

Agilent PSA Series Spectrum Analyzers Noise Figure Measurements Personality

Technical Overview with Self-Guided Demonstration, Option 219

Agilent Technologies

The noise figure measurement personality, available on the Agilent PSA Series spectrum analyzers, provides a suite of noise figure and gain measurements including system calibration.

Add Noise Figure and Gain Measurements to Your Set of Test and Development Tools

A key measurement in the development of devices and systems is its noise figure. The overall noise figure of a system is one of the limiting factors in its performance. Making noise figure measurements can be a tedious manual process. But with Agilent's noise figure measurement systems, these measurements can be fast and easy with accurate results. Meet many of your measurement needs with a one-analyzer solution from Agilent.

- Perform system calibration easily and quickly.
- Analyze the device noise figure in several different formats.
- Characterize the noise figure of frequency conversion devices.
- Easily calculate measurement uncertainty.

The Agilent PSA Series offers high performance spectrum analysis up to 50 GHz with powerful one-button measurements, a versatile feature set, and a leading-edge combination of flexibility, speed, accuracy and dynamic range. Expand the PSA to include noise figure measurements with the noise figure measurements personality (Option 219).

The noise figure measurements personality provides noise figure and gain measurements over the frequency range of the PSA with specified measurements over the 10 MHz to 3 GHz range. The technical overview includes:

- measurement details
- demonstrations
- PSA Series key specifications for the noise figure personality
- ordering information
- related literature

All demonstrations use the Agilent 346C noise source, mixer, amplifier and 70 MHz band pass filter. The keystrokes surrounded by [] indicate hard keys and while key names surrounded by {} indicate soft keys located on the right edge of the display.

Noise figure measurements:

- entering ENR values
- calibration
- noise figure and gain
- using display features
- measurement uncertainty calculator
- mixer as the DUT
- mixer as part of system

Demonstration preparation

To perform the following demonstrations, the PSA requires these options.

Product typeModel numberRequired optionsPSA Series spectrum analyzerE4440A/43A/45A/46A/48AOption 1DS built-in preamplifier
Option 219 noise figure measurement
personalityNoise source346A/346B/346C

To configure the measurement system, simply connect the noise source (Agilent 346C) to the rear panel connector labeled "noise source drive out + 28 V (pulsed)" using a 1 meter BNC cable (50 Ω).

Noise figure measurement process summary

Measuring the noise figure of a device requires knowledge of the measurement system. Once the noise figure of the measurement instrument is known and the gain of the device under test (DUT) is known, then the noise figure of DUT can be calculated, after which the overall noise figure is measured. Most computing measurement systems, such as the Option 219 measurement personality, can display noise figure in dB. Noise figure measurements are comprised of three steps:

- 1. Enter the excess noise ratio ENR values in dB of the noise source.
- 2. Calibrate the measurement personality.
- 3. Make noise figure measurements.

Entering the ENR table for a noise source

The noise source used for this demonstration is the 346C. This noise source has a calibrated range of 10 MHz to 26.5 GHz. There is a pulsed 28 V source that drives the noise source. When the voltage is on, the output of the noise source is the excess noise value. Once calibration data is entered into the measurement personality, system calibration and DUT measurements can be made. In most cases a common ENR table can be used for calibration and measurements. However, in the case of mixers, for example, the frequency range of the source for measurements may be outside the range for calibration, and therefore two sources are required. There are instances where the calibration ENR table is different from the measurement ENR table. An example would be the analysis of the noise figure of a frequency conversion device (mixer). In this case there is no longer a common table used. Instead, the common table function is turned off. There are two methods of loading the ENR information into the table. The preferred method is to load the values from a disk supplied with the noise source. The second method, which is less desirable, is to enter the excess noise ratio common table manually.

This exercise illustrates the different methods of entering excess noise ratio numbers.

