
Customizing Protocol
Descriptions for Packet
Viewer

Online Help

2 Customizing Protocol Descriptions for Packet Viewer Online Help

Notices
© Keysight Technologies 2005-2010, 2014

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Keysight
Technologies as governed by United States
and international copyright laws.

Trademarks

Microsoft®, MS-DOS®, Windows®, Win-
dows 2000®, and Windows XP® are U.S.
registered trademarks of Microsoft Corpora-
tion.

Revision History

August 2014

Available in electronic format only

Keysight Technologies
1900 Gardens of the Gods Road
Colorado Springs, CO 80907 USA

Warranty

THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED "AS IS," AND IS
SUBJECT TO BEING CHANGED, WITHOUT
NOTICE, IN FUTURE EDITIONS. FURTHER,
TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, KEYSIGHT DISCLAIMS
ALL WARRANTIES, EITHER EXPRESS OR
IMPLIED WITH REGARD TO THIS MANUAL
AND ANY INFORMATION CONTAINED
HEREIN, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. KEYSIGHT SHALL
NOT BE LIABLE FOR ERRORS OR FOR
INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH THE
FURNISHING, USE, OR PERFORMANCE OF
THIS DOCUMENT OR ANY INFORMATION
CONTAINED HEREIN. SHOULD KEYSIGHT
AND THE USER HAVE A SEPARATE WRITTEN
AGREEMENT WITH WARRANTY TERMS
COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH THESE
TERMS, THE WARRANTY TERMS IN THE
SEPARATE AGREEMENT WILL CONTROL.

Technology Licenses
The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a
U.S. Government prime contract or subcon-
tract, Software is delivered and licensed as
"Commercial computer software" as defined
in DFAR 252.227-7014 (June 1995), or as a
"commercial item" as defined in FAR
2.101(a) or as "Restricted computer soft-
ware" as defined in FAR 52.227-19 (June
1987) or any equivalent agency regulation or
contract clause. Use, duplication or disclo-
sure of Software is subject to Keysight Tech-
nologies’ standard commercial license
terms, and non-DOD Departments and
Agencies of the U.S. Government will receive
no greater than Restricted Rights as defined
in FAR 52.227-19(c)(1-2) (June 1987). U.S.
Government users will receive no greater
than Limited Rights as defined in FAR

52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION
A CAUTION notice denotes a hazard. It
calls attention to an operating proce-
dure, practice, or the like that, if not
correctly performed or adhered to,
could result in damage to the product
or loss of important data. Do not pro-
ceed beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

WARNING
A WARNING notice denotes a hazard.
It calls attention to an operating pro-
cedure, practice, or the like that, if not
correctly performed or adhered to,
could result in personal injury or
death. Do not proceed beyond a
WARNING notice until the indicated
conditions are fully understood and
met.

Customizing Protocol Descriptions for Packet Viewer Online Help 3

Protocol Development Kit (PDK)—At a Glance
The Keysight Logic Analyzer application has a Packet Decoder tool that decodes captured logic
analyzer data into packet information.

There is also a Packet Viewer window that displays decoded packet information.

Both the Packet Decoder tool and the Packet Viewer window work with multiple protocols, specified
by XML-format protocol description files.

Protocol description files describe the way a protocol is framed, decoded, encoded (prepared for the
"Find a packet" trigger function), and displayed. You can edit existing protocol descriptions and add
new ones. This document describes how.

A single protocol description file is created for each protocol family.

Protocol description files are loaded when the Keysight Logic Analyzer application starts or when
"refreshed" in the Packet Decoder tool.

In the Packet Decoder tool's Properties dialog, you can select from the protocols that have been
loaded.

• Chapter 1, “Editing an Existing Protocol Description,” starting on page 9

• Chapter 2, “Creating a New Protocol Description,” starting on page 17

• Chapter 3, “Using Formulas,” starting on page 55

4 Customizing Protocol Descriptions for Packet Viewer Online Help

• Chapter 4, “Solving Problems,” starting on page 61

• Chapter 5, “Multi-Lane Serial Link Concepts,” starting on page 67

• Chapter 6, “XML Element Reference,” starting on page 71

• Chapter 7, “Formula Reference,” starting on page 109

For more information on using the Packet Decoder tool, the Packet Viewer window, and the Event
Editor, see:

• "Using the Packet Decoder Tool" (in the online help)

• "Analyzing Packet Data" (in the online help)

• "Using the Packet Event Editor" (in the online help) and "Event Editor Dialog" (in the online help)

For a printable version of this help file, see: "Customizing Protocol Descriptions for Packet Viewer".

Customizing Protocol Descriptions for Packet Viewer Online Help 5

Contents
Protocol Development Kit (PDK)—At a Glance 3

1 Editing an Existing Protocol Description

Starting the Protocol Description File Ed itor 10

Opening Protocol Description Files 11

Ed iting Protocol Description Files 13

Checking Protocol Description File Ed its 14

Saving Protocol Description Files 15

Refreshing Protocol Files in the Application 16

2 Creating a New Protocol Description

Before You Get Started 18
Byte/Bit Order Requirements 18

Getting Started, Using a Simple Example 20
Step 1: Open the protocol description editor 20
Step 2: Start with a minimal protocol description 20
Step 3: Save the description to the Protocols directory 22
Step 4: Look at results in the user interface 22

Getting Started, Describing Your Protocol 26
Step 5: Choose a unique protocol family name 26
Step 6: Describe the bus to be decoded 27
Step 7: Describe the packet types 33
Step 8: Describe the protocol's headers, data, trailers, and fields 35
Step 9: Describe the columns displayed in Packet Viewer by default 41
Getting Started Summary 42

Adding Decode Information 43
Assigning Meaningful Strings to Values 43
Describing Protocol Errors 44
Adding Color Descriptions (for Packet Viewer) 44

6 Customizing Protocol Descriptions for Packet Viewer Online Help

Contents

How to ... 48
To decode conditionally based on packet bits 48
To determine serial data start of packet by using look around 48
To display and use full values for partial bit fields 49
To decode fields with printf-style format strings 49
To add information to a packet 50

Using Ad vanced Features 51
Using ValueFunctions 51
Using TransformFunctions 52
When the Framing Options are Not Sufficient 53

3 Using Formulas

Using Formulas in Bus/Signal Label Descriptions 56
To determine the start-/end-of-packets 56
To determine valid data 56
To look around 56
To identify rising/falling/toggling signals 56

Using Formulas in Field Descriptions 58
To operate on other field values 58
To look ahead 58
To get the length of variable-length packets 58

4 Solving Problems

Protocol Description Errors when Application Starts 62

Decode Errors 65

Pre-Defined Protocol Errors that Appear in Packet Viewer 66

5 Multi-Lane Serial Link Concepts

6 XML Element Reference

<Bus> 72

<BusProtocol> 73

<Defaul t> 75

<DisplayDefaul ts> 76

<DisplayField> 77

<Enum> 78

<Enumset> 79

<Field> 80

Customizing Protocol Descriptions for Packet Viewer Online Help 7

Contents

<FieldContainer> 84

<FieldGroup> 85

<Header> 86

<Label> 87

<MetaField> 89

<PacketDisplay> 90

<PacketHighl ightRule> 91

<PacketHighl ightRules> 93

<PacketMask> 94

<PacketType> 95

<PacketTypeGroup> 96

<PacketTypes> 97

<Payload> 98

<Protocol> 99

<ProtocolError> 100

<ProtocolErrors> 101

<ProtocolFamily> 102

<Range> 103

<RepetitiveFields> 104

<Segment> 105

<SegmentedField> 106

<SymbolDecode> 107

<Trailer> 108

7 Formula Reference

Operators 110

Operands 111
Constants 111
Field and Bus/Signal Operand Names 111
Ranging 112
Look Around 112

8 Customizing Protocol Descriptions for Packet Viewer Online Help

Contents

8 Glossary

Index

Customizing Protocol Descriptions for Packet Viewer

Online Help

1 Editing an Existing Protocol
Description

Starting the Protocol Description File Editor / 10
Opening Protocol Description Files / 11
Editing Protocol Description Files / 13
Checking Protocol Description File Edits / 14
Saving Protocol Description Files / 15
Refreshing Protocol Files in the Application / 16

1 Editing an Existing Protocol Description

10 Customizing Protocol Descriptions for Packet Viewer Online Help

Starting the Protocol Description File Editor

1 From the Windows Start menu, choose Start>All Programs>Keysight Logic Analyzer>Keysight Protocol
Development Kit.

Or:

Click the Keysight Protocol Development Kit icon on the Windows Desktop.

If No Licenses are
Available

If no licenses are available when starting the Protocol Development Kit (PDK), you get the following
dialog:

You can get more information on licensing by choosing Help>Software Licenses... in the main Keysight
Logic Analyzer application and by clicking the Help button in the resulting Software Licensing dialog.

(The Help>Software Licenses... menu item is also available in the protocol description file editor once it
is licensed and you are able to start it.)

Customizing Protocol Descriptions for Packet Viewer Online Help 11

Editing an Existing Protocol Description 1

Opening Protocol Description Files

Protocol description files are opened (and saved) from the Keysight PDK (Protocol Development Kit)
editor's File menu.

Protocol description files are located in the Protocols folder in the Keysight Logic Analyzer
application's install directory. For example, the default location is: C:\Program Files\Keysight
Technologies\Logic Analyzer\Protocols.

1 From the Protocol Description File Editor's main menu, choose File>Open....

2 In the Open dialog, select the protocol description file you wish to open; then, click Open.

Protocol description files have the .aex (Keysight Encrypted XML) file extension.

The XML-format protocol description file appears in the PDK (Protocol Development Kit) editor
window.

1 Editing an Existing Protocol Description

12 Customizing Protocol Descriptions for Packet Viewer Online Help

Customizing Protocol Descriptions for Packet Viewer Online Help 13

Editing an Existing Protocol Description 1

Editing Protocol Description Files

Protocol description files are edited using the Keysight PDK (Protocol Development Kit) editor's Edit
menu.

The PDK editor provides the standard text editing features:

• Undo and Redo.

• Cut, Copy, Paste, and Delete.

• Select All.

• Find/Replace.

It also provides these features:

• Enable Line Numbers.

• Highlight Current Line.

• Word Wrap — lines longer than the number of characters that can be displayed are wrapped in
the display area so that you do not have to scroll horizontally.

• Show 80 Column Guide.

• Go to Line.

For more information on what the different parts of the protocol description file are for, see:

• Chapter 2, “Creating a New Protocol Description,” starting on page 17

• Chapter 6, “XML Element Reference,” starting on page 71

1 Editing an Existing Protocol Description

14 Customizing Protocol Descriptions for Packet Viewer Online Help

Checking Protocol Description File Edits

Validation Checks Validation checks occur as you edit a protocol description file, and messages appear in the lower
portion of the editor window to tell you about problems. Validation checks find problems like:

• Incorrect element and attribute names and capitalization.

• Mismatched start and end tags.

• Invalid attribute values.

• Out of place elements.

The validation checks help you fix protocol description file problems before the file is loaded at
application startup.

Parsing Checks at
Application

Startup

When the Keysight Logic Analyzer application starts up, or when you refresh protocol files in the
Packet Decoder tool, protocol description files are parsed and loaded. Additional checks are
performed on the files as they are parsed.

The protocol description file editor lets you simulate parsing, so that you can find additional
problems before trying to use a description.

To simulate the parsing that happens at application startup or refresh:

1 From the Protocol Description File Editor's main menu, choose Tools>Simulate Load ing File.

Messages from the parse operation appear in a separate dialog — similar to what is shown when
errors are present at application startup or refresh.

Customizing Protocol Descriptions for Packet Viewer Online Help 15

Editing an Existing Protocol Description 1

Saving Protocol Description Files

Protocol description files are located in the Protocols folder in the Keysight Logic Analyzer
application's install directory. For example, the default location is: C:\Program Files\Keysight
Technologies\Logic Analyzer\Protocols.

1 From the Protocol Description File Editor's main menu, choose File>Save As....

2 In the Save As dialog, enter the protocol description file name; then, click Save.

Protocol description files have the .aex (Keysight Encrypted XML) file extension.

1 Editing an Existing Protocol Description

16 Customizing Protocol Descriptions for Packet Viewer Online Help

Refreshing Protocol Files in the Application

In order for the Keysight Logic Analyzer application to recognize protocol description file changes,
you must either refresh protocol files in the Packet Decoder tool or restart the Keysight Logic
Analyzer application.

To refresh protocol
files

1 In the Overview window of the Keysight Logic Analyzer application, click Properties... in your
Packet Decoder tool.

2 In the Packet Decode Properties dialog, click Refresh Protocol Files....

3 In the Question dialog that appears, click Yes to save the current configuration. The saved
configuration will automatically be re-opened after the protocol description files are refreshed.

If you click No, the protocol files are still refreshed; however, you must either open a different
configuration or create a new configuration.

Customizing Protocol Descriptions for Packet Viewer

Online Help

2 Creating a New Protocol
Description

Before You Get Started / 18
Getting Started, Using a Simple Example / 20
Getting Started, Describing Your Protocol / 26
Adding Decode Information / 43
How to ... / 48
Using Advanced Features / 51

2 Creating a New Protocol Description

18 Customizing Protocol Descriptions for Packet Viewer Online Help

Before You Get Started

• “Byte/Bit Order Requirements" on page 18

Byte/Bit Order Requirements

The Protocol Decode tool assumes a most-significant bit (MSb) first ordering in the packet data.

If your protocol uses a least-significant bit (LSb) first ordering in the packet data:

In this case, you must:

1 Reorder the bits of buses when defining the bus channel assignments (see "To assign channels,
selecting the bit order" (in the online help)).

This reverses the bit order and makes transmission order rearrangement faster.

2 Use the "TransmissionOrder='LSBFirst'" attribute within the <ProtocolFamily> element.

Customizing Protocol Descriptions for Packet Viewer Online Help 19

Creating a New Protocol Description 2

This causes fields and bits within fields to be rearranged according to the field descriptions.

2 Creating a New Protocol Description

20 Customizing Protocol Descriptions for Packet Viewer Online Help

Getting Started, Using a Simple Example

• “Step 1: Open the protocol description editor" on page 20

• “Step 2: Start with a minimal protocol description" on page 20

• “Step 3: Save the description to the Protocols directory" on page 22

• “Step 4: Look at results in the user interface" on page 22

Step 1: Open the protocol description editor

See “Starting the Protocol Description File Editor" on page 10.

Step 2: Start with a minimal protocol description

A minimal protocol description file looks something like:

<!-- This is a default protocol file created for you. It is a
starting point for the creation of a new protocol file. Please
refer to the online help for additional assistance. -->

<ProtocolFamily Name="Default Protocol" Version="1.1">

<!-- Specifies a bus that encompasses a grouping of bus/signals for
decode -->

<Bus Name="My Bus Name">
<!-- 'My Bus 1' and 'My Bus 2' are required bus/signals -->
<Label Name="My Bus 1" Width="1" Type="Frame"/>
<Label Name="My Bus 2" Width="8" Type="Data"

Sop="'My Bus 1'==#h1"/>

<!-- Once packets have been found, use the following protocol name
to decode them. -->

<BusProtocol Name="Header Protocol" Type="Packet"/>
</Bus>

<!-- The <PacketTypes> section defines the different types of
packets for this protocol. The types here are used by the
decoder to colorize the packet types and also display the
packet type name in the packet viewer. The Event Editor uses
this section to populate the list of predefined packets for
triggering, searching, and filtering. -->

<PacketTypes Name="Default Protocol" Protocol="Header Protocol">
<PacketType Name="Read Packet">

<PacketMask Width="2" Value="#h0"/>
<PacketDisplay BackgroundColor="LightBlue"/>

</PacketType>
<PacketType Name="Write Packet">

<PacketMask Width="2" Value="#h1"/>
<PacketDisplay BackgroundColor="Yellow"/>

</PacketType>
</PacketTypes>

<!-- This section describes how packets of data are decoded. -->
<Protocol Name="Header Protocol" ProtocolLayer="Physical Layer">
<Header>

<Field Name="Packet Type" Length="2" Enumset="PacketTypes"/>

Customizing Protocol Descriptions for Packet Viewer Online Help 21

Creating a New Protocol Description 2

<Field Name="Address" Length="4"/>
<Field Name="Length" Length="8" Select="'Packet Type'==#h1"/>

</Header>
<Payload>

<Field Name="Payload" Type="Payload" Select="'Packet Type'==#h1"
Length="Length*8"/>

</Payload>
</Protocol>

<Enumset Name="PacketTypes">
<Enum Name="Read" Value="0"/>
<Enum Name="Write" Value="1"/>
<Default Name="Error" ValueError="Unknown Packet Type"/>

</Enumset>

<!-- This section describes how the packet viewer should be
displayed by default. -->

<DisplayDefaults>
<DisplayField Name="Sample Number" Width="20"/>
<DisplayField Name="Default Protocol Packet" Width="30"/>
<DisplayField Name="Address" Width="20"/>
<DisplayField Name="Length" Width="15"/>
<DisplayField Name="Time"/>

</DisplayDefaults>

<!-- This section describes the errors that are possible with this
protocol. -->

<!-- Protocol errors are always displayed in red. -->
<ProtocolErrors>
<ProtocolError Name="Unknown Packet Type"

Description="There was an undefined packet type."/>
</ProtocolErrors>

</ProtocolFamily>

This is the simple protocol description that appears when you first open the protocol description file
editor.

The <ProtocolFamily> element identifies the family of protocols described in the file. Within the
<ProtocolFamily> element are:

• The <Bus> element is used to identify the probed buses/signals, their contents, and the packet
framing.

• The <PacketTypes> element is used to identify the main packet types that will appear in the
Packet Viewer's main protocol decode column and to group packet descriptions to make setting
up packet triggers easier.

• The <Protocol> element defines the header and payload fields used when decoding the data.
Fields are described in the same order as they appear in the packet data.

• The <DisplayDefaults> element identifies the fields that are displayed by default in the Packet
Viewer window. You can always add or delete field columns from within the Packet Viewer
window.

2 Creating a New Protocol Description

22 Customizing Protocol Descriptions for Packet Viewer Online Help

Step 3: Save the description to the Protocols directory

Protocol description files are located in the Protocols folder in the Keysight Logic Analyzer
application's install directory. For example, the default location is: C:\Program Files\Keysight
Technologies\Logic Analyzer\Protocols.

1 From the Protocol Description File Editor's main menu, choose File>Save As....

2 In the Save As dialog, enter the protocol description file name; then, click Save.

Protocol description files have the .aex (Keysight Encrypted XML) file extension.

Step 4: Look at results in the user interface

As you develop your protocol description, you will want to iteratively look at results in the Keysight
Logic Analyzer application, first to see if the data is framed correctly, then to look at the decode and
display results.

1 Start the Keysight Logic Analyzer application, or refresh the protocol files in the Packet Decoder
tool (see “Refreshing Protocol Files in the Application" on page 16).

If you see protocol description file errors when starting the application, see “Protocol Description
Errors when Application Starts" on page 62.

