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Chapter 6: Making Accurate Resistance Measurements

“It requires a very unusual mind to undertake the analysis of the obvious.” 
— Alfred North Whitehead

Resistance measurement basics
Upon first thought it might seem strange to devote a chapter to resistance mea-
surement. After all, resistance is governed by the simplest of all rules (Ohm’s 
law) that every electrical engineering student learns in their first week of class:

      V = I × R   (Equation 6.1)

However, despite the simplicity of this equation it turns out that measuring 
resistance accurately is actually one of the more challenging areas of paramet-
ric test. The reason for this is that the above equation is overly simplistic, and 
ignores the fact that resistance generates heat, which in-turn affects the value 
of the resistance itself. Therefore, it would be more accurate to re-write the 
above equation as: 

      V = I × R(T)    (Equation 6.2)

In this equation the resistance (R) is a function of temperature (T). This 
phenomenon, whereby the actual value of the resistance being measured 
changes due to heat generated by the current flow, is commonly referred to as 
the Joule self-heating effect.

Another factor requiring consideration is the resistance of the cables used 
to make a resistance measurement. When attempting to measure very small 
resistance values, Kelvin measurement techniques must be employed. The 
basics of Kelvin measurements have been explained in earlier chapters, and it is 
straightforward to apply these techniques to resistor measurements. However, 
it is worthwhile to point out that the combination of Joule self-heating effects 
and cable resistance make resistor measurements especially challenging. To 
reduce Joule self-heating you need to reduce the current (power) flowing into 
the resistor being measured. However, small currents flowing through the 
cable resistance require measurement equipment with very accurate voltage 
measurement capabilities in order to distinguish the cable voltage drop from 
the voltage drop across the actual resistor. Therefore, for these reasons resistor 
measurements can easily require a voltage measurement resolution capability 
of less than 1 millivolt.

The final factor to consider when making resistance measurements is electro-
motive force (EMF). EMF is the technical name for the burst of electrical noise 
that is generated when a mechanical relay opens or closes. All SMUs have 
mechanical (reed) relays in their output paths that generate EMF when the SMU 
is activated. EMF can have significant impact upon measurement accuracy for 
all types of measurements, but it can especially impact low-level resistance 
measurements because they require extremely sensitive voltage measurement 
resolution. 
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Resistivity  
Resistivity is a basic material property. If we measure the current flowing 
through a bar of homogeneous material with a uniform cross section when 
a voltage is applied to it, we can determine its resistance from the equation 
R = V/I. The related material property of resistivity can be calculated from the 
resistance measurement if the cross-sectional area (width × depth) and length 
of the sample are known as shown below.
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Figure 6.1. Calculating resistivity from a resistance measurement.

Sheet resistivity is typically measured for all of the implantation layers as well 
as the metal interconnect layers. It is common to see resistivity expressed 
in “Ohms per square”, in recognition of the fact that the resistance from one 
side of a square of homogeneous material of uniform depth to the other side is 
always the same regardless of the size of the square. A little reflection on the 
effect of combining squares of material of uniform thickness together into larger 
squares should convince the reader of this fact.
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Figure 6.2. The Ohms per square of a homogenous material of uniform thickness is 
always the same regardless of the size of the square. 
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Van der Pauw test structures  
The resistances measured when making resistivity measurements can be 
extremely small (on the order of milliohms), which mandates the use of Kelvin 
measurement techniques. Therefore, it is extremely convenient to be able to 
combine the Kelvin measurement technique with a simple geometry in order to 
determine the sheet resistance of a given material. The configuration universally 
used to achieve this is known as a Van der Pauw structure, named after L.J. Van 
der Pauw who first proposed this measurement technique in 1958. The Van der 
Pauw structure consists of a square sample with an electrical contact at each of 
the corners as shown below.

Figure 6.3. The Van der Pauw test structure for determining resistivity.

Van der Pauw showed in his original paper that the following relationship holds:
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Here d is the thickness of the sample,  is the sheet resistance of the sample, 
and the resistance measurements are defined as shown below.

Figure 6.4. Calculating sheet resistance from a Van der Pauw test structure.

The calculation of the resistivity from this equation and these measurements is 
straightforward.
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