Instructions	Keystrokes
Enable the noise figure measurement personality.	[Preset] [Mode] ({More} if necessary) {Noise Figure}
Enter the ENR numbers from disk.	[File] {Load} {Type} {More} {ENR Meas/Common Table} {Load Now}
You may also enter ENR values manually. Add excess noise ratio (ENR) serial number and model number.	{Meas Setup} {ENR} {Meas & Cal Table} [Return] {Serial #} Use the numeric pad and alpha editor to enter the serial number. If the serial number already exists, you will be prompted to choose whether or not you want to load the data. If not, press {Model ID} and enter the model number using the alpha editor and numeric key pad.
Adding ENR values versus frequency.	{Index} [1] {Frequency} [10] {MHz} {ENR Value} [13.14] {dB} Repeat the process for index 2 and so on.
Saving the calibration data to a floppy or the internal memory of the PSA.	[File] {Save} {Dir Select} Use up/down arrows to select drive A for the floppy, then press {Dir Select}. Press {Name} and use the Alpha Editor to name the file (8 characters max). When finished entering the name, press [Return] and {Save Now}.

Calibration of the noise figure measurement personality

In order to make accurate measurements, the personality must first be calibrated. Calibration is required because the NF of the measurement system has to be known before a DUT can be measured. The measured instrument noise figure is then removed from the total noise figure measurement so that only the DUT noise figure and gain is displayed.

Following is the calibration process:

- 1. Select the frequency range.
- 2. Set the number of points and set the number of averages.
- If the device under test does not have gain or if the gain is low, turn on the built-in preamplifier before calibration.

Perform a system calibration.

Noise figure and gain measurements

Now that the measurement personality is calibrated with the noise source connected directly to the input, it is a simple matter to make noise figure and gain measurements on a device.

Disconnect the noise source from the input and connect the DUT to the input and connect the noise source to the DUT as shown in Figure 1. The noise figure and gain of the device under test is shown in Figure 2.

Figure 2.

Typical noise figure and gain graph

Instructions	Keystrokes
Connect the noise source to the PSA with a	Connect BNC cable between 346 series
BNC cable to the source driver on the rear panel.	noise source and the rear panel connector
	labeled Noise Source Drive Out +28 V (Pulsed).
Set the start frequency.	[Frequency] {Start Freq} [10] {MHz}
Set the stop frequency.	{Stop Freq} [3] {GHz}
Set the number of points at which to measure.	{Points} [30] [Enter]
Set the averaging function to 15 averages.	[Meas Setup] {Avg Number On} [15] [enter]
Calibrate the measurement personality.	[Meas Setup] {Calibrate} {Calibrate}

Using the display features

The noise figure measurement personality has many features to help you interpret and analyze noise figure measurements.

Select and Zoom Active Window:

This feature allows you to highlight a window and then enlarge it for closer analysis.

This exercise illustrates the use of the display features.

Instructions	Keystrokes
Highlight the window of interest.	Press [Next Window] until the window you want is highlighted.
Enlarge the window for closer analysis.	[Zoom]
Switch to another window (Figures 3 and 4).	[Next Window]

General, markers and source tabs

There are three tabs available at the bottom of the screen. These tabs are accessed using the left and right arrow keys. The General tab shows information about BW, number of points, Tcold value, loss, attenuator setting and internal preamplifier setting. The Marker tab gives the frequency, noise figure and gain of each of the markers. The Source tab includes information about the noise source including serial number and model identification.

Instructions			Ke	ystrokes	6		
View the tabs at the b (Figures 5, 6, and 7).	ottom of display		Us of	e the Rig the fron	ght and t panel 1	Left Tab keys to scroll throu	at the bottom igh the tabs.
Figure 5. General information display	General Markers Source	BW Loss	1 MHz Off	Points Atten	11 0 dB	Tcold Int Preamp	296.50 K On
Figure 6. Noise source information	General Markers Source	Meas: Cal:	Serial Serial	4015	A05239	Model Model	ID 346C ID
Figure 7. Marker information	General Markers Source	Mkr1 Mkr2 Mkr3 Mkr4	9 1.5 2.1	10 MHz 07 MHz 05 GHz 03 GHz	3	NFIG .264 dB .437 dB 3.79 dB 5.39 dB	<u>6A1</u> 24.92 d 24.31 d 20.06 d 14.68 d

Scale and reference level values

The scale in dB per division and the reference values can be adjusted to give an optimized view of the measured results. The scale per division can be adjusted in 0.1 dB steps from 0 to 20 dB. The reference level can be placed at the top of the graph, in the center or at the bottom. The reference level is adjustable in 0.1 dB steps from -100 dB to +100 dB.

Use the Auto Scale feature to give the broadest view of the measured trace. The lowest point will be placed at the bottom of the graph and the highest value at the top of the graph.

