
www.keithley.com

Series 3700A System Switch/Multimeter
Reference Manual
3700AS-901-01 Rev. B / May 2013

P3700AS90101B
3700AS-901-01

A Tektr onix Company
A Greater Mesure of Confidence

System Switch/Multimeter

Reference Manual

© 2011-2013, Keithley Instruments, Inc.

Cleveland, Ohio, U.S.A.

All rights reserved.

Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part,
without the prior written approval of Keithley Instruments, Inc. is strictly prohibited.

TSP®, TSP-Link®, and TSP-Net® are trademarks of Keithley Instruments, Inc. All Keithley
Instruments product names are trademarks or registered trademarks of Keithley Instruments, Inc.

Other brand names are trademarks or registered trademarks of their respective holders.

Document number: 3700AS-901-01 Rev. B / May 2013

Series 3700A

 Safety precautions
The following safety precautions should be observed before using this product and any associated instrumentation. Although
some instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous
conditions may be present.

This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions
required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using
the product. Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the
equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the
instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line
voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained
service personnel may perform installation and service procedures.

Keithley Instruments products are designed for use with electrical signals that are measurement, control, and data I/O
connections, with low transient overvoltages, and must not be directly connected to mains voltage or to voltage sources with high
transient overvoltages. Measurement Category II (as referenced in IEC 60664) connections require protection for high transient
overvoltages often associated with local AC mains connections. Certain Keithley measuring instruments may be connected to
mains. These instruments will be marked as category II or higher.

Unless explicitly allowed in the specifications, operating manual, and instrument labels, do not connect any instrument to mains.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test
fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than
30 V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any
unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators
are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential
human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If
the circuit is capable of operating at or above 1000 V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited
sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective
devices to limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input
power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under
test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting
cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth)
ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the
voltage being measured.

For safety, instruments and accessories must be used in accordance with the operating instructions. If the instruments or
accessories are used in a manner not specified in the operating instructions, the protection provided by the equipment may be
impaired.

Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating
information, and as shown on the instrument or test fixture panels, or switching card.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as protective earth (safety ground)
connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use
of a lid interlock.

If a screw is present, connect it to protective earth (safety ground) using the wire recommended in the user documentation.

The symbol on an instrument means caution, risk of danger. The user must refer to the operating instructions located in the
user documentation in all cases where the symbol is marked on the instrument.

The symbol on an instrument means caution, risk of electric shock. Use standard safety precautions to avoid personal
contact with these voltages.

The symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.

The symbol indicates a connection terminal to the equipment frame.

If this symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be
properly disposed of according to federal, state, and local laws.

The WARNING heading in the user documentation explains dangers that might result in personal injury or death. Always read
the associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may
invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits — including the power
transformer, test leads, and input jacks — must be purchased from Keithley Instruments. Standard fuses with applicable national
safety approvals may be used if the rating and type are the same. Other components that are not safety-related may be
purchased from other suppliers as long as they are equivalent to the original component (note that selected parts should be
purchased only through Keithley Instruments to maintain accuracy and functionality of the product). If you are unsure about the
applicability of a replacement component, call a Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water-based cleaner. Clean the exterior of the instrument only. Do not apply
cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with
no case or chassis (e.g., a data acquisition board for installation into a computer) should never require cleaning if handled
according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the
factory for proper cleaning/servicing.

Safety precaution revision as of January 2013.

 Introduction ... 1-1

Welcome .. 1-1

Extended warranty ... 1-1

Contact information .. 1-1
CD-ROM contents .. 1-2

Organization of manual sections .. 1-3

Capabilities and features.. 1-3
Measuring capabilities ... 1-5

General information .. 1-5
Displaying the instrument's serial number ... 1-5

 General operation ... 2-1

Turning your instrument on and off .. 2-1
Procedure.. 2-1

Front panel operation ... 2-2
(1) The USB port ... 2-3
(2) The display .. 2-3
(3) The navigation wheel ... 2-5
(4) The POWER key ... 2-5
(5) The status lights ... 2-6
(6) The setup and control keys .. 2-6
Menu overview .. 2-9
Menu trees .. 2-9
Front-panel key menu options ... 2-14
Configuration menu options .. 2-17
Using the front panel with non-switch channels .. 2-24

Rear panel summary .. 2-26
Rear panel connection details ... 2-26

Saved setups ... 2-33
Saving user setups .. 2-33
Recalling a saved setup .. 2-34
Start-up configuration .. 2-34
Saving user setups from a remote interface .. 2-34

Using the web interface.. 2-35
Introduction ... 2-35
Card pages.. 2-37
Scan Builder page ... 2-42
DMM web page ... 2-47
TSB Embedded ... 2-48
Admin page ... 2-49
Unit page ... 2-50
LXI page .. 2-50

Remote communication interfaces ... 2-53
Supported remote interfaces ... 2-53
USB communications .. 2-53
GPIB setup .. 2-58
LAN communications .. 2-64

Table of Contents

Table of Contents Series 3700A System Switch/Multimeter Reference Manual

Supplied software .. 2-66
Keithley I/O layer ... 2-69
Addressing instruments with VISA .. 2-73

Switch operation ... 2-77
Working with channels .. 2-89
Pseudocards ... 2-99
Save the present configuration .. 2-100

 Functions and features .. 3-1

Scanning and triggering ... 3-1
Introduction to scanning and triggering ... 3-1
Trigger model .. 3-2
Scan and step counts .. 3-4
Basic scan procedure .. 3-5
Remote interface scanning.. 3-9
Hardware trigger modes .. 3-10
Understanding synchronous triggering modes .. 3-15
Events ... 3-19
LXI Class B Triggering (IEEE-1588) .. 3-20

Files .. 3-24
File formats ... 3-24
Default file extensions ... 3-24
File system navigation ... 3-25
File I/O .. 3-25
Script examples ... 3-27

Display operations .. 3-32
Display functions and attributes .. 3-32
Display messages ... 3-32
Input prompting ... 3-36
Indicators... 3-38
Local lockout ... 3-39
Load test menu ... 3-40
Key-press codes ... 3-42

Digital I/O ... 3-43
Digital I/O port ... 3-43
TSP-Link synchronization lines ... 3-48

Reading buffers .. 3-49
Buffer overview ... 3-49
Front-panel buffer operation .. 3-50
Remote buffer operation ... 3-54

 Basic DMM operation ... 4-1

DMM measurement capabilities ... 4-1

High-energy circuit safety precautions ... 4-2

Performance considerations .. 4-2
Warmup time ... 4-3
Autozero .. 4-3
Line cycle synchronization .. 4-4
Autodelay .. 4-5
Measure count .. 4-5
Change the display resolution ... 4-6

System considerations ... 4-6

Series 3700A System Switch/Multimeter Reference Manual Table of Contents

Relationship between DMM functions and attributes .. 4-6
Relationship between front panel settings and remote commands ... 4-7
Save DMM configurations ... 4-7
Open and close relay operation .. 4-8

Voltage measurements (DC volts and AC volts) ... 4-9
Settings available for voltage measurement ... 4-10
Autodelay and auto range settings .. 4-10
Voltage measurement connections ... 4-11
Voltage measurement procedure front panel .. 4-12
Voltage measurement procedure remote commands ... 4-13

Current measurements (DC current and AC current) .. 4-14
Settings available for current measurements .. 4-15
Autodelay and auto range settings .. 4-15
Current measurement connections ... 4-16
Current measurement procedure from the front panel .. 4-16
Current measurement procedure through remote commands... 4-17

Resistance measurements .. 4-17
DMM resistance measurement methods ... 4-17
Settings available for resistance measurements ... 4-18
Autodelay and auto range settings .. 4-19
Resistance measurement connections ... 4-19
Resistance measurements from the front panel .. 4-22
Resistance measurements through remote interface .. 4-23

Temperature measurements .. 4-23
Settings available for temperature measurements .. 4-23
Autodelay and auto range settings .. 4-25
Thermocouples ... 4-25
Thermistors ... 4-29
RTDs (Resistance Temperature Detector) .. 4-31

Frequency and period measurements ... 4-35
Settings available for frequency and period measurements .. 4-35
Autodelay and auto range settings .. 4-36
Trigger level .. 4-36
Gate time... 4-36
Frequency connections ... 4-36
Frequency and period measurement procedure from front panel ... 4-37
Frequency and period measurement procedure through remote interface 4-38

Continuity testing .. 4-38
Settings available for continuity testing ... 4-38
Autodelay and auto range settings .. 4-39
Continuity testing connections... 4-39
Continuity testing procedure.. 4-39

Refining measurements ... 4-41
Relative offset ... 4-41
Math calculations .. 4-43
dB commands ... 4-48
Range ... 4-49
Optimizing measurement speed .. 4-51
Optimizing measurement accuracy ... 4-54

 Theory of operation .. 5-1

DMM ... 5-1
Rear panel, backplane, and DMM connect relays schematic .. 5-1
Line cycle synchronization .. 5-2
AC voltage measurements and crest factor .. 5-5

Table of Contents Series 3700A System Switch/Multimeter Reference Manual

DMM resistance measurement methods ... 5-8
Reference junctions .. 5-13
Open lead detection .. 5-14
Open thermocouple detection ... 5-19
Accuracy calculations .. 5-21

Understanding Precision Time Protocol (PTP) .. 5-22

 Introduction to TSP operation.. 6-1

Introduction to TSP operation .. 6-1
Controlling the instrument by sending individual command messages 6-1
Queries ... 6-2
Data retrieval commands .. 6-3
Information on scripting and programming .. 6-4

About TSP commands ... 6-4
Alarms ... 6-4
Bit manipulation and logic operations .. 6-5
Channel ... 6-6
Data queue.. 6-7
Digital I/O .. 6-7
Display .. 6-8
DMM ... 6-9
Error queue ... 6-10
Event log ... 6-10
File I/O .. 6-10
File system navigation ... 6-12
GPIB ... 6-12
Instrument identification .. 6-12
LAN and LXI .. 6-13
Local node... 6-14
PTP ... 6-14
Reading buffer ... 6-15
Reset ... 6-15
Queries and response messages .. 6-16
Saved setups .. 6-16
Scan .. 6-17
Scripting .. 6-17
Status model ... 6-18
Slot .. 6-18
Time .. 6-18
Top level instrument controls .. 6-19
Triggering .. 6-20
TSP-Link ... 6-21
TSP-Net .. 6-21
Userstrings .. 6-22

 Instrument programming ... 7-1

Fundamentals of scripting for TSP ... 7-1
What is a script? .. 7-2
Run-time and nonvolatile memory storage of scripts .. 7-2
What can be included in scripts? ... 7-2
Commands that cannot be used in scripts .. 7-3
Manage scripts .. 7-3
Working with scripts in nonvolatile memory... 7-10
Run a user script from the instrument front panel ... 7-11
Load a script from the instrument front panel .. 7-12
Save a script from the instrument front panel .. 7-13

Series 3700A System Switch/Multimeter Reference Manual Table of Contents

Interactive script .. 7-13
Fundamentals of programming for TSP ... 7-14

Introduction ... 7-14
What is Lua? ... 7-15
Lua basics ... 7-15
Standard libraries .. 7-29
Programming example .. 7-33

Using Test Script Builder (TSB) ... 7-34
Installing the TSB software.. 7-35
Project navigator ... 7-36
Script editor ... 7-36
Programming interaction ... 7-36

Advanced scripting for TSP ... 7-36
Global variables and the script.user.scripts table .. 7-36
Create a script using the script.new() command ... 7-38
Restore a script to the run-time environment .. 7-41
Rename a script .. 7-41
Delete user scripts from the instrument ... 7-43
Memory considerations for the run-time environment ... 7-43

TSP-Link system expansion interface .. 7-45
Overview ... 7-45
Connections .. 7-47
Initialization ... 7-47
Resetting the TSP-Link network .. 7-48
Using the expanded system .. 7-49
TSP advanced features ... 7-51
Using groups to manage nodes on TSP-Link network .. 7-51
Running simultaneous test scripts ... 7-52
Using the data queue for real-time communication ... 7-54
Copying test scripts across the TSP-Link network .. 7-54
Removing stale values from the reading buffer cache .. 7-55

TSP-Net ... 7-55
Overview ... 7-55
TSP-Net capabilities .. 7-56
Using TSP-Net with any Ethernet-enabled device .. 7-56
Using TSP-Net with any ethernet-enabled instrument .. 7-58
TSP-Net compared to TSP-Link to communicate with TSP-enabled devices 7-59
TSP-Net instrument commands: General device control .. 7-59
TSP-Net instrument commands: TSP-enabled device control .. 7-60
Example: Using tspnet commands .. 7-60

 TSP command reference .. 8-1

Command programming notes .. 8-1
Placeholder text .. 8-1
Syntax rules .. 8-2
Logical instruments ... 8-3
Using channel.*() commands .. 8-4
Time and date values .. 8-6

Using the TSP command reference ... 8-6
Command name and standard parameters summary ... 8-7
Command usage ... 8-8
Command details .. 8-9
Example section .. 8-9
Related commands and information .. 8-9

TSP commands .. 8-10

Table of Contents Series 3700A System Switch/Multimeter Reference Manual

beeper.beep() .. 8-10
beeper.enable ... 8-10
bit.bitand() ... 8-11
bit.bitor() .. 8-11
bit.bitxor() .. 8-12
bit.clear() ... 8-13
bit.get() .. 8-13
bit.getfield() ... 8-14
bit.set() .. 8-15
bit.setfield().. 8-15
bit.test() ... 8-16
bit.toggle() ... 8-17
bufferVar.appendmode ... 8-18
bufferVar.basetimefractional ... 8-19
bufferVar.basetimeseconds... 8-19
bufferVar.cachemode .. 8-20
bufferVar.capacity ... 8-21
bufferVar.channels .. 8-21
bufferVar.clear() .. 8-23
bufferVar.clearcache() ... 8-23
bufferVar.collectchannels .. 8-24
bufferVar.collecttimestamps .. 8-25
bufferVar.dates .. 8-26
bufferVar.formattedreadings.. 8-27
bufferVar.fractionalseconds... 8-28
bufferVar.n .. 8-29
bufferVar.ptpseconds .. 8-30
bufferVar.readings ... 8-31
bufferVar.relativetimestamps... 8-32
bufferVar.seconds ... 8-34
bufferVar.statuses ... 8-35
bufferVar.times .. 8-36
bufferVar.timestampresolution .. 8-37
bufferVar.timestamps .. 8-38
bufferVar.units ... 8-39
channel.calibration.adjustcount() ... 8-41
channel.calibration.adjustdate() .. 8-42
channel.calibration.lock() .. 8-43
channel.calibration.password() .. 8-44
channel.calibration.save() ... 8-45
channel.calibration.step() .. 8-46
channel.calibration.unlock()... 8-47
channel.calibration.verifydate() ... 8-48
channel.clearforbidden() ... 8-49
channel.close() .. 8-50
channel.connectrule .. 8-52
channel.connectsequential .. 8-53
channel.createspecifier() ... 8-54
channel.exclusiveclose() ... 8-56
channel.exclusiveslotclose().. 8-57
channel.getbackplane() ... 8-59
channel.getclose() ... 8-61
channel.getcount() .. 8-63
channel.getdelay() ... 8-64
channel.getforbidden() .. 8-66
channel.getimage() ... 8-67
channel.getlabel() .. 8-68
channel.getmatch() ... 8-69
channel.getmatchtype() ... 8-70
channel.getmode() .. 8-71
channel.getoutputenable() .. 8-72

Series 3700A System Switch/Multimeter Reference Manual Table of Contents

channel.getpole() .. 8-73
channel.getpowerstate() .. 8-74
channel.getstate() ... 8-75
channel.getstatelatch() .. 8-77
channel.gettype() .. 8-78
channel.open() .. 8-79
channel.pattern.catalog() .. 8-80
channel.pattern.delete() .. 8-81
channel.pattern.getimage() ... 8-81
channel.pattern.setimage().. 8-82
channel.pattern.snapshot().. 8-84
channel.read() ... 8-86
channel.reset() .. 8-87
channel.resetstatelatch() ... 8-89
channel.setbackplane() ... 8-90
channel.setdelay() ... 8-93
channel.setforbidden() .. 8-94
channel.setlabel() .. 8-94
channel.setmatch() .. 8-96
channel.setmatchtype() ... 8-97
channel.setmode() .. 8-98
channel.setoutputenable() ... 8-100
channel.setpole() ... 8-101
channel.setpowerstate() .. 8-103
channel.setstatelatch() .. 8-104
channel.trigger[N].clear() ... 8-105
channel.trigger[N].EVENT_ID ... 8-105
channel.trigger[N].get() ... 8-106
channel.trigger[N].set() .. 8-107
channel.trigger[N].wait() .. 8-108
channel.write() ... 8-109
comm.gpib.enable ... 8-110
comm.lan.enable ... 8-110
comm.lan.rawsockets.enable .. 8-111
comm.lan.telnet.enable ... 8-112
comm.lan.vxi11.enable ... 8-113
comm.lan.web.enable ... 8-114
createconfigscript() .. 8-115
dataqueue.add() .. 8-115
dataqueue.CAPACITY .. 8-116
dataqueue.clear() .. 8-117
dataqueue.count ... 8-117
dataqueue.next() ... 8-118
delay() ... 8-119
digio.readbit() .. 8-120
digio.readport() .. 8-120
digio.trigger[N].assert() .. 8-121
digio.trigger[N].clear() .. 8-122
digio.trigger[N].EVENT_ID .. 8-122
digio.trigger[N].mode ... 8-123
digio.trigger[N].overrun .. 8-124
digio.trigger[N].pulsewidth ... 8-125
digio.trigger[N].release() .. 8-125
digio.trigger[N].reset() ... 8-126
digio.trigger[N].stimulus ... 8-127
digio.trigger[N].wait() ... 8-129
digio.writebit() .. 8-129
digio.writeport() ... 8-130
digio.writeprotect ... 8-131
display.clear() .. 8-131
display.getannunciators() .. 8-132

Table of Contents Series 3700A System Switch/Multimeter Reference Manual

display.getcursor() ... 8-133
display.getlastkey() ... 8-134
display.gettext() ... 8-135
display.inputvalue() ... 8-136
display.loadmenu.add() ... 8-138
display.loadmenu.catalog() ... 8-139
display.loadmenu.delete() ... 8-140
display.locallockout ... 8-140
display.menu() ... 8-141
display.prompt() .. 8-142
display.screen ... 8-143
display.sendkey() .. 8-144
display.setcursor() ... 8-145
display.settext() ... 8-146
display.trigger.EVENT_ID ... 8-147
display.waitkey() .. 8-147
dmm.adjustment.count .. 8-148
dmm.adjustment.date .. 8-149
dmm.aperture .. 8-150
dmm.appendbuffer() .. 8-152
dmm.autodelay .. 8-154
dmm.autorange ... 8-155
dmm.autozero ... 8-157
dmm.buffer.catalog() ... 8-158
dmm.buffer.info() ... 8-159
dmm.buffer.maxcapacity ... 8-160
dmm.buffer.usedcapacity .. 8-160
dmm.calibration.ac() .. 8-161
dmm.calibration.dc() .. 8-162
dmm.calibration.lock() ... 8-163
dmm.calibration.password... 8-164
dmm.calibration.save() .. 8-165
dmm.calibration.unlock() ... 8-165
dmm.calibration.verifydate .. 8-166
dmm.close() .. 8-167
dmm.configure.catalog() ... 8-169
dmm.configure.delete() ... 8-170
dmm.configure.query() .. 8-171
dmm.configure.recall() .. 8-173
dmm.configure.set() .. 8-175
dmm.connect ... 8-177
dmm.dbreference .. 8-178
dmm.detectorbandwidth .. 8-179
dmm.displaydigits .. 8-180
dmm.drycircuit ... 8-181
dmm.filter.count ... 8-182
dmm.filter.enable ... 8-183
dmm.filter.type ... 8-184
dmm.filter.window ... 8-185
dmm.fourrtd ... 8-186
dmm.func .. 8-187
dmm.getconfig() .. 8-189
dmm.inputdivider ... 8-190
dmm.limit[Y].autoclear ... 8-191
dmm.limit[Y].clear() ... 8-192
dmm.limit[Y].enable ... 8-193
dmm.limit[Y].high.fail ... 8-195
dmm.limit[Y].high.value ... 8-197
dmm.limit[Y].low.fail .. 8-199
dmm.limit[Y].low.value .. 8-201
dmm.linesync .. 8-203

Series 3700A System Switch/Multimeter Reference Manual Table of Contents

dmm.makebuffer() ... 8-204
dmm.math.enable ... 8-206
dmm.math.format .. 8-208
dmm.math.mxb.bfactor ... 8-209
dmm.math.mxb.mfactor .. 8-210
dmm.math.mxb.units ... 8-211
dmm.math.percent .. 8-212
dmm.measure() ... 8-213
dmm.measurecount .. 8-214
dmm.measurewithtime() .. 8-215
dmm.measurewithptp() ... 8-216
dmm.nplc... 8-217
dmm.offsetcompensation .. 8-218
dmm.open() ... 8-219
dmm.opendetector .. 8-221
dmm.range .. 8-222
dmm.refjunction ... 8-223
dmm.rel.acquire() .. 8-224
dmm.rel.enable ... 8-225
dmm.rel.level ... 8-226
dmm.reset() ... 8-228
dmm.rtdalpha .. 8-229
dmm.rtdbeta .. 8-231
dmm.rtddelta ... 8-233
dmm.rtdzero .. 8-234
dmm.savebuffer() .. 8-236
dmm.setconfig() .. 8-237
dmm.simreftemperature .. 8-239
dmm.thermistor ... 8-240
dmm.thermocouple ... 8-241
dmm.threertd ... 8-242
dmm.threshold .. 8-243
dmm.transducer .. 8-244
dmm.units.. 8-245
errorqueue.clear() ... 8-246
errorqueue.count ... 8-246
errorqueue.next() .. 8-246
eventlog.all() .. 8-247
eventlog.clear() ... 8-248
eventlog.count ... 8-249
eventlog.enable ... 8-249
eventlog.next() .. 8-250
eventlog.overwritemethod ... 8-251
exit() .. 8-251
fileVar:close() .. 8-252
fileVar:flush() ... 8-252
fileVar:read() ... 8-253
fileVar:seek() ... 8-254
fileVar:write() ... 8-254
format.asciiprecision ... 8-255
format.byteorder .. 8-256
format.data .. 8-257
fs.chdir() .. 8-258
fs.cwd() ... 8-258
fs.is_dir() ... 8-258
fs.is_file() ... 8-259
fs.mkdir() ... 8-259
fs.readdir() ... 8-260
fs.rmdir() .. 8-260
gettimezone() .. 8-261
gpib.address .. 8-261

Table of Contents Series 3700A System Switch/Multimeter Reference Manual

io.close().. 8-262
io.flush() .. 8-262
io.input() .. 8-263
io.open() .. 8-264
io.output() .. 8-264
io.read() ... 8-265
io.type() ... 8-266
io.write() .. 8-266
lan.applysettings() ... 8-267
lan.config.dns.address[N] .. 8-267
lan.config.dns.domain ... 8-268
lan.config.dns.dynamic .. 8-269
lan.config.dns.hostname ... 8-269
lan.config.dns.verify .. 8-270
lan.config.gateway .. 8-271
lan.config.ipaddress .. 8-271
lan.config.method .. 8-272
lan.config.subnetmask .. 8-272
lan.lxidomain ... 8-273
lan.nagle.. 8-274
lan.reset() .. 8-274
lan.restoredefaults() .. 8-274
lan.status.dns.address[N] .. 8-275
lan.status.dns.name .. 8-276
lan.status.duplex ... 8-276
lan.status.gateway .. 8-277
lan.status.ipaddress .. 8-277
lan.status.macaddress .. 8-278
lan.status.port.dst .. 8-278
lan.status.port.rawsocket .. 8-279
lan.status.port.telnet .. 8-279
lan.status.port.vxi11 .. 8-280
lan.status.speed .. 8-280
lan.status.subnetmask .. 8-281
lan.trigger[N].assert() .. 8-281
lan.trigger[N].clear() .. 8-282
lan.trigger[N].connect() .. 8-283
lan.trigger[N].connected .. 8-283
lan.trigger[N].disconnect() ... 8-284
lan.trigger[N].EVENT_ID ... 8-284
lan.trigger[N].ipaddress ... 8-285
lan.trigger[N].mode .. 8-286
lan.trigger[N].overrun .. 8-287
lan.trigger[N].protocol .. 8-287
lan.trigger[N].pseudostate ... 8-288
lan.trigger[N].stimulus ... 8-288
lan.trigger[N].wait() .. 8-291
localnode.define.* .. 8-292
localnode.description .. 8-293
localnode.emulation .. 8-293
localnode.linefreq .. 8-294
localnode.model .. 8-295
localnode.password .. 8-295
localnode.passwordmode ... 8-296
localnode.prompts ... 8-296
localnode.prompts4882 ... 8-297
localnode.reset() ... 8-298
localnode.revision ... 8-299
localnode.serialno ... 8-299
localnode.showerrors .. 8-300
makegetter() .. 8-300

Series 3700A System Switch/Multimeter Reference Manual Table of Contents

makesetter() .. 8-301
memory.available() .. 8-302
memory.used() .. 8-303
node[N].execute() .. 8-304
node[N].getglobal() .. 8-304
node[N].setglobal() .. 8-305
opc() .. 8-306
print() ... 8-306
printbuffer().. 8-307
printnumber() ... 8-310
ptp.domain .. 8-311
ptp.ds.info() ... 8-312
ptp.enable ... 8-314
ptp.portstate .. 8-315
ptp.slavepreferred ... 8-316
ptp.time() ... 8-316
ptp.utcoffset... 8-317
reset() .. 8-317
scan.abort() ... 8-318
scan.add() ... 8-319
scan.addimagestep() ... 8-321
scan.addwrite() .. 8-322
scan.background() .. 8-323
scan.bypass .. 8-324
scan.create() ... 8-325
scan.execute() ... 8-327
scan.list() ... 8-328
scan.measurecount ... 8-330
scan.mode... 8-331
scan.nobufferbackground() ... 8-332
scan.nobufferexecute() ... 8-333
scan.reset() ... 8-334
scan.scancount ... 8-335
scan.state() ... 8-336
scan.stepcount .. 8-337
scan.trigger.arm.clear() ... 8-337
scan.trigger.arm.set() .. 8-338
scan.trigger.arm.stimulus .. 8-338
scan.trigger.channel.clear() ... 8-340
scan.trigger.channel.set() .. 8-341
scan.trigger.channel.stimulus .. 8-341
scan.trigger.clear() .. 8-343
scan.trigger.measure.clear() ... 8-344
scan.trigger.measure.set() .. 8-344
scan.trigger.measure.stimulus .. 8-345
scan.trigger.sequence.clear() .. 8-346
scan.trigger.sequence.set() ... 8-347
scan.trigger.sequence.stimulus ... 8-348
schedule.alarm[N].enable ... 8-350
schedule.alarm[N].EVENT_ID ... 8-351
schedule.alarm[N].fractionalseconds .. 8-352
schedule.alarm[N].period .. 8-353
schedule.alarm[N].ptpseconds .. 8-353
schedule.alarm[N].repetition.. 8-354
schedule.alarm[N].seconds ... 8-355
schedule.disable() ... 8-355
script.anonymous .. 8-355
script.delete() .. 8-356
script.load() ... 8-357
script.new().. 8-358
script.newautorun() ... 8-359

Table of Contents Series 3700A System Switch/Multimeter Reference Manual

script.restore() ... 8-359
script.run() ... 8-360
script.user.catalog() ... 8-361
scriptVar.autorun ... 8-361
scriptVar.list() .. 8-362
scriptVar.name .. 8-363
scriptVar.run() ... 8-364
scriptVar.save() ... 8-365
scriptVar.source .. 8-365
settime() .. 8-366
settimezone() .. 8-367
setup.cards() ... 8-368
setup.poweron ... 8-369
setup.recall() ... 8-370
setup.save() .. 8-370
slot[X].banks.matrix ... 8-371
slot[X].columns.matrix ... 8-372
slot[X].commonsideohms .. 8-372
slot[X].digio.. 8-373
slot[X].endchannel.* .. 8-373
slot[X].idn .. 8-377
slot[X].interlock.override .. 8-378
slot[X].interlock.state ... 8-379
slot[X].isolated ... 8-380
slot[X].matrix ... 8-380
slot[X].maxvoltage ... 8-381
slot[X].multiplexer .. 8-381
slot[X].poles.four ... 8-382
slot[X].poles.one .. 8-383
slot[X].poles.two .. 8-384
slot[X].pseudocard .. 8-384
slot[X].rows.matrix ... 8-386
slot[X].startchannel.* ... 8-386
slot[X].tempsensor .. 8-390
slot[X].thermal.state .. 8-390
status.condition ... 8-391
status.measurement.* ... 8-393
status.node_enable ... 8-396
status.node_event ... 8-398
status.operation.* .. 8-399
status.operation.user.* .. 8-401
status.questionable.* ... 8-403
status.request_enable ... 8-405
status.request_event ... 8-407
status.reset() ... 8-409
status.standard.* ... 8-409
status.system.* .. 8-411
status.system2.* .. 8-413
status.system3.* .. 8-415
status.system4.* .. 8-417
status.system5.* .. 8-419
timer.measure.t() ... 8-421
timer.reset() ... 8-421
trigger.blender[N].clear() ... 8-422
trigger.blender[N].EVENT_ID .. 8-422
trigger.blender[N].orenable.. 8-423
trigger.blender[N].overrun ... 8-424
trigger.blender[N].reset() ... 8-424
trigger.blender[N].stimulus[M] ... 8-425
trigger.blender[N].wait() ... 8-427
trigger.clear() ... 8-428

