

Agilent U2020 X-Series USB Peak and Average Power Sensors

User's Guide

Notices

© Agilent Technologies, Inc. 2012–2013

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

U2021-90002

Edition

Third Edition, May 9, 2013

Printed in Malaysia

Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA 95051 USA

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Safety and Regulatory Symbols

The following symbols on the device and in the documentation indicate precautions that must be taken to maintain safe operation of the device.

C N10149	The C-Tick mark is a registered trademark of the Spectrum Management Agency of Australia. This signifies compliance with the Australian EMC Framework Regulations under the terms of the Radio Communications Act of 1992.		This product complies with the WEEE Directive (2002/96/EC) marking requirement. This affixed product label indicates that you must not discard this electrical/electronic product in domestic household waste.
	This symbol indicates the time period during which no hazardous or toxic substance elements are expected to leak or deteriorate during normal use. Forty years is the expected useful life of the product.	ICES/NMB-001 ISM GRP1 CLASS A	The CE mark is a registered trademark of the European Community. This CE mark shows that the product complies with all the relevant European Legal Directives. ICES/NMB-001 indicates that this ISM product complies with the Canadian ICES-001. Cet appareil ISM est confomre a la norme NMB-001 du Canada. ISM GRP.1 Class A indicates that this is an Industrial Scientific and Medical Group 1 Class A product.

Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC

This instrument complies with the WEEE Directive (2002/96/EC) marking requirement. This affixed product label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category:

With reference to the equipment types in the WEEE Directive Annex 1, this device is classified as a "Monitoring and Control Instrument" product.

The affixed product label is as shown below:

Do not dispose in domestic household waste.

To return this unwanted device, contact your nearest Agilent office, or visit

www.agilent.com/environment/product

for more information.

Declaration of Conformity (DoC)

The Declaration of Conformity (DoC) for this device is available on our Web site. You can search the DoC by its product model or description.

http://regulations.corporate.agilent.com/DoC/search.htm

NOTE

If you are unable to search for the respective DoC, contact your local Agilent representative.

Environmental Conditions

This device is designed for indoor use only.

Environmental condition	Requirements
Temperature	Operating condition: • 0 °C to 55 °C Storage condition: • -40 °C to 70 °C
Humidity	 Operating condition: Maximum: 95% RH at 40 °C (non-condensing) Minimum: 15% RH at 40 °C (non-condensing) Storage condition: Up to 90% RH at 65 °C (non-condensing)
Altitude	Operating condition: • Up to 3000 m (9840 ft) Storage condition: • Up to 15420 m (50000 ft)

Regulatory Information

The U2020 X-Series USB peak and average power sensors comply with the following EMC requirements:

- IEC 61326-1:2005 / EN 61326-1:2006
- Canada: ICES/NMB-001: Issue 4, June 2006
- Australia/New Zealand: AS/NZS CISPR11:2004

Contents

1 Getting Started 1

Overview 2 Initial Inspection 3 Standard Purchase Items 3 Hardware Installation and Configuration 3 Install and verify the U2020 X-Series 4 LED Indicator Sequence During Power-Up 5 Other LED indicators 5 Firmware Upgrade 6

2 General Operating Information 7

Using the U2020 X-Series with the N1918A Power Analysis Manager 8 Main Toolbar Functions 9 Instrument Properties Toolbar Functions 10 Function Settings 10 Auto-calibration and auto-zeroing 10 System-related function 10 Channel setup functions 11 Measurement gates 14 Trigger functions 16 Measurement functions 18 U2020 X-Series Features 20 List mode 20 Variable aperture size 20 Auto burst detection 21 20-pulse measurements 21 High average count reset 21

3 Specifications and Characteristics **23**

Specifications 24

Measured rise time percentage error versus signal-under-test rise time 25 Power linearity 26 Video bandwidth 26 Recorder output and video output 27 Characteristic peak flatness 27 Effect of video bandwidth setting 29 Effect of time-gating on measurement noise 29 Maximum SWR 30 Calibration uncertainty 30 Timebase and trigger specifications 31 General specifications 33 General Characteristics 34

Agilent U2020 X-Series USB Peak and Average Power Sensors User's Guide

Getting Started

1

Overview 2 Initial Inspection 3 Standard Purchase Items 3 Hardware Installation and Configuration 3 Install and verify the U2020 X-Series 4 LED Indicator Sequence During Power-Up 5 Other LED indicators 5 Firmware Upgrade 6

This chapter gets you started with the U2020 X-Series USB peak and average power sensors.