Figure 8.

figure after

auto-scaling

Perform display scaling.

Instructions	Keystrokes
Set the scale of the graphical view.	Press [Amplitude] [Next Window] to highlight the graph to be changed. Press {Scale/Div} and enter the new value [1.5] and press {dB}.
Set the reference value and the position of the reference.	Press [Amplitude], then [Next Window] to highlight the graph to be changed. Press {Ref Value} and enter [18] and press {dB}. Move the position of the Ref Value by pressing {Ref Position Ctr}.
Expand the trace to fit the graph for a better view of the measurement using the Auto Scale function as shown in Figure 8.	Press [Amplitude] use [Next Window] to highlight the graph to be expanded then press {Auto Scale}.

Markers

A total of four normal markers can be placed on the graphical display. The placement of the markers is limited to the calibration points. If there are 11 calibration points then the markers can be placed on each of the vertical graticule lines. Each of the normal markers can be changed to delta markers. For example, marker 2 will change to marker 2 and 2R where 2R is the reference and 2 would be the delta.

This exercise illustrates the use of markers.

Instructions	Keystrokes
The marker function operates the same as	To turn marker on, press [Marker].
the standard E4440A series PSA.	
Turn on marker 2.	Press {Select Marker 2} and press {Normal}.
Active delta marker 2.	First place the marker to a reference point
	using knob or up/down arrows. Press {Delta}.
The marker table under the graphical display	Move the marker relative to the reference
reflects the delta marker information (Figure 9).	marker.
Switch between displaying the absolute	Press {Delta Pair}. Note the change in
frequency of the delta marker and the	frequency above the graphical display.
reference marker frequency.	

Change format of the active window

The default view of the window is the graphical mode with noise figure in the top and gain in the bottom. The two graphs can be combined to display both traces on one graph. There are two other views available table mode and meter mode.

Illustrating more of the display features.

Instructions	Keystrokes	
To combine both traces on one graph, see Figure 10.	[Trace/View] {Combined on}	
Activate the table mode.	[Trace/View] {Table}	
Activate the meter mode.	[Trace/View] {Meter}	

Figure 10.

Full screen of the

Creating limit lines

Up to four limit lines can be set, two for the upper graph and two for the lower graph. The limit lines for the upper graph are designated with up arrows, and the limit lines for the lower graph are designated with down arrows. The limit lines can be designated as upper limit or lower limit and each can have a test pass/fail indicator.

Instructions	Keystrokes
Open the limit line editor. Select upper limit for	[Display] {Limits} {Limit Line 1} {Edit}
the upper graph and turn on the limit test.	Use right/left tab keys under display to highlight
	"Limit". Press {On}, tab to Type, press {Upper},
	Display {On}, Test {On}.
Insert limit values for 10 MHz, 1, 2 and 3 GHz	Use right/left tab keys to highlight point 1.
(Figure 11).	{Frequency} [10] {MHz} {Limit Value} [5] {dB}
	{Connected Yes} {Point 2} {Enter}
	{Frequency} [1] {GHz} {Limit Value} [6] {dB}
	{Connected Yes} {Point 3} {Frequency} [2] {GHz}
	{Limit Value} [6.5] {dB} {Connected Yes}
	{Point 4} {Frequency} [3] {GHz}
	{Limit Value} [7] {dB} {Connected Yes}

This exercise develops limit lines.

Figure 11.

Noise figure uncertainty calculator

When making a noise figure measurement, there are many aspects of the measurement setup that can affect the uncertainty of that measurement. The instrument uncertainty is one element of measurement uncertainty where the instrument itself adds to the measurement uncertainty; this is the instrument uncertainty we read in the specifications. Other factors like the noise source and the system mismatch also add to the measurement uncertainty. A measurement uncertainty calculator is used to incorporate all of these factors to determine the total measurement uncertainty.

The noise figure measurement personality, Option 219, has a built-in uncertainty calculator. To calculate the overall measurement uncertainty, simply choose the default noise source (346C for example), enter the input and output match of the device under test and the gain/noise figure of the DUT from the measurement display and the value of the uncertainty will be calculated. There are some default values for the instrument (PSA) already entered.

Figure 12.

Uncertainty

Use the built-in uncertainty calculator.