Series 3700A System Switch/Multimeter Reference Manual Table of Contents

trigger.EVENT_ID ... 8-428
trigger.timer[N].clear() ... 8-429
trigger.timer[N].count ... 8-429
trigger.timer[N].delay ... 8-430
trigger.timer[N].delaylist .. 8-430
trigger.timer[N].EVENT_ID .. 8-431
trigger.timer[N].overrun ... 8-431
trigger.timer[N].passthrough .. 8-432
trigger.timer[N].reset() ... 8-433
trigger.timer[N].stimulus .. 8-433
trigger.timer[N].wait() ... 8-435
trigger.wait() .. 8-435
tsplink.group .. 8-436
tsplink.master .. 8-437
tsplink.node ... 8-437
tsplink.readbit() .. 8-438
tsplink.readport() ... 8-438
tsplink.reset() ... 8-439
tsplink.state ... 8-440
tsplink.trigger[N].assert() ... 8-441
tsplink.trigger[N].clear() ... 8-441
tsplink.trigger[N].EVENT_ID .. 8-442
tsplink.trigger[N].mode .. 8-443
tsplink.trigger[N].overrun ... 8-444
tsplink.trigger[N].pulsewidth .. 8-445
tsplink.trigger[N].release() ... 8-445
tsplink.trigger[N].reset() ... 8-446
tsplink.trigger[N].stimulus .. 8-447
tsplink.trigger[N].wait() .. 8-448
tsplink.writebit() ... 8-449
tsplink.writeport() ... 8-449
tsplink.writeprotect .. 8-450
tspnet.clear() ... 8-451
tspnet.connect() .. 8-451
tspnet.disconnect() .. 8-452
tspnet.execute() .. 8-453
tspnet.idn() .. 8-454
tspnet.read() .. 8-455
tspnet.readavailable() .. 8-456
tspnet.reset() ... 8-457
tspnet.termination() ... 8-457
tspnet.timeout .. 8-458
tspnet.tsp.abort() ... 8-458
tspnet.tsp.abortonconnect ... 8-459
tspnet.tsp.rbtablecopy() ... 8-460
tspnet.tsp.runscript() ... 8-461
tspnet.write() ... 8-461
upgrade.previous() .. 8-462
upgrade.unit() .. 8-463
userstring.add() ... 8-463
userstring.catalog() ... 8-464
userstring.delete() ... 8-465
userstring.get() .. 8-465
waitcomplete() ... 8-466

 Troubleshooting guide ... 9-1

Contacting support ... 9-1

USB troubleshooting .. 9-2
Check driver for the USB Test and Measurement Device ... 9-2

Table of Contents Series 3700A System Switch/Multimeter Reference Manual

Troubleshooting GPIB interfaces ... 9-5
Timeout errors ... 9-5

Troubleshooting LAN interfaces ... 9-5
Verify connections and settings... 9-6
Use Ping to test the connection... 9-6
Open ports on firewalls ... 9-7
Web page problems .. 9-7
LXI LAN status indicator .. 9-8
Initialize the LAN configuration .. 9-8
Install LXI Discovery Browser software on your computer .. 9-8
Communicate using VISA communicator .. 9-9
WireShark ... 9-9

Testing the display, keys, and channel matrix ... 9-9
Verify front panel key operation ... 9-9
Verify display operation ... 9-9

Update drivers .. 9-10

Error and status messages .. 9-10
Introduction ... 9-10
Error summary .. 9-10
Effects of errors on scripts... 9-10
Retrieving errors .. 9-11
Error and status message list .. 9-12

 Frequently asked questions (FAQs) .. 10-1

How do I get my LAN or web connection to work? .. 10-1

Why can't I close a channel? ... 10-1

How do I know if an error has occurred on my instrument? .. 10-2

How do I find the serial number and firmware version of the instrument? 10-3

 Next steps ... 11-1

Additional Series 3700A information .. 11-1

 Maintenance .. A-1

Line fuse replacement .. A-1

Fuse replacement .. A-2

AMPS analog backplane fuse replacement ... A-3

Front panel tests .. A-3
Test procedure .. A-4
Keys test ... A-5
Display patterns test .. A-5

Displaying the instrument's serial number ... A-6

Upgrading the firmware .. A-6
Upgrade procedure using the remote interface ... A-7

 LAN concepts and settings .. B-1

Overview .. B-1

Series 3700A System Switch/Multimeter Reference Manual Table of Contents

Establishing a point-to-point connection .. B-1
Step 1: Identify and record the existing IP configuration ... B-2
Step 2: Disable DHCP to use the computer's existing IP address .. B-4
Step 3: Configure the instrument's LAN settings ... B-8
Step 4: Install the crossover cable .. B-9
Step 5: Access the instrument's web page .. B-9

Connecting to the LAN ... B-9
Setting the LAN configuration method ... B-10
Setting the IP address ... B-10
Setting the gateway ... B-11
Setting the subnet mask .. B-11
Configuring the domain name system (DNS) .. B-11

LAN speeds .. B-12

Duplex mode .. B-13
Viewing LAN status messages .. B-13

Viewing the network settings ... B-14
Confirming the active speed and duplex negotiation ... B-14
Confirming port numbers ... B-14

Selecting a LAN interface protocol ... B-15
VXI-11 connection ... B-15
Raw socket connection ... B-15
Dead socket connection .. B-15
Telnet connection .. B-16

Logging LAN trigger events in the event log .. B-18
Accessing the event log from the command interface ... B-19

 Calibration ... C-1
Verification test requirements .. C-2
Performing the verification test procedures ... C-4
Model 3706A verification tests .. C-5

Calibration .. C-22
Overview ... C-22
Environmental conditions .. C-22
Calibration considerations ... C-23
Calibration ... C-24
Remote calibration procedure ... C-24

 Status model ... D-1

Overview .. D-1
Status Byte Register ... D-1

Status model diagrams .. D-3
Status Byte Register overview .. D-4
Measurement summary bit (Measurement event register) .. D-5
System summary bit (System register) ... D-5
Standard Event Register ... D-8
Error available bit (Error or Event queue) .. D-9
Questionable summary bit (Questionable event register) ... D-10
Message available bit (Output queue) ... D-11
Event summary bit (ESB register) ... D-11
Master summary status bit (MSS bit register) ... D-12
Operation summary bit (Operation event register) .. D-13

Table of Contents Series 3700A System Switch/Multimeter Reference Manual

Status function summary.. D-14

Clearing registers ... D-14
Startup state ... D-15

Programming and reading registers ... D-15
Programming enable and transition registers .. D-15
Reading registers .. D-16
Register programming example .. D-16

Status byte and service request (SRQ) ... D-17
Service Request Enable Register ... D-17
Status Byte Register ... D-17
Serial polling and SRQ .. D-19
SPE, SPD (serial polling) .. D-20
Service requests ... D-20
Status byte and service request commands.. D-21
Enable and transition registers .. D-21
Controlling node and SRQ enable registers .. D-21

TSP-Link system status ... D-22
Status model configuration example ... D-22

 Index ... I-1

In this section:

Welcome .. 1-1
Extended warranty ... 1-1
Contact information .. 1-1
CD-ROM contents .. 1-2
Organization of manual sections .. 1-3
Capabilities and features ... 1-3
General information .. 1-5

Welcome
Thank you for choosing a Keithley Instruments product. The Series 3700A System Switch/Multimeter
features scalable, instrument grade switching and multi-channel measurement solutions that are
optimized for automated testing of electronic products and components. The Series 3700A includes
four versions of the Model 3706A system switch mainframe, along with a growing family of plug-in
switch and control cards. When the Model 3706A mainframe is ordered with the high performance
multimeter, you receive a tightly-integrated switch and measurement system that can meet the
demanding application requirements in a functional test system or provide the flexibility needed in
stand-alone data acquisition and measurement applications.

Extended warranty
Additional years of warranty coverage are available on many products. These valuable contracts
protect you from unbudgeted service expenses and provide additional years of protection at a fraction
of the price of a repair. Extended warranties are available on new and existing products. Contact your
local Keithley Instruments representative for details.

Contact information
If you have any questions after you review the information in this documentation, please contact your
local Keithley Instruments representative or call Keithley Instruments corporate headquarters (toll-free
inside the U.S. and Canada only) at 1-888-KEITHLEY (1-888-534-8453), or from outside the U.S. at
+1-440-248-0400. For worldwide contact numbers, visit the Keithley Instruments website
(http://www.keithley.com).

Section 1

Introduction

http://www.keithley.com/

Section 1: Introduction Series 3700A System Switch/Multimeter Reference Manual

1-2 3700AS-901-01 Rev. B/May 2013

CD-ROM contents
Two CD-ROMs are shipped with each Series 3700A order. The Series 3700A Quick Start Guide,
User's Manual, Reference Manual, and Switch Card Manual are provided in PDF format on the Series
3700A Product Information CD-ROM.

• Quick Start Guide: Provides unpacking instructions, describes basic connections, and reviews
basic operation information. If you are new to Keithley Instruments equipment, refer to the Quick
Start Guide to take the steps needed to unpack, set up, and verify operation.

• User's Manual: Provides application examples. If you need a starting point to begin creation of
applications, refer to the User's Manual for a variety of specific examples.

• Reference Manual: Includes advanced operation topics and maintenance information.
Programmers looking for a command reference, and users looking for an in-depth description of
the way the instrument works (including troubleshooting and optimization), should refer to the
Reference Manual.

• Switching and Control Cards Reference Manual: Contains information specific to the switch
cards that can be used with the Series 3700A.

• Additional product information: The product data sheet, product specifications, and rack-
mount kit instructions are also included on the CD-ROM.

A second CD-ROM contains the Test Script Builder script development software (Keithley
Instruments part number KTS-850). Use this CD-ROM to install the Test Script Builder Integrated
Development Environment. This software provides an environment to develop a test program and the
ability to load the test program onto the instrument. Running a program loaded on the instrument
eliminates the need to send individual commands from the host computer to the instrument when
running a test.

The second CD-ROM also includes:

• The 3700A TSB Add-in, which is a software tool you can use to create, modify, debug, and store
Test Script Processor (TSP®) test scripts.

• IVI Instrument Driver, driver for National Instruments LabVIEW™, and related release notes.
• J2SE™ Runtime Environment: Web browser plug-in required to run the web applications that are

available through the instrument web interface.
• Keithley I/O layer and release notes.
• Keithley LXI Discovery Browser.

For the latest drivers and additional support information, see http://www.keithley.com
(http://www.keithley.com).

http://www.keithley.com/

Series 3700A System Switch/Multimeter Reference Manual Section 1: Introduction

3700AS-901-01 Rev. B/May 2013 1-3

Organization of manual sections
The information in this manual is organized into the following major categories:

• General overview: Describes the components of the instrument and basic operation.
• Basic DMM operation: Introduces some basic measurement functions of the instrument. You will

learn how to use your instrument to measure voltage, current, resistance, frequency, period,
continuity, diodes, capacitance, and temperature. You will learn about triggering and data
buffering. You will also learn about enhancing measurement performance.

• Theory of operation: Describes basic DMM measurement techniques and concepts.
• Remote commands: Describes the IEEE Std 488.2 common commands. Provides an

alphabetical listing of all commands available for the Series 3700A. Provides information about
using remote commands to control the instrument.

• Troubleshooting guide: Describes self-test procedure and error codes.
• Maintenance: Information on instrument maintenance, including line fuse replacement and

firmware upgrades.
• Status model: Description of the Series 3700A status model.

Bookmarks for each section of this manual are provided in the PDF version of the documentation.
The manual sections are also listed in the Table of Contents located at the beginning of this manual.

For more information about bookmarks, see Adobe® Acrobat® or Reader® help.

Capabilities and features
The Series 3700A System Switch/Multimeter is comprised of four versions of the Model 3706A
system switch mainframe and a series of plug-in switch and control cards.

Series 3700A available models

Model
number

Description

3706A Six-slot system switch with high-performance digital multimeter (DMM)
3706A-NFP Six-slot system switch with high-performance digital multimeter (DMM) without

front-panel display and keypad
3706A-S Six-slot system switch

3706A-NFP Six-slot system switch without front-panel display and keypad

Section 1: Introduction Series 3700A System Switch/Multimeter Reference Manual

1-4 3700AS-901-01 Rev. B/May 2013

Available plug-in cards

Model
number

Description

3720 Dual 1x30 multiplexer card (auto CJC when used with optional Model 3720-ST
screw-terminal accessory)

3721 Dual 1x20 multiplexer card (auto CJC when used with optional Model 3721-ST
screw-terminal accessory)

3722 Dual 1x48 high-density multiplexer card
3723 Dual 1x30 high-speed reed relay multiplexer card
3724 Dual 1x30 FET multiplexer card
3730 6x16 high-density matrix card
3731 6x16 high-speed reed relay matrix card
3732 Quad 4x28 ultra-high density reed relay matrix card

3740 32-channel isolated switch card

3750 Multifunction control card

Series 3700A instruments have the following features:

• Six slot system switch with optional high-performance multimeter
• Three remote interfaces: LXI/ethernet, general purpose bus (GPIB), and Universal Serial Bus

(USB)
• Fourteen programmable digital I/O lines
• Up to 576 2-wire or 720 1-wire multiplexer channels in one mainframe
• Up to 2,688 one-pole matrix crosspoints in one mainframe
• Capable of more than 14,000 readings per second to memory with high-performance multimeter

option
• Filtering to reduce reading noise

• Internal memory stores multiple user setups
• USB flash drive access for saving data buffers, test scripts, and user setups
• Digital I/O port: Allows the Series 3700A to control other devices
• LXI® Class C compliance
• Embedded TSP scripting engine accessible from any host interface; responds to high-speed test

scripts comprised of instrument control commands
• TSP-Link® expansion bus that allows TSP-enabled instruments to trigger and communicate with

each other; advanced Test Script Processor (TSP®) scripting engine features enable parallel
script execution across the TSP-Link network

• Supports IEEE-488 (GPIB), RS-232, and ethernet local area network (LAN) connections

Series 3700A System Switch/Multimeter Reference Manual Section 1: Introduction

3700AS-901-01 Rev. B/May 2013 1-5

Measuring capabilities
The basic measurement capabilities of Series 3700A systems are summarized in the following figure.

Reviewers, this figure is not correct for the Series 3700A. However, it shows the type of information
that will be in the final manual.

Mary, add capatance.

Figure 1: DMM measurement capabilities

General information

Displaying the instrument's serial number
The instrument serial number is on a label on the rear panel of the instrument. You can also access
the serial number from the front panel using the front-panel keys and menus.
To display the serial number on the front panel:
1. If the Series 3700A is in remote operation, press the EXIT (LOCAL) key once to place the

instrument in local operation.
2. Press the MENU key.
3. Use the navigation wheel to scroll to the UNIT-INFOSYSTEM-INFO menu item.
4. Press the ENTER key. The SYSTEM INFORMATION menu is displayed.
5. Scroll to the SERIAL# menu item.
6. Press the ENTER key. The Series 3700A serial number is displayed.

In this section:

Turning your instrument on and off .. 2-1
Front panel operation ... 2-2
Rear panel summary .. 2-26
Saved setups ... 2-33
Using the web interface .. 2-35
Remote communication interfaces ... 2-53
Switch operation ... 2-77

Turning your instrument on and off
The following topics describe how to power your instrument on and off, place an instrument in
standby, and configure the line frequency.

Procedure
The Series 3700A operates from a line voltage of 100 V to 240 V at a frequency of 50 Hz or 60 Hz. At
the factory, each Series 3700A is configured to match the power line frequency appropriate for your
country (either 50 Hz or 60 Hz). Make sure the operating voltage in your area is compatible.

Follow the procedure below to connect the Series 3700A to line power and turn on the instrument.

Operating the instrument on an incorrect line voltage may cause damage to the instrument, possibly
voiding the warranty.

To turn a Series 3700A on and off:
1. Before plugging in the power cord, make sure that the front panel POWER switch is in the off (O)

position.
2. Connect the Model 3706A redundant protective earth (safety ground) located on the Rear panel.
3. Connect the female end of the supplied power cord to the AC receptacle on the rear panel.

The power cord supplied with the Series 3700A contains a separate protective earth (safety
ground) wire for use with grounded outlets. When proper connections are made, the
instrument chassis is connected to power-line ground through the ground wire in the power
cord. In addition, a redundant protective earth connection is provided through a screw on
the rear panel. In the event of a failure, not using a properly grounded protective earth or
grounded outlet may result in personal injury or death due to electric shock.

Section 2

General operation

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-2 3700AS-901-01 Rev. B/May 2013

4. Connect the other end of the power cord to a grounded AC outlet.
5. To turn your instrument on, press the front panel POWER switch to place it in the on (I) position.
6. To turn your instrument off, press the front panel POWER switch to place it in the off (O) position.

Line frequency configuration
The factory configures the Series 3700A to automatically detect the power line frequency (either
50 Hz or 60 Hz) at each power-up. This detected line frequency is used for aperture (NPLC)
calculations.

To view the line frequency setting, send the following command:
print(localnode.linefreq)

Fuse replacement
A rear panel fuse drawer is located below the AC receptacle (refer to Rear panel). This fuse protects
the power line input of the instrument. If the line fuse needs to be replaced, refer to Line fuse
replacement (on page A-1).

Power-up sequence
When the instrument is turned on, the instrument performs self-tests on its read-only memory,
nonvolatile memory, and RAM on its read-only memory, nonvolatile memory, and RAM and
momentarily lights all segments and indicators. If a failure is detected, the instrument momentarily
displays an error message and the ERR indicator turns on. Error messages are listed in Error and
status messages (on page 9-10, on page 2-60, "Error and status message list" on page 9-12).

If there are no errors, the following actions occur when the instrument is turned on:

1. "No Comm Link" is briefly displayed.
2. "Initializing" is displayed for several seconds.
3. Near the end of initialization, the 1588 and LAN status LEDs light.
4. All of the display pixels briefly light.
5. Main display is displayed.

Front panel operation
The Series 3700A includes several models that support different features. The following figures show
the front panels of each of the models; a brief description of the features follows the figures.

Figure 2: Model 3706A with DMM front panel

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-3

Figure 3: Model 3706A-S front panel (no DMM)

(1) The USB port

(USB port)

Use the front-panel USB port to connect a USB flash drive. The USB flash drive can be used to
store reading buffer data, scripts, and user setup options.

(2) The display
During setup, the display shows menu choices that you can use to configure the instrument. See
Menu overview (on page 2-9) for more information about Series 3700A menus.

During operation, the display provides information about the selected channel, channel pattern,
channel state, and errors. It also shows the control status (local or remote). If REM is displayed, the
instrument is presently controlled through a remote interface (GPIB, LAN, or USB). If REM is not
displayed, control is through the front panel. The following figure shows an example of the Series
3700A during operation.

Figure 4: Series 3700A display during operation

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-4 3700AS-901-01 Rev. B/May 2013

Series 3700A display during operation
1 Active channel (slot 1, channel 004).

2 Channel state (open, 2-pole operation).

3 Present state of the DMM attributes for displayed channel:
• The 4-WΩ and autorange are enabled
• Dry-circuit ohms is disabled (DRY-)
• Offset compensation is off (OC-)

For detailed descriptions of the DMM attribute symbols, see the table
labeled "DMM attribute symbols" below.

4 Arrow indicating that more menu items exist; turn the navigation wheel
 to the left or right to see the additional items.

5 The 4-WΩ and autorange are enabled.

6 Indicates the instrument is being controlled remotely. Press the LOCAL
(EXIT) key to control the instrument through the front panel.

The table below lists the display indicators and what they mean.

Indicator Meaning
AUTO: Measure autorange is selected
EDIT: Instrument is in the editing mode
ERR: Questionable reading or invalid calibration step
FILT: Digital filter is enabled
LSTN: Instrument is addressed to listen
MATH: Enabled for mX+b, percent, or reciprocal (1/X) calculation
REL: Relative mode is enabled
REM: Instrument is in remote mode
SRQ: Service request is asserted
TALK: Instrument is addressed to talk
TRIG: Instrument is processing a front-panel reading request
4W: Four-wire resistance or RTD temperature reading
* (asterisk): Readings are being stored in the buffer

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-5

The bottom left line of the display contains the DMM attribute symbols. The symbols that appear are
dependent on whether the attribute exists for the selected function. The following table indicates the
DMM attribute symbols that may appear on the front panel. If the symbol has a value associated with
it, the third column in the table indicates the value definition.

DMM attribute symbols

Front-panel DMM attribute Symbol Values
range R= AUTO or n, where n equals the range

nplc N= n, where n equals the NPLC
auto delay AD + for ON, 1 for ONCE, or 0 for OFF
auto zero AZ + for ON or – for OFF
line sync LS + for ON or – for OFF

limit LIM + for a limit enabled or – for limits disabled
detector bandwidth DBW 3, 30, or 300

threshold THR= n, where n indicates the threshold
aperture A= n, where n indicates the aperture setting
dry circuit DRY + for ON or – for OFF
offset compensation OC + for ON or – for OFF

thermocouple sensor K K_T/C N/A
thermocouple sensor T T_T/C N/A
thermocouple sensor E E_T/C N/A
thermocouple sensor R R_T/C N/A

thermocouple sensor S S_T/C N/A
thermocouple sensor B B_T/C N/A
thermocouple sensor N N_T/C N/A
thermistor THRM N/A
three-wire RTD 3RTD N/A
4-wire RTD 4RTD N/A
simulated reference junction RJ_SIM N/A
internal reference junction RJ_INT N/A
external reference junction RJ_EXT N/A

(3) The navigation wheel

Turn the navigation wheel to scroll to the desired menu option or to change the value of
the selected numeric parameter. Pressing the navigation wheel has the same
functionality as pressing the ENTER key.
When changing a multiple character value, such as an IP address or channel pattern
name, press the navigation wheel to enter edit mode, rotate the navigation wheel to
change the characters value as desired, but do not leave edit mode. Use the CURSOR
keys to scroll to the other characters and use the navigation wheel to change their value
as needed. Press the ENTER key when finished changing all the characters.

(4) The POWER key
POWER

Power switch. The in position turns the Series 3700A on (I); the out position turns it off (O).

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-6 3700AS-901-01 Rev. B/May 2013

(5) The status lights
The Series 3700A has three status lights on the front panel.

 The 1588 status light indicates 1588 operation. If this light is off, the 1588 feature is
disabled or improperly configured. If the light blinks at a one second rate, the
instrument is the 1588 master. If the instrument is a slave, the light will not blink.

 The LAN status light is lit when the instrument is connected through the local area
network (LAN) with no errors. If this is not lit, the instrument is not connected through
the LAN or there is a connection problem.
If you are using the web interface, the LAN Status light blinks when you click ID.

 The POWER light is lit when power is applied to the instrument.

(6) The setup and control keys
The setup and control keys provide front-panel control and configuration. The following figure
illustrates each key's location. Descriptions of the keys follow the figure.

Figure 5: Model 3706A setup and control keys

Configuration keys
DISPLAY
key

The DISPLAY key cycles between three screens: The channel display or pattern
display, the closed channel list, and the user screen text, which is set with
display.settext() (on page 8-146).
When the closed channel listing is displayed, if the list of channels is longer than
one screen, you can use the navigation wheel to scroll though the list of closed
channels.

CONFIG key The CONFIG key configures a function or operation.
RESET
switch

The RESET switch restores factory default LAN settings.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-7

Channel keys
OPEN ALL
key

Opens all closed channels.

STEP key Use to walk though a scan list by closing and opening the channels contained in a
single step with each press of the key.

CLOSE and
OPEN keys

You can use the front-panel CLOSE and OPEN keys to perform either switch only
operations or switch with DMM operations on the selected channels. The
operations of the keys depend on the DMM configuration attribute setting of the
selected channel. Refer to Channel attributes (on page 2-93) for more information
on the DMM configuration attribute.
When the DMM configuration is set to nofunction, the CLOSE and OPEN keys
function as switch only operations in the same manner as the channel.close
and channel.open commands. When the DMM configuration is associated with a
particular function (for example, DC Volts), the CLOSE and OPEN keys function as
switch with DMM operations, that is, in the same manner as dmm.close and
dmm.open commands.
To access the other switch-only operations (exclusive close and exclusive slot
close), use the CHAN key to choose and initiate the desired operation after
selecting a channel or range of channels.

CHAN key If a channel is displayed, opens the CHANNEL ACTION menu options (on page 2-
14), which allows you to open and close channels. If a pattern is displayed,
pressing CHAN switches to channel view.

PATT key If a pattern is displayed, opens the PATTERN ACTION menu options (on page 2-
15), which allows you to manage patterns, open and close patterns, and reset
them. If a channel is displayed, pressing PATT changes to display a pattern.

SLOT key Displays information about the installed cards and the instrument. Information
includes the firmware revision, model name, and model number. Press SLOT
multiple times to view all instrument information.

SCAN key Opens the SCAN ACTION menu options (on page 2-16), which allows you to run,
manage, view, and reset scan lists. See Scanning and triggering (on page 3-1).

INSERT key Appends the selected channel or channel pattern to the scan list.

DELETE key Deletes the first occurrence of the selected channel or channel pattern (including
function) from the scan list. To remove all occurrences of a channel from the list,
keep pressing the DELETE key.

Script keys
LOAD key Loads test for execution.
RUN key Runs the last selected user-defined test code.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-8 3700AS-901-01 Rev. B/May 2013

General function keys
STORE key Selects, clears, and saves reading buffer data and creates and deletes reading

buffers.
REC key Recalls stored readings for the selected reading buffer. Use the CURSOR keys or

turn the navigation wheel to scroll through the buffer. For more information, see
Recalling readings (on page 3-52).

RATE key Sets measurement speed (fast, medium, or slow) for the active or selected function.
FUNC key Displays a menu that allows you to scroll through the available DMM functions.
DMM key Opens the DMM ACTION menu options (on page 2-16).

LIMIT key

Set the limits. Press multiple times to cycle through the four combinations
of limit settings:
• Limit1 and Limit2 off
• Limit1 on and Limit2 off
• Limit1 off and Limit2 on
• Limit1 and Limit2 on

REL key Enable or disable relative offset for the selected DMM function. REL is shown on the
display when relative offset is enabled. See Relative.

FILTER key Enables or disables the digital filter; you can use this filter to reduce reading noise.
TRIG key Generates a trigger that can be used in a script or the trigger model. See Scanning

and triggering (on page 3-1). Also see display.trigger.EVENT_ID (on page 8-147).

MENU key Opens the Main menu options, which allows you to manage scripts, manage
communications, select channel connections, test the keys, test the display, manage
digital I/O settings, set up the beeper, and display instrument information.

EXIT
(LOCAL)
key

• Cancels the current selection and returns to the previous menu item.
• Exits remote operation so you can control the instrument from the front panel.
• Stops a scan that is running.
• Stops a script that is executing.

ENTER key Accepts the current selection or brings up the next menu option. In most cases,
pressing ENTER is the same as pressing the navigation wheel .

AUTO key Enables or disables autorange for the selected function.

RANGE
keys (up
and down
arrows)

Selects the next higher or lower measurement range on the measurement display
for the selected function.
If the Model 3706A displays the overflow message on a particular range, select a
higher range until an on-range reading is displayed. Use the lowest range possible
without causing an overflow to ensure best accuracy and resolution. You can also
use these keys when entering a range value from the front panel. For details, see
Autoranging over the front panel (see "Set up autoranging from the front panel" on
page 4-50).
In addition to selecting range functions, the up and down range keys change the
format for non-range numbers (as an example, when editing the limit value).
If you select a range of channels, that range must stop when the channel type
changes. Therefore, you can never select a range of channels which includes
different channel types.
For more information, see Range.

CURSOR
keys

Use the CURSOR keys to move the cursor left or right. When the cursor is on the
desired compliance value digit, push the navigation wheel to enter edit mode,
and turn the navigation wheel to edit the value. Push the navigation wheel again
when finished editing.
Use the CURSOR keys or the navigation wheel to move through menu items. To
view a menu value, use the CURSOR keys for cursor control, and then press the
navigation wheel to view the value or sub-menu item.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-9

Menu overview
Menu navigation
To navigate through the menus and submenus, the Series 3700A must not be in edit mode (the EDIT
indicator is not illuminated).