2 Capture, open, or import the data.

3 Add a Packet Decoder tool:

a Choose Tools>New Packet Decoder...

b In the Protocol Select tab of the Packet Decode Properties dialog, select your Protocol Family.

c Next, select your Decode Bus.

Customizing Protocol Descriptions for Packet Viewer Online Help 23

Creating a New Protocol Description 2

d In the ASCII Decode Options tab, check the Enable ASCII Decode Output option.

A dialog informs you about the effect this option has on performance, but when developing
protocol descriptions, it is sometimes useful to see packet decode information in the Listing
window.

e Click OK to close the Packet Decode Properties dialog.

4 Look at the Packet Decode column in the Listing window.

2 Creating a New Protocol Description

24 Customizing Protocol Descriptions for Packet Viewer Online Help

5 Add a Packet Viewer window:

a Choose Window>New Packet Viewer...

b In the "Add New Window after" dialog, make sure you add the Packet Viewer window after the
Packet Decoder tool.

c Click OK.

Customizing Protocol Descriptions for Packet Viewer Online Help 25

Creating a New Protocol Description 2

If you see protocol errors in the Packet Viewer window, see “Pre-Defined Protocol Errors that
Appear in Packet Viewer" on page 66.

The results of this simple example (and its data) appear in the configuration file: C:\Documents and
Settings\All Users\Documents\Keysight Technologies\Logic Analyzer\Default Configs\Keysight\
Protocol Development Kit (PDK) Demo Config Files\DefaultProtocol.xml

2 Creating a New Protocol Description

26 Customizing Protocol Descriptions for Packet Viewer Online Help

Getting Started, Describing Your Protocol

• “Step 5: Choose a unique protocol family name" on page 26

• “Step 6: Describe the bus to be decoded" on page 27

• “Step 7: Describe the packet types" on page 33

• “Step 8: Describe the protocol's headers, data, trailers, and fields" on page 35

• “Step 9: Describe the columns displayed in Packet Viewer by default" on page 41

• “Getting Started Summary" on page 42

Step 5: Choose a unique protocol family name

The first thing to do when working on a protocol description (for your data) is to name the
<ProtocolFamily>:

• Make sure the protocol family name is unique; otherwise, the protocol descriptions may not be
read by the Packet Decoder tool.

• Make sure the Version attribute is specified (must be equal to "1.1" for Keysight Logic Analyzer
application version 03.65).

• Make sure you change the generated field name for the protocol family within the
<DisplayDefaults> element.

For example:

<ProtocolFamily Name="Ethernet" Version="1.1">
...

<DisplayDefaults>
...
<DisplayField Name="Ethernet Packet" Width="25"/>
...

</DisplayDefaults>

</ProtocolFamily>

The name you give a protocol family appears as a choice when selecting the properties of a Packet
Decoder tool.

Customizing Protocol Descriptions for Packet Viewer Online Help 27

Creating a New Protocol Description 2

Step 6: Describe the bus to be decoded

After choosing a protocol family name, you need to describe the bus to be decoded. This is done with
the <Bus> element and its child elements. Use the <Bus> element's Name attribute to name the bus.

Next, you need to describe the buses/signals that will be used for decoding with <Label> elements
inside the <Bus> element.

Buses/signals can be from logic analyzer modules (that probe a device under test), from imported
data, or from upstream tools that process captured or imported data in some way. A <Label>
element's Name attribute must be a bus/signal name defined in a logic analyzer module (see
"Defining Buses and Signals" (in the online help)), data import module, or generated by an upstream
tool.

Buses/signals used for decoding can contain the following types of information:

• Data — that is, the actual data to be decoded.

• Framing — signals that identify start-of-packet and end-of-packet.

• Validity — signals that identify when data is valid.

• 8B/10B — signals that identify a switch between 8B and 10B data or identify K-characters.

The data to be decoded comes from <Label> elements whose Type attribute identifies data (see
“Labels that Contain Data" on page 28). The Sop="(formula)" attribute, the Eop="(formula)" attribute
(if used), and the Valid="(formula)" attribute (if used) can be used with any <Label> element whose
Type attribute identifies data. The formula values of the Sop, Eop, and Valid attributes make
reference to other <Label> elements that have framing or validity information.

The last part of describing buses/signals is identifying the protocol used to decode the bus; this is
done with the <BusProtocol> element. Note that the <BusProtocol> name you specify must match a
defined <Protocol> description name. (The <PacketTypes> element's Protocol attribute must also
match a defined <Protocol> description name.)

For example, suppose the bus you are probing is 16 bits wide. Additionally, there is one signal that
specifies when a start-of-packet is present on the bus. Also, an end-of-packet signal is probed to
specify when a packet ends. There is a signal named "CLK" that specifies when valid data is on the
"DATA" bus. When CLK is 0, data will be completely ignored, and SOP/EOP will not be considered.

<ProtocolFamily Name="Ethernet" Version="1.1">

<Bus Name="Utopia">
<Label Name="DATA" Width="16" Type="Data" Sop="'SOP'==#b1"

Eop="'EOP'==#b1" Valid="'CLK'==#b1" />
<Label Name="SOP" Width="1" Type="Frame"/>
<Label Name="EOP" Width="1" Type="Frame"/>
<Label Name="CLK" Width="1" Type="Valid"/>
<BusProtocol Name="IEEE 802.3 (Ethernet V2)" Type="Packet"/>

</Bus>

...

<Protocol Name="IEEE 802.3 (Ethernet V2)" ... >
...

</Protocol>

NOTE
The Sop, Eop, and Valid attributes are used in the <Label> element that identifies the data (not the
in the <Label> elements for signals that define the start-of-packet, end-of-packet, or when data is
valid).

2 Creating a New Protocol Description

28 Customizing Protocol Descriptions for Packet Viewer Online Help

...

<PacketTypes ... Protocol="IEEE 802.3 (Ethernet V2)" ... >
...

</PacketTypes>

</ProtocolFamily>

The bus names you describe appear as choices when selecting the properties of a Packet Decoder
tool or when setting up a packet trigger.

See Also • “Labels that Contain Data" on page 28

• “Labels that Identify Valid Data" on page 29

• “If Your Serial Bus Has Lanes" on page 30

If your serial bus does not have lanes, you can choose not to display the Lanes tab in the Packet
Viewer window (right-click in the lower pane and deselect Display>Lanes).

Labels that Contain Data

Data can be decoded from <Label> elements that have the Type="Data", Type="8bData",
Type="10bData", or Type="MetaData" attribute.

The Type="8bData" and Type="10bData" attributes simply describe data values that are 8b or 10b
values.

The Type="MetaData" attribute provides a convenient way to partition a label's data into additional
generated labels. For example:

<Bus Name="PIPE 16-bit - x2" Style="Serial" LogicalLanes="2"
PhysicalLanes="4" ProtocolBits="32">

<Label Name="TxData0" Width="16" Type="MetaData"/>
<Label Name="TxData1" Width="16" Type="MetaData"/>
<Label Name="Lane0" Width="8" Type="8bData" Lane="0"

Value="TxData0[7:0]" Kchar="TxK0[0]==#h1"
OrderedSetSop="Lane0==#hbc .land. TxK0[0]==#h1"
Sop="(Lane0==#hfb || Lane0==#h5c) .land. TxK0[0]==#h1"
Eop="(Lane0==#hfd || Lane0==#hfe) .land. TxK0[0]==#h1" />

<Label Name="Lane1" Width="8" Type="8bData" Lane="1"

Customizing Protocol Descriptions for Packet Viewer Online Help 29

Creating a New Protocol Description 2

Value="TxData1[7:0]" Kchar="TxK1[0]==#h1"
OrderedSetSop="Lane1==#hbc .land. TxK1[0]==#h1"
Sop="(Lane1==#hfb || Lane1==#h5c) .land. TxK1[0]==#h1"
Eop="(Lane1==#hfd || Lane1==#hfe) .land. TxK1[0]==#h1" />

<Label Name="Lane2" Width="8" Type="8bData" Lane="2"
Value="TxData0[15:8]" Kchar="TxK0[1]==#h1"
OrderedSetSop="Lane2==#hbc .land. TxK0[1]==#h1"
Sop="(Lane2==#hfb || Lane2==#h5c) .land. TxK0[1]==#h1"
Eop="(Lane2==#hfd || Lane2==#hfe) .land. TxK0[1]==#h1" />

<Label Name="Lane3" Width="8" Type="8bData" Lane="3"
Value="TxData1[15:8]" Kchar="TxK1[1]==#h1"
OrderedSetSop="Lane3==#hbc .land. TxK1[1]==#h1"
Sop="(Lane3==#hfb || Lane3==#h5c) .land. TxK1[1]==#h1"
Eop="(Lane3==#hfd || Lane3==#hfe) .land. TxK1[1]==#h1" />

<Label Name="TxK0" Width="2" Type="K/D"/>
<Label Name="TxK1" Width="2" Type="K/D"/>
<BusProtocol Name="PCI Express Packet" Type="Packet"/>
<BusProtocol Name="PCI Express Lane" Type="Lane"/>
<BusProtocol Name="PCI Express Symbol" Type="Symbol"/>

</Bus>

When there are multiple <Label> elements with Type attributes that identify data, the Select
attribute is used to identify which label to get data from.

Labels that Identify Valid Data

Valid data is identified by <Label> elements with the Type="Valid", Type="Bonded", or Type="Idle"
attributes. The PacketData attribute provides another level of identifying valid data. Invalid data is
not decoded.

The Type="Valid" attribute identifies a label that specifies when data is valid. This attribute is usually
used for single lanes of data. Labels with Type="Valid" are used in conjunction with the Valid
attribute in the label whose type identifies data. A Valid attribute formula that results in "1" means
the data is valid, and a formula that results in "0" means the data is invalid. For example:

<Bus ... >
<Label Name="My Bus 1" Type="Data" ...

Valid="'My Bus 2'==#h7" />
<Label Name="My Bus 2" Width="3" Type="Valid"/>

The Type="Bonded" attribute specifies when multi-lane data is bonded (or aligned). This is another
way of identifying valid data. A value of "1" means the data is valid, and "0" means the data is invalid.

The Type="Idle" attribute specifies when data is invalid due to being idle. A value of "0" means the
data is valid, and "1" means the data is invalid.

Labels with Type="Bonded" or Type="Idle" identify signals that automatically filter samples. They are
not like labels with Type="Valid" that are used in conjunction with attributes in the data-type label.

The PacketData="(formula)" attribute provides another level of identifying when data is valid. For
example, the PacketData formula can identify subsections of data that contain valid packet data:

2 Creating a New Protocol Description

30 Customizing Protocol Descriptions for Packet Viewer Online Help

For example:

<Bus Name="LPC" ProtocolBits="8">
<Label Name="LFRAME" Width="1" Type="Frame" />
<Label Name="Cycle Type" Width="32" Type="Valid" />
<Label Name="LAD" Width="4" Type="Data" Lane="0"

Sop="LFRAME==0 .land. LFRAME{1}==1"
PacketData="'Cycle Type'!=#h21 .land.

'Cycle Type'!=#h401 .land.
'Cycle Type'!=#ha01" />

<BusProtocol Name="LPC Packet" Type="Packet" />
</Bus>

If Your Serial Bus Has Lanes

If your serial bus has lanes (see page 113) (see also Chapter 5, “Multi-Lane Serial Link Concepts,”
starting on page 67):

• You will have <Label> elements with Sop and Lane attributes for each physical lane.

• <BusProtocol> elements can be used for packet, lane (ordered set), and symbol decoding, and
there will be corresponding <Protocol> descriptions for packet and lane decoding and
<SymbolDecode> elements for symbol decoding.

• You may want to display lane data in the Listing window.

For example, here is a bus description from the PCI Express protocol description file:

<ProtocolFamily Name="PCI Express" Version="1.1">

<Bus Name="8B/10B Link - x2" GenerateLaneData="T" LogicalLanes="2"
PhysicalLanes="4" MaxBytes="10000" ProtocolBits="32">

<Label Name="10bbyte0" Width="10" Type="10bData" Lane="0"
Select="'8b/10b'[3]==#h0" Valid="valid[3]==#h1"
OrderedSetSop="'10bbyte0'==#hea"
Sop="'10bbyte0'==#h368 ||

'10bbyte0'==#h97 ||
'10bbyte0'==#hf5 ||
'10bbyte0'==#h30a"

Eop="'10bbyte0'==#h2e8 ||
'10bbyte0'==#h117 ||
'10bbyte0'==#h1e8 ||
'10bbyte0'==#h217" />

<Label Name="10bbyte1" Width="10" Type="10bData" Lane="1"
Select="'8b/10b'[2]==#h0" Valid="valid[2]==#h1"

NOTE
PacketData attribute formula strings must appear on one line. The formatting in the example above
is for readability.

Customizing Protocol Descriptions for Packet Viewer Online Help 31

Creating a New Protocol Description 2

OrderedSetSop="'10bbyte1'==#hea"
Sop="'10bbyte1'==#h368 ||

'10bbyte1'==#h97 ||
'10bbyte1'==#hf5 ||
'10bbyte1'==#h30a"

Eop="'10bbyte1'==#h2e8 ||
'10bbyte1'==#h117 ||
'10bbyte1'==#h1e8 ||
'10bbyte1'==#h217" />

<Label Name="10bbyte2" Width="10" Type="10bData" Lane="2"
Select="'8b/10b'[1]==#h0" Valid="valid[1]==#h1"
OrderedSetSop="'10bbyte2'==#hea"
Sop="'10bbyte2'==#h368 ||

'10bbyte2'==#h97 ||
'10bbyte2'==#hf5 ||
'10bbyte2'==#h30a"

Eop="'10bbyte2'==#h2e8 ||
'10bbyte2'==#h117 ||
'10bbyte2'==#h1e8 ||
'10bbyte2'==#h217" />

<Label Name="10bbyte3" Width="10" Type="10bData" Lane="3"
Select="'8b/10b'[0]==#h0" Valid="valid[0]==#h1"
OrderedSetSop="'10bbyte3'==#hea"
Sop="'10bbyte3'==#h368 ||

'10bbyte3'==#h97 ||
'10bbyte3'==#hf5 ||
'10bbyte3'==#h30a"

Eop="'10bbyte3'==#h2e8 ||
'10bbyte3'==#h117 ||
'10bbyte3'==#h1e8 ||
'10bbyte3'==#h217" />

<Label Name="8bbyte0" Width="8" Type="8bData" Lane="0"
Select="'8b/10b'[3]==#h1" Valid="valid[3]==#h1"
Kchar="kcode[3]==#h1"
Sop="('8bbyte0'==#hfb || '8bbyte0'==#h5c) .land.

kcode[3]==#h1"
Eop="('8bbyte0'==#hfd || '8bbyte0'==#hfe) .land.

kcode[3]==#h1" />
<Label Name="8bbyte1" Width="8" Type="8bData" Lane="1"

Select="'8b/10b'[2]==#h1" Valid="valid[2]==#h1"
Kchar="kcode[2]==#h1"
Sop="('8bbyte1'==#hfb || '8bbyte1'==#h5c) .land.

kcode[2]==#h1"
Eop="('8bbyte1'==#hfd || '8bbyte1'==#hfe) .land.

kcode[2]==#h1" />
<Label Name="8bbyte2" Width="8" Type="8bData" Lane="2"

Select="'8b/10b'[1]==#h1" Valid="valid[1]==#h1"
Kchar="kcode[1]==#h1"
Sop="('8bbyte2'==#hfb || '8bbyte2'==#h5c) .land.

kcode[1]==#h1"
Eop="('8bbyte2'==#hfd || '8bbyte2'==#hfe) .land.

kcode[1]==#h1" />
<Label Name="8bbyte3" Width="8" Type="8bData" Lane="3"

Select="'8b/10b'[0]==#h1" Valid="valid[0]==#h1"
Kchar="kcode[0]==#h1"
Sop="('8bbyte3'==#hfb || '8bbyte3'==#h5c) .land.

kcode[0]==#h1"

2 Creating a New Protocol Description

32 Customizing Protocol Descriptions for Packet Viewer Online Help

Eop="('8bbyte3'==#hfd || '8bbyte3'==#hfe) .land.
kcode[0]==#h1" />

<Label Name="valid" Width="4" Type="Valid"/>
<Label Name="8b/10b" Width="4" Type="8b/10b"/>
<Label Name="kcode" Width="4" Type="K/D"/>
<Label Name="bonded" Width="1" Type="Bonded"/>
<Label Name="linkidle" Width="1" Type="Idle"/>
<BusProtocol Name="PCI Express Packet" Type="Packet"/>
<BusProtocol Name="PCI Express Lane" Type="Lane"/>
<BusProtocol Name="PCI Express Symbol" Type="Symbol"/>

</Bus>

...

<Protocol Name="PCI Express Packet" ProtocolLayer="Physical">
...

</Protocol>

<Protocol Name="PCI Express Lane" Type="Lane"
ProtocolLayer="Physical">

...
</Protocol>

<SymbolDecode>
<Enumset Name="PCI Express Symbol">

...
</Enumset>

</SymbolDecode>

...

<PacketTypes Name="PCI Express" Protocol="PCI Express Packet">
...

</PacketTypes>

</ProtocolFamily>

Generating Lane
Data in the Listing

Window

You can use the <Bus> element's GenerateLaneData attribute to generate lane data in the Listing
window. When GenerateLaneData="T", a generated bus/signal column named "(ProtocolFamily
name) Lane Data" is added to the Listing window (when ASCII decode output is enabled). For
example, if your protocol family name is "Ethernet", a column named "Ethernet Lane Data" can
appear in the Listing window.

NOTE
The Sop and Eop attribute formula strings must appear on one line. The formatting in the example
above is for readability.

Customizing Protocol Descriptions for Packet Viewer Online Help 33

Creating a New Protocol Description 2

Step 7: Describe the packet types

After describing the bus to be decoded, describe the packet types that will appear in the Packet
Viewer's decode column (and in the dialogs used for setting up packet triggers) by using the
<PacketTypes>, <PacketTypeGroup>, and <PacketType> elements.

<ProtocolFamily Name="Ethernet" Version="1.1">

<PacketTypes Name="EthernetV2PacketType"
Protocol="IEEE 802.3 (Ethernet V2)"
Default="Internet Protocol">

<PacketTypeGroup Name="EthernetV2PacketType">
<PacketType Name="Internet Protocol">

<PacketMask BitOffset="96" Width="16" Value="#h0800"/>
</PacketType>
<PacketType Name="ARP Request">

<PacketMask BitOffset="96" Width="16" Value="#h0806"/>
</PacketType>
<PacketType Name="ARP Response">

<PacketMask BitOffset="96" Width="16" Value="#h0835"/>
</PacketType>
<PacketType Name="AppleTalk Datagram">

<PacketMask BitOffset="96" Width="16" Value="#h809b"/>
</PacketType>
<PacketType Name="SNA">

<PacketMask BitOffset="96" Width="16" Value="#h80d5"/>
</PacketType>
<PacketType Name="Novel IPX">

<PacketMask BitOffset="96" Width="16" Value="#h8137"/>
</PacketType>
<PacketType Name="IPv6">

<PacketMask BitOffset="96" Width="16" Value="#h86dd"/>
</PacketType>
<PacketType Name="IPS">

<PacketMask BitOffset="96" Width="16" Value="#h2007"/>
</PacketType>

</PacketTypeGroup>
</PacketTypes>

</ProtocolFamily>

In the <PacketTypes> element, the Default="(packet type name)" attribute specifies the default
packet type in the Event Editor.