Instructions	Keystrokes
Select uncertainty calculator.	[Mode Setup] {Uncertainty Calculator}.
Choose 346C as default source.	Use right/left tab keys to highlight "Noise Source Model" box. Press {346C}.
Enter the noise figure and gain values from the measurements graph or marker table.	Use tab keys to highlight "DUT Noise Figure" and enter [3.2] {dB}. (To view the marker table, press [Return] and to return to the calculator press {Uncertainty Calculator}). Then highlight "DUT Gain" and enter [25] {dB}.
The input and output match of the DUT is determined from the specifications sheet or measured using a network analyzer.	Highlight "DUT Input Match" and enter [1.5]. Highlight "DUT Output Match" and enter [1.5]. The measurement uncertainty is then calculated and the results is display at the bottom of the form (Figure 12).

Noise figure measurements using a mixer as the DUT

When a down conversion is included in the noise figure measurement, for example measuring the noise figure of a mixer, there are some additional setups to consider. For this example let us use a mixer as a down-converter with an IF at 70MHz, LO at 1GHZ and both RF sidebands are used, 930 and 1070 MHz (DSB):

- The measurement, as well as calibration, is made at the IF frequency.
- When an IF frequency is chosen, it is a good idea to keep the frequency as low as possible in order to avoid large differences in ENR values between the upper and lower sidebands when using DSB mode. This is because it is the ENR value at the LO that is used in the measurement (compromise since it is centered between the two sidebands)
- Since this device has some loss, it • is recommended that the internal preamp be used.

Figure 13.

Setup for

• Compensate for two sidebands by selecting double side band. Any

broadband noise in the LO will directly affect results. This can be solved by either a high pass or low pass filter at the LO port that removes the noise at the IF frequency. Place an IF filter at the input of the spectrum analyzer to remove LO feed through. Usually mixers have around 20 dB of isolation between the LO-IF port so the high powered LO will seriously affect results.

Perform measurements on mixers.

Instructions	Keystrokes		
Set up the PSA for down conversion	{Meas Setup} {Int Preamp On}		
measurements. It is recommended that the	[Mode Setup] {DUT Setup} {Down Conv}		
internal preamp be used when measuring			
devices that have low gain.			
Set up the source for +7 dBm at 1 GHz.	On E4438C press [Frequency] [1] {GHz} [Amplitude] [7] {dBm} [RF On].		
Set up the LO frequency (Figure 13).	Scroll to "Ext LO frequency" using tab keys then enter [1] {GHz}. Tab to "sideband" and choose "DBS".		
Set up the fixed IF frequency.	[Frequency] {Freq Mode} {Fixed} {Fixed Frequency} [70] {MHz}		
Calibration: connect the noise source to the input of the PSA.	[Meas Setup] {Calibrate} {Calibrate}		
Measure the DUT: Connect the mixer IF (I)	To add more averaging, press [Meas Setup]		
port to the PSA, the LO (L) port to the signal source and the RF (R) to the noise source.	then {Avg Number On).		

Measurements using a mixer as part of the system

In this application the mixer is part of the noise figure measurement system. The diagram below shows the DUT and the mixer as the down converter. The DUT in this case is an amplifier. When using a mixer as part of the measurement system, calibration is performed with the mixer in the path. As in the illustration above, 70 MHz is used as the IF and a band pass filter is added to the IF out of the mixer. Choose the LO frequency to be 70 MHz above the desired RF and then calibrate and then insert the device under test. In this case, the device is tested at one frequency.

In this measurement, there is no input filter to limit the noise input to the upper sideband even though the LSB was selected. The noise from the upper sideband and lower sideband will give a noise figure higher than expected (3 dB).

Perform measurements with a mixer as part of the system.

Instructions	Keystrokes
Setup for the calibration process.	Connect the noise source to the R port of the mixer, the signal source to the L port and the 70 MHz BPF to the I port. Connect the other end of the 70 MHz BPF to the input of the SA.
Analyzer setup - this assumes that the ENR	[Mode Setup] {DUT Setup} {Amplifier}
factors are loaded in the PSA (Figure 14).	Using the tab keys under the display, highlight system downconverter and press {On}, move to "LO" and enter [1] {GHz}. Move to "Sideband" and select {LBS}. Move to "Frequency Representation" and select "RF DUT Input".
Set up the SA frequency.	[Frequency] {Freq Mode} {Fixed} {Fixed Freq 930 MHz}. Set the source to 1 GHz and +7 dBm. [RF On]
Start the calibration process.	[Meas Setup] {Calibrate} {Calibrate}
Place the DUT in the system between the noise source and the RF port.	No key presses required; the noise figure and gain is indicated in the box below the display.

