NOT SUPPORTED-- Does the equivalent of Reset and then, (1) disables class extension capability
 groups, (2) sets attributes to initial values defined by class specs, and (3) configures the driver to option
 string settings used when Initialize was last executed.

Function Tree Node: \KtM9188\Utility\Reset With Defaults
Declaration: KtM9188.h
Implementation: KtM9188.dll

Syntax

Visual C++

ViStatus KtM9188_ResetWithDefaults(ViSession Vi
);

Parameters

Vi
The ViSession handle that you obtain from the IviDriver_init or IviDriver_InitWithOptions function.
 The handle identifies a particular instrument session.

Return Value

Success or failure code.
M9188A Programming Guide 81

Glossary
Glossary

ADE (application development environment) — An integrated
suite of software development programs. ADEs may include
a text editor, compiler, and debugger, as well as other tools
used in creating, maintaining, and debugging application
programs. Example: Microsoft Visual Studio.

API (application programming interface) — An API is a
well- defined set of set of software routines through which
application program can access the functions and services
provided by an underlying operating system or library.
Example: IVI Drivers C# (pronounced “C sharp”) — C- like,
component- oriented language that eliminates much of the
difficulty associated with C/C++.

Direct I/O — commands sent directly to an instrument,
without the benefit of, or interference from a driver. SCPI
Example: SENSe:VOLTage:RANGe:AUTO Driver (or device
driver) — a collection of functions resident on a computer
and used to control a peripheral device.

DLL (dynamic link library) — An executable program or data
file bound to an application program and loaded only when
needed, thereby reducing memory requirements. The
functions or data in a DLL can be simultaneously shared by
several applications.

Input/Output (I/O) layer — The software that collects data
from and issues commands to peripheral devices. The VISA
function library is an example of an I/O layer that allows
application programs and drivers to access peripheral
instrumentation.

IVI (Interchangeable Virtual Instruments) — a standard
instrument driver model defined by the IVI Foundation that
enables engineers to exchange instruments made by different
manufacturers without rewriting their code.
www.ivifoundation.org

IVI COM drivers (also known as IVI Component drivers) —
IVI COM presents the IVI driver as a COM object in Visual
Basic. You get all the intelligence and all the benefits of the
82 M9188A Programming Guide

Glossary
development environment because IVI COM does things in a
smart way and presents an easier, more consistent way to
send commands to an instrument. It is similar across
multiple instruments.

Microsoft COM (Component Object Model) — The concept of
software components is analogous to that of hardware
components: as long as components present the same
interface and perform the same functions, they are
interchangeable. Software components are the natural
extension of DLLs. Microsoft developed the COM standard to
allow software manufacturers to create new software
components that can be used with an existing application
program, without requiring that the application be rebuilt. It
is this capability that allows T&M instruments and their
COM- based IVI- Component drivers to be interchanged.

.NET Framework — The .NET Framework is an
object- oriented API that simplifies application development
in a Windows environment. The .NET Framework has two
main components: the common language runtime and the
.NET Framework class library.

VISA (Virtual Instrument Software Architecture) — The VISA
standard was created by the VXIplug&play Foundation.
Drivers that conform to the VXIplug&play standards always
perform I/O through the VISA library. Therefore if you are
using Plug and Play drivers, you will need the VISA I/O
library. The VISA standard was intended to provide a
common set of function calls that are similar across physical
interfaces. In practice, VISA libraries tend to be specific to
the vendor’s interface.