You can use additional <PacketTypeGroup> elements to organize a hierarchy of packet types that
can be selected from when setting up packet triggers.

2 Creating a New Protocol Description

34 Customizing Protocol Descriptions for Packet Viewer Online Help

The <PacketMask> element identifies the specific bit values within the packet that identify the packet
type. If the bits that specify the packet type are not the first bits in the packet, you can use the
BitOffset="(bit offset)" attribute to specify where those bits are located.

The described packet types appear in the main packet decode column of the Packet Viewer window.

Customizing Protocol Descriptions for Packet Viewer Online Help 35

Creating a New Protocol Description 2

You can color-code packet types in the Packet Viewer window and add descriptive tool tips with
<PacketDisplay> elements inside the <PacketType> elements (see “Describing Packet Type
Colors" on page 44).

Step 8: Describe the protocol's headers, data, trailers, and fields

After describing packet types, start identifying protocols, their headers, payloads, and trailers, and
the fields that appear in each.

Use the <Protocol> element to name the protocol description (with the Name attribute) and identify
its layer within the protocol stack (with the ProtocolLayer attribute).

Use <Header>, <Payload>, and <Trailer> elements to describe these parts of a packet. Use <Field>
elements within <Header>, <Payload>, and <Trailer> elements to describe fields.

For example:

<ProtocolFamily Name="Ethernet" Version="1.1">
<Bus ... > ... </Bus>

<Protocol Name="IEEE 802.3 (Ethernet V2)"
ProtocolLayer="Physical Layer">

<Header>
<Field Name="Dest Addr" Length="48" Type="Data"

Format="Hex"/>
<Field Name="Src Addr" Length="48" Type="Data"

Format="Hex"/>
<Field Name="Length/Type" Length="16"

Enumset="EthernetV2PacketType"/>
<Field Name="Length/Type" Type="ProtocolField"/>

</Header>
</Protocol>

2 Creating a New Protocol Description

36 Customizing Protocol Descriptions for Packet Viewer Online Help

In the example above, bits 0-47 of the packet are the Dest Addr, bits 48-95 are the Src Addr, and bits
96-111 are the Length/Type. The order of <Field> elements must be the same as the order of fields in
the packet. The bits of the packet are counted as Length attributes are used.

The default <Field> element type is data, so the Type="Data" attribute is not necessary; however, you
may want to use it in order to distinguish normal data fields from other type fields.

The Format attribute describes the default base when the field is displayed in the Packet Viewer
window or the Event Editor.

Fields with Type="Protocol" or Type="ProtocolField" reference the next layers of the protocol stack,
which are described with additional <Protocol> elements.

The Type="ProtocolField" attribute (see the previous example) references multiple additional
protocols whose names are defined in an enumeration set. Two <Field> elements are used: the first is
for decoding the value in the field, and the second says to use additional protocol descriptions for
further decoding. Continuing on with the previous example:

<Enumset Name="EthernetV2PacketType">
<Enum Value="#h0800" Name="Internet Protocol"/>
<Enum Value="#h0806" Name="ARP Request"/>
<Enum Value="#h0835" Name="ARP Response"/>
<Enum Value="#h809b" Name="AppleTalk Datagram"/>
<Enum Value="#h80d5" Name="SNA"/>
<Enum Value="#h8137" Name="Novel IPX"/>
<Enum Value="#h86dd" Name="IPv6"/>
<Enum Value="#h2007" Name="IPS"/>
<Enum Value="#h6002" Name="DEC MOP Remote Console"/>
<Enum Value="#h6004" Name="DEC LAT"/>

</Enumset>

<Protocol Name="Internet Protocol" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="ARP Request" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="ARP Response" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="AppleTalk Datagram" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="SNA" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="Novell IPX" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="IPv6" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="IPS" ProtocolLayer="Network Layer">
</Protocol>

...

</ProtocolFamily>

Customizing Protocol Descriptions for Packet Viewer Online Help 37

Creating a New Protocol Description 2

Enumeration sets are described with <Enumset> elements; their main purpose is to assign
meaningful strings to values. For more information, see “Using Enumsets" on page 43.

You can describe the next layer of protocol by filling-in additional <Protocol> elements. For example,
to describe "Internet Protocol":

<!-- ** -->
<!-- IP (Internet Protocol) Packet Definition -->
<!-- This description assumes the packet length is 20 bytes. -->
<!-- ** -->

<Protocol Name="Internet Protocol" ProtocolLayer="Network Layer">
<Header>

<Field Name="Version" Length="4" Type="Data" Format="Hex"/>
<Field Name="Header Length" Length="4" Type="Data"

Format="Decimal"/>
<Field Name="Precedence" Length="3"

Enumset="PrecedenceSymbols"/>
<Field Name="Delay" Length="1" Enumset="NormalLowSymbols"/>
<Field Name="Throughput" Length="1"

Enumset="NormalHighSymbols"/>
<Field Name="Reliability" Length="1"

Enumset="NormalHighSymbols"/>
<Field Name="Cost" Length="1" Enumset="NormalLowSymbols"/>
<Field Name="MBZ" Length="1" Type="Data" Format="Binary"/>
<Field Name="Total Length" Length="16" Type="Data"

Format="Decimal"/>
<Field Name="Identification" Length="16" Type="Data"

Format="Hex"/>
<Field Name="Zero" Length="1" Type="Data" Format="Binary"/>
<Field Name="Do not fragment" Length="1" Type="Data"

Format="Binary"/>
<Field Name="May fragment" Length="1" Type="Data"

Format="Binary"/>
<Field Name="Fragment Offset" Length="13" Type="Data"

Format="Decimal"/>
<Field Name="Time To Live" Length="8" Type="Data"

Format="Decimal"/>
<Field Name="Protocol" Length="8" Enumset="IPProtocolType"/>
<Field Name="Header Checksum" Length="16" Type="Data"

Format="Hex"/>
<Field Name="IP Src Addr" Length="32" Type="Data"

Format="DotNotation"/>
<Field Name="IP Dest Addr" Length="32" Type="Data"

Format="DotNotation"/>
<Field Name="Internet Cntrl Msg Protocol" Type="Protocol"

Select="'Protocol'==#h01"/>
<Field Name="Transmission Control Protocol" Type="Protocol"

Select="'Protocol'==#h06"/>
<Field Name="User Datagram Protocol" Type="Protocol"

Select="'Protocol'==#h11"/>
<Field Name="Open Shortest Path First IGP" Type="Protocol"

Select="'Protocol'==#h59"/>
</Header>

</Protocol>

<Enumset Name="PrecedenceSymbols">

2 Creating a New Protocol Description

38 Customizing Protocol Descriptions for Packet Viewer Online Help

<Enum Value="#h0" Name="Routine"/>
<Enum Value="#h1" Name="Priority"/>
<Enum Value="#h2" Name="Immediate"/>
<Enum Value="#h3" Name="Flash"/>
<Enum Value="#h4" Name="Flash Override"/>
<Enum Value="#h6" Name="Internetwork Control"/>
<Enum Value="#h7" Name="Network Control"/>

</Enumset>

<Enumset Name="NormalLowSymbols">
<Enum Value="#b0" Name="Normal"/>
<Enum Value="#b1" Name="Low"/>

</Enumset>

<Enumset Name="NormalHighSymbols">
<Enum Value="#b0" Name="Normal"/>
<Enum Value="#b1" Name="High"/>

</Enumset>

<Enumset Name="IPProtocolType">
<Enum Value="#h01" Name="Internet Cntrl Msg Protocol"/>
<Enum Value="#h06" Name="Transmission Control Protocol"/>
<Enum Value="#h11" Name="User Datagram Protocol"/>
<Enum Value="#h59" Name="Open Shortest Path First IGP"/>

</Enumset>

<Protocol Name="Internet Cntrl Msg Protocol"
ProtocolLayer="Transport Layer">

</Protocol>

<Protocol Name="Transmission Control Protocol"
ProtocolLayer="Transport Layer">

</Protocol>

<Protocol Name="User Datagram Protocol"
ProtocolLayer="Transport Layer">

</Protocol>

<Protocol Name="Open Shortest Path First IGP"
ProtocolLayer="Transport Layer">

</Protocol>

The above description shows another way to reference the next protocol level. The Type="Protocol"
attribute is used within <Field> elements, and Select attributes are used to identify the protocol at
the next level; in this case, the field that identifies the next level of protocol appears earlier in the
packet.

Again, you can describe the next layer of protocol by filling-in additional <Protocol> elements. For
example, to describe "User Datagram Protocol":

<!-- ** -->
<!-- UPD Packet Definition -->
<!-- ** -->

<Protocol Name="User Datagram Protocol"
ProtocolLayer="Transport Layer">

<Header>
<Field Name="Source Port" Length="16" Enumset="PortSymbols"

Customizing Protocol Descriptions for Packet Viewer Online Help 39

Creating a New Protocol Description 2

Format="Decimal"/>
<Field Name="Destination Port" Length="16"

Enumset="PortSymbols" Format="Decimal"/>
<Field Name="Length (bytes)" Length="16" Type="Data"

Format="Decimal"/>
<Field Name="Checksum" Length="16" Type="Data" Format="Hex"/>

</Header>
<Payload>

<Field Name="Data" Length="'#PACKET_LENGTH' - 336"
Type="Payload"/>

</Payload>
</Protocol>

<Enumset Name="PortSymbols">
<Enum Value="#d5" Name="Remote Job Entry"/>
<Enum Value="#d7" Name="Echo"/>
<Enum Value="#d9" Name="Discard"/>
<Enum Value="#d11" Name="Active Users"/>
<Enum Value="#d13" Name="Daytime"/>
<Enum Value="#d15" Name="Who Is Up/NETSTAT"/>
<Enum Value="#d17" Name="Quote Of The Day"/>
<Enum Value="#d19" Name="Character Generation"/>
<Enum Value="#d20" Name="FTP - data"/>
<Enum Value="#d21" Name="FTP"/>
<Enum Value="#d22" Name="SSH"/>
<Enum Value="#d23" Name="TELNET"/>
<Enum Value="#d25" Name="SMTP"/>
<Enum Value="#d37" Name="Time"/>
<Enum Value="#d39" Name="Resource Location Protocol"/>
<Enum Value="#d42" Name="Host Name Server"/>
<Enum Value="#d43" Name="NICNAME/Who Is"/>
<Enum Value="#d53" Name="DNS"/>
<Enum Value="#d67" Name="BOOTP - Server"/>
<Enum Value="#d68" Name="BOOTP - Client"/>
<Enum Value="#d69" Name="Trivial FTP"/>
<Enum Value="#d75" Name="Private Dial-Out Service"/>
<Enum Value="#d77" Name="Private RJE Service"/>
<Enum Value="#d79" Name="Finger"/>
<Enum Value="#d80" Name="WWW"/>
<Enum Value="#d95" Name="SUPDUP Protocol"/>
<Enum Value="#d101" Name="NIC Host Name Server"/>
<Enum Value="#d102" Name="ISO-TSAP"/>
<Enum Value="#d109" Name="POP - Post Office Prot"/>
<Enum Value="#d110" Name="POP3 - Post Office Prot"/>
<Enum Value="#d111" Name="Portmap"/>
<Enum Value="#d113" Name="Authentication Service"/>
<Enum Value="#d115" Name="SFTP"/>
<Enum Value="#d117" Name="UUCP Path Service"/>
<Enum Value="#d119" Name="NNTP News Transfer"/>
<Enum Value="#d123" Name="Network Time Protocol"/>
<Enum Value="#d137" Name="NETBIOS"/>
<Enum Value="#d138" Name="NETBIOS"/>
<Enum Value="#d139" Name="NETBIOS"/>
<Enum Value="#d161" Name="SNMP"/>

</Enumset>

2 Creating a New Protocol Description

40 Customizing Protocol Descriptions for Packet Viewer Online Help

The decoded fields and values can be seen in the Packet Viewer window's Details, Header, Payload,
and Lanes tabs:

Customizing Protocol Descriptions for Packet Viewer Online Help 41

Creating a New Protocol Description 2

Step 9: Describe the columns displayed in Packet Viewer by default

Finally, use the <DisplayDefaults> element to describe the columns that are displayed in the Packet
Viewer by default. For example:

<DisplayDefaults>
<DisplayField Name="Sample Number" Width="16"/>
<DisplayField Name="Ethernet Packet" Width="25"/>
<DisplayField Name="Length/Type" Width="20"/>
<DisplayField Name="Protocol" Width="30"/>
<DisplayField Name="Time"/>

</DisplayDefaults>

These are the default columns displayed when you add the Packet Viewer window:

In the Packet Viewer window, you can insert or delete columns as desired (see "To insert or delete
packet decode columns" (in the online help)).

There are four columns that are automatically generated by the Packet Decoder tool:

• "Sample Number" — contains the logic analyzer sample number corresponding to the captured
data.

• "Time" — contains the logic analyzer time corresponding to the captured data.

• "(ProtocolFamily name) Packet" — contains the main packet type decodes. For example, if the
protocol family name is "Ethernet", the main packet type decodes appear in a column named
"Ethernet Packet".

2 Creating a New Protocol Description

42 Customizing Protocol Descriptions for Packet Viewer Online Help

• "Direction" — can contain the name of the Packet Decoder tool or a name you specify in the
Packet Decoder tool's properties. This is useful when multiple Packet Decoder tools are used for
different directions of a serial link and the tools are named to identify the data direction.

Other columns that can be displayed are the fields described with <Field> elements.

Getting Started Summary

The previous getting started steps are basic steps for creating a protocol description file. There are
additional steps you can take to make your protocol description file more useful. You can:

• Describe protocol errors (see page 44).

• Add color-coding and tool tip descriptions (see page 44).

• You can use ValueFunctions to compute CRC values and look for CRC errors (see page 51).

• You can use TransformFunctions to transform the value of a field (see page 52).

Customizing Protocol Descriptions for Packet Viewer Online Help 43

Creating a New Protocol Description 2

Adding Decode Information

• “Assigning Meaningful Strings to Values" on page 43

• “Describing Protocol Errors" on page 44

• “Adding Color Descriptions (for Packet Viewer)" on page 44

Assigning Meaningful Strings to Values

There are two ways to assign meaningful strings to decoded values:

• “Using Enumsets" on page 43

• “Using SymbolDecode (for Lanes tab)" on page 43

Using Enumsets

When a field can be one of a set of predefined values, use the <Enumset> element to identify those
values. For example:

<Enumset Name="EthernetV2PacketType">
<Enum Value="#h0800" Name="Internet Protocol"/>
<Enum Value="#h0806" Name="ARP Request"/>
<Enum Value="#h0835" Name="ARP Response"/>
<Enum Value="#h809b" Name="AppleTalk Datagram"/>
<Enum Value="#h80d5" Name="SNA"/>
<Enum Value="#h8137" Name="Novel IPX"/>
<Enum Value="#h86dd" Name="IPv6"/>
<Enum Value="#h2007" Name="IPS"/>
<Enum Value="#h6002" Name="DEC MOP Remote Console"/>
<Enum Value="#h6004" Name="DEC LAT"/>

</Enumset>

Then, use the Enumset attribute in a <Field> element to use the enumeration set:

<Field Name="Length/Type" Length="16"
Enumset="EthernetV2PacketType"/>

The <Enumset> element can also contain <Range> elements for assigning a string to a range of
values and one <Default> element for assigning a string to values not defined by <Enum> or <Range>
elements (see the example in “<Default>" on page 75).

Using SymbolDecode (for Lanes tab)

If your serial protocol uses lanes (see page 113), the <SymbolDecode> element is used to assign
meaningful strings to decoded values in the Packet Viewer's Lanes tab. For example, the protocol
description for PCI Express contains the following <SymbolDecode> assignments.

<SymbolDecode>
<Enumset Name="PCI Express Symbol">

<Enum Value="#hbc" Name="COM" KDChar="KChar"/>
<Enum Value="#hfb" Name="STP" KDChar="KChar"/>
<Enum Value="#h5c" Name="SDP" KDChar="KChar"/>
<Enum Value="#hfd" Name="END" KDChar="KChar"/>
<Enum Value="#hfe" Name="EDB" KDChar="KChar"/>
<Enum Value="#hf7" Name="PAD" KDChar="KChar"/>
<Enum Value="#h1c" Name="SKP" KDChar="KChar"/>
<Enum Value="#h3c" Name="FTS" KDChar="KChar"/>
<Enum Value="#h7c" Name="IDL" KDChar="KChar"/>
<Enum Value="#h9c" Name="RSV" KDChar="KChar"/>

2 Creating a New Protocol Description

44 Customizing Protocol Descriptions for Packet Viewer Online Help

<Enum Value="#hdc" Name="RSV" KDChar="KChar"/>
<Enum Value="#hfc" Name="RSV" KDChar="KChar"/>
<Enum Value="#h4a" Name="TS1" KDChar="DChar"/>
<Enum Value="#h45" Name="TS2" KDChar="DChar"/>

</Enumset>
</SymbolDecode>

Describing Protocol Errors

Use the <ProtocolErrors> element to define the protocol errors specified by the protocol that are
possible during packet decode. Protocol errors have red highlighting in the Packet Viewer.

For example, to define a protocol error:

<ProtocolErrors>
<ProtocolError Name="Bad Packet"

Description="The packet ended with the ENB Symbol."/>
</ProtocolErrors>

Then, use the ValueError attribute in a <Field> or <Enum> element:

<Enumset Name="EndSymbolType">
<Enum Value="#hfd" Name="END"/>
<Enum Value="#hfe" Name="EDB" ValueError="Bad Packet"/>

</Enumset>

Adding Color Descriptions (for Packet Viewer)

• “Describing Packet Type Colors" on page 44

• “Describing Cell Highlighting (for Lanes tab)" on page 45

• “Available Colors" on page 46

Describing Packet Type Colors

Use the <PacketDisplay> element in <PacketType> descriptions. For example:

Customizing Protocol Descriptions for Packet Viewer Online Help 45

Creating a New Protocol Description 2

<PacketType Name="Nak">
<PacketMask Width="12" Value="#h5C1"/>
<PacketDisplay

BackgroundColor="MediumVioletRed"
ForegroundColor="White"
Description="TLP Sequence Number Negative Acknowledgement.

Initiates a Data Link Layer Retry." />
</PacketType>

The Description="(string)" attribute specifies a string that appears in a tool tip when the mouse
pointer hovers over the packet type line.