1 Introduction

Overview

The U2020 X-Series is a USB-based standalone peak and average power sensor and meter. The U2020 X-Series consists of two models; U2021XA (50 MHz to 18 GHz) and U2022XA (50 MHz to 40 GHz).

The U2020 X-Series is capable of measuring the average and peak power of modulated, pulsed, and continuous wave (CW) signals in 50 MHz to 40 GHz frequency range and -45 dBm to 20 dBm power range.

[1] The recorder and video output share the same port as the trigger output.

Introduction 1

Initial Inspection

- If there is mechanical damage or any missing item, notify the nearest Agilent Sales and Service office.
- Keep the damaged shipping material.
- Refer to the contact list for Agilent Sales and Service offices on the last page of this guide.

Standard Purchase Items

Hardware Installation and Configuration

Prior to using the U2020 X-Series, ensure that the following minimum requirements are met:

- PC with a USB
 host capability
 - Agilent IO Libraries Suite 15.5 or higher installed
- Agilent N1918A Power Analysis Manager installed^[1] (Option 100 Power Analyzer is bundled with purchase of the U2020 X-Series]^[2]
- [1] If you need help with installation, refer to the N1918A Installation Guide.
- [2] Refer to the *N1918A Data Sheet (5989-6612EN)* or the *Power Analyzer help documentation* for more information on the Power Analyzer functions/features.

1 Introduction

1

Install and verify the U2020 X-Series

Connect the U2020 X-Series to the PC. The U2020 X-Series driver is detected and installed automatically.

2 Go to Start > All Programs > Agilent IO Libraries Suite > Agilent Connection Expert.

	Instrument I/O on this PC	USBO		
The U2020 X-Series is - detected	Refresh All AGILENT COM3 (ASRL3) AGILENT COM3 (ASRL3) AGILENT COM3 (ASRL3) AGILENT COM3 (ASRL3) AGILENT USB0	Right-click	::0x0957::0x7F ent Chan Delet Send	18::HQ52170015::0::INSTR) sh This Instrument oge Properties e Commands To This Instrument
3	Agilent Interactive IO - CC	ONNECTED TO USBInstrument2		
	Stop Device Clear R Command: FIDN? Send Command Instrument Session History: -> *IDN?	Lead STB SYST:ERR? Clear History Optic Read Response Send & Read] ons ommands ►	The device response
	<pre><- Agilent Technologi</pre>	es,U2021XA,HQ52170015,X.01.10	+	appears.

This verifies that the U2020 X-Series has been connected and properly installed on the PC.

LED Indicator Sequence During Power-Up

Other LED indicators

Amber blinking	Secure erase, flash formatting, or firmware update in progress.
Red	An error is present in the SCPI error queue including input overload. If the error queue is cleared (via the *CLS command) or the last error is read from the queue (via the SYST: ERR? query), the indicator will turn off.
Green blinking	USB activity in progress.

Firmware Upgrade

To download the latest firmware version for the U2020 X-Series, go to www.agilent.com/find/pm_firmware. The latest firmware includes the executable file and help file for installing the Firmware Upgrade Utility application in order to upgrade the U2020 X-Series.

2

Agilent U2020 X-Series USB Peak and Average Power Sensors User's Guide

General Operating Information

Using the U2020 X-Series with the N1918A Power Analysis Manager 8 Main Toolbar Functions 9 Instrument Properties Toolbar Functions 10 Function Settings 10 Auto-calibration and auto-zeroing 10 System-related function 10 Channel setup functions 11 Measurement gates 14 Trigger functions 16 Measurement functions 18 U2020 X-Series Features 20 List mode 20 Variable aperture size 20 Auto burst detection 21 20-pulse measurements 21 High average count reset 21

This chapter describes the general operating information of the U2020 X-Series.

Using the U2020 X-Series with the N1918A Power Analysis Manager

The Power Analyzer application of the N1918A Power Analysis Manager provides a virtual operating interface for the U2020 X-Series. This chapter describes the U2020 X-Series functions available in the Power Analyzer application.

NOTE

For details on how to configure each function of the U2020 X-Series, refer to the *N1918A Power Analyzer help documentation*.

