
Agilent X-Series
Signal Generators

N5181A/82A RF

N5183A Microwave

N5171B/72B/81B/82B RF

N5173B/83B Microwave

Programming Guide
(With Remote Operation
and File Downloads)
Agilent Technologies

Programming Guide

Notices
© Agilent Technologies, Inc. 2006 - 2014

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Agilent
Technologies, Inc. as governed by United
States and international copyright laws.

Manual Part Number
N5180-90074

Edition
February 2014

Printed in USA

Agilent Technologies, Inc.
3501 Stevens Creek Blvd.
Santa Clara, CA 95052 USA

Warranty

The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connec-
tion with the furnishing, use, or per-
formance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses
The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend
U.S. Government Restricted Rights. Soft-
ware and technical data rights granted to
the federal government include only those
rights customarily provided to end user cus-
tomers. Agilent provides this customary
commercial license in Software and techni-
cal data pursuant to FAR 12.211 (Technical
Data) and 12.212 (Computer Software) and,
for the Department of Defense, DFARS
252.227-7015 (Technical Data - Commercial
Items) and DFARS 227.7202-3 (Rights in
Commercial Computer Software or Com-
puter Software Documentation).

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and
met.

Contents
1 Getting Started with Remote Operation

Programming and Software/Hardware Layers. .2

Interfaces .3

IO Libraries and Programming Languages .3

Agilent IO Libraries Suite .4
Windows XP, 2000 Professional and Vista Business Agilent IO Libraries 15.0 (and Newer) . .5
Windows NT and Agilent IO Libraries M (and Earlier) .7

Selecting IO Libraries for GPIB .9
Selecting IO Libraries for LAN .9
Programming Languages. 10

Using the Web Browser . 10

Modifying the Signal Generator Configuration . 12
Enabling the Signal Generator Web Server . 13
LAN Configuration System Defaults . 15

Displaying the LAN Configuration Summary . 16

Preferences . 17
Configuring the Display for Remote Command Setups . 17
Getting Key Help . 17

Troubleshooting . 18

Error Messages . 19

Error Message File . 19
Error Message Types. 20

2 Using IO Interfaces

Using GPIB . 21
Installing the GPIB Interface . 21

Set Up the GPIB Interface . 23
Verify GPIB Functionality. 23
GPIB Interface Terms . 24

GPIB Programming Interface Examples . 24

Before Using the GPIB Examples. 24
Interface Check using HP Basic and GPIB. 25
Interface Check Using NI–488.2 and C++. 25

Using LAN . 26

Setting Up the LAN Interface . 27
Setting up Private LAN . 29
Verifying LAN Functionality . 30

Using VXI–11 . 34
Using Sockets LAN . 35
Using Telnet LAN . 36
 iii

Contents
Using FTP . 40
Using LXI Class B Features (N51xxA MXG Signal Generators Only) 42

Using USB . 54

Selecting I/O Libraries for USB . 55
Setting Up the USB Interface . 55

3 Programming Examples

Using the Programming Interface Examples . 57
Programming Examples Development Environment . 58

Running C++ Programs . 58
Running C# Examples. 59
Running Basic Examples . 59

Running Java Examples. 60
Running MATLAB Examples. 61
Running Perl Examples . 61

Using GPIB . 61

Installing the GPIB Interface Card . 61

GPIB Programming Interface Examples . 62
Before Using the GPIB Examples . 62
GPIB Function Statements (Command Messages) . 62

Interface Check using HP Basic and GPIB . 66
Interface Check Using NI- 488.2 and C++ . 67
Interface Check for GPIB Using VISA and C . 68

Local Lockout Using HP Basic and GPIB . 69
Local Lockout Using NI- 488.2 and C++. 70
Queries Using HP Basic and GPIB. 72

Queries Using NI- 488.2 and Visual C++ . 73
Queries for GPIB Using VISA and C . 75
Generating a CW Signal Using VISA and C . 77

Generating an Externally Applied AC- Coupled FM Signal Using VISA and C. 79
Generating an Internal FM Signal Using VISA and C . 81
Generating a Step- Swept Signal Using VISA and C++ . 83

Generating a Swept Signal Using VISA and Visual C++ . 84
Saving and Recalling States Using VISA and C . 86
Reading the Data Questionable Status Register Using VISA and C. 89

Reading the Service Request Interrupt (SRQ) Using VISA and C 93

LAN Programming Interface Examples . 97
VXI- 11 Programming . 97
VXI- 11 Programming Using SICL and C++ . 98

VXI- 11 Programming Using VISA and C++ . 99
Sockets LAN Programming and C . 101
 iv

Contents
Queries for Lan Using Sockets . 104
Sockets LAN Programming Using Java . 124

Sockets LAN Programming Using Perl . 126
TCP- IP (LAN) Programming Using Matlab . 127

4 Programming the Status Register System

Overview . 137
Overall Status Byte Register Systems . 139

Status Register Bit Values . 142

Example: Enable a Register . 142
Example: Query a Register . 142

Accessing Status Register Information . 143
Determining What to Monitor . 143

Deciding How to Monitor . 143
Status Register SCPI Commands . 146

Status Byte Group . 149
Status Byte Register . 150

Service Request Enable Register . 150

Status Groups . 151
Standard Event Status Group . 152
Standard Operation Status Group . 154

Data Questionable Status Group . 157
Data Questionable Power Status Group. 160
Data Questionable Frequency Status Group . 163

Data Questionable Calibration Status Group . 166
Data Questionable BERT Status Group . 169

5 Creating and Downloading Waveform Files

Overview of Downloading and Extracting Waveform Files . 174
Waveform Data Requirements . 175

Understanding Waveform Data . 175

Bits and Bytes . 175
LSB and MSB (Bit Order) . 176
Little Endian and Big Endian (Byte Order) . 176

Byte Swapping . 178
DAC Input Values . 178
2’s Complement Data Format . 181

I and Q Interleaving . 181

Waveform Structure . 183
File Header . 183
 v

Contents
Marker File . 183
I/Q File . 185

Waveform . 185

Waveform Phase Continuity . 185
Phase Discontinuity, Distortion, and Spectral Regrowth . 185
Avoiding Phase Discontinuities . 186

Waveform Memory . 188

Memory Allocation . 190
Memory Size . 192

Commands for Downloading and Extracting Waveform Data. 193
Waveform Data Encryption . 193

File Transfer Methods . 194
SCPI Command Line Structure . 195
Commands and File Paths for Downloading and Extracting Waveform Data 195

FTP Procedures . 199

Creating Waveform Data . 201
Code Algorithm . 202

Downloading Waveform Data . 207
Using Simulation Software . 208

Using Advanced Programming Languages . 210

Loading, Playing, and Verifying a Downloaded Waveform. 213
Loading a File from Non–Volatile Memory . 213
Playing the Waveform . 214

Verifying the Waveform . 215
Building and Playing Waveform Sequences . 215

Using the Download Utilities . 216

Downloading E443xB Signal Generator Files . 217
E443xB Data Format . 218

SCPI Commands . 218

Programming Examples. 219
C++ Programming Examples . 220
MATLAB Programming Examples . 242

Visual Basic Programming Examples . 256
HP Basic Programming Examples . 261

Troubleshooting Waveform Files . 268
Configuring the Pulse/RF Blank . 269

6 Creating and Downloading User–Data Files

Overview . 272
 vi

Contents
Signal Generator Memory . 273
Memory Allocation . 275

Memory Size . 276
Checking Available Memory . 277

User File Data (Bit/Binary) Downloads . 279
User File Bit Order (LSB and MSB). 280

Bit File Type Data . 280
Binary File Type Data. 283
User File Size . 284

Determining Memory Usage for Custom User File Data . 285
Downloading User Files . 286
 . 290

Commands for Binary File Downloads . 290
Selecting a Downloaded User File as the Data Source . 292
Modulating and Activating the Carrier . 292

Modifying User File Data . 292
Real–Time Custom High Data Rates . 295

Pattern RAM (PRAM) Data Downloads . 296
Understanding PRAM Files . 297

PRAM File Size . 300
SCPI Command for a List Format Download . 302
SCPI Command for a Block Data Download . 302

Selecting a Downloaded PRAM File as the Data Source . 305
Modulating and Activating the Carrier . 306
Storing a PRAM File to Non–Volatile Memory and Restoring to Volatile Memory 306

Extracting a PRAM File . 306
Modifying PRAM Files . 308

FIR Filter Coefficient Downloads. 310
Data Requirements . 310

Data Limitations . 310
Downloading FIR Filter Coefficient Data . 311
Selecting a Downloaded User FIR Filter as the Active Filter. 312

Using the Equalization Filter . 313

Save and Recall Instrument State Files . 314

Save and Recall SCPI Commands . 314
Save and Recall Programming Example Using VISA and C# . 315

User Flatness Correction Downloads Using C++ and VISA . 325

Data Transfer Troubleshooting . 329
User File Download Problems . 329

PRAM Download Problems . 330
 vii

Contents
User FIR Filter Coefficient File Download Problems . 332
 viii

1 Getting Started with Remote Operation

CAUTION Agilent does not recommend going backwards in firmware versions (loading older
firmware versions into newer instruments) as hardware/firmware conflicts can result.

NOTE Full LXI Class B feature implementation is only available on N51xxA MXG signal generators.
A license may be required to enable this feature and to download the required firmware
versions >A.01.50. For information on new firmware releases, go to
http://www.agilent.com/find/upgradeassistant.

• Programming and Software/Hardware Layers on page 2

• Interfaces on page 3

• IO Libraries and Programming Languages on page 3

• Using the Web Browser on page 10

• Preferences on page 17

• Error Messages on page 19
Agilent X-Series Signal Generators Programming Guide 1

Getting Started with Remote Operation
Programming and Software/Hardware Layers
Programming and Software/Hardware Layers
Agilent X- Series signal generators support the following interfaces:

Use these interfaces, in combination with IO libraries and programming languages, to remotely
control a signal generator. Figure 1- 1 uses GPIB as an example of the relationships between the
interface, IO libraries, programming language, and signal generator.

Figure 1-1 Software/Hardware Layers

Instrument Interfaces Supported

Agilent N51xxB EXG/MXG GPIB, LAN, and USB 2.0

Agilent N51xxAMXG GPIB, LAN, and USB 2.0
2 Agilent X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Interfaces
Interfaces

IO Libraries and Programming Languages
The IO libraries is a collection of functions used by a programming language to send instrument
commands and receive instrument data. Before you can communicate and control the signal
generator, you must have an IO library installed on your computer. The Agilent IO libraries are
included on an Automation- Ready CD with your signal generator and Agilent GPIB interface board,
or they can be downloaded from the Agilent website: http://www.agilent.com.

GPIB GPIB is used extensively when a dedicated computer is available for remote control of
each instrument or system. Data transfer is fast because GPIB handles information in
bytes with data transfer rates of up to 8 MBps. GPIB is physically restricted by the
location and distance between the instrument/system and the computer; cables are
limited to an average length of two meters per device with a total length of 20 meters.

For more information on configuring the signal generator to communicate over the
GPIB, refer to “Using GPIB” on page 21.

LAN Data transfer using the LAN is fast as the LAN handles packets of data. The single
cable distance between a computer and the signal generator is limited to 100 meters
(100Base- T and 10Base- T).

The following protocols can be used to communicate with the signal generator over the
LAN:

• VXI- 11 (recommended)
• Sockets
• TELNET
• FTP

The Agilent N51xxA MXG supports LXI Class Ba functionality. The Agilent N51xxB
EXG/MXG supports LXI Class C functionality. For more information on the LXI
standards, refer to http://www.lxistandard.org/home.

For more information on configuring the signal generator to communicate over the LAN,
refer to “Using LAN” on page 26.

a.LXI Class B Compliance testing using IEEE 1588-2008 not available at release.

USB • The rear panel Type- B or Mini- B 5- pin connector is a device USB and can be used
to connect a controller for remote operation.

• The Type- A front panel connector is a host USB and can be used to connect a
mouse, a keyboard, or a USB 1.1/2.0 flash drive.

USB 2.0’s 64 MBps communication speed is faster than GPIB for data transfers >1 KB;
however, longer latency makes small USB transfers slower and less efficient than GPIB.
For additional information, refer to the Agilent SICL or VISA User’s Guide.)

For more information on connecting the signal generator to the USB, refer to the
“Agilent IO Libraries Suite” on page 4 and the Agilent Connection Expert in the Agilent
IO Libraries Help.

For more information on configuring the signal generator to communicate over the USB,
refer to “Using USB” on page 54.
Agilent X-Series Signal Generators Programming Guide 3

Getting Started with Remote Operation
IO Libraries and Programming Languages
NOTE To learn about using IO libraries with Windows XP or newer operating systems, refer to the
Agilent IO Libraries Suite’s help located on the Automation- Ready CD that ships with your
signal generator. Other sources of this information, can be found with the Agilent GPIB
interface board’s CD, or downloaded from the Agilent website: http://www.agilent.com.

To better understand setting up Windows XP operating systems and newer, using PC LAN
port settings, refer to Chapter 2.

Agilent IO Libraries Suite

The Agilent IO Libraries Suite replaces earlier versions of the Agilent IO Libraries. Agilent IO
Libraries Suite does not support Windows NT. If you are using the Windows NT platform, you must
use Agilent IO Libraries version M or earlier.

CAUTION The USB interface requires Agilent IO Libraries Suite 14.1 or newer. For more
information on connecting instruments using USB, refer to the Agilent Connection
Expert in the Agilent IO Libraries Help.

NOTE The signal generator ships with an Automation- Ready CD that contains the Agilent IO
Libraries Suite 14.0 for users who use Windows 98 and Windows ME. These older systems
are no longer supported in Agilent IO Libraries Suite version 14.1 and higher.

Once the libraries are loaded, you can use the Agilent Connection Expert, Interactive IO, or VISA
Assistant to configure and communicate with the signal generator over different IO interfaces. Follow
instructions in the setup wizard to install the libraries.

NOTE Before setting the LAN interface, the signal generator must be configured for VXI- 11 SCPI.
Refer to “Configuring the VXI–11 Service” on page 27.

Refer to the Agilent IO Libraries Suite Help documentation for details about this software.
4 Agilent X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
IO Libraries and Programming Languages
Windows XP, 2000 Professional and Vista Business Agilent IO Libraries 15.0 (and Newer)

NOTE Windows NT is not supported on Agilent IO Libraries 14.0 and newer.

For additional information on older versions of Agilent IO libraries, refer to the Agilent
Connection Expert in the Agilent IO Libraries Help. The Agilent IO libraries are included
with your signal generator or Agilent GPIB interface board, or they can be downloaded from
the Agilent website: http://www.agilent.com.

VISA Assistant

VISA is an industry standard IO library API. It allows the user to send SCPI commands to
instruments and to read instrument data in a variety of formats. Refer to the VISA Assistant Help
menu and the Agilent VISA User’s Manual (available on Agilent’s website) for more information.

VISA Configuration (Automatic)
1. Run the VISA Assistant program:

Start > All Programs > Agilent IO Libraries Suite > Agilent Connection Expert > Tools > Visa Assistant >.

2. Click on the interface you want to use for sending commands to the signal generator.

3. Click the Formatted I/O tab.

4. Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using the viPrintf button.
Agilent X-Series Signal Generators Programming Guide 5

Getting Started with Remote Operation
IO Libraries and Programming Languages
Using VISA Configuration (Manual)

Use the Agilent IO Libraries Suite 15.0 to perform the following steps to use the Connection Expert
and VISA to manually configure an interface.

1. Run the Agilent Connection Expert program: Start > All Programs > Agilent IO Libraries Suite > Agilent
Connection Expert >.

2. On the tool bar select the Add Interface button.

3. Click LAN Interface in the Available interface types text box.

4. Click the ADD button.

5. Verify that the Auto (automatically detect protocol) bubble is checked. Click O.K. to use the default
settings.

6. Click LAN(TCPIPO) in the Instrument I/O on this PC text box.

7. On the tool bar select the Add Instrument button.

8. Click the Add Address button in the Add LAN Instruments window.

9. Enter the hostname of the instrument or select the Use IP Address check box and enter the IP
address.

10. Click OK.
6 Agilent X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
IO Libraries and Programming Languages
Windows NT and Agilent IO Libraries M (and Earlier)

NOTE Windows NT is not supported on Agilent IO Libraries 14.0 and newer.

The following sections are specific to Agilent IO Libraries versions M and earlier and apply
only to the Windows NT platform.

For additional information on older versions of Agilent IO libraries, refer to the Agilent
Connection Expert in the Agilent IO Libraries Help. The Agilent IO libraries are included
with your signal generator or Agilent GPIB interface board, or they can be downloaded from
the Agilent website: http://www.agilent.com.

Using IO Config for Computer-to-Instrument Communication with VISA (Automatic or Manually)

After installing the Agilent IO Libraries version M or earlier, you can configure the interfaces
available on your computer by using the IO Config program. This program can setup the interfaces
that you want to use to control the signal generator. The following steps set up the interfaces.

1. Install GPIB interface boards before running IO Config.

NOTE You can also connect GPIB instruments using the Agilent 82357A USB/GPIB Interface
Converter, which eliminates the need for a GPIB card. For more information, go to
http://www.agilent.com/find/gpib.

2. Run the IO Config program. The program automatically identifies available interfaces.

3. Click on the interface type you want to configure, such as GPIB, in the Available Interface Types
text box.

4. Click the Configure button. Set the Default Protocol to AUTO.

5. Click OK to use the default settings.

6. Click OK to exit the IO Config program.

VISA Assistant

VISA is an industry standard IO library API. It allows the user to send SCPI commands to
instruments and to read instrument data in a variety of formats. You can use the VISA Assistant,
available with the Agilent IO Libraries versions M and earlier, to send commands to the signal
generator. If the interface you want to use does not appear in the VISA Assistant then you must
manually configure the interface. See the Manual VISA Configuration section below. Refer to the VISA
Assistant Help menu and the Agilent VISA User’s Manual (available on Agilent’s website) for more
information.
Agilent X-Series Signal Generators Programming Guide 7

Getting Started with Remote Operation
IO Libraries and Programming Languages
VISA Configuration (Automatic)
1. Run the VISA Assistant program.

2. Click on the interface you want to use for sending commands to the signal generator.

3. Click the Formatted I/O tab.

4. Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using the viPrintf button.

VISA Configuration (Manual)

Perform the following steps to use IO Config and VISA to manually configure an interface.

1. Run the IO Config Program.

2. Click on GPIB in the Available Interface Types text box.

3. Click the Configure button. Set the Default Protocol to AUTO and then click OK to use the default
settings.

4. Click on GPIB0 in the Configured Interfaces text box.

5. Click Edit...

6. Click the Edit VISA Config... button.

7. Click the Add device button.

8. Enter the GPIB address of the signal generator.

9. Click the OK button in this form and all other forms to exit the IO Config program.
8 Agilent X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
IO Libraries and Programming Languages
Selecting IO Libraries for GPIB

The IO libraries are included with the GPIB interface card, and can be downloaded from the National
Instruments website or the Agilent website. See also, “IO Libraries and Programming Languages” on
page 3 for information on IO libraries. The following is a discussion on these libraries.

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

VISA VISA is an IO library used to develop IO applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used
for programming the signal generator. The NI- VISA™ and Agilent VISA libraries
are similar implementations of VISA and have the same commands, syntax, and
functions. The differences are in the lower level IO libraries; NI- 488.2 and SICL
respectively. It is best to use the Agilent VISA library with the Agilent GPIB
interface card or NI- VISA with the NI PCI- GPIB interface card.

SICL Agilent SICL can be used without the VISA overlay. The SICL functions can be
called from a program. However, if this method is used, executable programs will
not be portable to other hardware platforms. For example, a program using SICL
functions will not run on a computer with NI libraries (PCI- GPIB interface card).

NI- 488.2 NI- 488.2 can be used without the VISA overlay. The NI- 488.2 functions can be
called from a program. However, if this method is used, executable programs will
not be portable to other hardware platforms. For example, a program using
NI- 488.2 functions will not run on a computer with Agilent SICL (Agilent GPIB
interface card).

Selecting IO Libraries for LAN

The TELNET and FTP protocols do not require IO libraries to be installed on your computer.
However, to write programs to control your signal generator, an IO library must be installed on your
computer and the computer configured for instrument control using the LAN interface.

The Agilent IO libraries Suite is available on the Automation- Ready CD, which was shipped with your
signal generator. The libraries can also be downloaded from the Agilent website. The following is a
discussion on these libraries.

Agilent VISA VISA is an IO library used to develop IO applications and instrument drivers that
comply with industry standards. Use the Agilent VISA library for programming the
signal generator over the LAN interface.

SICL Agilent SICL is a lower level library that is installed along with Agilent VISA.

NI- VISA is a registered trademark of National Instruments Corporation.
Agilent X-Series Signal Generators Programming Guide 9

Getting Started with Remote Operation
Using the Web Browser
Programming Languages

Along with Standard Commands for Programming Instructions (SCPI) and IO library functions, you
use a programming language to remotely control the signal generator. Common programming
languages include:

• C/C++
• C#
• MATLAB® (MATLAB is a registered trademark of The MathWorks.)
• HP Basic
• LabView
• Java™ (Java is a U.S. trademark of Sun Microsystems, Inc.)
• Visual Basic® (Visual Basic is a registered trademark of Microsoft Corporation.)
• PERL
• Agilent VEE

For examples, using some of these languages, refer to Chapter 3.

Using the Web Browser

NOTE The following example for accessing the Web- Enabled X- Series web page uses the newly
shipped instrument’s predetermined default hostname (a- <instrument model number>- <last
5 digits of the instrument serial number>).

The procedure that follows assumes the signal generator is running firmware A.01.20 or
later.

MXG Web- Enabled SCPI command capability is not available for versions of Internet
Explorer 7.0. (The SCPI Telnet softkey is inactive for these versions.) To use the Telnet
SCPI, refer to the figure on page 11.

For more information on LAN Connectivity, refer to the Agilent Connectivity Guide
(E2094- 90009) or to the LAN Connectivity FAQs for details on using the instrument over
LAN.
10 Agilent X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser
The instrument can be accessed through a
standard web browser, when it is
connected to the LAN. To access through
the web browser, enter the instrument IP
address or the hostname as the URL in
your browser.

The signal generator web page, shown at
right and page 14, provides general
information on the signal generator, FTP
access to files stored on the signal
generator, and a means to control the
instrument using either a remote
front- panel interface or SCPI commands.
The web page also has links to Agilent’s
products, support, manuals, and website.
For additional information on memory
catalog access (file storing), and FTP, refer
to the User’s Guide and “Waveform
Memory” on page 188 and for FTP, see
“Using FTP” on page 40 and “FTP
Procedures” on page 199.

The Web Server service is compatible with
the Microsoft Internet Explorer (6.0 and
newer) web browser and operating systems
Windows 2000, Windows XP, and newer.
For more information on using the Web
Server, refer to “Enabling the Signal
Generator Web Server” on page 13. To operate the signal generator, click the

keys.

The Agilent N51xxA MXG supports LXI Class B*
functionality. The Agilent N51xxB EXG/MXG
supports LXI Class C functionality. For more
information on the LXI standards, refer to
http://www.lxistandard.org/home.

*LXI Class B Compliance testing using IEEE
1588-2008 not available at release.

Note:

If you do not see this window, check to see if the window is hidden behind
your browser window or your web browser settings are set to block pop-ups.
To use this feature, you need to set your web browser to allow pop-ups for
your instrument’s IP address.

Remote SCPI commands requires the Telnet feature on the computer. The
Telnet feature is available from a variety of sources. Some software updates
can block (break) this Telnet connection (e.g. Internet Explorer 7). When
using Internet Explorer as a browser, only versions <Internet Explorer 7
enable the Web-Enabled MXG SCPI feature.

If the “SCPI Telnet” softkey is not active, to display the SCPI Telnet box:

1) On the PC, click Start > Run

2) In the dialogue box type: Telnet [IP address of MXG] 5024 [This
is the port number for connecting to the MXG.]
Note: Telnet port 5023 is available for backwards compatibility (e.g., for
firmware versions <A.01.50).
Agilent X-Series Signal Generators Programming Guide 11

Getting Started with Remote Operation
Using the Web Browser
Modifying the Signal Generator Configuration

NOTE Use Help with this Page for assistance with the Web- Enabled interface.

1. From the welcome page of the Web- Enabled interface, click View & Modify Configuration to show the
instrument’s currently assigned IP address and other parameters.

2. Enter the new settings and click Save.

3. Click Renew LAN Settings to cause the new settings to take effect.

Figure 1-2 View & Modify Configuration
12 Agilent X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser
Enabling the Signal Generator Web Server

NOTE Javascript or Active Scripts must be enabled to use the web front panel controls.

1. Turn on the Web server as shown below.

Agilent X-Series Web Server On

2. Launch the PC or workstation web browser.

3. In the web browser address field, enter the signal generator’s IP address. For example,
http://101.101.101.101 (where 101.101.101.101 is the signal generator’s IP address).

The IP (internet protocol) address can change depending on the LAN configuration (see “Using
LAN” on page 26).

4. On the computer’s keyboard, press Enter. The web browser displays the signal generator’s
homepage.

5. Click the Signal Generator Web Control menu button on the left of the page. The LXI password
box is displayed on the computer. Refer to the Web- Enabled MXG Help.

6. Click Submit.

7. The front panel web page displays.

If necessary, toggle Web Server to On.

For details on each key and for equivalent SCPI commands,
use the key help. Refer to “Getting Key Help” on page 17 and
the User’s Guide. For additional SCPI command information,
refer to the SCPI Command Reference.
Agilent X-Series Signal Generators Programming Guide 13

Getting Started with Remote Operation
Using the Web Browser
NOTE If you are experiencing problems with opening the signal generator’s remote front panel
web page, verify that the pop- up blocker is turned off on your web browser.

In some cases the Web- Enabled front panel may appear behind the main browser
window, so you must move the browser window to see the Web- Enabled front panel.

To control the signal generator, either click the front panel keys or enter SCPI commands.

FTP enables the transfer of files between
the instrument and a computer. The FTP
access button provides drag- and- drop file
capability.

The FTP access button opens a window that displays the signal
generator’s memory catalog files.

Use the FTP window to drag and drop files from the FTP page to your
computer.
14 Agilent X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser
LAN Configuration System Defaults

NOTE The instrument’s LAN configuration system information can be found on the signal
generator’s homepage and on the signal generator. Refer to “Enabling the Signal Generator
Web Server” on page 13 and to “Displaying the LAN Configuration Summary” on page 16.

If the instrument has been restored to the factory defaults from the LAN Setup menu the signal
generator will revert to the values displayed in Table 1- 1 on page 15. Refer to “Displaying the LAN
Configuration Summary” on page 16.

To reset the instrument LXI password to “agilent” and the LAN settings to their factory default
values, press the following key sequence on the signal generator:

Utility > I/O Config > LAN Setup > Advanced Settings > More 2 of 2 > Restore LAN Settings to Default Values >
Confirm Restore LAN Settings to Default Values

NOTE There are no SCPI commands associated with this LXI password factory reset.

For more information, refer to the signal generator’s Web Server Interface Help.

Table 1-1 LAN Configuration Summary Values

Parameter Default

Signal Generator LAN Configuration Summary

Hostname: Agilent–<model number>–<last_5_chars_of_serial_number>

Config Type: AUTO

IP Address: 127.0.0.1

Connection Monitoring: On

Subnet: 255.255.255.0

DNS Server Override: Off

Gateway: 0.0.0.0

Dynamic DNS Naming: On

RFC NETBIOS Naming: On

DNS Server: 0.0.0.0

TCP Keep Alive: On
Agilent X-Series Signal Generators Programming Guide 15

Getting Started with Remote Operation
Using the Web Browser
Displaying the LAN Configuration Summary

Domain Name:a <empty>

TCP Keep Alive Timeout: 1800.0 sec

Signal Generator Web Server Interface

Description: Agilent <model_number>(<serial_number>)

SICL Interface Nameb: gpib0

Web Password: agilent

a.The Domain Name defaults to a null field.
b.This information is part of the “Advanced Information about this Web-Enabled <signal generator model number>”

Table 1-1 LAN Configuration Summary Values

Parameter Default

For details on each key and for equivalent SCPI commands (if applicable),
use the key help (described in the User’s Guide).

Confirm Restore Settings to Factory Defaults: Confirming this action configures the
signal generator to its original factory default settings. For information regarding
those default settings, refer to Table 1-1 on page 15.

Utility > IO Config

SCPI command:

Not applicable
16 Agilent X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Preferences
Preferences
The following commonly- used manual command sections are included here:

“Configuring the Display for Remote Command Setups” on page 17

“Getting Key Help” on page 17

Configuring the Display for Remote Command Setups

Getting Key Help

For details on each key and for equivalent SCPI commands (if applicable), use the key help (described below and in the User’s Guide).

Select Update in Remote until On is
highlighted.

SCPI commands:

:DISPlay:REMote ON|OFF|1|0

:DISPlay:REMote?

For details on each key and for equivalent SCPI commands (if applicable), use the key help (described in User’s Guide).

When you press the front-panel Help button:

Help displays for the next key you press.

The “key help” includes a description of the key’s functionality and a list of equivalent SCPI
commands (if they exist). This feature is especially useful if you are building a SCPI program
based on front-panel key presses.

Use the cursor keys, Page Up, Page Down, and the RPG knob to scroll the help text. Then
press Cancel to close the help window or press any other key to close the help window and
execute that key.
Agilent X-Series Signal Generators Programming Guide 17

Getting Started with Remote Operation
Troubleshooting
Troubleshooting
In each section of this document, there is information that is related to troubleshooting that topic, if
applicable. Refer to those corresponding sections in this document as well as to the User’s Guide,
before using the diagnostics mode referred to in the Service Guide and in the caution below.

CAUTION All X- Series signal generators have a fail- safe and diagnostic mode that should only be
used if all other troubleshooting mentioned in this document has been attempted and
failed. If the diagnostic mode is determined to be needed, refer to the Service Guide.

NOTE If the LAN Reset hardkey has been pressed and then the power is cycled on the instrument,
the web- server will be enabled after reboot.
18 Agilent X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Error Messages
Error Messages
If an error condition occurs in the signal generator, it is reported to both the SCPI (remote interface)
error queue and the front panel display error queue. These two queues are viewed and managed
separately; for information on the front panel display error queue, refer to the User’s Guide.

NOTE For additional general information on troubleshooting problems with your connections, refer
to the Help in the Agilent IO Libraries and documentation.

When accessing error messages using the SCPI (remote interface) error queue, the error numbers and
the <error_description> portions of the error query response are displayed on the host terminal.

Error Message File

A complete list of error messages is provided in the file errormessages.pdf, on the CD- ROM supplied
with your instrument. In the error message list, an explanation is generally included with each error
to further clarify its meaning. The error messages are listed numerically. In cases where there are
multiple listings for the same error number, the messages are in alphabetical order.

Characteristic SCPI Remote Interface Error Queue

Capacity (#errors) 30

Overflow Handling
Linear, first- in/first- out.
Replaces newest error with: -350, Queue overflow

Viewing Entriesa

a. Using this SCPI command to read out the error messages clears the display of the ERR annunciator and the error message at the
bottom of the screen.

Use SCPI query SYSTem:ERRor[:NEXT]?

Clearing the Queueb

b. Executing the SCPI command *CLS clears the display of the ERR annunciator and the error message at the bottom of the screen.

Power up
Send a *CLS command
Read last item in the queue

Unresolved Errorsc

c. Errors that still exist after clearing the error queue. For example, unlock.

Re- reported after queue is cleared.

No Errors
When the queue is empty (every error in the queue has been read, or the queue is cleared), the
following message appears in the queue:
+0, "No error"
Agilent X-Series Signal Generators Programming Guide 19

Getting Started with Remote Operation
Error Messages
Error Message Types

Events generate only one type of error. For example, an event that generates a query error will not
generate a device- specific, execution, or command error.

Query Errors (–499 to –400) indicate that the instrument’s output queue control has detected a
problem with the message exchange protocol described in IEEE 488.2, Chapter 6. Errors in this class
set the query error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1). These errors
correspond to message exchange protocol errors described in IEEE 488.2, 6.5. In this case:

• Either an attempt is being made to read data from the output queue when no output is either
present or pending, or

• data in the output queue has been lost.

Device Specific Errors (–399 to –300, 201 to 703, and 800 to 810) indicate that a device operation
did not properly complete, possibly due to an abnormal hardware or firmware condition. These codes
are also used for self- test response errors. Errors in this class set the device- specific error bit (bit 3)
in the event status register (IEEE 488.2, section 11.5.1).

The <error_message> string for a positive error is not defined by SCPI. A positive error indicates that
the instrument detected an error within the GPIB system, within the instrument’s firmware or
hardware, during the transfer of block data, or during calibration.

Execution Errors (–299 to –200) indicate that an error has been detected by the instrument’s
execution control block. Errors in this class set the execution error bit (bit 4) in the event status
register (IEEE 488.2, section 11.5.1). In this case:

• Either a <PROGRAM DATA> element following a header was evaluated by the device as outside of
its legal input range or is otherwise inconsistent with the device’s capabilities, or

• a valid program message could not be properly executed due to some device condition.

Execution errors are reported after rounding and expression evaluation operations are completed.
Rounding a numeric data element, for example, is not reported as an execution error.

Command Errors (–199 to –100) indicate that the instrument’s parser detected an IEEE 488.2
syntax error. Errors in this class set the command error bit (bit 5) in the event status register (IEEE
488.2, section 11.5.1). In this case:

• Either an IEEE 488.2 syntax error has been detected by the parser (a control- to- device message
was received that is in violation of the IEEE 488.2 standard. Possible violations include a data
element that violates device listening formats or whose type is unacceptable to the device.), or

• an unrecognized header was received. These include incorrect device- specific headers and
incorrect or unimplemented IEEE 488.2 common commands.
20 Agilent X-Series Signal Generators Programming Guide

2 Using IO Interfaces

Using the programming examples with GPIB, LAN, and USB interfaces:

• Using GPIB on page 21

• Using LAN on page 26

• Using USB on page 54

Using GPIB
GPIB enables instruments to be connected together and controlled by a computer. GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1–1987 and ANSI/IEEE
Standard 488.2–1992. See the IEEE website, http://www.ieee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card or NI–GPIB interface
card for your PC or UNIX–based system.

• “Installing the GPIB Interface” on page 21
• “Set Up the GPIB Interface” on page 23
• “Verify GPIB Functionality” on page 23

Installing the GPIB Interface

NOTE You can also connect GPIB instruments to a PC USB port using the Agilent 82357A
USB/GPIB Interface Converter, which eliminates the need for a GPIB card. For more
information, refer to the table on page 22 or go to http://www.agilent.com/find/gpib.

A GPIB interface card can be installed in a computer. Two common GPIB interface cards are the
Agilent GPIB interface card and the National Instruments (NI) PCI–GPIB card. Follow the interface
card instructions for installing and configuring the card. The following table provide lists on some of
the available interface cards. Also, see the Agilent website, http://www.agilent.com for details on
GPIB interface cards.
Agilent X-Series Signal Generators Programming Guide 21

Using IO Interfaces
Using GPIB
Interface
Type

Operating
System

IO Library Languages Backplane/
BUS

Max IO
(kB/sec)

Buffering

Agilent USB/GPIB Interface Converter for PC–Based Systems

Agilent 82357A
Converter

Windows
98(SE)/ME/
2000/XP

VISA / SICL C/C++, Visual
Basic, Agilent
VEE, HP Basic for
Windows, NI
Labview

USB 2.0
(1.1 compatible)

850 Built–in

Agilent GPIB Interface Card for PC–Based Systems

Agilent 82341C
for ISA bus
computers

Windows
95/98/NT
/2000

VISA / SICL C/C++, Visual
Basic, Agilent
VEE, HP Basic for
Windows

ISA/EISA,
16 bit

750 Built–in

Agilent 82341D
Plug&Play for
PC

Windows
95

VISA / SICL C/C++, Visual
Basic, Agilent
VEE, HP Basic for
Windows

ISA/EISA,
16 bit

750 Built–in

Agilent 82350A
for PCI bus
computers

Windows
95/98/NT
/2000

VISA / SICL C/C++, Visual
Basic, Agilent
VEE, HP Basic for
Windows

PCI 32 bit 750 Built–in

Agilent 82350B
for PCI bus
computers

Windows
98(SE)/ME/2000
/XP

VISA / SICL C/C++, Visual
Basic, Agilent
VEE, HP Basic for
Windows

PCI 32 bit > 900 Built–in

NI–GPIB Interface Card for PC–Based Systems

National
Instruments
PCI–GPIB

Windows
95/98/2000/
ME/NT

VISA
NI–488.2‘a

C/C++,
Visual BASIC,
LabView

PCI 32 bit 1.5 MBps Built–in

National
Instruments
PCI–GPIB+

Windows
NT

VISA
NI–488.2

C/C++,
Visual BASIC,
LabView

PCI 32 bit 1.5 MBps Built–in

Agilent–GPIB Interface Card for HP–UX Workstations

Agilent E2071C HP–UX 9.x,
HP–UX 10.01

VISA/SICL ANSI C,
Agilent VEE,
Agilent BASIC,
HP–UX

EISA 750 Built–in

Agilent E2071D HP–UX 10.20 VISA/SICL ANSI C,
Agilent VEE,
Agilent BASIC,
HP–UX

EISA 750 Built–in
22 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using GPIB
Set Up the GPIB Interface

Enter the GPIB address as shown in Figure 2- 1.

Figure 2-1 Setting the GPIB Address

Connect a GPIB interface cable between the signal generator and the computer. (The following table
lists cable part numbers.)

Verify GPIB Functionality

To verify GPIB functionality, use the VISA Assistant, available with the Agilent IO Library or the
Getting Started Wizard available with the National Instrument IO Library. These utility programs
enable you to communicate with the signal generator and verify its operation over GPIB. For
information and instructions on running these programs, refer to the Help menu available in each
utility.

Agilent E2078A HP–UX 10.20 VISA/SICL ANSI C,
Agilent VEE,
Agilent BASIC,
HP–UX

PCI 750 Built–in

a.NI–488.2 is a trademark of National Instruments Corporation.

Model 10833A 10833B 10833C 10833D 10833F 10833G

Length 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters

Interface
Type

Operating
System

IO Library Languages Backplane/
BUS

Max IO
(kB/sec)

Buffering

Agilent USB/GPIB Interface Converter for PC–Based Systems

For details on each key, use the key help. Refer to “Getting Key Help” on page 17 and the User’s Guide. For additional SCPI command
information, refer to the SCPI Command Reference.

Default address: 19
Range: 0–30

SCPI commands:
:SYSTem:COMMunicate:GPIB:ADDRess <number>
:SYSTem:COMMunicate:GPIB:ADDRess?
Agilent X-Series Signal Generators Programming Guide 23

Using IO Interfaces
GPIB Programming Interface Examples
If You Have Problems
1. Verify that the signal generator’s address matches the address declared in the program (example

programs in Chapter 3).

2. Remove all other instruments connected through GPIB and rerun the program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or id number configured
for your PC.

GPIB Interface Terms

An instrument that is part of a GPIB network is categorized as a listener, talker, or controller,
depending on its current function in the network.

listener A listener is a device capable of receiving data or commands from other
instruments. Several instruments in the GPIB network can be listeners
simultaneously.

talker A talker is a device capable of transmitting data. To avoid confusion, a GPIB
system allows only one device at a time to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners (including
itself) for an information transfer. Only one device at a time can be an active
controller.

GPIB Programming Interface Examples

NOTE The portions of the programming examples discussed in this section are taken from the full
text of these programs that can be found in Chapter 3, “Programming Examples.”

• “Interface Check using HP Basic and GPIB” on page 25
• “Interface Check Using NI–488.2 and C++” on page 25

Before Using the GPIB Examples

If the Agilent GPIB interface card is used, the Agilent VISA library should be installed along with
Agilent SICL. If the National Instruments PCI–GPIB interface card is used, the NI–VISA library along
with the NI–488.2 library should be installed. Refer to “Selecting IO Libraries for GPIB” on page 9
and the documentation for your GPIB interface card for details.

HP Basic addresses the signal generator at 719. The GPIB card is addressed at 7 and the signal
generator at 19. The GPIB address designator for other libraries is typically GPIB0 or GPIB1.

The following sections contain HP Basic and C lines of programming removed from the
programming interface examples in Chapter 3, “Programming Examples.” these portions of
programming demonstrate the important features to consider when developing programming for use
with the GPIB interface.
24 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
GPIB Programming Interface Examples
Interface Check using HP Basic and GPIB

This portion of the example program “Interface Check using HP Basic and GPIB” on page 25, causes
the signal generator to perform an instrument reset. The SCPI command *RST places the signal
generator into a pre–defined state and the remote annunciator (R) appears on the front panel
display.

The following program example is available on the signal generator Documentation CD–ROM as
basicex1.txt. For the full text of this program, refer to “Interface Check using HP Basic and GPIB” on
page 66 or to the signal generator’s documentation CD–ROM.

160 Sig_gen=719 ! Declares a variable to hold the signal generator's address

170 LOCAL Sig_gen ! Places the signal generator into Local mode

180 CLEAR Sig_gen ! Clears any pending data I/O and resets the parser

190 REMOTE 719 ! Puts the signal generator into remote mode

200 CLEAR SCREEN ! Clears the controllers display

210 REMOTE 719

220 OUTPUT Sig_gen;"*RST" ! Places the signal generator into a defined state

Interface Check Using NI–488.2 and C++

This portion of the example program “Interface Check Using NI–488.2 and C++” on page 25, uses the
NI–488.2 library to verify that the GPIB connections and interface are functional.

The following program example is available on the signal generator Documentation CD–ROM as
niex1.cpp. For the full text of this program, refer to “Interface Check Using NI- 488.2 and C++” on
page 67 or to the signal generator’s documentation CD–ROM.

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle

Addr4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{

 int sig; // Declares a device descriptor variable

 sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor

 ibclr(sig); // Sends device clear message to signal generator

 ibwrt(sig, "*RST", 4); // Places the signal generator into a defined state
Agilent X-Series Signal Generators Programming Guide 25

Using IO Interfaces
Using LAN
Using LAN
The signal generator can be remotely programmed through a 100Base–T LAN interface or 10Base–T
LAN interface and LAN–connected computer using one of several LAN interface protocols. The LAN
allows instruments to be connected together and controlled by a LAN–based computer. LAN and its
associated interface operations are defined in the IEEE 802.2 standard. For more information refer to
http://www.ieee.org.

NOTE For more information on configuring your signal generator for LAN, refer to the User’s Guide
for your signal generator. You can also refer to www.agilent.com and search on the FAQs:
Hardware Configurations and Installation.

The signal generator supports the following LAN interface protocols:

• VXI–11 (See page 34)
• Sockets LAN (See page 35)
• Telephone Network (TELNET) (See page 36)
• File Transfer Protocol (FTP) (See page 40)
• LXI (See page 42)

VXI–11 and sockets LAN are used for general programming using the LAN interface, TELNET is used
for interactive, one command at a time instrument control, and FTP is for file transfer. LXI is used
to communicate with multiple instruments through LAN events using precision time protocols.

For more information on the LXI standards, refer to www.agilent.com/find/lxi.

NOTE For more information on configuring the signal generator to communicate over the LAN,
refer to “Using VXI–11” on page 34.

The following sections contain information on selecting and connecting IO libraries and LAN interface
hardware that are required to remotely program the signal generator through LAN to a LAN–based
computer and combining those choices with one of several possible LAN interface protocols.

• “Setting Up the LAN Interface” on page 27
• “Verifying LAN Functionality” on page 30
26 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
Setting Up the LAN Interface

For LAN operation, the signal generator must be connected to the LAN, and an IP address must be
assigned to the signal generator either manually or by using DHCP client service. Your system
administrator can tell you which method to use. (Most modern LAN networks use DHCP.)

NOTE Verify that the signal generator is connected to the LAN using a 100Base–T LAN or
10Base–T LAN cable.

Configuring the VXI–11 Service

To communicate with the signal generator over the LAN, you must enable the VXI–11 SCPI service.
Select VXI–11 until On is highlighted. (Default condition is On.)

NOTE

For optimum performance, use a 100Base–T LAN cable to connect the signal generator to the LAN.

For details on each key or for a list of equivalent SCPI commands, use the front-panel key help. For information describing
the key help, refer to “Getting Key Help” on page 17 and the User’s Guide. For additional SCPI command information, refer
to the SCPI Command Reference.

Utility > IO Config
Agilent X-Series Signal Generators Programming Guide 27

Using IO Interfaces
Using LAN
Manual LAN Configuration

The Hostname softkey is only available when LAN Config Manual DHCP is set to Manual.

To remotely access the signal generator from a different LAN subnet, you must also enter the subnet
mask and default gateway. See your system administrator for more information.

Manual LAN Configuration Sequence

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI
Command Reference.

Your hostname can be up to 20 characters long.

Utility > IO Config

SCPI commands:

:SYSTem:COMMunicate:LAN:CONFig MANual

:SYSTem:COMMunicate:LAN:CONFig?

MXG-A signal
generator models
only (not X-Series)
28 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
DHCP LAN Configuration

If the DHCP server uses dynamic DNS to link the hostname with the assigned IP address, the
hostname may be used in place of the IP address. Otherwise, the hostname is not usable.

AUTO (DHCP/Auto–IP) Configuration

DHCP and Auto–IP are used together to make automatic (AUTO) mode for IP configuration.
Automatic mode attempts DHCP first and then if that fails Auto–IP is used to detect a private
network. If neither is found, Manual is the final choice.

If the DHCP server uses dynamic DNS to link the hostname with the assigned IP address, the
hostname may be used in place of the IP address. Otherwise, the hostname is not usable.

Auto–IP provides automatic TCP/IP set–up for instruments on any manually configured networks.

DHCP/Auto-IP LAN Configuration Sequence

Setting up Private LAN

You can connect the Agilent X- Series signal generator directly to a PC using a crossover cable. To do
this, you should either choose to set IP addresses of the PC and signal generator to differ only in the
last digit (example: PC’s IP: 1.1.1.1 and Signal generator’s IP: 1.1.1.2); or you can use the DHCP
feature or Auto–IP feature if your PC supports them. For more information go to www.agilent.com,
and search on the Connectivity Guide (E2094–90009) or use the Agilent Connection Expert’s Help to
see the Connection Guide.

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI
Command Reference.

AUTO (DHCP/Auto–IP): Request a new IP address in the following sequence: 1) from the DHCP (server–based
LAN), 2) Auto–IP (private network without a network administrator) or if neither is available, 3) Manual setting is
selected.

DHCP (MXG-A models only): Request a new IP address from the DHCP server each power cycle.

Confirming this action configures the signal generator as a DHCP client. In DHCP mode, the signal generator
will request a new IP address from the DHCP server upon rebooting to determine the assigned IP address.

Utility > IO Config

SCPI commands:

:SYSTem:COMMunicate:LAN:CONFig DHCP|AUTO

:SYSTem:COMMunicate:LAN:CONFig?

MXG-A signal
generator models
only (not X-Series)
Agilent X-Series Signal Generators Programming Guide 29

Using IO Interfaces
Using LAN
Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file server
using the ping utility. Compare your ping response to those described in “LAN Ping Responses” on
page 31.

NOTE For additional information on troubleshooting your LAN connection, refer to “If You Have
Problems” on page 30 and to the Help in the Agilent IO Libraries and documentation for
LAN connections and problems.

From a UNIX® workstation, type:

 ping <hostname or IP address> 64 10

where <hostname or IP address> is your instrument’s name or IP address, 64 is the packet size,
and 10 is the number of packets transmitted. Type man ping at the UNIX prompt for details on the
ping command.

From the MS–DOS Command Prompt or Windows environment, type:

 ping -n 10 <hostname or IP address>

where <hostname or IP address> is your instrument’s name or IP address and 10 is the number of
echo requests. Type ping at the command prompt for details on the ping command.

NOTE In DHCP mode, if the DHCP server uses dynamic DNS to link the hostname with the
assigned IP address, the hostname may be used in place of the IP address. Otherwise, the
hostname is not usable and you must use the IP address to communicate with the signal
generator over the LAN.

If You Have Problems

If you are experiencing problems with the LAN connection on the signal generator, verify the rear
panel LAN connector green LED is on.

For additional information on troubleshooting your LAN connection, refer to the Help in the Agilent
IO Libraries and documentation for LAN connections and problems.

UNIX is a registered trademark of the Open Group.
30 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
LAN Ping Responses

Using Interactive IO

Use the VISA Assistant utility available in the Agilent IO Libraries Suite to verify instrument
communication over the LAN interface. Refer to the section on the “IO Libraries and Programming
Languages” on page 3 for more information.

The Agilent IO Libraries Suite is supported on all platforms except Windows NT. If you are using
Windows NT, refer to the section below on using the VISA Assistant to verify LAN communication.
See the section on “Windows NT and Agilent IO Libraries M (and Earlier)” on page 7 for more
information.

NOTE The following sections are specific to Agilent IO Libraries versions M and earlier and apply
only to the Windows NT platform.

Normal Response for UNIX A normal response to the ping command will be a total of 9 or 10 packets received with a
minimal average round–trip time. The minimal average will be different from network to
network. LAN traffic will cause the round–trip time to vary widely.

Normal Response for DOS or
Windows

A normal response to the ping command will be a total of 9 or 10 packets received if 10 echo
requests were specified.

Error Messages If error messages appear, then check the command syntax before continuing with
troubleshooting. If the syntax is correct, resolve the error messages using your network
documentation or by consulting your network administrator.

If an unknown host error message appears, try using the IP address instead of the hostname.
Also, verify that the host name and IP address for the signal generator have been registered
by your IT administrator.

Check that the hostname and IP address are correctly entered in the node names database. To
do this, enter the nslookup <hostname> command from the command prompt.

No Response If there is no response from a ping, no packets were received. Check that the typed address
or hostname matches the IP address or hostname assigned to the signal generator in the
System LAN Setup menu. For more information, refer to “DHCP/Auto- IP LAN Configuration
Sequence” on page 29.

Ping each node along the route between your workstation and the signal generator, starting
with your workstation. If a node doesn’t respond, contact your IT administrator.

If the signal generator still does not respond to ping, you should suspect a hardware problem.

• Check the signal generator LAN connector lights

• Verify the hostname is not being used with DHCP addressing

Intermittent Response If you received 1 to 8 packets back, there maybe a problem with the network. In networks
with switches and bridges, the first few pings may be lost until these devices ‘learn’ the
location of hosts. Also, because the number of packets received depends on your network
traffic and integrity, the number might be different for your network. Problems of this nature
are best resolved by your IT department.
Agilent X-Series Signal Generators Programming Guide 31

Using IO Interfaces
Using LAN
Using VISA Assistant

Use the VISA Assistant, available with the Agilent IO Library versions M and earlier, to communicate
with the signal generator over the LAN interface. However, you must manually configure the VISA
LAN client. Refer to the Help menu for instructions on configuring and running the VISA Assistant
program.

1. Run the IO Config program.

2. Click on TCPIP0 in the Available Interface Types text box.

3. Click the Configure button. Then Click OK to use the default settings.

4. Click on TCPIP0 in the Configured Interfaces text box.

5. Click Edit...

6. Click the Edit VISA Config... button.

7. Click the Add device button.

8. Enter the TCPIP address of the signal generator. Leave the Device text box empty.

9. Click the OK button in this form and all subsequent forms to exit the IO Config program.

If You Have Problems
1. Verify the signal generator’s IP address is valid and that no other instrument is using the IP

address.

2. Switch between manual LAN configuration and DHCP using the front panel LAN Config softkey and
run the ping program using the different IP addresses.

NOTE For Agilent IO Libraries versions M and earlier, you must manually configure the VISA LAN
client in the IO Config program if you want to use the VISA Assistant to verify LAN
configuration. Refer to the IO Libraries Installation Guide for information on configuring IO
interfaces. The IO Config program interface is shown in Figure 2- 3 on page 35.
32 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
Figure 2-2 IO Config Form (Windows NT)

Check to see that the Default Protocol is set to Automatic.

1. Run the IO Config program.

2. Click on TCPIP in the Configured Interfaces text box. If there is no TCPIP0 in the box, follow the
steps shown in the section “Using VISA Assistant” on page 32.

3. Click the Edit button.

4. Click the radio button for AUTO (automatically detect protocol).

5. Click OK, OK to end the IO Config program.
Agilent X-Series Signal Generators Programming Guide 33

Using IO Interfaces
Using LAN
Using VXI–11

The signal generator supports the LAN interface protocol described in the VXI–11 standard. VXI–11
is an instrument control protocol based on Open Network Computing/Remote Procedure Call
(ONC/RPC) interfaces running over TCP/IP. It is intended to provide GPIB capabilities such as SRQ
(Service Request), status byte reading, and DCAS (Device Clear State) over a LAN interface. This
protocol is a good choice for migrating from GPIB to LAN as it has full Agilent VISA/SICL support.

NOTE It is recommended that the VXI–11 protocol be used for instrument communication over the
LAN interface.

Configuring for VXI–11

The Agilent IO library has a program, IO Config, that is used to setup the computer/signal generator
interface for the VXI–11 protocol. Download the latest version of the Agilent IO library from the
Agilent website. Refer to the Agilent IO library user manual, documentation, and Help menu for
information on running the IO Config program and configuring the VXI–11 interface.

Use the IO Config program to configure the LAN client. Once the computer is configured for a LAN
client, you can use the VXI–11 protocol and the VISA library to send SCPI commands to the signal
generator over the LAN interface. Example programs for this protocol are included in “LAN
Programming Interface Examples” on page 97 of this programming guide.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI–11 SCPI service. For more information, refer to “DHCP/Auto- IP LAN Configuration
Sequence” on page 29.

If you are using the Windows NT platform, refer to “Windows NT and Agilent IO Libraries M
(and Earlier)” on page 7 for information on using Agilent IO Libraries versions M or earlier
to configure the interface.

For Agilent IO library version J.01.0100, the “Identify devices at run–time” check box must
be unchecked. Refer to Figure 2- 3.
34 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
Figure 2-3 Show Devices Form (Agilent IO Library version J.01.0100)

Using Sockets LAN

NOTE Users with Windows XP operating systems and newer can use this section to better
understand how to use the signal generator with port settings. For more information, refer to
the help software of the IO libraries being used.

Sockets LAN is a method used to communicate with the signal generator over the LAN interface
using the Transmission Control Protocol/Internet Protocol (TCP/IP). A socket is a fundamental
technology used for computer networking and allows applications to communicate using standard
mechanisms built into network hardware and operating systems. The method accesses a port on the
signal generator from which bidirectional communication with a network computer can be
established.

Sockets LAN can be described as an internet address that combines Internet Protocol (IP) with a
device port number and represents a single connection between two pieces of software. The socket
can be accessed using code libraries packaged with the computer operating system. Two common
versions of socket libraries are the Berkeley Sockets Library for UNIX systems and Winsock for
Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is
compatible with Berkeley socket for UNIX systems, and Winsock for Microsoft systems. The signal
generator is also compatible with other standard sockets APIs. The signal generator can be controlled
using SCPI commands that are output to a socket connection established in your program.
Agilent X-Series Signal Generators Programming Guide 35

Using IO Interfaces
Using LAN
Before you can use sockets LAN, you must select the signal generator’s sockets port number to use:

• Standard mode. Available on port 5025. Use this port for simple programming.
• TELNET mode. The telnet SCPI service is available on port 5024.

NOTE For MXG firmware versions A.01.51 and later, the default telnet port is 5024. Telnet port
5023 is still available for backwards compatibility. Refer to the SCPI Command Reference.

An example using sockets LAN is given in “LAN Programming Interface Examples” on page 97 of this
programming guide.

Using Telnet LAN

Telnet provides a means of communicating with the signal generator over the LAN. The Telnet client,
run on a LAN connected computer, will create a login session on the signal generator. A connection,
established between computer and signal generator, generates a user interface display screen with
SCPI> prompts on the command line.

Using the Telnet protocol to send commands to the signal generator is similar to communicating with
the signal generator over GPIB. You establish a connection with the signal generator and then send
or receive information using SCPI commands. Communication is interactive: one command at a time.

NOTE Some systems use a command prompt style interface for the Telnet client. Refer to the
Figure 2- 6 on page 38 for an example of this interface.

For Windows XP and newer, use this section to better understand how to use the signal
generator with port settings. For more information, refer to the help software of the IO
libraries being used.

For Windows 7, Telnet functionality is disabled by default. To enable Telnet, got to Start >
Control Panel > Programs and Features > Turn Windows features on or off and select the Telnet Client
checkbox. Click OK and restart your PC.

The following telnet LAN connections are discussed:

• “Using Telnet On a PC With a Host/Port Setting Menu GUI” on page 37

• “Using Telnet On a PC With a Command Prompt Interface” on page 38

• “The Standard UNIX Telnet Command” on page 38

A Telnet example is provided in “Unix Telnet Example” on page 40.
36 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
Using Telnet On a PC With a Host/Port Setting Menu GUI
1. Launch either the Start Menu’s Command Prompt or Run utility.

2. Type Telnet and press the Enter key (Command Prompt) or click OK (Run utility). The Telnet
connection screen will be displayed.

3. Click on the Connect menu then select Remote System. A connection form is displayed. See Figure
2- 4.

4. Enter the hostname, port number, and TermType then click Connect.

• Host Namesignal generator’s IP address or hostname
• Port5024
• Term Typevt100

5. At the SCPI> prompt, enter SCPI commands. Refer to Figure 2- 5 on page 37.

6. To signal device clear, press Ctrl–C.

7. Select Exit from the Connect menu to end the Telnet session.

Figure 2-4 Connect Form (Agilent IO Library version J.01.0100)

Figure 2-5 Telnet Window
Agilent X-Series Signal Generators Programming Guide 37

Using IO Interfaces
Using LAN
Using Telnet On a PC With a Command Prompt Interface
1. Launch either the Start Menu’s Command Prompt or Run utility.

2. Type Telnet and press the Enter key (Command Prompt) or click OK (Run utility). The Telnet
client screen will be displayed. See Figure 2- 6 on page 38.

3. Type open at the prompt and then press the Enter key. The prompt will change to (to).

4. At the (to) prompt, enter the signal generator’s IP address followed by a space and 5024, which
is the Telnet port associated with the signal generator.

5. At the SCPI> prompt, enter SCPI commands.

6. To escape from the SCPI> session type Ctrl-].

7. Type quit at the prompt to end the Telnet session.

Figure 2-6 Telnet Command Prompt Window

The Standard UNIX Telnet Command

Synopsis

telnet [host [port]]

Description

This command is used to communicate with another host using the Telnet protocol. When the
command telnet is invoked with host or port arguments, a connection is opened to the host, and
38 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
input is sent from the user to the host.

Options and Parameters

The command telnet operates in character–at–a–time or line–by–line mode. In line–by–line mode,
typed text is echoed to the screen. When the line is completed (by pressing the Enter key), the text
line is sent to host. In character–at–a–time mode, text is echoed to the screen and sent to host as
it is typed. At the UNIX prompt, type man telnet to view the options and parameters available with
the telnet command.