Selecting menu items

To navigate the Main and Configuration menus, use the editing keys as follows:

• Press either CURSOR arrow key to highlight an option.
• Rotate the navigation wheel (clockwise or counter-clockwise) to highlight an option.
• Press the ENTER key (or the navigation wheel) to select an option.
• Use the EXIT (LOCAL) key to cancel changes or to return to the previous menu or display.

For quick menu navigation, turn the navigation wheel to highlight an option and then press the
navigation wheel to select the highlighted option.

Setting a value
You can adjust values on the front panel using the navigation wheel:
1. Use the CURSOR arrow keys to move the cursor to the value that you want to edit.
2. Press the navigation wheel or the ENTER key to enter edit mode. The EDIT indicator is

illuminated.
3. Rotate the navigation wheel to set the appropriate value.
4. Press the ENTER key to select the value or press the EXIT (LOCAL) key to cancel the change.
5. (Optional) Press the EXIT (LOCAL) key to return to the main menu.

Menu trees
You can configure instrument operation through the menus that are accessed from the front panel.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-10 3700AS-901-01 Rev. B/May 2013

Main menu
The main menu structure is summarized in the following figure and table. For other menu items, see
Configuration menus (on page 2-12).

Figure 6: Main menu tree

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-11

The following table contains descriptions of the main menu options and cross-references to related
information. To access a menu option, press the MENU key, turn the navigation wheel to move the
cursor to select an item, and press the navigation wheel .

Menu selection Description For more information, see:

SCRIPT Saves and recalls users scripts Manage scripts (on page 7-3)
- LOAD Loads scripts into nonvolatile memory
- SAVE Saves scripts
SETUP Saves and recalls user and factory setup options Saved setups (on page 2-33)
- SAVE Saves user setup options
- RECALL Recalls user setup options
- POWERON Sets the configuration used during startup
GPIB Configures the GPIB interface options Remote communication interfaces (on

page 2-53) - ADDRESS Configures the address for the GPIB interface
- ENABLE Enables and disables the GPIB interface
LAN Configures the local area network (LAN) LAN concepts and settings (on page B-1)
- STATUS Displays LAN connection status
- CONFIG Configures the LAN IP address and gateway
- APPLY_SETTINGS Applies changes made using the CONFIG menu
- RESET Restores the default settings
- ENABLE Enables and disables the LAN interface
RS232 Controls the options for the RS-232 interface Remote communication interfaces (on

page 2-53) - BAUD Sets the baud rate
- BITS Configures the number of bits
- PARITY Sets the parity
- FLOW-CTRL Configures the flow control
- ENABLE Enables and disables the RS-232 interface

TSPLINK1 Configure the instrument in a TSP-Link® network TSP-Link system expansion interface (on
page 7-45) - NODE Selects the instrument node identifier

- RESET Resets the TSP-Link network
UPGRADE Upgrades the firmware from a USB flash drive Upgrading the firmware (on page A-6)
DISPLAY Accesses display functions Front panel tests
- TEST Runs the display test See Numeric entry method in Setting a

value (on page 2-9) - NUMPAD Enables and disables the numeric keypad

DIGOUT2 Controls digital outputs Digital I/O (on page 3-43)

- DIG-IO-OUTPUT Selects the digital I/O values
- WRITE-PROTECT Write-protects specific digital I/O lines
BEEPER Controls the key beeps General operation (on page 2-1)
- ENABLE Enables the key beeps

- DISABLE Disables the key beeps
LINE-FREQ Configures the line frequency General operation (on page 2-1)
- 50Hz Set the line frequency to 50 Hz
- 60Hz Set the line frequency to 60 Hz
- AUTO Enables automatic line frequency detection during

start up

SYSTEM-INFO Displays the system information General operation (on page 2-1)
 - FIRMWARE Displays the version of firmware installed

- SERIAL# Displays the serial number of the unit
- CAL Displays the last calibration date
- MEMORY-USAGE Displays memory usage in percentage
RESET-PASSWORD Resets the system password Password management

1. TSPLINK is not available on the Models 2604A, 2614A, and 2634A.
2. DIGOUT is not available on the Models 2604A, 2614A, and 2634A.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-12 3700AS-901-01 Rev. B/May 2013

Configuration menus
The configuration menu structure is summarized in the following figure and table. For directions on
navigating the menu, see Menu navigation (on page 2-9). For other menu items, see Main menu (on
page 2-10).

Figure 7: Series 3700A configuration menus

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-13

Press the EXIT key to return to a previous menu.

MEAS V and I-measure range, V-
measure sense, low range;
autozero

Range, Basic source-measure procedure

LIMIT V-source and I-source
compliance limits

Limits

SPEED Measurement speed (NPLC) Speed

REL Set relative values Relative offset (on page 4-41)
FILTER Control digital filter Filters
OUTPUT ON/OFF Set off-state, control digital

I/O
Output-off states

TRIG Set trigger in, count, interval,
and delay

Triggering

STORE Set buffer count and
destination

Source-measure concepts

The following table contains descriptions of the configuration menus, as well as cross-references to
related information. To select a menu, press the CONFIG key and then the front-panel key associated
with the menu (see the description column in the following table).

Configuration menu options

Configuration
menu

To access,
press the
CONFIG key
and then:

Description For more information, see:

CHANNEL
ATTRIBUTE

CHAN If a channel is displayed when
selecting this, configure
channels; if a channel pattern is
displayed when you select this,
change channels states in the
pattern

CHAN key configuration (on page 2-
17)

PATTERN
ACTION

PATT Manage, open and close, and
reset patterns

PATT key configuration (see "SCAN
key configuration" on page 2-20)

SCAN ATTR SCAN Run, manage, view, and reset
scan lists

SCAN key configuration (on page 2-
20)

DMM DMM Manage measurement settings
like measurement speed
(NPLC)

Speed
DMM key configuration (see "LIMIT
key configuration" on page 2-23)

LIMIT LIMIT Manage limit 1 and 2 settings
for the active function

DMM measurement capabilities (on
page 4-1)
LIMIT key configuration (on page 2-
23)

RELATIVE
OFFSET

REL Set relative values Relative offset (on page 4-41)
REL key configuration (on page 2-23)

FILTER FILTER Manage the digital filter settings Filters
FILTER key configuration (on page 2-
23)

FUNCTION FUNC Set DMM functions FUNC key configuration (on page 2-
24)

RD BUFFER
ATTR

STORE If a buffer has been selected
when you press the key, you
can view and set the reading
buffer attributes

STORE key configuration (on page 2-
24)

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-14 3700AS-901-01 Rev. B/May 2013

Front-panel key menu options
The menus that can be accessed from the front panel of the instrument allow you to set up and run
the instrument.

LOAD TEST menu options
Allows you to run scripts and code from the front panel that you created through the communication
interface, or configuration scripts created by pressing the front-panel MENU key, then selecting
SCRIPT > CREATE-CONFIG.

To open this menu, press LOAD.

The User option loads code that was added to Load Test with the display.loadmenu.add() (on page 8-
138) command.

The Scripts option loads named scripts that were added to the run-time environment. See Manage
scripts (on page 7-3) for information on creating and loading scripts.

After selecting code or script from the User or Scripts option, you can press RUN to execute the
selected code or script.

CHANNEL ACTION menu options
Allows you to change the state of channels from the front panel.

To open this menu, display a channel, then press CHAN.

Switch channel options include:

• OPEN: Opens the selected channel.
• CLOSE: Closes the selected channel.
• EXCLOSE: Closes the selected channel and opens any closed channels on the instrument.
• EXSLOTCLOSE: Closes the specified channel and opens any closed channels on the same slot.

Channels on other slots remain closed.
• RESET: Restores the factory default settings to the selected channel. Resetting a channel

deletes any channel patterns that contain that channel.

DIGIO channel options include:

• READ: Displays a value from a channel as 8-bit binary. This menu option does not appear if a
range of channels is selected. Related command: channel.read() (on page 8-86).

• WRITE: Writes a value to a channel. Enter the value as 8-bit binary. Related command:
channel.write() (on page 8-109).

• RESET-STATE: Resets the channel state. Related command: channel.resetstatelatch() (on page
8-89).

• RESET: Restores the factory default settings of selected channels or all channels. Related
command: channel.reset() (on page 8-87).

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-15

TOTALIZER channel options include:

• READ: Displays a value from a channel as a number between 0 and 65535. This menu option
does not appear if a range of channels is selected. Related command: channel.read() (on page 8-
86).

• WRITE: Writes a value to a channel. Enter the value between 0 and 65535. Related command:
channel.write() (on page 8-109).

• RESET-STATE: Resets the channel state. Related command: channel.resetstatelatch() (on page
8-89).

• RESET: Restores the factory default settings of selected channels or all channels. Related
command: channel.reset() (on page 8-87).

DAC channel options include:

• READ: Displays a value from a channel. This menu option does not appear if a range of channels
is selected. A number is displayed that is dependent on the channel’s selected mode function, as
well as the card model of the selected channel. Related command: channel.read() (on page 8-
86).

• WRITE: Writes a value from a channel. This menu option does not appear if a range of channels
is selected. A number is displayed that is dependent on the channel’s selected mode function, as
well as the card model of the selected channel. Related command: channel.write() (on page 8-
109)

• RESET-STATE: Resets the channel state. Related command: channel.resetstatelatch() (on page
8-89).

• RESET: Restores the factory default settings of selected channels or all channels. Related
command: channel.reset() (on page 8-87).

For more information, see Working with channels (on page 2-89).

PATTERN ACTION menu options
Allows you to configure and change patterns from the front panel.

To open this menu, in pattern view, press PATT.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-16 3700AS-901-01 Rev. B/May 2013

Options include:

• CREATE: If no patterns have been created, this is the only option that is displayed. Allows you to
create a new pattern.

• OPEN: Opens the channels in the selected channel pattern.
• CLOSE: Closes the channels in the selected channel pattern. These closures are appended to

any channels that are already closed.
• EXCLOSE: Closes the channels in the selected pattern so that the channels associated with the

pattern are exclusively closed. Any previously closed channels are opened.
• EXSLOTCLOSE: Exclusively closes the channels in the specified channel pattern for the

selected slots.
• VIEW: Displays the channels that are in the selected pattern.
• DELETE: Deletes the channel pattern.
• RESET: Displays options that allow you to reset the channels in the selected channel pattern to

factory default settings. Resetting a channel pattern causes that pattern to be deleted because
when channels are reset, they delete patterns that contain them.

For information about working with channel patterns, see Channel patterns (on page 2-96).

SCAN ACTION menu options
Allows you to work with the scan lists from the front panel. You must have a scan list created before
using this option. See Basic scan procedure (on page 3-5) for information.

To open this menu, press SCAN.

Options include:

• BACKGROUND: Runs the scan while allowing front panel operation.
• CREATE: Reminder that you must use the INSERT key to create a scan list.
• LIST: Displays the scan list. Use the navigation wheel to scroll through the channels.
• CLEAR: Clears the scan list.
• RESET: Resets the scan settings to the factory default settings, which includes clearing the scan

list.

DMM ACTION menu options
Press the DMM key to open the DMM ACTION menu.

The DMM ACTION menu contains the following items:

• MEASURE: Takes measurements on the digital multimeter (DMM) without using the trigger
model. Related command: dmm.measure() (on page 8-213).

• COUNT: Indicates the number of measurements to take when a measurement is requested.
Related command: dmm.measurecount (on page 8-214).

• LOAD: Recalls a user or factory DMM configuration. Use the navigation wheel to scroll through
available configurations. Related command: dmm.configure.recall() (on page 8-173).

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-17

• SAVE: Creates a DMM configuration with the pertinent attributes based on the selected function,
and associates it with the specified name. Related command: dmm.configure.set() (on page 8-
175).

• OPEN: Opens the specified channel and/or channel pattern. Related command: dmm.open() (on
page 8-219).

• CLOSE: Closes the specified channel or channel pattern in preparation for a DMM measurement.
Related command: dmm.close() (on page 8-167).

• RESETFUNC: Returns the DMM aspects of the system for only the active function to factory
default settings. Related command: dmm.reset() (on page 8-228).

• RESETALL: Returns all DMM functions of the instrument to the factory default settings. Related
command: dmm.reset() (on page 8-228).

Configuration menu options
CHAN key configuration
The CHAN key configuration menus will display different submenus depending on the type of channel
you are using (SWITCH, DIGIO, TOTALIZER, or DAC). The following topics describe the CHAN key
configuration menus by channel type.

CONFIG CHAN key - SWITCH channel type

Press the CONFIG key and then the CHAN key to open the CHANNEL ATTR menu. If you press the
CHAN key when a pattern is selected, the instrument goes into channel selection mode.

When changing attribute settings for a range of channels, the menu option for the first channel
specified in the range is highlighted. For example, selecting channels 3 to 5 on slot 3 on the front
panel (3003:3005) as a range shows the current attribute setting for 3003 when an attribute menu is
displayed.

When the attribute setting is selected for a range, the entire range of channels is updated to that
value. To view or set an individual attribute setting for only one channel, be sure to select a single
channel range. For example, 3003:3003 would only affect channel 3 on slot 3, which is displayed as
3003 with the channel state and poles setting below it.

The CHAN ATTR menu contains:

LABEL: Sets the label associated with the specified channel. From the front panel, the label can be
up to 12 characters. Remotely, the label may be up to 19 characters. This option will not be displayed
if multiple channels are selected. Related command: channel.setlabel().

BACKPLANE: Opens the BACKPLANE menu. Use this menu to add or remove backplane channels
from the specified channels. Related command: channel.setbackplane().

FORBID: Allows or prevents the closing of the specified channels. Related commands:
channel.setforbidden() and channel.clearforbidden().

POLE: Sets the number of poles for the specified channels. Related command: channel.setpole().

DELAY: Sets additional delay time for the specified channels. Related command: channel.setdelay().

COUNT: Displays closure cycles for the specified channel. This option is not displayed if multiple
channels are selected. Related command: channel.getcount().

DMM-CONFIG: Sets the DMM configuration associated with the specified channels. Related
command: dmm.setconfig().

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-18 3700AS-901-01 Rev. B/May 2013

CONFIG CHAN key - DIGIO channel type

Press the CONFIG CHAN key to open the DIGIO ATTR menu. The DIGIO ATTR menu is not
available when a range of channels is selected. If a range is selected, pressing CONFIG CHAN
displays the following:

• DIGIO ATTR MENU
• <No Edit by Range, Use EXIT>

Therefore, to see the following options, select a single DIGIO channel.

LABEL: Enter up to 12 characters for the label for a channel. Related command: channel.setlabel()
(on page 8-94).

DELAY: Enter the value for the delay in 1ms steps from 0 to 60 seconds for a channel. Related
command: channel.setdelay() (on page 8-93).

MODE: Sets the mode attribute on a channel. Select INPUT, OUTPUT, or OUTPUT_PROTECTED.
Related command: channel.setmode() (on page 8-98).

MATCH: Sets the match value on a channel. Enter the value as 8-bit binary. Related command:
channel.setmatch() (on page 8-96).

MATCH-TYPE: Sets the match type on a channel. Select EXACT, ANY, NOT_EXACT, or NONE.
Related command: channel.setmatchtype() (on page 8-97).

STATE: Queries for the state of a channel and displays the value in the top line, labeled by STATE=.
Related command: channel.getstate() (on page 8-75).

CONFIG CHAN key - TOTALIZER channel type

Press the CONFIG CHAN key to open the TOTAL ATTR menu. The TOTAL ATTR menu is not
available when a range of channels is selected. If a range is selected, pressing CONFIG CHAN
displays the following:

• TOTAL ATTR MENU
• <No Edit by Range, Use EXIT>

Therefore, to see the following options, select a single totalizer channel.

LABEL: Enter up to 12 characters for the label for a channel. Related command: channel.setlabel()
(on page 8-94).

MODE: Sets the mode attribute on a channel. Select one of the following options:

• EDGE. Indicates the edge for the Totalizer channel to increment its count. Select from one of the
following options:
• FALLING
• RISING

• THRESHOLD. Indicates the threshold range. Select from one of the following options:
• TTL
• NON_TTL

• RESET. Indicates if the count value gets reset after being read. Select from one of the following options:
• ON
• OFF

Related command: channel.setmode() (on page 8-98).

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-19

MATCH: Sets the match value on a channel. Enter a value between 0 and 65535. Related command:
channel.setmatch() (on page 8-96).

• MATCH TYPE: Sets the match type on a channel. Select EXACT, ANY, NOT_EXACT, or NONE.
Related command: channel.setmatchtype() (on page 8-97).

• STATE: Queries for the state of a channel and displays the value in the top line, labeled by
STATE=. Related command: channel.getstate() (on page 8-75).

• POWER: Sets the power state attribute on a channel. Select ENABLE or DISABLE. Related
command: channel.setpowerstate() (on page 8-103)

CONFIG CHAN key - DAC channel type

Press the CONFIG CHAN key to open the DAC ATTR menu. The DAC ATTR menu is not available
when a range of channels is selected. If a range is selected, pressing CONFIG CHAN displays the
following:

• DAC ATTR MENU
• <No Edit by Range, Use EXIT>

Therefore, to see the following options, select a single DAC channel.

If the DAC channel has power set to DISABLE, the menu choices change to only show the option to
change the power setting, until the power is set to ENABLE.

LABEL: Enter up to 12 characters for the label for a channel. Related command: channel.setlabel()
(on page 8-94).

DELAY: Enter the value for the delay in 1 ms steps from 0 to 60 seconds for a channel. Related
command: channel.setdelay() (on page 8-93).

MODE: Sets the mode attribute on a channel. Select one of the following options:

• FUNCTION. Sets the desired function for a channel. Select one of the following options:
• VOLTAGE
• CURRENT_1
• CURRENT_2

• PROTECT. Indicates if the protection mode for a channel is enabled. Select one of the following
options:
• AUTO
• OFF

Related command: channel.setmode() (on page 8-98).

• OUTPUT: Sets the output enable attribute on a channel. Select ENABLE or DISABLE. Related
command: channel.setoutputenable() (on page 8-100).

• STATE: Queries for the state of a channel and displays the value in the top line, labeled by
STATE=. Related command: channel.getstate() (on page 8-75).

• POWER: Sets the power state attribute on a channel. Select ENABLE or DISABLE. Related
command: channel.setpowerstate() (on page 8-103).

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-20 3700AS-901-01 Rev. B/May 2013

PATT key configuration
Press the CONFIG key and then the PATT key to open the PATTERN ATTR menu.

The PATTERN ATTR menu contains the following item:

• DMM_CONFIG: Sets the DMM configuration associated with the specified channel pattern. Use
the navigation wheel to scroll through the available DMM configurations. Related command:
dmm.setconfig() (on page 8-237).

SCAN key configuration
Press the CONFIG key and then the SCAN key to open the SCAN ATTR menu.

The SCAN ATTR menu contains the following items:

• ADD: Instructs how to add an additional list of channels and/or channel patterns to scan. When
you select ADD from the SCAN ATTR menu, "Use <INSERT> key" is displayed for a few
seconds before going back to the SCAN ATTR menu options. To add items to an existing scan
list, press INSERT.

Press the INSERT key when you are not in the SCAN ATTR menu on the MAIN display.

• BYPASS: Enables or disables bypassing the first item in the scan. Related command:
scan.bypass (on page 8-324).

• MODE: Sets the scan.mode value to one of the following:
• OPEN_ALL, which is equivalent to scan.MODE_OPEN_ALL or 0 (default setting)
• OPEN_SELECT, which is equivalent to scan.MODE_OPEN_SELECTIVE or 1
• FIXED_ABR, which is equivalent to scan.MODE_FIXED_ABR or 2
Related command: scan.mode() (see "scan.mode" on page 8-331)

• MEAS_CNT: Sets the measure count value. Related command: scan.measurecount (on page 8-
330)

• SCAN_CNT: Sets the scan count value. Related command: scan.scancount (on page 8-335)

DMM key configuration
Press the CONFIG key and then the DMM key to open a DMM attribute menu for the active function.
For example, if the DCV function is active, pressing the CONFIG key and then the DMM key opens
the DC VOLT ATTR menu.

Each function only has access to the applicable attributes for that function. Brief definitions of the
available attributes are contained in the following paragraphs. Refer to the appropriate command for
additional attribute information in the TSP commands (on page 8-10).

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-21

The DMM ATTR menu contains:

APERTURE: Configures the aperture setting for the active DMM function in seconds. Related
command: dmm.aperture (on page 8-150).

AUTODELAY: Configures the auto delay setting for the active DMM function. Related command:
dmm.autodelay (on page 8-154).

AUTORANGE: Configures the auto range setting for the DMM. Related command: dmm.autorange
(on page 8-155).

AUTOZERO: Configures the autozero setting for the DMM, which periodically measures internal
voltages to help maintain the stability and accuracy of the instrument over time and changes in
temperature. Related command: dmm.autozero (on page 8-157). Also see Autozero.

DBREF: Configures the DB reference setting for the DMM in volts. Related command:
dmm.dbreference (on page 8-178).

DETECTBW: Configures the detector bandwidth setting for the selected DMM function. For more
information, see Bandwidth (on page 4-53). Related command: dmm.detectorbandwidth (on page 8-
179).

DIGITS: Configures the display digits setting for the selected DMM function. For more information,
see Digits programming (see "Change the display resolution" on page 4-6). Related command:
dmm.displaydigits (on page 8-180).

DRYCIRCUIT: Configures the dry circuit setting for the selected DMM function. Related command:
dmm.drycircuit (on page 8-181).

FILTER: Opens the FILTER menu for the selected DMM function. See FILTER key configuration (on
page 2-23).

FUNC: Displays a menu that allows you to scroll through the available DMM functions. Use the
navigation wheel or CURSOR keys to scroll the menu options and press ENTER when the desired
function is highlighted. Related command: dmm.func (on page 8-187).

INPUTDIV: Enables or disables the 10M Ω input divider. Related command: dmm.inputdivider (on
page 8-190).

LIMIT: Opens the LIMIT menu for the selected DMM function. See LIMIT key configuration (on page
2-23).

LINESYNC: Enables or disables line sync during measurements. Related command: dmm.linesync
(on page 8-203).

MATH: Selecting the MATH menu item opens the MATH MENU. Items contained in this menu are:

• ENABLE: Enables or disables math operation on measurements. Related command: dmm.math.enable
(on page 8-206).

• FORMAT: Specifies the math operation to perform on measurements. Related command:
dmm.math.format (on page 8-208).

• BFACTOR: Specifies the offset for the y = mX + b operation. Related command:
dmm.math.mxb.bfactor (on page 8-209).

• MFACTOR: Specifies the scale factor for the y = mX + b operation. Related command:
dmm.math.mxb.mfactor (on page 8-210).

• MXBUNITS: Specifies the unit character for the y = mX + b operation. Related command:
dmm.math.mxb.units (on page 8-211).

• PERCENT: Specifies the constant to use for the percent operation. Related command:
dmm.math.percent (on page 8-212).

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-22 3700AS-901-01 Rev. B/May 2013

For more information, see:

• mX+b (on page 4-44)
• Reciprocal (1/X) (on page 4-47)
• Percent (on page 4-45)

NPLC: Configures the integration rate in line cycles for the DMM. Related command: dmm.nplc (on
page 8-217).

OFFSETCOMP: Configures the offset compensation setting for the DMM. Related command:
dmm.offsetcompensation (on page 8-218).

OPENDETECT: Configures the state of the thermocouple or 4-wire ohms open detector that is being
used. Related command: dmm.opendetector (on page 8-221).

RANGE: Configures the range of DMM for the selected function for one channel type. For more
information, see Range. Related command: dmm.range (on page 8-222).

REL: Opens the relative offset menu for the selected DMM function. See REL key configuration (on
page 2-23).

THERMO: Selecting the THERMO menu item opens the THERMO menu. Items contained in this
menu are:

• REFJUNCT: Allows selection of the reference junction to use. Available choices are: SIMULATED,
EXTERNAL, or INTERNAL. Related command: dmm.refjunction (on page 8-223).

• SIMREF: Specifies the simulated reference temperature for thermocouples. Related command:
dmm.simreftemperature (on page 8-239).

• TRANSDUCER: Selects the transducer type (THERMOCOUPLE, THERMISTOR, 3RTD, or 4RTD).
Related command: dmm.transducer (on page 8-244).

• THERMISTOR: Specifies the type of thermistor. Related command: dmm.thermistor (on page 8-240).
• THERMOCOUPLE: Specifies the thermocouple type. Related command: dmm.thermocouple (on page

8-241).
• THREERTD: Specifies the type of 3-wire RTD. Related command: dmm.threertd (on page 8-242).
• FOURRTD: Specifies the type of 4-wire RTD. Related command: dmm.fourrtd (on page 8-186).
• USER: Specifies USER type of RTD (ALPHA, BETA, DELTA, or ZERO). Related commands:

dmm.rtdalpha (on page 8-229), dmm.rtdbeta (on page 8-231), dmm.rtddelta (on page 8-233),
dmm.rtdzero (on page 8-234).

THRESHOLD: Configures the threshold range. Related command: dmm.threshold (on page 8-243).

UNITS: Configures the units for voltage and temperature measurements. Related command:
dmm.units (on page 8-245).

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-23

LIMIT key configuration
Pressing the CONFIG key and then the LIMIT key opens the LIMIT menu. Select LIMIT 1 or LIMIT 2
to open the desired LIMIT 1 or LIMIT 2 menu.

These menus contain the following items:

• ENABLE: Enables or disables limit testing. Related command: dmm.limit[Y].enable (on page 8-
193).

• CLEAR: Clears the test results of the limit. Related command: dmm.limit[Y].clear() (on page 8-
192).

• AUTOCLEAR: Indicates if the limit should be cleared automatically or not. Related command:
dmm.limit[Y].autoclear (on page 8-191).

• LOWVAL: Sets the low limit value. Related command: dmm.limit[Y].low.value (on page 8-201).
• LOWFAIL: Queries for the low test results of the limit. Related command: dmm.limit[Y].low.fail

(on page 8-199).
• HIGHVAL: Sets the high limit value. Related command: dmm.limit[Y].high.value (on page 8-197).
• HIGHFAIL: Queries for the high test results of limit. Related command: dmm.limit[Y].high.fail (on

page 8-195).

REL key configuration
Press the CONFIG key and then the REL key to open the RELATIVE OFFSET menu.

The RELATIVE OFFSET menu contains the following menu items:

• ACQUIRE: Acquires an internal measurement to store as the REL level value. Related
command: dmm.rel.acquire() (on page 8-224).

• ENABLE: Enables or disables relative measurement control for the DMM. Related command:
dmm.rel.enable (on page 8-225).

• LEVEL: Sets a specific offset value to use for relative measurements for the DMM. Related
command: dmm.rel.level (on page 8-226).

FILTER key configuration
Press the CONFIG key and then the FILTER key to open the FILTER menu.

The FILTER menu contains the following menu items:

• ENABLE: Enables or disables filtered measurements for the selected DMM function. Related
command: dmm.filter.enable (on page 8-183).

• COUNT: Indicates the filter count setting for the selected DMM function. Related command:
dmm.filter.count (on page 8-182).

• TYPE: Indicates the filter averaging type for the DMM measurements on the selected DMM
functions (MOVING or REPEAT). Related command: dmm.filter.type (on page 8-184).

• WINDOW: Indicates the filter window for the DMM measurements (0 to 10% in 0.1% increments).
Related command: dmm.filter.window (on page 8-185).

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-24 3700AS-901-01 Rev. B/May 2013

FUNC key configuration
Press the CONFIG key and then the FUNC key to display a menu that allows you to scroll through
the available DMM functions. Turn the navigation wheel or press the CURSOR keys to scroll through
available functions. Press the navigation wheel or the ENTER key to make the displayed function
active when it is highlighted and blinking. While in the configuration mode of the FUNC key, the
function takes effect for the highlighted function only when the ENTER key is pressed (the function
does not change while scrolling).

STORE key configuration
With a buffer selected, press the CONFIG key and then the STORE key to open the RD BUFFER
ATTR menu.

This menu contains the following menu items:

• CAPACITY: Displays the maximum number of readings that can be stored.
• COUNT: Displays the actual number of readings that have been stored.
• APPEND: Indicates the append mode setting of the reading buffer. For buffers created on the

front panel or web, this defaults to ON or enabled. For buffers created over the bus, the default is
OFF or disabled.

Using the front panel with non-switch channels
To read a value from the main front panel screen, select the channel and press the TRIG key. To see
a digital I/O channel in hexidecimal format (instead of normal binary), press the CONFIG key, and
then press the TRIG key.

A star symbol (*) or exclamation point symbol (!) may appear after the reading. The meaning of the
symbol depends on channel type.

• A star symbol (*) appears after the reading to indicate that the reading matches the MATCH
setting for digital I/O and totalizer channels.

• An exclamation point symbol (!) appears after the reading to indicate an overload state condition
on that channel for digital I/O and DAC channels.