See Also • “Available Colors" on page 46

Describing Cell Highlighting (for Lanes tab)

Use the <PacketHighlightRules> element to specify cell highlighting in the Packet Viewer's Lanes
tab. For example:

<PacketHighlightRules>
<PacketHighlightRule

PacketSegment="Header"
ForegroundColor="Black"
BackgroundColor="LightYellow"
DisplayName="Header"

/>
<PacketHighlightRule

FieldName="Payload"
FieldType="Payload"
ForegroundColor="White"
BackgroundColor="DarkRed"
DisplayName="Payload"

/>
<PacketHighlightRule

FieldName="Sequence Number"
ForegroundColor="White"
BackgroundColor="Blue"
DisplayName="Sequence Number"

/>
<PacketHighlightRule

FieldName="LCRC"
FieldType="CRC"
ForegroundColor="Black"
BackgroundColor="Gray"
DisplayName="LCRC"

/>
<PacketHighlightRule

FieldName="TLP Digest (ECRC)"

2 Creating a New Protocol Description

46 Customizing Protocol Descriptions for Packet Viewer Online Help

FieldType="CRC"
ForegroundColor="Black"
BackgroundColor="LightGrey"
DisplayName="ECRC"

/>
<PacketHighlightRule

FieldName="16b CRC"
FieldType="CRC"
ForegroundColor="Black"
BackgroundColor="LightGrey"
DisplayName="16b CRC"

/>
<PacketHighlightRule

LaneKDChar="KChar"
ForegroundColor="Black"
BackgroundColor="Green"

/>
</PacketHighlightRules>

See Also • “Available Colors" on page 46

• “<PacketHighlightRules>" on page 93

• “<PacketHighlightRule>" on page 91

Available Colors

You can choose from the following available colors:

Black DarkOrange PaleGreen SlateGray

DimGray BurlyWood LightGreen LightSteelBlue

Gray AntiqueWhite ForestGreen CornflowerBlue

DarkGray Tan LimeGreen RoyalBlue

Silver NavajoWhite DarkGreen GhostWhite

LightGrey BlanchedAlmond Green, Lime Lavender

Gainsboro PapayaWhip SeaGreen MidnightBlue

WhiteSmoke Moccasin MediumSeaGreen Navy

Customizing Protocol Descriptions for Packet Viewer Online Help 47

Creating a New Protocol Description 2

White Orange SpringGreen DarkBlue

Snow Wheat MintCream MediumBlue

RosyBrown OldLace MediumSpringGreen Blue

LightCoral FloralWhite MediumAquamarine SlateBlue

IndianRed DarkGoldenrod Aquamarine DarkSlateBlue

Brown Goldenrod Turquoise MediumSlateBlue

FireBrick CornSilk LightSeaGreen MediumPurple

Maroon Gold MediumTurquoise BlueViolet

DarkRed LemonChiffon Azure Indigo

Red Khaki LightCyan DarkOrchid

MistyRose PaleGoldenrod PaleTurquoise DarkViolet

Salmon DarkKhaki DarkSlateGray MediumOrchid

Tomato Ivory Teal Thistle

DarkSalmon Beige DarkCyan Plum

Coral LightYellow Aqua, Cyan Violet

OrangeRed LightGoldenrodYellow DarkTurquoise Purple

LightSalmon Olive CadetBlue DarkMagenta

Sienna Yellow PowderBlue Fuchsia, Magenta

Seashell OliveDrab LightBlue Orchid

Chocolate YellowGreen DeepSkyBlue MediumVioletRed

SaddleBrown DarkOliveGreen SkyBlue DeepPink

SandyBrown GreenYellow LightSkyBlue HotPink

PeachPuff Chartreuse SteelBlue LavenderBlush

Peru LawnGreen AliceBlue PaleVioletRed

Linen Honeydew DodgerBlue Crimson

Bisque DarkSeaGreen LightSlateGray Pink

2 Creating a New Protocol Description

48 Customizing Protocol Descriptions for Packet Viewer Online Help

How to ...

• “To decode conditionally based on packet bits" on page 48

• “To determine serial data start of packet by using look around" on page 48

• “To display and use full values for partial bit fields" on page 49

• “To decode fields with printf-style format strings" on page 49

• “To add information to a packet" on page 50

To decode conditionally based on packet bits

Make <Field> element decoding conditional by using the Select="(formula)" attribute. For example:

<Field Name="Internet Cntrl Msg Protocol" Type="Protocol"
Select="'Protocol'==#h01"/>

<Field Name="Transmission Control Protocol" Type="Protocol"
Select="'Protocol'==#h06"/>

<Field Name="User Datagram Protocol" Type="Protocol"
Select="'Protocol'==#h11"/>

<Field Name="Open Shortest Path First IGP" Type="Protocol"
Select="'Protocol'==#h59"/>

</Header>
</Protocol>

In this example, the fields are only decoded if the previously defined Protocol field has the specified
value. You can also look ahead to decode conditionally based on fields later in the packet (see “To
look ahead" on page 58).

To determine serial data start of packet by using look around

Use the look around syntax in formulas. By appending a {} to a bus/signal name in a formula, data
can be retrieved from previous or future samples.

For example, if the bits "11110000" on a single serial channel identify the start-of-packet, you could
use:

<Bus Name="Serial Bus" Style="Parallel">
<Label Name="My TXD" Width="1" Type="Data"

Sop="'My TXD'{-7}==#b1 .land.
'My TXD'{-6}==#b1 .land.
'My TXD'{-5}==#b1 .land.
'My TXD'{-4}==#b1 .land.
'My TXD'{-3}==#b0 .land.
'My TXD'{-2}==#b0 .land.
'My TXD'{-1}==#b0 .land.
'My TXD'{0}==#b0"

<Protocol Name="Serial Bus Protocol" Type="Packet"/>
</Bus>

NOTE
The Sop attribute formula string must appear on one line. The formatting in the example above is
for readability.

Customizing Protocol Descriptions for Packet Viewer Online Help 49

Creating a New Protocol Description 2

To display and use full values for partial bit fields

The <Field> element's DecodeRule, EncodeRule, and DisplayLength attributes let you display and
use full values when not all bits of a field are transmitted in a packet.

For example, in PCI Express, there is an Address[31:2] field in a packet. You probably want to view
the value as a full 32-bit value. Also, when searching, triggering, or filtering on that field, you would
like to enter 32-bit values and have the software "normalize" that 32-bit value back to what it should
be in the packet. In this case, you can use:

<Field Name="Address" Type="Address" Length="30"
DecodeRule="Address .lshift. 2"
EncodeRule="Address .rshift. 2"
DisplayLength="32"/>

The DecodeRule attribute specifies how the value of the field should be transformed prior to display.
In the preceding example, it is to left shift the value of the field by 2 bits.

The EncodeRule attribute specifies how the entered value when triggering, searching, or filtering on
the field should be transformed before performing the operation. In the preceding example, it is to
right shift the value of the field by 2 bits.

Finally, the DisplayLength attribute specifies the length of the value to display (after the transform
has occurred). In the preceding example, it is 32 bits.

To decode fields with printf-style format strings

The <Field> element's DecodeString attribute lets you format decoded fields using C language
printf-style format strings. This gives you great flexibility in formatting decoded data.

For example, this decode string displays length data separated by colons:

<Field Name="Length" Length="8"
DecodeString="'%d:%d:%d:%d', 'Length'[10:9], 'Length'[8:7],
'Length'[6:4], 'Length'[3:0]"
Select="'Packet Type'==#h1"/>

Only integers are to be used in the printf specification; therefore, these data types are supported:

• c (single-byte character).

• C (wide character).

• d, i (signed decimal integer).

• o (unsigned octal integer).

• u (unsigned decimal integer).

• x (unsigned hexadecimal integer, using "abcdef").

• X (unsigned hexadecimal integer, using "ABCDEF").

There is no support for floating point values (e,E,f,g,G), pointer values (n,p), or strings (s,S).

The full C-Printf syntax is allowed, except for the above data types.

New lines are not displayed.

NOTE
The DecodeString attribute string must appear on one line. The formatting in the example above is
for readability.

2 Creating a New Protocol Description

50 Customizing Protocol Descriptions for Packet Viewer Online Help

To add information to a packet

You can use the <Label> element's Meta attribute to add additional information to a packet. This
additional information, for example, can be used to:

• Qualify the selection of packet types.

• Provide additional decode information.

• Selectively decode fields in a different way.

Meta data is specified as a concatenation of labels or constants.

The underlying structure of a meta data specification is a buffer. As each label or constant is read in,
the buffer is filled in with the corresponding data. The labels or constants are delimited by commas.

Each label or constant token must be appended with a backslash followed by the number of bits that
should be added to the buffer.

As an example, here is a meta specification that includes 2 bits of a 4-bit status label:

<Label Name="Status" Width="4" />
<Label Name="Data" Sop="Status==1" Meta="'Status'[4:3]\2" />

Here is another example that includes the 4 bits of status, appended with 2 bits of a constant (the
two bits to be added to the buffer is 3 or 11b):

<Label Name="Status" Width="4" />
<Label Name="Data" Sop="Status==1" Meta="Status\4,3\2" />

Note that, in these examples, the meta data is currently added only on the SOP state. You could add
{-n} to the label name to get a value n states before the SOP state, or you could add {n} to get values
n states after the SOP state.

Customizing Protocol Descriptions for Packet Viewer Online Help 51

Creating a New Protocol Description 2

Using Advanced Features

• “Using ValueFunctions" on page 51

• “Using TransformFunctions" on page 52

• “When the Framing Options are Not Sufficient" on page 53

Using ValueFunctions

The <Field> element's ValueFunction attribute lets you use an external program to calculate the
expected value of a field. ValueFunction attributes are normally used for CRC computation. For
example:

<Trailer>
<Field Name="Next Control Word Data" Length="12"/>
<Field Name="DIP-4" Length="4"

ValueFunction="agProtocols:SPI42DIP4"
ValueInput="DIP-4 Contents"
ValueError="Bad DIP-4"/>

</Trailer>
</FieldContainer>

</Protocol>

The ValueFunction attribute's value takes the form "LibraryName:FunctionName" where the library is
a DLL with unmangled names. For example, here is the forward declaration of a value function:

extern "C" __declspec(dllexport)
unsigned __int32 FunctionName(unsigned __int8* pData_p,

unsigned __int32 nByteLength_p);

The '"C" __declspec(dllexport)' part of the declaration is for unmangled names.

The Packet Decoder tool passes in a pointer to the data identified by the ValueInput attribute and its
byte length.

The function returns a 32-bit unsigned integer that is the calculated field value. A protocol error
occurs if the actual field value is different than the returned value.

Any C compiler can be used to generate the DLL as long as the function names are unmangled.

DLL files (and any additional DLL files referenced by the ValueFunction) should be located in the
Protocols folder in the Keysight Logic Analyzer application's install directory. For example, the
default location is: C:\Program Files\Keysight Technologies\Logic Analyzer\Protocols.

Example Here is the ValueFunction used for SPI 4.2 to perform a DIP-4 Parity check:

extern "C" __declspec(dllexport)
unsigned __int32 SPI42DIP4(unsigned __int8* pData_p,

unsigned __int32 nLength_p)
{

// need to mask the DIP-4 value to all 1's. This value is the
// last 4 bits of the packet
pData_p[nLength_p - 1] |= 0x0F;

// This routine works better if we can address the bytes in pairs.
unsigned __int16* pData

= reinterpret_cast< unsigned __int16* >(pData_p);
unsigned __int32 nLines = nLength_p / 2;

unsigned __int32 nDIP4 = 0;

2 Creating a New Protocol Description

52 Customizing Protocol Descriptions for Packet Viewer Online Help

for (unsigned __int32 nLine = 0; nLine < nLines; ++nLine)
{
unsigned __int32 nUpperBits

= pData[nLine] << (nLine % 16);
unsigned __int32 nLowerBits

= pData[nLine] >> (16 - (nLine % 16));
unsigned __int32 nShiftedData

= (nUpperBits | nLowerBits) & 0x0ffff;

nDIP4 ^= nShiftedData;
}

unsigned __int32 nUpperDIP4 = (nDIP4 & 0xff00) >> 8;
unsigned __int32 nLowerDIP4 = (nDIP4 & 0x00ff);

nDIP4 = (nUpperDIP4 ^ nLowerDIP4) & 0xFF;

nUpperDIP4 = (nDIP4 & 0xF0) >> 4;
nLowerDIP4 = (nDIP4 & 0x0F);

nDIP4 = (nUpperDIP4 ^ nLowerDIP4) & 0x0F;

return nDIP4;
}

Using TransformFunctions

The <Field> element's TransformFunction attribute lets you use an external program to transform the
value of a field. For example, this would be required to modify the order of the bits/bytes of a field:

<Protocol Name="I/O Cycle" ProtocolLayer="Physical">
<Field Name="Address" Length="16"/>
<Field Name="Payload" Length="8" Type="Payload"

TransformFunction="agProtocols:LPCSwapNibbles"/>
</Protocol>

The TransformFunction attribute's value takes the form "LibraryName:FunctionName" where the
library is a DLL with unmangled names. For example, here is the forward declaration of a transform
function:

extern "C" __declspec(dllexport)
unsigned __int32 FunctionName(unsigned __int8* pData_p,

unsigned __int32 nByteLength_p);

The '"C" __declspec(dllexport)' part of the declaration is for unmangled names.

The Packet Decoder tool passes in a pointer to the field data and its byte length.

The function returns a 32-bit unsigned integer that is not used.

Any C compiler can be used to generate the DLL as long as the function names are unmangled.

DLL files (and any additional DLL files referenced by the TransformFunction) should be located in the
Protocols folder in the Keysight Logic Analyzer application's install directory. For example, the
default location is: C:\Program Files\Keysight Technologies\Logic Analyzer\Protocols.

Example Here is the TransformFunction used for LPC to perform nibble swapping:

Customizing Protocol Descriptions for Packet Viewer Online Help 53

Creating a New Protocol Description 2

extern "C" __declspec(dllexport)
unsigned __int32 LPCSwapNibbles(unsigned __int8* pData_p,

unsigned __int32 nLength_p)
{

for (unsigned __int32 nByte = 0; nByte < nLength_p; ++nByte)
{
//
// for each byte, swap nibbles
//
unsigned __int8 nHighNibble = (pData_p[nByte] >> 4) & 0x0F;

pData_p[nByte] = (pData_p[nByte] << 4) & 0x0F0 | nHighNibble;
}

return 0;
}

When the Framing Options are Not Sufficient

There are some cases where the built-in frame detection options of the protocol description file are
not sufficient for detecting the start- and end-of-packets. In some of these cases, you can use other
logic analysis system tools to massage the data before it gets to the Packet Decoder tool.

• “Using the Serial To Parallel Tool" on page 53

• “Using the Signal Extractor Tool" on page 53

Using the Serial To Parallel Tool

When serial data is captured without a clock signal in the timing (asynchronous) sampling mode, you
can use the Serial To Parallel tool to extract a clock signal from the data. Then, you can tell where bit
values start and end, and you can pass that information on to the Packet Decoder tool.

For more information, see "Using the Serial To Parallel Tool" (in the online help).

Using the Signal Extractor Tool

For speed reasons, data is some times captured in demultiplexed form on multiple buses/signals.
The Packet Decoder tool cannot decode data from two buses/signals. However, you can use the
Signal Extractor tool to remultiplex data before it is processed by the Packet Decoder tool.

For more information, see "Using the Signal Extractor Tool" (in the online help).

2 Creating a New Protocol Description

54 Customizing Protocol Descriptions for Packet Viewer Online Help

Customizing Protocol Descriptions for Packet Viewer

Online Help

3 Using Formulas

Using Formulas in Bus/Signal Label Descriptions / 56
Using Formulas in Field Descriptions / 58

3 Using Formulas

56 Customizing Protocol Descriptions for Packet Viewer Online Help

Using Formulas in Bus/Signal Label Descriptions

Formulas contain a simple meta-language used to make the execution of decoding and framing
more dynamic.

• “To determine the start-/end-of-packets" on page 56

• “To determine valid data" on page 56

• “To look around" on page 56

• “To identify rising/falling/toggling signals" on page 56

To determine the start-/end-of-packets

Formulas let you frame data based upon the current values of buses/signals.

<Label> element formulas can operate on other bus/signal values that have been defined within the
<Bus> element.

<Bus Name="TestBus">
<Label Name="Control" Width="1" Type="Frame" />
<Label Name="Main" Width="8" Type="Data" Sop="Control==#h1" />
<BusProtocol ... />

</Bus>

The Sop formula for the Type="Data" label is shown above. The formula uses the "Control" bus/signal
to determine if the current state is a start-of-packet.

To determine valid data

Formulas let you look at the current values of buses/signals to determine when data is valid.

<Label> element formulas can operate on other bus/signal values to determine when data is valid.

<Bus Name="TestBus">
<Label Name="Control" Width="1" Type="Frame" />
<Label Name="Extra" Width="4" Type="Valid" />
<Label Name="Main" Width="8" Type="Data" Sop="Control==#h1"

Valid="'Extra'[0]==#b0" />
<BusProtocol ... />

</Bus>

The Valid formula for the Type="Data" label is shown above. The formula uses one of the "Extra"
signals to determine if the data is valid.

To look around

Additionally, minimal functionality has been added to provide some look around capability. By
appending a {} to a bus/signal name in a formula, data can be retrieved from previous or future
samples. For example:

Sop="Control{-1}==#h1 .land. Control{0}==0"

If more complicated look around capability is required to determine the start-/end-of-packet, an
inverse assembler can be used to generate the required SOP/EOP signals (see "To develop your own
tools" (in the online help)).

To identify rising/falling/toggling signals

Some predefined terms can be also used to simplify specification of common terms in framing.

Customizing Protocol Descriptions for Packet Viewer Online Help 57

Using Formulas 3

Rising, Falling, and Toggling are terms that can be appended to bus/signal names in a formula as
well. For example:

Sop="Control Rising"
Sop="Control Falling"
Sop="Control Toggling" - This means a start-of-packet occurs at each

transition of "Control".

A wide variety of additional operators are available for use in formulas, for more information, see
Chapter 7, “Formula Reference,” starting on page 109.

3 Using Formulas

58 Customizing Protocol Descriptions for Packet Viewer Online Help

Using Formulas in Field Descriptions

Formulas are a simple meta-language that are used to make the execution of decoding and framing
more dynamic. The use of a formula allows the decoding logic to be dependent upon the current
values of packet data.

• “To operate on other field values" on page 58

• “To look ahead" on page 58

• “To get the length of variable-length packets" on page 58

To operate on other field values

Field element formulas let you specify other field names as inputs to the formula. For example:

<Protocol Name="Control Packet" ProtocolLayer="Data">
<Field Name="BufferLength" Length="10"/>
<Field Name="Buffer" Length="BufferLength*8"/>

</Protocol>

The Field formula for the Buffer field is shown above. The formula uses the previously specified
BufferLength field to extract the value and use it to compute the length of the Buffer field.

To look ahead

Usually, the field needed to calculate the formula is before the field that typically requires it.
However, sometimes that is not the case. The use of a lookahead field is required to extract the value
of the future field.