NOTE If your Telnet connection is in line–by–line mode, there is no local echo. This means you
cannot see the characters you are typing until you press the Enter key. To remedy this,
change your Telnet connection to character–by–character mode. Escape out of Telnet, and at
the telnet> prompt, type mode char. If this does not work, consult your Telnet program's
documentation.
Agilent X-Series Signal Generators Programming Guide 39

Using IO Interfaces
Using LAN
Unix Telnet Example

To connect to the instrument with host name myInstrument and port number 5024, enter the
following command on the command line: telnet myInstrument 5024.

When you connect to the signal generator, the UNIX window will display a welcome message and a
SCPI command prompt. The instrument is now ready to accept your SCPI commands. As you type
SCPI commands, query results appear on the next line. When you are done, break the Telnet
connection using an escape character. For example, Ctrl-],where the control key and the] are
pressed at the same time. The following example shows Telnet commands:

$ telnet myinstrument 5024

Trying....

Connected to signal generator

Escape character is ‘^]’.

Agilent Technologies, N51xx SN-US00000001

Firmware:

Hostname: your instrument

IP :xxx.xx.xxx.xxx

SCPI>

Using FTP

FTP allows users to transfer files between the signal generator and any computer connected to the
LAN. For example, you can use FTP to download instrument screen images to a computer. When
logged onto the signal generator with the FTP command, the signal generator’s file structure can be
accessed. Figure 2- 7 shows the FTP interface and lists the directories in the signal generator’s user
level directory.

NOTE File access is limited to the signal generator’s /user directory.
40 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
Figure 2-7 FTP Screen

The following steps outline a sample FTP session from the MS–DOS Command Prompt:

1. On the PC click Start > Programs > Command Prompt.

2. At the command prompt enter:

ftp < IP address > or < hostname >

3. At the user name prompt, press enter.

4. At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing help at the command prompt will
show you the FTP commands that are available on your system.

5. Type quit or bye to end your FTP session.

6. Type exit to end the command prompt session.
Agilent X-Series Signal Generators Programming Guide 41

Using IO Interfaces
Using LAN
Using LXI Class B Features (N51xxA MXG Signal Generators Only)

NOTE Full LXI Class B feature implementation is only available on N51xxA MXG signal generators.
A license may be required to enable this feature and to download the required firmware
versions >A.01.50. For information on new firmware releases, go to
http://www.agilent.com/find/upgradeassistant.

This section does not apply to N51xxB EXG/MXG signal generators, which are LXI Class
C- compliant instruments.

This section assumes general familiarity with the LXI- B class of instruments and aims to clarify a
number of general use cases for measurement synchronization between an MXA signal analyzer and
an N51xxA MXG signal generator using a LAN connection. Refer to http://www.lxistandard.org/home
and www.agilent.com/find/lxi for more information.

This LXI section contains the following:

• “IEEE 1588” on page 42

• “Peer to Peer Messaging” on page 44

• “Configuring LXI Triggers” on page 45

• “Using the LXI Event Log” on page 47

• “Setting up and executing a list sweep measurement” on page 47

• “Synchronize a List Sweep Measurement Between an MXA and an MXG using Peer to Peer
Messages” on page 48

• “For More Information” on page 53

IEEE 1588

The IEEE 1588 standard defines a Precision Time Protocol (PTP) for synchronizing various clocks
connected by Ethernet. This will give your measurement instrumentation a common sense of time. To
ensure that the MXA and MXG are operating with synchronized PTP clocks, follow the procedure
outlined in the table below.

Time Synchronization using an MXA Signal Analyzer and a MXG Signal Generator

To ensure that the MXA and MXG are operating with synchronized PTP clocks, follow this procedure:

1. Connect the MXA and MXG to the same Ethernet switch and the ensure that both instruments
are configured for LAN operation.

2. Power on the MXA and MXG.

3. Send the following SCPI command to both the MXA and MXG:

:LXI:CLOCk:PTP:DOMain 1

This parameter may be any integer between 0 to 127. The default value is 0.
42 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
Verifying Time Synchronization

To verify that both instruments are running PTP, open the Interactive LXI tool from a PC which is
connected to the same switch as the MXA and MXG. This program is bundled with the Agilent IO
Libraries Suite.

1. Open Interactive LXI.

From a PC connected to the same subnet as the instrument go to: Start > All Programs > Agilent IO
Libraries Suite > Utilities > Interactive LXI.

2. Open the Timing menu.

Click on the tab labeled Timing.

3. Choose an active domain.

From the Active Domain pull down menu, select the PTP domain entered in step 3 of the previous
procedure.

4. Update the clocks.

Click Update Clock List.

5. Check that the MXA and MXG are located in the expected domain.

Click on the Clock Names listed in the Clock List, then examine the Clock Information panel for the
IP Addresses of the MXA and MXG.

6. View the PTP LAN traffic.

Click the PTP Messages tab and select the Timing Messages checkbox.
Agilent X-Series Signal Generators Programming Guide 43

Using IO Interfaces
Using LAN
Peer to Peer Messaging

The MXA and MXG are capable of sending and receiving LXI specific LAN packets. The packets are
configurable, and may be sent when various instrument events occur during a measurement or state
recall. Each instrument event has an associated sense of 0 or 1 to indicate whether or not the event
is active. The instrument events that can cause an MXG to send an LXI LAN packet are summarized
in the table below.

Enabling the LXI Event Subsystem

Due to the high priority response time demands of handling events, enabling the LXI event subsystem
can adversely impact certain specifications such as frequency and power switching speed. This
becomes more noticeable at higher rates of LXI event traffic. By default, the subsystem is disabled.

To enable the LXI event subsystem from the front panel:

• Press Utility > More > LXI–B > LXI–B Enabled

To enable or disable the LXI event subsystem from SCPI:

• :LXI:STATe ON|OFF

NOTE The LXI Event subsystem state is a persistent instrument state; it is not affected by normal
preset operations.

Table 2-1 LXI LAN Packets

Instrument Event Description

OperationComplete Indicates whether or not an operation is
underway.

• For example, a single sweep will result in:

• OperationComplete = 1 before the sweep.

• OperationComplete = 0 during the sweep.

• OperationComplete = 1 after the sweep.

Settling Indicates the instrument is settling.

Sweeping Indicates whether or not the instrument is
currently performing a sweep.

Waiting For Trigger Indicates whether or not the instrument is
waiting for a trigger event before a measurement
begins.
44 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
Using the Front Panel to Configure LXI Events

The MXG can be configured to send output LAN events for the pre–defined LXI events through the
front panel softkeys.

1. Press Utility > More > LXI–B > Configure LXI Events > Configure LXI Output Events

2. From the Output Events menu:

Press Select Source. Choose the instrument status event to be used as a source for the output LAN
event.

3. Press Toggle Event State to enable the highlighted output LAN event.

Using SCPI to configure an LXI Output Events

More configuration options and the ability to configure custom events are available to the system
integrator through SCPI commands. The following procedure provides a minimum set of commands to
configure an output LAN event. Refer to the SCPI Command Reference.

1. Reset the MXG:

Send the following SCPI command:

*RST

2. Set the LXI Output LAN Event’s source:

Send the following SCPI command:

:LXI:EVENt:LAN:SOURce "LAN0", "Sweeping"

3. Enable the LXI Output Event:

Send the following SCPI command:

:LXI:EVENt:LAN:ENABled "LAN0", 1

Verifying LXI Output LAN Events using LXI Interactive

Peer to peer message transmission can be verified by running LXI Interactive from a PC on the same
subnet as the MXA.

1. From a PC connected to the same subnet as the instrument, go to Start > All Programs > Agilent IO
Libraries Suite > Utilities > Interactive LXI.

2. Click the Start button in the LXI Event Receive box.

3. Incoming LAN Events will be displayed in the text box.

If the initial setup had been configured using the front panel as on page 44 or SCPI commands
(page 45), two LAN Events are expected per sweep: the rising and falling edges of the LAN Event
"LAN0".

Configuring LXI Triggers

The MXA and MXG are capable of reacting to incoming LXI LAN Events. Both instruments may be
triggered by the receipt of a peer to peer message.
Agilent X-Series Signal Generators Programming Guide 45

Using IO Interfaces
Using LAN
Using the front panel to configure an LXI Trigger on the MXG

The MXG is capable of reacting to an incoming LXI LAN Event by treating it as a trigger. The
following procedure describes how to set up the MXG sweep trigger to use an LXI event through the
front panel soft keys.

1. Select the LXI LAN trigger as the source for sweep triggers.

Press Sweep > More > Sweep Trigger > More > LXI LAN

2. Select a Trigger LAN Event.

Press Utility > More > LXI–B > Configure LXI Events > Configure LXI Trigger Events

3. Enable the Trigger LAN Event.

Press the Toggle Event State softkey.

Using SCPI to configure an LXI Trigger on the MXG

The MXG is capable of reacting to an incoming LXI LAN Event by treating it as a trigger. The
following procedure describes how to set up the MXG sweep trigger to use an LXI event through SCPI
commands.

1. Reset the MXG

Send the following SCPI command:

*RST

2. Select the LXI LAN trigger as the source for sweep triggers.

Send the following SCPI command:

:TRIGger:SOURce LAN3

3. Enable a Trigger LAN Event.

Send the following SCPI command:

:TRIGger:LXI:LAN:ENABled "LAN0",1

Verifying an LXI Trigger using LXI Interactive

Peer to peer message transmission can be verified by running LXI Interactive from a PC on the same
subnet as the MXG.

1. Open Interactive LXI.

From a PC connected to the same subnet as the instrument, go to Start > All Programs > Agilent IO
Libraries Suite > Utilities > Interactive LXI.

2. Choose LAN Event.

Select the desired LAN trigger from the Event ID dropdown menu.

3. Send LAN Event.

Press the Send button. This puts the trigger out on the line.
46 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
4. Monitor Response as on page 45.

This may be done assuming that the Output LAN event had been configured from the front panel
(page 44) or SCPI commands (page 45).

Using the LXI Event Log

The LXI subsystem also provides an Event Log. The event log records all of the enabled LXI Event
and Instrument Event activity and associates each action with an IEEE 1588 timestamp. Instrument
Events are enabled by default, and will therefore appear in the log. Since many instrument events
occur during every sweep, logging all of them may flood the event log. They may be disabled by
sending the SCPI command:

:LXI:EVENt:STATus:ENABled “instrumentEvent”,0

where the parameter “instrumentEvent” may be any event listed in Table 2- 1. Note that the event
must be re–enabled before being used as the source of an LXI Output LAN Event.

To view the LXI Event Log from the front panel, press the hard key System and then the softkeys
Show, LXI, LXI Event Log. Once the Event Log is displayed, the arrow keys may be used to scroll
through the list. The Event Log may also be queried through SCPI command.

Setting up and executing a list sweep measurement

The following examples will illustrate procedures for setting up and executing a list sweep
measurement using an MXA and an MXG synchronized with LXI.

Before launching into the procedure, it is important to understand the theory behind the method.
The MXA and MXG use their LXI Output LAN Events to communicate internal state changes to each
other. In the following synchronization, the rising edge of the Waiting For Trigger instrument event
will be used to communicate to the other device that the next step may be executed.

For clarity, the MXG's Waiting For Trigger instrument event is mapped to the LAN0 output event.
Likewise, the MXA's Waiting For Trigger instrument event is mapped to the LAN1 output event.
The MXA is configured to trigger when it receives the LAN0 event with a rising edge. The MXG is
configured to trigger when it receives the LAN1 event with a rising edge. Also, the
OperationComplete output event is enabled, which has the OperationComplete instrument event
mapped to it by default.

The MXG's list sweep is started first, causing it to source the first signal in its list. We then start the
MXA's list sweep. The OperationComplete instrument event transitions low, causing an
OperationComplete output event to go out on the LAN with a falling edge. The MXA takes a
measurement at the first frequency in its list. When the MXA has finished its measurement, it moves
on to the next entry in its list. The Waiting For Trigger instrument event transitions high, causing
a LAN1 output event to go out onto the LAN with a rising edge, and the MXA waits for its next
trigger.

The MXG receives the LAN1 event and triggers. The MXG's Waiting For Trigger instrument event
transitions low, and a LAN0 output event goes onto the LAN with a falling edge. The MXA takes no
action, since it is configured to trigger only on rising edges. The MXG is now sourcing the next signal
in its list. Once that signal has settled, it prepares to move on to its list's next entry. The MXG's
Waiting For Trigger instrument event transitions high, and a LAN0 output event goes onto the LAN
with a rising edge. The MXG waits for its next trigger.
Agilent X-Series Signal Generators Programming Guide 47

Using IO Interfaces
Using LAN
The MXA receives the LAN0 event and triggers. The MXA's Waiting For Trigger instrument event
transitions low, and a LAN1 output event goes onto the LAN with a falling edge. The MXG takes no
action, since it is configured to trigger only on rising edges. The MXA completes its measurement and
prepares to move on to the next frequency in its list. The MXA's Waiting For Trigger instrument
event transitions high, and a LAN1 output event goes onto the LAN with a rising edge. The MXA
waits for its next trigger.

The two instruments continue to step through their lists until the MXA has completed measurements
at every frequency in its list. Once the final measurement has completed, the OperationComplete
instrument event transitions high, causing the OperationComplete output event to go out onto the
LAN with a rising edge. This event may be caught by a controller to signal the end of the
measurement. The controller may then retrieve the list sweep measurement results from the MXA.

Synchronize a List Sweep Measurement Between an MXA and an MXG using Peer to Peer Messages
1. Disable LXI Output LAN Events on the MXG:

Send the following SCPI command:

:LXI:EVENt:OUTPut:LAN:DISable:ALL

2. Reset the MXG:

Send the following SCPI command:

*RST

3. Choose the MXG's PTP domain:

Send the following SCPI command:

:LXI:CLOCk:PTP:DOMain 0

The parameter may be any integer between 0 to 127.

4. Choose the MXG's LXI domain:

Send the following SCPI command:

:LXI:EVENt:DOMain 0

The parameter may be any integer between 0 to 127.

5. Preset the MXG's list sweep:

Send the following SCPI command:

:LIST:TYPE:LIST:INIT:PRES

6. Sets the MXG to expect a list of frequencies:

Send the following SCPI command:

:FREQ:MODE LIST

7. Sets the MXG to expect a list of powers:

Send the following SCPI command:

:POW:MODE LIST
48 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
8. Sets the MXG how the lists will be entered:

Send the following SCPI command:

:LIST:TYPE LIST

An arbitrary list will be used instead of range and step size arguments.

9. Send the MXG a list of frequencies:

Send the following SCPI command:

:LIST:FREQ 100MHz,200MHz,300MHz,400MHz,500MHz

The MXG will put out signals at these frequencies and in this order.

10. Send the MXG a list of powers:

Send the following SCPI command:

:LIST:POW 0dBm,-1dBm,-2dBm,-3dBm,-4dBm

The MXG will put out signals at these powers and in this order.

11. Turn off MXG signal modulation:

Send the following SCPI command:

:OUTP:MOD OFF

12. Turn MXG signal output on:

Send the following SCPI command:

:OUTP ON

13. Configure the MXG's LXI Output LAN Event:

Send the following SCPI commands:

:LXI:EVENt:OUTPut:LAN:DRIVe "LAN0",NORMal

:LXI:EVENt:OUTPut:LAN:SLOPe "LAN0",POS

:LXI:EVENt:OUTPut:LAN:SOURce "LAN0","Waiting For Trigger"

Together, these commands will cause the MXG to send a "LAN0" peer to peer message every time
the “Waiting For Trigger” instrument event changes state.

14. Set the MXG's trigger source:

Send the following SCPI command:

:LIST:TRIG:SOUR LAN

15. Enable the MXG's LXI LAN Event trigger:

Send the following SCPI command:

:TRIG:LXI:LAN:ENABled "LAN1",1

16. Enable the MXG's LXI Output LAN Event:

Send the following SCPI command:

:LXI:EVENt:OUTPut:LAN:ENABled "LAN0",1
Agilent X-Series Signal Generators Programming Guide 49

Using IO Interfaces
Using LAN
17. Disable LXI Output LAN Events on the MXA:

Send the following SCPI command:

:LXI:EVENt:OUTPut:LAN:DISable:ALL

18. Put the MXA into SA mode:

Send the following SCPI command:

:INST:SEL SA

19. Put the MXA into single sweep mode:

Send the following SCPI command:

:INIT:CONT OFF

20. Choose the MXA's PTP domain:

Send the following SCPI command:

:LXI:CLOCk:PTP:DOMain 0

The parameter value should match the one used in step 3.

21. Choose the MXA's LXI domain:

Send the following SCPI command:

:LXI:EVENt:DOMain 0

The parameter value should match the one used in step 4.

22. Move the MXA into the list sweep measurement:

Send the following SCPI command:

:CONF:LIST

23. Send the MXA a list of frequencies:

Send the following SCPI command:

:LIST:FREQ 100MHz,200MHz,300MHz,400MHz,500MHz

The MXA will put out signals at these frequencies and in this order.

24. Configure the MXA's list sweep parameters:

Send the following SCPI commands:

:LIST:ATT 10dB

:LIST:BAND:RES:TYPE FLAT

:LIST:BAND:RES 300kHz

:LIST:BAND:VID 3MHz

:LIST:SWE:TIME 1e-6 s

:LIST:TRIG:DEL 0

:LIST:DET RMS
50 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
25. Make sure the MXA's LXI LAN triggers are disabled:

Send the following SCPI command:

:TRIG:LXI:LAN:DISable:ALL

26. Set the MXA's trigger source to LXI LAN:

Send the following SCPI command:

:LIST:TRIG:SOUR LAN

27. Configure the MXA's LXI Output LAN Event:

Send the following SCPI commands:

:LXI:EVENt:OUTPut:LAN:DRIVe "LAN1",NORMal

:LXI:EVENt:OUTPut:LAN:SLOPe "LAN1",POS

:LXI:EVENt:OUTPut:LAN:SOURce "LAN1","WaitingForTrigger"

This will cause the MXA to take a measurement at the first frequency in its list. It will also begin
waiting for the "LAN0" peer to peer message before moving on to the next measurement.

28. Enable the MXA's LXI LAN Event trigger:

Send the following SCPI commands:

:TRIG:LXI:LAN:ENABled "LAN0",1

29. Enable the MXA's "OperationComplete" LXI Output LAN Event:

Send the following SCPI commands:

:LXI:EVENt:OUTPut:LAN:ENABled "OperationComplete",1

The MXA will send an "OperationComplete" peer to peer message when the
"OperationComplete" instrument event changes state.

30. Begin the MXG's list sweep:

Send the following SCPI commands:

:INIT:CONT ON

This will cause the MXG to put out a signal at the first frequency in its list. It will also begin
waiting for the "LAN1" peer to peer message before moving on to the next signal.

31. Begin the MXA's list sweep:

Send the following SCPI commands:

:INIT:LIST

This will cause the MXA to take a measurement at the first frequency in its list. It will also begin
waiting for the "LAN0" peer to peer message before moving on to the next measurement.

32. Enable the MXA's “LAN1” LXI Output LAN Event:

Send the following SCPI commands:

:LXI:EVENt:OUTPut:LAN:ENABled "LAN1",1

The "LAN1" peer to peer message is now enabled.
Agilent X-Series Signal Generators Programming Guide 51

Using IO Interfaces
Using LAN
33. Send the MXG a "LAN1" peer to peer message:

Using Interactive LXI or the Agilent IO Libraries TMFramework LXI library: send a "LAN1" peer
to peer message to the MXG.

This will start the synchronization sequence.

34. The MXA waits for the "OperationComplete" instrument event:

Detect the peer to peer traffic using Interactive LXI. To programmatically listen for LXI peer to
peer messages, use the Agilent IO Libraries TMFramework LXI library.

When the MXA has completed its list, it will send the peer to peer message
"OperationComplete" with a rising edge to MXG.

35. Send query to MXA for the measurement results:

:FETCh:LIST?

Figure 2-8 Illustration of a List Sweep Measurement Between an MXA and an MXG using Peer to Peer Messages.
52 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using LAN
For More Information

For more information on using LXI see the Agilent website dedicated to LXI instrumentation:

www.agilent.com/find/lxi.

Agilent LXI Application Notes:

• Using LXI to go beyond GPIB, PXI and VXI (AN 1465–20)

• 10 Good Reasons to Switch to LXI (AN 1465–21)

• Transitioning from GPIB to LXI (AN 1465–22)

• How to Use VXI and PXI in Your New LXI Test System (AN 1465–23)

• Using Synthetic Instruments in Your Test System (AN 1465–24)

• Migrating system software from GPIB to LAN/LXI (AN 1465–25)

• Modifying a GPIB System to Include LAN/LXI (AN 1465–26)
Agilent X-Series Signal Generators Programming Guide 53

Using IO Interfaces
Using USB
Using USB

CAUTION USB cables are not industrial graded and potentially allows data loss in noisy
environments.

USB cables do not have a latching mechanism and the cables can be pulled out of the
PC or instrument relatively easily.

The maximum length for USB cables is 30 m, including the use of inline repeaters.

NOTE The USB 2.0 interface supports USBTMC or USBTMC–USB488 specifications.

For more information on connecting instruments to the USB, refer to the Agilent Connection
Expert in the Agilent IO Libraries Help.

USB 2.0 connectors can be used to communicate with the signal generator. N51xxA MXG signal
generators are equipped with a Mini–B 5 pin rear panel connector (device USB). N51xxB EXG/MXG
signal generators are equipped with a Type- B rear panel connector (device USB). Use a Type–A to
Mini–USB 5 pin cable to connect the signal generator to the computer (Refer to “Setting Up the USB
Interface” on page 55). Connect the Type–A front panel connector (host USB) can be used to connect
a mouse, a keyboard, or a USB 1.1/2.0 flash drive (USB media). (Refer to the User’s Guide.) ARB
waveform encryption of proprietary information is supported. Many functions provided by GPIB,
including GET, non–SCPI remote languages, and remote mode are available using the USB interface.

NOTE For a list of compatible flash drives to use with the USB external interface. Refer to
http://www.agilent.com/find/mxg.

Do not use the front panel USB (Type- A) connector to connect to a computer.

The following sections contain information on selecting and connecting I/O libraries and the USB
interface that are required to remotely program the signal generator through the computer and
combining those choices with one of several possible USB interface protocols.

• “Selecting I/O Libraries for USB” on page 55
• “Setting Up the USB Interface” on page 55
• “Verifying USB Functionality” on page 56
54 Agilent X-Series Signal Generators Programming Guide

Using IO Interfaces
Using USB
Selecting I/O Libraries for USB

CAUTION The Agilent X- Series USB interface requires Agilent IO Libraries Suite 14.1 or newer to
run properly. For more information on connecting instruments to the USB, refer to the
Agilent Connection Expert in the Agilent IO Libraries Help.

The I/O libraries can be downloaded from the National Instrument website, http://www.ni.com, or
Agilent’s website, http://www.agilent.com. The following is a discussion on these libraries.

NOTE I/O applications such as IVI–COM or VXIplug&play can be used in place of VISA.

VISA VISA is an I/O library used to develop I/O applications and instrument drivers
that comply with industry standards. It is recommended that the VISA library be
used for programming the signal generator. The NI–VISA and Agilent VISA
libraries are similar implementations of VISA and have the same commands,
syntax, and functions. The differences are in the lower level I/O libraries used to
communicate over the USB; NI–488.2 and SICL respectively.

NI–488.2 NI–488.2 I/O libraries can be used to develop applications for the USB interface.
See National Instrument’s website for information on NI–488.2.

SICL Agilent SICL can be used to develop applications for the USB interface. See
Agilent’s website for information on SICL.

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

Setting Up the USB Interface

Rear Panel Interface (Mini–B 5 pin)

To use USB, connect the USB cable (Refer to Table 2- 2, “USB Interface Cable,” on page 55, for USB
cable information.) between the computer and the signal generator’s rear panel Mini–B 5–pin USB
connector.

Table 2-2 USB Interface Cable

Quantity Description Agilent Part Number

1 USB cable Mini–B 5 pin to Type–A 82357–61601
Agilent X-Series Signal Generators Programming Guide 55

Using IO Interfaces
Using USB
Front Panel USB (Type–A)

For details on using the front panel USB (Type–A) and the front panel USB Media operation, refer to
the User’s Guide.

Verifying USB Functionality

Mini–B 5 Pin Rear Panel Connector

NOTE For information on verifying your Mini–B 5 pin USB (rear panel) functionality, refer to the
Agilent Connection Expert in the Agilent IO Libraries Help. The Agilent IO libraries are
included with your signal generator or Agilent GPIB interface board, or they can be
downloaded from the Agilent website: http://www.agilent.com.

Type–A Front Panel USB Connector

For details on using the front panel USB (Type–A) and the front panel USB Media operation, refer to
the User’s Guide.
56 Agilent X-Series Signal Generators Programming Guide

3 Programming Examples

• Using the Programming Interface Examples on page 57

• GPIB Programming Interface Examples on page 62

• LAN Programming Interface Examples on page 97

Using the Programming Interface Examples
The programming examples for remote control of the signal generator use the GPIB and LAN
interfaces and demonstrate instrument control using different IO libraries and programming
languages. Many of the example programs in this chapter are interactive; the user will be prompted
to perform certain actions or verify signal generator operation or functionality. Example programs are
written in the following languages:

These example programs are also available on the signal generator Documentation CD- ROM, enabling
you to cut and paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel keys, except
the Agilent MXG Local/Esc/Cancel key, are disabled. Press the Agilent MXG Local/Esc/Cancel
key to revert to manual operation.

To have the signal generator’s front panel update with changes caused by remote operations, enable
the signal generator’s Update in Remote function.

NOTE The Update in Remote function will slow test execution. For faster test execution, disable the
Update in Remote function. For more information, refer to or “Configuring the Display for
Remote Command Setups” on page 17.

HP Basic C#

C/C++ Microsoft Visual Basic 6.0

Java MATLAB

Perl
Agilent X-Series Signal Generators Programming Guide 57

Programming Examples
Using the Programming Interface Examples
Programming Examples Development Environment

The C/C++ examples were written using an IBM- compatible personal computer (PC), configured as
follows:

• Pentium® processor (Pentium is a registered trademark of Intel Corporation.)
• Windows NT 4.0 operating system or later
• C/C++ programming language with the Microsoft Visual C++ 6.0 IDE
• National Instruments PCI- GPIB interface card or Agilent GPIB interface card
• National Instruments VISA Library or Agilent VISA library
• LAN interface card

The HP Basic examples were run on a UNIX 700 series workstation.

Running C++ Programs

When using Microsoft Visual C++ 6.0 to run the example programs, include the following files in your
project.

When using the VISA library:

• add the visa32.lib file to the Resource Files
• add the visa.h file to the Header Files

When using the NI- 488.2 library:

• add the GPIB- 32.OBJ file to the Resource Files
• add the windows.h file to the Header Files
• add the Deci- 32.h file to the Header Files

For information on the NI- 488.2 library and file requirements refer to the National Instrument
website. For information on the VISA library see the Agilent website or National Instrument’s
website.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “DHCP/Auto- IP LAN Configuration
Sequence” on page 29.
58 Agilent X-Series Signal Generators Programming Guide

Programming Examples
Using the Programming Interface Examples
C/C++ Examples
• “Interface Check for GPIB Using VISA and C” on page 68
• “Local Lockout Using NI- 488.2 and C++” on page 70
• “Queries Using NI- 488.2 and Visual C++” on page 73
• “Queries for GPIB Using VISA and C” on page 75
• “Generating a CW Signal Using VISA and C” on page 77
• “Generating an Externally Applied AC- Coupled FM Signal Using VISA and C” on page 79
• “Generating an Internal FM Signal Using VISA and C” on page 81
• “Generating a Step- Swept Signal Using VISA and C++” on page 83
• “Reading the Data Questionable Status Register Using VISA and C” on page 89
• “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 93
• “VXI- 11 Programming Using SICL and C++” on page 98
• “VXI- 11 Programming Using VISA and C++” on page 99
• “Sockets LAN Programming and C” on page 101

Running C# Examples

To run the example program State_Files.cs on page 315, you must have the .NET framework installed
on your computer. You must also have the Agilent IO Libraries installed on your computer. The .NET
framework can be downloaded from the Microsoft website. For more information on running C#
programs using .NET framework, see Chapter 6.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “Configuring the VXI–11 Service” on
page 27.

Running Basic Examples

The BASIC programming interface examples provided in this chapter use either HP Basic or Visual
Basic 6.0 languages.

Visual Basic 6.0 Programming Examples

To run the example programs written in Visual Basic 6.0 you must include references to the IO
Libraries. For more information on VISA and IO libraries, refer to the Agilent VISA User’s Manual,
available on Agilent’s website: http://www.agilent.com. In the Visual Basic IDE (Integrated
Development Environment) go to Project–References and place a check mark on the following
references:

• Agilent VISA COM Resource Manager 1.0
• VISA COM 1.0 Type Library
Agilent X-Series Signal Generators Programming Guide 59

Programming Examples
Using the Programming Interface Examples
NOTE If you want to use VISA functions such as viWrite, then you must add the visa32.bas module
to your Visual Basic project.

The signal generator’s VXI- 11 SCPI service must be on before you can run the Download Visual Basic
6.0 programming example.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “Configuring the VXI–11 Service” on
page 27.

You can start a new Standard EXE project and add the required references. Once the required
references are included, you can copy the example programs into your project and add a command
button to Form1 that will call the program.

The example Visual Basic 6.0 programs are available on the signal generator Documentation
CD- ROM, enabling you to cut and paste the examples into your project.

Visual Basic Examples

The Visual Basic examples enable the use of waveform files and are located in Chapter 5.

• “Creating I/Q Data—Little Endian Order” on page 256
• “Downloading I/Q Data” on page 258

HP Basic Examples
• “Interface Check using HP Basic and GPIB” on page 66
• “Local Lockout Using HP Basic and GPIB” on page 69
• “Queries Using HP Basic and GPIB” on page 72

Running Java Examples

The Java program “Sockets LAN Programming Using Java” on page 124, connects to the signal
generator through sockets LAN. This program requires Java version 1.1 or later be installed on your
PC. For more information on sockets LAN programming with Java, refer to “Sockets LAN
Programming Using Java” on page 124.
60 Agilent X-Series Signal Generators Programming Guide

Programming Examples
Using GPIB
Running MATLAB Examples

For information regarding programming examples and files required to create and play waveform
files, refer to Chapter 5.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “Configuring the VXI–11 Service” on
page 27.

Running Perl Examples

The Perl example “Sockets LAN Programming Using Perl” on page 126, uses PERL script to control
the signal generator over the sockets LAN interface.

Using GPIB
GPIB enables instruments to be connected together and controlled by a computer. GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1- 1987 and ANSI/IEEE
Standard 488.2- 1992. See the IEEE website, http://www.ieee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card or NI- GPIB interface
card for your PC or UNIX- based system.

• “Installing the GPIB Interface Card” on page 61

For more information on setting up a GPIB interface card or NI- GPIB interface card, refer to:

• “Set Up the GPIB Interface” on page 23

• “Verify GPIB Functionality” on page 23

NOTE You can also connect GPIB instruments to a PC USB port using the Agilent 82357A
USB/GPIB Interface Converter, which eliminates the need for a GPIB card. For more
information, go to http://www.agilent.com/find/gpib.

Installing the GPIB Interface Card

Refer to “Installing the GPIB Interface” on page 21.
Agilent X-Series Signal Generators Programming Guide 61

Programming Examples
GPIB Programming Interface Examples
GPIB Programming Interface Examples
• “Interface Check using HP Basic and GPIB” on page 66
• “Interface Check Using NI- 488.2 and C++” on page 67
• “Interface Check for GPIB Using VISA and C” on page 68
• “Local Lockout Using HP Basic and GPIB” on page 69
• “Local Lockout Using NI- 488.2 and C++” on page 70
• “Queries Using HP Basic and GPIB” on page 72
• “Queries Using NI- 488.2 and Visual C++” on page 73
• “Queries for GPIB Using VISA and C” on page 75
• “Generating a CW Signal Using VISA and C” on page 77
• “Generating an Externally Applied AC- Coupled FM Signal Using VISA and C” on page 79
• “Generating an Internal FM Signal Using VISA and C” on page 81
• “Generating a Step- Swept Signal Using VISA and C++” on page 83
• “Generating a Swept Signal Using VISA and Visual C++” on page 84
• “Saving and Recalling States Using VISA and C” on page 86
• “Reading the Data Questionable Status Register Using VISA and C” on page 89
• “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 93

Before Using the GPIB Examples

HP Basic addresses the signal generator at 719. The GPIB card is addressed at 7 and the signal
generator at 19. The GPIB address designator for other libraries is typically GPIB0 or GPIB1.

GPIB Function Statements (Command Messages)

Function statements are the basis for GPIB programming and instrument control. These function
statements, combined with SCPI, provide management and data communication for the GPIB interface
and the signal generator.

This section describes functions used by different IO libraries. For more information, refer to the
NI- 488.2 Function Reference Manual for Windows, Agilent Standard Instrument Control Library
reference manual, and Microsoft Visual C++ 6.0 documentation.

Abort Function

The HP Basic function ABORT and the other listed IO library functions terminate listener/talker
activity on the GPIB and prepare the signal generator to receive a new command from the computer.
Typically, this is an initialization command used to place the GPIB in a known starting condition.

Library Function Statement Initialization Command

HP Basic The ABORT function stops all GPIB activity. 10 ABORT 7

VISA Library In VISA, the viTerminate command requests a VISA session
to terminate normal execution of an asynchronous operation.
The parameter list describes the session and job id.

viTerminate (parameter
list)

NI- 488.2 The NI- 488.2 library function aborts any asynchronous read,
write, or command operation that is in progress. The
parameter ud is the interface or device descriptor.

ibstop(int ud)
62 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
Remote Function

The HP Basic function REMOTE and the other listed IO library functions change the signal generator
from local operation to remote operation. In remote operation, the front panel keys are disabled
except for the Local key and the line power switch. Pressing the Local key restores manual operation.

Local Lockout Function

The HP Basic function LOCAL LOCKOUT and the other listed IO library functions disable the front
panel keys including the Local key. With the Local key disabled, only the controller (or a hard reset of
line power) can restore local control.

SICL The Agilent SICL function aborts any command currently
executing with the session id. This function is supported
with C/C++ on Windows 3.1 and Series 700 HP- UX.

iabort (id)

Library Function Statement Initialization Command

HP Basic The REMOTE 719 function disables the front panel operation
of all keys with the exception of the Local key.

10 REMOTE 719

VISA Library The VISA library, at this time, does not have a similar
command.

N/A

NI- 488.2 The NI- 488.2 library function asserts the Remote Enable
(REN) GPIB line. All devices listed in the parameter list are
put into a listen- active state although no indication is
generated by the signal generator. The parameter list
describes the interface or device descriptor.

EnableRemote (parameter
list)

SICL The Agilent SICL function puts an instrument, identified by
the id parameter, into remote mode and disables the front
panel keys. Pressing the Local key on the signal generator
front panel restores manual operation. The parameter id is
the session identifier.

iremote (id)

Library Function Statement Initialization Command

HP Basic The LOCAL LOCKOUT function disables all front- panel signal
generator keys. Return to local control can occur only by
cycling power on the instrument, when the LOCAL command
is sent or if the Preset key is pressed.

10 LOCAL LOCKOUT 719

VISA Library The VISA library, at this time, does not have a similar
command.

N/A

Library Function Statement Initialization Command
Agilent X-Series Signal Generators Programming Guide 63

Programming Examples
GPIB Programming Interface Examples
Local Function

The HP Basic function LOCAL and the other listed functions return the signal generator to local
control with a fully enabled front panel.

Clear Function

The HP Basic function CLEAR and the other listed IO library functions clear the signal generator.

NI- 488.2 The LOCAL LOCKOUT function disables all front- panel signal
generator keys. Return to local control can occur only by
cycling power on the instrument, when the LOCAL command
is sent or if the Preset key is pressed.

SetRWLS (parameter
list)

SICL The Agilent SICL igpibllo prevents function prevents user
access to front panel keys operation. The function puts an
instrument, identified by the id parameter, into remote
mode with local lockout. The parameter id is the session
identifier and instrument address list.

igpibllo (id)

Library Function Statement Initialization Command

HP Basic The LOCAL 719 function returns the signal generator to
manual operation, allowing access to the signal generator’s
front panel keys.

10 LOCAL 719

VISA Library The VISA library, at this time, does not have a similar
command.

N/A

NI- 488.2 The NI- 488.2 library function places the interface in local
mode and allows operation of the signal generator’s front
panel keys. The ud parameter in the parameter list is the
interface or device descriptor.

ibloc (int ud)

SICL The Agilent SICL function puts the signal generator into
Local operation; enabling front panel key operation. The id
parameter identifies the session.

iloc (id)

Library Function Statement Initialization Command

HP Basic The CLEAR 719 function halts all pending output- parameter
operations, resets the parser (interpreter of programming
codes) and prepares for a new programming code, stops any
sweep in progress, and turns off continuous sweep.

10 CLEAR 719

VISA Library The VISA library uses the viClear function. This function
performs an IEEE 488.1 clear of the signal generator.

viClear (ViSession vi)

Library Function Statement Initialization Command
64 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
Output Function

The HP Basic IO function OUTPUT and the other listed IO library functions put the signal generator
into a listen mode and prepare it to receive ASCII data, typically SCPI commands.

NI- 488.2 The NI- 488.2 library function sends the GPIB Selected
Device Clear (SDC) message to the device described by ud.

ibclr (int ud)

SICL The Agilent SICL function clears a device or interface. The
function also discards data in both the read and write
formatted IO buffers. The id parameter identifies the
session.

iclear (id)

Library Function Statement Initialization Command

HP Basic The function OUTPUT 719 puts the signal generator into
remote mode, makes it a listener, and prepares it to receive
data.

10 OUTPUT 719

VISA Library The VISA library uses the above function and associated
parameter list to output data. This function formats
according to the format string and sends data to the device.
The parameter list describes the session id and data to send.

viPrintf (parameter
list)

NI- 488.2 The NI- 488.2 library function addresses the GPIB and writes
data to the signal generator. The parameter list includes the
instrument address, session id, and the data to send.

ibwrt (parameter list)

SICL The Agilent SICL function converts data using the format
string. The format string specifies how the argument is
converted before it is output. The function sends the
characters in the format string directly to the instrument.
The parameter list includes the instrument address, data
buffer to write, and so forth.

iprintf (parameter
list)

Library Function Statement Initialization Command
Agilent X-Series Signal Generators Programming Guide 65

Programming Examples
GPIB Programming Interface Examples
Enter Function

The HP Basic function ENTER reads formatted data from the signal generator. Other IO libraries use
similar functions to read data from the signal generator.

Interface Check using HP Basic and GPIB

This simple program causes the signal generator to perform an instrument reset. The SCPI command
*RST places the signal generator into a pre- defined state and the remote annunciator (R) appears on
the front panel display.

The following program example is available on the signal generator Documentation CD- ROM as
basicex1.txt.

10 !**

20 !

30 ! PROGRAM NAME: basicex1.txt

40 !

50 ! PROGRAM DESCRIPTION: This program verifies that the GPIB connections and

60 ! interface are functional.

70 !

80 ! Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the following commands and then

120 ! RUN the program:

130 !

Library Function Statement Initialization Command

HP Basic The function ENTER 719 puts the signal generator into
remote mode, makes it a talker, and assigns data or status
information to a designated variable.

10 ENTER 719;

VISA Library The VISA library uses the viScanf function and an
associated parameter list to receive data. This function
receives data from the instrument, formats it using the
format string, and stores the data in the argument list. The
parameter list includes the session id and string argument.

viScanf (parameter
list)

NI- 488.2 The NI- 488.2 library function addresses the GPIB, reads
data bytes from the signal generator, and stores the data
into a specified buffer. The parameter list includes the
instrument address and session id.

ibrd (parameter list)

SICL The Agilent SICL function reads formatted data, converts it,
and stores the results into the argument list. The conversion
is done using conversion rules for the format string. The
parameter list includes the instrument address, formatted
data to read, and so forth.

iscanf (parameter list)
66 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
140 !**

150 !

160 Sig_gen=719 ! Declares a variable to hold the signal generator's address

170 LOCAL Sig_gen ! Places the signal generator into Local mode

180 CLEAR Sig_gen ! Clears any pending data I/O and resets the parser

190 REMOTE 719 ! Puts the signal generator into remote mode

200 CLEAR SCREEN ! Clears the controllers display

210 REMOTE 719

220 OUTPUT Sig_gen;"*RST" ! Places the signal generator into a defined state

230 PRINT "The signal generator should now be in REMOTE."

240 PRINT

250 PRINT "Verify that the remote [R] annunciator is on. Press the `Local' key, "

260 PRINT "on the front panel to return the signal generator to local control."

270 PRINT

280 PRINT "Press RUN to start again."

290 END ! Program ends

Interface Check Using NI-488.2 and C++

This example uses the NI- 488.2 library to verify that the GPIB connections and interface are
functional. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the signal generator Documentation CD- ROM as
niex1.cpp.

// ***

//

// PROGRAM NAME: niex1.cpp

//

// PROGRAM DESCRIPTION: This program verifies that the GPIB connections and

// interface are functional.

//

// Connect a GPIB cable from the PC GPIB card to the signal generator

// Enter the following code into the source .cpp file and execute the program

//

// ***

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle
Agilent X-Series Signal Generators Programming Guide 67

Programming Examples
GPIB Programming Interface Examples
Addr4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{

 int sig; // Declares a device descriptor variable

 sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor

 ibclr(sig); // Sends device clear message to signal generator

 ibwrt(sig, "*RST", 4); // Places the signal generator into a defined state

 // Print data to the output window

 cout << "The signal generator should now be in REMOTE. The remote indicator"<<endl;

 cout <<"annunciator R should appear on the signal generator display"<<endl;

 return 0;

}

Interface Check for GPIB Using VISA and C

This program uses VISA library functions and the C language to communicate with the signal
generator. The program verifies that the GPIB connections and interface are functional. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. visaex1.cpp performs the following functions:

• verifies the GPIB connections and interface are functional
• switches the signal generator into remote operation mode

The following program example is available on the signal generator Documentation CD- ROM as
visaex1.cpp.

//**

// PROGRAM NAME:visaex1.cpp

//

// PROGRAM DESCRIPTION:This example program verifies that the GPIB connections and

// and interface are functional.

// Turn signal generator power off then on and then run the program

//

//**

#include <visa.h>

#include <stdio.h>

#include "StdAfx.h"

#include <stdlib.h>

void main ()
68 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
{

ViSession defaultRM, vi; // Declares a variable of type ViSession

 // for instrument communication

ViStatus viStatus = 0;

 // Opens a session to the GPIB device

 // at address 19

viStatus=viOpenDefaultRM(&defaultRM);

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

viPrintf(vi, "*RST\n"); // initializes signal generator

 // prints to the output window

printf("The signal generator should now be in REMOTE. The remote indicator\n");

printf("annunciator R should appear on the signal generator display\n");

printf("\n");

viClose(vi); // closes session

viClose(defaultRM); // closes default session

}

Local Lockout Using HP Basic and GPIB

This example demonstrates the Local Lockout function. Local Lockout disables the front panel signal
generator keys. basicex2.txt performs the following functions:

• resets instrument
• places signal generator into local
• places signal generator into remote

The following program example is available on the signal generator Documentation CD- ROM as
basicex2.txt.

10 !***

20 !

30 ! PROGRAM NAME: basicex2.txt

40 !

50 ! PROGRAM DESCRIPTION: In REMOTE mode, access to the signal generators

60 ! functional front panel keys are disabled except for

70 ! the Local and Contrast keys. The LOCAL LOCKOUT

80 ! command will disable the Local key.

90 ! The LOCAL command, executed from the controller, is then

100 ! the only way to return the signal generator to front panel,
Agilent X-Series Signal Generators Programming Guide 69

Programming Examples
GPIB Programming Interface Examples
110 ! Local, control.

120 !***

130 Sig_gen=719 ! Declares a variable to hold signal generator address

140 CLEAR Sig_gen ! Resets signal generator parser and clears any output

150 LOCAL Sig_gen ! Places the signal generator in local mode

160 REMOTE Sig_gen ! Places the signal generator in remote mode

170 CLEAR SCREEN ! Clears the controllers display

180 OUTPUT Sig_gen;"*RST" ! Places the signal generator in a defined state

190 ! The following print statements are user prompts

200 PRINT "The signal generator should now be in remote."

210 PRINT "Verify that the 'R' and 'L' annunciators are visable"

220 PRINT ".......... Press Continue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT mode

250 PRINT ! Prints user prompt messages

260 PRINT "Signal generator should now be in LOCAL LOCKOUT mode."

270 PRINT

280 PRINT "Verify that all keys including `Local' (except Contrast keys) have no effect."

290 PRINT

300 PRINT ".......... Press Continue"

310 PAUSE

320 PRINT

330 LOCAL 7 ! Returns signal generator to Local control

340 ! The following print statements are user prompts

350 PRINT "Signal generator should now be in Local mode."

360 PRINT

370 PRINT "Verify that the signal generator's front-panel keyboard is functional."

380 PRINT

390 PRINT "To re-start this program press RUN."

400 END

Local Lockout Using NI-488.2 and C++

This example uses the NI- 488.2 library to set the signal generator local lockout mode. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. niex2.cpp performs the following functions:

• all front panel keys, except the contrast key
• places the signal generator into remote
• prompts the user to verify the signal generator is in remote
• places the signal generator into local

The following program example is available on the signal generator Documentation CD- ROM as
niex2.cpp.

// **
70 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
// PROGRAM NAME: niex2.cpp

//

// PROGRAM DESCRIPTION: This program will place the signal generator into

// LOCAL LOCKOUT mode. All front panel keys, except the Contrast key, will be disabled.

// The local command, 'ibloc(sig)' executed via program code, is the only way to

// return the signal generator to front panel, Local, control.

// **

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle

Addr4882_t Address[31]; // Declares a variable of type Addr4882_t

int main()

{

 int sig; // Declares variable to hold interface descriptor

 sig = ibdev(0, 19, 0, 13, 1, 0); // Opens and initialize a device descriptor

 ibclr(sig); // Sends GPIB Selected Device Clear (SDC) message

 ibwrt(sig, "*RST", 4); // Places signal generator in a defined state

 cout << "The signal generator should now be in REMOTE. The remote mode R "<<endl;

 cout <<"annunciator should appear on the signal generator display."<<endl;

 cout <<"Press Enter to continue"<<endl;

 cin.ignore(10000,'\n');

 SendIFC(GPIB0); // Resets the GPIB interface

 Address[0]=19; // Signal generator's address

 Address[1]=NOADDR; // Signifies end element in array. Defined in
 // DECL-32.H

 SetRWLS(GPIB0, Address); // Places device in Remote with Lockout State.

 cout<< "The signal generator should now be in LOCAL LOCKOUT. Verify that all
 keys"<<endl;

 cout<< "including the 'Local' key are disabled (Contrast keys are not
 affected)"<<endl;

 cout <<"Press Enter to continue"<<endl;

 cin.ignore(10000,'\n');

 ibloc(sig); // Returns signal generator to local control

 cout<<endl;

 cout <<"The signal generator should now be in local mode\n";

 return 0;}

}

Agilent X-Series Signal Generators Programming Guide 71

Programming Examples
GPIB Programming Interface Examples
Queries Using HP Basic and GPIB

This example demonstrates signal generator query commands. The signal generator can be queried for
conditions and setup parameters. Query commands are identified by the question mark as in the
identify command *IDN? basicex3.txt performs the following functions:

• clears the signal generator

• queries the signal generator’s settings

The following program example is available on the signal generator Documentation CD- ROM as
basicex3.txt.

10 !**

20 !

30 ! PROGRAM NAME: basicex3.txt

40 !

50 ! PROGRAM DESCRIPTION: In this example, query commands are used with response

60 ! data formats.

70 !

80 ! CLEAR and RESET the controller and RUN the following program:

90 !

100 !**

110 !

120 DIM A$[10],C$[100],D$[10] ! Declares variables to hold string response data

130 INTEGER B ! Declares variable to hold integer response data

140 Sig_gen=719 ! Declares variable to hold signal generator address

150 LOCAL Sig_gen ! Puts signal generator in Local mode

160 CLEAR Sig_gen ! Resets parser and clears any pending output

170 CLEAR SCREEN ! Clears the controller’s display

180 OUTPUT Sig_gen;"*RST" ! Puts signal generator into a defined state

190 OUTPUT Sig_gen;"FREQ:CW?" ! Querys the signal generator CW frequency setting

200 ENTER Sig_gen;F ! Enter the CW frequency setting

210 ! Print frequency setting to the controller display

220 PRINT "Present source CW frequency is: ";F/1.E+6;"MHz"

230 PRINT

240 OUTPUT Sig_gen;"POW:AMPL?" ! Querys the signal generator power level

250 ENTER Sig_gen;W ! Enter the power level

260 ! Print power level to the controller display

270 PRINT "Current power setting is: ";W;"dBM"

280 PRINT

290 OUTPUT Sig_gen;"FREQ:MODE?" ! Querys the signal generator for frequency mode

300 ENTER Sig_gen;A$! Enter in the mode: CW, Fixed or List

310 ! Print frequency mode to the controller display

320 PRINT "Source's frequency mode is: ";A$

330 PRINT
72 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
340 OUTPUT Sig_gen;"OUTP OFF" ! Turns signal generator RF state off

350 OUTPUT Sig_gen;"OUTP?" ! Querys the operating state of the signal generator

360 ENTER Sig_gen;B ! Enter in the state (0 for off)

370 ! Print the on/off state of the signal generator to the controller display

380 IF B>0 THEN

390 PRINT "Signal Generator output is: on"

400 ELSE

410 PRINT "Signal Generator output is: off"

420 END IF

430 OUTPUT Sig_gen;"*IDN?" ! Querys for signal generator ID

440 ENTER Sig_gen;C$! Enter in the signal generator ID

450 ! Print the signal generator ID to the controller display

460 PRINT

470 PRINT "This signal generator is a ";C$

480 PRINT

490 ! The next command is a query for the signal generator's GPIB address

500 OUTPUT Sig_gen;"SYST:COMM:GPIB:ADDR?"

510 ENTER Sig_gen;D$! Enter in the signal generator's address

520 ! Print the signal generator's GPIB address to the controllers display

530 PRINT "The GPIB address is ";D$

540 PRINT

550 ! Print user prompts to the controller's display

560 PRINT "The signal generator is now under local control"

570 PRINT "or Press RUN to start again."

580 END

Queries Using NI-488.2 and Visual C++

This example uses the NI- 488.2 library to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. niex3.cpp performs the following functions:

• resets the signal generator
• queries the signal generator for various settings
• reads the various settings

The following program example is available on the signal generator Documentation CD- ROM as
niex3.cpp.

//***

// PROGRAM NAME: niex3.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates the use of query commands.

//

// The signal generator can be queried for conditions and instrument states.

// These commands are of the type "*IDN?" where the question mark indicates
Agilent X-Series Signal Generators Programming Guide 73

Programming Examples
GPIB Programming Interface Examples
// a query.

//

//***

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle

Addr4882_t Address[31]; // Declare a variable of type Addr4882_t

int main()

{

 int sig; // Declares variable to hold interface descriptor

 int num;

 char rdVal[100]; // Declares variable to read instrument responses

 sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor

 ibloc(sig); // Places the signal generator in local mode

 ibclr(sig); // Sends Selected Device Clear(SDC) message

 ibwrt(sig, "*RST", 4); // Places signal generator in a defined state

 ibwrt(sig, ":FREQuency:CW?",14); // Querys the CW frequency

 ibrd(sig, rdVal,100); // Reads in the response into rdVal

 rdVal[ibcntl] = '\0'; // Null character indicating end of array

 cout<<"Source CW frequency is "<<rdVal; // Print frequency of signal generator

 cout<<"Press any key to continue"<<endl;

 cin.ignore(10000,'\n');

 ibwrt(sig, "POW:AMPL?",10); // Querys the signal generator

 ibrd(sig, rdVal,100); // Reads the signal generator power level

 rdVal[ibcntl] = '\0'; // Null character indicating end of array

 // Prints signal generator power level

 cout<<"Source power (dBm) is : "<<rdVal;

 cout<<"Press any key to continue"<<endl;

 cin.ignore(10000,'\n');

 ibwrt(sig, ":FREQ:MODE?",11); // Querys source frequency mode

 ibrd(sig, rdVal,100); // Enters in the source frequency mode

 rdVal[ibcntl] = '\0'; // Null character indicating end of array

 cout<<"Source frequency mode is "<<rdVal; // Print source frequency mode

 cout<<"Press any key to continue"<<endl;

 cin.ignore(10000,'\n');

 ibwrt(sig, "OUTP OFF",12); // Turns off RF source
74 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
 ibwrt(sig, "OUTP?",5); // Querys the on/off state of the instrument

 ibrd(sig,rdVal,2); // Enter in the source state

 rdVal[ibcntl] = '\0';

 num = (int (rdVal[0]) -('0'));

 if (num > 0){

 cout<<"Source RF state is : On"<<endl;

 }else{

 cout<<"Source RF state is : Off"<<endl;}

 cout<<endl;

 ibwrt(sig, "*IDN?",5); // Querys the instrument ID

 ibrd(sig, rdVal,100); // Reads the source ID

 rdVal[ibcntl] = '\0'; // Null character indicating end of array

 cout<<"Source ID is : "<<rdVal; // Prints the source ID

 cout<<"Press any key to continue"<<endl;

 cin.ignore(10000,'\n');

 ibwrt(sig, "SYST:COMM:GPIB:ADDR?",20); //Querys source address

 ibrd(sig, rdVal,100); // Reads the source address

 rdVal[ibcntl] = '\0'; // Null character indicates end of array

 // Prints the signal generator address

 cout<<"Source GPIB address is : "<<rdVal;

 cout<<endl;

 cout<<"Press the 'Local' key to return the signal generator to LOCAL control”<<endl; cout<<endl;

return 0;

}

Queries for GPIB Using VISA and C

This example uses VISA library functions to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. visaex3.cpp performs the following functions:

• verifies the GPIB connections and interface are functional
• resets the signal generator
• queries the instrument (CW frequency, power level, frequency mode, and RF state)
• reads responses into the rdBuffer (CW frequency, power level, and frequency mode)
• turns signal generator RF state off
• verifies RF state off

The following program example is available on the signal generator Documentation CD- ROM as
visaex3.cpp.

//**

// PROGRAM FILE NAME:visaex3.cpp

//

// PROGRAM DESCRIPTION:This example demonstrates the use of query commands. The signal

// generator can be queried for conditions and instrument states. These commands are of

// the type "*IDN?"; the question mark indicates a query.
Agilent X-Series Signal Generators Programming Guide 75

Programming Examples
GPIB Programming Interface Examples
//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <conio.h>

#include <stdlib.h>

using namespace std;

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

char rdBuffer [256]; // Declares variable to hold string data

int num; // Declares variable to hold integer data

 // Initialize the VISA system

viStatus=viOpenDefaultRM(&defaultRM);

 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

 printf("Could not open ViSession!\n");

 printf("Check instruments and connections\n");

 printf("\n");

 exit(0);}

viPrintf(vi, "*RST\n"); // Resets signal generator

viPrintf(vi, "FREQ:CW?\n"); // Querys the CW frequency

viScanf(vi, "%t", rdBuffer); // Reads response into rdBuffer

 // Prints the source frequency

printf("Source CW frequency is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to the display

getch();

viPrintf(vi, "POW:AMPL?\n"); // Querys the power level

viScanf(vi, "%t", rdBuffer); // Reads the response into rdBuffer

 // Prints the source power level

printf("Source power (dBm) is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to the display
76 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
getch();

viPrintf(vi, "FREQ:MODE?\n"); // Querys the frequency mode

viScanf(vi, "%t", rdBuffer); // Reads the response into rdBuffer

 // Prints the source freq mode

printf("Source frequency mode is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to the display

getch();

viPrintf(vi, "OUTP OFF\n"); // Turns source RF state off

viPrintf(vi, "OUTP?\n"); // Querys the signal generator's RF state

viScanf(vi, "%1i", &num); // Reads the response (integer value)

 // Prints the on/off RF state

 if (num > 0) {

printf("Source RF state is : on\n");

}else{

printf("Source RF state is : off\n");

}

 // Close the sessions

viClose(vi);

viClose(defaultRM);

}

Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal generator is set
for a CW frequency of 500 kHz and a power level of 2.3 dBm. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.
visaex4.cpp performs the following functions:

• verifies the GPIB connections and interface are functional
• resets the signal generator
• queries the instrument (CW frequency, power level, frequency mode, and RF state)
• reads responses into the rdBuffer (CW frequency, power level, and frequency mode)
• turns signal generator RF state off
• verifies RF state off

The following program example is available on the signal generator Documentation CD- ROM as
visaex4.cpp.

//**

// PROGRAM FILE NAME: visaex4.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates query commands. The signal generator

// frequency and power level.

// The RF state of the signal generator is turn on and then the state is queried. The

// response will indicate that the RF state is on. The RF state is then turned off and

// queried. The response should indicate that the RF state is off. The query results are
Agilent X-Series Signal Generators Programming Guide 77

Programming Examples
GPIB Programming Interface Examples
// printed to the to the display window.

//

//**

#include "StdAfx.h"

#include <visa.h>

#include <iostream>

#include <stdlib.h>

#include <conio.h>

void main ()

{

 ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

char rdBuffer [256]; // Declare variable to hold string data

int num; // Declare variable to hold integer data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA system

 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

viPrintf(vi, "*RST\n"); // Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CW frequency for 500 kHz

viPrintf(vi, "FREQ:CW?\n"); // Query the CW frequency

viScanf(vi, "%t", rdBuffer); // Read signal generator response

printf("Source CW frequency is : %s\n", rdBuffer); // Print the frequency

viPrintf(vi, "POW:AMPL -2.3 dBm\n"); // Set the power level to -2.3 dBm

viPrintf(vi, "POW:AMPL?\n"); // Query the power level

viScanf(vi, "%t", rdBuffer); // Read the response into rdBuffer

printf("Source power (dBm) is : %s\n", rdBuffer); // Print the power level

viPrintf(vi, "OUTP:STAT ON\n"); // Turn source RF state on

viPrintf(vi, "OUTP?\n"); // Query the signal generator's RF state

viScanf(vi, "%1i", &num); // Read the response (integer value)

 // Print the on/off RF state

if (num > 0) {
78 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
printf("Source RF state is : on\n");

}else{

printf("Source RF state is : off\n");

}

printf("\n");

printf("Verify RF state then press continue\n");

printf("\n");

getch();

viClear(vi);

viPrintf(vi,"OUTP:STAT OFF\n"); // Turn source RF state off

viPrintf(vi, "OUTP?\n"); // Query the signal generator's RF state

viScanf(vi, "%1i", &num); // Read the response

 // Print the on/off RF state

 if (num > 0) {

printf("Source RF state is now: on\n");

}else{

printf("Source RF state is now: off\n");

}

 // Close the sessions

printf("\n");

viClear(vi);

viClose(vi);

viClose(defaultRM);

}

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C

In this example, the VISA library is used to generate an ac- coupled FM signal at a carrier frequency
of 700 MHz, a power level of 2.5 dBm, and a deviation of 20 kHz. Before running the program:

• Connect the output of a modulating signal source to the signal generator’s EXT 2 input connector.
• Set the modulation signal source for the desired FM characteristics.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.
visaex5.cpp performs the following functions:

• error checking
• resets the signal generator
• sets up the EXT 2 connector on the signal generator for FM
• sets up FM path 2 coupling to AC
• sets up FM path 2 deviation to 20 kHz
• sets carrier frequency to 700 MHz
• sets the power level to - 2.5 dBm
• turns on frequency modulation and RF output

The following program example is available on the signal generator Documentation CD- ROM as
visaex5.cpp.