Figure 2-1 General overview of the Power Analyzer user interface

Main Toolbar Functions

lcon	Function	lco	on	Function
-	Connect to the U2020 X-Series.	_		Create a new Complementary Cumulative Distribution Function (CCDF) graph display view or a new gated CCDF graph display view ^[1] .
P	Disconnect the U2020 X-Series.	-		CCDF curves characterize the higher level power statistics of a digitally modulated signal, and are
Ē	Open any CSV-supported files.			defined by how much time the waveform spends at or above a given power level.
4	Save measurement data as a CSV-supported file.			 CCDF is applicable in the free-run, internal trigger, and external trigger modes.
8	Preview a screenshot of the application prior to printing.	_		 Gated CCDF is applicable in the internal trigger and external trigger modes only.
Ē	Print a screenshot of the application.			You can view traces for Channel A, Gaussian, and Reference.
16	Save a screenshot of the application as an image file.		uni uni	Create a new overlay graph display view ^[1] .
	Start the acquisition of all measurements on created tabs/views.			Create a multilist display view ^[1] .
7	Stop the acquisition of all measurements on created tabs/views.		×	Remove the currently selected view from the application.
	Record and save measurement data in a CSV-supported file.		*	Remove the currently selected tab (including the views in the tab).
85	Create a new soft panel display view ^[1] .	2	\langle	Provide application options and settings configuration.
0	Create a new gauge display view ^[1] .			Display the alert summary dialog.
and the	Create a new strip chart display view ^[1] .		1	Switch between compact mode and full mode display.
MM.	Create a new trace graph display view ^[1] .	Ć	2	Provide quick access to the help documentation.

[1] When this icon is selected, corresponding function icons will appear on the toolbar. Refer to the *Power Analyzer help documentation* for details.

2 General Operating Information

Instrument Properties Toolbar Functions

lcon	Function
min	Offer a list of preset options for the U2020 X-Series properties settings. The data stored in the FDO tables, the selected FDO table, and the zeroing and calibration data are not affected by a preset.
4	Save the U2020 X-Series states.
i i i i i i i i i i i i i i i i i i i	Recall any saved U2020 X-Series states.
1	Display the error list.
-	Reset the U2020 X-Series to its default settings.
	Set the frequency-dependent offset (FDO) (refer to "Simplified measurement path") which compensates for frequency-related changes in the response of your test system. The U2020 X-Series can store 10 FDO tables with 512 frequency points each.

Function Settings Auto-calibration and auto-zeroing

Calibration + Zero
Channel A
Zero Type : 🔘 INT 🔘 EXT
Zero
Cal. Type : 🔘 INT 🔘 EXT
Calibration
Calibration + Zero
Unit Calibration Due Date
//

Auto-calibrate the U2020 X-Series without having to connect it to a power reference, or auto-zero the U2020 X-Series with or without the RF/microwave signal present.

Zeroing is recommended:

- when connection to the U2020 X-Series is established.
- · every 24 hours.
- prior to measuring low-level signals.

The U2020 X-Series will perform auto-zeroing and auto-calibration every time it is powered up.

System-related function

System Description				
Firmware Rev. :	A.03.00			
Model No. :	U2021XA			
Resource ID :	USB0::0x0957:: 0x7F18::hq5217 0015::0::INSTR			
Serial No. :	HQ52170015			
System Settings				
Power Referen	nce			
Cal Due Date :	_/_/			

Display the system information (firmware revision, model number, instrument identity, and serial number) of the U2020 X-Series.

Channel setup functions

	Channel A S	etup	
	Sensor		
	Model No. :	U2021)	KA
	Mode :	Norma	- ▼
	Range :	AUTO	•
~	Channel Settir	ngs	
(1)	📃 Chan Offs	et (dB):	0.000
_	Duty Cycl	e (%):	
(2)	Frequency (H	z) :	50.000 M
	Trace		
	Units :	⊚ dBr	m 🔘 Watt
3	Trace Start (s)	:	0.000
	Trace Length	(s) :	100.000 u
	Measurement	Average	
	Msr Avg Mod	e: AL	JTO 🔻
(4)	Msr Avg Cour	nt: 25	6
	Re	set Msr A	Avg
(5)	Step Dete	ect	
6	Video Av	g : [-
õ_	Video B/W :	<u> </u>	i i l
0	OFF	0	LMH

2 General Operating Information

No. Function

1 Set the channel offset which is applied to the measured power prior to any mathematical functions.

Simplified measurement path

- 2 Set the measurement frequency.
- **3** Set the trace unit, start time, and length.

4 Set the automatic or manual measurement average mode. The number of readings averaged can range from 1 to 1024. Increasing the value of the measurement average reduces measurement noise, but increases measurement time. The measurement average filter can also be reset.

Below shows the typical number of averages for each range and resolution when the U2020 X-Series is in the auto-average mode and set to the normal speed mode.

The four resolution levels represent:

- 1, 0.1, 0.01, 0.001 dB respectively if the measurement suffix is dBm or dB.
- 1, 2, 3, or 4 significant digits respectively if the measurement suffix is W or %.