VISA- COM — The VISA- COM library is a COM interface for
I/O that was developed as a companion to the VISA
specification. VISA- COM I/O provides the services of VISA in
a COM- based API. VISA- COM includes some higher- level
services that are not available in VISA, but in terms of
low- level I/O communication capabilities, VISA- COM is a
subset of VISA. Keysight VISA- COM is used by its
IVIComponent drivers and requires that Keysight VISA also
be installed.
M9188A Programming Guide 83

Glossary
THIS PAGE IS INTENTIONALLY LEFT BLANK.
84 M9188A Programming Guide

Contact us
To obtain service, warranty, or technical
assistance, contact us at the following
phone or fax numbers:

United States:

(tel) 800 829 4444 (fax) 800 829 4433

Canada:

(tel) 877 894 4414 (fax) 800 746 4866

China:

(tel) 800 810 0189 (fax) 800 820 2816

Europe:

(tel) 31 20 547 2111

Japan:

(tel) (81) 426 56 7832 (fax) (81) 426 56
7840

Korea:

(tel) (080) 769 0800 (fax) (080) 769 0900

Latin America:

(tel) (305) 269 7500

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6755 0042

Or visit Keysight World Wide Web at:
www.keysight.com/find/assist

Product specifications and descriptions in
this document are subject to change
without notice. Always refer to Keysight
Web site for the latest revision.

This information is subject to change without notice.
© Keysight Technologies 2014

Edition 1, August 2014

M9188-90006
M9188-90006

www.keysight.com

	Keysight M9188A PXI D/A Converter 16-Bit, 0-30 V, 0-20 mA
	Table of Contents
	What You Will Learn in this Programming Guide
	Related Websites
	Related Documentation
	Understanding the Overall Process Flow

	Before Programming, Install Hardware, Software, and Licenses
	Understanding the Application Programming Interfaces (API) for the M9188A PXI D/A Converter
	IVI Instrument Classes (Defined by the IVI Foundation)
	IVI Compliant or IVI Class Compliant
	IVI Driver Types
	IVI Driver Hierarchy
	Instrument-Specific Hierarchies for the M9188A PXI D/A Converter
	Naming Conventions Used to Program IVI Drivers
	General IVI Naming Conventions
	IVI-COM Naming Conventions

	Tutorial: Create a Project with IVI-COM Using C#
	Step 1 – Create a “Console Application”
	Step 2 – Add References
	Step 3 – Add using Statements
	To access the IVI drivers without having to specify or type the full path of each interface or enum

	Step 4 – Create Instances of the IVI-COM Drivers
	To create driver instances

	Step 5 – Initialize the Driver Instances
	To determine the ResourceName
	Set the Initialize()Parameters
	Call the Initialize() Method with the Set Parameters
	Understanding Initialize Options

	Step 6 – Write the Program Steps
	Example: Using the Soft Front Panel to Write Program Commands

	Step 7 – Close the Driver
	Step 8 – Building and Running a Complete Example Program Using Visual C#
	Example Program 1: How to Print the Driver Properties and Close the Driver Sessions

	Understanding and Working with the M9188A PXI D/A Converter
	Product Overview
	Output Mode
	Operating Mode
	Using Level Mode
	Using Playback Mode

	Event
	Trigger Out
	Clock IN/OUT
	Synchronizing Multi Modules
	Example Program 2: How to Output a DC signal, a Sine Waveform, a Square Waveform, and a Triangle Waveform, Using the Software Trigger
	Pseudo-code of How to Output a DC signal, a Sine Waveform, a Square Waveform, and a Triangle Waveform, Using the Software Trigger

	Example Program 3: How to Output an Arbitrary Waveform and Create an Arbitrary Waveform from a File, Using the Software Trigger
	Pseudo-code of How to Output an Arbitrary Waveform and Create an Arbitrary Waveform from a File, Using the Software Trigger

	Example Program 4: How to Output a DC Signal, Using the EXT Trigger
	Pseudo-code of How to Output a DC Signal, Using the EXT Trigger

	Example Program 5: How to Output an Event
	Pseudo-code of How to Output an Event

	Example Program 6: How to Output on Synchronization (Master/Slave)
	Pseudo-code of How to Output on Synchronization (Master/Slave)

	IVI-COM and IVI-C API References
	Unsupported IVI-COM APIs
	Unsupported IVI-C APIs

	Glossary