Figure 14.

PSA Series Key Specifications

Noise figure measurement personality (200 kHz to 26.5 GHz)

Noise figure

Frequency range 200 kHz to 10 MHz ENR (nominal) 4 to 7 dB 0 to 20 dB 12 to 17 dB 20 to 30 dB Frequency range 10 MHz to 3 GHz ENR 4 to 7dB 12 to 17 dB 20 to 22 dB Frequency range 3 GHz to 26.5 GHz¹ $ENR \sim 15 dB$ Gain Frequency range 200 kHz to 10 MHz ENR (nominal) 4 to 7 dB 12 to 17 dB 20 to 30 dB Frequency range 10 MHz to 3 GHz ENR 4 to 7dB 12 to 17 dB 20 to 22 dB

Frequency range 3 GHz to 26.5 GHz

 $ENR \sim 15 \text{ dB}$

 (With internal preamp 1DS)

 Meas. range
 Instr. uncertainty

 (nominal)
 (nominal)

 0 to 20 dB
 ±0.05 dB

 0 to 30 dB
 ±0.05 dB

 0 to 35 dB
 ±0.10 dB

 (With internal preamp 1DS and 1 MHz RBW)

 Meas. range
 Instr. uncertainty

 0 to 20 dB
 ±0.05 dB

 0 to 30 dB
 ±0.05 dB

 0 to 35 dB
 ±0.10 dB

(With RBW of 1 MHz) Measurement uncertainty ±0.3 dB (nominal)

 (With internal preamp 1DS)

 Meas. range
 Instr. uncertainty

 (nominal)
 (nominal)

 -20 to 40 dB
 ±0.17 dB

 (With internal preamp 1DS and 1 MHz RBW)

 Meas. range
 Instr. uncertainty

 -20 to 40 dB
 ±0.17 dB

 -20 to 40 dB
 ±0.17 dB

 -20 to 40 dB
 ±0.17 dB

 -20 to 40 dB
 ±0.17 dB

(With RBW of 1 MHz) Measurement uncertainty ±1.0 dB (nominal)

^{1.} Performance above 3 GHz depends on the gain of the DUT and whether or not a preamplifier is used. Please refer to the *Noise Figure Guide*, literature number E4440-90195, for details.