//**
Agilent X-Series Signal Generators Programming Guide 79

Programming Examples
GPIB Programming Interface Examples
// PROGRAM FILE NAME:visaex5.cpp

//

// PROGRAM DESCRIPTION:This example sets the signal generator FM source to External 2,

// coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power level

// to -2.5 dBm. The RF state is set to on.

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <stdlib.h>

#include <conio.h>

void main ()

{

 ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

 // Initialize VISA session

viStatus=viOpenDefaultRM(&defaultRM);

 // open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

 printf("Could not open ViSession!\n");

 printf("Check instruments and connections\n");

 printf("\n");

 exit(0);}

printf("Example program to set up the signal generator\n");

printf("for an AC-coupled FM signal\n");

printf("Press any key to continue\n");

printf("\n");

getch();

printf("\n");

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "FM:SOUR EXT2\n"); // Sets EXT 2 source for FM

viPrintf(vi, "FM:EXT2:COUP AC\n"); // Sets FM path 2 coupling to AC

viPrintf(vi, "FM:DEV 20 kHz\n"); // Sets FM path 2 deviation to 20 kHz

viPrintf(vi, "FREQ 700 MHz\n"); // Sets carrier frequency to 700 MHz
80 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
viPrintf(vi, "POW:AMPL -2.5 dBm\n"); // Sets the power level to -2.5 dBm

viPrintf(vi, "FM:STAT ON\n"); // Turns on frequency modulation

viPrintf(vi, "OUTP:STAT ON\n"); // Turns on RF output

 // Print user information

printf("Power level : -2.5 dBm\n");

printf("FM state : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 700 MHZ\n");

printf("Deviation : 20 kHZ\n");

printf("EXT2 and AC coupling are selected\n");

printf("\n"); // Prints a carrage return

 // Close the sessions

viClose(vi);

viClose(defaultRM);

}

Generating an Internal FM Signal Using VISA and C

In this example the VISA library is used to generate an internal FM signal at a carrier frequency of
900 MHz and a power level of 15 dBm. The FM rate will be 5 kHz and the peak deviation will be
100 kHz. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file. visaex6.cpp performs the following functions:

• error checking
• resets the signal generator
• sets up the signal generator for FM path 2 and internal FM rate of 5 kHz
• sets up FM path 2 deviation to 100 kHz
• sets carrier frequency to 900 MHz
• sets the power level to - 15 dBm
• turns on frequency modulation and RF output

The following program example is available on the signal generator Documentation CD- ROM as
visaex6.cpp.

//**

// PROGRAM FILE NAME:visaex6.cpp

//

// PROGRAM DESCRIPION:This example generates an internal FM signal at a 900

// MHz carrier frequency and a power level of -15 dBm. The FM rate is 5 kHz and the peak

// deviation 100 kHz

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <stdlib.h>
Agilent X-Series Signal Generators Programming Guide 81

Programming Examples
GPIB Programming Interface Examples
#include <conio.h>

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

 // open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("Example program to set up the signal generator\n");

printf("for an AC-coupled FM signal\n");

printf("\n");

printf("Press any key to continue\n");

getch();

viClear(vi); // Clears the signal generator

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "FM2:INT:FREQ 5 kHz\n"); // Sets FM path 2 to internal at a modulation rate of 5 kHz

viPrintf(vi, "FM2:DEV 100 kHz\n"); // Sets FM path 2 modulation deviation rate of 100 kHz

viPrintf(vi, "FREQ 900 MHz\n"); // Sets carrier frequency to 900 MHz

viPrintf(vi, "POW -15 dBm\n"); // Sets the power level to -15 dBm

viPrintf(vi, "FM2:STAT ON\n"); // Turns on frequency modulation

viPrintf(vi, "OUTP:STAT ON\n"); // Turns on RF output

printf("\n"); // Prints a carriage return

 // Print user information

printf("Power level : -15 dBm\n");

printf("FM state : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 900 MHZ\n");

printf("Deviation : 100 kHZ\n");

printf("Internal modulation : 5 kHz\n");

printf("\n"); // Print a carrage return

 // Close the sessions

viClose(vi);
82 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
viClose(defaultRM);

}

Generating a Step-Swept Signal Using VISA and C++

In this example the VISA library is used to set the signal generator for a continuous step sweep on
a defined set of points from 500 MHz to 800 MHz. The number of steps is set for 10 and the dwell
time at each step is set to 500 ms. The signal generator will then be set to local mode which allows
the user to make adjustments from the front panel. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file. visaex7.cpp performs the following
functions:

• clears and resets the signal generator
• sets up the instrument for continuous step sweep
• sets up the start and stop sweep frequencies
• sets up the number of steps
• sets the power level
• turns on the RF output

The following program example is available on the signal generator Documentation CD- ROM as
visaex7.cpp.

//**

// PROGRAM FILE NAME:visaex7.cpp

//

// PROGRAM DESCRIPTION:This example will program the signal generator to perform a step

// sweep from 500-800 MHz with a .5 sec dwell at each frequency step.

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

void main ()

{

ViSession defaultRM, vi;// Declares variables of type ViSession

// vi establishes instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

 // for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){// If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");
Agilent X-Series Signal Generators Programming Guide 83

Programming Examples
GPIB Programming Interface Examples
printf("\n");

exit(0);}

viClear(vi); // Clears the signal generator

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "*CLS\n"); // Clears the status byte register

viPrintf(vi, "FREQ:MODE LIST\n"); // Sets the sig gen freq mode to list

viPrintf(vi, "LIST:TYPE STEP\n"); // Sets sig gen LIST type to step

viPrintf(vi, "FREQ:STAR 500 MHz\n"); // Sets start frequency

viPrintf(vi, "FREQ:STOP 800 MHz\n"); // Sets stop frequency

viPrintf(vi, "SWE:POIN 10\n"); // Sets number of steps (30 mHz/step)

viPrintf(vi, "SWE:DWEL .5 S\n"); // Sets dwell time to 500 ms/step

viPrintf(vi, "POW:AMPL -5 dBm\n"); // Sets the power level for -5 dBm

viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output on

viPrintf(vi, "INIT:CONT ON\n"); // Begins the step sweep operation

 // Print user information

printf("The signal generator is in step sweep mode. The frequency range is\n");

printf("500 to 800 mHz. There is a .5 sec dwell time at each 30 mHz step.\n");

printf("\n"); // Prints a carriage return/line feed

 viPrintf(vi, "OUTP:STAT OFF\n"); // Turns the RF output off

printf("Press the front panel Local key to return the\n");

printf("signal generator to manual operation.\n");

 // Closes the sessions

printf("\n");

viClose(vi);

viClose(defaultRM);

}

Generating a Swept Signal Using VISA and Visual C++

This example sets up the signal generator for a frequency sweep from 1 to 2 GHz with 101 points
and a .01 second dwell period for each point. A loop is used to generator 5 sweep operations. The
signal generator triggers each sweep with the :INIT command. There is a wait introduced in the loop
to allow the signal generator to complete all operations such as set up and retrace before the next
sweep is generated. visaex11.cpp performs the following functions:

• sets up the signal generator for a 1 to 2 GHz frequency sweep
• sets up the signal generator to have a dwell time of .01 seconds and 101 points in the sweep
• sleep function is used to allow the instrument to complete its sweep operation

The following program example is available on the signal generator Documentation CD- ROM as
visaex11.cpp.

//**

// PROGRAM FILE NAME: visaex11.cpp

//

// PROGRAM DESCRIPTION: This program sets up the signal generator to
84 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
// sweep from 1-2 GHz. A loop and counter are used to generate 5 sweeps.

// Each sweep consists of 101 points with a .01 second dwell at each point.

//

// The program uses a Sleep function to allow the signal generator to

// complete it's sweep operation before the INIT command is sent.

// The Sleep function is available with the windows.h header file which is

// included in the project.

//

// NOTE: Change the TCPIP0 address in the instOpenString declaration to

// match the IP address of your signal generator.

//

//**

#include "stdafx.h"

#include "visa.h"

#include <iostream>

#include <windows.h>

void main ()

 {

 ViStatus stat;

 ViSession defaultRM,inst;

 int npoints = 101;

 double dwell = 0.01;

 int intCounter=5;

 char* instOpenString = "TCPIP0::141.121.93.101::INSTR";

 stat = viOpenDefaultRM(&defaultRM);

 stat = viOpen(defaultRM,instOpenString,VI_NULL,VI_NULL, &inst);

 // preset to start clean

 stat = viPrintf(inst, "*RST\n");

 // set power level for -10dBm

 stat = viPrintf(inst, "POW -10DBM\n");

 // set the start and stop frequency for the sweep

 stat = viPrintf(inst, "FREQ:START 1GHZ\n");

 stat = viPrintf(inst, "FREQ:STOP 2GHZ\n");

 // setup dwell per point

 stat = viPrintf(inst, "SWEEP:DWELL %e\n", dwell);

 // setup number of points
Agilent X-Series Signal Generators Programming Guide 85

Programming Examples
GPIB Programming Interface Examples
 stat = viPrintf(inst, "SWEEP:POINTS %d\n", npoints);

 // set interface timeout to double the expected sweep time

 // sweep takes (~15ms + dwell) per point * number of points

 // the timeout should not be shorter then the sweep, set it

 // longer

 long timeoutMS = long(2*npoints*(.015+dwell)*1000);

 // set the VISA timeout

 stat = viSetAttribute(inst, VI_ATTR_TMO_VALUE, timeoutMS);

 // set continuous trigger mode off

 stat = viPrintf(inst, "INIT:CONT OFF\n");

 // turn list sweep on

 stat = viPrintf(inst, "FREQ:MODE LIST\n");

 int sweepNo = 0;

 while(intCounter>0)

 {

 // start the sweep (initialize)

 stat = viPrintf(inst, "INIT\n");

 printf("Sweep %d started\n",++sweepNo);

 // wait for the sweep completion with *OPC?

 int res ;

 stat = viPrintf(inst, "*OPC?\n");

 stat = viScanf(inst, "%d", &res);

 // handle possible errors here (most likely a timeout)

 // err_handler(inst, stat);

 puts("Sweep ended");

 // delay before sending next INIT since instrument

 // may not be ready to receive it yet

 Sleep(15);

 intCounter = intCounter-1;

 }

 printf("End of Program\n\n");

 }

Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These settings
can then be recalled separately; either from the keyboard or from the signal generator’s front panel.
86 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file. visaex8.cpp performs the following functions:

• error checking
• clears the signal generator
• resets the status byte register
• resets the signal generator
• sets up the signal generator frequency, ALC off, power level, RF output on
• checks for operation complete
• saves to settings to instrument register number one
• recalls information from register number one
• prompts user input to put instrument into Local and checks for operation complete

The following program example is available on the signal generator Documentation CD- ROM as
visaex8.cpp.

//**

// PROGRAM FILE NAME:visaex8.cpp

//

// PROGRAM DESCRIPTION:In this example, instrument settings are saved in the signal

// generator's registers and then recalled.

// Instrument settings can be recalled from the keyboard or, when the signal generator

// is put into Local control, from the front panel.

// This program will initialize the signal generator for an instrument state, store the

// state to register #1. An *RST command will reset the signal generator and a *RCL

// command will return it to the stored state. Following this remote operation the user

// will be instructed to place the signal generator in Local mode.

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <conio.h>

void main ()

{

 ViSession defaultRM, vi;// Declares variables of type ViSession

// for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

 // for GPIB verifications

long lngDone = 0; // Operation complete flag

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

// Open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
Agilent X-Series Signal Generators Programming Guide 87

Programming Examples
GPIB Programming Interface Examples
if(viStatus){// If problems, then prompt user

 printf("Could not open ViSession!\n");

 printf("Check instruments and connections\n");

 printf("\n");

 exit(0);}

printf("\n");

viClear(vi); // Clears the signal generator

viPrintf(vi, "*CLS\n"); // Resets the status byte register

 // Print user information

printf("Programming example using the *SAV,*RCL SCPI commands\n");

printf("used to save and recall an instrument's state\n");

printf("\n");

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "FREQ 5 MHz\n"); // Sets sig gen frequency

viPrintf(vi, "POW:ALC OFF\n"); // Turns ALC Off

viPrintf(vi, "POW:AMPL -3.2 dBm\n"); // Sets power for -3.2 dBm

viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output On

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

viPrintf(vi, "*SAV 1\n"); // Saves sig gen state to register #1

 // Print user information

printf("The current signal generator operating state will be saved\n");

printf("to Register #1. Observe the state then press Enter\n");

printf("\n"); // Prints new line character

getch(); // Wait for user input

lngDone=0; // Resets the operation complete flag

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

 // Print user infromation

printf("The instrument is now in it's Reset operating state. Press the\n");

printf("Enter key to return the signal generator to the Register #1 state\n");

printf("\n"); // Prints new line character

getch(); // Waits for user input

lngDone=0; // Reset the operation complete flag

viPrintf(vi, "*RCL 1\n"); // Recalls stored register #1 state

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

 // Print user information
88 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
printf("The signal generator has been returned to it's Register #1 state\n");

printf("Press Enter to continue\n");

printf("\n"); // Prints new line character

getch(); // Waits for user input

lngDone=0; // Reset the operation complete flag

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

 // Print user information

printf("Press Local on instrument front panel to return to manual mode\n");

printf("\n"); // Prints new line character

 // Close the sessions

viClose(vi);

viClose(defaultRM);

}

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register is read. You will be asked to
set up the signal generator for error generating conditions. The data questionable status register will
be read and the program will notify the user of the error condition that the setup caused. Follow the
user prompts presented when the program runs. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file. visaex9.cpp performs the following
functions:

• error checking
• clears the signal generator
• resets the signal generator
• the data questionable status register is enabled to read an unleveled condition
• prompts user to manually set up the signal generator for an unleveled condition
• queries the data questionable status register for any set bits and converts the string data to

numeric
• based on the numeric value, program checks for a corresponding status check value
• similarly checks for over or undermodulation condition

The following program example is available on the signal generator Documentation CD- ROM as
visaex9.cpp.

//***

// PROGRAM NAME:visaex9.cpp

//

// PROGRAM DESCRIPTION:In this example, the data questionable status register is read.

// The data questionable status register is enabled to read an unleveled condition.

// The signal generator is then set up for an unleveled condition and the data

// questionable status register read. The results are then displayed to the user.

// The status questionable register is then setup to monitor a modulation error condition.

// The signal generator is set up for a modulation error condition and the data
Agilent X-Series Signal Generators Programming Guide 89

Programming Examples
GPIB Programming Interface Examples
// questionable status register is read.

// The results are displayed to the active window.

//

//***

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <conio.h>

void main ()

{

ViSession defaultRM, vi;// Declares a variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

// for GPIB verifications

int num=0;// Declares a variable for switch statements

char rdBuffer[256]={0}; // Declare a variable for response data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viClear(vi);// Clears the signal generator

// Prints user information

printf("Programming example to demonstrate reading the signal generator's
 Status Byte\n");

printf("\n");

printf("Manually set up the sig gen for an unleveled output condition:\n");

printf("* Set signal generator output amplitude to +20 dBm\n");

printf("* Set frequency to maximum value\n");

printf("* Turn On signal generator's RF Output\n");

printf("* Check signal generator's display for the UNLEVEL annunciator\n");

printf("\n");

printf("Press Enter when ready\n");

printf("\n");
90 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
getch(); // Waits for keyboard user input

viPrintf(vi, "STAT:QUES:POW:ENAB 2\n"); // Enables the Data Questionable

 // Power Condition Register Bits

 // Bits '0' and '1'

viPrintf(vi, "STAT:QUES:POW:COND?\n"); // Querys the register for any

 // set bits

viScanf(vi, "%s", rdBuffer); // Reads the decimal sum of the

 // set bits

num=(int (rdBuffer[1]) -('0')); // Converts string data to

 // numeric

switch (num) // Based on the decimal value

{

 case 1:

printf("Signal Generator Reverse Power Protection Tripped\n");

printf("/n");

break;

 case 2:

printf("Signal Generator Power is Unleveled\n");

printf("\n");

break;

 default:

printf("No Power Unleveled condition detected\n");

printf("\n");

}

viClear(vi); // Clears the signal generator

 // Prints user information

printf("--\n");

printf("\n");

printf("Manually set up the sig gen for an unleveled output condition:\n");

printf("\n");

printf("* Select AM modulation\n");

printf("* Select AM Source Ext 1 and Ext Coupling AC\n");

printf("* Turn On the modulation.\n");

printf("* Do not connect any source to the input\n");

printf("* Check signal generator's display for the EXT1 LO annunciator\n");

printf("\n");

printf("Press Enter when ready\n");

printf("\n");

getch(); // Waits for keyboard user input

viPrintf(vi, "STAT:QUES:MOD:ENAB 16\n"); // Enables the Data Questionable

 // Modulation Condition Register
Agilent X-Series Signal Generators Programming Guide 91

Programming Examples
GPIB Programming Interface Examples
 // bits '0','1','2','3' and '4'

 viPrintf(vi, "STAT:QUES:MOD:COND?\n"); // Querys the register for any

 // set bits

 viScanf(vi, "%s", rdBuffer); // Reads the decimal sum of the

 // set bits

num=(int (rdBuffer[1]) -('0')); // Converts string data to numeric

switch (num) // Based on the decimal value

{

 case 1:

printf("Signal Generator Modulation 1 Undermod\n");

printf("\n");

break;

 case 2:

printf("Signal Generator Modulation 1 Overmod\n");

printf("\n");

break;

 case 4:

printf("Signal Generator Modulation 2 Undermod\n");

printf("\n");

break;

 case 8:

printf("Signal Generator Modulation 2 Overmod\n");

printf("\n");

break;

 case 16:

printf("Signal Generator Modulation Uncalibrated\n");

printf("\n");

break;

 default:

printf("No Problems with Modulation\n");

printf("\n");

}

// Close the sessions

viClose(vi);

viClose(defaultRM);

}

92 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ, the
computer can attend to other tasks while the signal generator is busy performing a function or
operation. When the signal generator finishes its operation, or detects a failure, then a Service
Request can be generated. The computer will respond to the SRQ and, depending on the code, can
perform some other operation or notify the user of failures or other conditions.

This program sets up a step sweep function for the signal generator and, while the operation is in
progress, prints out a series of asterisks. When the step sweep operation is complete, an SRQ is
generated and the printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file. visaex10.cpp performs the following functions:

• error checking
• clears the signal generator
• resets the signal generator
• prompts user to manually begin the step sweep and waits for response
• clears the status register
• sets up the operation status group to respond to an end of sweep
• the data questionable status register is enabled to read an unleveled condition
• prompts user to manually set up the signal generator for an unleveled condition
• queries the data questionable status register for any set bits and converts the string data to

numeric
• based on the numeric value, program checks for a corresponding status check value
• similarly checks for over or undermodulation condition

The following program example is available on the signal generator Documentation CD- ROM as
visaex10.cpp.

//**

//

// PROGRAM FILE NAME:visaex10.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates the use of a Service Request (SRQ)

// interrupt. The program sets up conditions to enable the SRQ and then sets the signal

// generator for a step mode sweep. The program will enter a printing loop which prints

// an * character and ends when the sweep has completed and an SRQ received.

//

//**

#include "visa.h"

#include <stdio.h>

#include "StdAfx.h"

#include "windows.h"

#include <conio.h>

#define MAX_CNT 1024
Agilent X-Series Signal Generators Programming Guide 93

Programming Examples
GPIB Programming Interface Examples
int sweep=1; // End of sweep flag

/* Prototypes */

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType, ViEvent event, ViAddr addr);

int main ()

{

ViSession defaultRM, vi;// Declares variables of type ViSession

// for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

 // for GPIB verifications

char rdBuffer[MAX_CNT];// Declare a block of memory data

viStatus=viOpenDefaultRM(&defaultRM);// Initialize VISA session

if(viStatus < VI_SUCCESS){// If problems, then prompt user

printf("ERROR initializing VISA... exiting\n");

printf("\n");

return -1;}

 // Open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems then prompt user

printf("ERROR: Could not open communication with
 instrument\n");

printf("\n");

return -1;}

viClear(vi); // Clears the signal generator

viPrintf(vi, "*RST\n"); // Resets signal generator

 // Print program header and information

printf("** End of Sweep Service Request **\n");

printf("\n");

printf("The signal generator will be set up for a step sweep mode
 operation.\n");

printf("An ’*’ will be printed while the instrument is sweeping. The end of
 \n");

printf("sweep will be indicated by an SRQ on the GPIB and the program will
 end.\n");

printf("\n");

printf("Press Enter to continue\n");

printf("\n");

getch();
94 Agilent X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples
viPrintf(vi, "*CLS\n");// Clears signal generator status byte

viPrintf(vi, "STAT:OPER:NTR 8\n");// Sets the Operation Status Group // Negative Transition Filter to
indicate a // negative transition in Bit 3 (Sweeping)

// which will set a corresponding event in // the Operation Event Register. This occurs // at the end
of a sweep.

viPrintf(vi, "STAT:OPER:PTR 0\n");// Sets the Operation Status Group // Positive Transition Filter so
that no

// positive transition on Bit 3 affects the // Operation Event Register. The positive // transition
occurs at the start of a sweep.

viPrintf(vi, "STAT:OPER:ENAB 8\n");// Enables Operation Status Event Bit 3 // to report the event to
Status Byte // Register Summary Bit 7.

viPrintf(vi, "*SRE 128\n");// Enables Status Byte Register Summary Bit 7

// The next line of code indicates the // function to call on an event

viStatus = viInstallHandler(vi, VI_EVENT_SERVICE_REQ, interupt, rdBuffer);

// The next line of code enables the // detection of an event

viStatus = viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);

viPrintf(vi, "FREQ:MODE LIST\n");// Sets frequency mode to list

viPrintf(vi, "LIST:TYPE STEP\n");// Sets sweep to step

viPrintf(vi, "LIST:TRIG:SOUR IMM\n");// Immediately trigger the sweep

viPrintf(vi, "LIST:MODE AUTO\n");// Sets mode for the list sweep

viPrintf(vi, "FREQ:STAR 40 MHZ\n"); // Start frequency set to 40 MHz

viPrintf(vi, "FREQ:STOP 900 MHZ\n");// Stop frequency set to 900 MHz

viPrintf(vi, "SWE:POIN 25\n");// Set number of points for the step sweep

viPrintf(vi, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point

viPrintf(vi, "INIT:CONT OFF\n");// Set up for single sweep

viPrintf(vi, "TRIG:SOUR IMM\n");// Triggers the sweep

viPrintf(vi, "INIT\n"); // Takes a single sweep

printf("\n");

// While the instrument is sweeping have the

// program busy with printing to the display.

// The Sleep function, defined in the header

// file windows.h, will pause the program

// operation for .5 seconds

while (sweep==1){

printf("*");

Sleep(500);}

printf("\n");

// The following lines of code will stop the

// events and close down the session

viStatus = viDisableEvent(vi, VI_ALL_ENABLED_EVENTS,VI_ALL_MECH);

viStatus = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, interupt,
 rdBuffer);

viStatus = viClose(vi);
Agilent X-Series Signal Generators Programming Guide 95

Programming Examples
GPIB Programming Interface Examples
viStatus = viClose(defaultRM);

return 0;

}

// The following function is called when an SRQ event occurs. Code specific to your

// requirements would be entered in the body of the function.

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType, ViEvent event, ViAddr
 addr)

{

ViStatus status;

ViUInt16 stb;

 status = viReadSTB(vi, &stb);// Reads the Status Byte

sweep=0;// Sets the flag to stop the ’*’ printing

printf("\n");// Print user information

printf("An SRQ, indicating end of sweep has occurred\n");

viClose(event);// Closes the event

return VI_SUCCESS;

}

96 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
LAN Programming Interface Examples

NOTE The LAN programming examples in this section demonstrate the use of VXI- 11 and Sockets
LAN to control the signal generator.

To use these programming examples you must change references to the IP address and
hostname to match the IP address and hostname of your signal generator.

• “VXI- 11 Programming Using SICL and C++” on page 98
• “VXI- 11 Programming Using VISA and C++” on page 99
• “Sockets LAN Programming and C” on page 101
• “Sockets LAN Programming Using Java” on page 124
• “Sockets LAN Programming Using Perl” on page 126
• “TCP- IP (LAN) Programming Using Matlab” on page 127

For additional LAN programming examples that work with user- data files, refer to:

• “Save and Recall Instrument State Files” on page 314

VXI-11 Programming

The signal generator supports the VXI- 11 standard for instrument communication over the LAN
interface. Agilent IO Libraries support the VXI- 11 standard and must be installed on your computer
before using the VXI- 11 protocol. Refer to “Using VXI–11” on page 34 for information on configuring
and using the VXI- 11 protocol.

The VXI- 11 examples use TCPIP0 as the board address.

Using VXI-11 with GPIB Programs

The GPIB programming examples that use the VISA library, and are listed in “GPIB Programming
Interface Examples” on page 62, can be easily changed to use the LAN VXI- 11 protocol by changing
the address string. For example, change the "GPIB::19::INSTR" address string to
"TCPIP::hostname::INSTR" where hostname is the IP address or hostname of the signal generator. The
VXI- 11 protocol has the same capabilities as GPIB. See the section “Setting Up the LAN Interface” on
page 27 for more information.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI- 11 SCPI service. For more information, refer to “Configuring the VXI–11 Service” on
page 27.
Agilent X-Series Signal Generators Programming Guide 97

Programming Examples
LAN Programming Interface Examples
VXI-11 Programming Using SICL and C++

The following program uses the VXI- 11 protocol and SICL to control the signal generator. Before
running this code, you must set up the interface using the Agilent IO Libraries IO Config utility.
vxisicl.cpp performs the following functions:

• sets signal generator to 1 GHz CW frequency
• queries signal generator for an ID string
• error checking

The following program example is available on the signal generator Documentation CD- ROM as
vxisicl.cpp.

//**

//

// PROGRAM NAME:vxisicl.cpp

//

// PROGRAM DESCRIPTION:Sample test program using SICL and the VXI-11 protocol

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the VXI-11 protocol to set the signal generator for a 1 gHz CW // frequency. The
signal generator is queried for operation complete and then queried

// for its ID string. The frequency and ID string are then printed to the display.

//

// IMPORTANT: Enter in your signal generators hostname in the instrumentName declaration

// where the "xxxxx" appears.

//

//**

#include "stdafx.h"

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char* argv[])

{

INST id; // Device session id

int opcResponse; // Variable for response flag

char instrumentName[] = "xxxxx"; // Put your instrument's hostname here

char instNameBuf[256];// Variable to hold instrument name

char buf[256];// Variable for id string

ionerror(I_ERROR_EXIT);// Register SICL error handler

98 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 // Open SICL instrument handle using VXI-11 protocol

sprintf(instNameBuf, "lan[%s]:inst0", instrumentName);

id = iopen(instNameBuf);// Open instrument session

itimeout(id, 1000);// Set 1 second timeout for operations

printf("Setting frequency to 1 Ghz...\n");

iprintf(id, "freq 1 GHz\n");// Set frequency to 1 GHz

printf("Waiting for source to settle...\n");

iprintf(id, "*opc?\n");// Query for operation complete

iscanf(id, "%d", &opcResponse); // Operation complete flag

if (opcResponse != 1)// If operation fails, prompt user

 {

 printf("Bad response to 'OPC?'\n");

 iclose(id);

 exit(1);

}

iprintf(id, "FREQ?\n");// Query the frequency

iscanf(id, "%t", &buf);// Read the signal generator frequency

printf("\n");// Print the frequency to the display

printf("Frequency of signal generator is %s\n", buf);

ipromptf(id, "*IDN?\n", "%t", buf);// Query for id string

printf("Instrument ID: %s\n", buf);// Print id string to display

iclose(id);// Close the session

return 0;

}

VXI-11 Programming Using VISA and C++

The following program uses the VXI- 11 protocol and the VISA library to control the signal generator.
The signal generator is set to a –5 dBm power level and queried for its ID string. Before running this
code, you must set up the interface using the Agilent IO Libraries IO Config utility. vxivisa.cpp
performs the following functions:

• sets signal generator to a –5 dBm power level
• queries signal generator for an ID string
• error checking

The following program example is available on the signal generator Documentation CD- ROM as
vxivisa.cpp.

//**

// PROGRAM FILE NAME:vxivisa.cpp

// Sample test program using the VISA libraries and the VXI-11 protocol

//
Agilent X-Series Signal Generators Programming Guide 99

Programming Examples
LAN Programming Interface Examples
// NOTE: You must have the Agilent Libraries installed on your computer to run

// this program

//

// PROGRAM DESCRIPTION:This example uses the VXI-11 protocol and VISA to query

// the signal generator for its ID string. The ID string is then printed to the

// screen. Next the signal generator is set for a -5 dBm power level and then

// queried for the power level. The power level is printed to the screen.

//

// IMPORTANT: Set up the LAN Client using the IO Config utility

//

//**

#include <visa.h>

#include <stdio.h>

#include "StdAfx.h"

#include <stdlib.h>

#include <conio.h>

#define MAX_COUNT 200

int main (void)

{

ViStatus status;// Declares a type ViStatus variable

ViSession defaultRM, instr;// Declares a type ViSession variable

ViUInt32 retCount;// Return count for string I/O

ViChar buffer[MAX_COUNT];// Buffer for string I/O

status = viOpenDefaultRM(&defaultRM); // Initialize the system

 // Open communication with Serial

 // Port 2

status = viOpen(defaultRM, "TPCIP0::19::INSTR", VI_NULL, VI_NULL, &instr);

if(status){ // If problems then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

 // Set timeout for 5 seconds

viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

 // Ask for sig gen ID string
100 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 status = viWrite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

 // Read the sig gen response

 status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0'; // Indicate the end of the string

printf("Signal Generator ID = "); // Print header for ID

printf(buffer); // Print the ID string

printf("\n"); // Print carriage return

 // Flush the read buffer

 // Set sig gen power to -5dbm

status = viWrite(instr, (ViBuf)"POW:AMPL -5dbm\n", 15, &retCount);

 // Query the power level

status = viWrite(instr, (ViBuf)"POW?\n",5,&retCount);

 // Read the power level

status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0'; // Indicate the end of the string

printf("Power level = "); // Print header to the screen

printf(buffer); // Print the queried power level

printf("\n");

status = viClose(instr); // Close down the system

status = viClose(defaultRM);

return 0;

}

Sockets LAN Programming and C

The program listing shown in “Queries for Lan Using Sockets” on page 104 consists of two files;
lanio.c and getopt.c. The lanio.c file has two main functions; int main() and an int main1().

The int main() function allows communication with the signal generator interactively from the
command line. The program reads the signal generator's hostname from the command line, followed
by the SCPI command. It then opens a socket to the signal generator, using port 5025, and sends the
command. If the command appears to be a query, the program queries the signal generator for a
response, and prints the response.

The int main1(), after renaming to int main(), will output a sequence of commands to the signal
generator. You can use the format as a template and then add your own code.

This program is available on the signal generator Documentation CD- ROM as lanio.c.

Sockets on UNIX

In UNIX, LAN communication through sockets is very similar to reading or writing a file. The only
difference is the openSocket() routine, which uses a few network library routines to create the
TCP/IP network connection. Once this connection is created, the standard fread() and fwrite()
routines are used for network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example, /users/mydir/.
Agilent X-Series Signal Generators Programming Guide 101

Programming Examples
LAN Programming Interface Examples
2. At the UNIX prompt in your home directory type: cc -Aa -O -o lanio lanio.c

3. At the UNIX prompt in your home directory type: ./lanio xxxxx “*IDN?” where xxxxx is the
hostname for the signal generator. Use this same format to output SCPI commands to the signal
generator.

The int main1() function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

1. Rename the lanio.c int main1() to int main() and the original int main() to int main1().

2. In the main(), openSocket() function, change the “your hostname here” string to the hostname
of the signal generator you want to control.

3. Re- save the lanio.c program.

4. At the UNIX prompt type: cc -Aa -O -o lanio lanio.c

5. At the UNIX prompt type: ./lanio

The program will run and output a sequence of SCPI commands to the signal generator. The UNIX
display will show a display similar to the following:

unix machine: /users/mydir
$./lanio
ID: Agilent Technologies, E4438C, US70000001, C.02.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not
work on sockets. The following steps outline the process for running the interactive program in the
Microsoft Visual C++ 6.0 environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source folder of
the Visual C++ project.

NOTE The int main() function in the lanio.cpp file will allow commands to be sent to the signal
generator in a line- by- line format; the user types in SCPI commands. The int main1(0)
function can be used to output a sequence of commands in a “program format.” See
Programming Using main1() Function below.

2. Click Rebuild All from Build menu. Then Click Execute Lanio.exe. The Debug window will appear with
a prompt “Press any key to continue.” This indicates that the program has compiled and can be
used to send commands to the signal generator.

3. Click Start, click Programs, then click Command Prompt. The command prompt window will appear.

4. At the command prompt, cd to the directory containing the lanio.exe file and then to the Debug
folder. For example C:\SocketIO\Lanio\Debug.
102 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
5. After you cd to the directory where the lanio.exe file is located, type in the following command at
the command prompt: lanio xxxxx “*IDN?”. For example:
C:\SocketIO\Lanio\Debug>lanio xxxxx “*IDN?” where the xxxxx is the hostname of your
signal generator. Use this format to output SCPI commands to the signal generator in a line by
line format from the command prompt.

6. Type exit at the command prompt to quit the program.

Programming Using main1() Function

The int main1() function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

1. Enter the hostname of your signal generator in the openSocket function of the main1() function
of the lanio.cpp program.

2. Rename the lanio.cpp int main1() function to int main() and the original int main() function
to int main1().

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display results similar to those shown in Figure 3- 1.

Figure 3-1 Program Output Screen
Agilent X-Series Signal Generators Programming Guide 103

Programming Examples
LAN Programming Interface Examples
Queries for Lan Using Sockets

lanio.c and getopt.c perform the following functions:

• establishes TCP/IP connection to port 5025
• resultant file descriptor is used to “talk” to the instrument using regular socket I/O mechanisms
• maps the desired hostname to an internal form
• error checks
• queries signal generator for ID
• sets frequency on signal generator to 2.5 GHz
• sets power on signal generator to –5 dBm
• gets option letter from argument vector and checks for end of file (EOF)

The following programming examples are available on the signal generator Documentation CD- ROM
as lanio.c and getopt.c.

 /***

 * $Header: lanio.c 04/24/01

 * $Revision: 1.1 $

 * $Date: 10/24/01

 * PROGRAM NAME: lanio.c

 *

 * $Description: Functions to talk to an Agilent signal generator

 * via TCP/IP. Uses command-line arguments.

 *

 * A TCP/IP connection to port 5025 is established and

 * the resultant file descriptor is used to "talk" to the

 * instrument using regular socket I/O mechanisms. $

 *

 *

 *

 * Examples:

 *

 * Query the signal generator frequency:

 * lanio xx.xxx.xx.x 'FREQ?'

 *

 * Query the signal generator power level:

 * lanio xx.xxx.xx.x 'POW?'

 *

 * Check for errors (gets one error):

 * lanio xx.xxx.xx.x 'syst:err?'

 *

 * Send a list of commands from a file, and number them:

 * cat scpi_cmds | lanio -n xx.xxx.xx.x

 *

 **
104 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 *

 * This program compiles and runs under

 * - HP-UX 10.20 (UNIX), using HP cc or gcc:

 * + cc -Aa -O -o lanio lanio.c

 * + gcc -Wall -O -o lanio lanio.c

 *

 * - Windows 95, using Microsoft Visual C++ 4.0 Standard Edition

 * - Windows NT 3.51, using Microsoft Visual C++ 4.0

 * + Be sure to add WSOCK32.LIB to your list of libraries!

 * + Compile both lanio.c and getopt.c

 * + Consider re-naming the files to lanio.cpp and getopt.cpp

 *

 * Considerations:

 * - On UNIX systems, file I/O can be used on network sockets.

 * This makes programming very convenient, since routines like

 * getc(), fgets(), fscanf() and fprintf() can be used. These

 * routines typically use the lower level read() and write() calls.

 *

 * - In the Windows environment, file operations such as read(), write(),

 * and close() cannot be assumed to work correctly when applied to

 * sockets. Instead, the functions send() and recv() MUST be used.

 ***/

/* Support both Win32 and HP-UX UNIX environment */

#ifdef _WIN32 /* Visual C++ 6.0 will define this */

define WINSOCK

#endif

#ifndef WINSOCK

ifndef _HPUX_SOURCE

define _HPUX_SOURCE

endif

#endif

#include <stdio.h> /* for fprintf and NULL */

#include <string.h> /* for memcpy and memset */

#include <stdlib.h> /* for malloc(), atol() */

#include <errno.h> /* for strerror */

#ifdef WINSOCK
Agilent X-Series Signal Generators Programming Guide 105

Programming Examples
LAN Programming Interface Examples
#include <windows.h>

ifndef _WINSOCKAPI_

include <winsock.h> // BSD-style socket functions

endif

#else /* UNIX with BSD sockets */

include <sys/socket.h> /* for connect and socket*/

include <netinet/in.h> /* for sockaddr_in */

include <netdb.h> /* for gethostbyname */

define SOCKET_ERROR (-1)

define INVALID_SOCKET (-1)

 typedef int SOCKET;

#endif /* WINSOCK */

#ifdef WINSOCK

 /* Declared in getopt.c. See example programs disk. */

 extern char *optarg;

 extern int optind;

 extern int getopt(int argc, char * const argv[], const char* optstring);

#else

include <unistd.h> /* for getopt(3C) */

#endif

#define COMMAND_ERROR (1)

#define NO_CMD_ERROR (0)

#define SCPI_PORT 5025

#define INPUT_BUF_SIZE (64*1024)

/**

 * Display usage

 **/

static void usage(char *basename)

{

 fprintf(stderr,"Usage: %s [-nqu] <hostname> [<command>]\n", basename);
106 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 fprintf(stderr," %s [-nqu] <hostname> < stdin\n", basename);

 fprintf(stderr," -n, number output lines\n");

 fprintf(stderr," -q, quiet; do NOT echo lines\n");

 fprintf(stderr," -e, show messages in error queue when done\n");

}

#ifdef WINSOCK

int init_winsock(void)

{

 WORD wVersionRequested;

 WSADATA wsaData;

 int err;

 wVersionRequested = MAKEWORD(1, 1);

 wVersionRequested = MAKEWORD(2, 0);

 err = WSAStartup(wVersionRequested, &wsaData);

 if (err != 0) {

 /* Tell the user that we couldn't find a useable */

 /* winsock.dll. */

 fprintf(stderr, "Cannot initialize Winsock 1.1.\n");

 return -1;

 }

 return 0;

}

int close_winsock(void)

{

 WSACleanup();

 return 0;

}

#endif /* WINSOCK */

/***

 *

 > $Function: openSocket$

 *

 * $Description: open a TCP/IP socket connection to the instrument $
Agilent X-Series Signal Generators Programming Guide 107

Programming Examples
LAN Programming Interface Examples
 *

 * $Parameters: $

 * (const char *) hostname Network name of instrument.

 * This can be in dotted decimal notation.

 * (int) portNumber The TCP/IP port to talk to.

 * Use 5025 for the SCPI port.

 *

 * $Return: (int) A file descriptor similar to open(1).$

 *

 * $Errors: returns -1 if anything goes wrong $

 *

 ***/

SOCKET openSocket(const char *hostname, int portNumber)

{

 struct hostent *hostPtr;

 struct sockaddr_in peeraddr_in;

 SOCKET s;

 memset(&peeraddr_in, 0, sizeof(struct sockaddr_in));

 /***/

 /* map the desired host name to internal form. */

 /***/

 hostPtr = gethostbyname(hostname);

 if (hostPtr == NULL)

 {

 fprintf(stderr,"unable to resolve hostname '%s'\n", hostname);

 return INVALID_SOCKET;

 }

 /*******************/

 /* create a socket */

 /*******************/

 s = socket(AF_INET, SOCK_STREAM, 0);

 if (s == INVALID_SOCKET)

 {

 fprintf(stderr,"unable to create socket to '%s': %s\n",

 hostname, strerror(errno));

 return INVALID_SOCKET;

 }
108 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 memcpy(&peeraddr_in.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_length);

 peeraddr_in.sin_family = AF_INET;

 peeraddr_in.sin_port = htons((unsigned short)portNumber);

 if (connect(s, (const struct sockaddr*)&peeraddr_in,

 sizeof(struct sockaddr_in)) == SOCKET_ERROR)

 {

 fprintf(stderr,"unable to create socket to '%s': %s\n",

 hostname, strerror(errno));

 return INVALID_SOCKET;

 }

 return s;

}

/***

 *

 > $Function: commandInstrument$

 *

 * $Description: send a SCPI command to the instrument.$

 *

 * $Parameters: $

 * (FILE *) file pointer associated with TCP/IP socket.

 * (const char *command) . . SCPI command string.

 * $Return: (char *) a pointer to the result string.

 *

 * $Errors: returns 0 if send fails $

 *

 ***/

int commandInstrument(SOCKET sock,

 const char *command)

{

 int count;

 /* fprintf(stderr, "Sending \"%s\".\n", command); */

 if (strchr(command, '\n') == NULL) {

 fprintf(stderr, "Warning: missing newline on command %s.\n", command);

 }

 count = send(sock, command, strlen(command), 0);
Agilent X-Series Signal Generators Programming Guide 109

Programming Examples
LAN Programming Interface Examples
 if (count == SOCKET_ERROR) {

 return COMMAND_ERROR;

 }

 return NO_CMD_ERROR;

}

/**

 * recv_line(): similar to fgets(), but uses recv()

 **/

char * recv_line(SOCKET sock, char * result, int maxLength)

{

#ifdef WINSOCK

 int cur_length = 0;

 int count;

 char * ptr = result;

 int err = 1;

 while (cur_length < maxLength) {

 /* Get a byte into ptr */

 count = recv(sock, ptr, 1, 0);

 /* If no chars to read, stop. */

 if (count < 1) {

 break;

 }

 cur_length += count;

 /* If we hit a newline, stop. */

 if (*ptr == '\n') {

 ptr++;

 err = 0;

 break;

 }

 ptr++;

 }

 *ptr = '\0';

 if (err) {
110 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 return NULL;

 } else {

 return result;

 }

#else

 /***

 * Simpler UNIX version, using file I/O. recv() version works too.

 * This demonstrates how to use file I/O on sockets, in UNIX.

 ***/

 FILE * instFile;

 instFile = fdopen(sock, "r+");

 if (instFile == NULL)

 {

 fprintf(stderr, "Unable to create FILE * structure : %s\n",

 strerror(errno));

 exit(2);

 }

 return fgets(result, maxLength, instFile);

#endif

}

/***

 *

 > $Function: queryInstrument$

 *

 * $Description: send a SCPI command to the instrument, return a response.$

 *

 * $Parameters: $

 * (FILE *) file pointer associated with TCP/IP socket.

 * (const char *command) . . SCPI command string.

 * (char *result) where to put the result.

 * (size_t) maxLength maximum size of result array in bytes.

 *

 * $Return: (long) The number of bytes in result buffer.

 *

 * $Errors: returns 0 if anything goes wrong. $

 *

 ***/

long queryInstrument(SOCKET sock,

 const char *command, char *result, size_t maxLength)
Agilent X-Series Signal Generators Programming Guide 111

Programming Examples
LAN Programming Interface Examples
{

 long ch;

 char tmp_buf[8];

 long resultBytes = 0;

 int command_err;

 int count;

 /***

 * Send command to signal generator

 ***/

 command_err = commandInstrument(sock, command);

 if (command_err) return COMMAND_ERROR;

 /***

 * Read response from signal generator

 **/

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

 ch = tmp_buf[0];

 if ((count < 1) || (ch == EOF) || (ch == '\n'))

 {

 result = '\0'; / null terminate result for ascii */

 return 0;

 }

 /* use a do-while so we can break out */

 do

 {

 if (ch == '#')

 {

 /* binary data encountered - figure out what it is */

 long numDigits;

 long numBytes = 0;

 /* char length[10]; */

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

 ch = tmp_buf[0];

 if ((count < 1) || (ch == EOF)) break; /* End of file */

 if (ch < '0' || ch > '9') break; /* unexpected char */

 numDigits = ch - '0';
112 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 if (numDigits)

 {

 /* read numDigits bytes into result string. */

 count = recv(sock, result, (int)numDigits, 0);

 result[count] = 0; /* null terminate */

 numBytes = atol(result);

 }

 if (numBytes)

 {

 resultBytes = 0;

 /* Loop until we get all the bytes we requested. */

 /* Each call seems to return up to 1457 bytes, on HP-UX 9.05 */

 do {

 int rcount;

 rcount = recv(sock, result, (int)numBytes, 0);

 resultBytes += rcount;

 result += rcount; /* Advance pointer */

 } while (resultBytes < numBytes);

 /**

 * For LAN dumps, there is always an extra trailing newline

 * Since there is no EOI line. For ASCII dumps this is

 * great but for binary dumps, it is not needed.

 ***/

 if (resultBytes == numBytes)

 {

 char junk;

 count = recv(sock, &junk, 1, 0);

 }

 }

 else

 {

 /* indefinite block ... dump til we can an extra line feed */

 do

 {

 if (recv_line(sock, result, maxLength) == NULL) break;

 if (strlen(result)==1 && *result == '\n') break;

 resultBytes += strlen(result);

 result += strlen(result);

 } while (1);
Agilent X-Series Signal Generators Programming Guide 113

Programming Examples
LAN Programming Interface Examples
 }

 }

 else

 {

 /* ASCII response (not a binary block) */

 *result = (char)ch;

 if (recv_line(sock, result+1, maxLength-1) == NULL) return 0;

 /* REMOVE trailing newline, if present. And terminate string. */

 resultBytes = strlen(result);

 if (result[resultBytes-1] == '\n') resultBytes -= 1;

 result[resultBytes] = '\0';

 }

 } while (0);

 return resultBytes;

}

/***

 *

 > $Function: showErrors$

 *

 * $Description: Query the SCPI error queue, until empty. Print results. $

 *

 * $Return: (void)

 *

 ***/

void showErrors(SOCKET sock)

{

 const char * command = "SYST:ERR?\n";

 char result_str[256];

 do {

 queryInstrument(sock, command, result_str, sizeof(result_str)-1);

 /**

 * Typical result_str:

 * -221,"Settings conflict; Frequency span reduced."

 * +0,"No error"
114 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 * Don't bother decoding.

 **/

 if (strncmp(result_str, "+0,", 3) == 0) {

 /* Matched +0,"No error" */

 break;

 }

 puts(result_str);

 } while (1);

}

/***

 *

 > $Function: isQuery$

 *

 * $Description: Test current SCPI command to see if it a query. $

 *

 * $Return: (unsigned char) . . . non-zero if command is a query. 0 if not.

 *

 ***/

unsigned char isQuery(char* cmd)

{

 unsigned char q = 0 ;

 char *query ;

 /***/

 /* if the command has a '?' in it, use queryInstrument. */

 /* otherwise, simply send the command. */

 /* Actually, we must be a more specific so that */

 /* marker value querys are treated as commands. */

 /* Example: SENS:FREQ:CENT (CALC1:MARK1:X?) */

 /***/

 if ((query = strchr(cmd,'?')) != NULL)

 {

 /* Make sure we don't have a marker value query, or

 * any command with a '?' followed by a ')' character.

 * This kind of command is not a query from our point of view.

 * The signal generator does the query internally, and uses the result.

 */

 query++ ; /* bump past '?' */

 while (*query)
Agilent X-Series Signal Generators Programming Guide 115

Programming Examples
LAN Programming Interface Examples
 {

 if (*query == ' ') /* attempt to ignore white spc */

 query++ ;

 else break ;

 }

 if (*query != ')')

 {

 q = 1 ;

 }

 }

 return q ;

}

/***

 *

 > $Function: main$

 *

 * $Description: Read command line arguments, and talk to signal generator.

 Send query results to stdout. $

 *

 * $Return: (int) . . . non-zero if an error occurs

 *

 ***/

int main(int argc, char *argv[])

{

 SOCKET instSock;

 char *charBuf = (char *) malloc(INPUT_BUF_SIZE);

 char *basename;

 int chr;

 char command[1024];

 char *destination;

 unsigned char quiet = 0;

 unsigned char show_errs = 0;

 int number = 0;

 basename = strrchr(argv[0], '/');

 if (basename != NULL)

 basename++ ;

 else
116 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 basename = argv[0];

 while ((chr = getopt(argc,argv,"qune")) != EOF)

 switch (chr)

 {

 case 'q': quiet = 1; break;

 case 'n': number = 1; break ;

 case 'e': show_errs = 1; break ;

 case 'u':

 case '?': usage(basename); exit(1) ;

 }

 /* now look for hostname and optional <command>*/

 if (optind < argc)

 {

 destination = argv[optind++] ;

 strcpy(command, "");

 if (optind < argc)

 {

 while (optind < argc) {

 /* <hostname> <command> provided; only one command string */

 strcat(command, argv[optind++]);

 if (optind < argc) {

 strcat(command, " ");

 } else {

 strcat(command, "\n");

 }

 }

 }

 else

 {

 /*Only <hostname> provided; input on <stdin> */

 strcpy(command, "");

 if (optind > argc)

 {

 usage(basename);

 exit(1);

 }

 }

 }

 else
Agilent X-Series Signal Generators Programming Guide 117

Programming Examples
LAN Programming Interface Examples
 {

 /* no hostname! */

 usage(basename);

 exit(1);

 }

 /**

 /* open a socket connection to the instrument

 /**/

#ifdef WINSOCK

 if (init_winsock() != 0) {

 exit(1);

 }

#endif /* WINSOCK */

 instSock = openSocket(destination, SCPI_PORT);

 if (instSock == INVALID_SOCKET) {

 fprintf(stderr, "Unable to open socket.\n");

 return 1;

 }

 /* fprintf(stderr, "Socket opened.\n"); */

 if (strlen(command) > 0)

 {

 /***

 /* if the command has a '?' in it, use queryInstrument. */

 /* otherwise, simply send the command. */

 /***/

 if (isQuery(command))

 {

 long bufBytes;

 bufBytes = queryInstrument(instSock, command,

 charBuf, INPUT_BUF_SIZE);

 if (!quiet)

 {

 fwrite(charBuf, bufBytes, 1, stdout);

 fwrite("\n", 1, 1, stdout) ;

 fflush(stdout);

 }

 }

 else
118 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 {

 commandInstrument(instSock, command);

 }

 }

 else

 {

 /* read a line from <stdin> */

 while (gets(charBuf) != NULL)

 {

 if (!strlen(charBuf))

 continue ;

 if (*charBuf == '#' || *charBuf == '!')

 continue ;

 strcat(charBuf, "\n");

 if (!quiet)

 {

 if (number)

 {

 char num[10];

 sprintf(num,"%d: ",number);

 fwrite(num, strlen(num), 1, stdout);

 }

 fwrite(charBuf, strlen(charBuf), 1, stdout) ;

 fflush(stdout);

 }

 if (isQuery(charBuf))

 {

 long bufBytes;

 /* Put the query response into the same buffer as the*/

 /* command string appended after the null terminator.*/

 bufBytes = queryInstrument(instSock, charBuf,

 charBuf + strlen(charBuf) + 1,

 INPUT_BUF_SIZE -strlen(charBuf));

 if (!quiet)

 {

 fwrite(" ", 2, 1, stdout) ;
Agilent X-Series Signal Generators Programming Guide 119

Programming Examples
LAN Programming Interface Examples
 fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);

 fwrite("\n", 1, 1, stdout) ;

 fflush(stdout);

 }

 }

 else

 {

 commandInstrument(instSock, charBuf);

 }

 if (number) number++;

 }

 }

 if (show_errs) {

 showErrors(instSock);

 }

#ifdef WINSOCK

 closesocket(instSock);

 close_winsock();

#else

 close(instSock);

#endif /* WINSOCK */

 return 0;

}

/* End of lanio.cpp *

/**/

/* $Function: main1$ */

/* $Description: Output a series of SCPI commands to the signal generator */

/* Send query results to stdout. $ */

/* */

/* $Return: (int) . . . non-zero if an error occurs */

/* */

/**/

/* Rename this int main1() function to int main(). Re-compile and the */

/* execute the program */

/**/
120 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
int main1()

{

SOCKET instSock;

long bufBytes;

 char *charBuf = (char *) malloc(INPUT_BUF_SIZE);

 /***/

 /* open a socket connection to the instrument*/

 /***/

#ifdef WINSOCK

 if (init_winsock() != 0) {

 exit(1);

 }

#endif /* WINSOCK */

 instSock = openSocket("xxxxxx", SCPI_PORT); /* Put your hostname here */

 if (instSock == INVALID_SOCKET) {

 fprintf(stderr, "Unable to open socket.\n");

 return 1;

 }

 /* fprintf(stderr, "Socket opened.\n"); */

 bufBytes = queryInstrument(instSock, "*IDN?\n", charBuf, INPUT_BUF_SIZE);

 printf("ID: %s\n",charBuf);

 commandInstrument(instSock, "FREQ 2.5 GHz\n");

 printf("\n");

 bufBytes = queryInstrument(instSock, "FREQ:CW?\n", charBuf, INPUT_BUF_SIZE);

 printf("Frequency: %s\n",charBuf);

 commandInstrument(instSock, "POW:AMPL -5 dBm\n");

 bufBytes = queryInstrument(instSock, "POW:AMPL?\n", charBuf, INPUT_BUF_SIZE);

 printf("Power Level: %s\n",charBuf);

 printf("\n");

#ifdef WINSOCK

 closesocket(instSock);

 close_winsock();

#else
Agilent X-Series Signal Generators Programming Guide 121

Programming Examples
LAN Programming Interface Examples
 close(instSock);

#endif /* WINSOCK */

 return 0;

}

/***

 getopt(3C) getopt(3C)

 PROGRAM FILE NAME: getopt.c

 getopt - get option letter from argument vector

 SYNOPSIS

 int getopt(int argc, char * const argv[], const char *optstring);

 extern char *optarg;

 extern int optind, opterr, optopt;

 PRORGAM DESCRIPTION:

 getopt returns the next option letter in argv (starting from argv[1])

 that matches a letter in optstring. optstring is a string of

 recognized option letters; if a letter is followed by a colon, the

 option is expected to have an argument that may or may not be

 separated from it by white space. optarg is set to point to the start

 of the option argument on return from getopt.

 getopt places in optind the argv index of the next argument to be

 processed. The external variable optind is initialized to 1 before

 the first call to the function getopt.

 When all options have been processed (i.e., up to the first non-option

 argument), getopt returns EOF. The special option -- can be used to

 delimit the end of the options; EOF is returned, and -- is skipped.

 ***/

#include <stdio.h> /* For NULL, EOF */

#include <string.h> /* For strchr() */

char *optarg; /* Global argument pointer. */

int optind = 0; /* Global argv index. */
122 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

{

 char c;

 char *posn;

 optarg = NULL;

 if (scan == NULL || *scan == '\0') {

 if (optind == 0)

 optind++;

 if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')

 return(EOF);

 if (strcmp(argv[optind], "--")==0) {

 optind++;

 return(EOF);

 }

 scan = argv[optind]+1;

 optind++;

 }

 c = *scan++;

 posn = strchr(optstring, c); /* DDP */

 if (posn == NULL || c == ':') {

 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);

 return('?');

 }

 posn++;

 if (*posn == ':') {

 if (*scan != '\0') {

 optarg = scan;

 scan = NULL;

 } else {

 optarg = argv[optind];

 optind++;

 }

 }
Agilent X-Series Signal Generators Programming Guide 123

Programming Examples
LAN Programming Interface Examples

 return(c);

}

Sockets LAN Programming Using Java

In this example the Java program connects to the signal generator through sockets LAN. This
program requires Java version 1.1 or later be installed on your PC. To run the program perform the
following steps:

1. In the code example below, type in the hostname or IP address of your signal generator. For
example, String instrumentName = (your signal generator’s hostname).

2. Copy the program as ScpiSockTest.java and save it in a convenient directory on your
computer. For example save the file to the C:\jdk1.3.0_2\bin\javac directory.

3. Launch the Command Prompt program on your computer. Click Start > Programs > Command Prompt.

4. Compile the program. At the command prompt type: javac ScpiSockTest.java.
The directory path for the Java compiler must be specified. For example:
C:\>jdk1.3.0_02\bin\javac ScpiSockTest.java

5. Run the program by typing java ScpiSockTest at the command prompt.

6. Type exit at the command prompt to end the program.

Generating a CW Signal Using Java

The following program example is available on the signal generator Documentation CD- ROM as
javaex.txt.

//**

// PROGRAM NAME: javaex.txt // Sample java
program to talk to the signal generator via SCPI-over-sockets

// This program requires Java version 1.1 or later.

// Save this code as ScpiSockTest.java

// Compile by typing: javac ScpiSockTest.java

// Run by typing: java ScpiSockTest

// The signal generator is set for 1 GHz and queried for its id string

//**

import java.io.*;

import java.net.*;

class ScpiSockTest

{

 public static void main(String[] args)

 {

 String instrumentName = "xxxxx"; // Put instrument hostname here

try

 {
124 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
 Socket t = new Socket(instrumentName,5025); // Connect to instrument

 // Setup read/write mechanism

 BufferedWriter out =

 new BufferedWriter(

 new OutputStreamWriter(t.getOutputStream()));

 BufferedReader in =

 new BufferedReader(

 new InputStreamReader(t.getInputStream()));

 System.out.println("Setting frequency to 1 GHz...");

 out.write("freq 1GHz\n"); // Sets frequency

 out.flush();

 System.out.println("Waiting for source to settle...");

 out.write("*opc?\n"); // Waits for completion

 out.flush();

 String opcResponse = in.readLine();

 if (!opcResponse.equals("1"))

 {

 System.err.println("Invalid response to '*OPC?'!");

 System.exit(1);

 }

 System.out.println("Retrieving instrument ID...");

 out.write("*idn?\n"); // Querys the id string

 out.flush();

 String idnResponse = in.readLine(); // Reads the id string

 // Prints the id string

 System.out.println("Instrument ID: " + idnResponse);

 }

 catch (IOException e)

 {

 System.out.println("Error" + e);

 }

 }

}
Agilent X-Series Signal Generators Programming Guide 125

Programming Examples
LAN Programming Interface Examples
Sockets LAN Programming Using Perl

This example uses PERL to control the signal generator over the sockets LAN interface. The signal
generator frequency is set to 1 GHz, queried for operation complete and then queried for it’s identify
string. This example was developed using PERL version 5.6.0 and requires a PERL version with the
IO::Socket library.