• An exclamation point symbol (!) appears after the reading to indicate an overflow state condition
on a totalizer channel.

• If the power state is OFF for totalizer or DAC channels, the display shows “DISABLED” instead of
any readings.

The following table lists the front panel channel attributes that indicate the various channel mode
settings (remote command equivalent channel.setmode() (on page 8-98)), channel output enable
(remote command equivalent channel.setoutputenable() (on page 8-100)), and channel label (remote
command equivalent channel.setlabel() (on page 8-94)). Some of the attributes have alternate
symbols, depending on the operation you are performing on the front panel and whether it is being
used with the 6 or 12 character label symbol.

• For digital I/O and totalizer channels, the label symbol is listed first, followed by a comma and
then mode symbols. If the label is the factory default setting, then only the mode is listed.

• For DAC channels, the label symbol is listed first, followed by a comma, and then mode symbols,
followed by another comma and the output enable symbol. If the label is the factory default
setting, then only the mode and output enable symbols are listed.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-25

Front-panel channel attributes for channel settings

Front-panel channel
setting

Symbol Definition Symbol meaning

Channel label XXXXXX First 6 characters of label Used with single letter
symbols

 XXXXXXXXXXXX First 12 characters of label Used with the non-single
letter symbols

Digital I/O mode
settings

DIG IN Digital input mode Used with 12-character label
or no label

 DIG OUT Digital output mode Used with 12-character label
or no label

 DIG pOUT Digital output protected mode Used with 12 character label
or no label

 I (uppercase
"i")

Digital input mode Used with 6-character label

 O Digital output mode Used with 6-character label
 P Digital output protected mode Used with 6-character label
Totalizer mode
settings

Rise Ed Totalizer rising edge mode Used with 12-character label
or no label

 Fall Ed Totalizer falling edge mode Used with 12-character label
or no label

 Rise-TTL Totalizer rising edge TTL level
mode

Used with 12-character label
or no label

 Fall-TTL Totalizer falling edge TTL level
mode

Used with 12-character label
or no label

 Rise-RST Totalizer rising edge read reset
mode

Used with 12-character label
or no label

 Fall-RST Totalizer falling edge read reset
mode

Used with 12-character label
or no label

 RiseTRST Totalizer rising edge TTL read
reset mode

Used with 12-character label
or no label

 FallTRST Totalizer falling edge TTL read
reset mode

Used with 12-character label
or no label

 R Totalizer rising edge mode Used with 6-character label
 F Totalizer falling edge mode Used with 6-character label
DAC mode settings V Voltage function mode Used with 6-character label
 I (uppercase

"i")
Current function either 1 or 2
mode

Used with 6-character label

 V1 Voltage function 1 mode Used with 12-character label
or no label

 I1 Current function 1 mode Used with 12-character label
or no label

 I2 Current function 2 mode Used with 12-character label
or no label

 pV1 Protected voltage function 1 mode Used with 12-character label
or no label

 pI1 Protected current function 1 mode Used with 12-character label
or no label

 pI2 Protected current function 2 mode Used with 12-character label
or no label

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-26 3700AS-901-01 Rev. B/May 2013

Front-panel channel attributes for channel settings

Front-panel channel
setting

Symbol Definition Symbol meaning

DAC output enable
settings

Off Output enable is disabled Used with 6 or 12 character
label

 On Output enable is enabled Used with 6 or 12 character
label

Rear panel summary
The following is a brief overview of the Series 3700A System Switch/Multimeter rear panel.

Figure 8: Rear panel features

Item Description
1 Analog backplane AMPS fuse (on page 2-26)
2 Slots (on page 2-27) (6 slots)
3 TSP-Link connector (on page 2-27) (2 connectors)

4 Instrument fuse (on page 2-27)
5 Power connector (on page 2-27)
6 Digital I/O port (on page 2-28, on page 3-43)
7 GPIB connector
8 Ethernet connector
9 USB connector
10 Analog backplane connector (on page 2-32)

Rear panel connection details
The following topics describe how to connect the cable connections for the communication interfaces.

To properly set up the communications interfaces after connection, see the information in
Communication interfaces (see "Remote communication interfaces" on page 2-53).

Analog backplane AMPS fuse

For continued protection against fire hazard, replace fuse with same type and rating (3 A /
250 V). See Fuse replacement (on page A-2, on page 2-2) for details.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-27

Slots
Use any of the six slots of the Keithley Instruments Series 3700A for switching cards. If a slot does
not contain a card, make sure that you cover the slot with a slot cover.

To get information about an installed card, press the SLOT key.

For complete information about Series 3700A switching cards, refer to the Series 3700A Switch and
Control Cards Reference Manual (Keithley part number 3700AS-909-01) on the Product Information
CD-ROM that came with your Series 3700A.

TSP-Link connector
Connect the TSP-Link connector to one of the TSP-Link connectors on the rear panel of the
instrument.

The location of the TSP-Link connectors on the instrument are shown below.

Figure 9: Series 3700A TSP-Link connections

Instrument fuse
FOR CONTINUED PROTECTION AGAINST FIRE HAZARD, REPLACE FUSE WITH SAME TYPE
AND RATING (1.25A / 250V). See Fuse replacement (on page A-2, on page 2-2) for details.

Power connector
Using the supplied line cord, connect to a grounded AC power outlet. See Line power connection for
connection details.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-28 3700AS-901-01 Rev. B/May 2013

Digital I/O port
The Series 3700A instruments have a digital input/output port that can be used to control external
digital circuitry. For example, a handler that is used to perform binning operations can be used with a
digital I/O port. The digital I/O port is a standard female DB-25 connector.

Figure 10: Digital I/O port

Pin Description
1
...
9

Digital I/O #1
...
Digital I/O #9

10
...
14

Digital I/O #10 (high-current pins; see NOTE)
...
Digital I/O #14

15 to 21 Ground
22 V EXT
23 V EXT
24 Pin reserved for future use
25 V EXT

For a schematic diagram of the digital I/O hardware, refer to the Series 3700A Specifications on the
Keithley Instruments support website (http://www.keithley.com/support).
High-current pins (pins 10 to 14) can be used for binning applications or for external relays.

GPIB connector
To connect a Series 3700A to the GPIB bus, use a cable equipped with standard IEEE-488
connectors, as shown below.

http://www.keithley.com/support

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-29

Figure 11: GPIB connector

To allow many parallel connections to one instrument, stack the connectors. Two screws are located
on each connector to ensure that connections remain secure. The figure below shows a typical
connection scheme for a multi-unit test system.

Figure 12: Series 3700A multiple parallel connections

To avoid possible mechanical damage, stack no more than three connectors on any one unit. To
minimize interference caused by electromagnetic radiation, use only shielded IEEE-488 cables.
Contact Keithley Instruments for shielded cables.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-30 3700AS-901-01 Rev. B/May 2013

To connect the Series 3700A to the IEEE-488 bus, line up the cable connector with the connector
located on the rear panel. Install and tighten the screws securely, making sure not to overtighten
them (the following figure shows the location of the connections).

Figure 13: Series 3700A GPIB connector

Connect any additional connectors from other instruments as required for your application. Make sure
the other end of the cable is properly connected to the controller. You can only have 15 devices
connected to an IEEE-488 bus, including the controller. The maximum cable length is either 20
meters or two meters multiplied by the number of devices, whichever is less. Not observing these
limits may cause erratic bus operation.

Ethernet connection
Connect the ethernet connector between the rear panel of the instrument and the host computer or
network router. You can use an LAN crossover cable (RJ-45, male/male) or straight-through cable.
The instrument automatically senses which cable you have connected.

The TSP-Link® connectors will accept a LAN connection, but will not be identified as a LAN and will
not connect properly. Be sure to connect the LAN connector correctly.

Use this RJ-45 connector to connect the instrument to the local area network.
When connecting directly to a computer, a crossover cable (included) must be
used. When connecting to a network switch, router, or hub, a normal CAT-5
cable (not provided) should be used unless your equipment has Auto-MDIX
capabilities. If it does have Auto-MDIX, the crossover cables may be used.

The figure below shows the location of the ethernet connector on the Series 3700A rear panel.

Figure 14: Series 3700A ethernet connection

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-31

LAN status LEDs

The figure below illustrates the two status light emitting diodes (LED) that are located at the top of the
LAN connection port of the instrument. The table below the figure provides explanations of the LED
states.

Figure 15: LAN Status

1 LED indicates the LAN port is connected to a 100 Mbps network
2 LED indicates the LAN port is connected to a 10 Mbps network

 When the LED is: The network:

 Off is not connected

 On is connected

 Blinking is sending or receiving data

USB connectors
The downstream USB-2.0 receptacle (Type B) located on the rear panel connects to a host. The front
panel has an upstream USB-2.0 connector (Type A) that connects to a user supplied USB flash drive.

Use the rear connector to communicate with the instrument over USB by sending the desired
commands. Use the front panel connector to insert a USB flash drive for saving or loading reading
buffers, user setups, or scripts. See the Reference Manual for more information on reading buffers,
user setups and scripts.

Figure 16: USB connectors

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-32 3700AS-901-01 Rev. B/May 2013

Analog backplane connector
Refer to the following figure for analog backplane connector information. See Connections (see
"Connection safety" on page 2-32) before making any connections.

Figure 17: Analog backplane connector

The tables below contain pin numbers and descriptions for the analog backplane connector.

Description Pin Description Pin
Analog backplane 3-HI 5 DMM-SLO 4

Analog backplane 3-LO 6 DMM-SHI 3
Analog backplane 4-HI 7 DMM-LO 2, 9
Analog backplane 4-LO 8 DMM-HI 1
Analog backplane 5-HI 12 AMP-LO 2, 9
Analog backplane 5-LO 13 AMP 10, 11
Analog backplane 6-HI 14
Analog backplane 6-LO 15

Connection safety

Connection information for switching cards is intended for qualified service personnel. Do
not attempt to connect DUT or external circuitry to a switching card unless qualified to do
so.

To prevent electric shock that could result in serious injury or death, comply with these
safety precautions:

Before making or breaking any connections to the switching card, make sure the instrument
is turned off and power is removed from all external circuitry.

Do not connect signals that will exceed the maximum specifications of any installed
switching card.

If both the rear analog backplane connector of the instrument and the switching card
terminals are connected at the same time, the test lead insulation must be rated to the
highest voltage that is connected. For example, if 300V is connected to the analog
backplane connector, the test lead insulation for the switching card must also be rated for
300V.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-33

Dangerous arcs of an explosive nature in a high energy circuit can cause severe personal
injury or death. If the multimeter is connected to a high energy circuit when set to a current
range, low resistance range, or any other low impedance range, the circuit is virtually
shorted.

Dangerous arcing can result (even when the multimeter is set to a voltage range) if the
minimum voltage spacing is reduced in the external connections. For details about how to
safely make high energy measurements, see High-energy circuit safety precautions (on
page 4-2).

As described in the International Electrotechnical Commission (IEC) Standard IEC 664, the
instrument is Installation Category I and must not be connected to mains.

Saved setups
You can restore the Series 3700A to one of six nonvolatile memory setup configurations (five user
setups and one factory default), or to a setup stored on an external USB flash drive. As shipped from
the factory, the Series 3700A powers up with the factory default settings, which cannot be
overwritten. The default settings are also in the five user setup locations, but may be overwritten. The
factory default settings are listed in the command descriptions in the TSP command reference (on
page 8-1).

The setup configuration that is used when the instrument powers up can be changed.

Saving user setups
You can save the present Series 3700A setup to internal nonvolatile memory or a USB flash drive.

To save a user setup to nonvolatile memory from the front panel:
1. Configure the Series 3700A to the settings that you want to save.
2. Press the MENU key.
3. Select SETUP and then press the ENTER key.
4. Select the SAVE menu item and then press the ENTER key.
5. Select INTERNAL and then press the ENTER key.
6. Select the user number (1 through 5), and press the ENTER key.

To save a user setup to an external USB flash drive from the front panel:
1. Configure the Series 3700A to the settings that you want to save.
2. Insert the USB flash drive into the USB port on the front panel of the Series 3700A.
3. Press the MENU key.
4. Select SETUP and then press the ENTER key.
5. Select SAVE and then press the ENTER key.
6. Select USB. The file name setup000.set is displayed.
7. Turn the navigation wheel to change the last three digits of the file name and then press the

ENTER key.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-34 3700AS-901-01 Rev. B/May 2013

Recalling a saved setup
You can recall setups from internal nonvolatile memory or a USB flash drive at any time.
To recall a saved setup from the front panel:
1. Press the MENU key to access the main menu.
2. Select SETUP, and then press the ENTER key.
3. Select the RECALL menu item, and then press the ENTER key.

4. Select one of the following:
• INTERNAL
• USB
USB only: Select the appropriate file and then press the ENTER key.

Start-up configuration
You can specify the Series 3700A start-up (power-on) configuration from the front panel. Set the
start-up configuration to a previously stored setup (recalled from internal nonvolatile memory).
To select the power-on setup:
1. Press the MENU key to access the main menu.
2. Select SETUP, and then press the ENTER key.
3. Select POWERON, and then press the ENTER key.
4. Select the configuration you want to use on startup.
5. Press the ENTER key.
6. Press the EXIT (LOCAL) key to return to the main menu.

Saving user setups from a remote interface
Saving and recalling user setups
Use the setup.save() and setup.recall() functions to save and recall user setups.

To save and recall user setups using remote commands:

The following example saves the present setup as setup 1, and then recalls setup 1:
-- Save the present setup to nonvolatile memory.
setup.save(1)
-- Recall the saved user setup from nonvolatile memory.
setup.recall(1)

Restoring the factory default setups
Use one of the reset functions to return the Series 3700A to the original factory defaults. An example
of each type of reset is shown in the following program examples.

Restore all factory defaults of all nodes on the TSP-Link® network:
reset()

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-35

Restore all factory defaults (note that you cannot use *rst in a script):
*rst

Restore all factory defaults:
setup.recall(0)

Restore all channels on all slots to defaults:
channel.reset("allslots")

Reset just the local TSP-Link node:
localnode.reset()

Start-up (power-on) configuration
You can specify the Series 3700A start-up (power-on) configuration. Use the setup.poweron
attribute to select which setup to return to upon power-up. To set the setup.poweron configuration
attribute:
setup.poweron = n -- Select power-on setup.

Where:

 n = 0 (*RST/reset() factory defaults)

 n = 1

Using the web interface

Introduction
The Series 3700A web interface can be used with your choice of web browsers, including Microsoft®
Internet Explorer®, Mozilla® Firefox®, Google ChromeTM, and Apple® Safari®. Using the web interface,
you can review instrument status, control the instrument, and upgrade the instrument over a LAN
connection.

The instrument web page resides in the firmware of the instrument. Changes you make through the
web interface are immediately made in the instrument.

All examples in this manual can be run through the TSB Embedded (on page 2-48) web application
that is available on the instrument web interface.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-36 3700AS-901-01 Rev. B/May 2013

Connect to the instrument web interface
To connect to the instrument web interface, you must have an LAN connection from the computer to
the instrument. See LAN concepts and settings (on page B-1) for specific connection instructions.

The web interface requires the web browser plug-in Sun JavaTM Runtime Environment Version 6 or
higher. Installation files are available from http://www.java.com/en/download/manual.jsp
(http://www.java.com/en/download/manual.jsp).

The ActiveX control and Java applets are installed from the instrument but, depending on the browser
security settings, they may require the users permission to be downloaded and installed.
After the instrument is connected and Java is installed, to connect to the instrument:
1. Open an internet browser, such as Windows Internet Explorer (v6.0 or higher only).
2. In the Address box, enter the IP address of the instrument (to find the IP address, from the front

panel of the instrument, select MENU > LAN > STATUS > IP-ADDRESS).

The Home page of the instrument web interface is displayed.

Web interface home page
The home page of the web interface gives you basic information about the instrument, including:

• The instrument model, serial number, firmware revision, and LXI information
• A list of slots and the switch cards that are installed in each slot
• An ID button to help you locate the instrument
• Links to the instrument web options, including TSB Embedded.

Identify the instrument
If you have a bank of instruments, you can click ID to determine which one you are communicating
with.

Before trying to identify the instrument, make sure you have a remote connection to the instrument.
To identify the instrument:

In the upper right corner of the Home page, click .

The button turns green , and the LAN status indicator on the instrument blinks.

Click again to return the button to its original color and return the LAN status indicator to
steady on.

Log in to the instrument
The web interface has both interactive and read-only pages. These pages are always listed in the
navigation panel on the left side of the web interface. You can review information on any of the pages
without logging in, but to change information, you must log in.

Pages that contain information you can change include a Login button. Once you have logged in to
one page of the web interface, you do not need to log in again unless you reload the page.

http://www.java.com/en/download/manual.jsp

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-37

To log into the instrument:
1. Open a page that contains a Login button, such as one of the Cards pages, Scan Builder, or TSB

Embedded.

Figure 18: Web interface login

2. Click Login. The login dialog box is displayed.
3. Enter the password (the default is admin).

Figure 19: 3700A Enter web interface password

4. Click Login.

The default password is admin. If the password has been changed, it is available from the front
panel of the instrument. Press MENU > LAN > STATUS > PASSWORD.

Card pages
The card pages are interactive pages where you can work with channels in each slot.

To open a card page, on the left navigation, click the slot number.

There is a specific page for each card installed in the mainframe. The page displays a grid that shows
the relay configuration of the switch card.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-38 3700AS-901-01 Rev. B/May 2013

Figure 20: Series 3700A web interface Cards page

Open and close slots from the card pages
You can open and close channels from the card pages in several ways.

The simplest method is to click a connection. The channel changes state to open or closed. When the
channel is open, the connection will look similar to one of the following graphics (the actual item on
the web interface depends on the installed card):

Figure 21: Series 3700A web interface relay open

When the channel is closed, the connection will look similar to one of the following:

Figure 22: Web interface closed channel

Figure 23: Web interface relay closed

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-39

To specify the type of close, select a Channel Action Type from the box in the upper right before
closing a channel. The options are:

• Channel Close: Close the selected channel without affecting the state of any other channels.
• Exclusive Slot Close: Close the selected channel and open any closed channels in the same

slot.
• Exclusive Close: Close the selected channel and open any closed channels in the instrument

(the only closed channel is the selected channel).

You can open all channels in a slot by clicking Open Slot.

You can open all channels in the instrument by clicking Open All.

For more information on opening and closing channels, see "Working with channels" in the Series
3700A Reference Manual.

Configure channels from the web interface
To configure channels from the web interface, right-click the channel. The Channel Configuration
dialog box is displayed.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-40 3700AS-901-01 Rev. B/May 2013

Figure 24: Series 3700A channel configuration dialog box

In this dialog box, you can set:

• Label: The label for the channel. This is the same as the command channel.setlabel().

• Forbidden: Select this box to set the channel to forbidden. This prevents the channel from being
closed from any interface. Note that if the channel is used in a channel pattern, the pattern is
deleted when you set the channel to forbidden to close. An analog backplane relay can be
marked as forbidden to close.

• Pole: Pole setting for multiplexer (MUX) channels indicates if the paired MUX channel should be
included when performing a close or open operation on channel.
In a switching module that has 60 channels, the Series 3700A automatically pairs Channels 1
through 30 with Channels 31 through 60 (respectively) when the pole setting for a channel is set
to 4-pole. Once you configure the pole setting of a switching channel for 4-pole, the associated
paired channel becomes unavailable for switching operation. For example, if 3003 is set to 4-pole
and its paired channel is 3033, you cannot set attributes or perform close or open operations on
channel 3033. If you specify channel 3303 for a close or open operations, an error code -221,
"Paired channel settings conflict," is generated.
Matrix channels have fixed pole settings. Multiplexer channels pole settings may be changed.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-41

• Delay Time: The additional delay to incur after the relay settles when closing the channel. Enter
the value for the delay in seconds. The total delay for channel close is this delay plus the relay
settling time.

• Backplane channels: You can select the backplane relay with this option.
• DMM Configuration: Click Edit to set up configuration of the DMM for this channel.

This dialog box also displays the closure count. See Determining the number of relay closures (on
page 2-92) for information.

Set up channel patterns from the web interface
You can use channel patterns as a convenient way to refer to a group of switching channels and
backplane relays with a single alphanumeric name. When you perform close or open operations on a
channel pattern, only the channels and analog backplane relays that are in the channel pattern are
affected.

There is no speed difference when performing close and open operations on channel patterns
compared to performing the same operations on individual channels or a list of channels.

To create a channel pattern from the web interface:
1. From the left navigation, click a slot.
2. Click Pattern (above the Channel Action Type box). The Channel Pattern Configuration dialog

box is displayed.

Figure 25: Series 3700A Channel pattern configuration dialog box

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-42 3700AS-901-01 Rev. B/May 2013

3. Enter a name in the box at the top.
4. From the Channels Available list, select the channels you want to add. You can use Ctrl+click and

Shift+click to select multiple channels.
5. Click Add. You can add as many channels as needed.
6. Click Create.

To create a channel pattern from the web interface using the Snapshot feature:
1. Close the channels that you want to include in the pattern.
2. Click Pattern (above the Channel Action Type box). The Channel Pattern Configuration dialog

box is displayed.
3. Enter a name in the box at the top.
4. Click Snapshot. A new pattern is created that contains the closed channels.

To delete a channel pattern from the web interface:
1. Select the name of the pattern that you want to delete.
2. Click Delete.

For more information regarding patterns, including opening and closing the channels that are in
patterns, see Channel patterns (on page 2-96).

Reset a slot from the web interface
You can reset all the relays in the displayed slot by clicking Reset Slot.

When you reset the relays in a slot:

• Any closed channels and analog backplane relays open
• The poles of all channels reset to 2-pole operation and paired channels are changed to match
• Labels return to default of slot, channel or slot, row, column
• Analog backplane relays specified by the channel.setbackplane() function are cleared

• Delays are set to zero
• If the channel is forbidden to close, it is cleared from being forbidden to close
• The DMM configurations of all channels are set to nofunction

• If any of the slot’s channels are in channel patterns, the patterns are deleted

The rest of the instrument settings are unaffected.

Scan Builder page
The Scan Builder page allows you to set up and run scans and triggers.

A scan is a series of steps that opens and closes switches sequentially for a selected group of
channels. During each step, actions occur, such as waiting for a trigger, taking a measurement on an
external instrument, and completing a step count. Scans automate actions that you want to perform
consistently and repeatedly on a set of channels.

Triggers are events that prompt the instrument to move from one step to another in a scan. Triggers
can come from a variety of sources, such as a key press, digital input, or expiration of a timer. The
sequence of actions and events that occur during the scan is called the trigger model, described in
Trigger model (on page 3-2).

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-43

Scanning and triggering allow you to synchronize actions across channels. You can set up a scan
using the trigger model to precisely time and synchronize the Series 3700A between channels and
multiple instruments. You can also use triggers without the triggering model to set up a scan to meet
the needs of a specific application that does not fit the triggering model.

If you use Scan Builder to create a scan, use the options in the Scan Builder page to run the scan.
Using the TSB Embedded page may not give you the expected results.

Create a scan list
Before you can run a scan, you must create a scan list. A scan list is a set of steps that runs in order
during a scan. Each step contains a channel, channels, or channel patterns that you want to measure
in that step. Each step is acted on separately during the scan.

You can mix channel patterns and individual channels in a scan list. Note that the steps are executed
in the order in which they are added to the scan.

Before setting up a scan list, make sure your channels and channel patterns are configured. See
Working with channels (on page 2-89) for detail.

If you change the channel configurations or channel patterns after the scan list has been set up, you
may not see expected results. If the change prevents the scan from functioning properly (such as
deleting something referenced by the scan), an error message is logged.

To create a scan list from the web interface:
1. From the left navigation of the web interface Home page, select Scan Builder.
2. In the Add Channel By list on the right, select Number to add the channels individually or Pattern

to select patterns. You can include both channels and patterns in the same scan list.
3. If you selected Number, select the channel numbers from the list. To remove your selections

from the Add Channel By list, click Clear Channel Selection. You can use Ctrl+click to select
multiple channels and Shift+click to select a range of channels.

4. If you selected Pattern, select a pattern from the Channel Pattern list.
5. Click Add Step. The channels and patterns are added to the Steps list.
6. In the Scan Count box, enter the number of times you want to repeat the steps in the scan.
7. In the Measure Count box, enter the number of times you want to repeat the measurement in the

scan.
8. Under Use DMM Configuration, select "assigned to the channel(s)" to use the DMM

configurations that are assigned to the channels, or select "selected from below to override" to
choose from a list of DMM configurations. Repeat these steps as needed to build the scan steps.
The scan is saved as you build it.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-44 3700AS-901-01 Rev. B/May 2013

Clear the scan list from the web interface
Clearing the scan list deletes all channels and channel patterns from the scan list.
To clear the scan list from the web interface:
1. From the left navigation area of the web interface home page, select Scan Builder.
2. Click Scan Clear.

Review the scan list
You can review the existing scan list to see which channels and channel patterns are listed, and in
which order.
To review the scan list from the web interface:
1. From the left navigation of the web interface Home page, select Scan Builder.
2. Select the Build & Run tab. The scan list is shown in the Steps box.

Reset the scan list
You can clear the scan list and return scan settings to their factory defaults using scan reset. A scan
reset does not affect any settings in the instrument except the scan list and trigger model.

The settings that are affected are:

• Channels and patterns are removed from the scan list
• Bypass: Returned to default setting of ON
• Mode: Returned to default setting of Open All
• Scan count: Returned to default setting of 1
• Trigger to start scan: Set to Immediate
• Trigger to continue channel action for each scan step: Setting is cleared
• Arm (Scan Start Stimulus) is set to None
• Channel Action Stimulus is set to Channel Ready Event
• Channel Ready Event is set to None
• Scan Complete Even is set to None

To reset the scan list from the web interface:
1. From the left navigation of the web interface Home page, select Scan Builder.
2. Click Scan & Trigger Reset.

Run the scan
You can run a scan in one of several ways:

• Background: Runs the scan in the background so that you can perform other tasks while the scan is
running. You can use the Query State to check scan status.

• Step by Step: Steps through the scan.

To run the scan as a background scan from the web interface:

Click Execute Background or Step by Step.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-45

Stop the scan
To stop the scan from the web interface:

On the Build & Run tab, click Abort.

Monitor the state of the scan
To monitor the state of the scan, you can click Query State on the Build & Run tab. Query State
displays the current state of the scan, which can be:

• Empty: No scan defined
• Building: Scan list is being created
• Running: Scan in process
• Success: Scan completed successfully

Set up simple triggers
You can set up triggers to control your scan using the options on the Simple Trigger tab. You can set:

• The event that starts the scan
• The time interval event that controls the channel action for each step of the scan
• The time interval event that controls how measurements are taken during the scan

To see these options, click the Simple Trigger tab from the top of the Scan Builder page.

Selecting triggers

You can choose the triggers that will be used to start the scan. The options to start the scan are:

Immediate: When Immediate is selected, the scan starts as soon as you click Execute Background
on the Build & Run tab. Select Immediate when you do not have trigger requirements that must be
met before the scan starts. This is the default selection.

Digital Input: When selected, you select the digital line (1 to 14) that is used to start a scan. You can
select falling or rising for the digital input. Falling selects the falling edge trigger. Rising selects the
rising edge of the trigger.

If Other is displayed in the mode list, a different mode (other than falling or rising) is already selected.
Other is not a mode and cannot be selected. It is only an indicator that the digital triggering is already
set up for a different mode. See the Series 3700A Reference Manual, "Using the web interface"
section, and the "Advanced triggering" topic for other options.

Time: When selected, you can select options that define when the scan starts and at what rate
triggers will occur.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-46 3700AS-901-01 Rev. B/May 2013

You can select the trigger to use to continue channel action for each scan. The options to continue
channel action are:

Immediate: When immediate is selected, the scan immediately steps to the next channel in the scan
list. This is the default setting.

Digital Input: When selected, you select a digital line (1 to 14) that is used to trigger the instrument to
step to the next channel. You can select falling or rising for the digital input. Falling selects the falling
edge trigger. Rising selects the rising edge of the trigger.

Every N seconds: This parameter adds a fixed delay between each channel. The delay occurs
before the next channel in the scan list is closed.

You can also select select the trigger to use to take a measurement for each scan step.

Immediate: When immediate is selected, the measurement is taken as soon as the channel is
closed. This is the default setting.

Digital Input: When selected, you select a digital line (1 to 14) that triggers the instrument to take a
measurement. You can select falling or rising for the digital input. Falling selects the falling edge
trigger. Rising selects the rising edge of the trigger.

Every N seconds: This parameter adds a fixed delay after the channel is closed and before the
measurement is taken.

Advanced triggering
The Advanced Trigger tab of the Scan Builder allows you to set the options that are available from the
Simple Trigger tab, as well as more sophisticated options to control scan triggering.

The Advanced Trigger tab uses the trigger model flowchart to help you visualize and define the input
and output triggers to the scan.