No. Function

- 5 Enable step detection in both manual and automatic average modes. The filter can be set to re-initialize upon detection of a step increase or decrease in the measured power to reduce the filter settling time after a significant step in the measured power.
- 6 Set the video averaging to average repetitions of a triggered signal, with a count of 1 to 256 in multiples of 2ⁿ. With video averaging, the average of a number of acquisitions is calculated to smooth the displayed trace and reduce apparent noise. The measurement requires a continuously repeating signal.
- 7 Set the video bandwidth.

The Low, Medium, and High pass band shapes achieved by the video bandwidth settings provide flat filter responses with very sharp cut-off points by applying digital signal processing techniques to ensure accurate power measurement within the specified band.

When the video bandwidth is set to Off, it removes all digital signal conditioning. This provides less than 3 dB roll-off at \geq 500 MHz, and is best suited for capturing an accurate trace, minimizing overshoot, and removing any ringing effects caused by the sharp cut-off filters used in the Low, Med, and High settings.

Bandwidth filter shapes (for ≥500 MHz)

Measurement gates

A measurement gate allows measurements to be performed on particular sections of the input signal. The gate is defined by a start time relative to the trigger instant and a duration. Signal samples acquired during the time interval specified by the gate are used for the measurements in that gate. A system of up to four independent gates is provided.

Below is an example of a 4-gate setup to perform the following measurements simultaneously:

Average power level of the pulse	Gate 1, average measurement
Average "off" power level ahead of the pulse	Gate 2, average measurement
Peak-to-average ratio	Gate 1, peak-to-average measurement
Pulse droop	Gate 3, average measurement, minus Gate 4, average measurement

Measurement gate functions

No. Function

- 1 Enable Gate is always checked and grayed out.
- 2 Set the gate start time and length.

The gate start time is relative to the trigger event. Positive values set a measurement gate, to a maximum time of 1 second, after the trigger. Negative values set a measurement gate, to a maximum time of 1 second, before the trigger.

3 The CCDF gate does not allow a gate start time before the trigger event. For this reason, it has a separate definition and control section in the menu. For greater usability, any of the standard gates can be coupled to the CCDF gate (start time and length are shared).

	Channel A Trigger Status	
~	◙ Single Trig . ◎ Free Run	
(1)	💿 Cont Trig	
_	Trace Enable Auto Delay	
	Channel B Trigger Status	
	Single Trig	
	Cont Trig	
	Trace Enable Auto Delay	
	Global Trigger Source	
(2)	Channel A Channel B	
	External	
	Global Trigger Settings	
	Linable Auto Level	
J	Trigger Level (dBm) : 0.0	
	Delay (s) : 0.000	
~	Trigger Settings	
(4)	Slope Type : Negative + -	
(5)	Holdoff (s) : 1.000 u	
6	Hysteresis (dB) : 0.00	
U		
	Input Impedance : U Low U High	
8	Enable Trigger Output	<u>(</u>
	Enable 10MHz TimeBase	J

Trigger functions

No. Function

- 1 Set the single, free run, or continuous trigger mode. Select to enable trace and auto trigger delay for the single and continuous trigger modes. For the free run mode, only auto trigger delay can be enabled.
- 2 Set the global trigger source to channel A or an external source.
- 3 Enable auto level or manually set the trigger level if the channel A global trigger source is selected.

Set the delay time to be applied between the trigger event and all the gate start times. This allows you to time-shift all the gates by the same amount with one setting change.

No.	Function	
4	Select the positive or negative slope type to determine if the trigger event is recognized on the rising or falling edge of a signal respectively.	
5	Set the holdoff time to disable the trigger mechanism after a trigger event occurs.	
6	Set the hysteresis to help generate a more stable trigger by preventing triggering unless the RF power level achieves the trigger level and the additional hysteresis value. It can be applied to both rising and falling edge trigger generation.	
	Hysteresis is only available for the channel A global trigger source and manual trigger level.	
7	Set the input impedance for the external TTL trigger to Low (50 Ω) or High (100 k Ω).	
8	Enable the trigger output where a TTL level high is produced at the Trig Out connector when the U2020 X-Series is triggered. ^[1]	
9	Enable the 10 MHz timebase. ^[1]	
10	Enable the video output which provides a DC voltage proportional to the measured input power through an SMB connector. ^[1]	

[1] You can only enable either the trigger output or the 10 MHz timebase or the video output at a time.