1. In the code below, enter your signal generator’s hostname in place of the xxxxx in the code line:
my $instrumentName= “xxxxx”; .

2. Save the code listed below using the filename lanperl.

3. Run the program by typing perl lanperl at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the signal generator Documentation CD- ROM as
perl.txt.

#!/usr/bin/perl

PROGRAM NAME: perl.txt

Example of talking to the signal generator via SCPI-over-sockets

use IO::Socket;

Change to your instrument's hostname

my $instrumentName = "xxxxx";

Get socket

$sock = new IO::Socket::INET (PeerAddr => $instrumentName,

 PeerPort => 5025,

 Proto => 'tcp',

);

die "Socket Could not be created, Reason: $!\n" unless $sock;

Set freq

print "Setting frequency...\n";

print $sock "freq 1 GHz\n";

Wait for completion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

my $response = <$sock>;

chomp $response; # Removes newline from response

if ($response ne "1")

{

 die "Bad response to '*OPC?' from instrument!\n";

}
126 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
Send identification query

print $sock "*IDN?\n";

$response = <$sock>;

chomp $response;

print "Instrument ID: $response\n";

TCP-IP (LAN) Programming Using Matlab

The examples in this section are meant to be used in one of three ways:

• Using a PSA to directly calculate and load an Equalization filter into the MXG. (This process can
be easily automated.)

1. Set up the PSA to measure the modulation.

2. Turn on the equalization filter.

3. Call loadPsaEqFilterFreq (example 1) in Matlab to read out the equalization channel response
over LAN via SCPI and calculate the correct equalization filter.

4. Call writeMxgFir (example 4) in Matlab to write out the equalization filter over LAN via SCPI
to the MXG.

• Manual process using the VSA 89600 software to measure the channel response, calculate the
correction equalization filter and load that filter into the MXG:

1. Setup to measure the modulation.

2. Turn on the equalization filter.

3. View the equalization channel response trace, either “Eq Ch Freq Resp” or “Eq Impls Resp”.

4. Save the trace as ".mat" file, with the header included.

5. Call loadVsaEqFilter (example 3) in Matlab to read the file and calculate a correction filter.

6. Call writeMxgFir (example 4) in Matlab to write out the equalization filter over LAN via SCPI
to the MXG.

• Takes a user- created filter in Matlab—either an equalization filter or a modulation filter—and
writes it to a FIR file in the MXG.

This section contains the following examples:

1. “Example 1: Reading Out the Channel Response and Calculating Corrections for an Equalization
Filter Using Matlab”

2. “Example 2: Reading a PXA Trace and Setting up the Equalization Filter Using Matlab”

3. “Example 3: Reading a VSA Trace and Setting up the Equalization Filter Using Matlab”

4. “Example 4: Downloading a FIR filter in Matlab to the MXG”
Agilent X-Series Signal Generators Programming Guide 127

Programming Examples
LAN Programming Interface Examples
Example 1: Reading Out the Channel Response and Calculating Corrections for an Equalization Filter Using Matlab

NOTE This example is written for N51xxA MXG signal generators. For N51xxB EXG/MXG signal
generators, replace the 125MHz value with 200MHz.

This example reads out the channel response from a PSA and calculates a correction equalization
filter that can be loaded into the MXG.

The following program example is available on the signal generator Documentation CD- ROM as
loadPsaEQFilterFreq.m.

function [corrFilter] = loadPsaEqFilter(psaDev, destRate)

% [corrFilter] = loadPsaEqFilter(psaDev[, destRate])

% Reads out the current Equalization filter active on the PSA specified.

% The communication is over TCP-IP (LAN).

% destRate is assumed to be 125e6 if missing

% Example: [corrFilter] = loadPsaEqFilter('psa4')

% output of corrFilter is in time domain.

% NOTE: The equalization filter feature in the PSA Digital Modulation

% Modulation Analysis mode must be ON for this script to work.

% It can be set to EQ Hold ON.

%

% Typically followed with something like:

% writeMxgFir('a-n5182a-00211', 'EQ_1GHZ_62MHZ', corrFilter);

if (nargin<1 || nargin>2)

 error('[corrFilter] = loadPsaEqFilter(psaDev[, destRate]) -- destRate is assumed to be 125e6 if
missing');

end

if (nargin<2)

 destRate=125e6;

end

% contact PSA using LAN

t=tcpip(psaDev, 5025);

t.OutputBufferSize=1*1024*1024;

t.InputBufferSize=1*1024*1024;

fopen(t);

fprintf(t, ':FETCh:EVM9?\n');

magDb = readArrayOfDoubles(t);

fprintf(t, ':FETCh:EVM10?\n');

phaseDeg = readArrayOfDoubles(t);

fprintf(t, ':FETCh:EVM21?\n');

xSteps = readArrayOfDoubles(t);

fclose(t);
128 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
freqStep = xSteps(1 + 9*2 + 1);

oversample = 1/xSteps(1 + 8*2 +1);

% /10 compensates for issue with PSA (should be /20)

% this issue will be corrected in a future release

linmag = 10.^(magDb./10);

% *2 compensates for issue with PSA (should be *1)

% this issue will be corrected in a future release

phaseRad = phaseDeg./(360/(2*pi)).*2;

coeffs = linmag.*cos(phaseRad)+j*linmag.*sin(phaseRad);

rate = oversample*round(freqStep*length(coeffs)); % frequency range is also rate

% we now have a centered frequency domain version of the channel response

% invert so that we will cancel the channel response

invertedFreqDomain = 1./coeffs;

% convert to time domain (first placing the 0 frequency at the left edge)

timeDomain=ifft(ifftshift(invertedFreqDomain));

% put time domain 0 time in center

len=length(timeDomain);

if (mod(length(timeDomain), 2)==1) % odd

 center=ceil(len/2);

 centeredTime(1:(center-1)) = timeDomain(center+1:end);

 centeredTime(center:len) = timeDomain(1:center);

else % even

 topHalf = (length(timeDomain)/2)+1;

 centeredTime(1:(topHalf-1)) = timeDomain(topHalf:end);

 centeredTime(topHalf:len) = timeDomain(1:(topHalf-1));

end

% resample to desired rate if necessary

if (abs(destRate-rate)>1e-6)

 % note that this resample function only works with integer rates

 resampledTime = resample(centeredTime, destRate, rate, 30);

 resampledTime = resampledTime.*(rate/destRate);

else

 resampledTime = centeredTime;

end

% clip off the center 256 (if necessary)

if (length(resampledTime)>256)

 % the peak point is assumed to be the center

 [maxval, index] = max(abs(resampledTime));

 center=index;

 left = center-127;

 right = left+255;

 clippedTime=resampledTime((left):(right));
Agilent X-Series Signal Generators Programming Guide 129

Programming Examples
LAN Programming Interface Examples
else

 clippedTime = resampledTime;

end

corrFilter=clippedTime;

end

function array = readArrayOfDoubles(fid)

line = fgets(fid);

array = sscanf(line, '%g%*c');

end

Example 2: Reading a PXA Trace and Setting up the Equalization Filter Using Matlab

NOTE This example is written for N51xxB EXG/MXG signal generators. For N51xxA MXG signal
generators, replace the 200MHz value with 125MHz.

This example reads a PXA trace of “Eq Ch Freq Resp” or “Eq Impls Resp” and creates an
equalization filter compatible with X- Series signal generators.

function [corrFilter] = loadPxaEqFilter(pxaAddress, destRate, displayCorr)

% [corrFilter] = loadPxaEqFilter(pxaAddress[, destRate[, displayCorr]])

% Reads out the current Equalization filter active on the PXA specified.

% The communication is over TCP-IP (LAN).

% destRate is assumed to be 200e6 if missing

% displayCorr is assumed to 0 (off) if missing

% Example: [corrFilter] = loadPxaEqFilter('pxa4')

% output of corrFilter is in time domain.

% NOTE: The equalization filter feature on the PXA must be ON for this

% script to work. It can be EQ Hold ON.

%

% Typically followed with something like:

% writeMxgFir('a-n5182b-00211', 'EQ_1GHZ_62MHZ', corrFilter);

if (nargin<1 || nargin>3)

 error('[corrFilter] = loadPxaEqFilter(pxaAddress[, destRate[, displayCorr]]) -- destRate is assumed
to be 200e6 if missing');

end

if (nargin<2)

 destRate=200e6;

end

if (nargin<3)

 displayCorr=0;
130 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
end

% contact PXA

t=tcpip(pxaAddress, 5025);

t.OutputBufferSize=1*1024*1024;

t.InputBufferSize=1*1024*1024;

fopen(t);

fprintf(t, ':DISPlay:DDEM:TRAC2:FEED "Eq Impulse Response1"\n');

fprintf(t, 'DISP:DDEM:TRACe2:FORMat REAL\n');

fprintf(t, 'calc:DDEM:DATA2?\n');

realTime = readArrayOfDoubles(t);

fprintf(t, 'DISP:DDEM:TRACe2:FORMat IMAG\n');

fprintf(t, 'calc:DDEM:DATA2?\n');

imagTime = readArrayOfDoubles(t);

coeffs = realTime + 1i.*imagTime;

fprintf(t, 'calc:DDEM:DATA2:HEAD? "XDelta"\n');

timeStep = readArrayOfDoubles(t);

rate = ceil(1 / timeStep - 1e-9);

% mirror coefficients

coeffs = coeffs(length(coeffs):-1:1);

% convert to frequency coefficients (null group delay with ifftshift)

coeffs = fft(ifftshift(coeffs));

% invert phase in frequency domain

mag = abs(coeffs);

ang = -angle(coeffs);

coeffs = mag.*cos(ang)+1i*mag.*sin(ang);

% display the frequency domain version again

fprintf(t, ':DISPlay:DDEM:TRAC2:FEED "Ch Frequency Response1"\n');

fprintf(t, ':DISPlay:DDEM:TRAC2:FORMat MLOG\n');

fprintf(t, ':DISPlay:DDEM:TRAC2:Y:AUTO:ONCE\n');

% must center frequency domain (to match what comes in frequency domain)

coeffs = fftshift(coeffs);

fclose(t);

% convert to time domain (first placing the 0 frequency at the left edge)

timeDomain=ifft(ifftshift(coeffs));

centeredTime = fftshift(timeDomain);

if (abs(destRate-rate)>1e-6)

% this simple resample function may be insuffient for some rates

 resampledTime = resample(centeredTime, destRate, rate, 30);

 resampledTime = resampledTime.*(rate/destRate);

else

 resampledTime = centeredTime;

end
Agilent X-Series Signal Generators Programming Guide 131

Programming Examples
LAN Programming Interface Examples
%%%

% display resulting corrections

if displayCorr~=0

 fcorr = fftshift(fft(resampledTime));

 displayOversample = 100;

 xcoordsOversample =
 ((1:(displayOversample*length(fcorr)))-(displayOversample*length(fcorr)+2)/2)/(length(fcorr))*destR
ate/displayOversample;

% plot amplitude correction

 figure;plot(xcoordsOversample, resample(20*log10(abs(fcorr)),displayOversample,1,100));

% plot phase correction

 fcorrz = fftshift(fft(ifftshift(resampledTime)));

 figure;plot(xcoordsOversample, resample(unwrap(angle(fcorrz)),displayOversample,1,100)/pi*180);

end

% clip off the center 256 (if necessary)

if (length(resampledTime)>256)

 [~, index] = max(abs(resampledTime));

 center=index;

 left = center-127;

 right = left+255;

 clippedTime=resampledTime((left):(right));

else

 clippedTime = resampledTime;

end

corrFilter=clippedTime;

end

function array = readArrayOfDoubles(fid)

line = fgets(fid);

array = sscanf(line, '%g%*c');

end

Example 3: Reading a VSA Trace and Setting up the Equalization Filter Using Matlab

NOTE This example is written for N51xxA MXG signal generators. For N51xxB EXG/MXG signal
generators, replace the 125MHz value with 200MHz.

This example reads a VSA trace of “Eq Ch Freq Resp” or “Eq Impls Resp” and creates an equalization
filter compatible with the MXG.

The following program Matlab example is available on the signal generator Documentation CD- ROM
as loadVsaEQFilterFreq.m.

function [corrFilter] = loadVsaEqFilter(filename, destRate)
132 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
% [corrFilter] = loadVsaFilter(filename[, destRate])

% filename must reference an 89600 Equalization filter saved as .mat file with the header included.

% destRate is assumed to be 125e6 if missing

% output of corrFilter is in time domain.

% Typically followed with:

% writeMxgFir('a-n5182a-00211', 'cft', corrFilter);

if (nargin<1 || nargin>2)

 error('[corrFilter] = loadVsaEqFilter(filename[, destRate]) -- destRate is assumed to be 125e6 if
missing');

end

if (nargin<2)

 destRate=125e6;

end

% load filter struct from .mat file

filterStruct=load(filename);

coeffs = double(filterStruct.Y);

if (filterStruct.XDomain==1) % frequency

 rate = filterStruct.XDelta*length(coeffs); % frequency range is also rate

 % VSA software supplies centered frequency domain

else % time domain is 2

 rate = 1/filterStruct.XDelta; % inverse of time step is frequency

 % convert to frequency domain

 % must center frequency domain (to match what comes from the VSA

 % software)

 coeffs = fftshift(fft(coeffs));

end

% invert

invertedFreqDomain = 1./coeffs;

% convert to time domain (first placing the 0 frequency at the left edge)

timeDomain=ifft(ifftshift(invertedFreqDomain));

if (filterStruct.XDomain==1) % frequency

 % put time domain 0 time in center

 len=length(timeDomain);

 if (mod(length(timeDomain), 2)==1) % odd

 center=ceil(len/2);

 centeredTime(1:(center-1)) = timeDomain(center+1:end);

 centeredTime(center:len) = timeDomain(1:center);

 else % even

 topHalf = (length(timeDomain)/2)+1;

 centeredTime(1:(topHalf-1)) = timeDomain(topHalf:end);

 centeredTime(topHalf:len) = timeDomain(1:(topHalf-1));

 end

else % already centered in time domain
Agilent X-Series Signal Generators Programming Guide 133

Programming Examples
LAN Programming Interface Examples
 centeredTime = timeDomain;

end

if (abs(destRate-rate)>1e-6)

 resampledTime = resample(centeredTime, destRate, rate, 30);

 resampledTime = resampledTime.*(rate/destRate);

else

 resampledTime = centeredTime;

end

% clip off the center 256 (if necessary)

if (length(resampledTime)>256)

 [maxval, index] = max(abs(resampledTime));

 center=index;

 left = center-127;

 right = left+255;

 clippedTime=resampledTime((left):(right));

else

 clippedTime = resampledTime;

end

corrFilter=clippedTime;

end

Example 4: Downloading a FIR filter in Matlab to the MXG

NOTE This example is written for N51xxA MXG signal generators. For N51xxB EXG/MXG signal
generators, replace the 125MHz value with 200MHz.

This example uses Matlab to control the MXG over the TCP- IP (LAN) interface. This example takes a
filter in Matlab and writes it to a FIR file in the MXG. This example can be can be used in
combination with either the automatable loadPsaEqFilterFreq.m example (1) or the loadVsaEqFilter.m
(example 3) to manually work with the VSA 89600 software. This example can also be used to create
real modulation FIRs.

The following program example is available on the signal generator Documentation CD- ROM as
writeMxgFir.m.

function [rateAdjustedFilter]=writeMxgFir(host, instrumentFilename, timeDomainFilter, osr, rate,
destRate, maxTaps)

% writeMxgEqFir(host, instrumentFilename, timeDomainFilter, osr, rate, destRate, maxTaps);

% writes filter to 'instrumentFilename' on 'host' using tcp-ip. Real or complex is

% auto-detected. osr is assumed to be 1 if it is missing. rate is assumed

% to be 125Mhz if missing. destRate is assumed to be 125Mhz if missing.

% maxTaps is the hardware limit of the MXG (256 if not specified).

% This value should be 256 for the Equalization filter and 32*osr for the

% Arb Modulation filter. Note that the filter has a rectangular window
134 Agilent X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples
% applied with a width of maxTaps centered about the peak point.

% Example: writeMxgEqFir('mxg1', 'a', [-0.1 0.1 0.4 0.1 0.4 0.1 -0.1]);

if (nargin<3 || nargin>7)

 error('usage: writeMxgFir(host, instrumentFilename, timeDomainFilter[, osr[, rate[, destRate[,
maxTaps]]]])');

end

if (nargin<4)

 osr=1;

end

if (nargin<5)

 rate=125e6;

end

if (nargin<6)

 destRate=125e6;

end

if (nargin<7)

 maxTaps=1024;

end

% adjust coefficients for destination rate

if (rate ~= destRate)

 timeDomainFilter = resample(double(timeDomainFilter), destRate, rate, 30);

 timeDomainFilter = timeDomainFilter.*(rate/destRate);

end

if (length(timeDomainFilter)>maxTaps)

 [maxval, index] = max(abs(timeDomainFilter));

 center=index;

 left = center-(maxTaps/2-1);

 if (left<1)

 left=1;

 end

 right = left+(maxTaps-1);

 while (right > length(timeDomainFilter))

 right = right-1;

 end

 timeDomainFilter = timeDomainFilter((left):(right));

end

rateAdjustedFilter = timeDomainFilter;

% open tcp connection

t=tcpip(host, 5025);

t.OutputBufferSize=1024*1024; % plenty big for filters

% write file contents

fopen(t);

%for writing to a file instead to see what is being output
Agilent X-Series Signal Generators Programming Guide 135

Programming Examples
LAN Programming Interface Examples
%t=fopen('test', 'w');

% send command with filename

fprintf(t, '%s', horzcat(':MEM:DATA:FIR "', instrumentFilename, '",'));

% send type

if (isreal(timeDomainFilter))

 fprintf(t, '%s', 'REAL,');

else % convert complex to a real array

 fprintf(t, '%s', 'COMP,');

 temp=zeros(1,length(timeDomainFilter)*2);

 temp(1:2:end)=real(timeDomainFilter);

 temp(2:2:end)=imag(timeDomainFilter);

 timeDomainFilter=temp;

end

% output osr

fprintf(t, '%d', osr);

% send coefficients

fprintf(t, ',%g', timeDomainFilter);

% send terminator

fprintf(t, '\n');

fclose(t);

end
136 Agilent X-Series Signal Generators Programming Guide

4 Programming the Status Register System

This chapter provides the following major sections:

• Overview on page 137

• Status Register Bit Values on page 142

• Accessing Status Register Information on page 143

• Status Byte Group on page 149

• Status Groups on page 151

Overview

NOTE Some of the status bits and register groups only apply to select signal generators with
certain options. For more specific information on each exception, refer to the following:

• Standard Operation Condition Register bits (see Table 4- 5 on page 155)
• Data Questionable Condition Register bits (see Table 4- 6 on page 158)
• Data Questionable Power Condition Register bits (see Table 4- 7 on page 161)
• Data Questionable Frequency Condition Register bits (see Table 4- 8 on page 164)
• Data Questionable Calibration Condition Register bit (see Table 4- 9 on page 167)
• Data Questionable Bert Status Group (see page 169)

During remote operation, you may need to monitor the status of the signal generator for error
conditions or status changes. You can use the signal generator’s status register system to monitor
error conditions, or condition changes, or both. In general, the error queue is easier to use than the
status registers, but the status registers provide some additional information not found in the error
queue. For more information on using the signal generator’s SCPI commands to query the signal
generator’s error queue, refer to the SCPI Command Reference.

The signal generator’s status register system provides two major advantages:

• You can monitor the settling of the signal generator using the settling bit of the Standard
Operation Status Group’s condition register.

• You can use the service request (SRQ) interrupt technique to avoid status polling, therefore giving
a speed advantage.

The signal generator’s instrument status system provides complete SCPI compliant data structures for
reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a
hierarchical order. The lower- priority status registers propagate their data to the higher- priority
registers using summary bits. The Status Byte Register is at the top of the hierarchy and contains the
status information for lower level registers. The lower level registers monitor specific events or
conditions.
Agilent X-Series Signal Generators Programming Guide 137

Programming the Status Register System
Overview
The lower level status registers are grouped according to their functionality. For example, the Data
Questionable Frequency Status Group consists of five registers. This chapter may refer to a group as
a register so that the cumbersome longer description is avoided. For example, the Standard Operation
Status Group’s Condition Register can be referred to as the Standard Operation Status register. Refer
to “Status Groups” on page 151 for more information.

Figure 4- 1 and Figure 4- 2 show the EXG/MXG’s signal generator status byte register system and
hierarchy.

The status register systems use IEEE 488.2 commands (those beginning with *) to access the
higher- level summary registers (refer to the SCPI Command Reference). Access Lower- level registers
by using STATus commands.
138 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Overview
Overall Status Byte Register Systems

• “Overall Status Byte Register System (1 of 2)” on page 140

• “Overall Status Byte Register System (2 of 2)” on page 141
Agilent X-Series Signal Generators Programming Guide 139

Programming the Status Register System
Overview
Figure 4-1 Overall Status Byte Register System (1 of 2)
140 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Overview
Figure 4-2 Overall Status Byte Register System (2 of 2)
Agilent X-Series Signal Generators Programming Guide 141

Programming the Status Register System
Status Register Bit Values
Status Register Bit Values
Each bit in a register is represented by a decimal value based on its location in the register (see
Table 4- 1).

• To enable a particular bit in a register, send its value with the SCPI command. Refer to the signal
generator’s SCPI command listing for more information.

• To enable more than one bit, send the sum of all the bits that you want to enable.
• To verify the bits set in a register, query the register.

Example: Enable a Register

To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit 0 (1) and the decimal value of bit 6 (64) to give a decimal value of
65.

2. Send the sum with the command: *ESE 65.

Example: Query a Register

To query a register for a condition, send a SCPI query command. For example, if you want to query
the Standard Operation Status Group’s Condition Register, send the command:

STATus:OPERation:CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits = 1) then the query will return the decimal value
140. The value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

NOTE Bit 15 is not used and is always set to zero.

Table 4-1 Status Register Bit Decimal Values

Decimal
Value

A
lw

ay
s

0

16
38

4

 8
19

2

40
96

20
48

10
24 51

2

25
6

12
8

 6
4 32 16 8 4 2 1

Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
142 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information
Accessing Status Register Information
1. Determine which register contains the bit that reports the condition. Refer to Figure 4- 1 on

page 140 and Figure 4- 2 on page 141 for register location and names.
2. Send the unique SCPI query that reads that register.
3. Examine the bit to see if the condition has changed.

Determining What to Monitor

You can monitor the following conditions:

• current signal generator hardware and firmware status
• whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers. These
registers represent the current state of the signal generator and are updated in real time. When the
condition monitored by a particular bit becomes true, the bit sets to 1. When the condition becomes
false, the bit resets to 0.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded as an
event. The transitions can be positive to negative, negative to positive, or both. To monitor a certain
condition, enable the bit associated with the condition in the associated positive and negative
registers.

Once you have enabled a bit through the transition registers, the signal generator monitors it for a
change in its condition. If this change in condition occurs, the corresponding bit in the event register
will be set to 1. When a bit becomes true (set to 1) in the event register, it stays set until the event
register is read or is cleared. You can thus query the event register for a condition even if that
condition no longer exists.

To clear the event register, query its contents or send the *CLS command, which clears all event
registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The transition
registers are preset to register positive transitions (a change going from 0 to 1). This can be changed
so the selected bit is detected if it goes from true to false (negative transition), or if either transition
occurs.

Deciding How to Monitor

You can use either of two methods described below to access the information in status registers (both
methods allow you to monitor one or more conditions).

• The polling method

In the polling method, the signal generator has a passive role. It tells the controller that
conditions have changed only when the controller asks the right question. This is accomplished by
a program loop that continually sends a query.
Agilent X-Series Signal Generators Programming Guide 143

Programming the Status Register System
Accessing Status Register Information
The polling method works well if you do not need to know about changes the moment they occur.
Use polling in the following situations:

— when you use a programming language/development environment or IO interface that does not
support SRQ interrupts

— when you want to write a simple, single- purpose program without the complexity of setting up
an SRQ handler

• The service request (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more active
role. It tells the controller when there has been a condition change without the controller asking.
Use the SRQ method to detect changes using the polling method, where the program must
repeatedly read the registers.

Use the SRQ method if you must know immediately when a condition changes. Use the SRQ
method in the following situations:

— when you need time- critical notification of changes
— when you are monitoring more than one device that supports SRQs
— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, I/O interface, and programming environment must support SRQ
interrupts (for example: BASIC or VISA used with GPIB and VXI- 11 over the LAN). Using this
method, you must do the following:

1. Determine which bit monitors the condition.

2. Send commands to enable the bit that monitors the condition (transition registers).

3. Send commands to enable the summary bits that report the condition (event enable registers).

4. Send commands to enable the status byte register to monitor the condition.

5. Enable the controller to respond to service requests.

The controller responds to the SRQ as soon as it occurs. As a result, the time the controller would
otherwise have used to monitor the condition, as in a loop method, can be used to perform other
tasks. The application determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the request service summary (RQS)
bit in the status byte register is set. In order for the controller to respond to the change, the Service
Request Enable Register needs to be enabled for the bit(s) that will trigger the SRQ.

Generating a Service Request

 The Service Request Enable Register lets you choose the bits in the Status Byte Register that will
trigger a service request. Send the *SRE <num> command where <num> is the sum of the decimal
values of the bits you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard Operation
Status register summary bit is set to 1, a service request is generated) send the command *SRE 128.

Refer to Figure 4- 1 on page 140 and Figure 4- 2 on page 141 for bit positions and values.
144 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information
The query command *SRE? returns the decimal value of the sum of the bits previously enabled with
the *SRE <num> command.

To query the Status Byte Register, send the command *STB?. The response will be the decimal sum
of the bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal sum will be 136
(bit 7 = 128 and bit 3 = 8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a time can set
the RQS bit. All bits that are asserting an SRQ will be read as part of the status byte when
it is queried or serial polled.
Agilent X-Series Signal Generators Programming Guide 145

Programming the Status Register System
Accessing Status Register Information
The SRQ process asserts SRQ as true and sets the status byte’s RQS bit to 1. Both actions are
necessary to inform the controller that the signal generator requires service. Asserting SRQ informs
the controller that some device on the bus requires service. Setting the RQS bit allows the controller
to determine which signal generator requires service.

This process is initiated if both of the following conditions are true:

• The corresponding bit of the Service Request Enable Register is also set to 1.

• The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator’s SRQ
process is initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should instruct the
controller to perform a serial poll when SRQ is true. Each device on the bus returns the contents of
its status byte register in response to this poll. The device whose request service summary (RQS) bit
is set to 1 is the device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll, the RQS bit is
reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end- of- sweep or measurement and the mode set to
continuous, restarting the measurement (INIT command) can cause the measuring bit to pulse low.
This causes an SRQ when you have not actually reached the “end- of- sweep” or measurement
condition. To avoid this, do the following:

1. Send the command INITiate:CONTinuous OFF.

2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditions is done at the highest level using the IEEE 488.2
common commands listed below. You can set and query individual status registers using the
commands in the STATus subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and clearing all
the event registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable Register
which is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register which is part
of the Standard Event Status Group.

*OPC, *OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1 when all
commands have completed. The query stops any new commands from being processed until the
current processing is complete, then returns a 1.

*PSC, *PSC? (power- on state clear) sets the power- on state so that it clears the Service Request
Enable Register, the Standard Event Status Enable Register, and device- specific event enable
registers at power on. The query returns the flag setting from the *PSC command.
146 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information
*SRE, *SRE? (service request enable) sets and queries the value of the Service Request Enable
Register.

*STB? (status byte) queries the value of the status byte register without erasing its contents.

:STATus:PRESet presets all transition filters, non- IEEE 488.2 enable registers, and error/event
queue enable registers. (Refer to Table 4- 2.)
Agilent X-Series Signal Generators Programming Guide 147

Programming the Status Register System
Accessing Status Register Information
Table 4-2 Effects of :STATus:PRESet

Registera

a.Table reflects :STAT:PRES values for EXG and MXG models with all options. Refer to Figure 4-1 on page 140, Figure 4-2 on page 141, and
Table 4-3 on page 150 through Table 4-10 on page 170.

Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0

:STATus:OPERation:NTRansition 0

:STATus:OPERation:PTRransition 32767

:STATus:QUEStionable:CALibration:ENABle 32767

:STATus:QUEStionable:CALibration:NTRansition 32767

:STATus:QUEStionable:CALibration:PTRansition 32767

:STATus:QUEStionable:ENABle 0

:STATus:QUEStionable:NTRansition 0

:STATus:QUEStionable:PTRansition 32767

:STATus:QUEStionable:FREQuency:ENABle 32767

:STATus:QUEStionable:FREQuency:NTRansition 32767

:STATus:QUEStionable:FREQuency:PTRansition 32767

:STATus:QUEStionable:POWer:ENABle 32767

:STATus:QUEStionable:POWer:NTRansition 32767

:STATus:QUEStionable:POWer:PTRansition 32767

:STATus:QUEStionable:BERT:ENABle 32767

:STATus:QUEStionable:BERT:NTRansition 32767

:STATus:QUEStionable:BERT:PTRansition 32767
148 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Byte Group
Status Byte Group
The Status Byte Group includes the Status Byte Register and the Service Request Enable Register.

NOTE: Some signal
generator models may use
only a subset of the status
registers shown.
Agilent X-Series Signal Generators Programming Guide 149

Programming the Status Register System
Status Byte Group
Status Byte Register

Service Request Enable Register

The Service Request Enable Register lets you choose which bits in the Status Byte Register trigger a
service request.

Table 4-3 Status Byte Register Bits

Bit Description

0,1 Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error queue is not empty. The SCPI
error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data Questionable summary bit has
been set. The Data Questionable Event Register can then be read to determine the specific condition that caused this
bit to be set.

4 Message Available. A 1 in this bit position indicates that the signal generator has data ready in the output queue.
There are no lower status groups that provide input to this bit.

5 Standard Event Status Summary Bit. A 1 in this bit position indicates that the Standard Event summary bit has been
set. The Standard Event Status Register can then be read to determine the specific event that caused this bit to be set.

6 Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least one
reason to require service. This bit is also called the Master Summary Status bit (MSS). The individual bits in the Status
Byte are individually ANDed with their corresponding service request enable register, then each individual bit value is
ORed and input to this bit.

7 Standard Operation Status Summary Bit. A 1 in this bit position indicates that the Standard Operation Status
Group’s summary bit has been set. The Standard Operation Event Register can then be read to determine the specific
condition that caused this bit to be set.

Query: *STB?

Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.

Example: The decimal value 136 is returned when the MSS bit is set low (0).

Decimal sum = 128 (bit 7) + 8 (bit 3)

The decimal value 200 is returned when the MSS bit is set high (1).

Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS bit)

*SRE <data> <data> is the sum of the decimal values of the bits you want to enable except bit 6. Bit 6
cannot be enabled on this register. Refer to Figure 4- 1 on page 140 and Figure 4- 2 on page 141.

Example: To enable bits 7 and 5 to trigger a service request when either corresponding status group
register summary bit sets to 1, send the command *SRE 160 (128 + 32).

Query: *SRE?

Response: The decimal value of the sum of the bits previously enabled with the *SRE <data> command.
150 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Status Groups
The Standard Operation Status Group and the Data Questionable Status Group consist of the
registers listed below. The Standard Event Status Group is similar but does not have negative or
positive transition filters or a condition register.

Condition
Register A condition register continuously monitors the hardware and firmware status of

the signal generator. There is no latching or buffering for a condition register; it is
updated in real time.

Negative
Transition
Filter A negative transition filter specifies the bits in the condition register that will set

corresponding bits in the event register when the condition bit changes from 1 to
0.

Positive
Transition
Filter A positive transition filter specifies the bits in the condition register that will set

corresponding bits in the event register when the condition bit changes from 0 to
1.

Event
Register An event register latches transition events from the condition register as specified

by the positive and negative transition filters. Once the bits in the event register
are set, they remain set until cleared by either querying the register contents or
sending the *CLS command.

Event
Enable
Register An enable register specifies the bits in the event register that generate the

summary bit. The signal generator logically ANDs corresponding bits in the event
and enable registers and ORs all the resulting bits to produce a summary bit.
Summary bits are, in turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status
summary bits. In each status group, corresponding bits in the condition register are filtered by the
negative and positive transition filters and stored in the event register. The contents of the event
register are logically ANDed with the contents of the enable register and the result is logically ORed
to produce a status summary bit in the Status Byte Register.
Agilent X-Series Signal Generators Programming Guide 151

Programming the Status Register System
Status Groups
Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the Status
Byte Register. This group consists of the Standard Event Status Register (an event register) and the
Standard Event Status Enable Register.

NOTE: Some
signal generator
models may use
only a subset of
the status registers
shown.
152 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Standard Event Status Register

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event Status
Register set the summary bit (bit 5 of the Status Byte Register) to 1.

Table 4-4 Standard Event Status Register Bits

Bit Description

0 Operation Complete. A 1 in this bit position indicates that all pending signal generator operations were completed
following execution of the *OPC command.

1 Request Control. This bit is always set to 0. (The signal generator does not request control.)

2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors have instrument error
numbers from 499 to 400.

3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has occurred. Device
dependent errors have instrument error numbers from 399 to 300 and 1 to 32767.

4 Execution Error. A 1 in this bit position indicates that an execution error has occurred. Execution errors have
instrument error numbers from 299 to 200.

5 Command Error. A 1 in this bit position indicates that a command error has occurred. Command errors have
instrument error numbers from 199 to 100.

6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been pressed. This is true even if
the signal generator is in local lockout mode.

7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and then on.

Query: *ESR?

Response: The decimal sum of the bits set to 1

Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

*ESE <data> <data> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 7 and bit 6 so that whenever either of those bits are set to 1, the Standard Event
Status summary bit of the Status Byte Register is set to 1. Send the command *ESE 192 (128 +
64).

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the *ESE <data> command.
Agilent X-Series Signal Generators Programming Guide 153

Programming the Status Register System
Status Groups
Standard Operation Status Group

NOTE Some of the bits in this status group do not apply to all models, and return zero when
queried. See Table 4- 5 on page 155 for more information.

The SCPI command :STAT:OPER:SUPP can suppress the managing of this status group and
save 50 us from the switching time. Refer to the SCPI Command Reference.

The Operation Status Group is used to determine the specific event that set bit 7 in the Status Byte
Register. This group consists of the Standard Operation Condition Register, the Standard Operation
Transition Filters (negative and positive), the Standard Operation Event Register, and the Standard
Operation Event Enable Register.

NOTE: Some
signal generator
models may use
only a subset of
the status registers
shown.
154 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Table 4-5 Standard Operation Condition Register Bits

Bit Description

0a

a.In analog models, this bit is always set to 0.

I/Q Calibrating. A 1 in this position indicates an I/Q calibration is in process.

1 Settling. A 1 in this bit position indicates that the signal generator is settling.

2 Unused. This bit position is always set to 0.

3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.

4b

b.Always set to 0 if Option UN7 not present.

Measuring. A 1 in this bit position indicates that a bit error rate test is in progress.

5 Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for trigger”
state.

6- 14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:OPERation:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 40 is returned. The decimal sum = 32 (bit 5) + 8 (bit 3).

Commands: STATus:OPERation:NTRansition <value> (negative transition), or

STATus:OPERation:PTRansition <value> (positive transition), where

<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:OPERation:NTRansition?
STATus:OPERation:PTRansition?
Agilent X-Series Signal Generators Programming Guide 155

Programming the Status Register System
Status Groups
Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read only. Reading data from an
event register clears the content of that register.

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard Operation
Event Register set the summary bit (bit 7 of the Status Byte Register) to 1.

Query: STATus:OPERation[:EVENt]?

Command: STATus:OPERation:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 5and bit 3 so that whenever either of those bits are set to 1, the Standard Operation
Status summary bit of the Status Byte Register is set to 1. Send the command STAT:OPER:ENAB 40
(32 + 8).

Query: STATus:OPERation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the STATus:OPERation:ENABle
<value> command.
156 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Data Questionable Status Group

NOTE Some of the bits in this status group do not apply to all models, and return zero when
queried. See Table 4- 6 on page 158 for more information.

The Data Questionable Status Group is used to determine the specific event that set bit 3 in the
Status Byte Register. This group consists of the Data Questionable Condition Register, the Data
Questionable Transition Filters (negative and positive), the Data Questionable Event Register, and the
Data Questionable Event Enable Register.

NOTE: Some
signal generator
models may use
only a subset of
the status registers
shown.
Agilent X-Series Signal Generators Programming Guide 157

Programming the Status Register System
Status Groups
Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware status of
the signal generator. Condition registers are read only.

Table 4-6 Data Questionable Condition Register Bits

Bit Description

0- 2 Unused. These bits are always set to 0.

3 Power (summary). This is a summary bit taken from the QUEStionable:POWer register. A 1 in this bit position
indicates that one of the following may have happened: The ALC (Automatic Leveling Control) is unable to
maintain a leveled RF output power (i.e., ALC is UNLEVELED), the reverse power protection circuit has been
tripped. See the “Data Questionable Power Status Group” on page 160 for more information.

4 Unused. This bit is always set to 0.

5 Frequency (summary). This is a summary bit taken from the QUEStionable:FREQuency register. A 1 in this bit
position indicates that one of the following may have happened: synthesizer PLL unlocked, 10 MHz reference
VCO PLL unlocked, 1 GHz reference unlocked, sampler, YO loop unlocked or baseband 1 unlocked. For more
information, see the “Data Questionable Frequency Status Group” on page 163.

6, 7 Unused. These bits are always set to 0.

8a

a.The data reported by this bit depends on the installed options.

Calibration (summary). This is a summary bit taken from the QUEStionable:CALibration register. A 1 in this
bit position indicates that one of the following may have happened: an error has occurred in the DCFM zero
calibration, or an error has occurred in the I/Q calibration. See the “Data Questionable Calibration Status
Group” on page 166 for more information.

9 Self Test. A 1 in this bit position indicates that a self- test has failed during power- up. Reset this bit by cycling
the signal generator’s line power. *CLS will not clear this bit.

10, 11 Unused. These bits are always set to 0.

12b

b.In models that do not support Bit Error Rate Testing (Option UN7), this bit is always set to 0.

BERT (summary). This is a summary bit taken from the QUEStionable:BERT register. A 1 in this bit position
indicates that one of the following occurred: no BCH/TCH synchronization, no data change, no clock input,
PRBS not synchronized, demod/DSP unlocked, or demod unleveled. See the “Data Questionable BERT Status
Group” on page 169 for more information.

13, 14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).
158 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read- only. Reading data from an
event register clears the content of that register.

Data Questionable Event Enable Register

The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable
Event Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Commands: STATus:QUEStionable:NTRansition <value> (negative transition), or

STATus:QUEStionable:PTRansition <value> (positive transition), where

<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:NTRansition?
STATus:QUEStionable:PTRansition?

Query: STATus:QUEStionable[:EVENt]?

Command: STATus:QUEStionable:ENABle <value> where <value> is the sum of the decimal values of the bits
you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable Status
summary bit of the Status Byte Register is set to 1. Send the command STAT:QUES:ENAB 520 (512 +
8).

Query: STATus:QUEStionable:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the STATus:QUEStionable:ENABle
<value> command.
Agilent X-Series Signal Generators Programming Guide 159

Programming the Status Register System
Status Groups
Data Questionable Power Status Group

NOTE Some of the bits in this status group do not apply to all models, and return zero when
queried. See Table 4- 7 on page 161 for more information.

The Data Questionable Power Status Group is used to determine the specific event that set bit 3 in
the Data Questionable Condition Register. This group consists of the Data Questionable Power
Condition Register, the Data Questionable Power Transition Filters (negative and positive), the Data
Questionable Power Event Register, and the Data Questionable Power Event Enable Register.

NOTE: Some
signal generator
models may use
only a subset of
the status registers
shown.
160 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only.

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read- only. Reading data from an
event register clears the content of that register.

Table 4-7 Data Questionable Power Condition Register Bits

Bit Description

0 Reverse Power Protection Tripped. A 1 in this bit position indicates that the reverse power protection (RPP) circuit
has been tripped. There is no output in this state. Any conditions that may have caused the problem should be
corrected. Reset the RPP circuit by sending the remote SCPI command: OUTput:PROTection:CLEar. Resetting the RPP
circuit bit, resets this bit to 0.

1 Unleveled. A 1 in this bit position indicates that the output leveling loop is unable to set the output power.

2 IQ Mod Overdrive. A 1 in this bit position indicates that the signal level into the IQ modulator is too high.

3 Unused. This bit is always set to 0.

4 ALC Heater Detector (Cold). A 1 in this bit position indicates that the ALC detector is cold.

514 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:POWer:CONDition?

Response: The decimal sum of the bits set to 1.

Commands: STATus:QUEStionable:POWer:NTRansition <value> (negative transition), or

STATus:QUEStionable:POWer:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:POWer:NTRansition? STATus:QUEStionable:POWer:PTRansition?

Query: STATus:QUEStionable:POWer[:EVENt]?
Agilent X-Series Signal Generators Programming Guide 161

Programming the Status Register System
Status Groups
Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data
Questionable Power Event Register set the summary bit (bit 3 of the Data Questionable Condition
Register) to 1.

Command: STATus:QUEStionable:POWer:ENABle <value> where <value> is the sum of the decimal values of
the bits you want to enable

Example: Enable bit 3 and bit 2 so that whenever either of those bits are set to 1, the Data Questionable Power
summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT:QUES:POW:ENAB 12 (8 + 4).

Query: STATus:QUEStionable:POWer:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:POWer:ENABle <value> command.
162 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Data Questionable Frequency Status Group

NOTE Some of the bits in this status group do not apply to all models, and return zero when
queried. See Table 4- 8 on page 164 for more information.

The Data Questionable Frequency Status Group is used to determine the specific event that set bit 5
in the Data Questionable Condition Register. This group consists of the Data Questionable Frequency
Condition Register, the Data Questionable Frequency Transition Filters (negative and positive), the
Data Questionable Frequency Event Register, and the Data Questionable Frequency Event Enable
Register.

NOTE: Some
signal generator
models may use
only a subset of
the status registers
shown.
Agilent X-Series Signal Generators Programming Guide 163

Programming the Status Register System
Status Groups
Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read- only.

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in the event
register. Changes can be positive (0 to 1) or negative (1 to 0).

Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters. Event
registers are destructive read- only. Reading data from an event register clears the content of that
register.

Table 4-8 Data Questionable Frequency Condition Register Bits

Bit Description

0 Synth. Unlocked. A 1 in this bit position indicates that the synthesizer is unlocked.

1 10 MHz Ref Unlocked. A 1 in this bit position indicates that the 10 MHz reference signal is unlocked.

2 Frequency Clipped. A 1 in this bit position indicates that the 1 GHz reference signal is unlocked.

314 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:FREQuency:CONDition?

Response: The decimal sum of the bits set to 1.

Commands: STATus:QUEStionable:FREQuency:NTRansition <value> (negative transition) or

STATus:QUEStionable:FREQuency:PTRansition <value> (positive transition) where <value> is the
sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:FREQuency:NTRansition?
STATus:QUEStionable:FREQuency:PTRansition?

Query: STATus:QUEStionable:FREQuency[:EVENt]?
164 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Data Questionable Frequency Event Enable Register

Lets you choose which bits in the Data Questionable Frequency Event Register set the summary bit
(bit 5 of the Data Questionable Condition Register) to 1.

Command: STATus:QUEStionable:FREQuency:ENABle <value>, where <value> is the sum of the decimal values
of the bits you want to enable.

Example: Enable bit 5 and bit 2 so that whenever either of those bits are set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT:QUES:FREQ:ENAB 36 (32 + 4).

Query: STATus:QUEStionable:FREQuency:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:FREQuency:ENABle <value> command.
Agilent X-Series Signal Generators Programming Guide 165

Programming the Status Register System
Status Groups
Data Questionable Calibration Status Group

NOTE Some of the bits in this status group do not apply to all models, and return zero when
queried. See Table 4- 9 on page 167 for more information.

The Data Questionable Calibration Status Group is used to determine the specific event that set bit 8
in the Data Questionable Condition Register. This group consists of the Data Questionable Calibration
Condition Register, the Data Questionable Calibration Transition Filters (negative and positive), the
Data Questionable Calibration Event Register, and the Data Questionable Calibration Event Enable
Register.

NOTE: Some
signal generator
models may use
only a subset of
the status registers
shown.
166 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration status of
the signal generator. Condition registers are read only.

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read- only. Reading data from an
event register clears the content of that register.

Table 4-9 Data Questionable Calibration Condition Register Bits

Bit Description

0 DCFM Calibration Failure. A 1 in this bit position indicates that the DCFM zero calibration routine has failed. This
is a critical error. The output of the source has no validity until the condition of this bit is 0.

1 I/Q Calibration Failure. A 1 in this bit position indicates that the I/Q modulation calibration experienced a failure.

214 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:CALibration:CONDition?

Response: The decimal sum of the bits set to 1.

Commands: STATus:QUEStionable:CALibration:NTRansition <value> (negative transition), or

STATus:QUEStionable:CALibration:PTRansition <value> (positive transition), where <value> is
the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:CALibration:NTRansition?

STATus:QUEStionable:CALibration:PTRansition?

Query: STATus:QUEStionable:CALibration[:EVENt]?
Agilent X-Series Signal Generators Programming Guide 167

Programming the Status Register System
Status Groups
Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the Data
Questionable Calibration Event Register set the summary bit (bit 8 of the Data Questionable
Condition register) to 1.

Command: STATus:QUEStionable:CALibration:ENABle <value>, where <value> is the sum of the decimal
values of the bits you want to enable.

Example: Enable bit 1 and bit 0 so that whenever either of those bits are set to 1, the Data Questionable
Calibration summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT:QUES:CAL:ENAB 3 (2 + 1).

Query: STATus:QUEStionable:CALibration:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:CALibration:ENABle <value> command.
168 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Data Questionable BERT Status Group

NOTE This status group applies only to signal generator models with Option UN7. Refer to Table
4- 10 on page 170 for more information.

The Data Questionable BERT Status Group is used to determine the specific event that set bit 12 in
the Data Questionable Condition Register. The Data Questionable Status group consists of the Data
Questionable BERT Condition Register, the Data Questionable BERT Transition Filters (negative and
positive), the Data Questionable BERT Event Register, and the Data Questionable BERT Event Enable
Register.
Agilent X-Series Signal Generators Programming Guide 169

Programming the Status Register System
Status Groups
Data Questionable BERT Condition Register

The Data Questionable BERT Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only.

Data Questionable BERT Transition Filters (negative and positive)

The Data Questionable BERT Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Table 4-10 Data Questionable BERT Condition Register Bits

Bit Description

0 No Clock. A 1 in this bit position indicates no clock input for more than 3 seconds.

1 No Data Change. A 1 in this bit position indicates no data change occurred during the last 200 clock signals.

2 PRBS Sync Loss. A 1 is set while PRBS synchronization is not established. *RST sets the bit to zero.

314 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:BERT:CONDition?

Response: The decimal sum of the bits set to 1.

Commands: STATus:QUEStionable:BERT:NTRansition <value> (negative transition), or

STATus:QUEStionable:BERT:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:BERT:NTRansition? STATus:QUEStionable:BERT:PTRansition?
170 Agilent X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups
Data Questionable BERT Event Register

The Data Questionable BERT Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read- only. Reading data from an
event register clears the content of that register.

Data Questionable BERT Event Enable Register

The Data Questionable BERT Event Enable Register lets you choose which bits in the Data
Questionable BERT Event Register set the summary bit (bit 3 of the Data Questionable Condition
Register) to 1.

Query: STATus:QUEStionable:BERT[:EVENt]?

Command: STATus:QUEStionable:BERT:ENABle <value> where <value> is the sum of the decimal values of the
bits you want to enable

Example: Enable bit 2 and bit 1 so that whenever either of those bits are set to 1, the Data Questionable BERT
summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT:QUES:BERT:ENAB 6 (4 + 2).

Query: STATus:QUEStionable:BERT:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:BERT:ENABle <value> command.
Agilent X-Series Signal Generators Programming Guide 171

Programming the Status Register System
Status Groups
172 Agilent X-Series Signal Generators Programming Guide

5 Creating and Downloading Waveform Files

NOTE The ability to play externally created waveform data in the signal generator is available only
in vector signal generator models with an installed internal baseband generator option (refer
to the Data Sheet for more information).

This chapter explains how to create Arb–based waveform data and download it into the signal
generator.

• “Overview of Downloading and Extracting Waveform Files” on page 174

• “Understanding Waveform Data” on page 175

• “Waveform Structure” on page 183

• “Waveform Phase Continuity” on page 185

• “Waveform Memory” on page 188

• “Commands for Downloading and Extracting Waveform Data” on page 193

• “Creating Waveform Data” on page 201

• “Downloading Waveform Data” on page 207

• “Loading, Playing, and Verifying a Downloaded Waveform” on page 213

• “Using the Download Utilities” on page 216

• “Downloading E443xB Signal Generator Files” on page 217

• “Programming Examples” on page 219

• “Troubleshooting Waveform Files” on page 268
Agilent X-Series Signal Generators Programming Guide 173

Creating and Downloading Waveform Files
Overview of Downloading and Extracting Waveform Files
Overview of Downloading and Extracting Waveform Files
The signal generator lets you download and extract waveform files. You can create these files
externally and download them to the signal generator. The signal generator also accepts waveforms
files created for some earlier signal generator models. For file extractions, the signal generator
encrypts the waveform file information. The exception to encrypted file extraction is user–created I/Q
data. The signal generator lets you extract this type of file unencrypted. After extracting a waveform
file, you can download it into another Agilent signal generator that has the same option or software
license required to play it. Waveform files consist of three items:

1. I/Q data
2. Marker data
3. File header

NOTE This order of download is required, as the I/Q data downloads results in the overwriting of
all of these three parts of the file.

The signal generator automatically creates the marker file and the file header if the two items are not
part of the download. In this situation, the signal generator sets the file header information to
unspecified (no settings saved) and sets all markers to zero (off).

There are three ways to download waveform files: FTP, programmatically, or using one of the
available free download utilities created by Agilent Technologies:

• N7622A Signal Studio Toolkit 2
http://www.agilent.com/find/signalstudio

• Agilent Waveform Download Assistant for use only with MATLAB
http://www.agilent.com/find/downloadassistant
174 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data
Waveform Data Requirements

To be successful in downloading files, you must first create the data in the required format.

• Signed 2’s complement

• 2–byte integer values

• Input data range of 32768 to 32767

• Minimum of 60 samples per waveform (60 I and 60 Q data points)

• Interleaved I and Q data

• Big- endian byte order

• The same name for the marker, header, and I/Q file

This is only a requirement if you create and download a marker file and or file header, otherwise
the signal generator automatically creates the marker file and or file header using the I/Q data
file name.

NOTE FTP can be used without programming commands to transfer files from the PC to the signal
generator or from the signal generator to the PC.

For more information, see “Waveform Structure” on page 183.

For more information on waveform data, see “Understanding Waveform Data” on page 175.

Understanding Waveform Data
The signal generator accepts binary data formatted into a binary I/Q file. This section explains the
necessary components of the binary data, which uses ones and zeros to represent a value.

Bits and Bytes

Binary data uses the base–two number system. The location of each bit within the data represents a
value that uses base two raised to a power (2n–1). The exponent is n 1 because the first position is
zero. The first bit position, zero, is located at the far right. To find the decimal value of the binary
data, sum the value of each location:

1101 = (1 23) + (1 22) + (0 21) + (1 20)
 = (1 8) + (1 4) + (0 2) + (1 1)
 = 13 (decimal value)

Notice that the exponent identifies the bit position within the data, and we read the data from right
to left.

The signal generator accepts data in the form of bytes. Bytes are groups of eight bits:

01101110 = (0 27) + (1 26) + (1 25) + (0 24) +(1 23) + (1 22) + (1 21) + (0 20)
= 110 (decimal value)
Agilent X-Series Signal Generators Programming Guide 175

Creating and Downloading Waveform Files
Understanding Waveform Data
The maximum value for a single unsigned byte is 255 (11111111 or 281), but you can use multiple
bytes to represent larger values. The following shows two bytes and the resulting integer value:

01101110 10110011= 28339 (decimal value)

The maximum value for two unsigned bytes is 65535. Since binary strings lengthen as the value
increases, it is common to show binary values using hexadecimal (hex) values (base 16), which are
shorter. The value 65535 in hex is FFFF. Hexadecimal consists of the values 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F. In decimal, hex values range from 0 to 15 (F). It takes 4 bits to represent a
single hex value.

For I and Q data, the signal generator uses two bytes to represent an integer value.

LSB and MSB (Bit Order)

Within groups (strings) of bits, we designate the order of the bits by identifying which bit has the
highest value and which has the lowest value by its location in the bit string. The following is an
example of this order.

Little Endian and Big Endian (Byte Order)

When you use multiple bytes (as required for the waveform data), you must identify their order. This
is similar to identifying the order of bits by LSB and MSB. To identify byte order, use the terms little
endian and big endian. These terms are used by designers of computer processors.

1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101

6 = 0110 7 = 0111 8 = 1000 9 = 1001 A = 1010

B = 1011 C = 1100 D = 1101 E = 1110 F = 1111

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of the bit
string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of the
bit string.

Intel is a registered trademark of Intel Corporation.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1

LSBMSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

Bit Position

Because we are using 2 bytes of data, the LSB appears in the second byte.
176 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data
Notice in the previous figure that the LSB and MSB positioning changes with the byte order. In little
endian order, the LSB and MSB are next to each other in the bit sequence.

NOTE For I/Q data downloads, Agilent signal generators require big- endian order.

For each I/Q data point, the signal generator uses four bytes (two integer values), two bytes
for the I point and two bytes for the Q point.

The byte order, little- endian or big- endian, depends on the type of processor used with your
development platform. Intel© processors and its clones use little endian. Sun™ and Motorola
processors use big endian. The Apple PowerPC processor, while big- endian oriented, also supports
the little- endian order. Always refer to the processor’s manufacturer to determine the order they use
for bytes and if they support both, to understand how to ensure that you are using the correct byte
order.

Development platforms include any product that creates and saves waveform data to a file. This
includes Agilent Technologies Advanced Design System EDA software, C++, MATLAB, and so forth.

The byte order describes how the system processor stores integer values as binary data in memory.

Intel is a trademark or registered trademark of Intel Corporation.

Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

Bit Position

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Data

Bit Position

Big Endian Order

Little Endian Order

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0

Hex values = E9 B7

Hex values = B7 E9

LSB MSB

MSB LSB

The lowest order byte that contains bits 0–7 comes first.

The highest order byte that contains bits 8–15 comes first.
Agilent X-Series Signal Generators Programming Guide 177

Creating and Downloading Waveform Files
Understanding Waveform Data
If you output data from a little- endian system to a text file (ASCII text), the values are the same as
viewed from a big endian system. The order only becomes important when you use the data in binary
format, as is done when downloading data to the signal generator.

Byte Swapping

While the processor for the development platform determines the byte order, the recipient of the data
may require the bytes in the reverse order. In this situation, you must reverse the byte order before
downloading the data. This is commonly referred to as byte swapping. You can swap bytes either
programmatically or by using the Signal Studio Toolkit 2 software. For the signal generator, byte
swapping is the method to change the byte order of little endian to big endian. For more information
on little endian and big endian order, see “Little Endian and Big Endian (Byte Order)” on page 176.

The following figure shows the concept of byte swapping for the signal generator. Remember that we
can represent data in hex format (4 bits per hex value), so each byte (8 bits) in the figure shows two
example hex values.

To correctly swap bytes, you must group the data to maintain the I and Q values. One common
method is to break the two–byte integer into one–byte character values (0–255). Character values use
8 bits (1 byte) to identify a character. Remember that the maximum unsigned 8–bit value is 255 (28
 1). Changing the data into character codes groups the data into bytes. The next step is then to
swap the bytes to align with big endian order.

NOTE Agilent signal generators always assume that downloaded data is in big- endian order, so
there is no data order check. Downloading data in little- endian order will produce an
undesired output signal.

DAC Input Values

The signal generator uses a 16–bit DAC (digital–to–analog convertor) to process each of the 2–byte
integer values for the I and Q data points. The DAC determines the range of input values required
from the I/Q data. Remember that with 16 bits we have a range of 0–65535, but the signal generator
divides this range between positive and negative values:

• 32767 = positive full scale output
• 0 = 0 volts
• 32768 = negative full scale output

E9 B7 53 2A

0 1 2 3

E9B7 532A

0 1 2 3

I data = bytes 0 and 1
Q data = bytes 2 and 3

Little Endian

Big Endian

16–bit integer values (2 bytes = 1 integer value)

I Q
178 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data
Because the DAC’s range uses both positive and negative values, the signal generator requires signed
input values. The following list illustrates the DAC’s input value range.

Notice that it takes only 15 bits (215) to reach the Vmax (positive) or Vmin (negative) values. The
MSB determines the sign of the value. This is covered in “2’s Complement Data Format” on page 181.

Using E443xB ESG DAC Input Values

Agilent E443xBsignal generator models have a DAC input range that is different from other Agilent
signal generator models. For E443xB models, the input values are all positive (unsigned) and the data
is contained within 14 bits plus 2 bits for markers. This means that the E443xB DAC has a smaller
range:

• 0 = negative full scale output
• 8192 = 0 volts
• 16383 = positive full scale output

Although X- Series and MXG signal generators use signed input values, they accept unsigned data
created for the E443xB and convert it to the proper DAC values. To download an E443xB files to an
X- Series or MXG signal generator, use the same command syntax as for the E443xB models. For
more information on downloading E443xB files, see “Downloading E443xB Signal Generator Files” on
page 217.

Scaling DAC Values

The signal generator uses an interpolation algorithm (sampling between the I/Q data points) when
reconstructing the waveform. For common waveforms, this interpolation can cause overshoot, which
may exceed the limits of the signal process path’s internal number representation, causing arithmatic
overload. This will be reported as a data path overload error. Because of the interpolation, the error
condition can occur even when all the I and Q values are within the DAC input range. To avoid the
DAC over–range problem, you must scale (reduce) the I and Q input values, so that any overshoot
remains within the DAC range.

Voltage DAC Range Input Range Binary Data Hex Data

Vmax

Vmin

0 Volts

32767

–32768

0

01111111 11111111

00000000 00000000

00000000 00000001

11111111 11111111

10000000 00000000

1

-1

7FFF

0001

0000

FFFF

80000

32767

65535

32766

32768
Agilent X-Series Signal Generators Programming Guide 179

Creating and Downloading Waveform Files
Understanding Waveform Data
NOTE Whenever you interchange files between signal generator models, ensure that all scaling is
adequate for that signal generator’s waveform.