For more information on the trigger model, see Trigger model (on page 3-2).

The options on the Advanced Trigger tab include:

• Mode: Select Open All to open all slots before the scan starts. Select Open Selective to open only
channels that are involved in scanning; closed channels that are not involved in scanning remain
closed. Select Fixed ABR to open all channels involved in the scan, but close all required backplane
relays before the scan.

• Arm (Scan Start) Stimulus: Select the event that causes the arm event detector trigger to be set to the
detected state (the scan can begin).

• Measure Stimulus: Select the event that causes the measurement event detector to be set to the
detected state (the measurement can begin).

• Measure Complete Event To: Select the recipient of the Measurement Complete Event.
• Channel Ready Event To: Select the recipient of the Channel Ready Event.
• Scan Complete Event To: Select the recipient of the Scan Complete Event.

There is also a Config button available for each of the options except Mode. When you click this
button, a dialog box with additional options for the selection is displayed.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-47

Set the scan mode

The scan mode determines how channels are opened before the start of the scan.

You can select:

• Open all: All slots are opened.
• Open select: All channels selected in the scan list are opened; any closed channels remain closed if

they are not in the scan list.
• Fixed ABR: All necessary backplane relays are closed before the scan.

To set the scan mode from the web interface:
1. Select the Advanced Trigger tab.
2. Select Mode.
3. Select Fixed ABR, Open All or Open Selective.

DMM web page
The DMM web page allows you to configure the various DMM functions, create user-defined DMM
configurations and reading buffers, and take measurement readings that may or may not be stored in
a reading buffer.

At the top of the DMM web page is a visual representation of the actual front-panel reading and
indicators (note that the indicators are not in the same location as the front panel, and not all are on
the page). When enabled, you will see DMM display indicators such as REL, FILT, MATH, and AUTO
(see (2) The display for a complete list of these indicators and their meanings). Below this front-panel
view is a scrolling list of the active DMM settings, including the active function and its supporting
attribute values. Scroll the list to view the values set.

Use the Change Active Settings button to change the settings for the active function. When clicked,
a dialog box appears that contains settings that can be changed for that function, and you can also
change the function. Changing functions adjusts the displayed attributes to be correct for the newly
selected function. After making you desired changes, click the Close button at the bottom of the
page.

Use the Edit Configurations... button to select a DMM configuration from a drop-down list. Once the
DMM configuration is selected, the dialog box shows the settings that can be changed for that
configuration. This dialog box is very similar to the the dialog box for changing active settings. Until a
user-defined DMM configuration is saved with the Save as button, only the factory default DMM
configurations exist in the list.

After making changes to a factory default DMM configuration, click the Save as button to open a
dialog box that allows you to name the new configuration and save it to use later. Once you have
entered and saved your DMM configuration, select it from the pull-down menu to make changes to it.
After making changes, click the Save as button again; by default it uses the same name to overwrite
your user-defined configuration with the updated settings.

In the Reading Buffer area, you can create a reading buffer or select an existing reading buffer to
store your readings, or you can select None. With None selected, readings are not stored in a reading
buffer. The readings are only displayed in the Data Table area on the web interface. You can clear
the data table (click the Clear Table button), save data to to a computer (click the Save Table to PC
button), select the timestamp format for time associated with the readings (select Relative, Seconds,
Time or Full). If you want to store readings in a buffer, but no buffers exist, click the Create button.
Once the buffer is created, it becomes the selected buffer to store readings.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-48 3700AS-901-01 Rev. B/May 2013

When a new buffer is selected (including None) for readings, the storage the Data Table gets cleared.

When data is being stored to a reading buffer, the readings show on the front-panel display, but do
not appear in the Data Table on the web interface until you click the Refresh Data Table button. If
you want to view the data graphically, click the View/Refresh Chart button. If you want to save the
reading buffer data to the USB flash drive on the instrument, click the Save to USB button.

Click the Measure button to take a single reading, or click the Loop Measure button to take a
measurement per seconds configured below the button. Set the seconds between measurements by
using the slide bar below to select ranges from 0.5 to 20 seconds. The measurements will
automatically appear in the Data Table when the reading buffer is configured to None. If the reading
buffer isn't set to None, click the Refresh Data Table to see the measurements.

TSB Embedded
TSB Embedded is an application that includes a command line interface that you can use to issue
ICL commands. It also offers script-building functionality. TSB Embedded resides in the instrument.

Script management options

Existing scripts are listed in the User Scripts box on the left side of TSB Embedded.

To run a script, click the name of the script and then click Run.

To delete a script, click the name of the script and click Delete. The script is deleted from the User
Scripts list and from the nonvolatile memory of the instrument.

To stop operation of a script, click Abort Script.

To export the selected script to a flash drive, click Export Script to USB. Place a flash drive in the
USB port on the front panel of the instrument. In TSP, enter the name as appropriate and click OK.
Scripts are saved to a file with the extension tsp. TSP files are native to Test Script Builder or TSB
Embedded, but they can be opened and edited in any text editor.

To import scripts from the computer, click Import from PC. Select the directory that contains the file.
You can only import files with the extension tsp.

To clear the name box and the box that contains the script, click Clear.

To view the contents of a script, type the name of a script in the TSP Script box and click View
Script.

To create a script, see Create a script using TSB Embedded (on page 2-49).

Command line interface

Console: Enter command line entries here to send commands to the instrument. Click Enter to send
the command. The commands and output are shown in the Instrument Output box.

To resend a command, click the button at the left of the Console box.

Instrument control

To reset the entire TSP-enabled system, including the controlling node and all subordinate nodes,
click Reset.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-49

Create a script using TSB Embedded

If you are using TSB Embedded to create scripts, you do not need to use the commands
loadscript or loadandrunscript and endscript.

You can create a script from the instrument web page with TSB Embedded. When you save the script
in TSB Embedded, it is loaded into the run-time environment and saved in the nonvolatile memory of
the instrument. For information about using TSB Embedded, select the Help button on a web page or
the Help option from the navigation pane on the left side of the web interface.

To create a script using TSB Embedded:
1. In the TSP Script box, enter a name for the script.
2. In the input area, enter the sequence of commands to be included in the script.
3. Click Save Script. The name is added to the User Scripts list on the left.

Admin page
Through the Admin page, you can change the instrument password and the instrument time.

Change the password
To change the password for the web interface:
1. In the web interface, from the left navigation, click Admin. A login page is displayed.
2. Enter the current password in the Password box. (The default is "admin".)
3. Click Login. The Administration page is displayed.
4. In the Current Password box, enter the current password.
5. In the New Password box, enter the new password.
6. In the Confirm New Password box, enter the new password again.
7. Click Submit. The new password takes effect immediately.

Change the instrument date and time
To change the date and time of the instrument:
1. In the web interface, from the left navigation, click Admin. A login page is displayed.
2. Enter the current password in the Password box (the default is "admin").
3. Click Login. The Administration page is displayed.
4. Enter the Year.
5. Select the Month, Day, Hour, Minutes and Seconds from the lists.
6. Click Submit. The new time and date information takes effect immediately.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-50 3700AS-901-01 Rev. B/May 2013

Unit page
Save: Save the setup of the instrument.

Recall: Recall the setup of the instrument that was saved with the Save button.

Create Config Script: Save the set up of the instrument as a script.
To create the script:
1. Click Create Config Script. The Create Config Script dialog box is displayed.
2. To create a script that will run automatically when the instrument is powered on, select "Auto-

execute on powerup." Note that this will overwrite the existing autoexec script.
3. To create a script with a new name, select Name and enter the name.
4. Click OK.

Reset: Resets all instruments in the TSP-enabled system. This is only available if the instrument is
the master.

Open All: Click this to open all relays on all slots.

Upgrade Firmware: Select a firmware upgrade file to download to the instrument and begin the
upgrade process.

Channel Connect Rule: Select the channel connect rule. See Connection methods for close
operations (on page 2-89) for detail.

Digital I/O Lines: This is the tool to configure the 14 digital I/O lines of the instrument. Values can be
read or written to the ports, or each individual bit can be toggled. "Write Protect" can be set
individually for any I/O line.

Generate Report: This generates an instrument report you can use to:

• Review card or instrument information, including a basic description, the firmware revision, and the
serial number.

• Review configuration information, including card configuration, DMM configuration, calibration
information, and number of poles.
• Review the number of closures for each channel on the selected slots.

• The number of closures are the closures that have occurred over the lifetime of the card.

To print the report, click Print.

To clear the report information from the screen, click Clear.

LXI page
The Series 3700A is a LXI Class B instrument. The LXI page is a read-only page that displays the LXI
information about the instrument.

IP Config
The IP Config allows you to review and change the LAN connection information.

See Change the IP configuration through the web interface for more information.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-51

Log page
The event log records all LAN[0-7] triggers generated and received and can be viewed over any
command interface, including the web interface. The following figure shows the view of the LAN[0-7]
event log from the embedded web interface.

Up to 32 LAN[0-7] events are logged and shown on this page. The event log is circular and rolls over
after 32 events are captured. The LAN[0-7] events correspond to the lan.trigger[1-8] subsystem.

Figure 26: Event log

The timestamp, event identifier, the IP address and the domain name identify the incoming and
outgoing LXI trigger packets. The following table provides detailed descriptions for the columns in the
event log.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-52 3700AS-901-01 Rev. B/May 2013

Event log descriptions

Column title Description Example

Receive Time Displays the date and time when the LAN
trigger occurred in UTC, 24-hour time

06:56:28.000 8 May 2008

EventID Identifies the lan.trigger[N] that generates an
event

LAN0 = lan.trigger[1]
LAN1 = lan.trigger[2]
LAN2 = lan.trigger[3]
LAN3 = lan.trigger[4]
LAN4 = lan.trigger[5]
LAN5 = lan.trigger[6]
LAN6 = lan.trigger[7]
LAN7 = lan.trigger[8]

From Displays the IP address for the device that
generates the LAN trigger

localhost
192.168.5.20

System
Timestamp

A timestamp that identifies the time the event
occurred. The timestamp uses the following:
PTP timestamp
Seconds
Fractional seconds
The Series 3700A does not support the
IEEE-1588 standard; the values in this field are
always 0 (zero)

HWDetect Identifies a valid LXI trigger packet LXI
Sequence Each instrument maintains independent

sequence counters:
One for each combination of UDP multicast
network interface and UDP multicast destination
port.
One for each TCP connection.

Domain Displays the LXI domain number (the default
value is 0 (zero))

0
1523

Flags Contain data about the LXI trigger packet Values:
1 - Error
2 - Retransmission
4- Hardware
8 - Acknowledgments
16 - Stateless bit

Data The Series 3700A does not support the
IEEE-1588 standard; the values in this field are
always 0 (zero)

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-53

Remote communication interfaces
This section shows you how to connect instruments to the following remote communication
interfaces:

• Universal serial bus (USB)
• Local area network (LAN)
• General purpose interface bus (GPIB or IEEE-488)

The USB can be used for single ASCII-based commands.

The LAN

It describes how to configure and troubleshoot these interfaces on computers with Windows 2000,
Windows XP, Windows Vista, and Windows 7 operating systems.

It also describes the I/O software, drivers, and application software that can be used with Keithley’s
instruments.

Supported remote interfaces
The Model 3706A supports the following remote interfaces:

• GPIB. General purpose interface bus is an IEEE-488 instrumentation data bus.
• LAN. Local area network (LAN) communications provide the flexibility to build scalable and

functional test or data acquisition systems with a large degree of flexibility.
• USB. Communicate with the instrument over a Type B USB connection.

The Model 3706A can be controlled from only one communication interface at a time. The first
interface on which it receives a message takes control of the instrument. It ignores the other
interfaces until the instrument is returned to local operation.

For more information about the remote interfaces, see:

• GPIB setup (on page 2-58)
• LAN concepts and settings (on page B-1)
• USB communications (on page 2-53)

USB communications
To use the rear-panel USB connection, you must have the Virtual Instrument Software Architecture
(VISA) layer on the host computer. See How to install the Keithley I/O Layer (on page 2-70) for more
information.

VISA contains a USB class driver for the USB Test and Measurement Class (USBTMC) protocol
which, once installed, allows the Microsoft® Windows® operating system to recognize the instrument.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-54 3700AS-901-01 Rev. B/May 2013

When a USB device that implements the USBTMC or USBTMC-USB488 protocol is plugged into the
computer, the VISA driver automatically detects the device. It is important to note that only USBTMC
and USBTMC-USB488 devices are automatically recognized by the VISA driver. Other USB devices,
such as printers, scanners, and storage devices, are not recognized.

In this section, "USB instruments" refers to devices that implement the USBTMC or
USBTMC-USB488 protocol.

The full version of National Instruments (NI®) VISA provides a utility to create a USB driver for any
other kind of USB device that you want to communicate with VISA. For more information, see the NI
VISA website (see National Instruments VISA site - http://www.ni.com).

Communicate with the instrument
To communicate with the USB device, you need to use NI-VISATM. VISA requires a resource string in
the following format to connect to the correct USB instrument:

USB[board]::manufacturer ID::model code::serial number[::USB interface number][::INSTR]

This requires that you determine the parameters. You can gather this information by running a utility
that automatically detects all instruments connected to the computer.

If you installed the Keithley I/O Layer, the Keithley Configuration Panel is available from the
Microsoft® Windows® Start menu in the Keithley Instruments menu.

To use the Keithley Configuration Panel to determine the VISA resource string:
1. Start the Keithley Configuration Panel. The Select Operation dialog box is displayed.
2. Select Add.

Figure 27: Select Operation dialog box

http://www.ni.com/
http://www.ni.com/

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-55

3. Click Next. The Select Communication Bus dialog box is displayed.

Figure 28: Select Communication Bus dialog box

4. Select USB.
5. Click Next. The Select Instrument Driver dialog box is displayed.

Figure 29: Select Instrument Driver dialog box

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-56 3700AS-901-01 Rev. B/May 2013

6. Select Auto-detect Instrument Driver - Model.
7. Click Next. The Configure USB Instrument dialog box is displayed with the detected instrument

VISA resource string displayed.

8. Click Next. The Name Virtual Instrument dialog box is displayed.

Figure 30: Name Virtual Instrument dialog box

9. In the Virtual Instrument Name box, enter a name that you want to use to refer to the instrument.
10. Click Finish.
11. Click Cancel to close the Wizard.
12. Save the configuration. From the Configuration Utility, select File > Save.
13. In the Keithley Communicator, select File > Open Instrument to open the instrument you just

named.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-57

Figure 31: Keithley Communicator Open Instrument

14. Click OK.
15. Send a command to the instrument and see if it responds.

If you have a full version of NI VISA on your system, you can run NI-MAX or the VISA Interactive
Utility. See their documentation for information.

If you have the Agilent IO Libraries on your system, you can run Agilent Connection Expert to check
out your USB instruments. See their documentation for information.

Additional USB information
This section provides further details and more advanced information about the USB bus and
test-and-measurement instruments.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-58 3700AS-901-01 Rev. B/May 2013

Connecting multiple USB instruments to the computer

The most convenient way to connect USB instrumentation to the computer is to plug a USB cable
directly from the instrument to the computer. If you have more than one USB instrument or have other
USB devices, such as printers, keyboards, and mice, you might not have enough USB connectors on
the computer.

To gain more ports, you can use a USB hub or add more USB controller cards if you have available
PCI or PCI Express slots.

There are two types of USB hubs that you can use with Series 3700A:

• Bus powered: This type of hub draws its power from the USB bus and can only supply 100 mA
(USB 2.0) per port.

• Self powered: This type of hub has an external power supply and can supply up to 500 mA per port
(USB 2.0).

GPIB setup
This section contains information about GPIB standards, connections, and address selection.

The GPIB connector is optional and may not be present on your instrument.

GPIB standards
The GPIB is the IEEE-488 instrumentation data bus, which uses hardware and programming
standards originally adopted by the Institute of Electrical and Electronic Engineers (IEEE) in 1975.
The instrument is IEEE Std 488.1 compliant and supports IEEE Std 488.2 common commands and
status model topology.

Install the GPIB driver software
Check the documentation for your GPIB controller for information about where to acquire drivers.
Keithley Instruments also recommends that you check the vendor's website for the latest version of
drivers or software.

It is important that you install the drivers before you connect the hardware to prevent associating the
incorrect driver to the hardware.

Install the GPIB cards in your computer
Refer to the manufacturer's documentation for information about installing the GPIB cards.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-59

Set the GPIB address
The GPIB address value is set to 16 at the factory. The address can be set to any address value
between 0 and 30. However, the address must be unique in the system. It cannot conflict with an
address that is assigned to another instrument or to the GPIB controller.
To change the GPIB address:
1. Press the MENU key.
2. Select GPIB > ADDRESS. Press the navigation wheel to display the current address.
3. Choose the appropriate GPIB address.
4. Press ENTER to save the address.

The address value is saved in nonvolatile memory and will not change when a reset() (on page 8-
317) command is sent or when the power is turned off and then turned on again.

When the GPIB bus is operating, you can use the gpib.address (on page 8-261) attribute to change
the GPIB address remotely.

Enable GPIB
By default, the instrument is set to GPIB enabled. You only need to enable it if GPIB control was
disabled.
To enable control through the GPIB:
1. Press the MENU key.
2. Select GPIB. Press the navigation wheel to display the GPIB MENU.
3. Select ENABLE. Press the navigation wheel .
4. To enable GPIB, select ON. To disable it, select OFF.
5. Press ENTER to save the setting.

You must turn the instrument on and off before the setting takes effect.

Communicate with instruments
The GPIB driver software you installed installs a interactive dumb terminal program that allows you to
send commands to the instrument. They directly call the GPIB driver support libraries.

For the KPCI-488LPA and KUSB-488B GPIB controller from Keithley Instruments, the configuration
utility is called the KI-488 Diagnostic Tool. It is available from the Windows Start menu at Keithley
Instruments > KI-488 > KI-488 Diagnostic Tool.

For the KUSB-488A GPIB controller from Keithley Instruments, the configuration utility is called
TrTest. It is available from the Windows Start Menu at Keithley Instruments > GPIB-488-CEC >
TrTest.

For National Instruments GPIB controllers, you can use NI-MAX. Start NI-MAX. If your hardware is
installed correctly, you should see the controller in the GPIB section of the tree control on the left
side. Select it and right-click to see an option to communicate with the instrument.

If you want to use the GPIB controller with instrument driver (such as VXIPnP or IVI) or high-level
software, you must also install I/O software, which installs the VISA layer. See How to install the
Keithley I/O Layer (on page 2-70).

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-60 3700AS-901-01 Rev. B/May 2013

Terminator
When receiving data over the GPIB, the instrument terminates messages on any line feed character
or any data byte with EOI asserted (line feed with EOI asserted is also valid). When sending data, it
appends a line feed character to all outgoing messages. The EOI line is asserted with the terminating
line feed character.

However, if you want your program to communicate with all I/O buses on the instrument (GPIB, USB,
LAN (VXI-11 and raw socket)), it is good practice to add a line feed to the end of the outgoing
command. Use VISA and the same program will work with all the I/O buses by changing the resource
string in the VISA Open method.

Front-panel GPIB operation
This section describes aspects of the front panel that are part of GPIB operation, including messages,
status indicators, and the LOCAL key.

Error and status messages

The front-panel display may show error and status messages (see Displayed error and status
messages). See Error summary list for a list of status and error messages that are associated with
IEEE-488 programming.

LOCAL key

The EXIT (LOCAL) key cancels the remote state and restores local operation of the instrument.
Pressing the EXIT (LOCAL) key also turns off the REM indicator and returns the display to normal if a
user-defined message was displayed.

If the LLO (Local Lockout) command is in effect, the EXIT (LOCAL) key is also inoperative. Note that
pressing the EXIT (LOCAL) key will also abort any commands or scripts that are being processed.

GPIB reference

General bus commands

General commands are commands that have the same general meaning, regardless of the
instrument (for example, DCL). The following table lists the general bus commands.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-61

General bus commands

Command Effect on Series 3700A

REN Goes into remote operation when next addressed to listen. See REN (on page 2-61) for
details.

IFC Goes into talker and listener idle states. See IFC (on page 2-61) for details.
LLO LOCAL key locked out. See LLO (on page 2-61) for details.
GTL Cancel remote; restore Series 3700A front-panel operation. See GTL (on page 2-61) for

details.
DCL Returns the Series 3700A and all devices on the GPIB to known conditions. See DCL

(on page 2-62) for details.
SDC Returns the Series 3700A to known conditions. See SDC (on page 2-62) for details.
GET Initiates a trigger. See GET (on page 2-62) for details.
SPE, SPD Serial polls the Series 3700A. See SPE, SPD (on page 2-62) for details.

REN

The remote enable (REN) command is sent to the Series 3700A by the controller to set up the
instrument for remote operation. Generally, the instrument should be placed in the remote mode
before you attempt to program it over the bus. Setting REN true does not place the instrument in the
remote state. You must address the instrument to listen after setting REN true before it goes into
remote operation.

IFC

The interface clear (IFC) command is sent by the controller to place the Series 3700A in the talker
idle state and the listener idle state. The instrument responds to the IFC command by canceling front-
panel TALK or LSTN lights, if the instrument was previously placed in one of these states.

Transfer of command messages to the instrument and transfer of response messages from the
instrument are not interrupted by IFC. If transfer of a response message from the instrument was
suspended by IFC, transfer of the message will resume when the instrument is addressed to talk. If
transfer of a command message to the instrument was suspended by IFC, the rest of the message
can be sent when the instrument is addressed to listen.

LLO

When the instrument is in remote operation, all front-panel controls are disabled, except the LOCAL
and OUTPUT OFF keys (and the POWER switch). The local lockout (LLO) command disables the
LOCAL key, but does not affect the OUTPUT OFF control, which cannot be disabled.

GTL

Use the go to local (GTL) command to put a remote-mode instrument into local mode. Leaving the
remote state also restores operation of all front-panel controls.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-62 3700AS-901-01 Rev. B/May 2013

DCL

Use the device clear (DCL) command to clear the GPIB interface and return it to a known state. Note
that the DCL command is not an addressed command, so all instruments equipped to implement DCL
will do so simultaneously.

When the Series 3700A receives a DCL command, it:

• Clears the input buffer, output queue, and command queue
• Cancels deferred commands
• Clears any command that prevents the processing of any other device command

A DCL does not affect instrument settings and stored data.

SDC

The selective device clear (SDC) command is an addressed command that performs essentially the
same function as the device clear (DCL) command. However, because each device must be
individually addressed, the SDC command provides a method to clear only selected instruments,
instead of clearing all instruments simultaneously with the DCL command.

When the Series 3700A receives an SDC command, it:

• Clears the input buffer, output queue, and command queue
• Cancels deferred commands
• Clears any command that prevents the processing of any other device command

An SDC does not affect instrument settings and stored data.

GET

The group execute trigger (GET) command is a GPIB trigger that triggers the instrument to take
readings from a remote interface.

SPE, SPD

Use the serial polling sequence to obtain the Series 3700A serial poll byte. The serial poll byte
contains important information about internal functions (see Status model (on page 6-18, on page D-
1, "Status Byte Register overview" on page D-4)). Generally, the serial polling sequence is used by
the controller to determine which of several instruments has requested service with the SRQ line. The
serial polling sequence may be performed at any time to obtain the status byte from the Series
3700A.

Configure the GPIB controllers

Each instrument on a GPIB bus needs a unique address from a range of 0 to 30. Generally, the GPIB
host controller is on address 0. However, there are GPIB controllers that adopt the address of 21. To
be safe, do not configure any of the instruments for 21 or 0.

If you do need to change the host controller address, consult the controller documentation.

For the KPCI-488LPA and KUSB-488B GPIB controller from Keithley Instruments, the configuration
utility is called the KI-488 Diagnostic Tool. It is available from the Microsoft® Windows® Start menu at
Keithley Instruments > KI-488 > KI-488 Diagnostic Tool.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-63

For the KUSB-488A GPIB controller from Keithley Instruments, the configuration utility is called GPIB
Configuration. It is available from the Windows Start Menu at Keithley Instruments > GPIB-488 >
GPIB Configuration.

For National Instruments (NITM) GPIB controllers, you can use NI-MAX. Start NI-MAX. If your
hardware is installed correctly, you will see the controller in the GPIB section of the tree control on the
left side. Select it and right-click to see an option to configure the controller. Do not forget to save
your settings.

GPIB status indicators

The remote (REM), talk (TALK), listen (LSTN), and service request (SRQ) indicators show the GPIB
bus status. Each of these indicators is described below.

REM

This indicator is illuminated when the instrument is in the remote control state. When the instrument is
in the remote control state, all front-panel keys, except for the EXIT (LOCAL) key, are locked out.
When REM is off, the instrument is in the local control state and front-panel operation is restored.

TALK

This indicator is on when the instrument is in the talker active state. Place the instrument in the talk
state by addressing it to talk with the correct talk command. TALK is off when the instrument is in the
talker idle state. Place the instrument in the talker idle state by sending a UNT (untalk) command,
addressing it to listen, or by sending the IFC (interface clear) command.

LSTN

This indicator is on when the Series 3700A is in the listener active state, which is activated by
addressing the instrument to listen with the correct listen command. LSTN is off when the instrument
is in the listener idle state. Place the instrument in the listener idle state by sending UNL (unlisten),
addressing it to talk, or by sending the IFC (interface clear) command over the bus.

SRQ

You can program the instrument to generate a service request (SRQ) when one or more errors or
conditions occur. When this indicator is on, a service request has been generated. This indicator
stays on until the serial poll byte is read or all the conditions that caused SRQ are cleared.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-64 3700AS-901-01 Rev. B/May 2013

LAN communications
This section provides an overview of LAN communications for the Series 3700A. For detailed
information about setting up your LAN interface, refer to LAN concepts and settings (on page B-1).

You can communicate with the instrument using a local area network (LAN).

When you connect using a LAN, you can use a web browser to communicate with the instrument
through the instrument's internal web page and other web applets.

Series 3700A are class B LXI version 1.3 compliant. They are scalable test instruments with direct
connections to host computers. They can also interact with a DHCP or DNS server and other LXI
compliant instruments on a LAN.

The Series 3700A are compliant with IEEE standard 802.3 (Ethernet) and support full connectivity on
a 10 Mbps or 100 Mbps network.

Contact your network administrator to confirm your specific network requirements before setting up a
LAN connection.

Overview of LAN instruments
When Ethernet ports became standard on computers, it was logical that instrumentation would follow.
The VXI-11 protocol, which was standardized on in the early 1990s, is the standard used to emulate
GPIB over Ethernet.

Even though Ethernet became the standard LAN technology on instruments, LAN instruments from
different vendors differed in the approach they took. Some vendors only supported static IP, whereas
others had DHCP, DLLA (Auto-IP), and static addressing. The LXI consortium was started to
standardize what should be in all instruments that conform to LXI.

An instrument that conforms to LXI version 1.3 must have the following:

• All three IP addressing modes: DHCP, Auto-IP, and static IP.
• A web server that has some standard Ethernet configuration parameters:

• IP configuration: IP address, subnet mask, gateway.
• Password protection on anything that might change the instrument state.
• A control on the web page that flashes an LED or some form of indicator on the front panel of the

instrument. LXI calls this the Device Identification Functionality. This allows you to identify the web
page you are currently looking at with the instrument. This helps you identify a specific instrument
in a rack of similar model instruments.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-65

• A reserved URL in the instrument that provides an xml document that has standard configuration
information. This can be useful for software tools that need to identify the instruments and their
capabilities. The URL is http://<host>:<port>/lxi/indentification.

• An IVI driver for the instrument.
• A LAN Status (fault) indicator.
• VXI-11 discovery protocol.
• LAN reset button or menu option. LXI calls this the LAN Configuration Initialize (LCI).

When the LXI-defined LAN reset is selected, the instrument reverts its LAN settings to a known set of
defaults. The default LAN settings for LXI instruments are:
• DHCP and Auto-IP enabled. LXI refers to this as the Auto IP address mode (compared to the

manual address mode, which is fixed or static IP addressing).
• Web password is reset to the factory default.
• Ping responder enabled.

• Dynamic DNS and mDNS enabled.

LXI Version 1.3 added the requirement of mDNS (multicast DNS) discovery.

LAN cable connection
The Series 3700A includes two Model CA-180-3A cables (LAN crossover cables). One cable is for
the TSP-Link® network and the other cable is for LAN communication.

Use the following figure as a guide when making LAN connections.

Figure 32: Series 3700A LAN connection

1 Series 3700A ethernet port (LAN)
2 Straight-through LAN cable or crossover LAN cable (Model CA-180-3A)
3 Ethernet port (located on the host computer)

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-66 3700AS-901-01 Rev. B/May 2013

Supplied software
The majority of software applications and all instrument drivers from Keithley Instruments depend on
some, or all, of the following software components:

• NI-VISATM
• VISA shared components
• IVI shared components
• NITM CVITM runtime engine
• NITM IVITM compliance package
• Keithley instrument driver
• LabVIEWTM driver
• Test Script Builder (TSB) Add-in
• J2SETM Runtime Environment

 These software components are included on the CD-ROMs that came with your instrument, and are
also available for download at the Keithley Instruments support website
(http://www.keithley.com/support).