Measurement functions

~	Measurement Settings	
(1)	MsrUnit : 💿 dBm 💿 Watt	
(2)	Offsets (dB): 0.000	
\smile	Relative : Rel 0.00 dBm	— (3)
	0	\smile
~	Operation	
(4)		
•	 Batio 	
	Feed 1 Channel : Gate : Type :	
	Channel A 1 Average	
	2 Peak 3 Pk_To_Avg	
6	4 Min	
U	Feed 2	
	Channel: Gate: Type: Channel A 1 Average	
	2 Peak	
	4 Min	
	Alert Limits	
\frown	Enable Alert	
6	Upper Limit (dBm) : 90.000	
	Lower Limit (dBm) : -90.000	
	Recorder Output	
	Enable Output	
(י)(י)	Max Power (dBm) : 20.000	
	Min Power (dBm) : -150.000	

No.	Function
1	Set the logarithmic (dBm) or linear (Watt) measurement unit for the currently selected measurement.
2	Set the measurement offset factor. The U2020 X-Series corrects every measurement by this factor to compensate for the gain/loss.
3	Enable the relative mode, which computes the measurement result relative (as a ratio) to a reference value. When enabled, the reference value can be set using the < Rel > control. The relative reading is displayed in either dB or %.

No. Function

- 4 Enable the difference or ratio measurement, or disable all operations between feed 1 and feed 2.
- **5** Configure the gate and acquired measurement type for the feed.
- 6 Enable alerts to detect when a measurement has crossed over a predefined upper and/or lower limit value. Below shows an example of a limits checking application.

The limits have been set at +4 dBm and +10 dBm for the above application. A fail occurs each time the output power is outside these limits as shown below.

 Table 2-1
 Range of values for limits

Unit	Maximum	Minimum	Default maximum	Default minimum
dB	+200 dB	–180 dB	60 dB	–120 dB
dBm	+230 dBm	–150 dBm	90 dBm	–90 dBm
%	10.0 Z%	100.0 a%	100.0 M%	100.0 p%
W	100.000 EW	1.000 aW	1.000 MW	1.000 pW

7 Enable the recorder output which produces a DC voltage (0 to 1 VDC) that corresponds to the power level in Watts of the channel. The output impedance is typically 1 kΩ. Channel and display offsets have no effect on the recorder output.

U2020 X-Series Features

List mode

List mode is a mode of operation where a predefined sequence of measurement steps can be programmed into the power sensor and repeatedly executed as many times as required. This mode is suitable for power and frequency sweeps which normally require changing the parameters via the appropriate SCPI commands before performing a measurement. The hardware handshaking communication between the power sensor and the signal source provides the fastest possible execution time in performing the test sequences.

Trigger and gating parameters control which part of the waveform to be included or excluded from the measurement. The list mode helps to analyze modulated signals with regular and time-slotted or frame structure. For example, eight time-slotted GSM bursts, LTE-FDD and LTE-TDD frames and sub-frames, WCDMA frames and slots, and time-slotted measurements are supported in this mode. The desired number of slots and their duration and exclusion intervals can be easily programmed.

Refer to the U2020 X-Series Programming Guide for more information.

Variable aperture size

In average only mode and at normal measurement speed, the time interval length used to measure the average power of the signal can be adjusted by setting the aperture size to between 2 ms and 200 ms. This is useful for CW signals and noise-like modulated signals such as FDD-LTE and WCDMA by performing measurements over the full frames or sub-frames.

Decreasing the aperture size will improve the measurement throughput but reduce the signal-to-noise ratio of the measured signal. However, increasing the aperture size will improve the signal-to-noise ratio of the measured signal but reduce the measurement throughput.

NOTE

 Table 2-2
 Aperture size

Measurement speed	Default aperture size	Adjustable
NORMal	50 ms	Yes
DOUBle	26 ms	No
FAST	2 ms	No

Auto burst detection

Auto burst detection helps the measurement setup of the trace or gate positions and sizes, and triggering parameters on a large variety of complex modulated signals by synchronizing to the RF bursts. After a successful auto-scaling, the triggering parameters such as the trigger level, delay, and hold-off are automatically adjusted for optimum operation. The trace settings are also adjusted to align the RF burst to the center of the trace display.

20-pulse measurements

The U2020 X-Series can measure up to 20 pulses. The measurement of radar pulse timing characteristics is greatly simplified and accelerated by performing analysis simultaneously on up to 20 pulses within a single capture. Individual pulse duration, period, duty cycle and separation, positive or negative transition duration, and time (relative to the delayed trigger point) are measured.

High average count reset

When high averaging factors have been set, any rapid adjustments to the amplitude of the measured signal will be delayed due to the need to allow the averaging filter to fill before a new measurement can be taken at a stable power level. The U2020 X-Series allows you to reset the long filter after the final adjustment to the signal's amplitude has been made.