There is no single scaling value that is optimal for all waveforms. To achieve the maximum dynamic
range, select the largest scaling value that does not result in a DAC over–range error. There are two
ways to scale the I/Q data:

• Reduce the input values for the DAC.
• Use the SCPI command :RADio:ARB:RSCaling <val> to set the waveform amplitude as a

percentage of full scale.

NOTE The signal generator factory preset for scaling is 70%. If you reduce the DAC input values,
ensure that you set the signal generator scaling (:RADio:ARB:RSCaling) to an appropriate
setting that accounts for the reduced values.

To further minimize overshoot problems, use the correct FIR filter for your signal type and adjust
your sample rate to accommodate the filter response.

DAC over–range No over–range

Interpolation

Interpolation

–32768

32767

Scaling effect
Max input value
180 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data
NOTE FIR filter capability is only available on vector signal generator models with an installed
baseband generator option.

2’s Complement Data Format

The signal generator requires signed values for the input data. For binary data, two’s complement is
a way to represent positive and negative values. The most significant bit (MSB) determines the sign.

• 0 equals a positive value (01011011 = 91 decimal)
• 1 equals a negative value (10100101 = 91 decimal)

Like decimal values, if you sum the binary positive and negative values, you get zero. The one
difference with binary values is that you have a carry, which is ignored. The following shows how to
calculate the two’s complement using 16–bits. The process is the same for both positive and negative
values.

I and Q Interleaving

When you create the waveform data, the I and Q data points typically reside in separate arrays or
files. The signal generator requires a single I/Q file for waveform data playback. The process of
interleaving creates a single array with alternating I and Q data points, with the Q data following the
I data. This array is then downloaded to the signal generator as a binary file. The interleaved file
comprises the waveform data points where each set of data points, one I data point and one Q data
point, represents one I/Q waveform point.

Convert the decimal value to binary.

23710 = 01011100 10011110

Notice that 15 bits (0–14) determine the value and bit 16 (MSB) indicates a positive value.
Invert the bits (1 becomes 0 and 0 becomes 1).

10100011 01100001

Add one to the inverted bits. Adding one makes it a two’s complement of the original binary value.

 10100011 01100001
+ 00000000 00000001
 10100011 01100010

The MSB of the resultant is one, indicating a negative value (23710).
Test the results by summing the binary positive and negative values; when correct, they produce zero.

 01011100 10011110
+ 10100011 01100010
 00000000 00000000
Agilent X-Series Signal Generators Programming Guide 181

Creating and Downloading Waveform Files
Understanding Waveform Data
NOTE The signal generator can accept separate I and Q files created for the earlier E443xB ESG
models. For more information on downloading E443xB files, see “Downloading E443xB Signal
Generator Files” on page 217.

The following figure illustrates interleaving I and Q data. Remember that it takes two bytes (16 bits)
to represent one I or Q data point.

11001010 01110110 01110111 00111110I Data

Q Data 11101001 11001010 01011110 01110010

11001010 01110110 11101001 11001010 01110111 00111110 01011110 01110010

I Data Q DataI Data Q Data

Interleaved Binary Data

CA 76 E9 CA 77 3E 5E 72

Q Data Q DataI DataI Data

Interleaved Hex Data

Binary

Hex CA 76 77 3E

Binary

Hex E9 CA 5E 72

Waveform
data point

Waveform
data point

Waveform data point Waveform data point

MSB MSBLSB LSB
182 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Structure
Waveform Structure
To play back waveforms, the signal generator uses data from the following three files:

• File header
• Marker file
• I/Q file

All three files have the same name, the name of the I/Q data file, but the signal generator stores
each file in its respective directory (headers, markers, and waveform). For information on file
extractions, see “Commands for Downloading and Extracting Waveform Data” on page 193.

File Header

The file header contains settings for the ARB modulation format such as sample rate, marker polarity,
I/Q modulation attenuator setting and so forth. When you create and download I/Q data, the signal
generator automatically creates a file header with all saved parameters set to unspecified. With
unspecified header settings, the waveform either uses the signal generator default settings, or if a
waveform was previously played, the settings from that waveform. Ensure that you configure and save
the file header settings for each waveform.

NOTE If you have no RF output when you play back a waveform, ensure that the marker RF
blanking function has not been set for any of the markers. The marker RF blanking function
is a header parameter that can be inadvertently set active for a marker by a previous
waveform. To check for and turn RF blanking off manually, refer to “Configuring the
Pulse/RF Blank” on page 269.

Marker File

The marker file uses one byte per I/Q waveform point to set the state of the four markers either on
(1) or off (0) for each I/Q point. When a marker is active (on), an output trigger signal is sent to a
corresponding rear- panel BNC and/or AUX IO connector pin. (For more information on active
markers and their output trigger signal location, refer to your signal generator’s User’s Guide.)
Because markers are set at each waveform point, the marker file contains the same number of bytes
as there are waveform points. For example, for 200 waveform points, the marker file contains 200
bytes.

Although a marker point is one byte, the signal generator uses only bits 0–3 to configure the
markers; bits 4–7 are reserved and set to zero. The following example shows a marker byte.
Agilent X-Series Signal Generators Programming Guide 183

Creating and Downloading Waveform Files
Waveform Structure
The following example shows a marker binary file (all values in hex) for a waveform with 200 points.
Notice the first marker point, 0f, shows all four markers on for only the first waveform point.

If you create your own marker file, its name must be the same as the waveform file. If you download
I/Q data without a marker file, the signal generator automatically creates a marker file with all
points set to zero. For more information on markers, see the User’s Guide.

NOTE Downloading marker data using a file name that currently resides on the signal generator
overwrites the existing marker file without affecting the I/Q (waveform) file. However,
downloading just the I/Q data with the same file name as an existing I/Q file also overwrites
the existing marker file setting all bits to zero.

Marker Byte 0000 1 0 1 1

Binary

Hex

Marker Number Position4 3 2 1

Reserved

0000 0101

05

Sets markers 1 and 3 on for a waveform point

Example of Setting a Marker Byte

01 = Marker 1 on

05 = Markers 1 and 3 on

04 = Marker 3 on

00 = No active markers

0f = All markers on
184 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Phase Continuity
I/Q File

The I/Q file contains the interleaved I and Q data points (signed 16–bit integers for each I and Q
data point). Each I/Q point equals one waveform point. The signal generator stores the I/Q data in
the waveform directory.

NOTE If you download I/Q data using a file name that currently resides on the signal generator, it
also overwrites the existing marker file setting all bits to zero and the file header setting all
parameters to unspecified.

Waveform

A waveform consists of samples. When you select a waveform for playback, the signal generator loads
settings from the file header. When the ARB is on, it creates the waveform samples from the data in
the marker and I/Q (waveform) files. The file header, while required, does not affect the number of
bytes that compose a waveform sample. One sample contains five bytes:

To create a waveform, the signal generator requires a minimum of 60 samples. To help minimize
signal imperfections, use an even number of samples (for information on waveform continuity, see
“Waveform Phase Continuity” on page 185). When you store waveforms, the signal generator saves
changes to the waveform file, marker file, and file header.

Waveform Phase Continuity

Phase Discontinuity, Distortion, and Spectral Regrowth

The most common arbitrary waveform generation use case is to play back a waveform that is finite
in length and repeat it continuously. Although often overlooked, a phase discontinuity between the
end of a waveform and the beginning of the next repetition can lead to periodic spectral regrowth
and distortion.

For example, the sampled sinewave segment in the following figure may have been simulated in
software or captured off the air and sampled. It is an accurate sinewave for the time period it
occupies, however the waveform does not occupy an entire period of the sinewave or some multiple
thereof. Therefore, when repeatedly playing back the waveform by an arbitrary waveform generator, a
phase discontinuity is introduced at the transition point between the beginning and the end of the
waveform.

Repetitions with abrupt phase changes result in high frequency spectral regrowth. In the case of
playing back the sinewave samples, the phase discontinuity produces a noticeable increase in
distortion components in addition to the line spectra normally representative of a single sinewave.

I/Q Data Marker Data 1 Waveform Sample+ =
2 bytes I
(16 bits)

2 bytes Q
(16 bits)

1byte (8 bits)
Bits 4–7 reserved—Bits 0–3 set

5 bytes
Agilent X-Series Signal Generators Programming Guide 185

Creating and Downloading Waveform Files
Waveform Phase Continuity
Avoiding Phase Discontinuities

You can easily avoid phase discontinuities for periodic waveforms by simulating an integer number of
cycles when you create your waveform segment.

NOTE If there are N samples in a complete cycle, only the first N–1 samples are stored in the
waveform segment. Therefore, when continuously playing back the segment, the first and Nth
waveform samples are always the same, preserving the periodicity of the waveform.

By adding off time at the beginning of the waveform and subtracting an equivalent amount of off
time from the end of the waveform, you can address phase discontinuity for pulsed periodic
waveforms. Consequently, when the waveform repeats, the lack of signal present avoids the issue of
phase discontinuity.

However, if the period of the waveform exceeds the waveform playback memory available in the
arbitrary waveform generator, a periodic phase discontinuity could be unavoidable.

Sampled Sinewave with Phase Discontinuity

Waveform length

discontinuity
Phase
186 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Phase Continuity
The following figures illustrate the influence a single sample can have. The generated 3–tone test
signal requires 100 samples in the waveform to maintain periodicity for all three tones. The
measurement on the left shows the effect of using the first 99 samples rather than all 100 samples.
Notice all the distortion products (at levels up to 35 dBc) introduced in addition to the wanted
3–tone signal. The measurement on the right shows the same waveform using all 100 samples to
maintain periodicity and avoid a phase discontinuity. Maintaining periodicity removes the distortion
products.

Sampled Sinewave with No Discontinuity

Waveform length

Added sample

3–tone – 20 MHz Bandwidth3–tone – 20 MHz Bandwidth
Measured distortion = 35 dBc

Phase Continuity

Measured distortion = 86 dBc

Phase Discontinuity
Agilent X-Series Signal Generators Programming Guide 187

Creating and Downloading Waveform Files
Waveform Memory
Waveform Memory
The signal generator provides two types of memory, volatile and non–volatile. You can download files
to either memory type.

NOTE The X- Series and MXG’s ARB Waveform File Cache is limited to 128 files. Consequently, once
the 128 file cache limit has been reached, the waveform switching speed will be much slower
for files loaded into the volatile waveform memory (BBG).

Volatile Random access memory that does not survive cycling of the signal generator
power. This memory is commonly referred to as waveform memory (WFM1) or
waveform playback memory. To play back waveforms, they must reside in volatile
memory. The following file types share this memory:

Non–volatile Storage memory where files survive cycling the signal generator power. Files
remain until overwritten or deleted. To play back waveforms after cycling the
signal generator power, you must load waveforms from non–volatile waveform
memory (NVWFM) to volatile waveform memory (WFM1). On the Agilent X- Series
and MXG the non–volatile memory is referred to as internal media and external
media. The following file types share this memory:

Table 5-1 Signal Generators and Volatile Memory Types

Volatile Memory Type Model of Signal Generator

N5172B,
N5182B with
an installed
BBG option

N5182A with
an installed
BBG option

I/Q x x

Marker x x

File header x x

User PRAM – –

Table 5-2 Signal Generators and Non–Volatile Memory Types

Non–Volatile Memory Type Model of Signal Generator

N5172B,
N5182B with
an installed
BBG option

N5182A with
an installed
BBG option

I/Q x x
188 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Memory
The following figure on Figure 5- 1 on page 190 shows the locations within the signal generator for
volatile and non–volatile waveform data.

Marker x x

File header x x

Sweep List x x

User Data x x

User PRAM x –

Instrument State x x

Waveform Sequences
(multiple I/Q files played
together)

x x

Table 5-2 Signal Generators and Non–Volatile Memory Types

Non–Volatile Memory Type Model of Signal Generator

N5172B,
N5182B with
an installed
BBG option

N5182A with
an installed
BBG option
Agilent X-Series Signal Generators Programming Guide 189

Creating and Downloading Waveform Files
Waveform Memory
Figure 5-1 File Structure Map

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a waveform file
with 60 samples (the minimum number of samples) has 300 bytes (5 bytes per sample 60 samples),
but the signal generator allocates 1024 bytes of memory. If a waveform is too large to fit into 1024
bytes, the signal generator allocates additional memory in multiples of 1024 bytes. For example, the
signal generator allocates 3072 bytes of memory for a waveform with 500 samples (2500 bytes).

3 x 1024 bytes = 3072 bytes of memory

USER

HEADER MARKERS WAVEFORM

SEQ

SECUREWAVE

BBG1

Non–volatile

Volatile waveform

HEADER MARKERS WAVEFORM SECUREWAVE

Root directory

Volatile waveform data

he Agilent X-Series and MXG use an optional “USB media” to store non–volatile waveform data.
2The Agilent X-Series and MXG internal non–volatile memory is referred to as “internal storage”. These internal storage directories
contain pointers to the files, which are located in the NONVOLATILE directory.
3The NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.

Waveform sequences

X-Series and MXG USB media:
File listing with extensions1

NONVOLATILE3

Non–volatile waveform data (internal storage 2)

directory
190 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Memory
As shown in the examples, waveforms can cause the signal generator to allocate more memory than
what is actually used, which decreases the amount of available memory.

NOTE In the first block of data of volatile memory that is allocated for each waveform file, the file
header requires 512 bytes.

Non–Volatile Memory

NOTE If the signal generator’s external USB flash memory port is used, the USB flash memory can
provide actual physical storage of non–volatile data in the SECUREWAVE directory versus
the “virtual” only data.

ARB waveform encryption of proprietary information is supported on the external
non–volatile USB flash memory.

To copy unencrypted data files from an external media (as in USB Flash Drive [UFD]) for
playing on a signal generator, the full filename extension is required (i.e. .MARKER,
.HEADER, .WAVEFORM, etc.). For more information on unencrypted data, refer to
“Commands for Downloading and Extracting Waveform Data” on page 193. For more
information on how to work with files, refer to the User’s Guide.

To copy compatible licensed encrypted data files (i.e. .SECUREWAVE) from an external media,
download (copy) the files to the signal generator (refer to the User’s Guide for information
on how to work with files). When using the external media along with the signal generator’s
Use as or Copy File to Instrument softkey menus, encrypted data files can be automatically
detected by the signal generator, regardless of the suffix (e.g. .wfm, .wvfm, and no suffix,
etc.). These various waveform files can be selected and played by the signal generator. For
more information on encrypted data, refer to “Commands for Downloading and Extracting
Waveform Data” on page 193. When using the Copy File to Instrument, the signal generator
prompts the user to select between BBG Memory and Internal Storage memories as locations
to copy the files.

Non–volatile files are stored on the non–volatile internal signal generator memory (internal storage)
or to an USB media, if available.

The non–volatile internal memory is allocated according to a Microsoft compatible file allocation table
(FAT) file system. The signal generator allocates non–volatile memory in clusters according to the
drive size (see Table 5- 3 on page 192). For example, referring to Table 5- 3 on page 192, if the drive
size is 15 MB and if the file is less than or equal to 4K bytes, the file uses only one 4 KB cluster of
memory. For files larger than 4 KB, and with a drive size of 15 MB, the signal generator allocates
additional memory in multiples of 4KB clusters. For example, a file that has 21,538 bytes consumes 6
memory clusters (24,000 bytes).

Microsoft is a registered trademark of Microsoft Corporation.
Agilent X-Series Signal Generators Programming Guide 191

Creating and Downloading Waveform Files
Waveform Memory
For more information on default cluster sizes for FAT file structures, refer to Table 5- 3 on page 192
and to http://support.microsoft.com/.

Memory Size

The amount of available memory, volatile and non–volatile, varies by the installed options and by
amount of memory used by other files that share the memory. When we refer to waveform files, we
state the memory size in samples (one sample equals five bytes). The waveform playback memory
resides on the baseband generator that is installed in the Agilent MXG or X- Series signal generator.
Refer to Table 5- 4 on page 192 for the maximum available memory for each model and option.

Table 5-3 Drive Size (logical volume)

Drive Size (logical volume) Cluster Size (Bytes)
(Minimum Allocation Size)

0 MB – 15 MB 4K

16 MB – 127 MB 2K

128 MB – 255 MB 4K

256 MB – 511 MB 8K

512 MB – 1023 MB 16K

1024 MB – 2048 MB 32K

2048 MB – 4096 MB 64K

4096 MB – 8192 MB 128K

8192 MB – 16384 MB 256K

Table 5-4 Maximum Signal Generator Memory

Volatile (BBG) Memory Non–Volatile (Internal Storage and USB Media)
Memory

Option Size Option Size

N5172B and N5182B

653, 655, 656, 657
(BBG)

32 MSa (160 MB) Standard
006
009

600 MSa (3 GB)
2 GSa (8 GB)
7.5 GSa (30 GB)

021 (N5172B only)
022
023 (N5182B only)

256 MSa (1.25 GB)
512 MSa (2.5 GB)
1024 MSa (5 GB)

USB Flash Drive (UFD) user determined

N5182A
192 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Commands for Downloading and Extracting Waveform Data
You can download I/Q data, the associated file header, and marker file information (collectively called
waveform data) into volatile or non–volatile memory. For information on waveform structure, see
“Waveform Structure” on page 183.

The signal generator provides the option of downloading waveform data either for extraction or not
for extraction. When you extract waveform data, the signal generator may require it to be read out in
encrypted form. The SCPI download commands determine whether the waveform data is extractable.

You can download or extract waveform data created in any of the following ways:

• with signal simulation software, such as MATLAB or Agilent Advanced Design System (ADS)
• with advanced programming languages, such as C++, VB or VEE
• with Agilent Signal Studio software
• with the signal generator

Waveform Data Encryption

You can download encrypted waveform data extracted from one signal generator into another signal
generator with the same option or software license for the modulation format. You can also extract
encrypted waveform data created with software such as MATLAB or ADS, providing the data was
downloaded to the signal generator using the proper command.

When you download an exported waveform using a Agilent Signal Studio software product, you can
use the FTP process and the securewave directory or SCPI commands, to extract the encrypted file
to the non–volatile memory on the signal generator. Refer to “File Transfer Methods” on page 194.

Encrypted I/Q Files and the Securewave Directory

The signal generator uses the securewave directory to perform file encryption (extraction) and
decryption (downloads). The securewave directory is not an actual storage directory, but rather a
portal for the encryption and decryption process. While the securewave directory contains file
names, these are actually pointers to the true files located in signal generator memory (volatile or
non–volatile). When you download an encrypted file, the securewave directory decrypts the file and
unpackages the contents into its file header, I/Q data, and marker data. When you extract a file, the

651, 652, 654a
(BBG)

8 MSa (40 MB) Standard 800 MSa (4 GB)b

019 364 MSa (20 MB) USB Flash Drive (UFD) user determined

a.The internal baseband generator speed upgrade Options 670, 671, and 672 are option upgrades that require Option 651 and 652 to
have been loaded at the factory (refer to the Data Sheet for more information). Any references to 651, 652, or 654 are inclusive of
671, 672, and 674.

b.For serial numbers <MY4818xxxx, US4818xxxx, and SG4818xxxx, the persistent memory value = 512 MB.

Table 5-4 Maximum Signal Generator Memory

Volatile (BBG) Memory Non–Volatile (Internal Storage and USB Media)
Memory

Option Size Option Size
Agilent X-Series Signal Generators Programming Guide 193

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
securewave directory packages the file header, I/Q data, and marker data and encrypts the waveform
data file. When you extract the waveform file (I/Q data file), it includes the other two files, so there
is no need to extract each one individually.

The signal generator uses the following securewave directory paths for file extractions and encrypted
file downloads:

Volatile /user/bbg1/securewave/file_name or swfm:file_name

Non–volatile /user/securewave or snvwfm1:file_name

NOTE To extract files (other than user–created I/Q files) and to download encrypted files, you
must use the securewave directory. If you attempt to extract previously downloaded
encrypted files (including Signal Studio downloaded files) without using the securewave
directory, the signal generator generates an error and displays:
ERROR: 221, Access Denied.

Encrypted I/Q Files and the Securewave Directory

NOTE Header parameters of files stored on the Agilent X- Series or MXG’s internal or USB media
cannot be changed unless the file is copied to the volatile BBG memory. For more
information on modifying header parameters, refer to the User’s Guide.

When downloading encrypted files (.SECUREWAVE) from the USB media that have had the file suffix
changed to something other than .SECUREWAVE, you must use the Use As or Copy File to Instrument
menus to play an encrypted waveform file in the signal generator.

File Transfer Methods
• SCPI using VXI–11 (VMEbus Extensions for Instrumentation as defined in VXI–11)
• SCPI over the GPIB or RS 232
• SCPI with sockets LAN (using port 5025)
• File Transfer Protocol (FTP)
194 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
SCPI Command Line Structure

The signal generator expects to see waveform data as block data (binary files). The IEEE standard
488.2–1992 section 7.7.6 defines block data. The following example shows how to structure a SCPI
command for downloading waveform data (#ABC represents the block data):

:MMEM:DATA "<file_name>",#ABC

"<file_name>" the I/Q file name and file path within the signal generator

indicates the start of the data block

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes to follow in C

C the actual binary waveform data

The following example demonstrates this structure:

WFM1: the file path

my_file the I/Q file name as it will appear in the signal generator’s memory catalog

indicates the start of the data block

3 B has three decimal digits

240 240 bytes of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the binary data downloaded to the
signal generator, however not all ASCII values are printable

Commands and File Paths for Downloading and Extracting Waveform Data

NOTE Filenames should not exceed 23 characters.

You can download or extract waveform data using the commands and file paths in the following
tables:

• Table 5- 5, “Downloading Unencrypted Files for No Extraction,” on page 196
• Table 5- 6, “Downloading Encrypted Files for No Extraction,” on page 196
• Table 5- 7, “Downloading Unencrypted Files for Extraction,” on page 196
• Table 5- 9, “Downloading Encrypted Files for Extraction,” on page 198
• Table 5- 10, “Extracting Encrypted Waveform Data,” on page 198

file_name A C

MMEM:DATA “WFM1:my_file”,#3 240 12%S!4&07#8g*Y9@7...

B

Agilent X-Series Signal Generators Programming Guide 195

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Table 5-5 Downloading Unencrypted Files for No Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory MMEM:DATA "WFM1:<file_name>",<blockdata>
MMEM:DATA "MKR1:<file_name>",<blockdata>
MMEM:DATA "HDR1:<file_name>",<blockdata>

SCPI/volatile memory with
full directory path

MMEM:DATA "user/bbg1/waveform/<file_name>",<blockdata>
MMEM:DATA "user/bbg1/markers/<file_name>",<blockdata>
MMEM:DATA "user/bbg1/header/<file_name>",<blockdata>

SCPI/non–volatile memory MMEM:DATA "NVWFM:<file_name>",<blockdata>
MMEM:DATA "NVMKR:<file_name>",<blockdata>
MMEM:DATA "NVHDR:<file_name>",<blockdata>

SCPI/non–volatile memory
with full directory path

MMEM:DATA /user/waveform/<file_name>",<blockdata>
MMEM:DATA /user/markers/<file_name>",<blockdata>
MMEM:DATA /user/header/<file_name>",<blockdata>

Table 5-6 Downloading Encrypted Files for No Extraction

Download Method
/Memory Type

Command Syntax Options

SCPI/volatile memory MMEM:DATA "user/bbg1/securewave/<file_name>",<blockdata>
MMEM:DATA "SWFM1:<file_name>",<blockdata>
MMEM:DATA "file_name@SWFM1",<blockdata>

SCPI/non–volatile memory MMEM:DATA "user/securewave/<file_name>",<blockdata>
MMEM:DATA "SNVWFM:<file_name>",<blockdata>
MMEM:DATA "file_name@SNVWFM",<blockdata>

Table 5-7 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memorya MEM:DATA:UNPRotected "/user/bbg1/waveform/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/bbg1/markers/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/bbg1/header/file_name",<blockdata>
MEM:DATA:UNPRotected "WFM1:file_name",<blockdata>
MEM:DATA:UNPRotected "MKR1:file_name",<blockdata>
MEM:DATA:UNPRotected "HDR1:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@WFM1",<blockdata>
MEM:DATA:UNPRotected "file_name@MKR1",<blockdata>
MEM:DATA:UNPRotected "file_name@HDR1",<blockdata>
196 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
SCPI/non–volatile
memorya

MEM:DATA:UNPRotected "/user/waveform/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/markers/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/header/file_name",<blockdata>
MEM:DATA:UNPRotected "NVWFM:file_name",<blockdata>
MEM:DATA:UNPRotected "NVMKR:file_name",<blockdata>
MEM:DATA:UNPRotected "NVHDR:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@NVWFM",<blockdata>
MEM:DATA:UNPRotected "file_name@NVMKR",<blockdata>
MEM:DATA:UNPRotected "file_name@NVHDR",<blockdata>

FTP/volatile memoryb put <file_name> /user/bbg1/waveform/<file_name>
put <file_name> /user/bbg1/markers/<file_name>
put <file_name> /user/bbg1/header/<file_name>

FTP/non–volatile
memoryb

put <file_name> /user/waveform/<file_name>
put <file_name> /user/markers/<file_name>
put <file_name> /user/header/<file_name>

a.The :MEM:DATA:UNPRotected command is not required to be able to extract files (i.e. use :MEM:DATA). For more information,
refer to the SCPI Command Reference.

b. See “FTP Procedures” on page 199.

Table 5-8 Extracting Unencrypted I/Q Data

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile
memory

MMEM:DATA? "/user/bbg1/waveform/<file_name>"
MMEM:DATA? "WFM1:<file_name>"
MMEM:DATA? "<file_name>@WFM1"

SCPI/non–volatile
memory

MMEM:DATA? "/user/waveform/<file_name>"
MMEM:DATA? "NVWFM:<file_name>"
MMEM:DATA? "<file_name>@NVWFM"

FTP/volatile
memorya

get /user/bbg1/waveform/<file_name>
get /user/bbg1/markers/<file_name>
get /user/bbg1/header/<file_name>

FTP/non–volatile
memorya

get /user/waveform/<file_name>
get /user/markers/<file_name>
get /user/header/<file_name>

a. See “FTP Procedures” on page 199.

Table 5-7 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options
Agilent X-Series Signal Generators Programming Guide 197

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Table 5-9 Downloading Encrypted Files for Extraction

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatilea
memory

MEM:DATA:UNPRotected "/user/bbg1/securewave/file_name",<blockdata>
MEM:DATA:UNPRotected "SWFM1:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@SWFM1",<blockdata>

SCPI/non–volatile
memorya

MEM:DATA:UNPRotected "/user/securewave/file_name",<blockdata>
MEM:DATA:UNPRotected "SNVWFM:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@SNVWFM",<blockdata>

FTP/volatile
memoryb

put <file_name> /user/bbg1/securewave/<file_name>

FTP/non–volatile
memoryb

put <file_name> /user/securewave/<file_name>

a.The :MEM:DATA:UNPRotected command is not required to be able to extract files (i.e. use :MEM:DATA). For more information,
refer to the SCPI Command Reference.

b. See “FTP Procedures” on page 199.

Table 5-10 Extracting Encrypted Waveform Data

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile
memory

MMEM:DATA? "/user/bbg1/securewave/file_name"
MMEM:DATA? "SWFM1:file_name"
MMEM:DATA? "file_name@SWFM1"

SCPI/non–volatile
memory

MMEM:DATA? "/user/securewave/file_name"
MMEM:DATA? "SNVWFM:file_name"
MMEM:DATA? "file_name@SNVWFM"

FTP/volatile
memorya

get /user/bbg1/securewave/<file_name>

FTP/non–volatile

memorya

get /user/securewave/<file_name>

a. See “FTP Procedures” on page 199.
198 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
FTP Procedures

CAUTION Avoid using the *OPC? or *WAI commands to verify that the FTP process has been
completed. These commands can potentially hang up due to the processing of other
SCPI parser operations. Refer to the SCPI Command Reference.

NOTE If you are remotely FTPing files and need to verify the completion of the FTP process, then
query the instrument by using SCPI commands such as: ':MEM:DATA:', ':MEM:CAT', '*STB?',
'FREQ?', '*IDN?', 'OUTP:STAT?'. Refer to the SCPI Command Reference.

There are three ways to FTP files:

• use the Microsoft Internet Explorer FTP feature
• use the PC’s or UNIX command window
• use the signal generator’s internal web server

Using Microsoft Internet Explorer
1. Enter the signal generator’s hostname or IP address as part of the FTP URL.

ftp://<host name> or

ftp://<IP address>

2. Press Enter on the keyboard or Go from the Internet Explorer window.

The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Using the Command Window (PC or UNIX)

This procedure downloads to non–volatile memory. To download to volatile memory, change the file
path.

CAUTION Get and Put commands write over existing files by the same name in destination
directories. Remember to change remote and local filenames to avoid the loss of data.

NOTE If a filename has a space, quotations are required around the filename.

Always transfer the waveform file before transferring the marker file.

For additional information on FTP commands, refer to the operating system’s Window Help
Agilent X-Series Signal Generators Programming Guide 199

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
and Support Center.

1. From the PC command prompt or UNIX command line, change to the destination directory for the
file you intend to download.

2. From the PC command prompt or UNIX command line, type ftp <instrument name>. Where
instrument name is the signal generator’s hostname or IP address.

3. At the User: prompt in the ftp window, press Enter (no entry is required).

4. At the Password: prompt in the ftp window, press Enter (no entry is required).

5. At the ftp prompt, either put a file or get a file:

To put a file, type:

put <file_name> /user/waveform/<file_name1>

where <file_name> is the name of the file to download and <file_name1> is the name
designator for the signal generator’s /user/waveform/ directory.

If <filename1> is unspecified, ftp uses the specified <file_name> to name <file_name1>.

• If a marker file is associated with the data file, use the following command to download it to
the signal generator:
put <marker file_name> /user/markers/<file_name1>

where <marker file_name> is the name of the file to download and <file_name1> is the name
designator for the file in the signal generator’s /user/markers/ directory. Marker files and
the associated I/Q waveform data have the same name.

For more examples of put command usage refer to Table 5- 11.

To get a file, type:

get /user/waveform/<file_name1> <file_name>

where <file_name1> is the file to download from the signal generator’s /user/waveform/
directory and <file_name> is the name designator for the local PC/UNIX.

• If a marker file is associated with the data file, use the following command to download it to
the local PC/UNIX directory:
get /user/markers/<file_name1> <marker file_name>

Table 5-11 Put Command Examples

Command
Results

Local Remote Notes

Incorrect put <filename.wfm>

put <filename.mkr>

/user/waveform/<filename1.wfm>

/user/marker/<filename1.mkr>

Produces two
separate and
incompatible files.

Correct put <filename.wfm>

put <filename.mkr>

/user/waveform/<filename1>

/user/marker/<filename1>

Creates a waveform
file and a compatible
marker file.
200 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data
where <marker file_name1> is the name of the marker file to download from the signal
generator’s /user/markers/ directory and <marker file_name> is the name of the file to be
downloaded to the local PC/UNIX.

For more examples of get command usage refer to Table 5- 12.

6. At the ftp prompt, type: bye

7. At the command prompt, type: exit

Using the Signal Generator’s Internal Web Server
1. Enter the signal generator’s hostname or IP address in the URL.

http://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of the window.

The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, see Chapter 1.

Creating Waveform Data
This section examines the C++ code algorithm for creating I/Q waveform data by breaking the
programming example into functional parts and explaining the code in generic terms. This is done to
help you understand the code algorithm in creating the I and Q data, so you can leverage the concept
into your programming environment. The SCPI Command Reference, contains information on how to
use SCPI commands to define the markers (polarity, routing, and other marker settings). If you do
not need this level of detail, you can find the complete programming examples in “Programming
Examples” on page 219.

You can use various programming environments to create ARB waveform data. Generally there are
two types:

• Simulation software— this includes MATLAB, Agilent Technologies EESof Advanced Design
System (ADS), Signal Processing WorkSystem (SPW), and so forth.

• Advanced programming languages—this includes, C++, VB, VEE, MS Visual Studio.Net, Labview,
and so forth.

Table 5-12 Get Command Examples

Command
Results

Local Remote Notes

Incorrect get /user/waveform/file

get /user/marker/file

file1

file1

Results in file1 containing only the
marker data.

Correct get /user/waveform/file

get /user/marker/file

file1.wfm

file1.mkr

Creates a waveform file and a
compatible marker file. It is easier to
keep files associated by varying the
extenders.
Agilent X-Series Signal Generators Programming Guide 201

Creating and Downloading Waveform Files
Creating Waveform Data
No matter which programming environment you use to create the waveform data, make sure that the
data conforms to the data requirements shown on page 175. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 175.

Code Algorithm

This section uses code from the C++ programming example “Importing, Byte Swapping, Interleaving,
and Downloading I and Q Data—Big and Little Endian Order” on page 235 to demonstrate how to
create and scale waveform data.

There are three steps in the process of creating an I/Q waveform:

1. Create the I and Q data.
2. Save the I and Q data to a text file for review.
3. Interleave the I and Q data to make an I/Q file, and swap the byte order for little–endian

platforms.

For information on downloading I/Q waveform data to a signal generator, refer to “Commands and
File Paths for Downloading and Extracting Waveform Data” on page 195 and “Downloading Waveform
Data” on page 207.

1. Create I and Q data.

The following lines of code create scaled I and Q data for a sine wave. The I data consists of one
period of a sine wave and the Q data consists of one period of a cosine wave.

Line Code—Create I and Q data

1
2
3
4
5
6
7
8
9

10
11

const int NUMSAMPLES=500;
main(int argc, char* argv[]);
{
 short idata[NUMSAMPLES];
 short qdata[NUMSAMPLES];
 int numsamples = NUMSAMPLES;
 for(int index=0; index<numsamples; index++);
 {
 idata[index]=23000 * sin((2*3.14*index)/numsamples);
 qdata[index]=23000 * cos((2*3.14*index)/numsamples);
 }

Line Code Description—Create I and Q data

1 Define the number of waveform points. Note that the maximum number of waveform points that you can set
is based on the amount of available memory in the signal generator. For more information on signal generator
memory, refer to “Waveform Memory” on page 188.

2 Define the main function in C++.
202 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data
4 Create an array to hold the generated I values. The array length equals the number of the waveform points.
Note that we define the array as type short, which represents a 16–bit signed integer in most C++ compilers.

5 Create an array to hold the generated Q values (signed 16–bit integers).

6 Define and set a temporary variable, which is used to calculate the I and Q values.

7–11 Create a loop to do the following:

• Generate and scale the I data (DAC values). This example uses a simple sine equation, where 2*3.14
equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0–499, creating 500 I data points over one period of the
sine waveform.

— Set the scale of the DAC values in the range of 32768 to 32767, where the values 32768 and 32767
equal full scale negative and positive respectively. This example uses 23000 as the multiplier,
resulting in approximately 70% scaling. For more information on scaling, see “Scaling DAC Values” on
page 179.

NOTE The signal generator comes from the factory with I/Q scaling set to 70%. If you reduce the DAC
input values, ensure that you set the signal generator scaling (:RADio:ARB:RSCaling) to an
appropriate setting that accounts for the reduced values.

• Generate and scale the Q data (DAC value). This example uses a simple cosine equation, where 2*3.14
equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0–499, creating 500 Q data points over one period of the
cosine waveform.

— Set the scale of the DAC values in the range of 32767 to 32768, where the values 32767 and 32768
equal full scale negative and positive respectively. This example uses 23000 as the multiplier,
resulting in approximately 70% scaling. For more information on scaling, see “Scaling DAC Values” on
page 179.

Line Code Description—Create I and Q data
Agilent X-Series Signal Generators Programming Guide 203

Creating and Downloading Waveform Files
Creating Waveform Data
2. Save the I/Q data to a text file to review.

The following lines of code export the I and Q data to a text file for validation. After exporting the
data, open the file using Microsoft Excel or a similar spreadsheet program, and verify that the I and
Q data are correct.

3. Interleave the I and Q data, and byte swap if using little endian order.

This step has two sets of code:

• Interleaving and byte swapping I and Q data for little endian order
• Interleaving I and Q data for big endian order

For more information on byte order, see “Little Endian and Big Endian (Byte Order)” on page 176.

Line Code Description—Saving the I/Q Data to a Text File

12
13
14
15
16
17
18
19

char *ofile = "c:\\temp\\iq.txt";
FILE *outfile = fopen(ofile, "w");
if (outfile==NULL) perror ("Error opening file to write");
for(index=0; index<numsamples; index++)
{
 fprintf(outfile, "%d, %d\n", idata[index], qdata[index]);
}
fclose(outfile);

Line Code Description—Saving the I/Q Data to a Text File

12 Set the absolute path of a text file to a character variable. In this example, iq.txt is the file name and *ofile
is the variable name.

For the file path, some operating systems may not use the drive prefix (‘c:’ in this example), or may require
only a single forward slash (/), or both ("/temp/iq.txt")

13 Open the text file in write format.

14 If the text file does not open, print an error message.

15–18 Create a loop that prints the array of generated I and Q data samples to the text file.

19 Close the text file.
204 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data
Line Code—Interleaving and Byte Swapping for Little Endian Order

20
21
22
23
24
25
26
27
28
29
30

char iqbuffer[NUMSAMPLES*4];
for(index=0; index<numsamples; index++)
{
 short ivalue = idata[index];
 short qvalue = qdata[index];
 iqbuffer[index*4] = (ivalue >> 8) & 0xFF;
 iqbuffer[index*4+1] = ivalue & 0xFF;
 iqbuffer[index*4+2] = (qvalue >> 8) & 0xFF;
 iqbuffer[index*4+3] = qvalue & 0xFF;
}
return 0;

Line Code Description—Interleaving and Byte Swapping for Little Endian Order

20 Define a character array to store the interleaved I and Q data. The character array makes byte swapping
easier, since each array location accepts only 8 bits (1 byte). The array size increases by four times to
accommodate two bytes of I data and two bytes of Q data.

21–29 Create a loop to do the following:

• Save the current I data array value to a variable.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition exists,
replace short with the appropriate object or label that defines a 16–bit integer.

• Save the current Q data array value to a variable.
• Swap the low bytes (bits 0–7) of the data with the high bytes of the data (done for both
Agilent X-Series Signal Generators Programming Guide 205

Creating and Downloading Waveform Files
Creating Waveform Data
21–29 the I and Q data), and interleave the I and Q data.

— shift the data pointer right 8 bits to the beginning of the high byte (ivalue >> 8)

— AND (boolean) the high I byte with 0xFF to make the high I byte the value to store in the IQ
array—(ivalue >> 8) & 0xFF

— AND (boolean) the low I byte with 0xFF (ivalue & 0xFF) to make the low I byte the value to store
in the I/Q array location just after the high byte [index * 4 + 1]

— Swap the Q byte order within the same loop. Notice that the I and Q data interleave with each loop
cycle. This is due to the I/Q array shifting by one location for each I and Q operation [index * 4 +
n].

Line Code Description—Interleaving and Byte Swapping for Little Endian Order

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Data

Bit Position

Little Endian Order

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0

Hex values = E9 B7
Data pointer Data pointer shifted 8 bits

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Hex value =B7

1 1 1 1 1 1 1 1 Hex value =FF

1 0 1 1 0 1 1 1 Hex value =B7

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Data

Bit Position

I Data in I/Q Array after Byte Swap (Big Endian Order)

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0

Hex value = B7 E9

1 0 1 1 0 1 1 1
15...................... 8

Data

Bit Position

Interleaved I/Q Array in Big Endian Order

1 1 1 0 1 0 0 1
7.................... 0

1 1 1 0 0 1 0 1
15...................... 8

0 1 1 0 1 0 1 1
7.................... 0

I Data Q Data
206 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data
To download the data created in the above example, see “Using Advanced Programming Languages”
on page 210.

Downloading Waveform Data
This section examines methods of downloading I/Q waveform data created in MATLAB (a simulation
software) and C++ (an advanced programming language). For more information on simulation and
advanced programming environments, see “Creating Waveform Data” on page 201.

To download data from simulation software environments, it is typically easier to use one of the free
download utilities (described on page 216), because simulation software usually saves the data to a
file. In MATLAB however, you can either save data to a .mat file or create a complex array. To
facilitate downloading a MATLAB complex data array, Agilent created the Agilent Waveform
Download Assistant (one of the free download utilities), which downloads the complex data array
from within the MATLAB environment. This section shows how to use the Waveform Download
Assistant.

Line Code—Interleaving I and Q data for Big Endian Order

20
21
22
23
24
25
26

short iqbuffer[NUMSAMPLES*2];
for(index=0; index<numsamples; index++)
{
iqbuffer[index*2] = idata[index];
iqbuffer[index*2+1] = qdata[index];
}
return 0;

Line Code Description—Interleaving I and Q data for Big Endian Order

20 Define a 16–bit integer (short) array to store the interleaved I and Q data. The array size increases by two
times to accommodate two bytes of I data and two bytes of Q data.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition exists,
replace short with the appropriate object or label that defines a 16–bit integer.

21–25 Create a loop to do the following:

• Store the I data values to the I/Q array location [index*2].
• Store the Q data values to the I/Q array location [index*2+1].

1 0 1 1 0 1 1 1
15...................... 8

Data

Bit Position

Interleaved I/Q Array in Big Endian Order

1 1 1 0 1 0 0 1
7.................... 0

1 1 1 0 0 1 0 1
15...................... 8

0 1 1 0 1 0 1 1
7.................... 0

I Data Q Data
Agilent X-Series Signal Generators Programming Guide 207

Creating and Downloading Waveform Files
Downloading Waveform Data
For advanced programming languages, this section closely examines the code algorithm for
downloading I/Q waveform data by breaking the programming examples into functional parts and
explaining the code in generic terms. This is done to help you understand the code algorithm in
downloading the interleaved I/Q data, so you can leverage the concept into your programming
environment. While not discussed in this section, you may also save the data to a binary file and use
one of the download utilities to download the waveform data (see “Using the Download Utilities” on
page 216).

 If you do not need the level of detail this section provides, you can find complete programming
examples in “Programming Examples” on page 219. Prior to downloading the I/Q data, ensure that it
conforms to the data requirements shown on page 175. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 175. For creating waveform data, see
“Creating Waveform Data” on page 201.

NOTE To avoid overwriting the current waveform in volatile memory, before downloading files into
volatile memory (WFM1), change the file name or turn off the ARB. For more information, on
manually turning off the ARB, refer to the User’s Guide.

To turn off the ARB remotely, send: :SOURce:RADio:ARB:STATe OFF.

Using Simulation Software

This procedure uses a complex data array created in MATLAB and uses the Agilent Waveform
Download Assistant to download the data. To obtain the Agilent Waveform Download Assistant, see
“Using the Download Utilities” on page 216.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator, sends the IEEE SCPI
command *idn?, and if the connection fails, displays an error message.

Line Code—Open a Connection Session

1

2
3
4
5

io = agt_newconnection('tcpip','IP address');
%io = agt_newconnection('gpib',<primary address>,<secondary address>);
[status,status_description,query_result] = agt_query(io,'*idn?');
if status == -1
display ‘fail to connect to the signal generator’;
end;
208 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data
2. Download the I/Q data

The following code downloads the generated waveform data to the signal generator, and if the
download fails, displays a message.

Line Code Description—Open a Connection Session with the Signal Generator

1 Sets up a structure (indicated above by io) used by subsequent function calls to establish a LAN connection to
the signal generator.

• agt_newconnection() is the function of Agilent Waveform Download Assistant used in MATLAB to build a
connection to the signal generator.

• If you are using GPIB to connect to the signal generator, provide the board, primary address, and
secondary address: io = agt_newconnection('gpib',0,19);
Change the GPIB address based on your instrument setting.

2 Send a query to the signal generator to verify the connection.

• agt_query() is an Agilent Waveform Download Assistant function that sends a query to the signal
generator.

• If signal generator receives the query *idn?, status returns zero and query_result returns the signal
generator’s model number, serial number, and firmware version.

3–5 If the query fails, display a message.

Line Code—Download the I/Q data

6

7
8
9

[status, status_description] = agt_waveformload(io, IQwave,
'waveformfile1', 2000, 'no_play','norm_scale');
if status == -1
display ‘fail to download to the signal generator’;
end;
Agilent X-Series Signal Generators Programming Guide 209

Creating and Downloading Waveform Files
Downloading Waveform Data
Using Advanced Programming Languages

This procedure uses code from the C++ programming example “Importing, Byte Swapping,
Interleaving, and Downloading I and Q Data—Big and Little Endian Order” on page 235.

For information on creating I/Q waveform data, refer to “Creating Waveform Data” on page 201.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator or prints an error message
if the session is not opened successfully.

Line Code Description—Download the I/Q data

6 Download the I/Q waveform data to the signal generator by using the function call (agt_waveformload) from
the Agilent Waveform Download Assistant. Some of the arguments are optional as indicated below, but if one
is used, you must use all arguments previous to the one you require.

Notice that with this function, you can perform the following actions:

• download complex I/Q data
• name the file (optional argument)

• set the sample rate (optional argument)
If you do not set a value, the signal generator uses its preset value of 125 MHz (N5162A/82A) or 100 MHz
(E4438C/E8267D), or if a waveform was previously play, the value from that waveform.

• start or not start waveform playback after downloading the data (optional argument)
Use either the argument play or the argument no_play.

• whether to normalize and scale the I/Q data (optional argument)
If you normalize and scale the data within the body of the code, then use no_normscale, but if you need
to normalize and scale the data, use norm_scale. This normalizes the waveform data to the DAC values
and then scales the data to 70% of the DAC values.

• download marker data (optional argument)
If there is no marker data, the signal generator creates a default marker file, all marker set to zero.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded Waveform” on
page 213.

7–9 If the download fails, display an error message.

Line Code Description—Open a Connection Session

1

2
3
4
5
6
7

char* instOpenString ="lan[hostname or IP address]";
//char* instOpenString ="gpib<primary addr>,<secondary addr>";
INST id=iopen(instOpenString);
if (!id)
{
 fprintf(stderr, "iopen failed (%s)\n", instOpenString);
 return -1;
}

210 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data
2. Download the I/Q data.

The following code sends the SCPI command and downloads the generated waveform data to the
signal generator.

Line Code Description—Open a Connection Session

1 Assign the signal generator’s LAN hostname, IP address, or GPIB address to a character string.

• This example uses the Agilent IO library’s iopen() SICL function to establish a LAN connection with the
signal generator. The input argument, lan[hostname or IP address] contains the device, interface, or
commander address. Change it to your signal generator host name or just set it to the IP address used by
your signal generator. For example: “lan[999.137.240.9]”

• If you are using GPIB to connect to the signal generator, use the commented line in place of the first line.
Insert the GPIB address based on your instrument setting, for example “gpib0,19”.

• For the detailed information about the parameters of the SICL function iopen(), refer to the online
“Agilent SICL User’s Guide for Windows.”

2 Open a connection session with the signal generator to download the generated I/Q data.

 The SICL function iopen() is from the Agilent IO library and creates a session that returns an identifier to
id.

• If iopen() succeeds in establishing a connection, the function returns a valid session id. The valid session
id is not viewable, and can only be used by other SICL functions.

• If iopen() generates an error before making the connection, the session identifier is always set to zero.
This occurs if the connection fails.

• To use this function in C++, you must include the standard header
#include <sicl.h> before the main() function.

3–7 If id = 0, the program prints out the error message and exits the program.

Line CodeDescription—Download the I/Q Data

8
9

10
11
12
13

14
15
16

int bytesToSend;
bytesToSend = numsamples*4;
char s[20];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA \"WFM1:FILE1\", #%d%d", strlen(s), bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, iqbuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

Line Code Description—Download the I/Q data

8 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal generator.
Agilent X-Series Signal Generators Programming Guide 211

Creating and Downloading Waveform Files
Downloading Waveform Data
9 Calculate the total number of bytes, and store the value in the integer variable defined in line 8.

In this code, numsamples contains the number of waveform points, not the number of bytes. Because it takes
four bytes of data, two I bytes and two Q bytes, to create one waveform point, we have to multiply
numsamples by four. This is shown in the following example:

numsamples = 500 waveform points
numsamples 4 = 2000 (four bytes per point)

bytesToSend = 2000 (numsamples 4)

For information on setting the number of waveform points, see “1. Create I and Q data.” on page 202.

10 Create a string large enough to hold the bytesToSend value as characters. In this code, string s is set to 20
bytes (20 characters—one character equals one byte)

11 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and parameters. In this code,
we define the string length as 200 bytes (200 characters).

12 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = ”2000”

sprintf() is a standard function in C++, which writes string data to a string variable.

13 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares the signal
generator to accept the data.

• strlen() is a standard function in C++, which returns length of a string.

• If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA ”WFM1:FILE1\” #42000.

14 Send the SCPI command stored in the string cmd to the signal generator, which is represented by the session
id.

• iwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified in the string
cmd to the signal generator (id).

• The third argument of iwrite(), strlen(cmd), informs the signal generator of the number of bytes in the
command string. The signal generator parses the string to determine the number of I/Q data bytes it
expects to receive.

• The fourth argument of iwrite(), 0, means there is no END of file indicator for the string. This lets the
session remain open, so the program can download the I/Q data.

Line Code Description—Download the I/Q data
212 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform
Loading, Playing, and Verifying a Downloaded Waveform
The following procedures show how to perform the steps using SCPI commands. For front panel key
commands, refer to the User’s Guide or to the Key help in the signal generator.

Loading a File from Non–Volatile Memory

Select the downloaded I/Q file in non–volatile waveform memory (NVWFM) and load it into volatile
waveform memory (WFM1). The file comprises three items: I/Q data, marker file, and file header
information.

Send one of the following SCPI command to copy the I/Q file, marker file and file header
information:

:MEMory:COPY:NAME "<NVWFM:file_name>","<WFM1:file_name>"
:MEMory:COPY:NAME "<NVMKR:file_name>","<MKR1:file_name>"
:MEMory:COPY:NAME "<NVHDR:file_name>”,"<HDR:file_name>"

15 Send the generated waveform data stored in the I/Q array (iqbuffer) to the signal generator.

• iwrite() sends the data specified in iqbuffer to the signal generator (session identifier specified in id).

• The third argument of iwrite(), bytesToSend, contains the length of the iqbuffer in bytes. In this example,
it is 2000.

• The fourth argument of iwrite(), 0, means there is no END of file indicator in the data.

In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero (END
indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in the data. This
is the method used in our program.

For your programming language, you must find and use the equivalent of method two. Otherwise you may
only achieve a partial download of the I and Q data.

16 Send the terminating carriage (\n) as the last byte of the waveform data.

• iwrite() writes the data “\n” to the signal generator (session identifier specified in id).

• The third argument of iwrite(), 1, sends one byte to the signal generator.

• The fourth argument of iwrite(), 1, is the END of file indicator, which the program uses to terminate the
data download.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded Waveform” on
page 213.

Line Code Description—Download the I/Q data
Agilent X-Series Signal Generators Programming Guide 213

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform
NOTE When you copy a waveform file, marker file, or header file information from volatile or
non–volatile memory, the waveform and associated marker and header files are all copied.
Conversely, when you delete an I/Q file, the associated marker and header files are deleted.
It is not necessary to send separate commands to copy or delete the marker and header
files.

Playing the Waveform

NOTE If you would like to build and play a waveform sequence, refer to “Building and Playing
Waveform Sequences” on page 215.

Play the waveform and use it to modulate the RF carrier.

1. List the waveform files from the volatile memory waveform list:

Send the following SCPI command:

 :MMEMory:CATalog? "WFM1:"

2. Select the waveform from the volatile memory waveform list:

Send the following SCPI command:

:SOURce:RADio:ARB:WAVeform "WFM1:<file_name>"

3. Play the waveform:

Send the following SCPI commands:

:SOURce:RADio:ARB:STATe ON
:OUTPut:MODulation:STATe ON
:OUTPut:STATe ON
214 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform
Verifying the Waveform

Perform this procedure after completing the steps in the previous procedure, “Playing the Waveform”
on page 214.

1. Connect the signal generator to an oscilloscope as shown in the figure.

2. Set an active marker point on the first waveform point for marker one.

NOTE Select the same waveform selected in “Playing the Waveform” on page 214.

Send the following SCPI commands:

:SOURce:RADio:ARB:MARKer:CLEar:ALL "WFM1:<file_name>",1

:SOURce:RADio:ARB:MARKer:SET "WFM1:<file_name>",1,1,1,0.

3. Compare the oscilloscope display to the plot of the I and Q data from the text file you created
when you generated the data.

If the oscilloscope display, and the I and Q data plots differ, recheck your code. For detailed
information on programmatically creating and downloading waveform data, see “Creating
Waveform Data” on page 201 and “Downloading Waveform Data” on page 207. For information on
the waveform data requirements, see “Waveform Data Requirements” on page 175.

Building and Playing Waveform Sequences

The signal generator can be used to build waveform sequences. This section assumes you have
created the waveform segment file(s) and have the waveform segment file(s) in volatile memory. The
following SCPI commands can be used to generate and work with a waveform sequence. For more
information refer to the signal generator’s SCPI Command Reference and User’s Guide.

NOTE If you would like to verify the waveform sequence, refer to “Verifying the Waveform” on
page 215.
Agilent X-Series Signal Generators Programming Guide 215

Creating and Downloading Waveform Files
Using the Download Utilities
1. List the waveform files from the volatile memory waveform list:

Send the following SCPI command:

 :MMEMory:CATalog? "WFM1:"

2. Select the waveform segment file(s) from the volatile memory waveform list:

Send the following SCPI command:

:SOURce:RADio:ARB:WAVeform "WFM1:<file_name>"

3. Save the waveform segment(s) (“<waveform1>”, “<waveform2>”, ...), to non–volatile memory as a
waveform sequence (“<file_name>”), define the number of repetitions (<reps>), each waveform
segment plays, and enable/disable markers (M1|M2|M3|M4|...), for each waveform segment:

Send the following SCPI command:

:SOURce:RADio:ARB:SEQuence
"<file_name>","<waveform1>",<reps>,M1|M2|M3|M4,{"<waveform2>",<reps>,ALL}

:SOURce:RADio:ARB:SEQuence? "<file_name>"

NOTE M1|M2|M3|M4 represent the number parameter of the marker selected (i.e. 1|2|3|4). Entering
M1|M2|M3|M4 causes the signal generator to display an error. For more information on this
SCPI command, refer to the signal generator’s SCPI Command Reference.

4. Play the waveform sequence:

Send the following SCPI commands:

:SOURce:RADio:ARB:STATe ON
:OUTPut:MODulation:STATe ON
:OUTPut:STATe ON

Using the Download Utilities
Agilent provides free download utilities to download waveform data into the signal generator. The
table in this section describes the capabilities of three such utilities.

For more information and to install the utilities, refer to the following URLs:

• Agilent Signal Studio Toolkit 2: http://www.agilent.com/find/signalstudio

This software provides a graphical interface for downloading files.

• Agilent Waveform Download Assistant: http://www.agilent.com/find/downloadassistant

This software provides functions for the MATLAB environment to download waveform data.

Features Agilent Signal
Studio Toolkit 2

Agilent
Waveform
Download
Assistant

Downloads encrypted waveform files X
216 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files
Downloading E443xB Signal Generator Files
To download earlier E443xB model I and Q files, use the same SCPI commands as if downloading
files to an E443xB signal generator. The signal generator automatically converts the E443xB files to
the proper file format as described in “Waveform Structure” on page 183 and stores them in the
signal generator’s memory. This conversion process causes the signal generator to take more time to
download the earlier file format. To minimize the time to convert earlier E443xB files to the proper
file format, store E443xB file downloads to volatile memory, and then transfer them over to
non–volatile (NVWFM) memory.

NOTE You cannot extract waveform data downloaded as E443xB files.

Downloads complex MATLAB waveform data X

Downloads MATLAB files (.mat) X

Downloads unencrypted interleaved 16–bit I/Q files a X

Interleaves and downloads earlier 14–bit E443xB I and Q files X

Swaps bytes for little endian order

Manually select big endian byte order for 14–bit and 16–bit I/Q
files

X

Downloads user–created marker files X X

Performs scaling X X

Starts waveform play back X X

Sends SCPI Commands and Queries X X

Builds a waveform sequence X X

a. ASCII or binary format.

Features Agilent Signal
Studio Toolkit 2

Agilent
Waveform
Download
Assistant
Agilent X-Series Signal Generators Programming Guide 217

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files
E443xB Data Format

The following diagram describes the data format for the E443xB waveform files. This file structure
can be compared with the new style file format shown in “Waveform Structure” on page 183. If you
create new waveform files for the signal generator, use the format shown in “Waveform Data
Requirements” on page 175.

SCPI Commands

Use the following commands to download E443xB waveform files into the signal generator.

NOTE To avoid overwriting the current waveform in volatile memory, before downloading files into
volatile memory (WFM1), change the file name or turn off the ARB. For more information, on
manually turning off the ARB, refer to the User’s Guide.

To turn off the ARB remotely, send: :SOURce:RADio:ARB:STATe OFF.

The variables <I waveform block data> and <Q waveform block data> represents data in the
E443xB file format. The string variable <file_name> is the name of the I and Q data file. After
downloading the data, the signal generator associates a file header and marker file with the I/Q data
file.

Extraction Method/
Memory Type

Command Syntax Options

SCPI/
volatile memory

:MMEM:DATA "ARBI:<file_name>", <I waveform block data>
:MMEM:DATA "ARBQ:<file_name>", <Q waveform data>

SCPI/
non–volatile memory

:MMEM:DATA "NVARBI:<file_name>", <I waveform block data>
:MMEM:DATA "NVARBQ:<file_name>", <Q waveform block data>
218 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
Programming Examples

NOTE The programming examples contain instrument–specific information. However, users can still
use these programming examples by substituting in the instrument–specific information for
your signal generator. Model specific exceptions for programming use will be noted at the top
of each programming section.

The programming examples use GPIB or LAN interfaces and are written in the following languages:

• C++ (page 220)
• MATLAB (page 242)
• Visual Basic (page 256)
• HP Basic (page 261)

See Chapter 2 of this programming guide for information on interfaces and IO libraries.