<Protocol Name="Transmit Packet" ProtocolLayer="Data">
<Field Name="PacketTypeLookahead" Length="1" BitOffset="10"

Type="Lookahead"/>
<Field Name="ControlPacket" Type="Protocol"

Select="PacketTypeLookahead==#h0"/>
<Field Name="PayloadPacket" Type="Protocol"

Select="PacketTypeLookahead==#h1"/>
<Field Name="PacketType" Length="1"/>

</Protocol>

In this example, a packet that has a packet type field 10 bits into the packet. However, to decode the
first 10 bits, the packet type field must be known to properly decode the packet. In order to
accomplish this, a lookahead field is used to prematurely offset into and extract the field data. This
field is an internal, hidden field that will not be shown in any of the Packet Viewer windows. It can,
however, be used for formulas. Based on the value of the lookahead field, the packet type can be
determined and the decoding works as expected.

To get the length of variable-length packets

Sometimes, it is useful to know the length of the packet when computing formulas. This is
particularly true for length formulas in payload fields. Many times, the length of the payload is
variable, with no length field to specify the actual length of the payload.

To help address this situation, a special "constant" is available which returns the bit length of the
entire framed packet (that is, from the start-of-packet to the end-of-packet, if defined, or to the next
start-of packet if no end-of-packet is defined). This constant is '#PACKET_LENGTH'. For example:

<Field Name="Payload" Length="'#PACKET_LENGTH' - 32" Type="Payload"/>

Customizing Protocol Descriptions for Packet Viewer Online Help 59

Using Formulas 3

In the previous example, the length of the payload field is the total length of the packet minus 32 bits
for the header and trailer.

3 Using Formulas

60 Customizing Protocol Descriptions for Packet Viewer Online Help

Customizing Protocol Descriptions for Packet Viewer

Online Help

4 Solving Problems

Protocol Description Errors when Application Starts / 62
Decode Errors / 65
Pre-Defined Protocol Errors that Appear in Packet Viewer / 66

4 Solving Problems

62 Customizing Protocol Descriptions for Packet Viewer Online Help

Protocol Description Errors when Application Starts

General Errors General errors before any real parsing is done (for example, checking for well-formedness).

Cannot find decryption function for: 'filename'

You may need to reinstall the Keysight Logic Analyzer application as it is responsible for depositing
the decryption library.

Decryption of 'filename' failed: {parsing errors}

This error occurs when opening files that are not .aex format files.

Malformed XML in 'filename'

Occurs when XML markup in the file is not well formed.

XML Parser Load of 'filename' failed: {parsing errors}

Parsing Errors All parsing errors have a standard "location" appended. This "location" is of the form:

Error: {strMessage}
Location: <ProtocolFamilyName><Element Name="">

<PacketType> has no specified protocol.

This message occurs when there is no Protocol attribute. The Protocol attribute is optional for the
<PacketTypeGroup>, <PacketTypes>, and <PacketType> elements; the error occurs when the
attribute is not supplied with any of these elements.

Cannot find 'Default' packet type '{value}.

For the Default attribute in the <PacketTypes> element.

Cannot find 'Enumset' reference: {name}.

For the Enumset attribute in the <Field> element.

Cannot find 'Name' protocol reference: {Name}.

For the Name attribute in the <BusProtocol> element.

Cannot find 'ValueError' reference: {name}.

For the ValueError element in the <Field> element.

Cannot find default packet type with name: '{Default}'.

For the Default attribute in the <PacketTypes> element.

Cannot find referenced protocol '{Protocol}' name.

For the Protocol attribute in the <PacketType>, <PacketTypes>, and <PacketTypeGroup> elements.

Duplicate <{Element}> elements found with name '{name}'.

For the <Enumset>, <PacketTypes>, and <Protocol> elements.

Error in loading library GetLastError() = {Error}, Path={Path}

Customizing Protocol Descriptions for Packet Viewer Online Help 63

Solving Problems 4

For the ValueFunction attribute in the <Field> element.

Missing required attribute '{Attribute}' in element <{Element}>.

Note that in the <Field> element:

• The Length attribute is not required when Type="Protocol" or Type="ProtocolField".

• The ValueInput attribute is only required if the ValueFunction attribute is specified.

More than one <Default> element present in {EnumSet:Name}. Additional <Default> elements will be ig-
nored.

No <BusProtocol> elements found under <Bus>.

The <Bus> element must contain a <BusProtocol> element.

No <Label> elements found under <Bus>.

The <Bus> element must contain at least one <Label> element.

No segments defined for <SegmentedField>.

To be useful, the <SegmentedField> element should contain <Segment> elements.

Only one <{Element}> element is permitted under the <ProtocolFamily> element.

The <ProtocolFamily> element can contain one each of the following elements: <DisplayDefaults>,
<PacketHighlightsRule>, <ProtocolErrors>, and <SymbolDecode>.

The color specified '{value}' for attribute '{Attribute}' is invalid.

Can occur with the <PacketHighlightRule> and <PacketTypeDisplay> elements' BackgroundColor
and ForegroundColor attributes (see “Available Colors" on page 46).

The following error(s) occurred while parsing '{Attribute}' attribute formula:

Can occur with these attributes that allow a formula value:

• The AbsoluteBitOffset attribute in the <Field> element.

• The Length attribute in the <Field>, <FieldGroup>, and <RepetitiveField> elements.

• The Select attribute in the <BusProtocol> and <Field> elements.

• The Value attribute in the <Field> element.

These messages have additional error content generated by the formula parser. Formula parser
errors are usually some kind of syntax error in the formula description. Formula parser errors are
usually self-explanatory - typically either a token is missing or unexpected.

Unable to find function '{ValueFunction}' in library '{Library}' for <Field> '{name}'.

For the ValueFunction attribute in the <Field> element.

Make sure the library referenced has the specified function and the function is being properly
exported (with the dllexport, see “Using ValueFunctions" on page 51).

Unable to find library with name '{name}' for field '{name}'.

For the ValueFunction attribute in the <Field> element.

4 Solving Problems

64 Customizing Protocol Descriptions for Packet Viewer Online Help

Make sure the .dll with the specified name is located in the Protocols folder in the Keysight Logic
Analyzer application's install directory (for example, the default location is: C:\Program Files\
Keysight Technologies\Logic Analyzer\Protocols).

It is also possible to get this error if you have linked with another dll that is missing from the
Protocols folder.

Unable to parse formula in 'Value' attribute.

For the <PacketTypeMask> element.

Unknown value '{value}' for attribute '{Attribute}' in element {Element}.

This error occurs when an attribute value is not one of the predefined set of possible values.

Unsupported version. 'Version' attribute in <ProtocolFamily> element must be 1.1.

Value of 'Width' attribute must less than or equal to 32.

For the <PacketTypeMask> element.

Customizing Protocol Descriptions for Packet Viewer Online Help 65

Solving Problems 4

Decode Errors

Decode errors appear only in Packet Viewer window tool tips.

Cannot decode '{Attribute}' attribute formula for <{Element} Name='{name}>.

This error occurs during decode, typically when a formula is not able to be parsed because a field
referenced in a formula is not present in the decoded packet.

Zero Length field for <Protocol>: {name}, <Field>: {name}.

This error occurs during decode.

4 Solving Problems

66 Customizing Protocol Descriptions for Packet Viewer Online Help

Pre-Defined Protocol Errors that Appear in Packet Viewer

Unknown Packet Type

This means none of the defined packet type values match the value of the captured packet. You can
add the appropriate packet type description to make this error go away (see “Step 7: Describe the
packet types" on page 33).

Unexpected End Of Packet

There are several possible causes:

• When the next start-of-packet occurs before the full number of bits in the packet have been
decoded.

• When not enough data is being framed into a packet. This usually means the framing information
is not set up correctly under the <Bus> element.

A good way to look at all of the data that has been framed into a packet is to use the "Packet
Bytes" base on the "(ProtocolFamily name) Packet" column in the Packet Viewer window. This
shows all bytes of the packet. If not all of the data in the packet is present, a problem with the
SOP/EOP formulas is likely.

• When a variable-length field's length is being incorrectly calculated.

Make sure that the Length attribute in each field correctly specifies the number of bits.

Customizing Protocol Descriptions for Packet Viewer

Online Help

5 Multi-Lane Serial Link
Concepts

A single physical channel (or lane) is a full-duplex serial connection, in other words, a single
transmit/receive pair.

To achieve greater bandwidths, a serial protocol can use multiple lanes in the connection between
two devices. The multi-lane connection is called a link.

The number of serial channels in a link are sometimes described with a number and an "x". For
example, InfiniBand can have 1X, 4X, and 12X links; PCI Express can have x1, x2, x4, x8, and x16
links.

Lane Initial ization Before data can be transmitted and received over a link between devices, communication within the
individual lanes must first be established. This is known as lane initialization.

Aligning
(Bond ing) Lanes

After the individual lanes in a link have been initialized, the lanes must be aligned (or bonded).

5 Multi-Lane Serial Link Concepts

68 Customizing Protocol Descriptions for Packet Viewer Online Help

Striping Packet
Data Across Lanes

Once lanes are bonded, packet data can be striped across the lanes to achieve greater data transfer
rates.

The previous example shows data striped in bytes, but it can also be striped in byte pairs or other
data lengths.

Training Sequence
and Ordered Set

Packets

Sometimes, training sequence packets and ordered set packets are inserted between striped data
packets. These packets are sent on all the lanes; they are not striped across the lanes.

When decoding multi-lane links, the protocol description file's OrderedSetSop attribute in the
<Label> element tells the decoder when packets switch from being striped to being sent on all lanes.
Packets that are not striped have their own lane decode protocol descriptions.

Probing a
Mul ti-Lane Serial
Link with a Logic

Analyzer

Special analysis probe hardware can be used to capture data on a link. An analysis probe recovers
clock signals, deserializes data for each lane, decelerates the clock, and provides parallel data for
each lane to the logic analyzer, along with other control signals. The logic analyzer probe pods
capture the parallel data.

Customizing Protocol Descriptions for Packet Viewer Online Help 69

Multi-Lane Serial Link Concepts 5

Of course, there are other ways to probe multi-lane serial links, depending on the link's speed and
probe points in the device under test.

8B and 10B Buses
From the Probe

Many serial protocols use 8B/10B encoding. An analysis probe deserializes the 10B data and
provides it to the logic analyzer in parallel form. An analysis probe can also decode the 10B data to
8B data. The 8B data and the 10B data are typically provided to the logic analyzer using the same
signals, so there are also control signals that tell the logic analyzer when the data is in 10B or 8B
form.

Logical Lanes vs.
Physical Lanes

Physical lanes are the number of physical channels in a link.

A link, regardless of the number of physical channels, can be contain a number of independent data
streams. These are logical lanes, and they are not related to the number of physical lanes.

5 Multi-Lane Serial Link Concepts

70 Customizing Protocol Descriptions for Packet Viewer Online Help

Customizing Protocol Descriptions for Packet Viewer

Online Help

6 XML Element Reference

• “<ProtocolFamily>" on page 102

• “<Bus>" on page 72

• “<Label>" on page 87

• “<BusProtocol>" on page 73

• “<PacketTypes>" on page 97

• “<PacketTypeGroup>" on page 96

• “<PacketType>" on page 95

• “<PacketMask>" on page 94

• “<PacketDisplay>" on page 90

• “<Enumset>" on page 79

• “<Enum>" on page 78

• “<Range>" on page 103

• “<Default>" on page 75

• “<SymbolDecode>" on page 107

• “<DisplayDefaults>" on page 76

• “<DisplayField>" on page 77

• “<PacketHighlightRules>" on page 93

• “<PacketHighlightRule>" on page 91

• “<ProtocolErrors>" on page 101

• “<ProtocolError>" on page 100

• “<Protocol>" on page 99

• “<Header>" on page 86

• “<Field>" on page 80

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<Payload>" on page 98

• “<RepetitiveFields>" on page 104

• “<SegmentedField>" on page 106

• “<Segment>" on page 105

• “<Trailer>" on page 108

6 XML Element Reference

72 Customizing Protocol Descriptions for Packet Viewer Online Help

<Bus>

This element describes a bus or a grouping of buses/signals (as defined by a logic analyzer module
or tool) that are required for this protocol.

Required Yes

Attributes

Contains • “<Label>" on page 87 (required)

• “<BusProtocol>" on page 73 (required)

Contained By • “<ProtocolFamily>" on page 102

Example This specifies a demux of 4-1:

<Bus Name="My Rx Bus" LogicalLanes="4" PhysicalLanes="1"/>

The attempt to find a packet type match will not occur until 32 bits of data has been framed for the
current packet:

<Bus Name="My Rx Bus" LogicalLanes="1" PhysicalLanes="1"
ProtocolBits="32"/>

Name Required Value Comment

Name yes string Name that will be shown in the Packet
Decoder's list of buses that can be decoded
with this protocol.

GenerateLaneData no "T" Enables the generation of the "(ProtocolFamily
name) Lane Data" column in the Listing
window. See “Step 6: Describe the
bus to be decoded" on page 27.

"F" (default) Disables the generation of the "(ProtocolFamily
name) Lane Data" column in the Listing
window.

LogicalLanes no integer (default: "1") The number of lanes actually being analyzed.
For example, in the N4220B PCI Express packet
analysis probe, even though 4 lanes are being
probed, there may only be 1 or 2 lanes being
analyzed.

MaxSearchStates no integer (default: "4096") This specifies the number of samples in which
to look for EOP from the SOP. The default is
4096 samples.

PhysicalLanes no integer (default: "1") The number of lanes being probed. For
example, in the N4220B PCI Express packet
analysis probe, x1, x2, and x4 data is
decelerated to span 4 buses/signals.

ProtocolBits no integer (default: "0") The number of bits needed in a packet before
the protocol type is determined. See
<Protocol> Element.

SOPEOPOnSameSymbol no "T" This must be set if a protocol requires EOP to
be checked on the same symbol as SOP.

"F" (default) SOP and EOP are not checked on the same
symbol in the same state.

Customizing Protocol Descriptions for Packet Viewer Online Help 73

XML Element Reference 6

<BusProtocol>

This element specifies the initial protocol to use when decoding the bus. A formula can be used to
select between several different protocols. Also, multiple protocols may exist to perform packet
decoding, symbol decoding (see page 113), and lane or ordered set (see page 113) decoding. The
type of decoding to be done is specified in the Type attribute.

Required Yes

Attributes

Contains None

Contained By • “<Bus>" on page 72

Example <Bus>
<Label ...>
<Label ...>
<BusProtocol Name="Rx Packet" Type="Packet" Select="data[0]==1"/>
<BusProtocol Name="Tx Packet" Type="Packet" Select="data[0]==0"/>

</Bus>

Name Required Value Comment

Name yes string Name of the root protocol or symbol decode to
use in decoding.

Type yes "Packet" Specifies that normal, single-channel (or lane)
packet decoding will take place for the bus.
The decoding is described by a <Protocol>
element (see page 99) with a matching
Name attribute.

"Lane" Specifies that ordered set decoding, used with
multi-lane protocols, will take place for the
bus. The decoding is described by a <Protocol>
element (see page 99) with a matching
Name attribute. See also Chapter 5,
“Multi-Lane Serial Link Concepts,” starting on
page 67.

"Symbol" Specifies that symbol decoding, where data
values are translated to symbolic names, will
take place for the bus. The decoding is
described by a <SymbolDecode> element (see
page 107) that contains an <Enumset>
element (see page 79) with a matching
Name attribute.

FixedLength no integer (default: "0") Length of the protocol in bits. A zero means the
protocol is not fixed length.

InterruptiblePacket no formula (see page 55) The formula specifies packets that can be
interrupted by others. Interruptible packets are
continued after the interrupting packet.

InterruptingPacket no formula (see page 55) The formulas specifies packets that can
interrupt others.

Select no formula (see page 55) Used to determine if the protocol should be
used for the current packet. The contents of the
formula can include references to the data from
the current packet and must include a range or
index operator [].

6 XML Element Reference

74 Customizing Protocol Descriptions for Packet Viewer Online Help

NOTE
The use of a range or index operator [] in the Select formula is required because extractions are
occurring from the packet data itself. No field names can be used to extract the data, because the
decode operation has not taken place yet. The name used to specify the data is arbitrary and any
name can be used.

Customizing Protocol Descriptions for Packet Viewer Online Help 75

XML Element Reference 6

<Default>

This element assigns a meaningful string to a value that is not described by <Enum> or <Range>
elements in the <Enumset>.

Required No

Attributes

Contains None

Contained By • “<Enumset>" on page 79

• “<Field>" on page 80 (Default can be added inline to field definitions as a shortcut to creating an
enumset external to the protocol. See the example in “<Enum>" on page 78.)

Example <Enumset Name="FirstValueSet">
<Enum Name="OK" Value="0"/>
<Enum Name="Error" Value="1"/>
<Enum Name="Busy" Value="2"/>
<Enum Name="Retry" Value="3"/>
<Range Name="Bad Value" LowValue="8" HighValue="15"

ValueError="Bad Value Description"/>
<Default Name="Good Default"/>

</Enumset>

<Enumset Name="SecondValueSet">
<Enum Name="OK" Value="0"/>
<Enum Name="Error" Value="1"/>
<Enum Name="Busy" Value="2"/>
<Enum Name="Retry" Value="3"/>
<Range Name="Good Value" LowValue="4" HighValue="7"/>
<Default Name="Bad Default"

ValueError="Bad Default Description"/>
</Enumset>

Name Required Value Comment

Name yes string The name assigned to a value that is not
described by <Enum> or <Range> elements.

Description no string A description of the default.

ValueError no string If present, the ValueError attribute specifies
that this default value is an error and will
appear in Red in the Packet Viewer window. A
matching string must appear in the
<ProtocolErrors> element (see page 101).
See “Describing Protocol Errors" on
page 44.

KDChar no "Kchar", "Dchar", or
"DontCare"

Specifies if the value is a K character or D
character.

6 XML Element Reference

76 Customizing Protocol Descriptions for Packet Viewer Online Help

<DisplayDefaults>

This element defines which fields/bus/signals should be inserted into the Packet Viewer window by
default.

Required Yes

Attributes

Contains • “<DisplayField>" on page 77 (required)

Contained By • “<ProtocolFamily>" on page 102

Example <DisplayDefaults HeaderWidth="20">
<DisplayField Name="Sample Number" Width="50"/>
<DisplayField Name="My Packet" Width="100"/>

</DisplayDefaults>

Name Required Value Comment

FieldDirection no "LeftToRight" (default) Specifies a left to right ordering of fields in the
header tab of the Packet Viewer window.

"RightToLeft" Specifies a right to left ordering of fields in the
header tab of the Packet Viewer window.

HeaderWidth no integer (default: "32") Specifies the width (in bits) in which to draw
the grid within the Header pane of the Packet
Viewer. It is useful for specifying the word-size
in which to draw individual samples of a
packet.

Customizing Protocol Descriptions for Packet Viewer Online Help 77

XML Element Reference 6

<DisplayField>

This element names a field that is displayed as a data column in the Packet Viewer window by
default, and it specifies the width of the column.

This element defines the characteristics of a field when inserted into the Packet Viewer window. The
name of the field can be any existing bus/signal, including other bus/signals generated by the Packet
Decoder, like "Direction" or "{Protocol Name} Packet".

There are four columns that are automatically generated by the Packet Decoder tool:

• "Sample Number" — contains the logic analyzer sample number corresponding to the captured
data.