Instrument driver types
There are several different styles of instrument drivers. Keithley Instruments provides three different
instrument drivers for the Series 3700A: A native LabVIEW driver, an IVI-C driver, and an IVI-COM
driver. You need to pick the style that best suits the application development environment (ADE) that
you are using. For example, if you are using LabVIEW, you would pick a native LabVIEW driver. If a
native LabVIEW driver is not available then you can use an IVI-C driver as LabVIEW has the option of
creating a wrapper for the IVI-C driver.

LabVIEW supports IVI-COM drivers but they are definitely not the first or second choice. However, if it
is the only driver type for the instrument, it can be used.

If LabWindows/CVI or C/C++ is your programming language, an IVI-C driver is the best option. For
VB6 and any .NET language (C#, VB.NET, and so on), an IVI-COM driver would be the best option.

Sometimes instrument vendors do not provide all three driver types. Most languages can
accommodate other driver types, but this is not optimal.

The following sections describe the different driver types in more detail.

http://www.keithley.com/support

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-67

VXIPnP drivers
VXI (Vixie) plug-and-play (VXIPnP) style drivers are Win32 DLLs that have some standard functions
defined by the VXIPnP Alliance, such as:

• init
• close
• error_message
• reset
• self_test
• Read
• Initiate
• Fetch
• Abort

The application programming interface (API) was defined so that users of instruments would have a
familiar API from instrument to instrument. There are some basic guidelines when creating APIs for
your instrument, such as using VISA data types and how to construct the CVI hierarchy.

LabVIEW drivers
Native LabVIEW drivers

A native LabVIEWTM driver is a LabVIEW driver that is created using entirely built-in LabVIEW VIs —
it does not make any calls to external DLLs or Library files. This makes the driver portable to all the
platforms and operating systems that LabVIEW and VISA supports (currently, Linux® on x86, Mac
OS® X, and Microsoft® Windows®).

National Instruments (NITM) maintains a native LabVIEW driver style guide
(http://zone.ni.com/devzone/cda/tut/p/id/3271).

LabVIEW driver wrappers

All IVI-C drivers have a function panel file (.fp) that shows a hierarchy of the function calls into a DLL.
It is a tool that guides a user to select the correct function call in the driver, since a DLL only has a flat
API entry point scheme (unlike COM or .NET). Any CVI-generated .fp file can be imported into
LabVIEW and LabVIEW will generate a wrapper for the DLL. The drawback here is that the driver is
dependent on the DLL, which is not portable and is therefore Windows-specific.

Obtaining instrument drivers
To see what drivers are available for your instrument:
1. Go to the Keithley Instruments support website (http://www.keithley.com/support).
2. Enter the model number of your instrument.
3. Select Software Driver from the list.

For LabVIEWTM, you can also go to National Instrument's website and search their instrument driver
database.

http://zone.ni.com/devzone/cda/tut/p/id/3271
http://www.keithley.com/support

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-68 3700AS-901-01 Rev. B/May 2013

Instrument driver examples
All Keithley drivers come with examples written in several programming languages that show you how
to do the most common things with the instruments.

Install the driver. The examples are in the Microsoft® Windows® Start menu, under Keithley
Instruments > Model Number (where Model Number is the instrument model number).

IVI shared components
The IVI shared components are a similar concept to the VISA shared components. The IVI
Foundation provides class drivers for:

• All the supported instruments (DMM, Scope, Fgen, and so on)
• The configuration store

The IVI shared components also create the installation folders and registry keys that all IVI drivers
and support files use for installation.

Interchangeable Virtual Instruments (IVI) style drivers
The major problem with VXIPnP drivers was that the API was not specific to the instrument. For
something as standard as measuring DC volts on a digital multimeter (DMM), it would be a good idea
if there were a set of standard functions to do this.

The IVI Foundation (http://www.ivifoundation.org) defined a set of application programming interfaces
(APIs) for the following instruments: DMM, function generator, DC power supply, scope, switch,
spectrum analyzer, RF signal generator and power meter. They are currently working on class APIs
for some other instrument types.

There are two types of IVI drivers: IVI-COM drivers use Microsoft® COM technology to expose driver
functionality, while IVI-C drivers use conventional Microsoft® Windows® DLLs to export simple C-
based functions.

For more information about IVI drivers and the differences between the COM, C, and .NET interfaces,
see Making the Case for IVI
(http://pacificmindworks.com/docs/Making%20the%20Case%20for%20IVI.pdf).

NI CVI runtime engine
IVI-C drivers that are created using National Instruments (NITM) LabWindows/CVI environment
depend on either the CVI runtime (cvirte.dll), or the instrument support run-time (instrsup.dll), and
must be present on the system for them to run.

NI IVI Compliance Package
The National Instruments (NITM) IVI Compliance Package is a software package that contains IVI
class drivers and support libraries that are needed for the development and use of applications that
leverage IVI instrument interchangeability. The IVI Compliance Package also is based on and is
compliant with the latest version of the instrument programming specifications defined by the IVI
Foundation.

The NI ICP installer installs the IVI shared components, CVI runtime engine, and the instrument
support runtime engine.

http://www.ivifoundation.org/
http://pacificmindworks.com/docs/Making%20the%20Case%20for%20IVI.pdf

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-69

Keithley I/O layer
The Keithley I/O Layer (KIOL) is a software package that contains several utilities and drivers. It is
mainly used as a supplement to IVI drivers, or application software like Test Script Builder (TSB).

The KIOL contains:

• NI-VISATM Runtime-Time Engine
• Keithley Configuration Panel
• Keithley Communicator

NI-VISA Runtime
NI-VISATM is National Instruments (NITM) implementation of the VISA standard. There are two
versions. The full version contains diagnostic and configuration tools such as NI-Spy and NI-MAX and
the binary run-time-only files. The run-time version contains only the binary files (DLLs) that allow the
drivers to operate.

The Keithley I/O Layer (KIOL) contains a licensed version of the NI-VISA runtime.

If you already have NI software (such as LabVIEW or LabWindows) installed, you have a valid license
that can be used with Keithley drivers and application software.

If you do not have NI software installed, to use Keithley drivers or application software, you must
install the KIOL. This installs a valid, licensed copy of the NI-VISA runtime to use with Keithley drivers
or application software. KIOL installs a valid license for the NI-VISA Run-Time Engine only (not the
full version of NI-VISA).

Keithley Configuration Panel
The Keithley Configuration Panel is a configuration utility for IVI drivers, similar to NI-MAX. It also has
the ability to autodetect USBTMC instruments and LAN instruments that support the VXI-11 protocol.

Keithley Communicator
The Keithley Communicator is a dumb terminal program that uses VISA to communicate with the
instrument.

Computer requirements for the Keithley I/O Layer
The Keithley I/O Layer version C02 supports the following operating systems:

• Microsoft® Windows® (32-bit & 64-bit) Business with Service Pack 1 or later
• Microsoft Windows Vista® Business (32-bit & 64-bit) with Service Pack 2 or later
• Windows XP Professional (32-bit) with Service Pack 3 or later
• Windows 2000 Professional with Service Pack 4 plus update KB891861 or later

Note that Windows 95, Windows 98, Windows ME, Windows NT, Windows XP (64-bit) operating
systems are not supported.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-70 3700AS-901-01 Rev. B/May 2013

How to uninstall previous versions of the Keithley I/O Layer
If you have an earlier version of the Keithley I/O Layer software installed on your computer, you must
uninstall it.
To uninstall the Keithley I/O layer:
1. From the Control Panel, select Add/Remove Programs.

2. Uninstall the following components:
• Keithley I/O Layer
• Keithley I/O Layer Suite
• Keithley SCPI-based Instrument IVI-C Driver
• NI-VISA Run-Time Engine x.x.x (if present) (x.x.x is the VISA version)

1. Reboot your computer.

How to install the Keithley I/O Layer

Before installing, it is a good idea to check the Keithley Instruments website
(http://www.keithley.com) to see if a later version of the Keithley I/O Layer is available. On the
website, select the Support tab, under model number, type KIOL, and select Software Driver.

You can install the Keithley I/O Layer from the CD-ROM that came with your instrument, or from the
download from the Keithley website.

The software installs the following components:

• Microsoft® .NET Framework
• NITM IVI Compliance Package
• NI-VISATM Run-Time Engine
• Keithley SCPI-based Instrument IVI-C driver
• Keithley I/O Layer

To install the Keithley I/O Layer from the CD-ROM:
1. Close all programs.
2. Place the CD-ROM into your CD-ROM drive.
3. Your web browser should start automatically and display a screen with software installation links.

If you need to manually open the web page, use a file explorer to navigate to the CD-ROM drive
and open the file named index.html.

4. From the web page, select the Software category and click Keithley I/O Layer.
5. Accept all defaults.
6. Click Next.
7. Click Install.
8. Reboot your computer.

http://www.keithley.com/

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-71

To install the Keithley I/O Layer from the Keithley website:
1. Download the Keithley I/O Layer Software from the Keithley Instruments website

(http://www.keithley.com) as described in the note. The software is a single compressed file and
should be downloaded to a temporary directory.

2. Run the downloaded file from the temporary directory.
3. Follow the instructions on the screen to install the software.
4. Reboot your computer.

Special installation considerations
Situations may occur during installation that cannot be handled automatically by the installation utility.
The installation utility will warn you if one of these situations is detected. The sections below describe
the action you must take before the installation can be completed.

Mismatch between IVI Shared Components and IVI Engine Detected

The IVI Shared Components and IVI Engine are software components that may be installed by
various test and measurement software applications, instrument drivers, and so on. Keithley I/O
Layer software requires that these components, if present, be compatible versions. The installation
utility will detect a mismatch, which must be corrected before the software installation can proceed. If
this situation is detected, the Keithley I/O Layer software installation will automatically stop.

The recommended way to resolve this situation is to install the IVI Compliance Package (ICP)
software from National Instruments (NITM). You may download the ICP software and release notes
from National Instrument’s website. When the ICP installation is complete, restart the Keithley I/O
Layer software installation.

Non-National Instruments VISA detected

VISA software is used to communicate with the instrument and may be installed by various test and
measurement software applications, instrument drivers, and so on. Keithley I/O Layer software
requires and will install National Instruments NI-VISATM software. The installer will detect if another
vendor’s version of VISA is already installed on the computer. If this occurs, the installer will pause
and display a warning message. The warning message displays the vendor of the detected VISA in
its title bar, if this can be determined. Make a note of the vendor name. At this point, you may elect to
continue the installation, which will overwrite the existing VISA installation with NI-VISA. This will
allow the Keithley I/O Layer software to operate properly, but may cause other applications or
instrument drivers that were dependent on the existing VISA to malfunction.

The recommended way to resolve this situation is to perform the following steps:
1. Exit the Keithley I/O Layer software when the warning message is displayed. Make note of the

VISA vendor in the warning message (if any).
2. Uninstall the non-NI VISA software.
3. Uninstall Tektronix VISA by selecting OpenChoice TekVISA from the Control Panel Add/Remove

programs list.
4. Uninstall Agilent VISA by selecting Agilent I/O Libraries Suite from the Control Panel

Add/Remove programs wizard list.

http://www.keithley.com/

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-72 3700AS-901-01 Rev. B/May 2013

5. Uninstall other versions of VISA by selecting the appropriate entry from the Control Panel
Add/Remove Programs Wizard list.

6. Restart the Keithley I/O Layer software installation.
7. If the pre-existing version of VISA was supplied by Tektronix or Agilent (as displayed in the

warning message), you may safely reinstall that version of VISA once Keithley I/O Layer software
installation is complete. When you reinstall Tektronix or Agilent VISA, it may prompt you to
preserve the current VISA version, which you should do. This will usually restore the operation of
any dependent applications or drivers.

8. If the pre-existing version of VISA was supplied by a vendor other than Tektronix or Agilent, we
recommend that you do not reinstall it, because this will likely cause the Keithley I/O Layer
software to malfunction.

Installation troubleshooting
If problems occur during installation, it might be helpful to install the components individually. Errors
messages might appear that will help you resolve the installation issue.

If problems occur during installation:

1. Follow the instructions to uninstall all the KIOL components in Special installation considerations
(on page 2-71).

2. Rerun the KIOL installer. Note where the installer unpacks the files (usually in a temporary
folder).

3. Cancel the installer.
4. Go to the folder where the files were unzipped.

5. Run the setup.exe for each of the following components in the following order:
• IVI Compliance Package (ICP)
• NI-VISATM Run-Time Engine
• KIOL
• Keithley SCPI Driver

1. Ignore all the other folders.
2. Reboot the computer.

Modifying, repairing, or removing Keithley I/O Layer software
The Keithley I/O Layer interconnects many other installers.

To remove all the KIOL components, you need to uninstall the following applications using Control
Panel Add/Remove programs:

• National Instruments NITM IVI Compliance Package
• National Instruments NI-VISATM Run-Time Engine
• IVI Shared Components
• Visa Shared Components
• Keithley SCPI Driver

After uninstalling components, reboot the computer.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-73

Addressing instruments with VISA
VISA allows you to communicate with the instrument on different communication buses by changing a
resource string that gets passed in with the viOpen function, in VISA-C, or with the Open method on
the VISA-COM resource manager object.

For detailed information about the format of the resource string, refer to the VISA specification
VPP4.3 at the IVI Foundation website, or refer to the help file provided by the vendor of the VISA
implementation you are using.

The following sections describe the resource strings for some of the communication types that
Keithley supports. Any field that has [] (square brackets) around it is optional and will revert to a
default value.

Addressing instruments through the LAN
VISA supports two different LAN protocols, each of which has a different resource string.

VXI-11 is a protocol that emulates GPIB over the LAN. Series 3700A supports this protocol. The
resource string is:
TCPIP[board]::host address[::LAN device name][::INSTR]

board is the network interface card in the computer. This value is usually skipped and VISA
determines the correct network interface card (if you have more than one) by looking at the IP
address.

host address can be either a valid DNS hostname, mDNS hostname, or the IPv4 IP (only) address
of the instrument.

LAN device name is a method of addressing secondary instruments at the main IP address, similar
to secondary addressing on the GPIB bus. The default is inst0.

A raw socket connection requires more work by the driver or application program to make sure the
correct amount of data has been sent or received correctly. All Keithley instruments support the raw
socket connection.
TCPIP[board]::host address::port::SOCKET

The board and the host address are the same as for the VXI-11 protocol.

port is the port to which to connect on the instrument. For the Series 3700A, the port is 5025. See
Instrument LAN protocols for a complete list of port numbers.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-74 3700AS-901-01 Rev. B/May 2013

Addressing instruments using USB
USB[board]::manufacturer ID::model code::serial number[::USB interface

number][::INSTR]

board is not used (0).

manufacturer ID is the USB.org reserved four-digit hexadecimal code for the instrument vendor
company. Keithley Instruments hexadecimal code is 0X5E6.

model code is the model number of the instrument. For example, when addressing a Model 3706A,
use 0X3706.

serial number is the serial number of the instrument.

USB interface number identifies which USBTMC interface on the instrument to address (usually
0).

Also see USB VISA identifiers.

Addressing instruments through GPIB
There are two different resource classes in VISA for the GPIB bus.

INSTR is the basic class that everyone uses. It allows application software to send and receive data
and commands without dealing with some low level GPIB nuances. This class is recommended for
typical GPIB communication.

The INTFC class allows finer control over the GPIB controller card in the computer. You must comply
with the IEEE-488.1 protocol and tell the instrument to listen and the controller to talk before sending
a message to the instrument. This class allows you to communicate to the instrument using low-level
GPIB commands. Refer to your VISA documentation for more details on how to use this class.

The GPIB INSTR resource class format is:
GPIB[board]::primary address[::secondary address][::INSTR]

board is the number of the GPIB card, if there are more than one in the computer. If there is only one
GPIB card, don not include board, but do not leave a space.

primary address is the main GPIB address of the instrument, which can be changed, if
necessary, through the front panel of the instrument.

secondary address is for secondary addressing in GPIB. Some instruments have subinstruments
or cards inside the main instrument or backplane. The primary address identifies the main instrument.
The secondary address identifies subinstruments. Refer to the instrument user manual for the
secondary address, if applicable.

Sending raw commands to an instrument
The next sections show you how to use VISA-C and VISA-COM to send raw instrument commands
without using the instrument drivers.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-75

VISA-C sample code

The following is a simple C/C++ console application that reads back the instrument identification
string using VISA-C. You need to include visa.h and link with the visa32.lib file.
#include "stdafx.h"
#include <visa.h>

#define checkErr(fCall) if (error = (fCall), (error = (error <
 0) ? error : VI_SUCCESS)) \
 {goto Error;} else error = error

int _tmain(int argc, _TCHAR* argv[])
{
 ViSession defaultRM, vi;
 char buf [256] = {0};
 ViStatus error = VI_SUCCESS;

 /* Open session to GPIB device at address 22 */
 checkErr(viOpenDefaultRM(&defaultRM));
 checkErr(viOpen(defaultRM, "GPIB0::14::INSTR", VI_NULL,VI_NULL, &vi));

 /* Initialize device */
 checkErr(viPrintf(vi, "*RST\n"));

 /* Send an *IDN? string to the device */
 checkErr(viPrintf(vi, "*IDN?\n"));
 ViUInt16 status = 0;
 do
 {
 checkErr(viReadSTB(vi, &status));
 printf("ReadSTB = %X\n", status);
 } while(status == 0);

 /* Read results */
 checkErr(viScanf(vi, "%t", &buf));
 /* Print results */
 printf ("Instrument identification string: %s\n", buf);

 /* Close session */
 checkErr(viClose(vi));
 checkErr(viClose(defaultRM));

Error:

 if(error < VI_SUCCESS)
 printf("Visa Error Code: %X\n", error);
 printf("\nDone - Press Enter to Exit");
 getchar();

 return 0;
}

VISA-COM sample code

This example gets the instrument identification string using VISA-COM in C#.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-76 3700AS-901-01 Rev. B/May 2013

The first thing to do is add a reference to the VISA-COM interop DLL, which is usually located at
C:\Program Files\IVI Foundation\VISA\VisaCom\Primary Interop Assemblies\Ivi.Visa.Interop.dll.
using Ivi.Visa.Interop;

namespace WindowsApplication1
{

 public class IdnSample: System.Windows.Forms.Form
 {
private Ivi.Visa.Interop.FormattedIO488 ioDmm;
 //
 }
 }
 private void IdnSample_Load(object sender, System.EventArgs e)
 {
 ioDmm = new FormattedIO488Class();

 SetAccessForClosed();
 }

 private void btnInitIO_Click(object sender, System.EventArgs e)
 {

 try
 {
 ResourceManager grm = new ResourceManager();
 ioDmm.IO = (IMessage)grm.Open("GPIB::16::INSTR",
 AccessMode.NO_LOCK, 2000, "");
 ioDmm.IO.TerminationCharacterEnabled = true;

 }
 catch (SystemException ex)
 {
 MessageBox.Show("Open failed on " + this.txtAddress.Text + " " +

ex.Source + " " + ex.Message, "IdnSample", MessageBoxButtons.OK,
MessageBoxIcon.Error);

 ioDmm.IO = null;
 }
 }

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-77

Switch operation
This section gives an overview of working with channels, including a discussion of channel types,
selecting channels, opening and closing channels, setting common channel attributes, and setting up
channel patterns.

To install the switching card, refer to instructions in Series 3700A Quick Start Guide. For detailed
information about the Series 3700A switch cards, refer to the Series 3700A Switch and Control
Cards Reference Manual (Keithley part number 3700AS-909-01) on the Product Information
CD-ROM that came with your instrument.

The switching channels of a Series 3700A have specific settings for switch-only operations and
specific settings for switch with DMM operations. The Series 3700A accesses different settings based
upon the close or open operation you specify. You can perform such operations on switching module
channels, analog backplane relays, and channel patterns.

Hot switching can dry weld reed relays such that they will always be on. Hot switching is
recommended only when external protection is provided.

Identify installed switching cards
To identify installed switching cards from the front panel:

Press the SLOT key to scroll through the model numbers, descriptions, and firmware revisions of the
installed switching cards.

To identify installed switching cards from the web interface:
1. Select the Unit page.
2. In the Report area, select the slots that you want information about.
3. Select Firmware Revision.
4. Click Generate Report. Information about the cards in the slots is displayed below the button.

To identify installed switching cards from the remote command interface:

Use print(slot[X].idn)to query and identify installed switching cards:
print(slot[X].idn)

Where: X = slot number (from 1 to 6)

Example

To get a list of all switching cards installed in the slots of a Series 3700A, send the following
command over the remote command interface:
for x=1,6 do print (slot[x].idn) end

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-78 3700AS-901-01 Rev. B/May 2013

The response will be similar to the following:
3722, Dual 1x48 Multiplexer, 01.00a, <Module Serial Number>
3721, Dual 1x20 Multiplexer, 01.02a, <Module Serial Number>
Empty Slot
Empty Slot
Empty Slot
Empty Slot

Specifying a channel
The channels on the cards that you can use with the Series 3700A are referred to by a channel
specifier. You will use the specifier to identify channels for use with close and open operations, scans,
and channel patterns. The specifier is used for all interfaces (front panel, web, and remote
command).

A channel specifier is a four or five-digit alphanumeric sequence. The first digit is always the slot
number of the slot in which the card is installed in the instrument. The remaining digits vary
depending on the type of card.

The following sections describe the channel specifier in more detail and provide generic examples
(which may or may not be suitable for your installed cards).

Channel types

The channel types that are used to control relays include:

• Matrix
• Multiplexer (MUX)
• Backplane
• Digital I/O
• Totalizer
• Digital to analog converter (DAC)

The channel types that are available on a card are defined by the type of card. The documentation for
your card model lists the available channel types.

Specify multiple channel numbers using lists and ranges (a sequence of channel numbers). Lists and
ranges build on the individual channel specifier.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-79

Matrix card channel specifiers

The channels on the matrix cards are referred to by their slot, bank, row, and column numbers:

• Slot number: The number of the slot in which the card is installed.
• Bank number: The bank number, if used by your card. See your card documentation.
• Row number: The row number is either 1 to 8 or A to Z. See your card documentation.

Column number: Always two digits. For columns greater than 99, use A, B, C and so on to represent
10, 11, 12, …; the resulting sequence is: 98, 99, A0, A1, …, A8, A9, B0, B1, …

Matrix channel examples

Specifier Slot
number

Bank
number

Row
number

Column
number

1104 1 N/A 1 04

11104 1 1 1 04
1203 1 N/A 2 03

213A4 2 1 3 104
3112 3 N/A 1 12
62101 6 2 1 01

Analog backplane relay channel specifiers

The channels for slots with analog backplane relays are referred to by their slot, backplane, bank, and
relay numbers:

• Slot number: The number of the slot.
• Backplane number: Always 9.
• Bank number: The bank number, if used by your card. See your card documentation for detail.
• Analog backplane relay number: The number of the backplane relay. Typically 1 to 6. See your

card documentation for detail.

Backplane relay examples

Specifier Slot
number

Backplane
number

Bank
number

Backplane relay
number

1914 1 9 1 4

1922 1 9 2 2

2924 2 9 2 4

3916 3 9 1 6

Multiplexer, digital I/O, totalizer, and DAC channel specifiers

The channels for multiplexer (MUX), digital I/O, totalizer, and digital to analog converter channels are
referred to by their slot and channel numbers:

• Slot number: The number of the slot in which the card is installed.
• Channel number: The number of the channel (always three digits).

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-80 3700AS-901-01 Rev. B/May 2013

Specifier Slot
number

Channel
number

1004 1 004

2050 2 050
3012 3 012

3003 3 003

2007 2 007
1020 1 020

Close and open channel operations and commands
Switching channels have specific settings for switch-only operations and specific settings for switch
with DMM operations. For switch-only operation, there are three close methods and one open
method. For switch with DMM operation, there is one close and one open method.

You can use scans to perform a user-specified sequence of close and open operations on multiple
channels for switch only applications or the switch with DMM applications. Refer to Scanning and
triggering (on page 3-1) for information on scan operations.

The command or operation used to request the close or open specifies the completion of either a
switch-only operation or a switch with DMM operation.

You can use the front panel CLOSE and OPEN keys to perform either switch only operations or
switch with DMM operations on the selected channels. The operations of the keys depend on the
DMM configuration attribute setting of the selected channel. Refer to Channel Attributes (on page 2-
93) for more information on the DMM Configuration attribute.

• When the DMM configuration is set to “nofunction”, the CLOSE and OPEN keys function as
switch only operations in the same manner as channel.close and channel.open
commands. When the DMM configuration is associated with a particular function (for example,
DC Volts), the CLOSE and OPEN keys function as switch with DMM operations, that is, in the
same manner as dmm.close and dmm.open commands.

An error occurs if you attempt to perform a switch with DMM operation on an item that does not have
an associated DMM function.

Corresponding remote commands for switch with DMM operations:

ICL command Action performed
dmm.close() Equivalent of channel.exclusiveslotclose except it also prepares

the DMM for taking a measurement on the function associated
with the item. It closes any needed backplane relays and paired
channels. It opens channels and backplane relays that will
interfere with measuring on the specified item.

dmm.open() It opens the items that would get closed with a dmm.close().

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-81

When you perform a switch with DMM operation, the Series 3700A also closes the appropriate
analog backplane relays to connect to the DMM Input and/or DMM Sense terminals. For 2-wire or
two-pole DMM operations, the Series 3700A closes only the analog backplane relay to connect to the
DMM Input terminal. For 4-wire or four-pole DMM operations, the Series 3700A closes the analog
backplane relays to connect to the DMM Input and DMM Sense terminals.

The following figure shows an example of how the channel is connected to the DMM Input of the
Series 3700A for a 2-wire DMM operation. Assume a switching module with 20 channels is installed
in Slot 1 of the mainframe and a 2-wire DMM operation, such as DC Volts, is selected. When you
perform a DMM close operation on Channel 1001, the Series 3700A closes Channel 1001 and
Channel 1911 (the backplane isolation relay) to connect the channel to the DMM Input terminal.

Figure 33: Two-wire function

The following figure shows an example of how the channel and its paired channel are connected to
the DMM Input and Sense terminals of the Series 3700A for a 4-wire DMM operation. Assume a
switching module with 20 channels is installed in Slot 1 of the mainframe, and a 4-wire function, such
as 4Ω, is selected. When you perform a DMM close operation on Channel 1001, the Series 3700A
closes Channel 1001 and Channel 1911 (backplane isolation relay) to connect the channel to DMM
Input. The Series 3700A also closes Channel 1011 (the paired channel) and Channel 1922 (the
sense backplane isolation relay) to connect the paired channel to DMM Sense.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-82 3700AS-901-01 Rev. B/May 2013

Figure 34: Four-wire function

Selecting, closing, and opening channels

You can use the channel specifiers to select channels from the front panel, web interface, or over a
remote command interface.

The methods for closing and opening channels include:

• Channel close: Close the selected channel
• Channel exclusive close: Close the selected channel and open any closed channels on the

instrument (the only closed channel on the instrument is the one you selected)
• Channel exclusive slot close: Close the selected channel and open any closed channels in the

same slot (the only closed channel on the slot is the one you selected)
• Channel open

The Series 3700A verifies that the operation being requested for a channel is supported by the
specified channel and that the channel exists in the instrument.

When you turn on the Series 3700A, relays for all switch cards in the instrument are opened. This
includes all backplane relays.

Operating a channel from the front panel

Hot switching can dry-weld reed relays, causing them to always be on. Hot switching is
recommended only when external protection is provided.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-83

You can perform operations on a single channel from the front panel.
To select a channel:
1. If the instrument is being controlled remotely, press EXIT to allow control from the front panel.
2. Press the navigation wheel to select the first digit of the channel specifier, which is the slot

number . The digit flashes, which indicates that it can be edited.

Figure 35: Select a channel from the Series 3700A front panel

3. To change to a different slot number, turn the navigation wheel until the slot number you want
is displayed.

4. Press navigation wheel .
5. If your card supports banks, the next number you can select is the bank number. Set this as

needed using the navigation wheel .
6. Set the channel number (or rows and columns for installed matrix cards) as needed using the

navigation wheel .
7. The display shows the current state of the selected channel in the bottom row . In this example,

the channel is open and 2-pole (if you see : followed by a channel specifier, you selected a range;
press EXIT to return to the main display and reselect your channel).

Figure 36: Series 3700A selected channel state

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-84 3700AS-901-01 Rev. B/May 2013

8. To:
• Close a channel without affecting any other channels: Select CLOSE.
• Open the channel: Press OPEN.
• Close a channel and open any other closed channels on the instrument: Select CHAN and select

EXCLOSE. Press ENTER to close the selected channels.
• Close a channel and open any other closed channels on the slot that contains the selected channel:

Select CHAN, and then select EXSLOTCLOSE. Press ENTER to close the selected channels.