The example programs are also available on the signal generator Documentation CD–ROM, which
allows you to cut and paste the examples into an editor.
Agilent X-Series Signal Generators Programming Guide 219

Creating and Downloading Waveform Files
Programming Examples
C++ Programming Examples

This section contains the following programming examples:

• “Creating and Storing Offset I/Q Data—Big and Little Endian Order” on page 220
• “Creating and Storing I/Q Data—Little Endian Order” on page 224
• “Creating and Downloading I/Q Data—Big and Little Endian Order” on page 225
• “Importing and Downloading I/Q Data—Big Endian Order” on page 229
• “Importing and Downloading Using VISA—Big Endian Order” on page 231
• “Importing, Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian

Order” on page 235
• “Calculating the RMS Voltage for a Waveform Programming Using C++” on page 241

Creating and Storing Offset I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “offset_iq_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) follows the same coding
algorithm as the MATLAB programming example “Creating and Storing I/Q Data” on page 242 and
performs the following functions:

• error checking
• data creation
• data normalization
• data scaling
• I/Q signal offset from the carrier (single sideband suppressed carrier signal)
• byte swapping and interleaving for little endian order data
• I and Q interleaving for big endian order data
• binary data file storing to a PC or workstation
• reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

// This C++ example shows how to

// 1.) Create a simple IQ waveform

// 2.) Save the waveform into the ESG/PSG Internal Arb format

// This format is for the E4438C, E8267C, E8267D

// This format will not work with the ESG E443xB or the Agilent MXG N518xA

// 3.) Load the internal Arb format file into an array

#include <stdio.h>

#include <string.h>

#include <math.h>

const int POINTS = 1000; // Size of waveform

const char *computer = “PCWIN”;

int main(int argc, char* argv[])
220 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
{

 // 1.) Create Simple IQ Signal ***

 // This signal is a single tone on the upper

 // side of the carrier and is usually refered to as

 // a Single Side Band Suppressed Carrier (SSBSC) signal.

 // It is nothing more than a cosine wavefomm in I

 // and a sine waveform in Q.

 int points = POINTS; // Number of points in the waveform

 int cycles = 101; // Determines the frequency offset from the carrier

 double Iwave[POINTS]; // I waveform

 double Qwave[POINTS]; // Q waveform

 short int waveform[2*POINTS]; // Holds interleaved I/Q data

 double maxAmp = 0; // Used to Normalize waveform data

 double minAmp = 0; // Used to Normalize waveform data

 double scale = 1;

 char buf; // Used for byte swapping

 char *pChar; // Used for byte swapping

 bool PC = true; // Set flag as appropriate

 double phaseInc = 2.0 * 3.141592654 * cycles / points;

 double phase = 0;

 int i = 0;

 for(i=0; i<points; i++)

 {

 phase = i * phaseInc;

 Iwave[i] = cos(phase);

 Qwave[i] = sin(phase);

 }

 // 2.) Save waveform in internal format *********************************

 // Convert the I and Q data into the internal arb format

 // The internal arb format is a single waveform containing interleaved IQ

 // data. The I/Q data is signed short integers (16 bits).

 // The data has values scaled between +-32767 where

 // DAC Value Description

 // 32767 Maximum positive value of the DAC

 // 0 Zero out of the DAC

 // -32767 Maximum negative value of the DAC

 // The internal arb expects the data bytes to be in Big Endian format.

 // This is opposite of how short integers are saved on a PC (Little Endian).
Agilent X-Series Signal Generators Programming Guide 221

Creating and Downloading Waveform Files
Programming Examples
 // For this reason the data bytes are swapped before being saved.

 // Find the Maximum amplitude in I and Q to normalize the data between +-1

 maxAmp = Iwave[0];

 minAmp = Iwave[0];

 for(i=0; i<points; i++)

 {

 if(maxAmp < Iwave[i])

 maxAmp = Iwave[i];

 else if(minAmp > Iwave[i])

 minAmp = Iwave[i];

 if(maxAmp < Qwave[i])

 maxAmp = Qwave[i];

 else if(minAmp > Qwave[i])

 minAmp = Qwave[i];

 }

 maxAmp = fabs(maxAmp);

 minAmp = fabs(minAmp);

 if(minAmp > maxAmp)

 maxAmp = minAmp;

 // Convert to short integers and interleave I/Q data

 scale = 32767 / maxAmp; // Watch out for divide by zero.

 for(i=0; i<points; i++)

 {

 waveform[2*i] = (short)floor(Iwave[i]*scale + 0.5);

 waveform[2*i+1] = (short)floor(Qwave[i]*scale + 0.5);

 }

 // If on a PC swap the bytes to Big Endian

 if(strcmp(computer,”PCWIN”) == 0)

 //if(PC)

 {

 pChar = (char *)&waveform[0]; // Character pointer to short int data

 for(i=0; i<2*points; i++)

 {

 buf = *pChar;

 *pChar = *(pChar+1);

 *(pChar+1) = buf;

 pChar+= 2;

 }

 }
222 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 // Save the data to a file
 // Use FTP or one of the download assistants to download the file to the
 // signal generator

 char *filename = “C:\\Temp\\PSGTestFile”;

 FILE *stream = NULL;

 stream = fopen(filename, “w+b”);// Open the file

 if (stream==NULL) perror (“Cannot Open File”);

 int numwritten = fwrite((void *)waveform, sizeof(short), points*2, stream);

 fclose(stream);// Close the file

 // 3.) Load the internal Arb format file *********************************

 // This process is just the reverse of saving the waveform

 // Read in waveform as unsigned short integers.

 // Swap the bytes as necessary

 // Normalize between +-1

 // De-interleave the I/Q Data

 // Open the file and load the internal format data

 stream = fopen(filename, “r+b”);// Open the file

 if (stream==NULL) perror (“Cannot Open File”);

 int numread = fread((void *)waveform, sizeof(short), points*2, stream);

 fclose(stream);// Close the file

 // If on a PC swap the bytes back to Little Endian

 if(strcmp(computer,”PCWIN”) == 0)

 {

 pChar = (char *)&waveform[0]; // Character pointer to short int data

 for(i=0; i<2*points; i++)

 {

 buf = *pChar;

 *pChar = *(pChar+1);

 *(pChar+1) = buf;

 pChar+= 2;

 }
 }

 // Normalize De-Interleave the IQ data

 double IwaveIn[POINTS];

 double QwaveIn[POINTS];

 for(i=0; i<points; i++)

 {

 IwaveIn[i] = waveform[2*i] / 32767.0;

 QwaveIn[i] = waveform[2*i+1] / 32767.0;

 }

 return 0;

}

Agilent X-Series Signal Generators Programming Guide 223

Creating and Downloading Waveform Files
Programming Examples
Creating and Storing I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is “CreateStore_Data_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrior 3.0) performs the following
functions:

• error checking
• data creation
• byte swapping and interleaving for little endian order data
• binary data file storing to a PC or workstation

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

#include <iostream>

#include <fstream>

#include <math.h>

#include <stdlib.h>

using namespace std;

int main (void)

{

 ofstream out_stream; // write the I/Q data to a file

 const unsigned int SAMPLES =200; // number of sample pairs in the waveform

 const short AMPLITUDE = 32000; // amplitude between 0 and full scale dac value

 const double two_pi = 6.2831853;

 //allocate buffer for waveform

 short* iqData = new short[2*SAMPLES];// need two bytes for each integer

 if (!iqData)

 {

 cout << "Could not allocate data buffer." << endl;

 return 1;

 }

 out_stream.open("IQ_data");// create a data file

 if (out_stream.fail())

 {

 cout << "Input file opening failed" << endl;

 exit(1);

 }

 //generate the sample data for I and Q. The I channel will have a sine

 //wave and the Q channel will a cosine wave.

224 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 for (int i=0; i<SAMPLES; ++i)

 {

 iqData[2*i] = AMPLITUDE * sin(two_pi*i/(float)SAMPLES);

 iqData[2*i+1] = AMPLITUDE * cos(two_pi*i/(float)SAMPLES);

 }

 // make sure bytes are in the order MSB(most significant byte) first. (PC only).

 char* cptr = (char*)iqData;// cast the integer values to characters

 for (int i=0; i<(4*SAMPLES); i+=2)// 4*SAMPLES

 {

 char temp = cptr[i];// swap LSB and MSB bytes

 cptr[i]=cptr[i+1];

 cptr[i+1]=temp;

 }

 // now write the buffer to a file

 out_stream.write((char*)iqData, 4*SAMPLES);

 return 0;

}

Creating and Downloading I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “CreateDwnLd_Data_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

• error checking
• data creation
• data scaling
• text file creation for viewing and debugging data
• byte swapping and interleaving for little endian order data
• interleaving for big endian order data
• data saving to an array (data block)
• data block download to the signal generator

// This C++ program is an example of creating and scaling

// I and Q data, and then downloading the data into the

// signal generator as an interleaved I/Q file.

// This example uses a sine and cosine wave as the I/Q

// data.

//

// Include the standard headers for SICL programming

#include <sicl.h>
Agilent X-Series Signal Generators Programming Guide 225

Creating and Downloading Waveform Files
Programming Examples
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString =”lan[galqaDhcp1]”;

//char* instOpenString =”gpib0,19”;

// Pick some maximum number of samples, based on the

// amount of memory in your computer and the signal generator.

const int NUMSAMPLES=500;

int main(int argc, char* argv[])

{

 // Create a text file to view the waveform

 // prior to downloading it to the signal generator.

 // This verifies that the data looks correct.

 char *ofile = “c:\\temp\\iq.txt”;

 // Create arrays to hold the I and Q data

 int idata[NUMSAMPLES];

 int qdata[NUMSAMPLES];

 // save the number of sampes into numsamples

 int numsamples = NUMSAMPLES;

 // Fill the I and Q buffers with the sample data

 for(int index=0; index<numsamples; index++)

 {

 // Create the I and Q data for the number of waveform

 // points and Scale the data (20000 * ...) as a precentage

 // of the DAC full scale (-32768 to 32767). This example

 // scales to approximately 70% of full scale.

 idata[index]=23000 * sin((4*3.14*index)/numsamples);

 qdata[index]=23000 * cos((4*3.14*index)/numsamples);

 }

 // Print the I and Q values to a text file. View the data

 // to see if its correct and if needed, plot the data in a
226 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 // spreadsheet to help spot any problems.

 FILE *outfile = fopen(ofile, “w”);

 if (outfile==NULL) perror (“Error opening file to write”);

 for(index=0; index<numsamples; index++)

 {

 fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);

 }

 fclose(outfile);

 // Little endian order data, use the character array and for loop.

 // If big endian order, comment out this character array and for loop,

 // and use the next loop (Big Endian order data).

 // We need a buffer to interleave the I and Q data.

 // 4 bytes to account for 2 I bytes and 2 Q bytes.

 char iqbuffer[NUMSAMPLES*4];

 // Interleave I and Q, and swap bytes from little

 // endian order to big endian order.

 for(index=0; index<numsamples; index++)

 {

 int ivalue = idata[index];

 int qvalue = qdata[index];

 iqbuffer[index*4] = (ivalue >> 8) & 0xFF; // high byte of i

 iqbuffer[index*4+1] = ivalue & 0xFF; // low byte of i

 iqbuffer[index*4+2] = (qvalue >> 8) & 0xFF; // high byte of q

 iqbuffer[index*4+3] = qvalue & 0xFF; // low byte of q

 }

 // Big Endian order data, uncomment the following lines of code.

 // Interleave the I and Q data.

 // short iqbuffer[NUMSAMPLES*2]; // Big endian order, uncomment this line

 // for(index=0; index<numsamples; index++) // Big endian order, uncomment this line

 // { // Big endian order, uncomment this line

 // iqbuffer[index*2] = idata[index]; // Big endian order, uncomment this line

 // iqbuffer[index*2+1] = qdata[index]; // Big endian order, uncomment this line

 // } // Big endian order, uncomment this line

 // Open a connection to write to the instrument

 INST id=iopen(instOpenString);

 if (!id)
Agilent X-Series Signal Generators Programming Guide 227

Creating and Downloading Waveform Files
Programming Examples
 {

 fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

 return -1;

 }

 // Declare variables to hold portions of the SCPI command

 int bytesToSend;

 char s[20];

 char cmd[200];

 bytesToSend = numsamples*4; // calculate the number of bytes

 sprintf(s, “%d”, bytesToSend); // create a string s with that number of bytes

 // The SCPI command has four parts.

 // Part 1 = :MEM:DATA “filename”,#

 // Part 2 = length of Part 3 when written to a string

 // Part 3 = length of the data in bytes. This is in s from above.

 // Part 4 = the buffer of data

 // Build parts 1, 2, and 3 for the I and Q data.

 sprintf(cmd, “:MEM:DATA \”WFM1:FILE1\”, #%d%d”, strlen(s), bytesToSend);

 // Send parts 1, 2, and 3

 iwrite(id, cmd, strlen(cmd), 0, 0);

 // Send part 4. Be careful to use the correct command here. In many

 // programming languages, there are two methods to send SCPI commands:

 // Method 1 = stop at the first ‘0’ in the data

 // Method 2 = send a fixed number of bytes, ignoring ‘0’ in the data.

 // You must find and use the correct command for Method 2.

 iwrite(id, iqbuffer, bytesToSend, 0, 0);

 // Send a terminating carriage return

 iwrite(id, “\n”, 1, 1, 0);

 printf(“Loaded file using the E4438C, E8267C and E8267D format\n”);

 return 0;

}

228 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
Importing and Downloading I/Q Data—Big Endian Order

On the documentation CD, this programming example’s name is “impDwnLd_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrier 3.0) assumes that the data
is in big endian order and performs the following functions:

• error checking
• binary file importing from the PC or workstation.
• binary file download to the signal generator.

// Description: Send a file in blocks of data to a signal generator

//

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// ATTENTION:

// - Configure these three lines appropriately for your instrument

// and use before compiling and running
//

char* instOpenString = "gpib7,19"; //for LAN replace with “lan[<hostname or IP address>]”

const char* localSrcFile = "D:\\home\\TEST_WAVE"; //enter file location on PC/workstation

const char* instDestFile = "/USER/BBG1/WAVEFORM/TEST_WAVE"; //for non-volatile memory
 //remove BBG1 from file path

// Size of the copy buffer

const int BUFFER_SIZE = 100*1024;

int

main()

{

 INST id=iopen(instOpenString);

 if (!id)

 {

 fprintf(stderr, "iopen failed (%s)\n", instOpenString);

 return -1;

 }

 FILE* file = fopen(localSrcFile, "rb");

 if (!file)

 {

 fprintf(stderr, "Could not open file: %s\n", localSrcFile);

 return 0;

 }
Agilent X-Series Signal Generators Programming Guide 229

Creating and Downloading Waveform Files
Programming Examples

 if(fseek(file, 0, SEEK_END) < 0)

 {

 fprintf(stderr,"Cannot seek to the end of file.\n");

 return 0;

 }

 long lenToSend = ftell(file);

 printf("File size = %d\n", lenToSend);

 if (fseek(file, 0, SEEK_SET) < 0)

 {

 fprintf(stderr,"Cannot seek to the start of file.\n");

 return 0;

 }

 char* buf = new char[BUFFER_SIZE];

 if (buf && lenToSend)

 {

 // Prepare and send the SCPI command header

 char s[20];

 sprintf(s, "%d", lenToSend);

 int lenLen = strlen(s);

 char s2[256];

 sprintf(s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen, lenToSend);

 iwrite(id, s2, strlen(s2), 0, 0);

 // Send file in BUFFER_SIZE chunks

 long numRead;

 do

 {

 numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

 iwrite(id, buf, numRead, 0, 0);

 } while (numRead == BUFFER_SIZE);

 // Send the terminating newline and EOM

 iwrite(id, "\n", 1, 1, 0);

 delete [] buf;

 }

 else

 {
230 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 fprintf(stderr, "Could not allocate memory for copy buffer\n");

 }

 fclose(file);

 iclose(id);

 return 0;

}

Importing and Downloading Using VISA—Big Endian Order

On the documentation CD, this programming example’s name is “DownLoad_Visa_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) assumes that the data is in
big endian order and performs the following functions:

• error checking
• binary file importing from the PC or workstation
• binary file download to the signal generator’s non–volatile memory

To load the waveform data to volatile (WFM1) memory, change the instDestfile declaration to:
“USER/BBG1/WAVEFORM/”.

//***

// PROGRAM NAME:Download_Visa_c++.cpp

//

// PROGRAM DESCRIPTION:Sample test program to download ARB waveform data. Send a

// file in chunks of ascii data to the signal generator.

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the LAN/TCPIP to download a file to the signal generator's

// non-volatile memory. The program allocates a memory buffer on the PC or

// workstation of 102400 bytes (100*1024 bytes). The actual size of the buffer is

// limited by the memory on your PC or workstation, so the buffer size can be

// increased or decreased to meet your system limitations.

//

// While this program uses the LAN/TCPIP to download a waveform file into

// non-volatile memory, it can be modified to store files in volatile memory

// WFM1 using GPIB by setting the instrOpenString = "TCPIP0::xxx.xxx.xxx.xxx::INSTR"

// declaration with "GPIB::19::INSTR"

//

// The program also includes some error checking to alert you when problems arise

// while trying to download files. This includes checking to see if the file exists.

//**

// IMPORTANT: Replace the xxx.xxx.xxx.xxx IP address in the instOpenString declaration

// in the code below with the IP address of your signal generator. (or you can use the

// instrument's hostname). Replace the localSrcFile and instDestFile directory paths
Agilent X-Series Signal Generators Programming Guide 231

Creating and Downloading Waveform Files
Programming Examples
// as needed.

//**

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "visa.h"

//

// IMPORTANT:

// Configure the following three lines correctly before compiling and running

char* instOpenString ="TCPIP0::xxx.xxx.xxx.xxx::INSTR"; // your instrument's IP address

const char* localSrcFile = "\\Files\\IQ_DataC";

const char* instDestFile = "/USER/WAVEFORM/IQ_DataC";

const int BUFFER_SIZE = 100*1024;// Size of the copy buffer

int main(int argc, char* argv[])

{

 ViSession defaultRM, vi;

 ViStatus status = 0;

 status = viOpenDefaultRM(&defaultRM);// Open the default resource manager

 // TO DO: Error handling here

 status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL, &vi);

 if (status)// If any errors then display the error and exit the program

 {

 fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

return -1;

 }

 FILE* file = fopen(localSrcFile, "rb");// Open local source file for binary reading

 if (!file) // If any errors display the error and exit the program

 {

 fprintf(stderr, "Could not open file: %s\n", localSrcFile);
232 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
return 0;

 }

 if(fseek(file, 0, SEEK_END) < 0)

 {

 fprintf(stderr,"Cannot lseek to the end of file.\n");

 return 0;

 }

 long lenToSend = ftell(file);// Number of bytes in the file

 printf("File size = %d\n", lenToSend);

 if (fseek(file, 0, SEEK_SET) < 0)

 {

 fprintf(stderr,"Cannot lseek to the start of file.\n");

 return 0;

 }

 unsigned char* buf = new unsigned char[BUFFER_SIZE]; // Allocate char buffer memory

 if (buf && lenToSend)

 {

 // Do not send the EOI (end of instruction) terminator on any write except the

 // last one

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 0);

 // Prepare and send the SCPI command header

 char s[20];

 sprintf(s, "%d", lenToSend);

 int lenLen = strlen(s);

 unsigned char s2[256];

// Write the command mmem:data and the header.The number lenLen represents the

// number of bytes and the actual number of bytes is the variable lenToSend

 sprintf((char*)s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen, lenToSend);

// Send the command and header to the signal generator
Agilent X-Series Signal Generators Programming Guide 233

Creating and Downloading Waveform Files
Programming Examples
 viWrite(vi, s2, strlen((char*)s2), 0);

 long numRead;

// Send file in BUFFER_SIZE chunks to the signal generator

 do

 {

 numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

 viWrite(vi, buf, numRead, 0);

 } while (numRead == BUFFER_SIZE);

 // Send the terminating newline and EOI

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 1);

 char* newLine = "\n";

 viWrite(vi, (unsigned char*)newLine, 1, 0);

 delete [] buf;

 }

 else

 {

 fprintf(stderr, "Could not allocate memory for copy buffer\n");

 }

 fclose(file);

 viClose(vi);

 viClose(defaultRM);

 return 0;

}

234 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
Importing, Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “impDwnLd2_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

• error checking
• binary file importing (earlier E443xB or current model signal generators)
• byte swapping and interleaving for little endian order data
• data interleaving for big endian order data
• data scaling
• binary file download for earlier E443xB data or current signal generator formatted data

// This C++ program is an example of loading I and Q

// data into an E443xB, E4438C, E8267C, or E8267D signal

// generator.

//

// It reads the I and Q data from a binary data file

// and then writes the data to the instrument.

// Include the standard headers for SICL programming

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString =”gpib0,19”;

// Pick some maximum number of samples, based on the

// amount of memory in your computer and your waveforms.

const int MAXSAMPLES=50000;

int main(int argc, char* argv[])

{

 // These are the I and Q input files.

 // Some compilers will allow ‘/’ in the directory

 // names. Older compilers might need ‘\\’ in the

 // directory names. It depends on your operating system

 // and compiler.

 char *ifile = “c:\\SignalGenerator\\data\\BurstA1I.bin”;

 char *qfile = “c:\\SignalGenerator\\data\\BurstA1Q.bin”;
Agilent X-Series Signal Generators Programming Guide 235

Creating and Downloading Waveform Files
Programming Examples
 // This is a text file to which we will write the

 // I and Q data just for debugging purposes. It is

 // a good programming practice to check your data

 // in this way before attempting to write it to

 // the instrument.

 char *ofile = “c:\\SignalGenerator\\data\\iq.txt”;

 // Create arrays to hold the I and Q data

 int idata[MAXSAMPLES];

 int qdata[MAXSAMPLES];

 // Often we must modify, scale, or offset the data

 // before loading it into the instrument. These

 // buffers are used for that purpose. Since each

 // sample is 16 bits, and a character only holds

 // 8 bits, we must make these arrays twice as long

 // as the I and Q data arrays.

 char ibuffer[MAXSAMPLES*2];

 char qbuffer[MAXSAMPLES*2];

 // For the E4438C or E8267C/67D, we might also need to interleave

 // the I and Q data. This buffer is used for that

 // purpose. In this case, this buffer must hold

 // both I and Q data so it needs to be four times

 // as big as the data arrays.

 char iqbuffer[MAXSAMPLES*4];

 // Declare variables which will be used later

 bool done;

 FILE *infile;

 int index, numsamples, i1, i2, ivalue;

 // In this example, we’ll assume the data files have

 // the I and Q data in binary form as unsigned 16 bit integers.

 // This next block reads those binary files. If your

 // data is in some other format, then replace this block

 // with appropriate code for reading your format.

 // First read I values

 done = false;

 index = 0;

 infile = fopen(ifile, “rb”);

 if (infile==NULL) perror (“Error opening file to read”);
236 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 while(!done)

 {

 i1 = fgetc(infile); // read the first byte

 if(i1==EOF) break;

 i2 = fgetc(infile); // read the next byte

 if(i2==EOF) break;

 ivalue=i1+i2*256; // put the two bytes together

 // note that the above format is for a little endian

 // processor such as Intel. Reverse the order for

 // a big endian processor such as Motorola, HP, or Sun

 idata[index++]=ivalue;

 if(index==MAXSAMPLES) break;

 }

 fclose(infile);

 // Then read Q values

 index = 0;

 infile = fopen(qfile, “rb”);

 if (infile==NULL) perror (“Error opening file to read”);

 while(!done)

 {

 i1 = fgetc(infile); // read the first byte

 if(i1==EOF) break;

 i2 = fgetc(infile); // read the next byte

 if(i2==EOF) break;

 ivalue=i1+i2*256; // put the two bytes together

 // note that the above format is for a little endian

 // processor such as Intel. Reverse the order for

 // a big endian processor such as Motorola, HP, or Sun

 qdata[index++]=ivalue;

 if(index==MAXSAMPLES) break;

 }

 fclose(infile);

 // Remember the number of samples which were read from the file.

 numsamples = index;

 // Print the I and Q values to a text file. If you are

 // having trouble, look in the file and see if your I and

 // Q data looks correct. Plot the data from this file if

 // that helps you to diagnose the problem.

 FILE *outfile = fopen(ofile, “w”);
Agilent X-Series Signal Generators Programming Guide 237

Creating and Downloading Waveform Files
Programming Examples
 if (outfile==NULL) perror (“Error opening file to write”);

 for(index=0; index<numsamples; index++)

 {

 fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);

 }

 fclose(outfile);

 // The E443xB, E4438C, E8267C or E8267D all use big-endian

 // processors. If your software is running on a little-endian

 // processor such as Intel, then you will need to swap the

 // bytes in the data before sending it to the signal generator.

 // The arrays ibuffer and qbuffer are used to hold the data

 // after any byte swapping, shifting or scaling.

 // In this example, we’ll assume that the data is in the format

 // of the E443xB without markers. In other words, the data

 // is in the range 0-16383.

 // 0 gives negative full-scale output

 // 8192 gives 0 V output

 // 16383 gives positive full-scale output

 // If this is not the scaling of your data, then you will need

 // to scale your data appropriately in the next two blocks.

 // ibuffer and qbuffer will hold the data in the E443xB format.

 // No scaling is needed, however we need to swap the byte order

 // on a little endian computer. Remove the byte swapping

 // if you are using a big endian computer.

 for(index=0; index<numsamples; index++)

 {

 int ivalue = idata[index];

 int qvalue = qdata[index];

 ibuffer[index*2] = (ivalue >> 8) & 0xFF; // high byte of i

 ibuffer[index*2+1] = ivalue & 0xFF; // low byte of i

 qbuffer[index*2] = (qvalue >> 8) & 0xFF; // high byte of q

 qbuffer[index*2+1] = qvalue & 0xFF; // low byte of q

 }

 // iqbuffer will hold the data in the E4438C, E8267C, E8267D

 // format. In this format, the I and Q data is interleaved.

 // The data is in the range -32768 to 32767.

 // -32768 gives negative full-scale output
238 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 // 0 gives 0 V output

 // 32767 gives positive full-scale output

 // From these ranges, it appears you should offset the

 // data by 8192 and scale it by 4. However, due to the

 // interpolators in these products, it is better to scale

 // the data by a number less than four. Commonly a good

 // choice is 70% of 4 which is 2.8.

 // By default, the signal generator scales data to 70%

 // If you scale the data here, you may want to change the

 // signal generator scaling to 100%

 // Also we need to swap the byte order on a little endian

 // computer. This code also works for big endian order data

 // since it swaps bytes based on the order.

 for(index=0; index<numsamples; index++)

 {

 int iscaled = 2.8*(idata[index]-8192); // shift and scale

 int qscaled = 2.8*(qdata[index]-8192); // shift and scale

 iqbuffer[index*4] = (iscaled >> 8) & 0xFF; // high byte of i

 iqbuffer[index*4+1] = iscaled & 0xFF; // low byte of i

 iqbuffer[index*4+2] = (qscaled >> 8) & 0xFF; // high byte of q

 iqbuffer[index*4+3] = qscaled & 0xFF; // low byte of q

 }

 // Open a connection to write to the instrument

 INST id=iopen(instOpenString);

 if (!id)

 {

 fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

 return -1;

 }

 // Declare variables which will be used later

 int bytesToSend;

 char s[20];

 char cmd[200];

 // The E4438C, E8267C and E8267D accept the E443xB format.

 // so we can use this next section on any of these signal generators.

 // However the E443xB format only uses 14 bits.

 bytesToSend = numsamples*2; // calculate the number of bytes

 sprintf(s, “%d”, bytesToSend); // create a string s with that number of bytes
Agilent X-Series Signal Generators Programming Guide 239

Creating and Downloading Waveform Files
Programming Examples
 // The SCPI command has four parts.

 // Part 1 = :MEM:DATA “filename”,

 // Part 2 = length of Part 3 when written to a string

 // Part 3 = length of the data in bytes. This is in s from above.

 // Part 4 = the buffer of data

 // Build parts 1, 2, and 3 for the I data.

 sprintf(cmd, “:MEM:DATA \”ARBI:FILE1\”, #%d%d”, strlen(s), bytesToSend);

 // Send parts 1, 2, and 3

 iwrite(id, cmd, strlen(cmd), 0, 0);

 // Send part 4. Be careful to use the correct command here. In many

 // programming languages, there are two methods to send SCPI commands:

 // Method 1 = stop at the first ‘0’ in the data

 // Method 2 = send a fixed number of bytes, ignoring ‘0’ in the data.

 // You must find and use the correct command for Method 2.

 iwrite(id, ibuffer, bytesToSend, 0, 0);

 // Send a terminating carriage return

 iwrite(id, “\n”, 1, 1, 0);

 // Identical to the section above, except for the Q data.

 sprintf(cmd, “:MEM:DATA \”ARBQ:FILE1\”, #%d%d”, strlen(s),bytesToSend);

 iwrite(id, cmd, strlen(cmd), 0, 0);

 iwrite(id, qbuffer, bytesToSend, 0, 0);

 iwrite(id, “\n”, 1, 1, 0);

 printf(“Loaded FILE1 using the E443xB format\n”);

 // The E4438C, E8267C and E8267D have a newer faster format which

 // allows 16 bits to be used. However this format is not accepted in

 // the E443xB. Therefore do not use this next section for the E443xB.

 printf(“Note: Loading FILE2 on a E443xB will cause \”ERROR: 208, I/O error\”\n”);

 // Identical to the I and Q sections above except

 // a) The I and Q data are interleaved

 // b) The buffer of I+Q is twice as long as the I buffer was.

 // c) The SCPI command uses WFM1 instead of ARBI and ARBQ.

 bytesToSend = numsamples*4;

 sprintf(s, “%d”, bytesToSend);

 sprintf(cmd, “:mem:data \”WFM1:FILE2\”, #%d%d”, strlen(s),bytesToSend);

 iwrite(id, cmd, strlen(cmd), 0, 0);
240 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 iwrite(id, iqbuffer, bytesToSend, 0, 0);

 iwrite(id, “\n”, 1, 1, 0);

 printf(“Loaded FILE2 using the E4438C, E8267C and E8267D format\n”);

 return 0;

}

Calculating the RMS Voltage for a Waveform Programming Using C++

This example calculates the RMS voltage value of a waveform segment stored as 16- bit alternating I/Q
twos complement DAC values. Refer to the User’s Guide. On the Documentation CD, this example is
named: “calculate_rms_data_c++.txt.”

NOTE For a short the value must be a 16 bit quantity.

For waveforms of 4 Gsa or more, samples must be an int64.

Internally, the MXG ignores two or more zeros in a row when calculating RMS voltage values.

There is no interface version of this example in the Programming Examples chapter.

#include <math.h>

#ifndef WIN32

typedef long long int int64;

typedef long long unsigned uint64;

#else // WIN32

typedef __int64 int64;

typedef unsigned __int64 uint64;

#endif // WIN32

static const int NUM_DAC_BITS=16;

static const int DAC_MAX=(1 << NUM_DAC_BITS);

//--

// calculates the rms of a chunk of a waveform stored as 16-bit alternating

// I/Q twos complement DAC values.

// NOTE: short must be a 16 bit quantity.

// Also NOTE: For 4Gsa or more, samples must be an int64.

double

calcRmsWaveformSegment(const signed short* iq_data, unsigned samples)

{

 // a double cannot hold the full number accurately for very long waveforms

 // This type can handle up to (but not including) 8Gsa.

 uint64 sum_of_squares_accum = 0;

 int ival;

 int qval;
Agilent X-Series Signal Generators Programming Guide 241

Creating and Downloading Waveform Files
Programming Examples
 unsigned mag_squared;

 double rmsDac;

 unsigned i;

 for (i=0; i<samples; i++)

 {

 ival = (int)(iq_data[i*2]);

 qval = (int)(iq_data[i*2+1]);

 mag_squared = (unsigned)(ival*ival) + (unsigned)(qval*qval);

 sum_of_squares_accum += mag_squared;

 }

 // the rms in DAC counts (0 - 32768)

 rmsDac = sqrt((double)sum_of_squares_accum / (double)samples);

 // convert to normalized form (0 - 1.414).

 return rmsDac * 2.0/(double)(DAC_MAX);

}

MATLAB Programming Examples

This section contains the following programming examples:

• “Creating and Storing I/Q Data” on page 242
• “Creating and Downloading a Pulse” on page 246
• “Downloading a Waveform, Markers, and Setting the Waveform Header” on page 248
• “Playing Downloaded Waveforms” on page 254

Creating and Storing I/Q Data

On the documentation CD, this programming example’s name is “offset_iq_ml.m.”

This MATLAB programming example follows the same coding algorithm as the C++ programming
example “Creating and Storing Offset I/Q Data—Big and Little Endian Order” on page 220 and
performs the following functions:

• error checking
• data creation
• data normalization
• data scaling
• I/Q signal offset from the carrier (single sideband suppressed carrier signal)
• byte swapping and interleaving for little endian order data
• I and Q interleaving for big endian order data
• binary data file storing to a PC or workstation
• reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

function main

%

% Program name: offset_iq_ml

% Using MatLab this example shows how to

% 1.) Create a simple IQ waveform
242 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
% 2.) Save the waveform into the ESG/PSG Internal Arb format

% This format is for the N5182A, E4438C, E8267C, E8267D

% This format will not work with the ESG E443xB

% 3.) Load the internal Arb format file into a MatLab array

% 1.) Create Simple IQ Signal ***

% This signal is a single tone on the upper

% side of the carrier and is usually refered to as

% a Single Side Band Suppressed Carrier (SSBSC) signal.

% It is nothing more than a cosine wavefomm in I

% and a sine waveform in Q.

%

points = 1000; % Number of points in the waveform

cycles = 101; % Determines the frequency offset from the carrier

phaseInc = 2*pi*cycles/points;

phase = phaseInc * [0:points-1];

Iwave = cos(phase);

Qwave = sin(phase);

% Alternate way to calculate the waveform RMS voltage

% rms = sqrt(sum(Iwave.*Iwave + Qwave*.Qwave)/points);

% 2.) Save waveform in internal format *********************************

% Convert the I and Q data into the internal arb format

% The internal arb format is a single waveform containing interleaved IQ

% data. The I/Q data is signed short integers (16 bits).

% The data has values scaled between +-32767 where

% DAC Value Description

% 32767 Maximum positive value of the DAC

% 0 Zero out of the DAC

% -32767 Maximum negative value of the DAC

% The internal arb expects the data bytes to be in Big Endian format.

% This is opposite of how short integers are saved on a PC (Little Endian).

% For this reason the data bytes are swapped before being saved.

% Interleave the IQ data

waveform(1:2:2*points) = Iwave;

waveform(2:2:2*points) = Qwave;
Agilent X-Series Signal Generators Programming Guide 243

Creating and Downloading Waveform Files
Programming Examples
%[Iwave;Qwave];

%waveform = waveform(:)';

% Normalize the data between +-1

waveform = waveform / max(abs(waveform)); % Watch out for divide by zero.

% Scale to use full range of the DAC

waveform = round(waveform * 32767); % Data is now effectively signed short integer values

% waveform = round(waveform * (32767 / max(abs(waveform)))); % More efficient than previous two
steps!

% PRESERVE THE BIT PATTERN but convert the waveform to

% unsigned short integers so the bytes can be swapped.

% Note: Can't swap the bytes of signed short integers in MatLab.

waveform = uint16(mod(65536 + waveform,65536)); %

% If on a PC swap the bytes to Big Endian

if strcmp(computer, 'PCWIN')

 waveform = bitor(bitshift(waveform,-8),bitshift(waveform,8));

end

% Save the data to a file

% Note: The waveform is saved as unsigned short integers. However,

% the acual bit pattern is that of signed short integers and

% that is how the ESG/PSG interprets them.

filename = 'C:\Temp\EsgTestFile';

[FID, message] = fopen(filename,'w');% Open a file to write data

if FID == -1 error('Cannot Open File'); end

fwrite(FID,waveform,'unsigned short');% write to the file

fclose(FID); % close the file

% 3.) Load the internal Arb format file *********************************

% This process is just the reverse of saving the waveform

% Read in waveform as unsigned short integers.

% Swap the bytes as necessary

% Convert to signed integers then normalize between +-1

% De-interleave the I/Q Data

% Open the file and load the internal format data

[FID, message] = fopen(filename,'r');% Open file to read data
244 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
if FID == -1 error('Cannot Open File'); end

[internalWave,n] = fread(FID, 'uint16');% read the IQ file

fclose(FID);% close the file

internalWave = internalWave'; % Conver from column array to row array

% If on a PC swap the bytes back to Little Endian

if strcmp(computer, 'PCWIN') % Put the bytes into the correct order

 internalWave= bitor(bitshift(internalWave,-8),bitshift(bitand(internalWave,255),8));

end

% convert unsigned to signed representation

internalWave = double(internalWave);

tmp = (internalWave > 32767.0) * 65536;

iqWave = (internalWave - tmp) ./ 32767; % and normalize the data

% De-Interleave the IQ data

IwaveIn = iqWave(1:2:n);

QwaveIn = iqWave(2:2:n);
Agilent X-Series Signal Generators Programming Guide 245

Creating and Downloading Waveform Files
Programming Examples
Creating and Downloading a Pulse

NOTE For the Agilent X- Series and MXG, the maximum frequency is 6 GHz, and the pulsepat.m
program’s SOURce:FREQuency 20000000000 value must be changed as required in the
following programs. For more frequency information, refer to the signal generator’s Data
Sheet.

On the documentation CD, this programming example’s name is “pulsepat.m.”

This MATLAB programming example performs the following functions:

• I and Q data creation for 10 pulses
• marker file creation
• data scaling
• downloading using Agilent Waveform Download Assistant functions (see “Using the Download

Utilities” on page 216 for more information)

% verify that communication with the Agilent MXG/X-Series has been extablished

[status, status_description, query_result] = agt_query(io,'*idn?');

if (status < 0) return; end

% set the carrier frequency and power level on the Agilent MXG/PSG using the Agilent
%Waveform Download Assistant

[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 20000000000');

[status, status_description] = agt_sendcommand(io, 'POWer 0');

% define the ARB sample clock for playback

sampclk = 40000000;

% download the iq waveform to the PSG baseband generator for playback

[status, status_description] = agt_waveformload(io, IQData, 'pulsepat', sampclk, 'play',
'no_normscale', Markers);

% turn on RF output power

[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON')

You can test your program by performing a simulated plot of the in–phase modulation signal in
Matlab (see Figure 5- 2 on page 247). To do this, enter plot (i) at the Matlab command prompt.
246 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
Figure 5-2 Simulated Plot of In–Phase Signal

The following additional Matlab M–file pulse programming examples are also available on the
Documentation CD–ROM for your signal generator:

NOTE For the Agilent X- Series and MXG, the SOURce:FREQuency 20000000000 value must be
changed as required in the following programs. For more information on frequency limits,
refer to the Data Sheet.

barker.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple 7–bit barker RADAR signal to the vector signal generator.

chirp.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using linear FM chirp to
the vector signal generator.

FM.m This programming example calculates and downloads an arbitrary waveform file
that simulates a single tone FM signal with a rate of 6 KHz, deviation of
=/– 14.3 KHz, Bessel null of dev/rate=2.404 to the vector signal generator.

nchirp.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using non–linear FM
chirp to the vector signal generator.

pulse.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal to the vector signal generator.

pulsedroop.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal with pulse droop to the vector signal
Agilent X-Series Signal Generators Programming Guide 247

Creating and Downloading Waveform Files
Programming Examples
generator.

Downloading a Waveform, Markers, and Setting the Waveform Header

NOTE This example works on either a 32bit or 64bit system that is connected over the LAN. So,
the Waveform Download Assistant—which only works on 32bit systems—is not required, to
use this program.

Additional documentation is available on this program through Matlab, by adding your PC’s
path to the Matlab’s path and then from the Matlab command line type: “help download”.

This is example is used to download a waveform to the instrument.

On the documentation CD, this programming example’s name is “Download.m.”

This MATLAB programming example performs the following functions:

• downloads a waveform
• downloads the waveform’s marker information
• downloads the waveform’s header information

function Download(tcpipAddress, iqWave, name, markers, header)

% Download(tcpipAddress, iqWave, name, markers, header);

% Copyright 2009 Agilent Technologies Inc.

%

% This function downloads a waveform and markers to an Agilent ESG-C,

% PSG-C/D, or MXG Vector Signal Generator. markers is a two dimentional

% array that contains 4 markers. The header contains the sample rate, the

% waveform rms voltage, and the marker routings to the pulse modulator and

% the ALC hold. Default values used by the header if values are not present.

% header.sampleRate = 100e6; % Waveform Sample Rate

% header.rms = CalculateWaveformRMS(iqWave); % Waveform RMS voltage

% header.peak = 1.414; % Waveform Peak voltage

% header.runtimeScaling = 70; % Runtime scaling in percent

% header.pulse = 'None'; % Marker routing 'Non','M1','M2','M3','M4'

% header.alcHold = 'None'; % Marker routing 'Non','M1','M2','M3','M4'

% header.description = 'Agilent Technologies'; % User provided description

%

% INPUT PARAMETERS:

% tcpipAddress - '141.121.148.188' What ever works for your signal Generator!

% name - Waveform name - 21 characters max

% iqWave - Complex waveform, min length 60 points

% markers - markers(4,length(iqWave)) 4 possible markers

% header - Structure containing waveform information.
248 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
%

% OUTPUT PARAMETERS:

%

% EXAMPLES:

% name = 'My_Test'; % Waveform name

% tcpipAddress = '141.121.151.129'; % Signal Generator IP Address

% n = 1000; % Points in waveform

% phase = (102*pi/n)*(0:(n-1));

% iqWave= complex(cos(phase),sin(phase)); % Create single tone

% markers = zeros(4,n); % Create markers

% markers(1,1:2) = 1;

% markers(2,1:4) = 1;

% markers(3,1:8) = 1;

% markers(4,1:16) = 1;

% header.sampleRate = 50e6; % Set Sample Rate to 50 MHz

% Download(tcpipAddress, iqWave, name, markers, header);

%

 % Range checks

 if nargin<2

 error('ERROR: download() Insufficient input parmaeters.');

 end

 if length(iqWave)<60

 error('ERROR: download() iqWave must contain 60 or more points.');

 end

 if nargin<3 name = 'NO_NAME'; end

 if nargin<4

 markers = zeros(4,length(iqWave));

 markers(:,1:4) = 1;

 end

 if nargin<5

 header = [];

 end

 if length(iqWave) ~= length(markers)

 error('ERROR: download() The length of the iqWave and the marker arrays must be the same.');

 end

 % Process waveform and marker data

 [iqData, rms] = FormatWaveform(iqWave);

 mkrData = FormatMarkers(markers);

Agilent X-Series Signal Generators Programming Guide 249

Creating and Downloading Waveform Files
Programming Examples
 % Download the Waveform

 wfmCmd = CreateWaveformCommand(name, length(iqWave));

 mkrCmd = CreateMarkerCommand(name, length(markers));

 hdrCmd = CreateHeaderCommand(name, rms, header);

 bufSize = 8192;

 t = tcpip(tcpipAddress, 5025);

 t.OutputBufferSize = bufSize;

 % Order dependency on download. 1:Waveform, 2:Markers, 3:Header

 fopen(t);

 fprintf(t,'%s',wfmCmd);

 %fwrite(t,iqData,'int16'); % Use loop to prevent the need for a buffer as big as waveform

 WriteData(t,iqData,2,bufSize);

 fprintf(t,'\n');

 fprintf(t,'syst:err?');

 fgets(t)

 fprintf(t,'%s',mkrCmd);

 %fwrite(t,mkrData,'int8');

 WriteData(t,mkrData,1,bufSize);

 fprintf(t,'\n');

 fprintf(t,'syst:err?');

 fgets(t)

 fprintf(t,'%s\n',hdrCmd);

 fprintf(t,'syst:err?');

 fgets(t)

 fclose(t);

end

function WriteData(fid,data,format,bufSize)

% Write data using a loop to support large waveforms without having to

% specify a huge buffer.

%

% INPUT PARAMETERS:

% fid - file id

% data - all the data

% format - data size to output in bytes 1,2,4 etc.

% bufSize - Buffer size in bytes
250 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 buf = floor(bufSize/format);

 fullChunks = floor(length(data)/buf);

 partialChunk = length(data)-(fullChunks*buf);

 sfmt = 'int32';

 if format==1

 sfmt = 'int8';

 elseif format==2

 sfmt = 'int16';

 end

 stop=0;

 for i=0:(fullChunks-1)

 start = 1+(i*buf);

 stop = (i+1)*buf;

 fwrite(fid,data(start:stop),sfmt);

 end

 if partialChunk>0

 fwrite(fid,data(stop+1:end),sfmt);

 end

end

function [data, rms] = FormatWaveform(iqWave)

 % Scale the waveform to DAC values

 [a,b] = size(iqWave);

 if a>b

 iqWave = iqWave';

 end

 maxV = max(abs([real(iqWave) imag(iqWave)]));

 if maxV==0 maxV=1; end % Prevent divide by zero

 scale = 32767/maxV;

 iqWave = round(scale*iqWave);

 % Calcurate waveform RMS

 rms = sqrt(mean(abs(iqWave).^2)) / 32767;

 % account for pulse duty cycle

 pw = sum(abs(iqWave)>0);

 dutyCycle = pw/length(iqWave);

 rms = rms/dutyCycle;

 % Interlace the I & Q vectors
Agilent X-Series Signal Generators Programming Guide 251

Creating and Downloading Waveform Files
Programming Examples
 data = [real(iqWave);imag(iqWave)];

 data = data(:)';

end

function mkr = FormatMarkers(markers)

% The markers are placed in the 4 LSBs of a byte

% in this order M4 M3 M2 M1

 [c,d] = size(markers);

 if c>d

 markers = markers';

 [c,d] = size(markers);

 end

 mkr = (markers(1,:)~=0);

 if c>1

 mkr = mkr + 2*(markers(2,:)~=0);

 end

 if c>2

 mkr = mkr + 4*(markers(3,:)~=0);

 end

 if c>3

 mkr = mkr + 8*(markers(4,:)~=0);

 end

end

function hdrCmd = CreateHeaderCommand(file_name, rms, header)

% [:SOURce]:RADio[1]|2|3|4:ARB:HEADer:WRITe
"filename","description",<sample_rate>,<scaling>,<marker_polarity>,<alc_hold>,<alt_power>,<pulse>,<mod_
atten>,<mod_filter>,<output_filter>,<peak_power>,<rms>

% This function doesn't do any range checking

 hdr.sampleRate = 100e6;

 hdr.rms = rms;

 hdr.peak = 1.414;

 hdr.runtimeScaling = 70; % In percent

 hdr.pulse = 'None';

 hdr.alcHold = 'None';

 hdr.description = 'Agilent Technologies';

 if ~isempty(header)

 if isstruct(header)

 if isfield(header,'sampleRate')

 hdr.sampleRate = header.sampleRate;

 end

 if isfield(header,'rms')
252 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 hdr.rms = header.rms;

 end

 if isfield(header,'peak')

 hdr.peak = header.peak;

 end

 if isfield(header,'runtimeScaling')

 hdr.runtimeScaling = header.runtimeScaling;

 end

 if isfield(header,'pulse')

 hdr.pulse = header.pulse;

 end

 if isfield(header,'alcHold')

 hdr.alcHold = header.alcHold;

 end

 if isfield(header,'description')

 hdr.description = header.description;

 end

 end

 end

 hdrCmd = ['RADio:ARB:HEAD:WRIT "WFM1:' file_name '","' hdr.description '",' num2str(
hdr.sampleRate) ',' num2str(hdr.runtimeScaling) ',NONE,' hdr.alcHold ',UNSP,' hdr.pulse
',UNSP,UNSP,UNSP,' num2str(hdr.peak) ',' num2str(hdr.rms)];

end

function wfmCmd = CreateWaveformCommand(file_name, points)

% :MMEM:DATA "<file_name>",#ABC

% "<file_name>" the I/Q file name and file path within the signal generator

% # indicates the start of the data block

% A the number of decimal digits present in B

% B a decimal number specifying the number of data bytes to follow in C

 B = num2str(4*points); % Bytes in waveform

 A = num2str(length(B));

 wfmCmd = [':MEM:DATA:UNPR "WFM1:' file_name '",#' A B];

end

function mkrCmd = CreateMarkerCommand(file_name, points)

 B = num2str(points); % Bytes in marker file

 A = num2str(length(B));

 mkrCmd = [':MEM:DATA:UNPR "MKR1:' file_name '",#' A B];
Agilent X-Series Signal Generators Programming Guide 253

Creating and Downloading Waveform Files
Programming Examples
end

Playing Downloaded Waveforms

NOTE This example works on either a 32bit or 64bit system that is connected over the LAN. So,
the Waveform Download Assistant—which only works on 32bit systems—is not required, to
use this program.

Additional documentation is available on this program through Matlab, by adding your PC’s
path to the Matlab’s path and then from the Matlab command line type: “help
PlayWaveform”.

This is a simple example to play a waveform that was downloaded to the instrument. This example
can be easily modified to send additional SCPI commands.

On the documentation CD, this programming example’s name is “PlayWaveform.m.”

This MATLAB programming example performs the following functions:

• plays a waveform that has been downloaded

function PlayWaveform(tcpipAddress, name)

% PlayWaveform(tcpipAddress, name);

% Copyright 2009 Agilent Technologies Inc.

%

% Play the waveform in the Signal Generator

%

% INPUT PARAMETERS:

% tcpipAddress - '141.121.148.188' Whatever works for your signal Generator!

% name - Waveform name - 21 characters max

%

% EXAMPLE:

% name = 'My_Test'; % Waveform name

% tcpipAddress = '141.121.151.129'; % Signal Generator IP Address

% PlayWaveform(tcpipAddress, name); % play the waveform

 playCmd = [':RAD:ARB:WAV "WFM1:' name '"'];

 t = tcpip(tcpipAddress, 5025);

 fopen(t);

 fprintf(t,'%s\n',playCmd);

 fprintf(t,'syst:err?');

 fgets(t)
254 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
 fclose(t);
Agilent X-Series Signal Generators Programming Guide 255

Creating and Downloading Waveform Files
Programming Examples
Visual Basic Programming Examples

Creating I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is “Create_IQData_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, uses little endian order
data, and performs the following functions:

• error checking
• I an Q integer array creation
• I an Q data interleaving
• byte swapping to convert to big endian order
• binary data file storing to a PC or workstation

Once the file is created, you can download the file to the signal generator using FTP (see “FTP
Procedures” on page 199).

'***

' Program Name: Create_IQData

' Program Description: This program creates a sine and cosine wave using 200 I/Q data

' samples. Each I and Q value is represented by a 2 byte integer. The sample points are

' calculated, scaled using the AMPLITUDE constant of 32767, and then stored in an array

' named iq_data. The AMPLITUDE scaling allows for full range I/Q modulator DAC values.

' Data must be in 2's complemant, MSB/LSB big-endian format. If your PC uses LSB/MSB

' format, then the integer bytes must be swapped. This program converts the integer

' array values to hex data types and then swaps the byte positions before saving the

' data to the IQ_DataVB file.

'**

Private Sub Create_IQData()

Dim index As Integer

Dim AMPLITUDE As Integer

Dim pi As Double

Dim loByte As Byte

Dim hiByte As Byte

Dim loHex As String

Dim hiHex As String

Dim strSrc As String

Dim numPoints As Integer

Dim FileHandle As Integer

Dim data As Byte

Dim iq_data() As Byte

Dim strFilename As String

strFilename = "C:\IQ_DataVB"

Const SAMPLES = 200 ' Number of sample PAIRS of I and Q integers for the waveform
256 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
AMPLITUDE = 32767 ' Scale the amplitude for full range of the signal generators

 ' I/Q modulator DAC

pi = 3.141592

Dim intIQ_Data(0 To 2 * SAMPLES - 1) 'Array for I and Q integers: 400

ReDim iq_data(0 To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for each integer value: 800

'Create an integer array of I/Q pairs

 For index = 0 To (SAMPLES - 1)

 intIQ_Data(2 * index) = CInt(AMPLITUDE * Sin(2 * pi * index / SAMPLES))

 intIQ_Data(2 * index + 1) = CInt(AMPLITUDE * Cos(2 * pi * index / SAMPLES))

 Next index

 'Convert each integer value to a hex string and then write into the iq_data byte array

 'MSB, LSB ordered

 For index = 0 To (2 * SAMPLES - 1)

 strSrc = Hex(intIQ_Data(index)) 'convert the integer to a hex value

 If Len(strSrc) <> 4 Then

 strSrc = String(4 - Len(strSrc), "0") & strSrc 'Convert to hex format i.e "800F

 End If 'Pad with 0's if needed to get 4

 'characters i.e '0' to "0000"

 hiHex = Mid$(strSrc, 1, 2) 'Get the first two hex values (MSB)

 loHex = Mid$(strSrc, 3, 2) 'Get the next two hex values (LSB)

 loByte = CByte("&H" & loHex) 'Convert to byte data type LSB

 hiByte = CByte("&H" & hiHex) 'Convert to byte data type MSB

 iq_data(2 * index) = hiByte 'MSB into first byte

 iq_data(2 * index + 1) = loByte 'LSB into second byte

 Next index

 'Now write the data to the file

FileHandle = FreeFile() 'Get a file number

numPoints = UBound(iq_data) 'Get the number of bytes in the file

Open strFilename For Binary Access Write As #FileHandle Len = numPoints + 1

Agilent X-Series Signal Generators Programming Guide 257

Creating and Downloading Waveform Files
Programming Examples
On Error GoTo file_error

 For index = 0 To (numPoints)

 data = iq_data(index)

 Put #FileHandle, index + 1, data 'Write the I/Q data to the file

 Next index

Close #FileHandle

Call MsgBox("Data written to file " & strFilename, vbOKOnly, "Download")

Exit Sub

file_error:

 MsgBox Err.Description

 Close #FileHandle

End Sub

Downloading I/Q Data

On the signal generator’s documentation CD, this programming example’s name is
“Download_File_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, downloads the file created
in “Creating I/Q Data—Little Endian Order” on page 256 into non–volatile memory using a LAN
connection. To use GPIB, replace the instOpenString object declaration with “GPIB::19::INSTR”. To
download the data into volatile memory, change the instDestfile declaration to
“USER/BBG1/WAVEFORM/”.

NOTE The example program listed here uses the VISA COM IO API, which includes the
WriteIEEEBlock method. This method eliminates the need to format the download command
with arbitrary block information such as defining number of bytes and byte numbers. Refer
to “SCPI Command Line Structure” on page 195 for more information.

This program also includes some error checking to alert you when problems arise while trying to
download files. This includes checking to see if the file exists.

'***

' Program Name: Download_File

' Program Description: This program uses Microsoft Visual Basic 6.0 and the Agilent

' VISA COM I/O Library to download a waveform file to the signal generator.

'

' The program downloads a file (the previously created ‘IQ_DataVB’ file) to the signal

' generator. Refer to the Programming Guide for information on binary
258 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
' data requirements for file downloads. The waveform data 'IQ_DataVB' is

' downloaded to the signal generator's non-volatile memory(NVWFM)

' " /USER/WAVEFORM/IQ_DataVB". For volatile memory(WFM1) download to the

' " /USER/BBG1/WAVEFORM/IQ_DataVB" directory.

'

' You must reference the Agilent VISA COM Resource Manager and VISA COM 1.0 Type

' Library in your Visual Basic project in the Project/References menu.

' The VISA COM 1.0 Type Library, corresponds to VISACOM.tlb and the Agilent

' VISA COM Resource Manager, corresponds to AgtRM.DLL.

' The VISA COM 488.2 Formatted I/O 1.0, corresponds to the BasicFormattedIO.dll

' Use a statement such as "Dim Instr As VisaComLib.FormattedIO488" to

' create the formatted I/O reference and use

' "Set Instr = New VisaComLib.FormattedIO488" to create the actual object.

'**

' IMPORTANT: Use the TCPIP address of your signal generator in the rm.Open

' declaraion. If you are using the GPIB interface in your project use "GPIB::19::INSTR"

' in the rm.Open declaration.

'**

Private Sub Download_File()

' The following four lines declare IO objects and instantiate them.

Dim rm As VisaComLib.ResourceManager

Set rm = New AgilentRMLib.SRMCls

Dim SigGen As VisaComLib.FormattedIO488

Set SigGen = New VisaComLib.FormattedIO488

' NOTE: Use the IP address of your signal generator in the rm.Open declaration

Set SigGen.IO = rm.Open("TCPIP0::000.000.000.000")

Dim data As Byte

Dim iq_data() As Byte

Dim FileHandle As Integer

Dim numPoints As Integer

Dim index As Integer

Dim Header As String

Dim response As String

Dim hiByte As String

Dim loByte As String

Dim strFilename As String

strFilename = "C:\IQ_DataVB" ‘File Name and location on PC

 'Data will be saved to the signal generator’s NVWFM
 ‘/USER/WAVEFORM/IQ_DataVB directory.
Agilent X-Series Signal Generators Programming Guide 259

Creating and Downloading Waveform Files
Programming Examples
FileHandle = FreeFile()

On Error GoTo errorhandler

With SigGen 'Set up the signal generator to accept a download

 .IO.Timeout = 5000 'Timeout 50 seconds

 .WriteString "*RST" 'Reset the signal generator.

End With

numPoints = (FileLen(strFilename)) 'Get number of bytes in the file: 800 bytes

ReDim iq_data(0 To numPoints - 1) 'Dimension the iq_data array to the

 'size of the IQ_DataVB file: 800 bytes

Open strFilename For Binary Access Read As #FileHandle 'Open the file for binary read

On Error GoTo file_error

For index = 0 To (numPoints - 1) 'Write the IQ_DataVB data to the iq_data array

 Get #FileHandle, index + 1, data '(index+1) is the record number

 iq_data(index) = data

Next index

 Close #FileHandle 'Close the file

'Write the command to the Header string. NOTE: syntax

 Header = "MEM:DATA ""/USER/WAVEFORM/IQ_DataVB"","

 'Now write the data to the signal generator's non-volatile memory (NVWFM)

 SigGen.WriteIEEEBlock Header, iq_data

 SigGen.WriteString "*OPC?" 'Wait for the operation to complete

 response = SigGen.ReadString 'Signal generator reponse to the OPC? query

 Call MsgBox("Data downloaded to the signal generator", vbOKOnly, "Download")

 Exit Sub

errorhandler:

 MsgBox Err.Description, vbExclamation, "Error Occurred", Err.HelpFile, Err.HelpContext

Exit Sub

file_error:

 Call MsgBox(Err.Description, vbOKOnly) 'Display any error message

 Close #FileHandle

End Sub
260 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
HP Basic Programming Examples

This section contains the following programming examples:

• “Creating and Downloading Waveform Data Using HP BASIC for Windows®” on page 261

• “Creating and Downloading Waveform Data Using HP BASIC for UNIX” on page 263

• “Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows” on page 265

• “Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX” on page 266

Creating and Downloading Waveform Data Using HP BASIC for Windows®

On the documentation CD, this programming example’s name is “hpbasicWin.txt.”

The following program will download a waveform using HP Basic for Windows into volatile ARB
memory. The waveform generated by this program is the same as the default SINE_TEST_WFM
waveform file available in the signal generator’s waveform memory. This code is similar to the code
shown for BASIC for UNIX but there is a formatting difference in line 130 and line 140.

To download into non–volatile memory, replace line 190 with:

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP Basic to output the following numbers or strings in
the default format.