• "Time" — contains the logic analyzer time corresponding to the captured data.

• "(ProtocolFamily name) Packet" — contains the main packet type decodes. For example, if the
protocol family name is "Ethernet", the main packet type decodes appear in a column named
"Ethernet Packet".

• "Direction" — can contain the name of the Packet Decoder tool or a name you specify in the
Packet Decoder tool's properties. This is useful when multiple Packet Decoder tools are used for
different directions of a serial link and the tools are named to identify the data direction.

Required Yes

Attributes

Contains None

Contained By • “<DisplayDefaults>" on page 76

Example <DisplayDefaults>
<DisplayField Name="Direction" Width="50"/>
<DisplayField Name="My Protocol Packet" Width="100"/>

</DisplayDefaults>

Name Required Value Comment

Name yes string Specifies the name of a field or a bus/signal to
be inserted a Packet Viewer window when a
new Packet Viewer window is created.

Width no integer (default: determined
by Packet Viewer window)

Specifies the column width in pixels.

6 XML Element Reference

78 Customizing Protocol Descriptions for Packet Viewer Online Help

<Enum>

This element defines an enumeration that assigns a meaningful string to a value.

Required No

Attributes

Contains None

Contained By • “<Enumset>" on page 79

• “<Field>" on page 80 (Enum can be added inline to field definitions as a shortcut to creating an
enumset external to the protocol. See the example below.)

Example <Enum Name="Retry" Value="0" Description="The response was a RETRY"/>
<Enum Name="Error" Value="1" ValueError="Packet Error"/>

An example of Enum, Range, and Default added inline to a field definition:

<Field Name="XYZ" Length="3">
<Enum Name="ABC" Value="#b000"/>
<Enum Name="DEF" Value="#b001"/>
<Range Name="GHI" LowValue="#b010" HighValue="#b011"/>
<Default Name="JKL"/>
...

</Field>

Name Required Value Comment

Name yes string The name assigned to the value.

Value yes string The value the "Name" above will be assigned
to.

KDChar no "Kchar" or "Dchar" (default:
"Dchar")

Specifies if the value is a K character or D
character. Needed to properly label values in
the Lane Data column of the Listing window.

ValueError no string If present, then the ValueError attribute
specifies that this value is an error and will
appear in Red in the Packet Viewer window. A
matching string must appear in the
<ProtocolErrors> element (see page 101).
See “Describing Protocol Errors" on
page 44.

Description no string Shows a tool tip when the value is present in
the Packet Viewer window.

Customizing Protocol Descriptions for Packet Viewer Online Help 79

XML Element Reference 6

<Enumset>

This element defines a collection of enumerations that assign meaningful strings to values.

Required No

Attributes

Contains • “<Enum>" on page 78

• “<Range>" on page 103

• “<Default>" on page 75

Contained By • “<ProtocolFamily>" on page 102

• “<SymbolDecode>" on page 107

Example <Field Name="Status" Length="2" Enumset="StatusEnum"/>
...
<Enumset Name="StatusEnum">

<Enum Name="OK" Value="0"/>
<Enum Name="Error" Value="1"/>
<Enum Name="Busy" Value="2"/>
<Enum Name="Retry" Value="3"/>

</Enumset>

Name Required Value Comment

Name yes string The name of the enumset. Field elements that
have enumerations will reference enumerations
with this name.

6 XML Element Reference

80 Customizing Protocol Descriptions for Packet Viewer Online Help

<Field>

This element defines a field.

Required Yes

Attributes
Name Required Value Comment

Name yes string Name of the field.

Length yes formula (see page 55) A formula specifying the length of the field. This
can be a fixed number, or be dependent of the
value of another field. The length of a packet
must equal the sum of the lengths of all fields.

Type no "Data" (default) Normal data field.

"Protocol" Decoding will continue using the protocol in
the given field name. This is useful for decoding
multiple layers of protocol. It is also useful in
sharing common decoding definitions between
packets.

"ProtocolField" Decoding will continue using the protocol
given with the name of the enumeration set by
the value of the field. This saves the user from
having multiple Select formulas to select a new
protocol to start decoding from. See
“ProtocolField Example" on page 83.

"Reserved" A reserved field.

"Payload" A Payload field. If there are multiple payload
fields, they are concatenated together. The
content of the payload field is displayed in the
Packet Viewer window's Payload tab.

"Address" Specifies that this field contains the starting
address for the payload. Only one address field
is allowed per packet. If an address field is
present in a packet, it will be used as the
starting address in the Payload tab of the
Packet Viewer window. Only the display is
affected by this attribute value — it does not
affect the decode.

"Lookahead" Used to extract bits later in the packet. This is
useful when decoding of a field is dependent
upon bits later on in the packet. Use of the
BitOffset or AbsoluteBitOffset attributes are
required to specify at which bit the data should
be extracted.

"Hidden" The field will not be displayed in any windows.
This is typically used for fields after a
<SegmentedField> element (see page 106).

"Segment" Like the "Hidden" type, this is typically used for
fields after a <SegmentedField> element (see
page 106). However, instead of being
hidden, the field will be visible in the Header
tab of the Packet Viewer window and can be
inserted as a column, but it will not be present
in the Details tab.

Customizing Protocol Descriptions for Packet Viewer Online Help 81

XML Element Reference 6

Enumset no string Name of the enumset to be used for a more
meaningful display of the data.

Enum no string Instead of displaying a value, a more
meaningful name will be displayed. This is a
shortcut to creating a one element enumset.

ProtocolFamily no string Used to specify a multi-layer protocol. The
name of the field will be used as a protocol
name in the given ProtocolFamily name to
continue decoding.

AbsoluteBitOffset no integer Offset the number of bits from the beginning of
the packet. Normally used with the
"Lookahead" type field.

BitOffset no integer Offset the number of bits relative to the current
position in the packet.

Format no "Hex", "Decimal", "Octal",
"Binary", "Unicode", or "Ascii"

Specify the default base when displaying the
field in the Packet Viewer window or Event
Editor.

ExcludeCRC no "T" or "F" Use of this attribute will remove the field from
any CRC calculation. This attribute can exclude
a field from a <FieldContainer> element (see
page 84).

Value no integer Value that the field should be. If the value does
not match the field value, then use of the
ValueError is needed to specify the error

ValueFunction no string Specify a function to calculate the expected
value of the field. This is normally used for CRC
computation. The syntax is
"LibraryName:FunctionName". See “Using
ValueFunctions" on page 51.

ValueInput no string Specifies the input to be passed to the function
specified in ValueFunction. Concatenation of
fields to be passed is typically done by
wrapping a group of fields into a field container
element. The name of the field container would
be used for the ValueInput value.

Select no formula (see page 55) A formula that is executed to determine if the
field is to be used or not for the current packet.

Description no string A tool tip string that will display when hovering
over the field in the Packet Viewer window.

TransformFunction no string Specify a function to transform the value of the
field. This would be required when the ordering
of the bits/bytes of the field need to be
modified. The string value should be in the
form: "LibraryName:FunctionName". See
“Using TransformFunctions" on
page 52.

ValueError no string A string specifying the error associated with the
value of this field. A matching string must
appear in the “<ProtocolErrors>" on
page 101 element. See “Describing
Protocol Errors" on page 44.

Name Required Value Comment

6 XML Element Reference

82 Customizing Protocol Descriptions for Packet Viewer Online Help

Contains Field definitions can contain Enum, Range, and Default elements as a shortcut to creating an
Enumset. See the example in “<Enum>" on page 78.

• “<Enum>" on page 78

• “<Range>" on page 103

• “<Default>" on page 75

Contained By • “<Protocol>" on page 99

• “<Header>" on page 86

• “<Payload>" on page 98

• “<Trailer>" on page 108

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<RepetitiveFields>" on page 104

Example <Protocol Name="ReadPacket" ProtocolLayer="Transaction">
<Field Name="ControlBits" Length="3" Enumset="ControlBitsEnum"/>
<Field Name="ControlBits" Type="ProtocolField"/>
<Field Name="Data" Length="10"/>

</Protocol>
<Protocol Name="Read Modify Write Packet"

ProtocolLayer="Transaction">
<Field Name="Modify Bits" Length="3"/>
<Field Name="Reserved" Length="2"/>

</Protocol>
<Protocol Name="Read - Flush Packet" ProtocolLayer="Transaction">

PayloadFormat no "BigEndian" (default) If this field is a payload field, then this specifies
the default payload ordering as BigEndian.

"LittleEndian" If this field is a payload field, then this specifies
the default payload ordering as LittleEndian.

EncodeRule no formula (see page 55) Specifies how the entered value when
triggering, searching, or filtering on the field
should be transformed before performing the
operation. See “To display and use full
values for partial bit fields" on
page 49.

DecodeRule no formula (see page 55) Specifies how the value of the field should be
transformed prior to display. See “To
display and use full values for
partial bit fields" on page 49.

DecodeString no string Allows C language printf-style formatting to
give you great flexibility when decoding data.
See “To decode fields with
printf-style format strings" on
page 49.

DisplayLength no formula (see page 55) Specifies the length of the value to display
(after the transform has occurred). See “To
display and use full values for
partial bit fields" on page 49.

Name Required Value Comment

Customizing Protocol Descriptions for Packet Viewer Online Help 83

XML Element Reference 6

<Field Name="Flush bits" Length="5"/>
</Protocol>

ProtocolField
Example

The decoder should decode the next part of the packet depending upon the HeaderType field value.
One way of doing this is to use Type="ProtocolField". It will use the enumeration value of the
"HeaderType" field as the name of the next protocol to decode.

<Protocol Name="Header" ProtocolLayer="Data">
<Field Name="HeaderType" Enumset="HeaderTypes" Length="3"/>
<Field Name="HeaderType" Type="ProtocolField"/>

</Protocol>

<Enumset Name="HeaderTypes">
<Enum Name="Read" Value="0"/>
<Enum Name="Write" Value="1"/>
<Enum Name="UpdateFC" Value="2"/>
...

</Enumset>

<Protocol Name="Read" ProtocolLayer="Data">
...

<Protocol Name="Write" ProtocolLayer="Data">
...

<Protocol Name="UpdateFC" ProtocolLayer="Data">
...

Instead of:

<Protocol Name="Header" ProtocolLayer="Data">
<Field Name="HeaderType" Enumset="HeaderTypes" Length="3"/>
<Field Name="Read" Type="Protocol" Select="HeaderType==0"/>
<Field Name="Write" Type="Protocol" Select="HeaderType==1"/>
<Field Name="UpdateFC" Type="Protocol" Select="HeaderType==2"/>
...

</Protocol>

<Enumset Name="HeaderTypes">
<Enum Name="Read" Value="0"/>
<Enum Name="Write" Value="1"/>
<Enum Name="UpdateFC" Value="2"/>
...

</Enumset>

<Protocol Name="Read" ProtocolLayer="Data">
...

<Protocol Name="Write" ProtocolLayer="Data">
...

<Protocol Name="UpdateFC" ProtocolLayer="Data">
...

See Also • “Using Formulas in Field Descriptions" on page 58

6 XML Element Reference

84 Customizing Protocol Descriptions for Packet Viewer Online Help

<FieldContainer>

This element defines a logical grouping of fields that will be concatenated for use typically by a
ValueInput function.

Required No

Attributes

Contains • “<Header>" on page 86

• “<Field>" on page 80 (required)

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<Payload>" on page 98

• “<RepetitiveFields>" on page 104

• “<SegmentedField>" on page 106

• “<Trailer>" on page 108

Contained By • “<Protocol>" on page 99

• “<Header>" on page 86

• “<Payload>" on page 98

• “<Trailer>" on page 108

Example <FieldContainer Name="CRC Data">
<Header>

<Field Name="OriginatorID" Length="5"/>
<Field Name="Length" Length="5"/>

</Header>
<Payload>

<Field Name="Data" Length="Length*8" Type="Payload"/>
</Payload>

</FieldContainer>
<Trailer>

<Field Name="CRC" Length="32" ValueFunction="Protocols:CRC32"
ValueInput="CRC Data"/>

</Trailer>

Name Required Value Comment

Name yes string Name used to identify the field container. This
name must be referenced by the ValueInput
attribute to be used properly. See <Field>
element (see page 80).

Customizing Protocol Descriptions for Packet Viewer Online Help 85

XML Element Reference 6

<FieldGroup>

This element defines a fixed length group of fields where only one field can be selected (with the
Select attribute).

Required No

Attributes

Contains • “<Field>" on page 80 (required)

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<SegmentedField>" on page 106

Contained By • “<Protocol>" on page 99

• “<Header>" on page 86

• “<Payload>" on page 98

• “<Trailer>" on page 108

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

Example <Field Name="Words" Length="10"/>
<FieldGroup Name="Payload" Length="'#VARIABLE'">

<Field Name="Payload" Length="Words*32" Type="Payload"
Select="Words!=#h0"/>

<Field Name="Payload" Length="1024*32" Type="Payload"
Select="Words==#h0"/>

</FieldGroup>

In this example, if the contents of the Words field is zero, the length of the Payload field is 1024*32
bits; otherwise, the number of bits in the Payload field is the number in the Words field multiplied by
32.

Name Required Value Comment

Name yes string Name of the field group to be used

Length yes formula (see page 55) Specifies the length of the fields. A formula
value of '#VARIABLE' can be used to specify
that, of the fields contained in the field group,
the length is variable.

6 XML Element Reference

86 Customizing Protocol Descriptions for Packet Viewer Online Help

<Header>

This element defines a logical grouping of fields.

The <Header> element is not required. Fields can be assumed to be in the header because the
<Payload> element is required. This element is a convenience for organizing fields in the protocol
description file.

The deepest header decoded in a packet is the one that is displayed in the Packet Viewer window's
Header tab.

Required No

Attributes No attributes defined.

Contains • “<Field>" on page 80 (required)

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<RepetitiveFields>" on page 104

• “<SegmentedField>" on page 106

Contained By • “<Protocol>" on page 99

• “<FieldContainer>" on page 84

Example <Protocol Name="Write Packet" ProtocolLayer="Data">
<Header>

<Field Name="OriginatorID" Length="5"/>
<Field Name="Length" Length="5"/>

</Header>
<Payload>

<Field Name="Data" Length="Length*8" Type="Payload"/>
</Payload>

</Protocol>

Customizing Protocol Descriptions for Packet Viewer Online Help 87

XML Element Reference 6

<Label>

This element describes a bus/signal that is required to perform protocol decode. Included are
attributes that specify formulas about how SOP/EOP/Valid and selection are performed.

Required Yes

Attributes
Name Required Value Comment

Name yes string Name of the bus/signal that is required.

Width yes integer Required number of signals the bus/signal
must have.

Type yes "8bData" The label contains 8bdata (see page 113).

"10bData" The label contains 10bdata (see page 113).

"Data" The label contains data that will potentially be
included in a packet. Typically, there is one
label with Type="Data", unless you are
decoding a multi-lane bus.

"Valid" The label contains data pertaining to the
validity of the data. Use these labels in
conjunction with data label's Valid attribute.
See “Labels that Identify Valid
Data" on page 29.

"8b/10b" The label is used to switch between 8bdata
(see page 113) and 10bdata (see
page 113).

"K/D" The label is used to specify when K characters
(see page 113) are present.

"Bonded" The label is used to specify when multi-lane
data is bonded (another form of valid). Samples
are automatically filtered by the signals
identified.

"Idle" The label is used to specify when the data is
not-valid due to being Idle. Samples are
automatically filtered by the signals identified.

"Frame" The label is used to specify framing (SOP, EOP).

"MetaData" The label is used to contain more than one
symbol's worth of data that should be
partitioned into individual symbols.

"Status" The label contains general status that is used in
a data label's formulas.

Sop yes formula (see page 55) A formula used to specify when a new packet is
starting. This attribute can be in any <Label>
element that has a Type="Data",
Type="10bData", Type="8bData", or
Type="MetaData" attribute.

Lane no integer Specifies which lane this label is used for.

Meta no string (label_or_constant\
#bits, label_or_constant\
#bits, ...)

Lets you add additional information to a
packet. See “To add information to a
packet" on page 50.

6 XML Element Reference

88 Customizing Protocol Descriptions for Packet Viewer Online Help

Contains None

Contained By • “<Bus>" on page 72

Example <Bus Name="Utopia">
<Label Name="DATA" Width="16" Type="Data" Sop="'SOP'==#b1"

Eop="'EOP'==#b1" Valid="'CLK'==#b1" />
<Label Name="SOP" Width="1" Type="Frame"/>
<Label Name="EOP" Width="1" Type="Frame"/>
<Label Name="CLK" Width="1" Type="Valid"/>
<BusProtocol Name="IEEE 802.3 (Ethernet V2)" Type="Packet"/>

</Bus>

See Also • “Labels that Contain Data" on page 28

• “Labels that Identify Valid Data" on page 29

• “If Your Serial Bus Has Lanes" on page 30

• Chapter 5, “Multi-Lane Serial Link Concepts,” starting on page 67

• “Using Formulas in Bus/Signal Label Descriptions" on page 56

Select no formula (see page 55) A formula used to conditionally enable or
disable the use of the label for other formulas.
If no formula is present, then the label will
always be selected.

Valid no formula (see page 55) A formula used to specify when the data for the
label should be included as part of a packet. If
no formula is present, then all data will
assumed to be valid.

Eop no formula (see page 55) A formula used to specify when a packet is
ending. If no formula is present, then no
end-of-packet will be specified. Each packet
will span from the start-of-packet sample to
the next start-of-packet sample.

OrderedSetSop no formula (see page 55) A formula used to specify when a packet is an
ordered set (see page 113). If no formula is
present, then no packets will be specified as
ordered sets. See Chapter 5, “Multi-Lane
Serial Link Concepts,” starting on page 67.

Kchar no formula (see page 55) A formula used to specify when the data is a
K character (see page 113) or not. If this
formula is not present, then all data is assumed
to be D characters (see page 113).

PacketData no formula (see page 55) A formula used to specify which states should
be added to the packet. If no formula is
present, then all states between SOP and EOP
or SOP + Packet Length will be added to the
packet unless idle or bonded formulas specify
otherwise.

Value no formula (see page 55) A formula used to specify additional operations
on the data provided by the label. Examples
would be bitwise shifting or bitwise masking.

Name Required Value Comment

Customizing Protocol Descriptions for Packet Viewer Online Help 89

XML Element Reference 6

<MetaField>

This element defines a field that has subfields where you may want to view the constituent parts. This
creates a tree-structure in the Details tab of the Packet Viewer window.

Required No

Attributes Same as the “<Field>" on page 80 element.

Contains • “<Field>" on page 80 (required)

• “<MetaField>" on page 89

• “<SegmentedField>" on page 106

Contained By • “<Protocol>" on page 99

• “<Header>" on page 86

• “<Payload>" on page 98

• “<Trailer>" on page 108

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<RepetitiveFields>" on page 104

Example <MetaField Name="TransactionID" Length="12">
<Field Name="Sequence Number" Length="7" />
<Field Name="Originator ID" Length="5" />

</MetaField>

6 XML Element Reference

90 Customizing Protocol Descriptions for Packet Viewer Online Help

<PacketDisplay>

This element defines the default display of a packet in the Packet Viewer window. Additionally, tool
tip text can be specified to give additional information about the packet type.