2 General Operating Information

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

Agilent U2020 X-Series USB Peak and Average Power Sensors User's Guide

Specifications and Characteristics

Specifications 24
Measured rise time percentage error versus signal-under-test rise time 25
Power linearity 26
Video bandwidth 26
Recorder output and video output 27
Characteristic peak flatness 27
Effect of video bandwidth setting 29
Effect of time-gating on measurement noise 29
Maximum SWR 30
Calibration uncertainty 30
Timebase and trigger specifications 31
General specifications 33
General Characteristics 34

This chapter contains the specifications and characteristics of the U2020 X-Series.

3 Specifications and Characteristics

Specifications

- NOTE
- Warranted specifications are specifications which are covered by the product warranty and apply over a range of 0 to 55 °C unless otherwise noted.
- Characteristic specifications are specifications that are not warranted and are shown in *italics*.

Key specifications				
	U2021XA	50 MHz to 18 GHz		
Frequency range	U2022XA	50 MHz to 40 GHz		
Dynamic nower range	Normal mode	–35 dBm to 20 dBm (≥500 MHz) –30 dBm to 20 dBm (50 MHz to 500 MHz)		
	Average only mode ^{[1][2]}	–45 dBm to 20 dBm		
Damage level	23 dBm (average power) 30 dBm (< 1 μs duration) (peak power)			
Rise/fall time	≤13 ns ^[3]			
Maximum sampling rate	80 Msamples/sec, continuous sampling			
Video bandwidth	<i>≥30 MHz</i>			
Single-shot bandwidth	<i>≥30 MHz</i>			
Minimum pulse width	50 ns ^[4]			
A	U2021XA	$\leq\pm0.2~\text{dB}$ or $\pm4.5\%^{[5]}$		
Average power measurement accuracy	U2022XA	\leq ±0.3 dB or ±6.7%		
Maximum capture length	1 s (decimated) 1.2 ms (at full sampling rate)			
Maximum pulse repetition rate	10 MHz (based on 8 s	samples/period)		
Connector time	U2021XA	N-Type (m)		
connector type	U2022XA	2.4 mm (m)		

[1] Internal zeroing, trigger output, and video output are disabled in average only mode.

- [2] It is advisable to perform zeroing when using the average path for the first time after power on, significant temperature changes, or long periods since the last zeroing. Ensure that the power sensor is isolated from the RF source when performing external zeroing in average only mode.
- [3] For frequencies \geq 500 MHz. Only applicable when the Off video bandwidth is selected.
- [4] The minimum pulse width is the recommended minimum pulse width viewable, where power measurements are meaningful and accurate, but not warranted.
- [5] Specification is valid over a range of -15 to +20 dBm, and a frequency range of 0.5 to 10 GHz, device-under-test (DUT) max. SWR <1.27 for the U2021XA, and a frequency range of 0.5 to 40 GHz, DUT max. SWR <1.2 for the U2022XA. Averaging is set to 32 in the Free Run mode.

Measured rise time percentage error versus signal-under-test rise time

Although the rise time specification is ≤ 13 ns, this does not mean that the U2020 X-Series can accurately measure a signal with a known rise time of 13 ns. The measured rise time is the root sum of the squares (RSS) of the signal-under-test (SUT) rise time and the system rise time (13 ns):

Measured rise time = $\sqrt{((\text{SUT rise time})^2 + (\text{system rise time})^2)}$

and the % error is:

% Error = ((measured rise time – SUT rise time)/SUT rise time) \times 100

	Linearity at 5 dB step (%)					
Power range	25 °C	0 to 55 °C				
–20 dBm to –10 dBm	1.2	1.8				
–10 dBm to 15 dBm	1.2	1.2				
15 dBm to 20 dBm	1.4	2.1				

Power linearity

Video bandwidth

The video bandwidth in the U2020 X-Series can be set to High, Medium, Low, and Off. The video bandwidths stated below are not the 3 dB bandwidths, as the video bandwidths are corrected for optimal flatness (except the Off filter). Refer to "Characteristic peak flatness" on page 27 for information on the flatness response. The Off video bandwidth setting provides the warranted rise time and fall time specifications and is the recommended setting for minimizing overshoot on pulse signals.

Video bandwidth setting		Low: 5 MHz	Medium: 15 MHz	High: 30 MHz	Off
D ia a dia a <i>d</i> a 11 dia a [1]	<500 MHz	<93 ns	<75 ns	<72 ns	<73 ns
Rise time/ fail time: "	≥500 MHz	<82 ns	<27 ns	<17 ns	<13 ns
Overshoot ^[2]	_	—	_	—	<5%

[1] Specified as 10% to 90% for rise time and 90% to 10% for fall time on a 0 dBm pulse.