10 ! RE-SAVE "BASIC_Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data Generated"

120 Nbytes=4*Num_points

130 ASSIGN @PSG TO 719

140 ASSIGN @PSGb TO 719;FORMAT MSB FIRST

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

Windows and MS Windows are U.S registered trademarks of Microsoft Corporation.
Agilent X-Series Signal Generators Programming Guide 261

Creating and Downloading Waveform Files
Programming Examples
170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @PSG USING "#,K";Ndigits$

210 OUTPUT @PSG USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @PSGb;Int_array(*)

240 OUTPUT @PSG;END

250 ASSIGN @PSG TO *

260 ASSIGN @PSGb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This IO path is used to send ASCII data to the signal
generator.

140: Opens an IO path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, data_file, that
will receive the waveform data. The name, data_file, will appear in the signal generator’s memory
catalog.

200 to 210: Sends the rest of the ASCII header.
262 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
Creating and Downloading Waveform Data Using HP BASIC for UNIX

On the documentation CD, this programming example’s name is “hpbasicUx.txt.”

The following program shows you how to download waveforms using HP Basic for UNIX. The code is
similar to that shown for HP BASIC for Windows, but there is a formatting difference in line 130 and
line 140.

To download into non–volatile memory, replace line 190 with:

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

10 ! RE-SAVE "UNIX_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data generated "

120 Nbytes=4*Num_points

130 ASSIGN @PSG TO 719;FORMAT ON

140 ASSIGN @PSGb TO 719;FORMAT OFF

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @PSG USING "#,K";Ndigits$

230: Sends the binary data. Note that PSGb is the binary IO path.

240: Sends an End–of–Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)
Agilent X-Series Signal Generators Programming Guide 263

Creating and Downloading Waveform Files
Programming Examples
210 OUTPUT @PSG USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @PSGb;Int_array(*)

240 WAIT 2

241 OUTPUT @PSG;END

250 ASSIGN @PSG TO *

260 ASSIGN @PSGb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This IO path is used to send ASCII data to the signal
generator.

140: Opens an IO path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, data_file, that
will receive the waveform data. The name, data_file, will appear in the signal generator’s memory
catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary IO path.

240: Sends an End–of–Line to terminate the transmission.
264 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows

On the documentation CD, this programming example’s name is “e443xb_hpbasicWin2.txt.”

The following program shows you how to download waveforms using HP Basic for Windows into
volatile ARB memory. This program is similar to the following program example as well as the
previous examples. The difference between BASIC for UNIX and BASIC for Windows is the way the
formatting, for the most significant bit (MSB) on lines 110 and 120, is handled.

To download into non–volatile ARB memory, replace line 160 with:

160 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBI:testfile"", #"

and replace line 210 with:

210 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBQ:testfile"", #"

First, the I waveform data is put into an array of integers called Iwfm_data and the Q waveform
data is put into an array of integers called Qwfm_data. The variable Nbytes is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in Iwfm_data,
since an integer is 2 bytes. Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP Basic to output the following numbers or strings in
the default format.

10 ! RE-SAVE "ARB_IQ_Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)

40 DEG

50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)

70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)

80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719

120 !ASSIGN @Esgb TO 719;FORMAT MSB FIRST

130 Nbytes$=VAL$(Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",#"

170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytes$

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)
Agilent X-Series Signal Generators Programming Guide 265

Creating and Downloading Waveform Files
Programming Examples
190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"

220 OUTPUT @Esg USING "#,K";Ndigits$

230 OUTPUT @Esg USING "#,K";Nbytes$

240 OUTPUT @Esgb;Qwfm_data(*)

250 OUTPUT @Esg;END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX

On the documentation CD, this programming example’s name is “e443xb_hpbasicUx2.txt.”

The following program shows you how to download waveforms using HP BASIC for UNIX. It is similar
to the previous program example. The difference is the way the formatting for the most significant bit
(MSB) on lines is handled.

First, the I waveform data is put into an array of integers called Iwfm_data and the Q waveform
data is put into an array of integers called Qwfm_data. The variable Nbytes is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in Iwfm_data,
since an integer is represented 2 bytes. Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300: See the table on page 262 for program comments.
266 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples
10 ! RE-SAVE "ARB_IQ_file"

20 Num_points=200

30 ALLOCATE INTEGER Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)

40 DEG

50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)

70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)

80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719;FORMAT ON

120 ASSIGN @Esgb TO 719;FORMAT OFF

130 Nbytes$=VAL$(Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",#"

170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytes$

190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"

220 OUTPUT @Esg USING "#,K";Ndigits$

230 OUTPUT @Esg USING "#,K";Nbytes$

240 OUTPUT @Esgb;Qwfm_data(*)

250 OUTPUT @Esg;END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.
Agilent X-Series Signal Generators Programming Guide 267

Creating and Downloading Waveform Files
Troubleshooting Waveform Files
Troubleshooting Waveform Files

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300 See the table on page 264 for program comments.

Symptom Possible Cause

ERROR 224, Text file busy

Attempting to download a waveform that has the same name as the waveform
currently being played by the signal generator.

To solve the problem, either change the name of the waveform being downloaded
or turn off the ARB.

ERROR 628, DAC over range The amplitude of the signal exceeds the DAC input range. The typical causes are
unforeseen overshoot (DAC values within range) or the input values exceed the
DAC range.

To solve the problem, scale or reduce the DAC input values. For more information,
see “DAC Input Values” on page 178.

This error can also occur if an encrypted file (.SECUREWAVE) is being downloaded
to the signal generator from a PC or USB Media with a different suffix (i.e. not
.SECUREWAVE).

To solve the problem, use the Use as or Copy File to Instrument softkey menus to
download the encrypted file to the instrument. For more information, see
“Encrypted I/Q Files and the Securewave Directory” on page 194.

ERROR 629, File format invalid The signal generator requires a minimum of 60 samples to build a waveform and
the same number of I and Q data points.

ERROR –321, Out of memory

There is not enough space in the ARB memory for the waveform file being
downloaded.

To solve the problem, either reduce the file size of the waveform file or delete
unnecessary files from ARB memory. Refer to “Waveform Memory” on page 188.

No RF Output The marker RF blanking function may be active. To check for and turn RF blanking
off, refer to “Configuring the Pulse/RF Blank” on page 269. This problem occurs
when the file header contains unspecified settings and a previously played
waveform used the marker RF blanking function.

For more information on the marker functions, see the User’s Guide.

Undesired output signal Check for the following:

• The data was downloaded in little endian order. See “Little Endian and Big
Endian (Byte Order)” on page 176 for more information.

• The waveform contains an odd number of samples. An odd number of samples
can cause waveform discontinuity. See “Waveform Phase Continuity” on
page 185 for more information.

Program Comments (Continued)
268 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Troubleshooting Waveform Files
Configuring the Pulse/RF Blank

For details on each key, use the key help. Refer to “Getting Key Help” on page 17 and the User’s Guide. For additional SCPI command
information, refer to the SCPI Command Reference.

If the default marker is used,
toggle the Pulse/RF Blank (None)
softkey to None. For more
information on markers, refer to
“Marker File” on page 183.

SCPI commands:

[:SOURce]:RADio[1]:ARB:MDEStination:PULSe NONE|M1|M2|M3|M4
[:SOURce]:RADio[1]:ARB:MDEStination:PULSe?

Select Dual Arb > More > Marker Utilities
on X-Series signal generators to
access this menu.
Agilent X-Series Signal Generators Programming Guide 269

Creating and Downloading Waveform Files
Troubleshooting Waveform Files
270 Agilent X-Series Signal Generators Programming Guide

6 Creating and Downloading User–Data Files

NOTE The following sections and procedures contain remote SCPI commands. For front panel key
commands, refer to the Key Help in the signal generator.

This chapter explains the requirements and processes for creating and downloading user data, and
contains the following sections:

• User File Data (Bit/Binary) Downloads on page 279

• Pattern RAM (PRAM) Data Downloads on page 296

• FIR Filter Coefficient Downloads on page 310

• Using the Equalization Filter on page 313

• Save and Recall Instrument State Files on page 314

• User Flatness Correction Downloads Using C++ and VISA on page 325

• Data Transfer Troubleshooting on page 329
Agilent X-Series Signal Generators Programming Guide 271

Creating and Downloading User–Data Files
Overview
Overview
User data is a generic term for various data types created by the user and stored in the signal
generator. This includes the following data (file) types:

Bit This file type lets the user download payload data for use in streaming or framed
signals. It lets the user determine how many bits in the file the signal generator
uses.

Binary This file type provides payload data for use in streaming or framed signals. It
differs from the bit file type in that you cannot specify a set number of bits.
Instead the signal generator uses all bits in the file for streaming data and all bits
that fill a frame for framed data. If there are not enough bits to fill a frame, the
signal generator truncates the data and repeats the file from the beginning.

PRAM With this file type, the user provides the payload data along with the bits to
control signal attributes such as bursting. This file type is available for only the
real–time Custom and TDMA modulation formats.

FIR Filter This file type stores user created custom filters.

State This file type lets the user store signal generator settings, which can be recalled.
This provides a quick method for reconfiguring the signal generator when
switching between different signal setups.

User Flatness
Correction This file type lets the user store amplitude corrections for frequency.

Prior to creating and downloading files, you need to take into consideration the file size and the
amount of remaining signal generator memory. For more information, see “Signal Generator Memory”
on page 273
272 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Signal Generator Memory
Signal Generator Memory
The signal generator provides two types of memory, volatile and non–volatile.

NOTE User FIR references are only applicable to vector signal generator models with an installed
baseband generator option.

Volatile Random access memory that does not survive cycling of the signal generator
power. This memory is commonly referred to as waveform memory (WFM1) or
pattern RAM (PRAM). Refer to Table 6- 1 for the file types that share this
memory:

Non–volatile Storage memory where files survive cycling of the signal generator power. Files
remain until overwritten or deleted. Refer to Table 6- 2 on page 274 for the file
types that share this memory:

Table 6-1 Signal Generators and Volatile Memory File Types

Volatile Memory Type Model of Signal Generator

N5172B with
Option 653 or
655

N5182B with
Option 656 or
657

N5182A with
Option 651,
652, or 654

All Other

modelsa

a.Analog signal generator models and vector signal generator models without an installed baseband generator
option.

I/Q x x x –

Marker x x x –

File header x x x –

User PRAM – – – –

User Binary x x x –

User Bit – – – –

Waveform Sequences

(multiple I/Q files played together)

n/ab

b.Waveform sequences are always in non–volatile memory.

n/ab n/ab –
Agilent X-Series Signal Generators Programming Guide 273

Creating and Downloading User–Data Files
Signal Generator Memory
The following figure shows the signal generator’s directory structure for the user–data files.

Table 6-2 Signal Generators and Non–Volatile Memory Types

Non–Volatile Memory Type Model of Signal Generator

N5172B with
Option 653 or
655

N5182B with
Option 656 or
657

N5182A with
Option 651,
652, or 654

All Other

modelsa

a. Analog signal generator models and vector signal generator models without an installed baseband generator
option.

I/Q x x x –

Marker x x x –

File header x x x –

Sweep List x x x –

User PRAM – x x –

User Binary x x x –

User Bit – x x –

User FIR x x x –

Instrument State x x x x

Waveform Sequences

(multiple I/Q files played together)

x x x –
274 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Signal Generator Memory
Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a user–data file
with 60 bytes uses 1024 bytes of memory. For a file that is too large to fit into 1024 bytes, the signal
generator allocates additional memory in multiples of 1024 bytes. For example, the signal generator
allocates 3072 bytes of memory for a file with 2500 bytes.

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, files can cause the signal generator to allocate more memory than what is
actually used, which decreases the amount of available memory.

User–data blocks consist of 1024 bytes of memory. Each user–data file has a file header that uses
512 bytes for the Agilent X- Series and MXG, or 256 bytes for the ESG/PSGin the first data block for
each user–data file.

Non–Volatile Memory

Non–volatile files are stored on the non–volatile internal signal generator memory (i.e. internal
storage) or to the USB media, if available. The Agilent X- Series and MXG non–volatile internal
memory is allocated according to a Microsoft compatible file allocation table (FAT) file system. The
signal generator allocates non–volatile memory in clusters according to the drive size (see Table 6- 3).
For example, referring to Table 6- 3, if the drive size is 15 MB and if the file is less than or equal to
4k bytes, the file uses only one 4 KB cluster of memory. For files larger than 4 KB, and with a drive

FIR STATE USERFLAT

USER

BBG1

Volatile memory directory

WAVEFORM/PRAM

Root directory

Volatile memory data

Agilent X-Series and MXG: Internal

(WFM1)

BIN

(i.e. Nonvolatile memory)

Storage media

NONVOLATILE

Agilent MXG1

1This NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.
The Agilent X-Series and MXG can use optional “USB media” to store non–volatile waveform data.

WAVEFORM

X-Series and MXG USB media:
File listing with extensions2
Agilent X-Series Signal Generators Programming Guide 275

Creating and Downloading User–Data Files
Signal Generator Memory
size of 15 MB, the signal generator allocates additional memory in multiples of 4KB clusters. For
example, a file that has 21,538 bytes consumes 6 memory clusters (24,000 bytes).

On the Agilent X- Series and MXG, the non–volatile memory is also referred to as internal storage
and USB media. The Internal and USB media files /USERS/NONVOLATILE Directory contains file
names with full extensions (i.e. .marker, .header, etc.).

For more information on default cluster sizes for FAT file structures, refer to Table 6- 3 and to
http://support.microsoft.com/.

Memory Size

The amount of available memory, volatile and non–volatile, varies by signal generator option and the
size of the other files that share the memory. The baseband generator (BBG) options contain the
volatile memory. Table 6- 4 shows the maximum available memory assuming that there are no other
files residing in memory.

Table 6-3

Drive Size (logical volume) Cluster Size (Bytes)
(Minimum Allocation Size)

0 MB – 15 MB 4K

16 MB – 127 MB 2K

128 MB – 255 MB 4K

256 MB – 511 MB 8K

512 MB – 1023 MB 16k

1024 MB – 2048 MB 32K

2048 MB – 4096 MB 64K

4096 MB – 8192 MB 128K

8192 MB – 16384 MB 256K
276 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Signal Generator Memory
Checking Available Memory

Whenever you download a user–data file, you must be aware of the amount of remaining signal
generator memory. Table 6- 5 shows to where each user–data file type is downloaded and from which
memory type the signal generator accesses the file data. Information on downloading a user–data file
is located within each user–data file section.

NOTE The FIR filter (file) types only apply to vector signal generator models with an installed
baseband generator option.

Table 6-4 Maximum Signal Generator Memory

Volatile (WFM1/PRAM) Memory Non–Volatile (NVWFM) Memory

Option Size Option Size

N5172B and N5182B

653, 655, 656,
657 (BBG)

32 MSa (160 MB) Standard
006
009

600 MSa (3 GB)
2 GSa (8 GB)
7.5 GSa (30 GB)

021 (72B only)
022
023 (82B only)

256 MSa (1.25 GB)
512 MSa (2.5 GB)
1024 MSa (5 GB)

USB Flash Drive (UFD) user determined

N5182A

651, 652, 654a
(BBG)

a.The internal baseband generator speed upgrade Options 670, 671, and 672 are option upgrades that require Option
651 and 652 to have been loaded at the factory (refer to the Data Sheet for more information). Any references to 651,
652, or 654 are inclusive of 671, 672, and 674.

8 MSa (40 MB) Standard 800 MSa (4 GB)b

b.For serial numbers <MY4818xxxx, US4818xxxx, and SG4818xxxx, the persistent memory value = 512 MB.

019 364 MSa (20 MB) USB Flash Drive (UFD) user determined
Agilent X-Series Signal Generators Programming Guide 277

Creating and Downloading User–Data Files
Signal Generator Memory
Bit and binary files increase in size when the signal generator loads the data from non–volatile to
volatile memory. For more information, see “User File Size” on page 284.

Use the following SCPI commands to determine the amount of remaining memory:

Volatile Memory :MMEM:CAT? “WFM1”

The query returns the following information:

<memory used>,<memory remaining>,<“file_names”>

Non–Volatile Memory :MEM:CAT:ALL?

The query returns the following information:

<memory used>,<memory remaining>,<“file_names”>

NOTE The signal generator calculates the memory values based on the number of bytes used by the
files residing in volatile or non–volatile memory, and not on the memory block allocation. To
accurately determine the available memory, you must calculate the number of blocks of
memory used by the files. For more information on memory block allocation, see “Memory
Allocation” on page 275.

Table 6-5 User–Data File Memory Location

User–Data File
Type

Download
Memory

Access
Memory

Bit Non–volatile Volatile

Binary Non–volatile Volatile

PRAM Volatile Volatile

Instrument
State

Non–volatile Non–volatile

FIR Non–volatile Non–volatile

Flatness Non–volatile Non–volatile
278 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
User File Data (Bit/Binary) Downloads

NOTE If you encounter problems with this section, refer to “Data Transfer Troubleshooting” on
page 329.

To verify the SCPI parser’s responsiveness when remotely using the :MEM:DATA SCPI
command to upload files, the file’s upload should be verified using the *STB? command.
Refer to the SCPI Command Reference.

The signal generator accepts externally created and downloaded user file data for real–time
modulation formats that have user file as a data selection (shown as <“file_name”> in the data
selection SCPI command). When you select a user file, the signal generator incorporates the user file
data (payload data) into the modulation format’s data fields. You can create the data using programs
such as MATLAB or Mathcad.

The signal generator uses two file types for downloaded user file data: bit and binary. With a bit file,
the signal generator views the data up to the number of bits specified when the file was downloaded.
For example, if you specify to use 153 bits from a 160 bit (20 bytes) file, the signal generator
transmits 153 bits and ignores the remaining 7 bits. This provides a flexible means in which to
control the number of transmitted data bits. It is the preferred file type and the easiest one to use.

With a binary file, the signal generator sees all bytes (bits) in a downloaded file and attempts to use
them. This can present challenges especially when working with framed data. In this situation, your
file needs to contain enough bits to fill a frame or timeslot, or multiple frames or timeslots, to end
on the desired boundary. To accomplish this, you may have to remove or add bytes. If there are not
enough bits remaining in the file to fill a frame or timeslot, the signal generator truncates the data
causing a discontinuity in the data pattern.

You download a user file to either the Bit or Binary memory catalog (directory). Unlike a PRAM file
(covered later in this chapter), user file data does not contain control bits, it is just data. The signal
generator adds control bits to the user file data when it generates the signal. There are two ways
that the signal generator uses the data, either in a continuous data pattern (unframed) or within
framed boundaries. Real–time Custom uses only unframed data.

NOTE For unframed data transmission, the signal generator requires a minimum of 60 symbols. For
more information, see “Determining Memory Usage for Custom User File Data” on page 285.

You create the user file to either fill a single timeslot/frame or multiple timeslots/frames. To create
multiple timeslots/frames, simply size the file with enough data to fill the number of desired
timeslots/frames
Agilent X-Series Signal Generators Programming Guide 279

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
User File Bit Order (LSB and MSB)

The signal generator views the data from the most significant bit (MSB) to the least significant bit
(LSB). When you create your user file data, it is important that you organize the data in this manner.
Within groups (strings) of bits, a bit’s value (significance) is determined by its location in the string.
The following shows an example of this order using two bytes.

Bit File Type Data

The bit file is the preferred file type and the easiest to use. When you download a bit file, you
designate how many bits in the file the signal generator can modulate onto the signal. During the file
download, the signal generator adds a 10–byte file header that contains the information on the
number of bits the signal generator is to use.

Although you download the data in bytes, when the signal generator uses the data, it recognizes only
the bits of interest that you designate in the SCPI command and ignores the remaining bits. This
provides greater flexibility in designing a data pattern without the concern of using an even number
of bytes as is needed with the binary file data format. The following figure illustrates this concept.
The example in the figure shows the bit data SCPI command formatted to download three bytes of
data, but only 23 bits of the three bytes are designated as the bits of interest. (For more information
on the bit data SCPI command format, see “Downloading User Files” on page 286 and “” on
page 290.)

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at
the far left of the bit string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at
the far right of the bit string.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1

LSBMSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

Bit Position

SCPI Command :MEM:DATA:BIT <"file_name">,<bit_interest>,<datablock>

:MEM:DATA:BIT "3byte",23, # 1 3 Z&x

0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0Downloaded Data:

Byte 1 Byte 2 Byte 3

Bits of interest

Ignored bit (LSB)

5A 26 78Hex Value:

MSB

ASCII representation of the data (3 bytes)

Z & xASCII Representation:

Start block data number of bytes
number of decimal digits
280 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
The following figure shows the same downloaded data from the above example as viewed in the
signal generator’s bit file editor (see the User’s Guide for more information) and with using an
external hex editor program.

In the bit editor, notice that the ignored bit of the bit–data is not displayed, however the hex value
still shows all three bytes. This is because bits 1 through 7 are part of the first byte, which is shown
as ASCII character x in the SCPI command line. The view from the hex editor program confirms that
the downloaded three bytes of data remains unchanged. To view a downloaded bit file with an
external hex editor program, FTP the file to your PC/UNIX workstation. For information on how to
FTP a file, see “FTP Procedures” on page 293.

Even though the signal generator views the downloaded data on a bit basis, it groups the data into
bytes, and when the designated number of bits is not a multiple of 8 bits, the last byte into one or
more 4–bit nibbles. To make the last nibble, the signal generator adds bits with a value of zero. The
signal generator does not show the added bits in the bit editor and ignores the added bits when it
modulates the data onto the signal, but these added bits do appear in the hex value displayed in the
bit file editor. The following example, which uses the same three bytes of data, further demonstrates
how the signal generator displays the data when only two bits of the last byte are part of the bits of

Hex values

Bit data

Designated number of bits

3 bytes of data10 byte file header
(added by signal generator)

Designated number of bits (hex value = 23 decimal)
As Seen in a Hex Editor

:MEM:DATA:BIT "3byte",23,#13Z&xSCPI command to download the data

As Seen in the Signal Generator’s Bit File Editor
Agilent X-Series Signal Generators Programming Guide 281

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
interest.

Notice that the bit file editor shows only two bytes and one nibble. In addition, the signal generator
shows the nibble as hex value 4 instead of 7 (78 is byte 3—ASCII character x in the SCPI command
line). This is because the signal generator sees bits 17 and 18, and assumes bits 19 and 20 are 00. As
viewed by the signal generator, this makes the nibble 0100. Even though the signal generator
extrapolates bits 19 and 20 to complete the nibble, it ignores these bits along with bits 21 through
24. As seen with the hex editor program, the signal generator does not actually change the three
bytes of data in the downloaded file.

For information on editing a file after downloading, see “Modifying User File Data” on page 292.

Hex value changes to 5A264

Designated bits

:MEM:DATA:BIT "3byte",18,#13Z&xSCPI command to download the data

As Seen in the Signal Generator’s Bit File Editor

3 bytes of data10 byte file header
(added by signal generator)

Designated number of bits (hex value = 18 decimal)As Seen in a Hex Editor

0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0Downloaded Data:

Byte 1 Byte 2 Byte 3

LSB

Designated 18 bits

5A 26 78Hex Value:

MSB

0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0

Byte 1 Byte 2 Nibble

Designated number of bits

5A 26 4

Added bits
as seen in
the hex value
282 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
Binary File Type Data

With the Binary file type, the signal generator sees all of the bytes within the downloaded file and
attempts to use all of the data bits. When using this file type, the biggest challenge is creating the
data so that the signal generator uses all of the bits (bytes) contained within the file. This is referred
to as using an even number of bytes. The method of creating the user file data pattern depends on
whether you are using unframed or framed data. The following two sections illustrate the
complexities of using the binary file format. You can eliminate these complexities by using the bit file
format (see “Bit File Type Data” on page 280).

Unframed Binary Data

When creating unframed data, you must think in terms of bits per symbol; so that your data pattern
begins and ends on the symbol boundary, with an even number of bytes. For example, to use 16QAM
modulation, the user file needs to contain 32 bytes:

• enough data to fill 16 states 4 times

• end on a symbol boundary

• create 64 symbols (the signal generator requires a minimum of 60 symbols for unframed data)

To do the same with 32QAM, requires a user file with 40 bytes.

When you do not use an even number of bytes, the signal generator repeats the data in the same
symbol where the data stream ends. This means that your data would not end on the symbol
boundary, but during a symbol. This makes it harder to identify the data content of a symbol. The
following figure illustrates the use of an uneven number of bytes and an even number of bytes.

16QAM 4 bits/symbol: 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0

Symbol Symbol Symbol Symbol

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1

Symbol Symbol Symbol Symbol Symbol Symbol Symbol

Data repeats during a symbol

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0

Symbol Symbol Symbol Symbol

Data repeats at the symbol boundary

Unframed Data

32QAM 5 bits/symbol:

Even Number of Bytes

Uneven Number of Bytes

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 Data pattern:

Data
repeats

Using an uneven number of bytes makes it harder to identify the data within a symbol.

MSB LSB
Agilent X-Series Signal Generators Programming Guide 283

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
Framed Binary Data

When using framed data, ensure that you use an even number of bytes and that the bytes contain
enough bits to fill the data fields within a timeslot or frame. When there are not enough bits to fill
a single timeslot or frame, the signal generator replicates the data pattern until it fills the
timeslot/frame.

The signal generator creates successive timeslots/frames when the user file contains more bits than
what it takes to fill a single timeslot or frame. When there are not enough bits to completely fill
successive timeslots or frames, the signal generator truncates the data at the bit location where there
is not enough bits remaining and repeats the data pattern. This results in a data pattern
discontinuity. For example, a frame structure that uses 348 data bits requires a minimum file size of
44 bytes (352 bits), but uses only 43.5 bytes (348 bits). In this situation, the signal generator
truncates the data from bit 3 to bit 0 (bits in the last byte). Remember that the signal generator
views the data from MSB to LSB. For this example to have an even number of bytes and enough bits
to fill the data fields, the file needs 87 bytes (696 bits). This is enough data to fill two frames while
maintaining the integrity of the data pattern, as illustrated in the following figure.

For information on editing a file after downloading, see “Modifying User File Data” on page 292.

User File Size

For Custom, when the signal generator creates the signal, it loads the data from non–volatile memory
into volatile memory, which is also the same memory that the signal generator uses for Arb–based
waveforms. For user data files, volatile memory is commonly referred to as pattern ram memory
(PRAM). Because Custom user files use volatile memory, their maximum file size depends on the
baseband generator (BBG) option and the amount of available PRAM (volatile memory that resides on
the BBG). Table 6- 6 shows the maximum user file size for each baseband generator memory option.

348 data bits CtrlCtrl

110100110110...01101111352 bits (44 bytes):

Truncated data (bits 0–3)
not enough bits remaining to fill the next frame

348 data bits CtrlCtrl348 data bits CtrlCtrl

011101100110110101110100110110...01101111696 bits (87 bytes):

348 data bits CtrlCtrl

Frame 1 Frame 2

Frame 1 data repeated

Frame 1 Frame 2

Even Number of Bytes

Uneven Number of Bytes
(some data truncated)

(all bits used)

Data fills both frames (348 bits per frame) with no truncated bits

Frame 1 data

Framed Data

MSB

LSB
284 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
For more information on signal generator memory, see “Signal Generator Memory” on page 273. To
determine how much memory is remaining in non–volatile and volatile memory, see “Checking
Available Memory” on page 277.

Determining Memory Usage for Custom User File Data

For Custom user files, the signal generator uses both non–volatile and volatile (PRAM/waveform)
memory: you download the user file to non–volatile memory. To determine if there is enough
non–volatile memory, check the available non–volatile memory and compare it to the size of the file
to be downloaded.

After you select a user file and turn the format on, the signal generator loads the file into volatile
memory for processing:

• It translates each data bit into a 32–bit word (4 bytes).

The 32–bit words are not saved to the original file that resides in non–volatile memory.

• It creates an expanded data file named AUTOGEN_PRAM_1 in volatile memory while also
maintaining a copy of the original file in volatile memory. It is the AUTOGEN_PRAM_1 file that
contains the 32–bit words and accounts for most of the user file PRAM memory space.

• If the transmission is using unframed data and there are not enough bits in the data file to create
60 symbols, the signal generator replicates the data pattern until there is enough data for 60
symbols. For example, GSM uses 1 bit per symbol. If the user file contains only 24 bits, enough
for 24 symbols, the signal generator replicates the data pattern two more times to create a file
with 72 bits. The expanded AUTOGEN_PRAM_1 file size would show 288 bytes (72 bits 4
bytes/bit).

Calculating Volatile Memory (PRAM) Usage for Unframed Data

Use this procedure to calculate the memory size for either a bit or binary file. To properly
demonstrate this process, the procedure employs a user file that contains 70 bytes (560 bits), with
the bit file using only 557 bits.

1. Determine the AUTOGEN_PRAM_1 file size:

The signal generator creates a 32–bit word for each user file bit (1 bit equals 4 bytes).

Binary file 4 bytes (70 bytes x 8 bits) = 2240 bytes

Bit file 4 bytes 557 bits= 2228 bytes

2. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file will occupy:

Volatile memory allocates memory in blocks of 1024 bytes.

Table 6-6 Maximum User File Size

Modulation
Format

Baseband Generator Memory Option

Standard 021 022 023

Customa

a.File size with no other files residing in volatile memory.

32 MB 256 MB 512 MB 1024 MB
Agilent X-Series Signal Generators Programming Guide 285

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
Binary file 2240 / 1024 = 2.188 blocks

Bit file 2228 / 1024 = 2.176 blocks

3. Round the memory block value to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use three blocks of memory for a total of 3072
bytes.

4. Determine the number of memory blocks that the copy of the original file occupies in volatile
memory.

For this example the bit and binary file sizes are shown in the following list:

• Binary file = 70 bytes < 1024 bytes = 1 memory block

• Bit file = 80 bytes < 1024 bytes = 1 memory block

Remember that a bit file includes a 10–byte file header.

5. Calculate the total volatile memory occupied by the user file data:

Downloading User Files

The signal generator expects bit and binary file type data to be downloaded as block data (binary
data in bytes). The IEEE standard 488.2–1992 section 7.7.6 defines block data.

This section contains two examples to explain how to format the SCPI command for downloading
user file data. The examples use the binary user file SCPI command, however the concept is the same
for the bit file SCPI command:

• Command Format
• “Command Format in a Program Routine” on page 287

Command Format

This example conceptually describes how to format a data download command (#ABC represents the
block data):

:MEM:DATA <"file_name">,#ABC

<"file_name"> the data file path and name

indicates the start of the block data

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes to follow in C

AUTOGEN_PRAM_1 Original File

3 blocks 1 block

1024 (3 + 1) = 4096 bytes
286 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
C the file data in bytes

bin: the location of the file within the signal generator file system

my_file the data file name as it will appear in the signal generator’s memory
catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes (1,920 bits) of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the block data (binary data)
downloaded to the signal generator, however not all ASCII values are
printable

In actual use, the block data is not part of the command line as shown above, but instead resides in
a binary file on the PC/UNIX. When the program executes the SCPI command, the command line
notifies the signal generator that it is going to receive block data of the stated size and to place the
file in the signal generator file directory with the indicated name. Immediately following the
command execution, the program downloads the binary file to the signal generator. This is shown in
the following section, “Command Format in a Program Routine”

Some commands are file location specific and do not require the file location as part of the file
name. An example of this is the bit file SCPI command shown in “” on page 290.

Command Format in a Program Routine

This section demonstrates the use of the download SCPI command within the confines of a C++
program routine. The following code sends the SCPI command and downloads user file data to the
signal generator’s Binary memory catalog (directory).

Line Code—Download User File Data

1
2
3
4
5
6
7
8
9

int bytesToSend;
bytesToSend = numsamples;
char s[20];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA \"BIN:FILE1\", #%d%d", strlen(s), bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, databuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

file_name A C

:MEM:DATA “bin:my_file”,#324012%S!4&07#8g*Y9@7...

Bfile location
Agilent X-Series Signal Generators Programming Guide 287

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
Line Code Description—Download User File Data

1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.

2 Calculate the total number of bytes, and store the value in the integer variable defined in line 1.

3 Create a string large enough to hold the bytesToSend value as characters. In this code, string s
is set to 20 bytes (20 characters—one character equals one byte)

4 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = ”2000”.

sprintf() is a standard function in C++, which writes string data to a string variable.

6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.

• strlen() is a standard function in C++, which returns length of a string.

• If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA ”BIN:FILE1\” #42000.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the
variable id.

• iwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified
in the string cmd to the signal generator.

• The third argument of iwrite(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of data bytes it expects to receive.

• The fourth argument of iwrite(), 0, means there is no END of file indicator for the string.
This lets the session remain open, so the program can download the user file data.
288 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
8 Send the user file data stored in the array (databuffer) to the signal generator.

• iwrite() sends the data specified in databuffer to the signal generator (session identifier
specified in id).

• The third argument of iwrite(), bytesToSend, contains the length of the databuffer in bytes.
In this example, it is 2000.

• The fourth argument of iwrite(), 0, means there is no END of file indicator in the data.

In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero
(END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the user file data.

9 Send the terminating carriage (\n) as the last byte of the waveform data.

• iwrite() writes the data “\n” to the signal generator (session identifier specified in id).

• The third argument of iwrite(), 1, sends one byte to the signal generator.

• The fourth argument of iwrite(), 1, is the END of file indicator, which the program uses to
terminate the data download.

To verify the user file data download, see “” on page 290 and “Commands for Binary File
Downloads” on page 290.

Line Code Description—Download User File Data
Agilent X-Series Signal Generators Programming Guide 289

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
Command for Bit File Downloads

Because the signal generator adds a 10–byte file header during a bit file download, you must use the
SCPI command shown in Table 6- 7. If you FTP or copy the file for the initial download, the signal
generator does not add the 10–byte file header, and it does recognize the data in the file (no data in
the transmitted signal).

Bit files enable you to control how many bits in the file the signal generator modulates onto the
signal. Even with this file type, the signal generator requires that all data be contained within bytes.
For more information on bit files, see “Bit File Type Data” on page 280.

Command Syntax Example

The following command downloads a file that contains 17 bytes:

:MEM:DATA:BIT "new_file",131,#21702%S!4&07#8g*Y9@7

Since this command is file specific (BIT), there is no need to add the file path to the file name.

After execution of this command, the signal generator creates a file in the bit directory (memory
catalog) named “new_file” that contains 27 bytes. Remember that the signal generator adds a
10–byte file header to a bit file. When the signal generator uses this file, it will recognize only
131 of the 136 bits (17 bytes) contained in the file.

For information on downloading block data, see “Downloading User Files” on page 286.

Commands for Binary File Downloads

To download a user file as a binary file type means that the signal generator, when the file is
selected for use, sees all of the data contained within the file. For more information on binary files,
see “Binary File Type Data” on page 283. There are two ways to download the file: to be able to

Table 6-7 Bit File Type SCPI Commands

Type Command Syntax

Command :MEM:DATA:BIT <"file_name">,<bit_count>,<block_data>

This downloads the file to the signal generator.

Query :MEM:DATA:BIT? <"file_name">

Within the context of a program this query extracts the user file data. Executing the query
in a command window causes it to return the following information:
<bit_count>,<block_data>.

Query :MEM:CAT:BIT?

This lists all of the files in the bit file directory and shows the remaining non–volatile
memory:

<bytes used by bit files>,<available non-volatile memory>,<"file_names">
290 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
extract the file or not. Each method uses a different SCPI command, which is shown in Table 6- 8.

File Name Syntax

There are three ways to format the file name, which must also include the file path:

• "BIN:file_name"
• "file_name@BIN"
• "/user/BIN/file_name"

Command Syntax Example

The following command downloads a file that contains 34 bytes:

:MEM:DATA "BIN:new_file",#2347^%S!4&07#8g*Y9@7.?:*Ru[+@y3#_^,>l

After execution of this command, the signal generator creates a file in the Binary (Bin) directory
(memory catalog) named “new_file” that contains 34 bytes.

For information on downloading block data, see “Downloading User Files” on page 286.

Table 6-8 Binary File Type Commands

Command
Type

Command Syntax

For
Extraction

SCPI :MEMory:DATA:UNPRotected "bin:file_name",<datablock>

This downloads the file to the signal generator. You can extract the file within the
context of a program.

FTPa

a. See “FTP Procedures” on page 293.

put <file_name> /user/bin/file_name

No
extraction

:MEM:DATA "bin:file_name",<block data>

This downloads the file to the signal generator. You cannot extract the file.

Query :MEM:DATA? "bin:file_name"

This returns information on the named file: <bit_count>,<block_data>.
Within the context of a program, this query extracts the user file, provided it was
download with the proper command.

Query :MEM:CAT:BIN?

This lists all of the files in the bit file directory and shows the remaining
non–volatile memory:

<bytes used by bit files>,<available non-volatile memory>,<"file_names">
Agilent X-Series Signal Generators Programming Guide 291

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
Selecting a Downloaded User File as the Data Source

This section describes how to format SCPI commands for selecting a user file using commands from
the Custom modulation formats. While the commands shown come from only two formats, the
concept remains the same when making the data selection for any of the other real–time modulation
formats that accept user data. To find the data selection commands for both framed and unframed
data for the different modulation formats, see the signal generator’s SCPI Command Reference.

1. Select the user file:

2. Configure the remaining signal parameters.

3. Turn the modulation format on:

:RADio:CUSTom:STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF output. For a complete
listing of SPCI commands, refer to the SCPI Command Reference.

:FREQuency:FIXed 2.5GHZ

:POWer:LEVel -10.0DBM

:OUTPut:MODulation:STATe ON

:OUTPut:STATe ON

Modifying User File Data

There are two ways to modify a file after downloading it to the signal generator:

• Use the signal generator’s bit file editor. This works for both bit and binary files, but it converts
a binary file to a bit file and adds a 10–byte file header. For more information on using the bit
file editor, see the signal generator’s User’s Guide. You can also access the bit editor remotely
using the signal generator’s web server. For web server information, refer to the Programming
Guide.

• Use a hex editor program on your PC or UNIX workstation, as described below.

Modifying a Binary File with a Hex Editor
1. FTP the file to your PC/UNIX.

For information on using FTP, see FTP Procedures. Ensure that you use binary file transfers
during FTP operations.

2. Modify the file using a hex editor program.

3. FTP the file to the signal generator’s BIN memory catalog (directory).

Unframed Data

:RADio:CUSTom:DATA "BIT:file_name"

:RADio:CUSTom:DATA "BIN:file_name"
292 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
Modifying a Bit File with a Hex Editor
1. FTP the file to your PC/UNIX.

For information on using FTP, see FTP Procedures. Ensure that you use binary file transfers
during FTP operations.

2. Modify the file using a hex editor program.

If you need to decrease or increase the number of bits of interest, change the file header hex
value.

3. FTP the file to the signal generator’s BIT memory catalog (directory).

FTP Procedures

CAUTION Avoid using the *OPC? or *WAI commands to verify that the FTP process has been
completed. These commands can potentially hang up due to the processing of other
SCPI parser operations. Refer to the SCPI Command Reference.

NOTE If you are remotely FTPing files and need to verify the completion of the FTP process, then
query the instrument by using SCPI commands such as: ':MEM:DATA:', ':MEM:CAT', '*STB?',
'FREQ?', '*IDN?', 'OUTP:STAT?'. Refer to the SCPI Command Reference.

80 Byte File From Signal Generator

02 80 hex = 640 bits designated as bits of interest

Modified File (80 Bytes to 88 Bytes)

02 bd hex = 701 bits designated as bits of interest

Added bytes
Agilent X-Series Signal Generators Programming Guide 293

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
There are three ways to FTP a file:

• use the Microsoft Internet Explorer FTP feature
• use the signal generator’s internal web server
• use the PC or UNIX command window

Using Microsoft’s Internet Explorer
1. Enter the signal generator’s hostname or IP address as part of the FTP URL.

ftp://<host name> or <IP address>

2. Press Enter on the keyboard or Go from the Internet Explorer window.

The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Using the Signal Generator’s Internal Web Server
1. Enter the signal generator’s hostname or IP address in the URL.

http://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of the window.

The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, refer to the Programming Guide.

Using the Command Window (PC or UNIX)
1. From the PC command prompt or UNIX command line, change to the proper directory:

• When downloading from the signal generator, the directory in which to place the file.
• When downloading to the signal generator, the directory that contains the file.

2. From the PC command prompt or UNIX command line, type ftp <instrument name>.

Where instrument name is the signal generator’s hostname or IP address.

3. At the User: prompt, press Enter (no entry is required).

4. At the Password: prompt, press Enter (no entry is required).

5. At the ftp prompt, type the desired command:

• <file_name1> is the name of the file as it appears in the signal generator’s directory.
• <file_name> is the name of the file as it appears in the PC/UNIX current directory.

To Get a File From the Signal Generator

get /user/<directory>/<file_name1> <file_name>

To Place a File in the Signal Generator

put <file_name> /user/<directory>/<file_name1>
294 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads
• <directory> is the signal generator’s BIT or BIN directory.

6. At the ftp prompt, type: bye

7. At the command prompt, type: exit

Real–Time Custom High Data Rates

Custom has two modes for processing data: serial and parallel. When the data bit rate exceeds
50 Mbps, the signal generator processes data in parallel mode, which means processing the data
symbol by symbol versus bit by bit (serial). This capability exists in only the Custom format when
using a continuous data stream. This means that it does not apply to a downloaded PRAM file type
(covered later in this chapter).

In parallel mode, for a 256QAM modulation scheme, Custom has the capability to reach a data rate
of up to 400 Mbps. The FIR filter width is what determines the data rate. The following table shows
the maximum data rate for each modulation type. Because the signal generator’s maximum symbol
rate is 50 Msps, a modulation scheme that has only 1 bit per symbol is always processed in serial
mode.

Modulation Type Bit Rate Range for Internal Data (bit rate = symbol rate bits per symbol)

16 Symbol Wide FIR
Filter

32 Symbol Wide FIR
Filter

64 Symbol Wide FIR
Filter

BPSK, 2FSK, MSK 1bps–50Mbps 1bps–25 Mbps 1bps–12.5Mbps

C4FM, OQPSK,
4FSK

2bps–100Mbps 2bps–50Mbps 2bps–25Mbps

IS95 OQPSK,
QPSK

P4DQPSK,
IS95 QPSK

GRAYQPSK,
4QAM

D8PSK, EDGE,
8FSK, 8PSK

3bps–150Mbps 3bps–75Mbps 3bps–37.5Mbps

16FSK, 16PSK,
16QAM

4bps–200Mbps 4bps–100Mbps 4bps–50Mbps

Q32AM 5bps–250Mbps 5bps–125Mbps 5bps–62.5Mbps

64QAM 6bps–300Mbps 6bps–150Mbps 6bps–75Mbps

128QAM 7bps–350Mbps 7bps–175Mbps 7bps–87.5Mbps

256QAM 8bps–400Mbps 8bps–200Mbps 8bps–100Mbps
Agilent X-Series Signal Generators Programming Guide 295

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
The only external effect of the parallel mode is in the EVENT 1 output signal. In serial and parallel
mode, the signal generator outputs a narrow pulse at the EVENT 1 connector. But in parallel mode,
the output pulse width increases by a factor of bits–per–symbol wide, as shown in the following
figure.

Pattern RAM (PRAM) Data Downloads

NOTE Refer to Table 6- 2 on page 274 for a list of applicable signal generators.

If you encounter problems with this section, refer to “Data Transfer Troubleshooting” on
page 329.

To verify the SCPI parser’s responsiveness when remotely using the :MEM:DATA SCPI
command to upload files, the file’s upload should be verified using the *STB? command.
Refer to the SCPI Command Reference.

This section contains information to help you transfer user–generated PRAM data from a system
controller to the signal generator’s PRAM. It explains how to download data directly into PRAM and
modulate the carrier signal with the data.

The control bits included in the PRAM file download, control the following signal functions:

• bursting
• timing signal at the EVENT 1 rear panel connector
• data pattern reset

PRAM data downloads apply to only real–time Custom modulation formats.

PRAM files differ from bit and binary user files. Bit and binary user files (see page 279) download to

20 ns

32QAM (5 bits per symbol)

100 ns

10 Msps
10.000001 Msps

bit rate = bits per symbol x symbol rate

NOTE: The pulse widths values are only for example purposes. The actual width may vary from the above values.
296 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
non–volatile memory and the signal generator loads the user file data into PRAM (volatile/waveform
memory) for use. The signal generator adds the required control bits when it generates the signal.

A PRAM file downloads directly into PRAM, and it includes seven of the required control bits for
each data bit. The signal generator adds the remaining control bits when it generates the signal. You
download the file using either a list or block data format. Programs such as MATLAB or MathCad
can generate the data.

This type of signal control enables you to design experimental or proprietary framing schemes.

After selecting the PRAM file, the signal generator builds the modulation scheme by reading data
stored in PRAM, and constructing framing protocols according to the PRAM file data and the
modulation format. You can manipulate PRAM data by changing the standard protocols for a
modulation format such as the symbol rate, modulation type, and filter either through the front panel
interface or with SCPI commands.

Understanding PRAM Files

The term PRAM file comes from earlier Agilent products (E443xB ESG). PRAM is another term for
waveform memory (WFM1), which is also known as volatile memory. This means that PRAM files and
waveform files occupy the same memory location. The signal generator’s volatile memory (waveform
memory) storage path is /user/BBG1/waveform. For more information on memory, see “Signal
Generator Memory” on page 273.

 The following figure shows a PRAM byte and illustrates the difference between it and a bit/binary
user file byte. Notice the control bits in the PRAM byte.

Only three of the seven control bits elicit a response from the signal generator. The other four bits
are reserved. Table 6- 9 describes the bits for a PRAM byte.

Table 6-9 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1 This is the data bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1 = RF on
0 = RF off
For non–bursted, non–TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

User File Data Byte:

MSB

Data bits

PRAM File Data Byte: 1 1 0 1 0 1 0 1

Control bits Data bit

LSB

1 0 0 1 1 1 0 1

MSB LSB
Agilent X-Series Signal Generators Programming Guide 297

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
As seen in Table 6- 9, only four bits, shown in the following list, can change state:

• bit 0—data
• bit 2—bursting
• bit 6—EVENT 1 rear panel output
• bit 7—pattern reset

Because a PRAM byte has only four bits that can change states, there are only 15 possible byte
patterns as shown in Table 6- 10. The table also shows the decimal value for each pattern, which is
needed for downloading data using the list format shown on page 302.

6 EVENT1
Output

0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit
to 1. Use this output for functions such as a triggering external hardware to indicate when
the data pattern begins and restarts, or creating a data–synchronous pulse train by
toggling this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.
1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set
the last byte of PRAM to 1.

Table 6-9 PRAM Data Byte

Bit Function Value Comments
298 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
Viewing the PRAM Waveform

After the waveform data is written to PRAM, the data pattern can be viewed using an oscilloscope.
There is approximately a 12–symbol delay between a state change in the burst bit and the
corresponding effect at the RF out. This delay varies with symbol rate and filter settings, and
requires compensation to advance the burst bit in the downloaded PRAM file.

Table 6-10 PRAM Byte Patterns and Bit Positions

Bit Function
P

at
te

rn
 R

es
et

E
V

E
N

T
 1

 O
u

tp
u

t

R
es

er
ve

d
 (

B
it

 =
 0

)

R
es

er
ve

d
 (

B
it

 =
 1

)

R
es

er
ve

d
 (

B
it

 =
 0

)

B
u

rs
t

R
es

er
ve

d
 (

B
it

 =
 0

)

D
at

a

Bit
Pattern
Decimal

Value

Bit Position 7 6 5 4 3 2 1 0 - - -

Bit Pattern 1 1 0 1 0 1 0 1 213

1 1 0 1 0 1 0 0 212

1 1 0 1 0 0 0 1 209

1 1 0 1 0 0 0 0 208

1 0 0 1 0 1 0 1 149

1 0 0 1 0 0 0 1 145

1 0 0 1 0 0 0 0 144

0 1 0 1 0 1 0 1 85

0 1 0 1 0 1 0 0 84

0 1 0 1 0 0 0 1 81

0 1 0 1 0 0 0 0 80

0 0 0 1 0 1 0 1 21

0 0 0 1 0 1 0 0 20

0 0 0 1 0 0 0 1 17

0 0 0 1 0 0 0 0 16
Agilent X-Series Signal Generators Programming Guide 299

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
PRAM File Size

Because volatile memory resides on the baseband generator (BBG), the maximum PRAM file size
depends on the installed baseband generator option.

After downloading, the signal generator translates each downloaded data bit into a 32–bit word:

• 1 downloaded data bit

• 7 downloaded control bits as shown in Table 6- 9 on page 297

• 24 bits added by the signal generator

To properly size a PRAM file, you must determine the file size after the 32–bit translation process.
The signal generator measures a PRAM file size in units of bytes; each 32–bit word equals 4 bytes.

Determining the File Size

The following example shows how to calculate a downloaded file size using a PRAM file that contains
89 bytes (data bits plus 7 control bits per data bit):

89 bytes + [(89 24 bits) / 8] = 356 bytes

Because the file downloads one fourth of the translated 32–bit word, another method to calculate the
file size is to multiply the downloaded file size by four:

89 bytes 4 = 356 bytes

See also “Signal Generator Memory” on page 273 and “Checking Available Memory” on page 277.

Minimum File Size

A PRAM file requires a minimum of 60 bytes to create a signal. If the downloaded file contains less
than 60 bytes, the signal generator replicates the file until the file size meets the 60 byte minimum.
This replication process occurs after you select the file and turn the modulation format on. The
following example shows this process using a downloaded 14–byte file:

• During the file download, the 14 bytes are translated into 56 bytes (fourteen 32–bit words).

14 bytes 4 = 56 bytes

• After selecting and turning the format on, the signal generator replicates the file contents to
create the 60 byte minimum file size

60 bytes / 14 bytes = 4.29 file replications

File size increases
by a factor of 4
300 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
The signal generator rounds this real value up to the next highest integer. In this example, the
signal generator replicates the fourteen 32–bit words (56 bytes) by a factor of 5, which makes the
final file size 280 bytes. This equates to a 70 byte file.

14 bytes 5 = 70 bytes

70 + [(70 24) / 8] = 280 bytes

Or

56 bytes 5 = 280 bytes

File size increases
by a factor of 5
Agilent X-Series Signal Generators Programming Guide 301

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
SCPI Command for a List Format Download

Using the list format, enter the data in the command line using comma separated decimal values.
This file type takes longer to download because the signal generator must parse the data. When
creating the data, remember that the signal generator requires a minimum of 60 bytes. For more
information on file size limits, see “PRAM File Size” on page 300.

Command Syntax

:MEMory:DATA:PRAM:FILE:LIST <"file_name">,<uint8>[,<uint8>,<...>]

uint8 The decimal equivalent of an unsigned 8–bit integer value. For a list of usable
decimal values and their meaning with respect to the generated signal, see Table
6- 10 on page 299.

Command Syntax Example

The following example, when executed, creates a new file in volatile (waveform) memory with the
following attributes:

• creates a file named new_file
• outputs a single pulse at the EVENT 1 connector
• bursts the data pattern 1100 seven times over 28 bytes
• transmits 32 non–bursted bytes
• resets the data pattern so it starts again

:MEMory:DATA:PRAM:FILE:LIST <"new_file">,85,21,20,20,21,21,20,20,21,21,20,20,21,21,
20,20,21,21,20,20,21,21,20,20,21,21,20,20,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,144

The following list defines the meaning of the different bytes seen in the command line:

SCPI Command for a Block Data Download

The IEEE standard 488.2–1992 section 7.7.6 defines block data. The signal generator is able to
download block data significantly faster than list formatted data (see page 302), because it does not
have to parse the data. When creating the data, remember that the signal generator requires a
minimum of 60 bytes. For more information on file size limits, see “PRAM File Size” on page 300.

85 Send a pulse to the EVENT 1 output, and burst the signal with a data bit of 1.

21 Burst the signal with a data bit of 1.

20 Burst the signal with a data bit of 0.

16 Do not burst the signal (RF output off), and set the data bit to 0.

144 Reset the data pattern, do not burst the signal (RF output off), and set the data bit to 0.
302 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
Command Syntax

:MEMory:DATA:PRAM:FILE:BLOCk <"file_name">,<blockdata>

The following sections explain how to format the SCPI command for downloading block data:

• Command Syntax Example

• Command Syntax in a Program Routine

Command Syntax Example

This example conceptually describes how to format a block data download command (#ABC represents
the block data):

:MEMory:DATA:PRAM:FILE:BLOCk <"file_name">,#ABC

<"file_name"> the file name as it will appear in the signal generator

indicates the start of the block data

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes to follow in C

C the PRAM file data in bytes

my_file the PRAM file name as it will appear in the signal generator’s WFM1
memory catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the block data (binary data)
downloaded to the signal generator, however not all ASCII values are
printable

In actual use, the block data is not part of the command line as shown above, but instead resides in
a binary file on the PC/UNIX. When the program executes the SCPI command, the command line
notifies the signal generator that it is going to receive block data of the stated size, and to place the
file in the signal generator file directory with the indicated name. Immediately following the
command execution, the program downloads the binary file to the signal generator. This is shown in
the following section, “Command Syntax in a Program Routine”

Command Syntax in a Program Routine

This section demonstrates the use of the download SPCI command within the confines of a C++
program routine. The following code sends the SCPI command and downloads a 240 byte PRAM file
to the signal generator’s WFM1 (waveform) memory catalog. This program assumes that there is a
char array, databuffer, that contains the 240 bytes of PRAM data and that the variable numbytes
stores the length of the array.

file_name A C

:MEMory:DATA:PRAM:FILE:BLOCk “my_file”,#324012%S!4&07#8g*Y9@7...

B

Agilent X-Series Signal Generators Programming Guide 303

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
Line Code—Download PRAM File Data

1
2
3
4
5
6
7
8
9

int bytesToSend;
bytesToSend = numbytes;
char s[4];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA:PRAM:FILE:BLOCk \"FILE1\", #%d%d", strlen(s),bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, databuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

Line Code Description—Download PRAM File Data

1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.

2 Store the total number of PRAM bytes in the integer variable defined in line 1. numbytes
contains the length of the databuffer array referenced in line 8.

3 Create a string large enough to hold the bytesToSend value as characters plus a null character
value. In this code, string s is set to 4 bytes (3 characters for the bytesToSend value and one
null character—one character equals one byte).

4 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For this example, bytesToSend = 240; s = ”240”

6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.

• sprintf() is a standard function in C++, which writes string data to a string variable.

• strlen() is a standard function in C++, which returns length of a string.

• bytesToSend = 240, then s = “240” plus the null character, strlen(s) = 4, so
cmd = :MEM:DATA:PRAM:FILE:BLOCk ”FILE1\” #3240.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the
variable id.

• iwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified
in the string cmd to the signal generator.

• The third argument of iwrite(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of data bytes it expects to receive.

• The fourth argument of iwrite(), 0, means there is no END of file indicator for the string.
This lets the session remain open, so the program can download the PRAM file data.
304 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
Selecting a Downloaded PRAM File as the Data Source

The following steps show the process for selecting a PRAM file using commands from the Custom
modulation format.

1. Select the data type:

:RADio:CUSTom:DATA PRAM

2. Select the PRAM file:

:RADio:CUSTom:DATA:PRAM <"file_name">

Because the command is file specific (PRAM), there is no need to include the file path with the
file name.

3. Configure the remaining signal parameters.

4. Turn the modulation format on:

:RADio:CUSTom:STATe On

8 Send the PRAM file data stored in the array, databuffer, to the signal generator.

• iwrite() sends the data specified in databuffer (PRAM data) to the signal generator (session
identifier specified in id).

• The third argument of iwrite(), bytesToSend, contains the length of the databuffer in bytes.
In this example, it is 240.

• The fourth argument of iwrite(), 0, means there is no END of file indicator in the data.

In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero
(END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the user file data.

9 Send the terminating carriage (\n) as the last byte of the waveform data.

• iwrite() writes the data “\n” to the signal generator (session identifier specified in id).

• The third argument of iwrite(), 1, sends one byte to the signal generator.

• The fourth argument of iwrite(), 1, is the END of file indicator, which the program uses to
terminate the data download.

Line Code Description—Download PRAM File Data
Agilent X-Series Signal Generators Programming Guide 305

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF output. For a complete
listing of SPCI commands, refer to the SCPI Command Reference.

:FREQuency:FIXed 1.8GHZ

:POWer:LEVel -10.0DBM

:OUTPut:MODulation:STATe ON

:OUTPut:STATe ON

Storing a PRAM File to Non–Volatile Memory and Restoring to Volatile Memory

After you download the file to volatile memory (waveform memory), you can then save it to
non–volatile memory. Remember that a PRAM file downloads to waveform memory. Conversely, when
you store a PRAM file to non–volatile memory, it uses the same directory as waveform files. When
storing or restoring a file, you must include the file path as part of the file_name variable.

Command Syntax

The first file_name variable is the current location of the file and its name; the second file_name
variable is the destination to store the file and its name.

There are three ways to format the file_name variable to include the file path:

Extracting a PRAM File

When you extract a PRAM file, you are extracting the translated 32–bit word–per–byte file. You
cannot extract just the downloaded data. Extracting a PRAM file is similar to extracting a waveform
file in that you use the same commands, and the PRAM file resides in either volatile memory
(waveform memory) or the waveform directory for non–volatile memory. After extraction, you can
download the file to the same signal generator or to another signal generator with the proper option
configuration that supports the downloaded file. There are two ways to download a file after
extraction:

• with the ability to extract later
• with no extraction capability

Volatile Memory to Non–Volatile Memory

:MEMory:COPY "WFM1:file_name","NVWFM:file_name"
:MEMory:COPY "file_name@WFM1","file_name@NVWFM"
:MEMory:COPY "/user/bbg1/waveform/file_name","/user/waveform/file_name"

Non–Volatile Memory to Volatile Memory

:MEMory:COPY "NVWFM:file_name","WFM1:file_name"

:MEMory:COPY "file_name@NVWFM","file_name@WFM1"

:MEMory:COPY "/user/waveform/file_name","/user/bbg1/waveform/file_name"
306 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
CAUTION Ensure that you do not use the :MEMory:DATA:PRAM:FILE:BLOCk command to download
an extracted file. If you use this command, the signal generator will treat the file as a
new PRAM file and translate the LSB of each byte into a 32–bit word, corrupting the file
data.

Command Syntax

This section lists the commands for extracting PRAM files and downloading extracted PRAM files. To
download an extracted file, you must use block data. For information on block data, see “SCPI
Command for a Block Data Download” on page 302. In addition, there are three ways to format the
file_name variable, which must also include the file path, as shown in the following tables.

There are two commands for file extraction:

• :MEM:DATA? <"file_name">

• :MMEM:DATA? <"filename">

The following table uses the first command to illustrate the command format, however the format is
the same if you use the second command.