Required No

Attributes

Contains None

Contained By • “<PacketType>" on page 95

Example <PacketType Name="Write">
<PacketMask Width="3" Value="2"/>
<PacketDisplay ForegroundColor="Pink" BackgroundColor="Yellow"

Description="This is a write packet. Write packets require
a response packet to acknowledge the receipt of data."/>

</PacketType>

Name Required Value Comment

ForegroundColor no color (see page 46)
(default: "Black")

Foreground color of the packet in the Packet
Viewer window.

BackgroundColor no color (see page 46)
(default: "White")

Background color of the packet in the Packet
Viewer window.

Description no string Text to be displayed in tool tips for the packet
in the Packet Viewer window.

Customizing Protocol Descriptions for Packet Viewer Online Help 91

XML Element Reference 6

<PacketHighlightRule>

This element defines a single packet highlighting rule to apply to the selected packet within the
Lanes tab of the Packet Viewer window. Recall that these rules are applied in order from top to
bottom. Therefore, latter rules will override earlier rules for cells that match more than one rule.

A rule contains one or more optional attributes that define whether the rule applies to a particular
cell within the selected packet. Rule attributes can refer to either a symbol, a decoded field, a
segment of a packet, a layer in a packet, or an entire protocol. Therefore, rules can be applied at
different levels of granularity to the selected packet. Since rules are applied in order, more general
rules should be defined earlier in the list compared to more specific rules in order to achieve the
correct packet highlighting effect. Furthermore, if more than one attribute is defined within a rule,
then a cell must match all the defined attributes for the highlighting rule to apply. In other words,
attributes are AND'ed together rather than OR'ed. For example, consider the following rule:

<PacketHighlightRule FieldName="LCRC" ForegroundColor="Black"
BackgroundColor="Gray" DisplayName="LCRC"/>

The above rule will highlight every cell with black text on a gray background whose decoded field
name is "LCRC" and whose decoded field type is "CRC".

Last, note that if a rule only partially overlaps a cell within the Lanes tab, then the entire cell is
considered as belonging to that rule (that is, there are no partial matches for a cell). Therefore, if only
a single bit occurs within a cell for a particular rule, the entire cell will be highlighted according to
that rule. This can have interesting side effects. For example, if a cell spans two or more decoded
fields and there exists rules for each of these decoded fields, then the last defined rule in the list will
apply as the highlight for that cell.

Finally, the Lane8bValue and LaneKDChar attributes can only be combined with one another. If other
attributes are combined with them, they are simply ignored. The other attributes can be combined
with one another in any possible combination.

Required No

Input Attributes
Name Required Value Comment

Lane8bValue no integer Numeric value for a particular symbol.
Example: "#hfb". May only be combined with
the LaneKDChar attribute.

FieldName no string Decoded field name.

FieldType no string (see the Type attribute
values in “<Field>" on
page 80)

Decoded field type.

LaneKDChar no "Kchar", "Dchar", or
"DontCare"

Character type for a particular symbol. May
only be combined with the Lane8bValue
attribute.

PacketSegment no "Header", "Payload", "Trailer",
or "Any"

Packet segment type.

ProtocolLayer no string Protocol layer name.

ProtocolFamily no string Protocol family name.

6 XML Element Reference

92 Customizing Protocol Descriptions for Packet Viewer Online Help

Output Attributes

Contains None

Contained By • “<PacketHighlightRules>" on page 93

Example <PacketHighlightRules>
<PacketHighlightRule PacketSegment="Header"

ForegroundColor="Black" BackgroundColor="LightYellow"
DisplayName="Header"/>

<PacketHighlightRule LaneKDChar="KChar" ForegroundColor="Black"
BackgroundColor="Green"/>

</PacketHighlightRules>

Name Required Value Comment

BackgroundColor no color (see page 46)
(default: packet type
background color)

The cell's background color.

ForegroundColor no color (see page 46)
(default: packet type
foreground color)

The cell's foreground color.

DisplayName no string (default: symbolic
decode string)

The text displayed in the cell when the Lane
tab's Field Decode option is selected.

Customizing Protocol Descriptions for Packet Viewer Online Help 93

XML Element Reference 6

<PacketHighlightRules>

This element defines how cell highlighting should be applied in the Lanes tab of the Packet Viewer
window. Each cell within the Lanes tab represents a single symbol of the selected packet and can be
highlighted according to various rules defined in this element. By default, a cell's color matches the
color of the corresponding packet. Therefore, if no rules are defined, then cells will appear as the
color of the selected packet. Otherwise, the rules defined within this element allow customized
highlighting and display of particular fields and symbols within the selected packet.

The nested rules within this element define how each cell of the selected packet can be highlighted
with a foreground color, background color, and a display name. Each defined <PacketHighlightRule>
is applied in order to the selected packet. Therefore, rules that appear later in the list will override
earlier rules if they apply to the same cell. Essentially, each rule is applied in order to the selected
packet until all rules have been applied. The resulting highlighting is then displayed within the Lanes
tab of the PacketViewer.

Last, these rules only apply to regular packets and not to ordered sets. Ordered sets will always
appear as the color of the ordered set.

Required No

Attributes No attributes defined.

Contains • “<PacketHighlightRule>" on page 91

Contained By • “<ProtocolFamily>" on page 102

Example <PacketHighlightRules>
<PacketHighlightRule PacketSegment="Header"

ForegroundColor="Black" BackgroundColor="LightYellow"/>
<PacketHighlightRule FieldName="Payload" FieldType="Payload"

ForegroundColor="White" BackgroundColor="DarkRed"/>
</PacketHighlightRules>

6 XML Element Reference

94 Customizing Protocol Descriptions for Packet Viewer Online Help

<PacketMask>

This element defines a bit mask to be used to pattern match a packet. The bit mask created by this
element will be used to determine the packet type during the decoding operation. Note that the
presence of multiple packet masks will be concatenated together to create one large mask.

If the bits that identify the packet type do not appear at the start of the packet, you can use the
BitOffset attribute to specify their offset from the SOP.

Required Yes

Attributes

Contains None

Contained By • “<PacketType>" on page 95

Example <PacketType Name="Write Packet">
<PacketMask Width="4" BitOffset="4" Value="7"/>
<PacketMask Width="4" BitOffset="12" Value="3"/>

</PacketType>

Name Required Value Comment

Width yes integer The width of the mask to be created. Currently
there is a limitation of 32 bits per mask.

BitOffset no integer (default: "0") Number of bits from the start-of-packet the
width/value should be offset.

Value no integer The value within the mask.

Customizing Protocol Descriptions for Packet Viewer Online Help 95

XML Element Reference 6

<PacketType>

This element defines a packet type. The name of the packet type will appear in the Packet Viewer for
the packet summary when a packet data matches the specified mask under the PacketMask
element. The default colorization of the packet is specified under the PacketDisplay element.

Required Yes

Attributes

Contains • “<PacketMask>" on page 94 (required)

• “<PacketDisplay>" on page 90

Contained By • “<PacketTypes>" on page 97

• “<PacketTypeGroup>" on page 96

Example <PacketType Name="Any Write Packet" Decodeable="F">
<PacketMask Width="1" BitOffset="5" Value="1"/>

</PacketType>
<PacketType Name="Write Request Packet">

<PacketMask Width="1" BitOffset="5" Value="1"/>
<PacketMask Width="1" BitOffset="9" Value="1"/>

</PacketType>

Name Required Value Comment

Name yes string Name of the packet.

Any no "T" "Any" packets let you search, filter, or trigger
on general packet types (using the Event
Editor), rather than on specific ones.

"F" (default) This packet type is not included in the "Any"
packets group.

Encodeable no "T" (default) True, if this packet should be considered as a
triggerable packet.

"F" False, if this packet should not be considered
as a triggerable event. Sometimes certain
packet types cannot be triggered on, and using
this attribute can turn off these packets from
appearing in the Event Editor.

Protocol no string The protocol to be used to encode the packet
for the Event Editor. Each PacketType can
specify its own Protocol attribute, which will
override any specified by the PacketTypeGroup
or PacketTypes elements.

6 XML Element Reference

96 Customizing Protocol Descriptions for Packet Viewer Online Help

<PacketTypeGroup>

This element specifies a logical grouping of packet types. Each PacketTypeGroup will appear in the
Event Editor as a folder. The PacketTypeGroup can also specify a protocol that will be used by the
Event Editor and Packet Decoder to decode the packets.

Required No

Attributes

Contains • “<PacketTypeGroup>" on page 96

• “<PacketType>" on page 95 (required)

Contained By • “<PacketTypes>" on page 97

• “<PacketTypeGroup>" on page 96

Example <PacketTypes Name="My Packets" Default="Packet Type 1"
Protocol="My Packets">

<PacketTypeGroup Name="Write Packets" Protocol="Write Packets">
...

</PacketTypeGroup>
</PacketTypes>

Name Required Value Comment

Name yes string Name for the folder in the Event Editor

Protocol no string Name of the protocol to use by the Event Editor
and Packet Decoder to decode packets.

Customizing Protocol Descriptions for Packet Viewer Online Help 97

XML Element Reference 6

<PacketTypes>

This element specifies the main packet types that will be used to do multiple things:

• First, each PacketType entry will appear in the Event Editor interface as a starting point for setting
up a trigger. PacketTypeGroups will appear as folders in the Event Editor interface.

• Also, each packet type will be considered as a possible match in determining which string to
display in the Packet Viewer window for a packet.

Packet types are searched in the order that they appear in the protocol description file.

Required Yes

Attributes

Contains • “<PacketTypeGroup>" on page 96

• “<PacketType>" on page 95 (required)

Contained By • “<ProtocolFamily>" on page 102

Example <PacketTypes Name="My Protocol Packets" Protocol="My Protocol"
Default="Packet Type 1">

<PacketTypeGroup Name="Read Packet Types">
<PacketType Name="Packet Type 1">

<PacketMask Width="1" BitOffset="3" Value="0"/>
</PacketType>

</PacketTypeGroup>
<PacketTypeGroup Name="WritePacketTypes">

<PacketType Name="Packet Type 2">
<PacketMask Width="1" BitOffset="3" Value="1"/>

</PacketType>
</PacketTypeGroup>

</PacketTypes>

Name Required Value Comment

Name yes string Name of the packet types.

Protocol no string The protocol to be used to decode/encode the
packet. Each PacketTypeGroup and PacketType
can specify its own Protocol attribute, which
will override this one.

Default no string (default: the first
packet type)

The Event Editor default packet type among
the PacketType definitions that follow.

6 XML Element Reference

98 Customizing Protocol Descriptions for Packet Viewer Online Help

<Payload>

This element defines a logical grouping of fields that comprise the payload portion of a protocol
layer.

Required No

Attributes No attributes defined.

Contains • “<Field>" on page 80 (required)

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<RepetitiveFields>" on page 104

• “<SegmentedField>" on page 106

Contained By • “<Protocol>" on page 99

• “<FieldContainer>" on page 84

Example <Payload>
<Field Name="Data" Length="128" Type="Payload"/>

</Payload >

Customizing Protocol Descriptions for Packet Viewer Online Help 99

XML Element Reference 6

<Protocol>

This element defines a logical structure of protocol.

Required Yes

Attributes

Contains • “<Header>" on page 86

• “<Field>" on page 80 (required)

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<Payload>" on page 98

• “<RepetitiveFields>" on page 104

• “<SegmentedField>" on page 106

• “<Trailer>" on page 108

Contained By • “<ProtocolFamily>" on page 102

Example <Protocol Name="Write Packet" ProtocolLayer="Data">
<Field Name="OriginatorID" Length="5"/>
<Field Name="Data" Length="5"/>

</Protocol>

Name Required Value Comment

Name yes string Name of the protocol referenced by other parts
of the file.

ProtocolLayer yes string Meaningful name to specify the layer. This
name is used in the Details tab of the Packet
Viewer window and the Event Editor dialog to
organize fields into logical groups.

Type No "Lane" The protocol is used for lane or ordered set (see
page 113) decoding.

"Packet" (default) The protocol is used for packet decoding.

6 XML Element Reference

100 Customizing Protocol Descriptions for Packet Viewer Online Help

<ProtocolError>

This element defines a protocol error that is referenced by enums and fields.

Required Yes

Attributes

Contains None

Contained By • “<ProtocolErrors>" on page 101

Example <ProtocolErrors>
<ProtocolError Name="CRC Error" Description="Bad CRC"/>
<ProtocolError Name="Bad Status Value"

Description="Bad Status Value"/>
</ProtocolErrors>

Name Required Value Comment

Name yes string The name of the error which must match
exactly with the fields and enums that use it.

Description yes string The tool tip text to be used when hovering over
a packet with an error.

Customizing Protocol Descriptions for Packet Viewer Online Help 101

XML Element Reference 6

<ProtocolErrors>

This element defines the protocol errors specified by the protocol that are possible during packet
decode.

Required No

Attributes No attributes defined.

Contains • “<ProtocolError>" on page 100 (required)

Contained By • “<ProtocolFamily>" on page 102

Example <ProtocolErrors>
<ProtocolError Name="CRC Error" Description="Bad CRC"/>
<ProtocolError Name="Bad Status Value"

Description="Bad Status Value"/>
</ProtocolErrors>

6 XML Element Reference

102 Customizing Protocol Descriptions for Packet Viewer Online Help

<ProtocolFamily>

This is the root element of the XML document. All other elements must be contained within this
element.

If you want to license your protocol description, use the LicenseName, LicenseVendor, and
LicenseVersion attributes. When these attributes are used, a license must be found before the
protocol description can be loaded into the Keysight Logic Analyzer application. License creation
tools are part of the standard FLEXlm developer's kit.

Required Yes

Attributes

Contains • “<Bus>" on page 72 (required)

• “<PacketTypes>" on page 97 (required)

• “<Enumset>" on page 79

• “<SymbolDecode>" on page 107

• “<Protocol>" on page 99 (required)

• “<DisplayDefaults>" on page 76 (required)

• “<PacketHighlightRules>" on page 93

• “<ProtocolErrors>" on page 101

Contained By None (this is the root element)

Example <ProtocolFamily Name="My Protocol" Version="1.1"
LicenseName="MyProtocol_License"
LicenseVendor="My Company" LicenseVersion="1.1">

...
</ProtocolFamily>

See Also • “Step 5: Choose a unique protocol family name" on page 26

Name Required Value Comment

Name yes string Specifies the name that will appear in the
Packet Decoder list of protocols.

Version yes decimal Must be 1.1 for software version 3.65. Must be
1.0 for previous versions.

LicenseName no string FlexLM License Name

LicenseVendor no string FlexLM License Vendor

LicenseVersion no decimal FlexLM License Version

TransmissionOrder no "LSBFirst" Least significant bits are transmitted first in the
packet. See “Byte/Bit Order
Requirements" on page 18.

"MSBFirst" (default) Most significant bits are transmitted first in the
packet.

Customizing Protocol Descriptions for Packet Viewer Online Help 103

XML Element Reference 6

<Range>

This element assigns a meaningful string to a range of values.

Required No

Attributes

Contains None

Contained By • “<Enumset>" on page 79

• “<Field>" on page 80 (Range can be added inline to field definitions as a shortcut to creating an
enumset external to the protocol. See the example in “<Enum>" on page 78.)

Example <Range Name="Good Value" LowValue="0" HighValue="7"/>
<Range Name="Bad Value" LowValue="8" HighValue="15"

ValueError="Bad Value Description"/>

Name Required Value Comment

Name yes string The name assigned to the value range.

LowValue yes string The low value of the range.

HighValue yes string The high value of the range.

Description no string A description of the range.

ValueError no string If present, the ValueError attribute specifies
that this range of values is an error and will
appear in Red in the Packet Viewer window. A
matching string must appear in the
“<ProtocolErrors>" on page 101
element. See “Describing Protocol
Errors" on page 44.

KDChar no "Kchar", "Dchar", or
"DontCare"

Specifies if the range of values are K characters
or D characters.

6 XML Element Reference

104 Customizing Protocol Descriptions for Packet Viewer Online Help

<RepetitiveFields>

This element defines a grouping of fields that will repeat x/y times where, x is the overall length
specified by the repetitive field element and y is the sum of each field length contained within the
repetitive field element.

Required No

Attributes

Contains • “<Field>" on page 80 (required)

• “<MetaField>" on page 89

• “<SegmentedField>" on page 106

Contained By • “<Protocol>" on page 99

• “<Header>" on page 86

• “<Payload>" on page 98

• “<Trailer>" on page 108

• “<FieldContainer>" on page 84

Example <RepetitiveFields Name="TransactionID" Length="120"/>
<Field Name="PortRegister" Length="10"/>
<Field Name="OffsetRegister" Length="10" />

</RepetitiveFields>

The PortRegister and OffsetRegister fields will each appear 6 times. Each field have a [] appended
with the occurrence number when viewed in the Packet Viewer window. (For example:
PortRegister[0], PortRegister[1], etc.)

Here's an example of the Hierarchical attribute when the setting is true and false for a repetitive field:

<RepetitiveFields Name="Information Elements" Length="('Payload Length'
- 8) * 8">

<Field Name="IE Header" Type="Protocol"/>
</RepetitiveFields>

Name Required Value Comment

Length yes formula (see page 55) Length of the overall grouping of fields

Hierarchical no "T" (default) True, the name of the repetitive field becomes a
layer in the Details tab and each occurrence is
indexed (with square brackets) as a child to the
layer

"F" False, repetitive fields are displayed in the
Details tab without any hierarchy.

Name no string Name of the Repetitive Field

Select no formula (see page 55) A formula that is executed to determine if the
fields are to be used or not for the current
packet.

Hierarchical="T" Hierarchical="F" (no Information Elements layer and the
repetitive name is not indexed)

Customizing Protocol Descriptions for Packet Viewer Online Help 105

XML Element Reference 6

<Segment>

This element describes individual segments within a segmented field.

<Segment> elements do not increment the internal bit counter.

Required No

Attributes

Contains None

Contained By • “<SegmentedField>" on page 106

Example <SegmentedField Name="FrameID" Length="11" Format="Decimal">
<Segment BitOffset="0" Length="3" />
<Segment BitOffset="5" Length="8" />

</SegmentedField>
<!-- Now advance the internal bit offset: -->
<Field Name="Frame ID part 1" Length="3" Type="Segment"/>
<Field Name="BSS1" Length="2" Type="Segment" Value="#b10"/>
<Field Name="Frame ID part 2" Length="8" Type="Segment"/>

Name Required Value Comment

Length yes integer The number of bits in the segment.

BitOffset no integer (default: "0") Number of bits from the current internal bit
offset location the length should be offset.

6 XML Element Reference

106 Customizing Protocol Descriptions for Packet Viewer Online Help

<SegmentedField>

This element describes a field that has non-contiguous bits. This can be useful, for example, when
clock recovery bits appear periodically within a packet and are not related to the packet's data.