[2] Specified as the overshoot relative to the settled pulse top power.

Recorder output and video output

The recorder output produces a voltage proportional to the selected power measurement and is updated at the measurement rate. Scaling can be selected with an output range of 0 to 1 V and impedance of 1 k Ω .

The video output is a buffered version of the uncorrected detector signal from the sensor diode, with no correction applied. The video output provides a DC voltage proportional to the measured input power through an SMB connector. The DC voltage can be displayed on an oscilloscope for time measurements. The video output impedance is 50 Ω and the level is approximately 500 mV at 20 dBm CW. The trigger output and the recorder/video output share the same port.

Characteristic peak flatness

The peak flatness is the flatness of a peak-to-average ratio measurement for various tone separations for an equal magnitude two-tone RF input. The figure below refers to the relative error in peak-to-average ratio measurements as the tone separation is varied. The measurements were performed at -10 dBm.

3 Specifications and Characteristics

Noise and drift							
Mode	Zeroing	Zero set		Zero drift ^[1]	Noise _l	per sample	Measurement noise
		<500 MHz	≥ 500 MHz		<500 MHz	≥ 500 MHz	_
Nermal	No RF on input	200	nW	100 14/		25.44	100 nW ^[2]
Normal	RF present	200 nW	200 nW	TUU NVV	<i>3 μνν</i>	μνν 2.5 μνν	(Free run)
Average only	No RF on input	10	nW	6 nW	3 µW	2.5 μW	4 nW ^[3]

[1] Within 1 hour after zeroing, at a constant temperature, after a 24-hour warm-up of the U2020 X-Series. This component can be disregarded with the auto-zeroing mode set to ON.

[2] Measured over a 1-minute interval, at NORMal speed, at a constant temperature, two standard deviations, with averaging set to 1.

[3] Tested with averaging set to 16 at NORMal speed and 32 at DOUBle speed.

Measuremen	t average setting	1	2	4	8	16	32	64	128	256	512	1024
Normal mode	Free run noise multiplier	1	0.9	0.8	0.7	0.6	0.5	0.45	0.4	0.3	0.25	0.2
Average only mode	NORMal speed noise multiplier	4.25	2.84	2.15	1.52	1.00	0.78	0.71	0.52	0.50	0.47	0.42
	DOUBle speed noise multiplier	5.88	4.00	2.93	1.89	1.56	1.00	0.73	0.55	0.52	0.48	0.44
Video bandwidth setting				Low:	5 MHz	Medi	um: 15	MHz	Higl M	n: 30 Hz	0	ff
Noise per sample multiplier		<500	MHz	0	.6		1.3		2	7	i	1
		≥500	MHz	0.	55		0.65		0.	8	i	1

For average only mode with aperture size of ≥ 12 ms and averaging set to 1, the measurement noise is calculated as follows:

Measurement noise = $120/\sqrt{(aperture size in ms)}$ nW

For average only mode with aperture size of <12 ms and averaging set to 1, the measurement noise is equal to 50 nW.

For example, if the aperture size is 50 ms and averaging set to 1,

Measurement noise = $120/\sqrt{50}$ nW = 17 nW

Effect of video bandwidth setting

The noise per sample is reduced by applying the video bandwidth filter setting (High, Medium, or Low). If averaging is implemented, this will dominate any effect of changing the video bandwidth.

Effect of time-gating on measurement noise

The measurement noise for a gated average measurement is calculated from the noise per sample specification. The noise for any particular gate is equal to Nsample/ $\sqrt{(\text{gate length}/12.5 ns)}$. The improvement in noise limits at the measurement noise specification of 100 nW.

Maximum SWR

Frequency band	U2021XA	U2022XA
50 MHz to 10 GHz	1.2	1.2
>10 GHz to 18 GHz	1.26	1.26
>18 GHz to 26.5 GHz		1.3
>26.5 GHz to 40 GHz	_	1.5

Calibration uncertainty

Definition: Uncertainty resulting from non-linearity in the U2020 X-Series detection and correction process. This can be considered as a combination of traditional linearity, calibration factor and temperature specifications, and the uncertainty associated with the internal calibration process.