Table 6-11 Extracting a PRAM File

Extraction
Method/Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA? "WFM1:file_name"
:MEM:DATA? "file_name@WFM1"
:MEM:DATA? "/user/bbg1/waveform/file_name"

SCPI/non–volatile
memory

:MEM:DATA? "NVWFM:file_name"
:MEM:DATA? "file_name@NVWFM"
:MEM:DATA? "/user/waveform/file_name"

FTP/volatile memorya

a. See “FTP Procedures” on page 293.

get /user/bbg1/waveform/file_name

FTP/non–volatile

memorya
get /user/waveform/file_name

Table 6-12 Downloading a File for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA:UNPRotected "WFM1:file_name",<blockdata>
:MEM:DATA:UNPRotected "file_name@WFM1",<blockdata>
:MEM:DATA:UNPRotected "/user/bbg1/waveform/file_name",<blockdata>
Agilent X-Series Signal Generators Programming Guide 307

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
There are two commands that download a file for no extraction:

• :MEM:DATA <"file_name">,<blockdata>

• :MMEM:DATA <"filename">,<blockdata>

The following table uses the first command to illustrate the command format, however the format is
the same if you use the second command.

Modifying PRAM Files

The only way to change PRAM file data is to modify the original file on a computer and download it
again. The signal generator does not support viewing and editing PRAM file contents. Because the
signal generator translates the data bit into a 32–bit word, the file contents are not recognizable, and

SCPI/non–volatile
memory

:MEM:DATA:UNPRotected "NVWFM:file_name",<blockdata>
:MEM:DATA:UNPRotected "file_name@NVWFM",<blockdata>
:MEM:DATA:UNPRotected "/user/waveform/file_name",<blockdata>

FTP/volatile memorya put <file_name> /user/bbg1/waveform/file_name

FTP/non–volatile

memorya
put <file_name> /user/waveform/file_name

a. See “FTP Procedures” on page 293.

Table 6-13 Downloading a File for No Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA "WFM1:file_name",<blockdata>
:MEM:DATA "file_name@WFM1",<blockdata>
:MMEM:DATA "user/bbg1/waveform/file_name",<blockdata>

SCPI/non–volatile
memory

:MEM:DATA "NVWFM:file_name",<blockdata>
:MEM:DATA "file_name@NVWFM",<blockdata>
:MEM:DATA /user/waveform/file_name",<blockdata>

Table 6-12 Downloading a File for Extraction

Download Method/
Memory Type

Command Syntax Options
308 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads
therefore not editable using a hex editor program, as shown in the following figure.

60 byte PRAM file prior to downloading

60 byte PRAM file after downloading
Agilent X-Series Signal Generators Programming Guide 309

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads
FIR Filter Coefficient Downloads

NOTE If you encounter problems with this section, refer to “Data Transfer Troubleshooting” on
page 329.

The signal generator accepts finite impulse response (FIR) filter coefficient downloads. After
downloading the coefficients, these user–defined FIR filter coefficient values can be selected as the
filtering mechanism for the active digital communications standard.

Data Requirements

There are two requirements for user–defined FIR filter coefficient files:

1. Data must be in ASCII format.

The signal generator processes FIR filter coefficients as floating point numbers.

2. Data must be in List format.

FIR filter coefficient data is processed as a list by the signal generator’s firmware. See Sample
Command Line.

Data Limitations

NOTE Modulation filters are real and have an oversample ratio (OSR) of two or greater.

On the N5172B and N5182B with Options 653, 655, or 656, 657, respectively, equalization
filters are typically complex and must have an OSR of one (refer to “Using the Equalization
Filter” on page 313 and to the User’s Guide).

The X- Series and MXG support both Real and Complex filters. Complex filters can only be used with
equalization filters. Refer to Table 6- 14 and to Table 6- 15. For more on equalization filters, refer to
“Using the Equalization Filter” on page 313.

Filter lengths of up to 1024 taps are allowed. The oversample ratio (OSR) is the number of filter taps
per symbol. Oversample ratios from 1 through 32 are possible.

Table 6-14

Type of
Filter

Description

Real The I and Q samples are independently filtered by a single set of real coefficients.

Complex The samples are treated as complex (I + jQ) and convolved with the filter coefficients which
are specified as (I + jQ) in the time domain.
310 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads
The sampling period (t) is equal to the inverse of the sampling rate (FS). For modulation filters, the
sampling rate is equal to the symbol rate multiplied by the oversample ratio. For example, the GSM
symbol rate is 270.83 ksps. With an oversample ratio of 4, the sampling rate is 1083.32 kHz and t
(inverse of FS) is 923.088 nsec.

Downloading FIR Filter Coefficient Data

The signal generator stores the FIR files in the FIR (/USER/FIR) directory, which utilizes non–volatile
memory (see also “Signal Generator Memory” on page 273). Use the following SCPI command line to
download FIR filter coefficients (file) from the PC to the signal generator’s FIR directory:

:MEMory:DATA:FIR <"file_name">,[REAL,]osr,coefficient

:MEMory:DATA:FIR
<"file_name">,COMPlex,osr,realCoefficient,imaginaryCoefficient,...

Use the following SCPI command line to query list data from the FIR file:

:MEMory:DATA:FIR? <"file_name">

Sample Command Line

The following SCPI command will download a typical set of real modulation FIR filter coefficient
values and name the file “FIR1”:

:MEMory:DATA:FIR "FIR1",4,0,0,0,0,0,0.000001,0.000012,0.000132,0.001101,
0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.809508,0.523849,
0.265790,0.103676,0.030588,0.006743,0.001101,0.000132,0.000012,0.000001,0,
0,0,0,0

FIR1 assigns the name FIR1 to the associated OSR (over sample ratio) and coefficient
values (the file is then represented with this name in the FIR File catalog)

4 specifies the oversample ratio

0,0,0,0,0,

Table 6-15

Filter Type Oversampling Ratio
(OSR)

Number of Taps
(Maximum)

Symbols/Coefficients
(Maximum)

Equalizationa

a.When I/Q timing skew, I/Q delay, or the ACP internal I/Q channel optimization features are active, the
effective number of taps for the equalization filter are reduced.

1 256 - -

ARB Custom

Modulationb

b.The filter may be sampled to a higher or lower OSR.

2 - - 512/1024

Dual ARB
Real- Time

Modulationc

c.The filter will be decimated to a 16 or lower OSR depending on the symbol rate.

2 - - 32/1024
Agilent X-Series Signal Generators Programming Guide 311

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads
0.000001,... the FIR filter coefficients

Selecting a Downloaded User FIR Filter as the Active Filter

NOTE For information on manual key presses for the following remote procedures, refer to the
User’s Guide.

FIR Filter Data for Custom Modulation

The following remote command selects user FIR filter data as the active filter for a custom
modulation format.

:RADio:CUSTom:FILTer <"file_name">

This command selects the user FIR filter, specified by the file name, as the active filter for the
custom modulation format. After selecting the file, activate the TDMA format with the following
command:

:RADio:CUSTom:STATe On

Modulating and Activating the Carrier

The following commands set the carrier frequency and power, and turns on the modulation and the
RF output.

1. Set the carrier frequency to 2.5 GHz:

:FREQuency:FIXed 2.5GHZ

2. Set the carrier power to –10.0 dBm:

:POWer:LEVel -10.0DBM

3. Activate the modulation:

:OUTPut:MODulation:STATe ON

4. Activate the RF output:

:OUTPut:STATe ON
312 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Using the Equalization Filter
Using the Equalization Filter

NOTE This section applies to vector models with an installed baseband generator option.

An equalization FIR file can be created externally, uploaded via SCPI, and subsequently selected from
the file system (refer to the User’s Guide). For information related to downloading FIR file
coefficients, refer to the “FIR Filter Coefficient Downloads” on page 310. For information regarding
working with FIR file coefficients manually, refer to the User’s Guide. For more information on
equalization filters, refer to the User’s Guide.

This filter can be used to correct and/or impair the RF and External I/Q outputs for the internal I/Q
source. This filter will be convolved with the ACP Internal I/Q Channel Optimization filter if that
filter is selected, the result of which will be truncated to the center 256 taps. The equalization filter
operates at 125MHz (200MHz for N5172B/82B), so all equalization filters must be resampled to
125MHz (200MHz for N5172B/82B) prior to selection, if they are sampled at some other rate.

The signal generator supports equalization filters—either Complex or Real—that are programmable FIR
filters with two inputs (I, Q) and two outputs (I, Q) per sample. This 256- tap filter has two modes of
operation:

NOTE The maximum number of taps is 256 (with 2 coefficients per tap for a complex filter) for
equalization filters. The minimum number of taps is 2.

Equalization filters can also be referred to as predistortion filters or correction filters.

The equalization filter can be turned on and off.

Type of
Filter

Description

Real The I and Q samples are independently filtered by a single set of real coefficients.

Complex The samples are treated as complex (I + jQ) and convolved with the filter coefficients which
are specified as (I + jQ) in the time domain.
Agilent X-Series Signal Generators Programming Guide 313

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
Save and Recall Instrument State Files

NOTE References to waveform files and some of the other data file types mentioned in the
following sections are not available for all models and options of signal generator. Refer to
the instrument’s Data Sheet for the signal generator and options being used.

The signal generator can save instrument state settings to memory. An instrument state setting
includes any instrument state that does not survive a signal generator preset or power cycle such as
frequency, amplitude, attenuation, and other user–defined parameters. The instrument state settings
are saved in memory and organized into sequences and registers. There are 10 sequences with 100
registers per sequence available for instrument state settings. These instrument state files are stored
in the USER/STATE directory. See also, “Signal Generator Memory” on page 273.

The save function does not store data such as Arb waveforms, table entries, list sweep data, and so
forth. The save function saves a reference to the waveform or data file name associated with the
instrument state. Use the store commands or store softkey functions to store these data file types to
the signal generator’s memory catalog.

Before saving an instrument state that has a data file or waveform file associated with it, store the
file. For example, if you are editing a multitone arb format, store the multitone data to a file in the
signal generator’s memory catalog (multitone files are stored in the USER/MTONE directory). Then
save the instrument state associated with that data file. The settings for the signal generator such as
frequency and amplitude and a reference to the multitone file name will be saved in the selected
sequence and register number. Refer to the signal generator’s User’s Guide, Key and Data Field
Reference, or the signal generator’s Help hardkey for more information on the save and recall
functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using the *SAV command, in
register 01, sequence 1. A comment is then added to the instrument state.

*SAV 01,1
:MEM:STAT:COMM 01,1,"Instrument state comment"

If there is a waveform or data file associated with the instrument state, there will be a file name
reference saved along with the instrument state. However, the waveform/data file must be stored in
the signal generator’s memory catalog as the *SAV command does not save data files. For more
information on storing file data such as modulation formats, arb setups, and table entries refer to the
signal generator’s User’s Guide.

NOTE If a saved instrument state contains a reference to a waveform file, ensure that the
waveform file resides in volatile memory before recalling the instrument state. For more
information, see the User’s Guide.
314 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
The recall function recalls a saved instrument state. If there is a data file associated with the
instrument state, the file will be loaded along with the instrument state. The following command
recalls the instrument state saved in register 01, sequence 1.

*RCL 01,1

Save and Recall Programming Example Using VISA and C#

The following programming example uses VISA and C# to save and recall signal generator instrument
states. Instruments states are saved to and recalled from your computer. This console program
prompts the user for an action: Backup State Files, Restore State Files, or Quit.

The Backup State Files choice reads the signal generator’s state files and stores it on your computer
in the same directory where the State_Files.exe program is located. The Restore State Files selection
downloads instrument state files, stored on your computer, to the signal generator’s State directory.
The Quit selection exists the program. The figure below shows the console interface and the results
obtained after selecting the Restore State Files operation.

The program uses VISA library functions. Refer to the Agilent VISA User’s Manual available on
Agilent’s website: http:\\www.agilent.com for more information on VISA functions.

The program listing for the State_Files.cs program is shown below. It is available on the CD–ROM in
the programming examples section under the same name.

C# and Microsoft .NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and applications. There are
three components of the .NET Framework: the common language runtime, class libraries, and Active
Server Pages, called ASP.NET. Refer to the Microsoft website for more information on the .NET
Framework.

The .NET Framework must be installed on your computer before you can run the State_Files
program. The framework can be downloaded from the Microsoft website and then installed on your
computer.
Agilent X-Series Signal Generators Programming Guide 315

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
Perform the following steps to run the State_Files program.

1. Copy the State_Files.cs file from the CD–ROM programming examples section to the directory
where the .NET Framework is installed.

2. Change the TCPIP0 address in the program from TCPIP0::000.000.000.000 to your signal
generator’s address.

3. Save the file using the .cs file name extension.

4. Run the Command Prompt program. Start > Run > "cmd.exe". Change the directory for the
command prompt to the location where the .NET Framework was installed.

5. Type csc.exe State_Files.cs at the command prompt and then press the Enter key on the keyboard
to run the program. The following figure shows the command prompt interface.

The State_Files.cs program is listed below. You can copy this program from the examples directory on
the signal generator’s Documentation CD–ROM.

NOTE The State_Files.cs example uses the ESG in the programming code but can be used with
MXG or X- Series signal generators.

//**

// FileName: State_Files.cs

//

// This C# example code saves and recalls signal generator instrument states. The saved

// instrument state files are written to the local computer directory computer where the

// State_Files.exe is located. This is a console application that uses DLL importing to

// allow for calls to the unmanaged Agilent IO Library VISA DLL.

//
316 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
// The Agilent VISA library must be installed on your computer for this example to run.

// Important: Replace the visaOpenString with the IP address for your signal generator.

//

//**

using System;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

using System.Collections;

using System.Text.RegularExpressions;

namespace State_Files

{

 class MainApp

 {

 // Replace the visaOpenString variable with your instrument's address.

 static public string visaOpenString = "TCPIP0::000.000.000.000"; //"GPIB0::19";

 //"TCPIP0::ESG3::INSTR";

public const uint DEFAULT_TIMEOUT = 30 * 1000;// Instrument timeout 30 seconds.

public const int MAX_READ_DEVICE_STRING = 1024; // Buffer for string data reads.

public const int TRANSFER_BLOCK_SIZE = 4096;// Buffer for byte data.

 // The main entry point for the application.

 [STAThread]

static void Main(string[] args)

 {

 uint defaultRM;// Open the default VISA resource manager

if (VisaInterop.OpenDefaultRM(out defaultRM) == 0) // If no errors, proceed.

{

uint device;

// Open the specified VISA device: the signal generator

if (VisaInterop.Open(defaultRM, visaOpenString,VisaAccessMode.NoLock,

DEFAULT_TIMEOUT, out device) == 0)

// if no errors proceed.

{

Agilent X-Series Signal Generators Programming Guide 317

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
bool quit = false;

while (!quit)// Get user input
{

Console.Write("1) Backup state files\n" +

"2) Restore state files\n" +

"3) Quit\nEnter 1,2,or 3. Your choice: ");

string choice = Console.ReadLine();
switch (choice)

{

case "1":
{

BackupInstrumentState(device); // Write instrument state
break; // files to the computer

}

 case "2":

{

RestoreInstrumentState(device); // Read instrument state

break;// files to the sig gen

}

case "3":

{

quit = true;

break;

}

default:

{

break;

}

}

}

VisaInterop.Close(device);// Close the device

}

else

{

Console.WriteLine("Unable to open " + visaOpenString);

 }

VisaInterop.Close(defaultRM); // Close the default resource manager

 }

else

{

 Console.WriteLine("Unable to open the VISA resource manager");

 }

 }

 /* This method restores all the sequence/register state files located in
318 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
the local directory (identified by a ".STA" file name extension)

to the signal generator.*/

static public void RestoreInstrumentState(uint device)

{

DirectoryInfo di = new DirectoryInfo(".");// Instantiate object class

FileInfo[] rgFiles = di.GetFiles("*.STA"); // Get the state files

foreach(FileInfo fi in rgFiles)

{

Match m = Regex.Match(fi.Name, @"^(\d)_(\d\d)");

if (m.Success)

{

string sequence = m.Groups[1].ToString();

string register = m.Groups[2].ToString();

Console.WriteLine("Restoring sequence #" + sequence +

 ", register #" + register);

/* Save the target instrument's current state to the specified sequence/

register pair. This ensures the index file has an entry for the specified

sequence/register pair. This workaround will not be necessary in future

revisions of firmware.*/

WriteDevice(device,"*SAV " + register + ", " + sequence + "\n",

 true); // << on SAME line!

// Overwrite the newly created state file with the state

// file that is being restored.

WriteDevice(device, "MEM:DATA \"/USER/STATE/" + m.ToString() + "\",",

 false); // << on SAME line!

WriteFileBlock(device, fi.Name);

WriteDevice(device, "\n", true);

}

}

 }

/* This method reads out all the sequence/register state files from the signal

generator and stores them in your computer's local directory with a ".STA"

extension */

static public void BackupInstrumentState(uint device)

{

// Get the memory catalog for the state directory

WriteDevice(device, "MEM:CAT:STAT?\n", false);
Agilent X-Series Signal Generators Programming Guide 319

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
string catalog = ReadDevice(device);

/* Match the catalog listing for state files which are named

(sequence#)_(register#) e.g. 0_01, 1_01, 2_05*/

Match m = Regex.Match(catalog, "\"(\\d_\\d\\d),");

while (m.Success)

{

// Grab the matched filename from the regular expresssion

string nextFile = m.Groups[1].ToString();

// Retrieve the file and store with a .STA extension

// in the current directory

Console.WriteLine("Retrieving state file: " + nextFile);

WriteDevice(device, "MEM:DATA? \"/USER/STATE/" + nextFile + "\"\n", true);

ReadFileBlock(device, nextFile + ".STA");

// Clear newline

ReadDevice(device);

// Advance to next match in catalog string

m = m.NextMatch();

}

}

/* This method writes an ASCII text string (SCPI command) to the signal generator.

If the bool "sendEnd" is true, the END line character will be sent at the

conclusion of the write. If "sendEnd is false the END line will not be sent.*/

static public void WriteDevice(uint device, string scpiCmd, bool sendEnd)

{

byte[] buf = Encoding.ASCII.GetBytes(scpiCmd);

if (!sendEnd) // Do not send the END line character

{

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 0);

}

uint retCount;

VisaInterop.Write(device, buf, (uint)buf.Length, out retCount);

if (!sendEnd) // Set the bool sendEnd true.

{

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 1);

}

}

// This method reads an ASCII string from the specified device

static public string ReadDevice(uint device)

{

320 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
string retValue = "";

byte[] buf = new byte[MAX_READ_DEVICE_STRING]; // 1024 bytes maximum read

uint retCount;

if (VisaInterop.Read(device, buf, (uint)buf.Length -1, out retCount) == 0)

{

retValue = Encoding.ASCII.GetString(buf, 0, (int)retCount);

}

return retValue;

}

/* The following method reads a SCPI definite block from the signal generator

and writes the contents to a file on your computer. The trailing

newline character is NOT consumed by the read.*/

static public void ReadFileBlock(uint device, string fileName)

{

// Create the new, empty data file.

FileStream fs = new FileStream(fileName, FileMode.Create);

// Read the definite block header: #{lengthDataLength}{dataLength}

uint retCount = 0;

byte[] buf = new byte[10];

VisaInterop.Read(device, buf, 2, out retCount);

VisaInterop.Read(device, buf, (uint)(buf[1]-'0'), out retCount);

uint fileSize = UInt32.Parse(Encoding.ASCII.GetString(buf, 0, (int)retCount));

// Read the file block from the signal generator

byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

uint bytesRemaining = fileSize;

while (bytesRemaining != 0)

{

uint bytesToRead = (bytesRemaining < TRANSFER_BLOCK_SIZE) ?

bytesRemaining : TRANSFER_BLOCK_SIZE;

VisaInterop.Read(device, readBuf, bytesToRead, out retCount);

fs.Write(readBuf, 0, (int)retCount);

bytesRemaining -= retCount;

}

// Done with file

fs.Close();

}

/* The following method writes the contents of the specified file to the

specified file in the form of a SCPI definite block. A newline is
Agilent X-Series Signal Generators Programming Guide 321

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
NOT appended to the block and END is not sent at the conclusion of the

write.*/

static public void WriteFileBlock(uint device, string fileName)

{

// Make sure that the file exists, otherwise sends a null block

if (File.Exists(fileName))

{

FileStream fs = new FileStream(fileName, FileMode.Open);

// Send the definite block header: #{lengthDataLength}{dataLength}

string fileSize = fs.Length.ToString();

string fileSizeLength = fileSize.Length.ToString();

WriteDevice(device, "#" + fileSizeLength + fileSize, false);

// Don't set END at the end of writes

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 0);

// Write the file block to the signal generator

byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

int numRead = 0;

uint retCount = 0;

while ((numRead = fs.Read(readBuf, 0, TRANSFER_BLOCK_SIZE)) != 0)

{

VisaInterop.Write(device, readBuf, (uint)numRead, out retCount);

}

// Go ahead and set END on writes

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 1);

// Done with file

fs.Close();

}

else

{

// Send an empty definite block

WriteDevice(device, "#10", false);

}

}

}

// Declaration of VISA device access constants

public enum VisaAccessMode

 {

 NoLock = 0,

 ExclusiveLock = 1,

 SharedLock = 2,
322 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
 LoadConfig = 4

 }

// Declaration of VISA attribute constants

public enum VisaAttribute

 {

 SendEndEnable = 0x3FFF0016,

 TimeoutValue = 0x3FFF001A

 }

// This class provides a way to call the unmanaged Agilent IO Library VISA C

// functions from the C# application

public class VisaInterop

 {

 [DllImport("agvisa32.dll", EntryPoint="viClear")]

 public static extern int Clear(uint session);

 [DllImport("agvisa32.dll", EntryPoint="viClose")]

 public static extern int Close(uint session);

 [DllImport("agvisa32.dll", EntryPoint="viFindNext")]

 public static extern int FindNext(uint findList, byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viFindRsrc")]

 public static extern int FindRsrc(

 uint session,

 string expr,

 out uint findList,

 out uint retCnt,

 byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viGetAttribute")]

public static extern int GetAttribute(uint vi, VisaAttribute attribute, out uint attrState);

 [DllImport("agvisa32.dll", EntryPoint="viOpen")]

 public static extern int Open(

 uint session,

 string rsrcName,

 VisaAccessMode accessMode,

 uint timeout,

 out uint vi);
Agilent X-Series Signal Generators Programming Guide 323

Creating and Downloading User–Data Files
Save and Recall Instrument State Files
 [DllImport("agvisa32.dll", EntryPoint="viOpenDefaultRM")]

 public static extern int OpenDefaultRM(out uint session);

 [DllImport("agvisa32.dll", EntryPoint="viRead")]

 public static extern int Read(

 uint session,

 byte[] buf,

 uint count,

 out uint retCount);

 [DllImport("agvisa32.dll", EntryPoint="viSetAttribute")]

public static extern int SetAttribute(uint vi, VisaAttribute attribute, uint attrState);

 [DllImport("agvisa32.dll", EntryPoint="viStatusDesc")]

 public static extern int StatusDesc(uint vi, int status, byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viWrite")]

 public static extern int Write(

 uint session,

 byte[] buf,

 uint count,

 out uint retCount);

 }

}

324 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA
User Flatness Correction Downloads Using C++ and VISA
This sample program uses C++ and the VISA libraries to download user–flatness correction values to
the signal generator. The program uses the LAN interface but can be adapted to use the GPIB
interface by changing the address string in the program.

You must include header files and resource files for library functions needed to run this program.
Refer to “Running C++ Programs” on page 58 for more information.

The FlatCal program asks the user to enter a number of frequency and amplitude pairs. Frequency
and amplitude values are entered through the keyboard and displayed on the console interface. The
values are then downloaded to the signal generator and stored to a file named flatCal_data. The file
is then loaded into the signal generator’s memory catalog and corrections are turned on. The figure
below shows the console interface and several frequency and amplitude values. Use the same format,
shown in the figure below, for entering frequency and amplitude pairs (for example, 12ghz, 1.2db).

Figure 6-1 FlatCal Console Application

The program uses VISA library functions. The non–formatted viWrite VISA function is used to output
data to the signal generator. Refer to the Agilent VISA User’s Manual available on Agilent’s website:
http:\\www.agilent.com for more information on VISA functions.

The program listing for the FlatCal program is shown below. It is available on the Documentation
CD–ROM in the programming examples section as flatcal.cpp.
Agilent X-Series Signal Generators Programming Guide 325

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA
//**

// PROGRAM NAME:FlatCal.cpp

//

// PROGRAM DESCRIPTION:C++ Console application to input frequency and amplitude

// pairs and then download them to the signal generator.

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the LAN/TCPIP interface to download frequency and amplitude

// correction pairs to the signal generator. The program asks the operator to enter

// the number of pairs and allocates a pointer array listPairs[] sized to the number

// of pairs.The array is filled with frequency nextFreq[] and amplitude nextPower[]

// values entered from the keyboard.

//

//**

// IMPORTANT: Replace the 000.000.000.000 IP address in the instOpenString declaration

// in the code below with the IP address of your signal generator.

//**

#include <stdlib.h>

#include <stdio.h>

#include "visa.h"

#include <string.h>

// IMPORTANT:

// Configure the following IP address correctly before compiling and running

char* instOpenString ="TCPIP0::000.000.000.000::INSTR";//your PSG's IP address

const int MAX_STRING_LENGTH=20;//length of frequency and power strings

const int BUFFER_SIZE=256;//length of SCPI command string

int main(int argc, char* argv[])

{

 ViSession defaultRM, vi;

 ViStatus status = 0;

 status = viOpenDefaultRM(&defaultRM);//open the default resource manager

 //TO DO: Error handling here

 status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL, &vi);
326 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA
 if (status)//if any errors then display the error and exit the program

 {

 fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

return -1;

 }

printf("Example Program to Download User Flatness Corrections\n\n");

 printf("Enter number of frequency and amplitude pairs: ");

 int num = 0;

 scanf("%d", &num);

 if (num > 0)

 {

 int lenArray=num*2;//length of the pairsList[] array. This array

//will hold the frequency and amplitude arrays

char** pairsList = new char* [lenArray]; //pointer array

for (int n=0; n < lenArray; n++)//initialize the pairsList array

//pairsList[n]=0;

 for (int i=0; i < num; i++)

 {

char* nextFreq = new char[MAX_STRING_LENGTH+1]; //frequency array

char* nextPower = new char[MAX_STRING_LENGTH+1];//amplitude array

//enter frequency and amplitude pairs i.e 10ghz .1db

printf("Enter Freq %d: ", i+1);

scanf("%s", nextFreq);

printf("Enter Power %d: ",i+1);

scanf("%s", nextPower);

pairsList[2*i] = nextFreq;//frequency

pairsList[2*i+1]=nextPower;//power correction

 }

unsigned char str[256];//buffer used to hold SCPI command

 //initialize the signal generator's user flatness table

 sprintf((char*)str,":corr:flat:pres\n"); //write to buffer

 viWrite(vi, str,strlen((char*str),0); //write to PSG

 char c = ',';//comma separator for SCPI command

 for (int j=0; j< num; j++) //download pairs to the PSG
Agilent X-Series Signal Generators Programming Guide 327

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA
{

sprintf((char*)str,":corr:flat:pair %s %c %s\n",pairsList[2*j], c,
pairsList[2*j+1]); // << on SAME line!

viWrite(vi, str,strlen((char*)str),0);

 }

 //store the downloaded correction pairs to PSG memory

 const char* fileName = "flatCal_data";//user flatness file name

 //write the SCPI command to the buffer str

 sprintf((char*)str, ":corr:flat:store \"%s\"\n", fileName);//write to buffer

 viWrite(vi,str,strlen((char*)str),0);//write the command to the PSG

 printf("\nFlatness Data saved to file : %s\n\n", fileName);

 //load corrections

 sprintf((char*)str,":corr:flat:load \"%s\"\n", fileName); //write to buffer

 viWrite(vi,str,strlen((char*)str),0); //write command to the PSG

 //turn on corrections

 sprintf((char*)str, ":corr on\n");

 viWrite(vi,str,strlen((char*)str),0");

 printf("\nFlatness Corrections Enabled\n\n");

for (int k=0; k< lenArray; k++)

{

delete [] pairsList[k];//free up memory

}

delete [] pairsList;//free up memory

 }

 viClose(vi);//close the sessions

 viClose(defaultRM);

 return 0;

}

328 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Data Transfer Troubleshooting
Data Transfer Troubleshooting

NOTE This section applies to vector models with an installed baseband generator option.

This section is divided by the following data transfer methods:

“User File Download Problems” on page 329

“PRAM Download Problems” on page 330

“User FIR Filter Coefficient File Download Problems” on page 332

Each section contains the following troubleshooting information:

• a list of symptoms and possible causes of typical problems encountered while downloading data
to the signal generator

• reminders regarding special considerations and file requirements

• tips on creating data, transferring data, data application and memory usage

User File Download Problems

Data Requirements
• The user file selected must entirely fill the data field of each timeslot.

• The user file must be a multiple of 8 bits, so that it can be represented in ASCII characters.

• Available volatile memory must be large enough to support both the data field bits and the
framing bits.

Table 6-16 Use–File Download Trouble – Symptoms and Causes

Symptom Possible Cause

At the RF output,
some data modulated,
some data missing

Data does not completely fill an integer number of timeslots.

If a user file fills the data fields of more than one timeslot in a continuously repeating framed
transmission, the user file will be restarted after the last timeslot containing completely filled
data fields. For example, if the user file contains enough data to fill the data fields of 3.5
timeslots, firmware will load 3 timeslots with data and restart the user file after the third
timeslot. The last 0.5 timeslot worth of data will never be modulated.
Agilent X-Series Signal Generators Programming Guide 329

Creating and Downloading User–Data Files
Data Transfer Troubleshooting
Requirement for Continuous User File Data Transmission

“Integer Number of Timeslots” Requirement for Multiple–Timeslots

If a user file fills the data fields of more than one timeslot in a continuously repeating framed
transmission, the user file is restarted after the last timeslot containing completely filled data fields.
For example, if the user file contains enough data to fill the data fields of 3.5 timeslots, the firmware
loads 3 timeslots with data and restart the user file after the third timeslot. The last 0.5 timeslot
worth of data is never modulated.

To solve this problem, add or subtract bits from the user file until it completely fills an integer
number of timeslots

“Multiple–of–8–Bits” Requirement

For downloads to bit and binary memory, user file data must be downloaded in multiples of 8 bits
(bytes), since SCPI specifies data in bytes. Therefore, if the original data pattern’s length is not a
multiple of 8, you need to:

• add bits to complete the ASCII character

• replicate the data pattern to generate a continuously repeating pattern with no discontinuity

• truncate the excess bits

NOTE The “multiple–of–8–bits” data length requirement is in addition to the requirement of
completely filling the data field of an integer number of timeslots.

Using Externally Generated, Real–Time Data for Large Files

When the data fields must be continuous data streams, and the size of the data exceeds the available
PRAM, real–time data and synchronization can be supplied by an external data source to the front
panel DATA, DATA CLOCK, and SYMBOL SYNC connectors. This data can be continuously
transmitted, or can be framed by supplying a data–synchronous burst pulse to the EXT1 INPUT
connector on the front panel. Additionally, the external data can be multiplexed into internally
generated framing

PRAM Download Problems

Table 6-17 PRAM Download – Symptoms and Causes

Symptom Possible Cause

The transmitted pattern is interspersed
with random, unwanted data.

Pattern reset bit not set.

Insure that the pattern reset bit (bit 7, value 128) is set on the last byte of your
downloaded data.
330 Agilent X-Series Signal Generators Programming Guide

Creating and Downloading User–Data Files
Data Transfer Troubleshooting
Data Requirements
• The signal generator requires a file with a minimum of 60 bytes

• For every data bit (bit 0), you must provide 7 bits of control information (bits 1–7).

ERROR –223, Too much data

PRAM download exceeds the size of PRAM memory.

Either use a smaller pattern or get more memory by ordering the appropriate
hardware option.

Table 6-18 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1 This is the data bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1 = RF on
0 = RF off
For non–bursted, non–TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1
Output

0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit
to 1. Use this output for functions such as a triggering external hardware to indicate when
the data pattern begins and restarts, or creating a data–synchronous pulse train by
toggling this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.
1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set
the last byte of PRAM to 1.

Table 6-17 PRAM Download – Symptoms and Causes

Symptom Possible Cause
Agilent X-Series Signal Generators Programming Guide 331

Creating and Downloading User–Data Files
Data Transfer Troubleshooting
User FIR Filter Coefficient File Download Problems

Data Requirements
• Data must be in ASCII format.

• Downloads must be in list format.

• Filters containing more symbols than the hardware allows (32 for real- time modulation filters,
512 for Arb Custom Modulation filters, and 256 for Equalization filters) will not be selectable for
the configuration.

Table 6-19 User FIR File Download Trouble – Symptoms and Causes

Symptom Possible Cause

ERROR –321, Out of memory

There is not enough memory available for the FIR coefficient file being
downloaded.

To solve the problem, either reduce the file size of the FIR file or delete
unnecessary files from memory.

ERROR –223, Too much data

User FIR filter has too many coefficients.

The filter specification cannot have more than 1024 taps (2048
coefficients for a complex filter).
332 Agilent X-Series Signal Generators Programming Guide

Index
Symbols

.NET framework, 314

Numerics
2’s complement data format, 181

A
abort function, 62
address

GPIB address, 23
IP address, 27

Agilent
BASIC, See HP BASIC
esg

memory allocation, volatile memory, 275
volatile memory types, 273
Waveform Download Assistant, 216

IO Libraries
Suite, 4, 31
version 15.0, 5, 34, 7, 34, 55

mxg
global settings, configuration, 17, 269
memory allocation, volatile memory, 275
setting GPIB address, 23
volatile memory types, 273
Waveform Download Assistant, 216
web server, on, 13

psg
memory allocation, volatile memory, 275
volatile memory types, 273
Waveform Download Assistant, 216

SICL, 9, 24, 62, 216, 174
VISA, 9, 24, 55, 62, 59

Agilent VISA, 9
ARB waveform file downloads

data requirements
waveform, 175

, 174
waveform download utilities, 216

ASCII, data, 65
Auto- IP, 29
AUXILIARY INTERFACE, See RS- 232

B
BASIC

ABORT, 62
CLEAR, 64
ENTER, 66
LOCAL, 64, 63
OUTPUT, 65
REMOTE, 63
See HP BASIC

big- endian
byte order, interleaving and byte swapping, 204
changing byte order, 178
example, programming, 256

binary
data

framed, 284
unframed, 283

file
downloads commands, 290
modifying hex editor, 292

bit
file

downloads and commands, 290
modifying hex editor, 293

order, user file, 280
status, monitoring, 143
values, 142

bits and bytes, 175
byte order

byte swapping, 178
changing byte order, 178
interleaving I/Q data, 204

C
C

AC- coupled FM signals
generating externally applied, 79

CW signals, generating, 77
data questionable

status register, reading, 89
FM signals, generating internally applied, 81
reading the service request interrupt, 93
Sockets LAN, programming, 101
states, saving and recalling, 86

C and VISA
GPIB

queries, 75
, 68

C/C++, 10
C#

programming examples, 59
remote control, 10
VISA, example, 315

C++
programming examples, 58, 220
VISA, generating a step- swept signal, 83

C++ and VISA
generating a step- swept signal, 83

cable
USB, 55

carrier
activating, FIR filters, 312
 333

Index

modulating, FIR filters, 312

Checking Available Memory, 277
clear

command, 64
function, 64

CLS command, 146
command

CLS, 146
format programming, user file data, 287, 286
prompt, 30, 124
window PC, using, 294

commands
Agilent mxg, menu path, 17
downloads, binary file, 290
GPIB, 62, 63, 64, 65, 66

computer interface, 3
computer- to- instrument communication

VISA
configuration, automatic, 7

, 7
condition registers, description, 151
Configuration

IO Libraries, 6
configuring, VXI- 11, 34
connection wizard, 4
controller, 24
creating waveform data

C++, using, 201
saving to a text file for review, 204

creating waveform files
overview, 173

crossover cable, private LAN, 29
csc.exe, 314
custom

modulation data, FIR filter, 312
real- time, high data rates, 295
user file data, memory usage, 285

D
DAC input values, 178
data

binary, framed, 284, 283
encryption, 193
format, e443xb signal generator, 218
requirements, waveform, 175

data questionable
See also data questionable registers
filters

BERT transition, 170
calibration transition, 167
frequency transition, 164
power transition, 161
transition, 159

groups
BERT status, 169
calibration status, 166
frequency status, 163
power status, 160
status, 157

status register
reading, using VISA and C, 89

data questionable registers
BERT event, 171, 170
calibration condition, 167, 168, 158
event, 159
frequency condition, 164, 165
power condition, 161, 162

data rates, high
custom, real- time, 295

data requirements, FIR filter downloads, 310
data types

binary, 272
defined, 272
FIR filter states, 272
PRAM, 272
user flatness correction, 272

decryption, 193
developing programs, 58
device, add, 8
DHCP, 10, 29
directory, root, 275
DNS, 30
download

binary file data, 283, 280
user file data

FTP procedures, 293
unencrypted files for extraction, 307, 308

, 314
Agilent Signal Studio, Toolkit, 174
IntuiLink for signal generators, 174
Waveform Download Assistant, 174

waveform data
advanced programming languages, 210
commands, 193
e443xb signal generator files, 179, 217, 198
FTP procedures, 199
memory locations, 194
overview, 173, 207
simulation software, 208
unencrypted files for extraction, 196, 271

download libraries, 9
downloaded PRAM files

data sources, 305
downloading

block data
SCPI command, 302, 303

C++, using, 220
334

Index

MATLAB, 246
Visual Basic, 258

downloads, PRAM data
e4438c, 296

E
e443xb

files
downloading, 217, 218
formatting, 179, 218
programming examples, 235

edit VISA config, 8
EnableRemote, 63
encryption

downloading
for extraction, 198

extracting waveform data, 197, 198
I/Q files, 193
securewave directory

esg, 193
psg, 193

waveform data, 193
enter function, 66
equalization

filter, 313
errors, 19, 31
ESE commands, 146
even number of samples, 185
event enable register

description, 151
event registers

description, 151
examples

save and recall, 315
Telnet, 40

external media
See USB media

external memory
See USB media

externally applied AC- coupled FM signals
generate, using VISA and C, 79

extract user file data, 307–308
extracting

PRAM files, 306

F
file size

determining
PRAM, 300

minimum
PRAM, 300

PRAM, 300
file types

See data types
files

decryption, 193
encryption, 193, 19, 195
header information, 183, 193
large, generating real- time data, 330
PRAM, modifying, 308
transfer methods, 194, 40
waveform download utilities, 216, 183

filter
equalization, 313
user, equalization, 313

filters
See transition filters

FIR
filter data

custom modulation, 312
data limitations, 310

firmware
loading older versions, caution, 1

firmware status, monitoring, 143
front panel

USB
connector, Type- A, 56
flash memory sticks, 56
media, 56
USB media, 56

FTP
commands for downloading and extracting files, 308
downloading and extracting files, commands, 197–198
internet explorer, using, 294
methods, 194
procedures for downloading files, 199, 293
using, 40
web server procedure, 201, 294

G
Getting Started Wizard, 23
global settings

Agilent mxg, 17, 269
GPIB

address, 23, 97
Agilent mxg, setting address, 23
configuration, 23, 24
interface, 3, 23, 21, 61
IO libraries, 9
listener, 24
overview, 21, 61
program examples, 24, 62, 68, 75
SCPI commands, 24
talker, 24
using VISA and C, 68
verifying operation, 23
 335

Index
H
hardware

layers, remote programming, 2
status, monitoring, 143

help mode
setting

Agilent mxg, 17
hex editor

binary file, modifying, 292, 293
hexadecimal data, 256
hostname, 27, 97
hostname, setting

Agilent mxg, 28, 27
DHCP/Auto I/P LAN, Agilent mxg, 29

HP BASIC, 10
HP Basic

local lockout, 69
queries, 72

I
I/O libraries

See IO libraries
I/Q data

creating, advanced programming languages, 201
encryption, 193
interleaving

big endian and little endian, 204
little endian, byte swapping, 204
waveform data, creating, 181

memory locations, 189, 206
saving to a text file for review, 204, 179
waveform structure, 185

iabort, 62
ibloc, 64
ibstop, 62
ibwrt, 65
iclear, 64
IEEE standard, 21, 61
igpibllo, 63
iloc, 64
input values, DAC, 178
instrument

communication, 5, 7
state files

overview, 314
SCPI commands, recalling, 314

instrument status, monitoring, 137
interactive IO, 4, 31
interface

cards, 21, 61
GPIB, 23
LAN, 3
RS- 232, 3

USB (Agilent mxg only), 3
interleaving, See I/Q data, 181
internal

web server
FTP procedure, 294

internal storage
See storage

internally applied FM signals
generate, using VISA and C, 81

IO Config
Agilent IO libraries Suite, 4
computer- to- instrument communication, 7
VISA, manual, 8

IO Configure
Using VISA Assistant, 32

IO interface, 5, 7
IO libraries

GPIB interface, installing, 21, 61, 9, 23
interactive IO, using, 31
program languages, overview, 3
signal generator, remote control, 2, 4
USB, selecting for, 55
VISA LAN, troubleshooting, 32

IP address
LAN interface, 27
setting, 27, 29, 28

iremote, 63

J
JAVA, 60, 124
Java

example, 60, 124

K
kjkj, 191

L
LabView, 10
LAN

Auto- IP configuration, 29
config, 32

Agilent mxg, 28, 29
menu, Agilent mxg, 27
summary, Agilent mxg, 16
web server, 10

DHCP configuration, 29
establishing a connection, 208, 210
hostname, 27
interface, 3
IO libraries, 9
LXI

interface protocols, 26, 42
manual configuration, 28
336

Index

Matlab, 132, 128, 132, 134
overview, 26
private, 29, 60, 97, 124, 126, 128, 132, 134

using JAVA, 60, 124
queries using sockets, 104
sockets, 97, 26
Telnet, 36
troubleshooting, 30
verifying operation, 30
VXI- 11

examples, using, 97
interface protocols, 26
perl, using, 126, 97
sockets, programming, 60, 124

LAN Ping Responses, 31
libraries

GPIB functionality, verifying, 23, 9
IO, Agilent, 2, 3
selecting, for computer, 9
USB, 55

list format, downloading
SCPI command, 302

list, error messages, 19
listener, 24
little- endian

byte order, interleaving and byte swapping, 204
loading waveforms, 213
local

echo, telnet, 38
function, 64

local lockout
function, 63
HP Basic, using, 69

location user- data file type
binary, 277

LSB, 176
LSB and MSB, 280
LSB/MSB, 256
LXI

class B, mxg, 3, 10
LXI- B subsystem, 42, 43, 44, 45, 46, 47, 48
LXI- B synchronizing time, 42, 43, 44, 45, 46, 47, 48

M
manual, 28
manual operation, 63
marker file, 183, 193
MATLAB, 10

download utility, 216, 208
programming examples, 242, 10

Matlab
example, 128, 132

media

external
flash memory sticks, 56
non- volatile memory, Agilent mxg, 273
waveform memory, 188

internal
non- volatile memory, Agilent mxg, 273
waveform memory, 188

USB
non- volatile memory, Agilent mxg, 273

memory
See also media
allocation, 190, 275
checking, available, 277
defined, 188, 273
location user- data file type

available memory, checking, 277
bit, 277
FIR, 277
flatness, 277
instrument state, 277
PRAM, 277

, 188, 273
non- volatile (NVWFM), 193
signal generator, maximum, 277, 192, 276
volatile and non- volatile, 273

memory usage
user file data

custom, 285
TDMA, 285

Microsoft .NET Framework
overview, 315

Mini- B (5- pin)
Rear panel connector, 56

MSB, 176
MSB and LSB, 280
MS- DOS Command Prompt, 30
multiple- of- 8- bits requirement

user file data, 330
multiple- timeslots

integer number of timeslots, 330
mxg

LXI class B, 3, 10
See Agilent mxg

MXG ATE
web- enabled, accessing, 12

N
n5161a/62a/81a/82a/83a

Pulse/RF Blank configuring, 269
National Instruments

NI- 488.2, 24, 62
VISA, 9, 24, 55, 62

negative transition filter, description, 151
 337

Index

NI libraries

SICL
GPIB I/O libraries, selecting, 9

NI- 488.2
EnableRemote, 63
functions, 9
GPIB I/O libraries, selecting, 9
iblcr, 64, 66, 62, 65
LAN I/O libraries, selecting, 9
queries using C++, 73
SetRWLS, 63
USB I/O libraries, selecting, 55
VISA, 9

non- volatile memory
available

SCPI query, 278
external media, Agilent mxg, 273
internal media, Agilent mxg, 273
USB media, 56, 273
waveform, 188

O
OPC commands, 146
output command, 65
output function, 65

P
PC, 256
PCI- GPIB, 24, 62
PERL

example, 126, 134
phase discontinuity

avoiding, 186
samples, 187
waveform, 185

phase distortion, 185
ping

program, 30
playing waveforms, 213
polling method (status registers), 143
ports, 101
positive transition filter, description, 151
PRAM

as data sources, 305
bit positions, 298
data extracting SCPI command, syntax, 307, 330
e4438c, data downloads, 296
file size, 300

minimum, 300
, 300

command syntax, for restoring, 306
extracting, 306
modifying, 308

non- volatile memory, storing, 306
understanding, 297
volatile memory, restoring, 306

volatile memory
unframed data, usage, 285

waveform, viewing, 299
private LAN, using, 29
problems

user
file downloads, 329
FIR filter downloads, 332

programming
creating waveform data, 201
downloading waveform data, 207
little endian order, byte swapping, 204
user file data

command format, 287
programming examples

C#, 59, 315, 58, 220
e443xb

files, 235
MATLAB, 242
using, 57, 24, 62, 68, 75, 60, 97, 124, 126, 128, 132, 134
Visual Basic, 256, 258, 97

Pulse/RF Blank
n5161a/62a/81a/82a/83a, setting, 269

Q
queries

HP Basic, using, 72
queue, error, 19

R
real- time

data files, generating large, 330
rear panel connector

Mini- B, 56
recall states, 314
register system overview, 137
data questionable

See also data questionable registers
registers

See also data questionable registers
See also status registers
condition, description, 151
mxg overall system, 140, 141
standard event

bits, 153
status, 153
condition, 155
event, 156

, 150, 151
remote function
338

Index

HP Basic, 63
setting

Agilent mxg, 17
remote interface

programming, 2
USB, 54

remote programming
hardware layers, 2
software layers, 2

RS- 232
interfaces, 3

S
samples

even number, 185
waveform, 185

save and recall, 314
scaling I/Q data, 179
SCPI

error queue, 19
file transfer methods, 194
GPIB, overview, 21
programming languages, common, 10
register model, 137
web server control, 10

SCPI command, programming syntax
block data, downloading, 303

SCPI command, syntax
PRAM files, extracting, 307

SCPI commands
block data, downloading, 302
command line structure, 195
download e443xb files, 218
encrypted files, 198, 193, 195, 196, 198, 307
for status registers

IEEE 488.2 common commands, 146
GPIB function statements, 24
instrument state files, recalling, 314
list format, downloading, 302
no extraction, 195
unencrypted files, 196, 307, 308

sample command line, 311
securewave directory

decryption, file, 193, 198, 193
encryption, file, 193, 197, 198, 193

sequences
waveforms, building, 215

service request
interrupt

reading, using VISA and C, 93
method

status registers, 144
using, 144

SetRWLS, 63
setting

help mode
Agilent mxg, 17

Pulse/RF Blank
n5161a/62a/81a/82a/83a, 269

SICL, 9, 55
GPIB examples, 24, 62
iabort, 62, 64, 63, 64, 65, 63, 66
NI libraries, 9
USB, using, 55
VXI- 11, programming, 98

signal generator
monitoring status, 137
volatile memory types, 273
Waveform Download Assistant, 216

Signal Studio Toolkit, 174, 216
simulation software, 208
sockets

example, 101, 104
Java, 60, 124
LAN, 35, 97, 101
Matlab, 128
PERL, 126, 134
UNIX, 101
Windows, 102

software
layers, remote programming, 2, 4

SRE commands, 146
SRQ command, 144
SRQ method, status registers, 144
standard event status

enable register, 153
group, 152
register, 153

standard operation
condition register, 155
event enable register, 156
transition filters, 155

state files, 314
states

saving and recalling, using VISA and C, 86
status byte

group, 149
mxg overall register system, 140, 141
register, 150

status groups
data questionable

BERT, 169
calibration, 166
frequency, 163
overview, 157
power, 160

registers, 151
 339

Index

standard

event, 152
, 149

status registers
See also registers
accessing information, 143
bit values, 142
hierarchy, 137
in status groups, 151
monitoring, 143, 140, 141
programming, 137
SCPI commands, 146, 137
setting and querying, 146, 137
using, 142

STB command, 146
storage

internal
non- volatile memory, Agilent mxg, 273

system requirements, 58

T
talker, 24
TCP/IP, 10
TCPIP, 5, 7, 97
TDMA

user file data, memory usage, 285
Telnet

example, 40
PC, 37
UNIX, 38, 40
using, 36
Windows 2000, 38

timeslots, integer number of
multiple- timeslots requirement, 330

Toolkit, Signal Studio, 174, 216
transition filters

data questionable
BERT, 170
negative and positive, 159
power, 161

, 167, 164, 151
negative transition, description, 151
positive transition, description, 151
standard operation, 155

troubleshooting
GPIB, 24
LAN, 30
ping

response errors, 31
PRAM downloads, 330
USB, 56
user file downloads, 329, 332
VISA assistant, 32

Type- A front panel USB connector, 56

U
unencrypted files

downloading for extraction, 196, 307, 196, 308
extracting I/Q data, 307

unframed data, usage
volatile memory, PRAM, 285

USB
cable, 55
functionality, verification, 56
interface, 3
IO libraries, 55
setting up, 55
using, Agilent mxg, 54
verifying operation, 56

usb media
file extensions, 191

user data
file, modifying, 292, 271
memory, 273
root directory, 275

user file data, continuous transmission
requirements, 330

user files
bit order, 280
data

binary, downloads, 279
multiple- of- 8- bits requirement, 330
as the data source, 305
carrier, activating, 306, 286
modulating and activating the carrier, 292
selecting the user file as the data source, 292

size, 284
user FIR file downloads

non- volatile memory, 311
selecting a downloaded user FIR file, 312

user flatness, 314
user- data file type

binary, memory location, 277
FIR, memory location, 277
flatness, memory location, 277
instrument state, memory location, 277
memory location, 277
PRAM, memory location, 277

user- data files
See user data

Using Connection Expert
configuring and running, 6

V
verifying waveforms, 213
Version M
340

Index

IO Libraries, Agilent, 7

version M
IO Libraries, Agilent, 4

viPrintf, 65
VISA, 6, 9, 55

C++, generating a step- swept signal, 83, 59
computer- to- instrument communication, 7

automatic, 5, 8
manual, 6, 8

CW signals, generating, 77
data questionable status register, reading, 89
FM signals, generating internally applied, 81
generating externally applied AC- coupled FM signals,

79
I/O libraries, 9
LAN client, 31, 9
library, 24, 62, 256
NI- 488.2, 9
scanf, 66, 93, 86
USB, using, 55
viPrintf, 65
Visual C++, generating a swept signal, 84
viTerminate, 62
VXI- 11, 97

CW signals
See VISA and C

VISA and C
CW signals, generating, 77
GPIB

interface check for, 68
queries, 75

VISA Assistant
GPIB functionality, verifying, 23
IO Config, 5, 7, 31
troubleshooting, 32
verifying instrument communication, 31

Visual Basic
IDE, 59
programming examples, 256, 10
references, 59

Visual C++
NI- 488.2, queries using, 73
VISA, generating a swept signal, 84

Visual C++ and VISA
generating a swept signal, 84

viTerminate, 62
volatile memory

file, decryption, 193
memory allocation, 190

Agilent esg, 275
securewave directory, 193

memory, volatile (WFM1), 193
, 273
types, signal generators, 273

waveform, 188
volatile memory available, SCPI query, 278
VXI- 11, 97

configuration, 34
programming, 97
SICL, using, 98
using, 34
VISA, using, 99

W
waveform data

2’s complement data format, 181
bits and bytes, 175, 178
commands for downloading and extracting, 193–201,

286–295, 201
DAC input values, 178
data requirements, 175
encrypted data, 191, 193–198, 175, 193, 196–197
I and Q interleaving, 181
LSB and MSB, 176
saving to a text file for review, 204

waveform download
utilities

differences, 216
waveform downloads

advanced programming languages, using, 210
download utilities, using, 216
HP BASIC, using, 261–266
memory, 188

allocation, 190, 275
size, 192, 276
volatile and non- volatile, 188

samples, 185, 208, 185
using advanced programming languages, 210
with Visual Basic 6.0, 258

waveform files
creating, 173
downloading, 173

waveform generation
C++, 220
MATLAB, using, 242
Visual Basic 6.0, using, 256

waveforms
loading, 213
playing, 213
sequences, building, 215
verifying, 213, 299

web server
Agilent

mxg, 13
communicating with, 10
internal, 294

Windows
 341

Index

2000, 38, 5
98, 4
ME, 4
NT, 4, 7
Vista Business, 5
XP, 5, 38

WriteIEEEBlock, 258
342

	Title Page
	Notices

	Contents
	1 Getting Started with Remote Operation
	Programming and Software/Hardware Layers
	Interfaces
	IO Libraries and Programming Languages
	Agilent IO Libraries Suite
	Windows XP, 2000 Professional and Vista Business Agilent IO Libraries 15.0 (and Newer)
	Windows NT and Agilent IO Libraries M (and Earlier)
	Selecting IO Libraries for GPIB
	Selecting IO Libraries for LAN
	Programming Languages

	Using the Web Browser
	Modifying the Signal Generator Configuration
	Enabling the Signal Generator Web Server
	LAN Configuration System Defaults
	Displaying the LAN Configuration Summary

	Preferences
	Configuring the Display for Remote Command Setups
	Getting Key Help

	Troubleshooting
	Error Messages
	Error Message File
	Error Message Types

	2 Using IO Interfaces
	Using GPIB
	Installing the GPIB Interface
	Set Up the GPIB Interface
	Verify GPIB Functionality
	GPIB Interface Terms

	GPIB Programming Interface Examples
	Before Using the GPIB Examples
	Interface Check using HP Basic and GPIB
	Interface Check Using NI–488.2 and C++

	Using LAN
	Setting Up the LAN Interface
	Setting up Private LAN
	Verifying LAN Functionality
	Using VXI–11
	Using Sockets LAN
	Using Telnet LAN
	Using FTP
	Using LXI Class B Features (N51xxA MXG Signal Generators Only)

	Using USB
	Selecting I/O Libraries for USB
	Setting Up the USB Interface

	3 Programming Examples
	Using the Programming Interface Examples
	Programming Examples Development Environment
	Running C++ Programs
	Running C# Examples
	Running Basic Examples
	Running Java Examples
	Running MATLAB Examples
	Running Perl Examples

	Using GPIB
	Installing the GPIB Interface Card

	GPIB Programming Interface Examples
	Before Using the GPIB Examples
	GPIB Function Statements (Command Messages)
	Interface Check using HP Basic and GPIB
	Interface Check Using NI-488.2 and C++
	Interface Check for GPIB Using VISA and C
	Local Lockout Using HP Basic and GPIB
	Local Lockout Using NI-488.2 and C++
	Queries Using HP Basic and GPIB
	Queries Using NI-488.2 and Visual C++
	Queries for GPIB Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C++
	Generating a Swept Signal Using VISA and Visual C++
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C

	LAN Programming Interface Examples
	VXI-11 Programming
	VXI-11 Programming Using SICL and C++
	VXI-11 Programming Using VISA and C++
	Sockets LAN Programming and C
	Queries for Lan Using Sockets
	Sockets LAN Programming Using Java
	Sockets LAN Programming Using Perl
	TCP-IP (LAN) Programming Using Matlab

	4 Programming the Status Register System
	Overview
	Overall Status Byte Register Systems

	Status Register Bit Values
	Example: Enable a Register
	Example: Query a Register

	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Calibration Status Group
	Data Questionable BERT Status Group

	5 Creating and Downloading Waveform Files
	Overview of Downloading and Extracting Waveform Files
	Waveform Data Requirements

	Understanding Waveform Data
	Bits and Bytes
	LSB and MSB (Bit Order)
	Little Endian and Big Endian (Byte Order)
	Byte Swapping
	DAC Input Values
	2’s Complement Data Format
	I and Q Interleaving

	Waveform Structure
	File Header
	Marker File
	I/Q File
	Waveform

	Waveform Phase Continuity
	Phase Discontinuity, Distortion, and Spectral Regrowth
	Avoiding Phase Discontinuities

	Waveform Memory
	Memory Allocation
	Memory Size

	Commands for Downloading and Extracting Waveform Data
	Waveform Data Encryption
	File Transfer Methods
	SCPI Command Line Structure
	Commands and File Paths for Downloading and Extracting Waveform Data
	FTP Procedures

	Creating Waveform Data
	Code Algorithm

	Downloading Waveform Data
	Using Simulation Software
	Using Advanced Programming Languages

	Loading, Playing, and Verifying a Downloaded Waveform
	Loading a File from Non–Volatile Memory
	Playing the Waveform
	Verifying the Waveform
	Building and Playing Waveform Sequences

	Using the Download Utilities
	Downloading E443xB Signal Generator Files
	E443xB Data Format
	SCPI Commands

	Programming Examples
	C++ Programming Examples
	MATLAB Programming Examples
	Visual Basic Programming Examples
	HP Basic Programming Examples

	Troubleshooting Waveform Files
	Configuring the Pulse/RF Blank

	6 Creating and Downloading User–Data Files
	Overview
	Signal Generator Memory
	Memory Allocation
	Memory Size
	Checking Available Memory

	User File Data (Bit/Binary) Downloads
	User File Bit Order (LSB and MSB)
	Bit File Type Data
	Binary File Type Data
	User File Size
	Determining Memory Usage for Custom User File Data
	Downloading User Files
	Command for Bit File Downloads
	Commands for Binary File Downloads
	Selecting a Downloaded User File as the Data Source
	Modulating and Activating the Carrier
	Modifying User File Data
	Real–Time Custom High Data Rates

	Pattern RAM (PRAM) Data Downloads
	Understanding PRAM Files
	PRAM File Size
	SCPI Command for a List Format Download
	SCPI Command for a Block Data Download
	Selecting a Downloaded PRAM File as the Data Source
	Modulating and Activating the Carrier
	Storing a PRAM File to Non–Volatile Memory and Restoring to Volatile Memory
	Extracting a PRAM File
	Modifying PRAM Files

	FIR Filter Coefficient Downloads
	Data Requirements
	Data Limitations
	Downloading FIR Filter Coefficient Data
	Selecting a Downloaded User FIR Filter as the Active Filter

	Using the Equalization Filter
	Save and Recall Instrument State Files
	Save and Recall SCPI Commands
	Save and Recall Programming Example Using VISA and C#

	User Flatness Correction Downloads Using C++ and VISA
	Data Transfer Troubleshooting
	User File Download Problems
	PRAM Download Problems
	User FIR Filter Coefficient File Download Problems

	Symbols/Numerics
	Index