Once a channel is selected, it is the selected channel for any subsequent front-panel operations.

Open and close channels from the Channel Action Menu

You can also use the options in the Channel Action Menu to open and close channels.
To use the Channel Action Menu to open and close channels:
1. Go to channel view.
2. Select the channel you want to open or close.
3. Press CHAN.
4. Use the navigation wheel to select the option. You can select:

• OPEN: Opens the selected channel.
• CLOSE: Closes the selected channel.
• EXCLOSE: Closes the selected channel; opens any other channels that are closed.
• EXSLOTCLOSE: Closes the selected channel; opens any other channels that are closed on the same

slot.

1. Press the navigation wheel to open or close the channel.

Selecting, closing, and opening a channel from the web interface

You can perform operations on a single channel from the web interface.
To select a channel:
1. You must log into the instrument to work with the channels. See Log in to the instrument (on page

2-36). After logging in, you can access the channel controls.
2. From the instrument home page, from the navigation on the left, select the slot that contains the

channels you want to work with.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-85

Figure 37: Web interface Cards list

3. To close a channel, click the channel. The display of the channel depends on the card that you
have installed. Some examples are shown here.

Figure 38: Selecting, closing, and opening a channel from the web interface

Figure 39: Selecting, closing, and opening a channel from the web interface

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-86 3700AS-901-01 Rev. B/May 2013

Figure 40: Close a channel

4. To open a closed channel, click it again.
5. To perform an exclusive close on a channel:

Select Exclusive Slot Close in the Channel Action Type box. (Note that the DMM close option
shown here is only available for instruments with the DMM feature installed.)

Figure 41: Selecting, closing, and opening a channel from the web interface

a. Click a channel to close that channel and open all other channels.

Selecting, closing, and opening a channel using remote commands

To close or open a channel from the remote interface:

You can open and close channels using the following commands:
channel.close() (on page 8-50)
channel.exclusiveclose() (on page 8-56)
channel.exclusiveslotclose() (on page 8-57)
channel.open() (on page 8-79)

For example, to close channel 1001 over the remote interface, send the command:
channel.close("1001")

Refer to the TSP commands (on page 8-10) for details on commands.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-87

Channel list parameter for remote commands

The channel list parameter is a string-type parameter that is used when controlling the relays of the
Series 3700A using a remote command interface. You can specify a list of individual channels or a
range of channels in the channel list parameter.

In the command descriptions, the channel list parameter is shown as channelList.

When sending this parameter:

• Enclose the contents of the channel list in either single (') or double (") quotes. The beginning and
end quotes must be the same style.

• Use a comma or semicolon to separate the channel list or channel patterns (on page 2-96).
• The string may contain a single channel, channel pattern, or analog backplane relay, as well as

multiple ones that are indicated by a range or comma-delimited.
• Use a colon between the start and end channel to specify a range of channels. The lowest

channel must be first and the highest last.

Examples:

• To perform an open or close operation on channels 1 and 3 of slot 1, use ("1001, 1003") for
the channelList parameter.

• To perform an open or close operation on all channels within the range of channels 1 through 5 of
slot 1, use ("1001:1005") for the channelList parameter

Queries that return a list of channels

For queries that return a channel list parameter, a channel configured for 4-pole operations will
indicate the paired channel in parentheses. For example, if channel 3003 on a 60-channel card is
configured for 4-pole, its paired channel is 3033. Notice the response to the query in the code
example below:
channel.close('3003')
print(channel.getclose('slot3') → 3003(3033)

Return value

Several of the channel functions return a value for specified channels and channel patterns.

The return value for these functions is a string containing a list of comma-delimited return items. The
channelList argument of the remote command determines the number and order of these returned
items.

When the channelList parameter for these functions is "slotX", the response first lists the
channels starting from lowest to highest. More specifically, the channels are returned in numeric
order.

When the channelList parameter for these functions is "allslots", the response starts with slot
1 and increases to slot 6 for the Series 3700A. Each slot is processed completely before going to the
next. Therefore, all slot 1 channels are listed before slot 2 channels.

When the response is numeric, but in string format, use the tonumber() function to convert the
string to a number. For example, sending these commands:
x = tonumber("1403")
print(x)

Results in:
1.403000000e+03

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-88 3700AS-901-01 Rev. B/May 2013

When the response is a comma-delimited string, the individual return items can be identified by
iterating through the list using the comma delimiters. For example, the Lua code below will start at the
beginning of a string and break the string into individual items at each comma. The tonumber()
function is used on each item to determine if it is a number or not. In either case, the value is printed.
index1 = 1
index2 = 1
text = "123,abc,hello,4.56"
endIndex = string.len(text)
while index2 ~= endIndex do
 index2 = string.find(text, ",", index1)
 if not index2 then
 index2 = endIndex
 end

 subString = string.sub(text, index1, index2 - 1)
 if not number(subString) then
 print(subString)
 else
 print(tonumber(subString))
 end
 index1 = index2 + 1
end

Selecting a range of channels on the front panel

You can perform operations on a single channel or range of channels. Specify a channel range by
selecting a starting channel number and ending channel number. When you request an operation be
performed on a range of channels, the Series 3700A performs the same operation on all channels
within the channel range.
To select a channel range on the front panel (for example, channels 1003 through 1005):

A single channel is selected when the starting and ending channel for a range match.

You cannot explicitly select an analog backplane relay on the front panel interface. You can only
associate a backplane relay with a switching module channel. Refer to Channel attributes (on page
2-93) for further details.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-89

1. To change the present slot, press the navigation wheel . The first digit of the four-digit channel
number flashes, indicating edit mode.

2. Turn the navigation wheel to change the number to select any slot that has a switching module
or pseudocard installed. For example, change the digit to a 1.

3. Press the navigation wheel a second time. This accepts the slot selection and selects edit
mode for the channel. Digits two through four of the four-digit channel number flash, indicating
edit mode.

4. Turn the navigation wheel to change the starting channel number You can select any channel
available for the selected slot's module. For example, change the digits to 003.

5. Press the navigation wheel a third time. This accepts the channel selection and selects edit
mode for the channel range. Digits two through four of the smaller four-digit channel number
flash, indicating edit mode.

6. Turn the navigation wheel to change the ending channel number. You can select any channel
available for the selected slot's module. For example, change the digits to 005.

7. Press the navigation wheel a fourth time to accept the channel selection.
8. Press the navigation wheel a fifth time to return to the main display after selecting the desired

user configuration for the channel range.
9. Press the CONFIG key, followed by the CHAN key to change other channel attributes for the

range. Similarly, press the CHAN key without the CONFIG key to bring up the CHANNEL
ACTION MENU for use with the selected channel range.

Working with channels
Connection methods for close operations
You can dictate the order in which relays are opened and closed using the channel connection rule.

When the connection rule is set to break before make, the instrument ensures that all switch
channels open before any switch channels close. This behavior covers the most common
applications and is considered the safest connection rule because the tested device is
completely decoupled from the instrument. This is the default behavior. When switch
channels are both opened and closed, this command executes not less than the addition of
both the open and close settle times of the indicated switch channels.

When the connection rule is set to make-before-break, the instrument ensures that all
switch channels close before any switch channels open. This behavior should be applied
with caution because it will connect two test devices together for the duration of the switch
close settle time. When switch channels are both opened and closed, the command
executes not less than the addition of both the open and close settle times of the indicated
switch channels.

With no connection rule (set to channel.OFF), the instrument attempts to simultaneously
open and close switch channels in order to minimize the command execution time. This
results in faster performance at the expense of guaranteed switch position. During the
operation, multiple switch channels may simultaneously be in the close position. Make sure
your device under test can withstand this possible condition. When switch channels are
both opened and closed, the command executes not less than the greater of either the open
or close settle times of the indicated switch channels.

Cold switching is highly recommended.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-90 3700AS-901-01 Rev. B/May 2013

Hot switching can dry weld reed relays such that they will always be on. Hot switching is
recommended only when external protection is provided.

The channel connect rule determines the order in which multiple channels are opened and closed on
the instrument. This attribute applies to electromechanical, reed, and solid state relay switching cards.

You can set the channel connect rule to be:

• BBM (break before make): The instrument ensures that all switch channels open before any
switch channels close. It is used to avoid momentary shorting of two voltage sources. This is the
default.

• MBB (make before break): The instrument ensures that all switch channels close before any
switch channels open. It is used to eliminate transients caused by switching between current
sources. MBB should be applied with caution because it connects two test devices together for
the duration of the switch close settle time.

• OFF: Permits the instrument to initiate close and open operations simultaneously. This minimizes
settling time for the close operation.

You cannot guarantee the sequence of open and closure operations when the channel connect rule
set to OFF. It is highly recommended that you implement cold switching when the channel connect
rule is set to OFF.

To set the channel connect rule through the front panel interface:
1. Press the MENU key.
2. Use the navigation wheel to scroll to the CHANNEL menu item.
3. Press the ENTER key (or the navigation wheel) to display the CONNECT MENU.
4. From this menu, select the RULE menu item.
5. Set the rule to BBM, MBB, or OFF.
6. Use the ENTER key to apply the selection.
7. Use the EXIT key to leave the menu.

To set the channel connect rule through the web interface:
1. On the Unit page, in the upper left corner, select the channel connect rule menu.
2. Select Break Before Make, Make Before Break, or OFF.

To set the channel connect rule through the remote command interface:

Use the channel.connectrule command. Refer to the TSP commands (on page 8-10) for details.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-91

Using sequential connect

During normal operation, the instrument attempts to minimize the duration of any channel action for a
given card type and connect rule. This can result in multiple channels closing or opening
simultaneously.

To prevent simultaneous closing and opening, you can use a sequential connection. A sequential
connection ensures an orderly closing or opening of single individual channels in a channel list. An
orderly action provides for:

• Repeatable and deterministic channel operation times
• Minimized power usage

You incur settling times at each close or open operation. If sequential connection is not selected,
action settling times may vary depending on the card type. The total settling time is the sum of the
settling times for each specified channel, plus any user delays that have been set for any closed
channels. To better calculate timing, you can enable sequential channel connections. Deterministic
implies that you can determine the time for a close operation to happen. For example, if you close
three channels and each takes 4 ms to close, with sequential on, it will take 12 ms. With sequential
off, it may be 4, 8 or 12 ms, depending on whether or not the card can close multiple channels at
once.

Opening and closing relays in a sequential manner also uses minimum power. Since only one relay is
closed or opened at any given time, the power used for that action is for a single relay and not
additive.

By default, sequential connections are turned off. The order in which channels are opened or closed
is not guaranteed. This feature also applies to scanning.

The sequential setting affects all channels in the instrument.

When specifying multiple channels for a single close or open operation, the total settling time
depends on the relay drive scheme for the switching module — how each switching module budgets
power to change the state of its relays. The Series 3700A supports the following relay drive schemes:

• Direct Drive: You can simultaneously update the state of all relays on a switching module with a
single close or open operation. The total settling time for a close or open operation is the settling
time for a single relay.

• Matrix Drive: You can execute a close or open operation on a list of channels, which can result in
multiple actions to update the state of all specified relays. Settling time varies depending on the
capabilities of the card and the number of relay closures.

• Hybrid Matrix Drive: For a single close or open operation, the state of all relays can be updated in
no more than two steps. The total settling time for a close or open operation does is less than
twice the settling time for a single relay.

To enable sequential connections through the front panel interface:
1. Press the MENU key.
2. Use the navigation wheel to scroll to the CHANNEL menu item.
3. Press the ENTER key.
4. Select the SEQUENTIAL menu item.
5. Select ON or OFF.
6. Use the ENTER key to apply the selection.
7. Use the EXIT (LOCAL) key to leave the menu.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-92 3700AS-901-01 Rev. B/May 2013

To enable sequential connections through the web interface:
1. Open the UNIT page.
2. In the upper left corner, select the Sequential check box (next to the Channel Connect Rule list).

To enable sequential connections through the remote command interface:

Send the command:
channel.connectsequential (on page 8-53)

Determining the number of relay closures
The Series 3700A keeps an internal count of the number of times each switching card relay has been
closed. The total number of relay closures is stored in nonvolatile memory on the switching card. Use
this count to determine when relays require replacement (see the card documentation for information
regarding the contact life specifications).

Relay closures are counted only when a relay transitions from open to closed state. If you send
multiple close commands to the same channel without sending an open command, only the first
closure is counted.
 This option is not displayed if multiple channels are selected. A backplane relay has a close count
associated with it as well; the number of closures are the closures that have occurred over the lifetime of
the card.To view the close count for a channel from the front panel:

You cannot query backplane relay closure counts through the front panel. You must use the remote
command interface.

1. Use the navigation wheel to select the channel.
2. Press the CONFIG key.
3. Press the CHAN key.
4. Use the navigation wheel to scroll to the "COUNT" menu item.
5. Press the ENTER key (or the navigation wheel) to display the close counts.
6. Use the EXIT key to leave the menu.

To view the close count for a channel from the web interface:
1. From the list on the left, select a slot with an installed card.
2. Right-click a channel. The Channel Configuration dialog box is displayed.
3. Check the value in the Closure Count box.

You can also work with channel patterns using the command channel.getcount().

Viewing the close or open status of a channel
To determine whether a channel or backplane relay is closed or open, you can view its status using
the front panel interface, remote command query, or instrument web page.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-93

Viewing status from the front panel

Closed channels are shown on the display of the instrument, separated by commas. If more than one
line of closed channels are displayed, you can press DISPLAY to display the full list. Use the
navigation wheel to scroll through the list.

For a four-pole operation the paired channel is not displayed on the front panel of the Series 3700A.

Viewing status from the remote command interface

To view a list of closed channels, use the channel.getclose() command. For example:
print(channel.getclose("allslots"))

To view the close and open status of channels, use the channel.getstate() command.

Viewing status from the instrument web page

To view status from the instrument web page, from the list on the left, select the slot that contains the
channel. The status is displayed on the web page for the slot.

Channel attributes
You can use the front panel and command options to set attributes for specific channels. Some of the
attributes you can set are adding a delay, forbidding closure of a channel, and setting channel labels,
which are described in the following sections.

Setting and querying channel attributes

You can view and edit channel attributes on the front panel using the channel attributes menu. To
access the channel attributes menu, press the CONFIG key and then press the CHAN key. Use the
navigation wheel and CURSOR keys to change attribute values. Use the ENTER and EXIT keys to
apply or cancel settings.

With the exception of the DMM configuration attribute, you can view and edit channel attributes using
the remote command interface using the commands residing in the channel logical instrument. For
example, to set the label attribute of a channel, use the channel.setlabel command; to retrieve
the label attribute of a channel, use the channel.getlabel query.

To set the DMM configuration attribute for a channel or group of channels, use the dmm.setconfig
command and specify the desired channels in the <ch_list> parameter. To retrieve the DMM
configuration attribute for a channel or group of channels, use the dmm.getconfig query.

For specific instructions on retrieving the relay closure count attribute, refer to Relay closure count
(see "Determining the number of relay closures" on page 2-92).

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-94 3700AS-901-01 Rev. B/May 2013

Set additional delay

You can set an additional delay to incur after the relay settles when closing.
To set additional delay time from the front panel:
1. Display a channel (you might need to press DISPLAY).
2. Select the channel for which you want to set attributes.
3. Press CONFIG, then press CHAN.

• DELAY: Additional delay to incur after the relay settles. Enter the value for the delay in seconds. The
total delay for channel operation is user delay plus the relay settling time.

To set additional delay time from the web interface:
1. From the list on the left, select the slot that contains the channel you want to set an additional

delay on.
2. Right-click on the channel you want to bring up the channel configuration dialog box for that

channel.
3. Enter the desired delay time (in seconds) in the delay time field on the right side of the dialog box.

Once the desired time is entered, click OK.

To set additional delay time through the remote interface:

Use the command:
channel.setdelay() (on page 8-93)

Forbid closing a channel

You can prevent a channel from being closed from any interface by setting it to forbidden.

If the channel that is to be forbidden is used in a channel pattern, the pattern is deleted when you set
the channel to be forbidden to close. An analog backplane relay can be marked as forbidden to
close. Analog backplane relays only support the forbidden setting attribute.

To forbid closing of a channel from the front panel:
1. Display a channel (you might need to press DISPLAY first).
2. Select the channel for which you want to set attributes.
3. Press CONFIG, then press CHAN.
4. Use the navigation wheel to select FORBID.
5. Select Yes to prevent a channel from being closed or No to allow closures.
6. Press the navigation wheel to save the change.

To forbid closing of a channel from the web interface:
1. From the list on the left, select the slot that contains the channel you want to forbid close on.
2. Right-click the channel.
3. Select the forbidden checkbox.
4. Click OK.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-95

To forbid closing of a channel from the remote interface:

You can also set this attribute using the following commands:

• channel.setforbidden() (on page 8-94)

• channel.clearforbidden() (on page 8-49)

Set up labels

You can define labels for channels.

Labels must be unique; they cannot have the same as the name of another channel or channel
pattern. Labels cannot contain spaces, and they do not persist through a power cycle.

You cannot apply a label to a range of channels.

Channel labels can be up to 19 characters.

You can only set labels for channels that are installed in the instrument.

To set up labels from the front panel:
1. Display a channel (you might need to press DISPLAY first).
2. Select the channel for which you want to set labels.
3. Press CONFIG, then press CHAN.
4. Use the navigation wheel to select LABEL, which allows you to set the label that will show on

the front-panel for the specified channel.
5. Change the name using the navigation wheel .
6. Press the navigation wheel to save the change.

To set up labels from the web interface:
1. From the list on the left, select the slot that contains the channel you want to set up a label on.
2. Right-click the channel.
3. In the Label box, enter the label.
4. Click OK.

To set up labels from the remote interface use the channel.setlabel() (on page 8-94) command.

You can use labels to refer to the channels in commands. For example, if you set the label for
channel 3005 to "start", you could use "start" to close and open the channel.

This is shown in the following example:
channel.setlabel("3005","start")
channel.close("start")
print(channel.getclose("allslots"))

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-96 3700AS-901-01 Rev. B/May 2013

Pole settings
• BACKPLANE RELAYS: List of backplane relays to control when performing a switch-only operation on

a single channel or range of channels. This attribute is not applicable to channel patterns. Refer to
Channel patterns.

• POLE SETTING: Pole setting for multiplexer (MUX) channels indicates if the paired MUX channel
should be included when performing a close or open operation on channel.
In a switching module that has 60 channels, the Series 3700A automatically pairs Channels 1 through
30 with Channels 31 through 60 (respectively) when the pole setting for a channel is set to 4-pole. Once
you configure the pole setting of a switching channel for 4-pole, the associated paired channel becomes
unavailable for switching operation. For example, assume 3003 is set to 4-pole and its paired channel is
3033. Now, you cannot set attributes or perform close/open operations on 3033. A paired channel
settings conflict error generates if you specify Channel 3033 for a close/open operation.

Matrix channels have fixed pole settings. Multiplexer channels pole settings may be changed.

Channel patterns
You can use channel patterns as a convenient way to refer to a group of switching channels and
backplane relays with a single alphanumeric name. When you perform close or open operations on a
channel pattern, only the channels and analog backplane relays that are in the channel pattern are
affected.

There is no speed difference when performing close and open operations on channel patterns
compared to performing the same operations on individual channels or a list of channels.

Assigning channel pattern attributes

A channel pattern has only two attributes: the channel pattern name and a DMM configuration. An
error occurs if you attempt to assign or query any channel attributes other than DMM configuration for
a channel pattern.

You associate a name with a channel pattern when you create the pattern.

To assign a DMM configuration to a channel pattern using the front panel interface use the PATTERN
ATTRibutes menu. You must create the channel pattern before you can access the PATTERN
ATTRibutes menu. To access this menu after creating a channel pattern, press the CONFIG key
followed by the PATT key.

To assign a DMM configuration to a channel pattern using the remote command interface, use the
dmm.setconfig command and specify the channel pattern name for the channelList parameter.
To retrieve the DMM configuration attribute for a channel pattern, use the dmm.getconfig query
and specify the channel pattern name for the channelList parameter.

Pole settings and channel patterns

Changing a channel's pole setting deletes all patterns containing that channel.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-97

Set the pole setting of switching module channels prior to creating a channel pattern image. If you
change the pole setting for a channel, the Series 3700A will delete any patterns that contain that
channel. For example, assume a channel pattern called 'myimage' has channels 2004, 2008 and
2012 associated with it while 'myimage2' has channels 2005, 2009 and 2011. Now, if pole setting of
Channel 2004 changes then the channel pattern 'myimage' is deleted and no longer exists in system.
However, the pattern called 'myimage2' still exists.

While creating channel pattern images, the paired channel is automatically accounted for based on
pole setting. Therefore, you do not need to manually specify the paired channel in the channel pattern
image. For example, assume Slot 1 has a 3720 card installed and all channels are set to 4-pole
operation. With all channels configured for 4-pole, the available channels are 1001 to 1030. To create
a channel pattern called 'one4wire' with Channel 1001 and backplane relays 1911 and 1922, the
corresponding bus command is:
channel.pattern.setimage('1001, 1911, 1922', 'one4wire')

To see the image associated with a channel pattern, use the channel.pattern.getimage
command. For example, to see the image of the pattern, just created called 'one4wire':

print(channel.pattern.getimage('one4wire')) → 1001(1031),1911,1922

Paired channel are indicated in parentheses in <ch_list> queries.

Create a channel pattern

When you create a channel pattern, make sure to:

• Include all the channels and backplane relays that are needed for that channel pattern.
• Check that channels contained in the pattern are correct.
• Check that channels contained in the pattern create the desired path connection.
• Make sure that channels that you want to include in the pattern are not set to forbidden to close.

When naming the channel pattern, be aware:

• The first character of the name must be alphabetic (upper or lower case)
• Names are case sensitive
• Pattern names must be different than channel labels

Performing close and open operations on channel patterns

Careless channel pattern operation could create an electric shock hazard that could result
in severe injury or death. Improper operation can also cause damage to the switching cards
and external circuitry. The control of multiple channels using channel patterns should be
restricted to experienced test engineers who recognize the dangers associated with
multiple channel closures.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-98 3700AS-901-01 Rev. B/May 2013

You can close and open channel patterns the same way you do for individual channels.

When you request a close or open operation, the Series 3700A verifies that the channels exist for a
pattern, but does not verify that the switch path connection is correct. You must ensure the requested
operation is safe for a channel pattern and that a good connection will result for your application with
the channel pattern.

Channel pattern storage

Channel patterns are:

• Part of saved setup data and restored when a setup is recalled.
• Deleted when the instrument is reset or has a pole setting change.
• Deleted when a channel associated with the pattern is reset.
• Allocated 32KB of memory in the Series 3700A instrument for all channel patterns.

The number of channel patterns you can store varies with the number of characters of the channel
pattern name, the number of characters used in listing the switching channels, and the number of
characters in the name of the DMM configuration. 32KB of memory is equivalent to 32,000
characters. If each channel pattern name is five characters long, and each pattern is comprised of
five channels, and the channel list is comma delimited (for example, "2003,4003,2005,4005,2915"),
then you can store 642 channel patterns. You can store additional channel patterns by decreasing the
number of characters in each channel pattern name or the number of channels in the channel pattern
image. Conversely, you store fewer than 642 channel patterns by increasing the number of
characters in the channel pattern name or number of channels in the channel pattern image.

To see how much of the channel pattern memory is available or used, send the command:
print(memory.available())

or
print(memory.used())

Refer to memory.available() (on page 8-302) or memory.used() (on page 8-303).

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-99

Reset a channel
You can reset a channel to its factory default settings. When you reset a channel:

• Any closed channels and analog backplane relays open
• The poles of all channels reset to 2-pole operation and paired channels are changed to match
• Additional user delay is set to zero
• Labels return to default of SCCC or slot, row, column
• Analog backplane relays specified by the channel.setbackplane()function are cleared
• If the channel is forbidden to close, it is cleared from being forbidden to close
• If the channels are used in channel patterns, the channel patterns that contain the channels are deleted.
• The DMM configurations of all channels are set to nofunction

Using this function to reset a channel or backplane relay involved in scanning invalidates the existing
scan list. The list has to be recreated before scanning again.

Resetting a channel deletes any channel patterns that contain that channel.

To reset a channel from the front panel:
1. Display a channel.
2. Select the channel you want to reset.
3. Press CHAN.
4. Select RESET.
5. Select SELECTED, ALL, or CANCEL.
6. Press the navigation wheel to reset the channel.
To reset all channels on a slot from the web interface:
1. Select the slot that contains channels you want to reset.
2. Click RESET SLOT.
3. All channels on the slot are reset.
To reset a channel from the remote interface:

Send the command channel.reset() (on page 8-87).

Pseudocards
You can perform open, close, and scan operations and configure your system without having an
actual switching card installed in your instrument. Using the remote interface, you can assign a
pseudocard to an empty switching card slot, allowing the instrument to operate as if a switching card
were installed.

A pseudocard cannot be configured from the front panel. However, once the remote configuration is
complete, you can take the instrument out of remote mode and use the front panel. Press the EXIT
key to take the instrument out of remote mode.

When the instrument is turned off, the pseudocard is no longer assigned to the slot.

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-100 3700AS-901-01 Rev. B/May 2013

A saved setup or created configuration script retains the model number of the card installed in each
slot. The model number of a pseudocard is the same as the model number of an actual card (except
for Model 3732 cards; see the "Pseudocard support for the Model 3732" topic in the Series 3700
Switch and Control Cards Reference Manual for details). This allows a saved setup or created
configuration script to be recalled if the installed card (or pseudocard) matches the model number for
the slot in the saved setup or created configuration script.

Pseudocards programming example
Use the following command to set the pseudocard of slot 6 for 3720 Dual 1 x 30 Multiplexer card
simulation:
slot[6].pseudocard = 3720

Alternatively, you could send the following command:
slot[6].pseudocard = 3720

Save the present configuration
You can capture the present settings of the instrument using the create configuration script feature.
When you run this feature, the configuration script is created and saved. You can run it later to return
to that configuration, or set it up to be the autoexec script. The configuration script is a normal TSP
script; once created, you can use it and modify it as you would any other script.

The configuration script includes:

• Comment lines that identify the script as auto created and the date and time of creation.
• The cards that are installed and the slots in which they are installed.
• A reset command, which will reset the instrument to the factory default settings.
• The commands to reconfigure the instrument. The configuration script only captures settings that

have been changed from the factory defaults.

Later, when you run the configuration script, the script will verify that the installed cards and slots
match. If they do not, a message is displayed, the script stops, and the configuration is not restored.

Note that the configuration script does not include the status of channels. As initially created, the
configuration script performs a reset, which opens all channels.

You can modify the script to change the card models or slots. However, you must make sure that all
subsequent commands are valid for the card model or slot change.

For more information on scripts, see Fundamentals of scripting for TSP (on page 7-1). For more
information on the autoexec script, see Autoexec script (on page 7-7).

A sample configuration script is shown in the following example.

Series 3700A System Switch/Multimeter Reference Manual Section 2: General operation

3700AS-901-01 Rev. B/May 2013 2-101

--Auto created configuration script Indicates that this was
created with the Create
Configuration Script feature

--Tue Jul 13 13:02:12 2010 Date and time stamp
if string.find(slot[1].idn, "7174") == nil then
 print(
 "Card installed in slot 1 needs to be a 7174.")
 display.clear()
 display.settext("Card installed in$N" ..
 "$Bslot 1$R needs to be a $B7174$R")

Code that verifies that card
and slot are in agreement

else
 reset() Reset command
 channel.setlabel("1A01", "FirstRowCol")
 channel.setlabel("1A12", "LastRowCol")
 channel.setlabel("1B01", "FirstNextRow")
 channel.setlabel("1B12", "LastNextRow")
 channel.pattern.setimage("1A01,1B01","Row1_2_col_1")
 channel.pattern.setimage("1A02,1B02","Row1_2_col_2")
 channel.pattern.setimage("1A03,1B03","Row1_2_col_3")
 channel.pattern.setimage("1A04,1B04","Row1_2_col_4")
 channel.pattern.setimage("1A05,1B05","Row1_2_col_5")
 channel.pattern.setimage("1A06,1B06","Row1_2_col_6")
 channel.pattern.setimage("1A07,1B07","Row1_2_col_7")
 channel.pattern.setimage("1A08,1B08","Row1_2_col_8")
 channel.pattern.setimage("1A09,1B09","Row1_2_col_9")

channel.pattern.setimage("1A10,1B10","Row1_2_col_10")

channel.pattern.setimage("1A11,1B11","Row1_2_col_11")

channel.pattern.setimage("1A12,1B12","Row1_2_col_12")
 collectgarbage()

 scan.trigger.channel.stimulus =
 scan.trigger.EVENT_CHANNEL_READY
 scan.create()
 scan.mode = 0
 scan.bypass = 1
 scan.add("Row1_2_col_1")
 scan.add("Row1_2_col_2")
 scan.add("Row1_2_col_3")
 scan.add("Row1_2_col_4")
 scan.add("Row1_2_col_5")
 scan.add("Row1_2_col_6")
 scan.add("Row1_2_col_7")
 scan.add("Row1_2_col_8")
 scan.add("Row1_2_col_9")
 scan.add("Row1_2_col_10")
 scan.add("Row1_2_col_11")
 scan.add("Row1_2_col_12")

Code that captures the
non-factory default settings

end

Section 2: General operation Series 3700A System Switch/Multimeter Reference Manual

2-102 3700AS-901-01 Rev. B/May 2013

Create a configuration script
When you run the create configuration script feature, it automatically generates a user script that is
saved to a script with a name that you define. Create configuration script is available from the front
panel of the instrument, the web interface, and the remote interface.