Frequency band	U2021XA	U2022XA
50 MHz to 500 MHz	4.2%	4.3%
>500 MHz to 1 GHz	4.0%	4.2%
>1 GHz to 10 GHz	4.0%	4.5%
>10 GHz to 18 GHz	4.5%	4.5%
>18 GHz to 26.5 GHz	_	5.3%
>26.5 GHz to 40 GHz	_	5.8%

Timebase	
Range	2 ns to 100 ms/div
Accuracy	±25 ppm
Jitter	≤1 ns
Trigger	
Internal trigger	
Range	–20 to 20 dBm
Resolution	0.1 dB
Level accuracy	±0.5 dB
Latency ^[1]	225 ns ± 12.5 ns
Jitter	≤5 ns rms
External TTL trigger input	
High	>2.4 V
Low	<0.7 V
Latency ^[2]	75 ns ± 12.5 ns
Minimum trigger pulse width	15 ns
Minimum trigger repetition period	50 ns
Maximum trigger voltage input	5 V EMF from 50 Ω DC (current <100 mA), or 5 V EMF from 50 Ω (pulse width <1 s, current <100 mA)
Impedance	50 $arOmega$, 100 k $arOmega$ (default)
Jitter	≤8 ns rms
External TTL trigger output	Low to high transition on trigger event
High	>2.4 V
Low	<0.7 V

Timebase and trigger specifications

3 Specifications and Characteristics

Latency ^[3]	50 ns ± 12.5 ns
Impedance	50 Ω
Jitter	\leq 5 ns rms
Trigger delay	
Range	±1.0 s, maximum
Resolution	1% of delay setting, 12.5 ns minimum
Trigger holdoff	
Range	1 µs to 400 ms
Resolution	1% of selected value (to a minimum of 12.5 ns)
Trigger level threshold hysteresis	
Range	±3 dB
Resolution	0.05 dB
[1] Internal trigger latency is defined as the delay between the applied BE crossing the trigger level and the U2020 X-Series	

[1] Internal trigger latency is defined as the delay between the applied RF crossing the trigger level and the U2020 X-Series switching into the triggered state.

[2] External trigger latency is defined as the delay between the applied trigger crossing the trigger level and the U2020 X-Series switching into the triggered state.

[3] External trigger output latency is defined as the delay between the U2020 X-Series entering the triggered state and the output signal switching.

General specifications

Inputs/Outputs	
Current requirement	450 mA max. (approximately)
Recorder output	Analog 0 to 1 V, 1 $k\Omega$ output impedance, SMB connector
Video output	0 to 1 V, 50 Ω output impedance, SMB connector
Trigger input	Input has TTL compatible logic levels and uses an SMB connector
Trigger output	Output provides TTL compatible logic levels and uses an SMB connector
Remote programming	
Interface	USB 2.0 interface, USB-TMC compliance
Command language	SCPI standard interface commands, IVI-COM, IVI-C, and LabVIEW drivers
Maximum measurement speed	
Free run trigger measurement	25000 readings per second ^[1]
External trigger time-gated measurement	20000 readings per second ^[2]

[1] Tested under normal mode and fast mode, with buffer mode trigger count of 100, output in binary format, unit in watt, auto-zeroing, auto-calibration, and step detect disabled.

[2] Tested under normal mode and fast mode, with buffer mode trigger count of 100, pulsed signal with PRF of 20 kHz, and pulse width at 15 μs.

General Characteristics

ENVIRONMENTAL COMPLIANCE

Refer to "Environmental Conditions" on page IV.

REGULATORY COMPLIANCE

Refer to "Regulatory Information" on page IV.

DIMENSIONS (Length × Width × Height)

140 mm imes45 mm imes35 mm

WEIGHT

- Net weight: ≤0.25 kg
- Shipping weight: 1.4 kg

CONNECTIVITY

USB 2.0, with the following cable lengths:

- Option 301: 1.5 m
- Option 302: 3 m
- Option 303: 5 m

RECOMMENDED CALIBRATION INTERVAL

1 year

WARRANTY

3 years

www.agilent.com

Contact us

To obtain service, warranty, or technical assistance, contact us at the following phone or fax numbers:

United States: (tel) (800) 829 4444 (fax) 800 829 4433 Canada: (tel) (877) 894 4414 (fax) 800 746 4866 China: (tel) 800 810 0189 (fax) 800 820 2816 Europe: (tel) 31 20 547 2111 Japan: (tel) 0120 (421) 345 (fax) 0120 421 678 Korea: (tel) 080 769 0800 (fax) (080) 769 0900 Latin America: (tel) 305 269 7500 Taiwan: (tel) 0800 047 866 (fax) 0800 286 331 Other Asia Pacific Countries: (tel) (65) 6375 8100 (fax) (65) 6755 0042

Or visit Agilent World Wide Web at: www.agilent.com/find/assist

Product specifications and descriptions in this document are subject to change without notice. Always refer to the English version at the Agilent Web site for the latest revision.

© Agilent Technologies, Inc. 2012–2013

Third Edition, May 9, 2013

U2021-90002