PSA Series Ordering Information

PSA Series spe	ctrum analyzer	Measurement Pe	ersonalities		
F4443A 3 Hz to 6	7 GHz	F444×Δ-226	Phase noise		
E4445A 3 Hz to 1	3 2 GHz	F444xA-219	Noise figure	Requires 1DS	
E4440A 3 Hz to 2	6.5 GHz	F444xA-241	Flexible digital modulation analysis		
E4447A 3 Hz to 4	2.98 GHz	E444xA-BAF	W-CDMA	Requires B7J	
E4446A 3 Hz to 4	4 GHz	E444xA-210	HSDPA	Requires B7J and BAF	
E4448A 3 Hz to 5	0 GHz	E444xA-202	GSM w/ EDGE	Requires B7J	
		E444xA-B78	cdma2000	Requires B7J	
Options		E444xA-214	1xEV-DV	Requires B7J and B78	
To add ontions to	a product	E444xA-204	1xEV-DO	Requires B7J	
use the following	a product,	E444xA-BAC	cdmaOne	Requires B7J	
Model F///vA (v	-0.3567 or 8	E444xA-BAE	NADC, PCD	Requires B7J	
Example ontions	= 0, 3, 3, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	E444xA-217	WLAN	Requires 122 or 140	
		E444xA-211	TD-SCDMA		
100		E444xA-215	External source control		
Warranty & So	rvice	E444xA-266	Programming code compatibility suite		
Standard warrant	vie three veers				
R-51R-001-5C	Warranty Assurance	Hardware			
11 51 5 6 6 1 5 6	Plan Return to Agilent	E444xA-1DS	100 kHz to 3 GHz built-in preamplifier		
	5 vears	E444xA-B7J	Digital demodulation hardware		
	e youro	E444xA-122	80 MHz bandwidth digitizer	E4440A/43A/45A only,	
Calibration 1				excludes 140, H70	
	Calibration Assurance	E444xA-140	40 MHz bandwidth digitizer	E4440A/43A/45A only,	
11-500-011-5	Plan Return to Agilent			excludes 122, H70	
	2 vears	E444xA-123	Switchable MW preselector bypass	E4440A/43A/45A only,	
B-50C-011-5	Calibration Assurance			excludes AYZ	
11 300 011 3	Plan Return to Agilent	E444xA-124	Y-axis video output		
	5 vears	E444xA-AYZ	External mixing	E4440A/47A/46A/48A	
B-50C-016-3	Agilent Calibration +			only, excludes 123	
	Uncertainties +	E4440A-BAB	Replaces type-N input connector	E4440A only	
	Guardbanding, 3 years		with APC 3.5 connector		
R-50C-016-5	Agilent Calibration +	E444xA-H70	70 MHz IF output	Excludes 122, 140. Not	
	Uncertainties +			available for E444/A	
	Guardbanding, 5 years	DO O (1			
AMG	Agilent Calibration +	PC Software			
	Uncertainties +	E444xA-230	BenchLink Web Remote Control		
	Guardbanding		Software		
	(accredited calibration)	E444xA-233	N5530S measuring receiver	Requires B7J,	
A6J	ANSI Z540-1-1994		software & license	E4443A/45A/40A only	
	Calibration	E444xA-235	Wide BW digitizer external	Requires 122	
R-50C-021-3	ANSI Z540-1-1994		calibration wizard	E4443A/45A/40A only	
	Calibration, 3 years				
R-50C-021-5	ANSI Z540-1-1994	Accessories			
	Calibration, 5 years	E444xA-1CM	Rack mount kit		
UK6	Commercial calibration	E444xA-1CN	Front handle kit		
	certificate with data	E444xA-1CP	Rack mount with handles		
	To be ordered with PSA	E444xA-1CR	Rack slide kit		
		E444xA-015	6 GHz return loss measurement acces	sory kit	
		E444xA-045	Millimeter wave accessory kit		
		E444xA-0B1	Extra manual set including CD ROM		
		Decements			
		Recommended n	oise source		
		(For Uption 219, no	ise figure measurement)		
		346A	Noise source, 10 MHz to 18 GHz, nom	IINAI EINK 6 dB	
1 Ontions not availa	hle in all countries	340B	Noise source, 10 MHz to 18 GHz, nominal ENK 15 dB		
options not avalla		3400	ivolse source, 10 MHz to 26.5 GHz		

Product Literature

Selecting the Right Signal Analyzer for Your Needs, selection guide, literature number 5968-3413F

PSA Series literature

PSA Series, brochure, literature number 5980-1283E PSA Series, data sheet, literature number 5980-1284E

NFA Series literature

NFA Series Configuration Guide, literature number 5980-0163E NFA, brochure, literature number 5980-0166E NFA Series Demonstration guide, literature number 5980-2028E

Application literature

10 Hints for Making Successful Noise Figure Measurements, application note 1341, literature number 5980-0288E Fundamentals of RF and Microwave Noise Figure Measurements, application note 57-1, literature number 5952-8255E Noise Figure Measurement Accuracy - The Y Factor Method, application note 57-2, literature number 5952-3706E

myAgilent

www.agilent.com/find/myagilent

A personalized view into the information most relevant to you.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Three-Year Warranty

www.agilent.com/find/ThreeYearWarranty

Beyond product specification, changing the ownership experience. Agilent is the only test and measurement company that offers three-year warranty on all instruments, worldwide

Agilent Assurance Plans

www.Agilent.com/find/AssurancePlans

Five years of protection and no budgetary surprises to ensure your instruments are operating to specifications and you can continually rely on accurate measurements.

www.agilent.com/quality

Agilent Electronic Measurement Group DEKRA Certified ISO 9001:2008 Quality Management System

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

www.agilent.com

www.agilent.com/find/psa

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

Canada Brazil	(877) 894 4414 (11) 4197 3600
Mexico	01800 5064 800
United States	(800) 829 4444
Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

-	
Belgium	32 (0) 2 404 93 40
Denmark	45 45 80 12 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 927 6201

For other unlisted countries:

www.agilent.com/find/contactus (BP-09-27-13)

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2013 Published in USA, November 25, 2013 5988-7884EN