<SegmentedField> elements do not increment the internal bit counter, so the use of segment-type
or hidden-type fields (to increment the bit counter) after a segmented field is likely. Hidden-type
fields are not displayed. Segment-type fields are displayed in the Header tab but not the Details tab.

Required No

Attributes Same as the “<Field>" on page 80 element.

Contains • “<Segment>" on page 105

Contained By • “<Protocol>" on page 99

• “<Header>" on page 86

• “<Payload>" on page 98

• “<Trailer>" on page 108

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<RepetitiveFields>" on page 104

Example <SegmentedField Name="FrameID" Length="11" Format="Decimal">
<Segment BitOffset="0" Length="3" />
<Segment BitOffset="5" Length="8" />

</SegmentedField>
<!-- Now advance the internal bit offset: -->
<Field Name="Frame ID part 1" Length="3" Type="Segment"/>
<Field Name="BSS1" Length="2" Type="Segment" Value="#b10"/>
<Field Name="Frame ID part 2" Length="8" Type="Segment"/>

Customizing Protocol Descriptions for Packet Viewer Online Help 107

XML Element Reference 6

<SymbolDecode>

This element defines how symbol decode (see page 113) should be performed.

Required No

Attributes No attributes defined.

Contains • “<Enumset>" on page 79 (required)

Contained By • “<ProtocolFamily>" on page 102

Example <SymbolDecode>
<Enumset Name="Symbol Decode">

<Enum Name="COM" Value="#hbc" KDChar="Kchar"/>
<Enum Name="STP" Value="#hfb" KDChar="Kchar"/>
<Enum Name="TS1" Value="#h45" KDChar="Dchar"/>

</Enumset>
</SymbolDecode>

6 XML Element Reference

108 Customizing Protocol Descriptions for Packet Viewer Online Help

<Trailer>

This element defines a logical grouping of fields.

Required No

Attributes No attributes defined.

Contains • “<Field>" on page 80 (required)

• “<FieldContainer>" on page 84

• “<FieldGroup>" on page 85

• “<MetaField>" on page 89

• “<RepetitiveFields>" on page 104

• “<SegmentedField>" on page 106

Contained By • “<Protocol>" on page 99

• “<FieldContainer>" on page 84

Example <Trailer>
<Field Name="CRC" Length="10" />

</Trailer >

Customizing Protocol Descriptions for Packet Viewer

Online Help

7 Formula Reference

Operators / 110
Operands / 111

Formulas are a simple meta-language that are used to make the execution of decoding and framing
more dynamic. The use of a formula allows the decoding and framing logic to be dependent upon the
current values of bus/signals and packet data.

Formulas are specified in attributes of particular tags using quotes to delineate the contents. Inside
the quotes, there are a variety of operands and operators that can be used to provide the dynamic
nature of framing and decoding.

The basic structure of a formula contains one or more operands and one or more operators.

[unaryOperator (see page 110)] operand (see page 111) [Operator (see page 110)operand (see
page 111)]

7 Formula Reference

110 Customizing Protocol Descriptions for Packet Viewer Online Help

Operators

The list of allowed operators and their precedence (bottom to top) are as follows:

Operator Type Meaning

|| Binary Boolean OR

.land. Binary Boolean AND

| Binary Bitwise OR

^ Binary Bitwise XOR

.band. Binary Bitwise AND

==, != Binary Equivalence, Not Equivalence

.lt., .gt., .le., .ge. Binary Less Than, Greater Than, Less Or Equal,
Greater Or Equal

.lshift.

.rshift.
Binary Left Shift,

Right Shift

+, - Binary Plus, minus

*, /, % Binary Multiple, Divide, Modulo

(,) Binary Parentheses

+,-,!,~ Unary Positive, Negative, Not, Complement

Customizing Protocol Descriptions for Packet Viewer Online Help 111

Formula Reference 7

Operands

Names of operands can be constant numbers or references to fields or bus/signals.

• “Constants" on page 111

• “Field and Bus/Signal Operand Names" on page 111

• “Ranging" on page 112

Constants

For constant numbers, the format can be a plain number, which defaults to decimal. Or a specified
base can be used to prefix the number.

Special
#PACKET_LENGTH

Constant

The special '#PACKET_LENGTH' constant returns the length of the framed packet in bits. See “To get
the length of variable-length packets" on page 58.

Special
#VARIABLE

Constant

The special '#VARIABLE' constant is used in the Length attribute of the <FieldGroup> element to
specify that, of the fields contained in the field group, the length is variable. See “<FieldGroup>" on
page 85.

Field and Bus/Signal Operand Names

Valid characters for operand names:

• Lowercase letters: a-z

• Uppercase letters: A-Z

• Underscore: _

• Period: .

• OpenBracket: [

• CloseBracket:]

• Colon: :

• Digits: 0-9

All field operands must begin with an upper/lowercase letter and can contain any number of digits
and letters or brackets. Spaces may be included, but the operand must be enclosed in single quotes.
If the operand contains square brackets, then single quotes are also required.

Example TestName==#h1

'Test Name'==#h1

'Address[31:2]'==#h1

Character Prefix Base Example

#b Binary Value==#b1

#d Decimal Value==#d3

#c Octal Value==#c6

#h Hex Value==#ha

None Decimal Value==10

7 Formula Reference

112 Customizing Protocol Descriptions for Packet Viewer Online Help

Ranging

Particular values of a bus/signal or field can be extracted for formula execution through the use of
ranges. Ranges are specified with square brackets as follows:

Address[31:2]==10

This means that 30 bits from the address field will be used in the formula calculation. To specify the
field 'Address[31:2]', then quotes must surround the field name and square brackets.

Look Around

Formulas can retrieve data from previous or future samples by using braces as follows:

Bus{-1}==#h1

See Also • “To look around" on page 56

NOTE
The name of fields and labels generally has fewer restrictions than the names required for
formulas. It may be that the name of the field cannot be used in the formula until the name of the
field is changed to be compliant with the formula operand restrictions.

NOTE
Look around in conjunction with ranging is not supported.

Customizing Protocol Descriptions for Packet Viewer

Online Help

8 Glossary

8

8B/10B encoding: A block coding scheme for high-speed serial and fiber-optic communication links
that translates a block of data into a longer block of data that has more transitions between 1's and
0's. The 8B/10B block code maps every byte (8 bits) into a 10-bit value (symbol) that has 3-8
transitions and a balanced number of 1's and 0's. (The 8B/10B block code was designed by IBM in
the mid-1980's and has been used in FibreChannel communication links between computers and
mass storage devices.)

D

D character: In 8B/10B coding, the 10-bit codes for the 256 8-bit values are often referred to using "D"
character names that come from the first 5 bits of the 8-bit value separated from the last 3 bits. For
example:

D28.2 010 11100

D28.2 represents the encoding for the binary value above, where 28 is the decimal representation of
the first 5 bits, and 2 is decimal representation of the last 3 bits.

K

K character: In 8B/10B coding, in addition to the 10-bit codes for the 256 8-bit values, there are a few
extra 10-bit codes called special characters. Special characters are used for data delimiters like
start-of-packet, end-of-packet, idle, and configuration messages.

These special characters are often described with character names, but they use a "K" character
instead of a "D". The special characters are:

K28.0 K28.1 K28.2 K28.3 K28.4 K28.5 K28.6 K28.7 K23.7 K27.7 K29.7 K30.7

L

lane: Describes one serial channel in situations where multiple serial channels are bonded to transmit
greater amounts of data.

O

ordered set: In 8B/10B, this refers to a specific combination of characters (symbols). For example, a
start-of-frame ordered set might be K25.8 D21.5 D22.2 D22.2.

S

symbol decoding: Usually in reference to 8B/10B encoding, symbol decoding describes how 8-bit
values map to 10B character names and symbols.

8 Glossary

114 Customizing Protocol Descriptions for Packet Viewer Online Help

Customizing Protocol Descriptions for Packet Viewer Online Help 115

Index

Symbols
.aex (Keysight Encrypted XML) file

extension, 11, 15, 22
#PACKET_LENGTH, 58, 111
#VARIABLE, 111
#VARIABLE length of fields, 85

Numerics
10bData type, 28, 87
8B/10B buses from analysis probe, 69
8B/10B encoding, 113
8bData type, 28, 87

A
add information to packet, 50
Address type field, 80
advanced Protocol Development Kit

features, 51
aligning lanes, 67
Any packet type, 95
ASCII decode output, 23, 32
automatically generated columns, 41,

77

B
big endian payload format, 82
binary numbers, 111
bit order requirements, 18
bitwise AND, 110
bitwise OR, 110
bitwise XOR, 110
Bonded type, 29, 87
bonding lanes, 67
boolean AND, 110
boolean OR, 110
Bus, protocol description XML

element, 21, 27, 32, 56, 72
bus/signal operand names, 111
BusProtocol, protocol description XML

element, 27, 30, 73
byte order requirements, 18

C
cell highlighting for Lanes tab, 45
clock recovery bits, 106
clock signal, Serial To Parallel tool to

extract, 53

color descriptions for Packet Viewer
window, 44, 90, 92, 93

colors for packet types, 44, 90
colors, available, 46
complement, 110
conditional decode, 48
constants, 111
CRC computation, 51, 81

D
D character, 113
data to be decoded, 27, 28
Data type, 28, 87
Data type field, 80
data, packet, 35
data, remultiplexing, 53
data, valid packet, 29
decimal numbers, 111
decode bus, 22, 28
decode errors, 65
decode information, adding, 43
decode, conditional, 48
DecodeRule attribute of Field

element, 49, 82
DecodeString attribute of Field

element, 49, 82
Default attribute, 33
Default, protocol description XML

element, 43, 75
Description attribute in Field

element, 81
Description attribute in PacketDisplay

element, 45, 90
Details tab, 40
Direction column in Packet Viewer

window, 42, 77
DisplayDefaults, protocol description

XML element, 21, 26, 41, 76
DisplayField, protocol description XML

element, 77
DisplayLength attribute of Field

element, 49, 82
divide, 110
DLL for TransformFunction, 52
DLL for ValueFunction, 51

E
editor, protocol description file, 10
EncodeRule attribute of Field

element, 49, 82
endian, payload format, 82

end-of-packet, formulas to
determine, 56

Enum, protocol description XML
element, 43, 78

Enumset attribute in Field element, 43,
81

Enumset, protocol description XML
element, 43, 79

Eop attribute, 27, 88
equivalence, 110
error messages, 62
Event Editor, 33, 96, 97
existing protocol description,

editing, 9

F
falling signals, formula to identify, 56
field operand names, 111
Field, protocol description XML

element, 35, 42, 80
field, transforming the value of, 52
FieldContainer, protocol description

XML element, 84
FieldGroup, protocol description XML

element, 85
fields, packet, 35
formulas in bus/signal label

descriptions, 56
formulas in field descriptions, 58
formulas that operate on other field

values, 58
formulas, reference, 109
formulas, using, 55
framing options, insufficient, 53

G
general errors, 62
generated columns, 41, 77
GenerateLaneData attribute, 32, 72
glossary, 113
greater or equal, 110
greater than, 110

H
Header tab, 40
header, packet, 35
Header, protocol description XML

element, 35, 86
hexadecimal numbers, 111

Index

116 Customizing Protocol Descriptions for Packet Viewer Online Help

Hidden type field, 80

I
Idle type, 29, 87
index operator, 73
insufficient framing options, 53
inverse assembler to determine

start-/end-of-packet, 56

K
K character, 113

L
Label, protocol description XML

element, 27, 28, 30, 56, 87
lane, 67, 113
lane data in Listing window, 30, 32, 72
lane initialization, 67
Lanes tab, 28, 40, 91
Lanes tab, cell highlighting for, 45
Lanes tab, symbol decode for, 43
lanes, serial bus with, 30
layers, protocol, 37
least-significant bit (LSb) first

ordering, 18
left shift, 110
less or equal, 110
less than, 110
library name for

TransformFunction, 52
library name for ValueFunction, 51
license information, 10
licensing protocol descriptions, 102
link, 67
little endian payload format, 82
location of error, 62
logical lanes vs. physical lanes, 69
look around, 112
look around, determining

start-of-packet, 48
look around, formulas to, 56
lookahead, field, 58, 80

M
meaningful strings, assigning to

values, 43
messages, error, 62
Meta attribute in Label element, 87
MetaData type, 28, 87
MetaField, protocol description XML

element, 89
minimal protocol description, 20
minus, 110
modulo, 110
most-significant bit (MSb) first

ordering, 18
multi-lane serial link concepts, 67

multi-lane serial link, probing with
logic analyzer, 68

multiple, 110

N
negative, 110
new protocol descriptions, creating, 17
not, 110
not equivalence, 110
number of serial channels in a link, 67

O
octal numbers, 111
operand names, 111
operands, 111
operators, 110
ordered set, 113
ordered set decoding, 99

P
Packet Bytes base, 66
packet data, 35
packet data, valid, 29
Packet Decode column in Listing, 23
Packet Decoder tool, 3, 22, 41, 77, 96
packet fields, packet, 35
packet header, 35
packet trailer, 35
packet triggers, 33
packet type colors, 44, 90
packet types, 33, 97
Packet Viewer window, 3, 24, 34, 40
Packet Viewer window, color

descriptions for, 44
Packet Viewer window, default

columns, 41
Packet Viewer window, insert/delete

columns, 41
Packet Viewer window, protocol

errors, 44, 66
Packet Viewer window, ValueErrors

in, 75, 78, 103
PacketData attribute, 29, 88
PacketDisplay, protocol description

XML element, 44, 90
PacketHighlightRule, protocol

description XML element, 45, 91
PacketHighlightRules, protocol

description XML element, 45, 93
PacketMask, protocol description XML

element, 34, 94
PacketType, protocol description XML

element, 33, 95
PacketTypeGroup, protocol description

XML element, 33, 96
PacketTypes, protocol description XML

element, 21, 27, 33, 97
parentheses, 110

parsing checks of protocol description
file, 14

parsing errors, 62
Payload tab, 40
Payload type field, 80
Payload, protocol description XML

element, 35, 98
PDK, see Protocol Development Kit
physical lanes vs. logical lanes, 69
plus, 110
positive, 110
problems, solving, 61
protocol description errors, 62
protocol description file, 3
protocol description file editor, 10
protocol description file, checking

edits, 14
protocol description file, editing, 13
protocol description file, loading, 3
protocol description file, opening, 11
protocol description file, parsing

checks, 14
protocol description file, refreshing in

the application, 16
protocol description file, saving, 15, 22
protocol description file, validation

checks, 14
protocol description XML elements, 71
protocol description, editing

existing, 9
protocol description, minimal, 20
protocol descriptions, creating new, 17
Protocol Development Kit, at a

glance, 3
Protocol Development Kit, editor

features, 13
Protocol Development Kit, editor

window, 11
protocol errors in Packet Viewer

window, 44, 66
protocol errors, describing, 44
protocol family, 22, 26
protocol family name, 26
Protocol type field, 36, 38, 80
Protocol, protocol description XML

element, 21, 27, 30, 35, 99
ProtocolError, protocol description

XML element, 44, 100
ProtocolErrors, protocol description

XML element, 44, 101
ProtocolFamily Packet column in

Packet Viewer window, 41, 77
ProtocolFamily, protocol description

XML element, 26, 102
ProtocolField type field, 36, 80

R
range operator, 73
Range, protocol description XML

element, 43, 103
ranging, 112

Index

Customizing Protocol Descriptions for Packet Viewer Online Help 117

remultiplexing data, Signal Extractor
tool, 53

reorder LSb first bits, 18
RepetitiveFields, protocol description

XML element, 104
Reserved type field, 80
right shift, 110
rising signals, formula to identify, 56

S
Sample Number column in Packet

Viewer window, 41, 77
Segment type field, 80
Segment, protocol description XML

element, 105
SegmentedField, protocol description

XML element, 106
Select attribute in Field element, 48, 81
Select attribute in Label element, 29,

88
Select attribute in RepetitiveFields

element, 104
serial bus with lanes, 30
Serial To Parallel tool to extract clock

signal, 53
Signal Extractor tool to remultiplex

data, 53
signed decimal integer, 49
simulate loading file, 14
single-byte character, 49
Sop attribute, 27, 87
start-of-packet, formulas to

determine, 56
start-of-packet, using look around to

determine, 48
startup messages, 62
strings, assigning to values, 43
striping packet data across lanes, 68
symbol decoding, 113
SymbolDecode, protocol description

XML element, 43, 107

T
Time column in Packet Viewer

window, 41, 77
toggling signals, formula to

identify, 56
tool tips in Packet Viewer window, 45,

81, 90
trailer, packet, 35
Trailer, protocol description XML

element, 35, 108
TransformFunction attribute of Field

element, 52, 81
TransformFunction DLL file

location, 52
TransformFunction, using, 52
TransmissionOrder attribute, 18
Type attribute, 28

U
Unexpected End Of Packet, 66
Unknown Packet Type, 66
unmangled names in

TransformFunction, 52
unmangled names in

ValueFunction, 51
unsigned decimal integer, 49
unsigned hexadecimal integer, 49
unsigned octal integer, 49

V
valid data, formulas to determine, 56
valid packet data, 29
Valid type, 29, 87
validation checks of protocol

description file, 14
ValueError attribute, 44, 75, 78, 103
ValueFunction attribute of Field

element, 51, 81
ValueFunction DLL file location, 51
ValueFunctions, 51
variable-length packets, 58
Version attribute, 26, 102

W
wide character, 49

Index

118 Customizing Protocol Descriptions for Packet Viewer Online Help

	Protocol Development Kit (PDK)—At a Glance
	Contents
	Editing an Existing Protocol Description
	Starting the Protocol Description File Editor
	Opening Protocol Description Files
	Editing Protocol Description Files
	Checking Protocol Description File Edits
	Saving Protocol Description Files
	Refreshing Protocol Files in the Application

	Creating a New Protocol Description
	Before You Get Started
	Getting Started, Using a Simple Example
	Getting Started, Describing Your Protocol
	Adding Decode Information
	How to ...
	Using Advanced Features

	Using Formulas
	Using Formulas in Bus/Signal Label Descriptions
	Using Formulas in Field Descriptions

	Solving Problems
	Protocol Description Errors when Application Starts
	Decode Errors
	Pre-Defined Protocol Errors that Appear in Packet Viewer

	Multi-Lane Serial Link Concepts
	XML Element Reference
	<Bus>
	<BusProtocol>
	<Default>
	<DisplayDefaults>
	<DisplayField>
	<Enum>
	<Enumset>
	<Field>
	<FieldContainer>
	<FieldGroup>
	<Header>
	<Label>
	<MetaField>
	<PacketDisplay>
	<PacketHighlightRule>
	<PacketHighlightRules>
	<PacketMask>
	<PacketType>
	<PacketTypeGroup>
	<PacketTypes>
	<Payload>
	<Protocol>
	<ProtocolError>
	<ProtocolErrors>
	<ProtocolFamily>
	<Range>
	<RepetitiveFields>
	<Segment>
	<SegmentedField>
	<SymbolDecode>
	<Trailer>

	Formula Reference
	Operators
	Operands

	Glossary
	Index