When you specify the name of the script, be aware that if you specify a name that already exists
(including autoexec), the existing script is overwritten with the new configuration script.

To create a configuration script from the front panel:
1. Press MENU.
2. Select SCRIPT.
3. Select CREATE-CONFIG. The AUTOEXEC ON PWR UP prompt is displayed.
4. Select Yes or No.
5. If AUTOEXEC is set to no, at the name prompt, enter the name of the configuration. The default

name is config01.
6. Press ENTER.
7. The AUTOEXEC message is displayed again. Press EXIT several times to return to the normal

display.
To create a configuration script from the web interface:
1. Open the Unit page.
2. Log in if necessary.
3. Click Create Config Script.

Figure 42: Create Config Script dialog box

4. To make the configuration script the autoexec script, select Auto-execute on powerup.
5. To assign a name (the script will not be the autoexec script), select Name and enter a name in

the box.
6. Click OK. The configuration script is created.
To create a configuration script from the remote interface:

Send the command:
createconfigscript(name)

Where name is the name you want to assign to the configuration script.

Running the configuration script
You can run the configuration using the same methods as any other script. See Run scripts (on page
7-5) for information.

In this section:

Scanning and triggering ... 3-1
Files ... 3-24
Display operations .. 3-32
Digital I/O ... 3-43
Reading buffers .. 3-49

Scanning and triggering

Introduction to scanning and triggering
A scan is a series of steps that opens and closes switches sequentially for a selected group of
channels. During each step, actions occur, such as waiting for a trigger, taking a measurement, and
completing a step count. Scans automate actions that you want to perform consistently and
repeatedly on a set of channels.

Triggers are events that prompt the instrument to move from one step to another in a scan. Triggers
can come from a variety of sources, such as a key press, digital input, or expiration of a timer. The
sequence of actions and events that occur during the scan is called the trigger model.

Scanning and triggering allow you to synchronize actions across channels. You can set up a scan
using the trigger model to precisely time and synchronize the Series 3700A between channels and
multiple instruments. You can also use triggers without the triggering model to set up a scan to meet
the needs of a specific application that does not fit the triggering model.

You can configure and run scans from the front panel, over a remote communication interface, or
through the web interface. If you are using the communication interface or the web interface, the scan
is a set of actions determined by the trigger model. If you use the front panel, key presses determine
the order of the scan.

The Keithley Instruments Series 3700A can scan channels with up to six Keithley Instruments
switching cards installed. Each scan channel can have its own unique setup. Aspects of operation
that may be uniquely set for each channel include function, range, rate, AC bandwidth, REL, filter,
digits, math, offset compensation, temperature transducers, limits, volts dB, and so on.

If desired, readings for scanned channels may be automatically stored in a specified reading buffer
(Buffer: Data Storage and Retrieval).

Section 3

Functions and features

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-2 3700AS-901-01 Rev. B/May 2013

Trigger model
When you run a scan, the scan sequence follows a trigger model. The trigger model is shown in the
following flowchart.

In Series 3700A, only scanning operations use the trigger model. Individual open, close, and
measure commands do not affect the trigger model.

The trigger model is used during a scan only. For front panel operation, you use the SCAN and STEP
keys to perform scan actions. For remote operation, you use the scan functions and attributes
commands, for example, scan.execute() and scan.mode.

You cannot use an external trigger event (for example, digital I/O) for the channel stimulus setting of
the trigger model when using the front-panel STEP key.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-3

Figure 43: Trigger model

Trigger model components
The individual components of the trigger model are explained in the following paragraphs.

Trigger model events and associated commands
The Model 3706A trigger model has the following events and associated command attributes. These
events, along with other events in the system, may be used to configure various stimulus settings.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-4 3700AS-901-01 Rev. B/May 2013

For example, the channel ready event (scan.trigger.EVENT_CHANNEL_READY) may be set to
pulse digital I/O line 3 when it gets generated. The command message for this would be:
digio.trigger[3].stimulus = scan.trigger.EVENT_CHANNEL_READY

Likewise, you can use the digital I/O line 5 trigger event to satisfy the scan trigger channel stimulus,
which causes the channel action to occur when a trigger is detected on line 5. The command
message for this is:
scan.trigger.channel.stimulus = digio.trigger[5].EVENT_ID

Event Associated attribute
Scan Ready Event scan.trigger.EVENT_SCAN_READY
Scan Start Event scan.trigger.EVENT_SCAN_START
Channel Ready Event scan.trigger.EVENT_CHANNEL_READY
Measure Complete Event scan.trigger.EVENT_MEASURE_COMP
Sequence Complete Event scan.trigger.EVENT_SEQUENCE_COMP
Scan Complete Event scan.trigger.EVENT_SCAN_COMP
Idle Event scan.trigger.EVENT_IDLE

Scanning operations run through the trigger model, but individual open, close, and DMM measure
commands have no interaction with the trigger model.

Scan and step counts
When running a scan, it may be necessary to determine the scan progress. You can use
scan.state() to read the scan and step count to determine the point in the scan table being
executed.

"Scan count" represents the number of the current iteration through the scan portion of the trigger
model. This number does not increment until after the scan begins. Therefore, if an instrument is
waiting for an input to trigger a scan start, the scan count represents the previous number of scan
iterations. If no scan has yet to begin, the scan count is zero.

"Step count" represents the number of times the scan has completed a pass through the channel
action portion of the trigger model. This number does not increment until after the action completes.
Therefore, if the instrument is waiting for an input to trigger a channel action, the step count
represents the previous step. If no step has yet to complete, the step count is zero. If the step count
has yet to complete the first step in a subsequent pass through a scan, the scan count represents the
last step in the previous scan pass.

For example:

• 1003:1005 will add Channels 1003, 1004, and 1005 to the list as three distinct steps, with
Channel 3 added first, Channel 4 added second, and Channel 5 added third.

• Adding individual channels in the order of 1003, 1005, and 1004 will add the channels to the list
as three distinct steps with Channel 3 added first, Channel 5 added second, and Channel 4
added last.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-5

Basic scan procedure

It is always better to configure all channel and DMM attributes before creating a scan.
You cannot use an external trigger event, like digital I/O, for the channel stimulus setting of the
trigger model when using the front panel STEP key. For more information, see Scanning and Trigger
model (on page 3-2).

To perform a scan:

1. Configure the channels for scanning as needed.
2. Select (or create, if necessary) the reading buffer to store measurements (if desired).
3. Build the scan list:

• Front panel: Press the INSERT key. The steps are executed in the order in which they are added.
When adding a range of channels, they are added to the end of the existing scan list.

• Remote interface: Send the scan.create(), scan.add() , or scan.addimagestep() command.
4. Configure the scan settings (for example, scan count, bypass, mode, and so on).
5. To start the scan:

• Front panel: Press the STEP key or the SCAN key and select the BACKGROUND menu item.
• Remote interface: Send the command scan.execute or scan.background.

6. The trigger model leaves the idle state and performs actions on the channels involved in
scanning, along with channels that would interfere with scanning, such as AMP channels, analog
backplane relays 1 and 2 on all slots, commonside ohm backplane channels, and other channels
in banks involved in scanning.
• Front panel: When you press the STEP key, the Model 3706A leave the idle state and perform the

channel action associated with the first step in the scan list.
Measurements are then taken (if part of the scan). If a reading buffer was selected, the result
from the measurements are stored there. The measurement action, if started, is completed. The
channel and DMM remain as previously configured until the next step in the scan is initiated. The
DMM configuration changes to the attribute settings tied to the channel in the next step.

While scanning is enabled, pressing most front panel keys will cause the instrument to display error
code 5522, "Scan Running, Must Abort Scan."

1. The channels are scanned or stepped in the order they were added to the list.
• Front panel: If you are stepping through the scan, press the STEP key to proceed to the next step in

the list.
• Remote interface: You cannot step a scan remotely over the bus.

2. To abort the scan:
• Front panel: Press the EXIT key.
• Remote interface: Use the scan.abort() ICL command.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-6 3700AS-901-01 Rev. B/May 2013

Even if the scan is aborted, the DMM remains as configured in the last completed step of a scan that
involved measuring and channel states match the aborted state of channels in terms of which are
closed and opened.

The DMM remains as previously configured in the last completed measurement step of a scan that
involved measuring. The function associated with that configuration will have the associated DMM
attributes updated to match. All other functions will remain as configured prior to scanning.

If configured to scan the channels in the scan list again, the Series 3700A waits at the control source
for another trigger event. After the scan is complete, the Series 3700A outputs another trigger pulse,
if configured to do so. After all requested scans are complete, the instrument returns to the idle state
with the channels associated with last scan step closed.

Buffer
To recall scanned readings stored in the buffer, press the REC key and turn the navigation wheel to
navigate through the buffer. See Recalling readings (on page 3-52) for details on recalling buffer
readings. When finished, make sure to exit from buffer recall (press the EXIT key). Also see Reading
buffers (on page 3-55, on page 3-49).

Changing attributes of an existing scan
When a scan already exists, changing channel and DMM attributes also causes the scan to change.
Once a scan list has been defined, the Series 3700A tries to incorporate your changes into the scan.
For example, changing a DMM configuration assigned to a channel used in scanning affects the scan
list. But changing a DMM configuration on a channel not involved in scanning does not affect the scan
list. If the change impacts the ability of the scan to function properly (such as deleting something
referenced by the scan), an error message is logged and the scan list may be cleared.

To see how the scan list may have changed, view the current scan list:

1. Press the SCAN key when on the main display.
2. Select the LIST option and press the ENTER key.
3. Use the navigation wheel or CURSOR keys to scroll through the list.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-7

For remote operation, use the scan.list() function.

For performance reasons, it is always better to configure all channel and DMM attributes before
creating a scan. Afterward, changes may cause the scan to take more time to modify the scan list.

You can clear an existing scan list before making any changes after making a scan list. From the front
panel, press the SCAN key and select the CLEAR option. For bus operation, use the
scan.create() function.

Some changes may cause channels to be dropped from the list when they become paired with
another channel for a 4-wire operation. These channels will not be added back into the list during
subsequent changes that free the paired channel from a 4-wire operation. To get a recently unpaired
channel back in the list, create a new scan list or add it back into the list.

For example, a scan list is comprised of Channels 1 to 60 on a Model 3720 card with the channels
configured to measure DC volts. Changing Channels 1 to 30 to be configured for 4-wire ohms
measurements causes the scan list to change. The scan list changes to contain Channels 1 to 30
measuring 4-wire ohms, and Channels 31 to 60 are removed because they are paired with Channels
1 to 30. If you then change Channels 1 to 60 to be configured for measuring DC volts, the scan list
will still only contain Channels 1 to 30, but it will be measuring DC volts. Channels 31 to 60 are not
automatically added back into the list.

The remote commands to simulate this example follow. Assume the Model 3720 is in Slot 3:
-- Configure Channels 1 to 60 to measure DC volts.
dmm.setconfig("slot3", "dcvolts")
-- Create a scan list, channels measuring DC volts.
scan.create("slot3")
-- View the scan list, 60 channels measuring DC volts.
print(scan.list())
-- Change Channels 1 to 30 to 4-wire ohms.
dmm.setconfig("slot3", "fourwireohms")
-- List now has Channels 1 to 30 measuring 4-wire ohms.
print(scan.list())
-- Change back to DC volts on Channels 1 to 60.
dmm.setconfig("slot3", "dcvolts")
-- List still has Channels 1 to 30, but measures DC volts.
print(scan.list())

To configure a scan from the SCAN ATTR MENU, while in an active scan list:
1. Press the CONFIG key.
2. Press the SCAN key. Modify any of the following menu items as desired:

• ADD: Displays Use INSERT key. The related command is scan.add, without the optional DMM
configuration.

• BYPASS: Enables (ON) or disables (OFF) bypassing the first step of the first scan pass. Related
command: scan.bypass (on page 8-324).

• MODE: Sets the scan mode value to one of the following:
• OPEN_ALL (default setting)
• OPEN_SELECT
• FIXED_ABR
Related command: scan.mode() (see "scan.mode" on page 8-331).

• MEAS_CNT: Sets the measure count value. Related command: scan.measurecount (on page 8-330).
• SCAN_CNT: Sets the scan count value. Related command: scan.scancount (on page 8-335).

3. Press the EXIT key to leave the menu.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-8 3700AS-901-01 Rev. B/May 2013

Front-panel scanning
After channels have been added to the scan list, press the SCAN key to display the SCAN ACTION
MENU. If no scan list exists, pressing the SCAN key will briefly display "No Scan List. Use INSERT to
add selection."

The menu contains the following items:

• BACKGROUND: Runs scan list in the background
• CREATE: Displays Use INSERT key
• LIST: Displays the current scan list steps. Turn the navigation wheel to scroll through the list.
• CLEAR: Clears the existing scan list.
• RESET: Resets the unit's scan settings, which include scan count, clearing the scan list, and

scan stimulus settings like scan trigger arm.

Press the INSERT key to add the selected channels or pattern to the existing scan list.

Press the DELETE key to remove the selected channels or pattern from the existing scan list. Only
the first occurrence of the selected item is removed. For example, if Channel 3003 appears in the list
three times and Channel 3003 is selected when the DELETE key is pushed, the first step using
Channel 3003 will be removed (the remaining two will stay in the list).

When removing channels, channel patterns are not checked to determine if the channel being
removed is associated with its image. To remove a channel pattern in a scan list, select the channel
pattern to be removed, and then press the DELETE key. Continuing the previous example of Channel
3003, if 'mypat1' is comprised of Channels '3003, 3033, 3911, and 3922' when the remove request for
Channel 3003 is made, it will not remove 'mypat1' from the list. To remove 'mypat1' from list, select
the channel pattern 'mypat1' and press the DELETE key, which removes the step and all associated
channels.

Press the STEP key to single step through a scan list.

Foreground and background scan execution
You can execute a scan in the foreground or background. Background execution allows you to query
settings or access reading buffer data. If a scan is running in the foreground, it will need to finish or be
aborted before you can query any settings or access reading buffers.

When a scan is running in the background, you can send commands to be processed. The
commands that you can use include most of the command messages that you use to query for
settings, for example:
print(dmm.func)
printbuffer(1, 5, rb)
print(scan.state())

Most of the commands to change how the instrument is configured will log the following error
message to the error queue:
5522, Scan Running, Must Abort Scan

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-9

Include multiple channels in a single scan step
Through the remote control interface, you can use scan.addimagestep to combine a list of
channels into a scan step.

The following example creates five scan steps with the indicated channels.
scan.create()
scan.addimagestep("1A01, 1B01, 1C03")
scan.sddimagestep("1A03, 1B03, 1C03")
scan.addimagestep("1A05, 1B05, 1C03")
scan.sddimagestep("1A07, 1B07, 1C03")
scan.addimagestep("1A09, 1B09, 1C03")

Remote interface scanning
Scan and trigger commands
The following list contains commands associated with triggers and bus operation scanning:

• lan.trigger[N].clear() (on page 8-282)
• trigger.blender[N].stimulus[M] (on page 8-425)
• trigger.blender[N].wait() (on page 8-427)
• trigger.timer[N].clear() (on page 8-429)
• trigger.timer[N].stimulus (on page 8-433)
• digio.trigger[N].clear() (on page 8-122)

• digio.trigger[N].pulsewidth (on page 8-125)
• digio.trigger[N].stimulus (on page 8-127)
• digio.trigger[N].wait() (on page 8-129)

• lan.trigger[N].assert() (on page 8-281)
• lan.trigger[N].clear() (on page 8-282)
• lan.trigger[N].overrun (on page 8-287)
• lan.trigger[N].stimulus (on page 8-288)
• lan.trigger[N].wait() (on page 8-291)
• scan.add() (on page 8-319)
• scan.background() (on page 8-323)
• scan.bypass (on page 8-324)
• scan.create() (on page 8-325)
• scan.execute() (on page 8-327)
• scan.list() (on page 8-328)

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-10 3700AS-901-01 Rev. B/May 2013

• scan.measurecount (on page 8-330)
• scan.mode (on page 8-331)
• scan.reset() (on page 8-334)
• scan.scancount (on page 8-335)
• scan.state() (on page 8-336)
• scan.stepcount (on page 8-337)
• scan.trigger.arm.clear() (on page 8-337)
• scan.trigger.arm.set() (on page 8-338)
• scan.trigger.arm.stimulus (on page 8-338)
• scan.trigger.channel.clear() (on page 8-340)

• scan.trigger.channel.set() (on page 8-341)
• scan.trigger.channel.stimulus (on page 8-341)
• scan.trigger.clear() (on page 8-343)
• scan.trigger.measure.clear() (on page 8-344)
• scan.trigger.measure.set() (on page 8-344)
• scan.trigger.measure.stimulus (on page 8-345)
• scan.trigger.sequence.clear() (on page 8-346)
• scan.trigger.sequence.set() (on page 8-347)
• scan.trigger.sequence.stimulus (on page 8-348)

Hardware trigger modes
Use the hardware trigger modes to integrate Keithley Instruments and non-Keithley instruments into
an efficient test system. The hardware synchronization lines are classic trigger lines. The Series
3700A contains 14 digital I/O lines and three TSP-Link synchronization lines that you can use for
input or output triggering. The following table provides a summary for each hardware trigger mode.

Trigger mode Output Input Notes
 Unasserted Asserted Detects

Bypass N/A N/A N/A Use the writebit and writeport
commands for direct line control

Either edge High Low Either Short input pulses can cause a trigger
overrun

Falling edge High Low Falling

Rising edge N/A N/A N/A • The programmed state of the line
determines if the behavior is similar
to RisingA or RisingM

• High similar to RisingA
• Low similar to RisingM

Rising A High Low Rising

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-11

Trigger mode Output Input Notes
 Unasserted Asserted Detects

RisingM Low High None
Synchronous High

latching
Low Falling • Behaves similar to SynchronousA

• Trigger overrun detection is disabled
• To mirror the SynchronousA trigger

mode, set the pulse duration to 1 µs
or any small nonzero value

SynchronousA High
latching

High Falling Ignores the pulse duration

SynchronousM High Low Rising

Each trigger mode controls the input trigger detection and output trigger generation. The input
detector monitors for and detects all edges, even if the node that generates the output trigger causes
the edge.

A trigger overrun generates if an input trigger is received before the previous input trigger processes.
To determine if a trigger overrun has occurred, reference the trigger overrun attributes.

For additional information on the hardware trigger modes, see TSP commands (on page 8-10).

To have direct control of the line state, use the bypass trigger mode.

Falling edge trigger mode
The falling edge trigger mode generates low pulses and detects all falling edges. The figure titled
"Falling edge input trigger" shows the characteristics of the falling edge input trigger; the figure titled
"Falling edge output trigger" shows the falling edge output trigger.

Input characteristics:

• Detects all falling edges as input triggers.

Figure 44: Falling edge input trigger

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-12 3700AS-901-01 Rev. B/May 2013

Output characteristics:

• In addition to trigger events from other trigger objects, the digio.trigger[N].assert() and
tsplink.trigger[N].assert() commands generate a low pulse for the programmed pulse
duration.

• An action overrun occurs if the physical line state is low and a source event occurs.
• When the trigger is asserted, it generates a low pulse for the programmed pulse duration.

Figure 45: Falling edge output trigger

Rising edge master trigger mode
Use the rising edge master (RisingM) trigger mode (see the figure titled "RisingM output trigger") to
synchronize with non-Keithley instruments that require a high pulse. Input trigger detection is not
available in this trigger mode. You can use the RisingM trigger mode to generate rising edge pulses.

The RisingM trigger mode does not function properly if the line is driven low by an external drive.

Output characteristics:

• Configured trigger events, as well as the digio.trigger[N].assert() and
tsplink.trigger[N].assert() commands, cause the physical line state to float high during
the trigger pulse duration.

• An action overrun occurs if the physical line state is high while a stimulus event occurs.
• When the trigger is asserted, it causes the physical line state to float high during the trigger pulse

duration.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-13

Figure 46: RisingM output trigger

Rising edge acceptor trigger mode
The rising edge acceptor trigger mode (RisingA) generates a low pulse and detects rising edge
pulses (see the following figures).

Input characteristics:

• All rising edges generate an input event.

Figure 47: RisingA input trigger

Output characteristics:

• In addition to trigger events from other trigger objects, the digio.trigger[N].assert() and
tsplink.trigger[N].assert() commands generate a low pulse that is similar to the falling
edge trigger mode.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-14 3700AS-901-01 Rev. B/May 2013

Figure 48: RisingA output trigger

Either edge trigger mode
The either edge trigger mode generates a low pulse and detects both rising and falling edges.

Input characteristics:

• All rising or falling edges generate an input trigger event.

Figure 49: Either edge input trigger

Output characteristics:

• In addition to trigger events from other trigger objects, the digio.trigger[N].assert() and
tsplink.trigger[N].assert() commands generate a low pulse that is similar to the falling
edge trigger mode.

• An action overrun occurs if the physical line state is low while a stimulus event occurs.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-15

Figure 50: Either edge output trigger

Understanding synchronous triggering modes
Use the synchronous triggering modes to implement bidirectional triggering, to wait for one node, or
to wait for a collection of nodes to complete all triggered actions.

All non-Keithley instrumentation must have a trigger mode that functions similar to the SynchronousA
or SynchronousM trigger modes.

To use synchronous triggering, configure the triggering master to the SynchronousM trigger mode or
the non-Keithley equivalent. Configure all other nodes in the test system to SynchronousA trigger
mode or a non-Keithley equivalent.

Synchronous master trigger mode (SynchronousM)
Use the synchronous master trigger mode (SynchronousM) to generate falling edge output triggers,
to detect the rising edge input triggers, and to initiate an action on one or more external nodes with
the same trigger line.

In this mode, the output trigger consists of a low pulse. All non-Keithley instruments attached to the
synchronization line in a trigger mode equivalent to SynchronousA must latch the line low during the
pulse duration.

To use the SynchronousM trigger mode, configure the triggering master as SynchronousM and then
configure all other nodes in the test system as Synchronous, SynchronousA, or to the non-Keithley
Instruments equivalent.

Use the SynchronousM trigger mode to receive notification when the triggered action on all nodes is
complete.

Input characteristics:

• All rising edges are input triggers.
• When all external drives release the physical line, the rising edge is detected as an input trigger.
• A rising edge is not detected until all external drives release the line and the line floats high.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-16 3700AS-901-01 Rev. B/May 2013

Figure 51: SynchronousM input trigger

Output characteristics:

• In addition to trigger events from other trigger objects, the digio.trigger[N].assert() and
tsplink.trigger[N].assert() functions generate a low pulse that is similar to the falling
edge trigger mode.

• An action overrun occurs if the physical line state is low while a stimulus event occurs.
• When the trigger is asserted, it generates a low pulse that is similar to the Falling Edge trigger

mode

Figure 52: SynchronousM output trigger

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-17

Synchronous acceptor trigger mode (SynchronousA)
Use the synchronous acceptor trigger mode (SynchronousA) in conjunction with the SynchronousM
trigger mode. The roles of the internal and external drives are reversed in the SynchronousA trigger
mode.

Input characteristics:

• The falling edge is detected as the external drive pulses the line low, and the internal drive
latches the line low.

Figure 53: SynchronousA input trigger

Output characteristics:

• In addition to trigger events from other trigger objects, the digio.trigger[N].assert() and
tsplink.trigger[N].assert() functions release the line if the line is latched low. The pulse
width is not used.

• When the trigger is asserted, it releases the line if the line is latched low.
• The physical line state does not change until all drives (internal and external) release the line.
• Action overruns occur if the internal drive is not latched low and a source event is received.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-18 3700AS-901-01 Rev. B/May 2013

Figure 54: SynchronousA output trigger

Synchronous trigger mode
The synchronous trigger mode is a combination of SynchronousA and SynchronousM trigger modes.

Keithley Instruments recommends using SynchronousA and SynchronousM modes only.

Input characteristics:

• The falling edge generates an input event and latches the internal drive low.

Figure 55: Synchronous input trigger

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-19

Output characteristics:

• In addition to trigger events from other trigger objects, the digio.trigger[N].assert() and
tsplink.trigger[N].assert() functions generate a low pulse for the programmed pulse
duration if the line is latched low, a falling edge does not occur.

• When the trigger is asserted and the line is latched low, the pulse duration is enforced, and then
the internal line drive is released.

• A normal falling edge pulse generates when the internal drive is not latched low and the
digio.trigger[N].assert() and tsplink.trigger[N].assert() functions are issued.

• To mirror the SynchronousA trigger mode, set the pulse width to 1 µs or any small nonzero value.
• Action overruns are disabled.

Figure 56: Synchronous output trigger

Events
Event detectors monitor an event. They have one input signal (the stimulus), which is the event that
they monitor (in some cases, the stimulus is an action in the system, like a timer expiring or a key
press). They have two optional output signals (see figure below). "Detected" reflects the detection
state of the event detector. If an event was detected, the detected signal is asserted. Event detectors
are usually coupled to something that consumes the events. When an event is consumed, the
detected state of the event detector is reset. Should an event be detected while the event detector is
in the detected state, the overrun signal will be asserted. You can only clear the overrun signal by
sending an ICL command.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-20 3700AS-901-01 Rev. B/May 2013

Figure 57: Event detector

Event blenders
Advanced event handling requires a way to wait for one of several events (or all of several events).
An event blender provides for this combining or blending of events. An event blender can combine up
to four events in either an "or" mode or an "and" mode. When in "or" mode, any one of the input
events will cause an output event to be generated. When in "and" mode, all the input events must
occur before an output event is generated.

When operating in "and" mode, if an event is detected more than once before all events necessary for
the generation of an output event, an action overrun will be generated. When operating in "or" mode,
an action overrun will be generated when two or more source events are detected simultaneously.

Event blenders each have an associated event detector that can be accessed through script control.
Event blenders can only be accessed over a remote interface (no front panel control is available). The
following remote commands provide additional information on available blenders:

trigger.blender[N].clear() (on page 8-422)
trigger.blender[N].orenable (on page 8-423)
trigger.blender[N].overrun (on page 8-424)
trigger.blender[N].stimulus[M] (on page 8-425)
trigger.blender[N].wait() (on page 8-427)

LXI Class B Triggering (IEEE-1588)

Introduction to IEEE-1588 based triggering
The Series 3700A uses IEEE-1588 precision time protocol (PTP) to implement synchronized
measurements and initiate time-triggered events over the LAN (Ethernet) interface. IEEE-1588 is a
requirement of the LXI B Functional Class. Using IEEE-1588, you can schedule instrument-driven
actions, such as measurements, to occur at a specific date and time and synchronize timebases
between instruments on the same network. You can only access these capabilities through the
remote command interfaces.

You can find detailed information on the syntax and usage of each remote command presented in
this section in Command reference.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-21

IEEE-1588 implementation in the Series 3700A
When you enable IEEE-1588 on a Series 3700A on a local network, the Series 3700A communicates
with other IEEE-1588 enabled devices on the network through a dedicated network port called the
PTP port. A predetermined algorithm then automatically selects the network device with the most
accurate clock. This network device becomes the IEEE-1588 master. If multiple devices have the
same clock accuracy, the protocol arbitrarily chooses one device to be the IEEE-1588 master.

When the protocol selects the Series 3700A as the master clock, the Series 3700A uses the time
value stored in its battery-backed real-time clock and updates the time in all subordinate devices.
When the protocol selects another networked device as the master clock, the Series 3700A is
subordinate to the more accurate device and adjusts its time to that of the master clock. Additionally,
the Series 3700A updates its battery-backed clock so that the time is "remembered" if the master
clock is removed from the network.

At periodic intervals, the master clock synchronizes to all subordinate clocks through timestamped
messages over the PTP port. This allows IEEE-1588 to maintain time synchronization between
multiple devices on a network.

Program the synchronization interval in the Series 3700A using the ptp.syncinterval attribute The
default synchronization interval is two seconds. Increasing the synchronization interval to values of
more than two seconds increases the amount of time that it takes devices on the LAN to synchronize.
If you change the synchronization interval, you must restart the clock of the Series 3700A by cycling
its power.

Read the current time delay and offset between any subordinate device and its master on the LAN
using the ptp.ds.current attribute. Synchronization of timestamps between IEEE-1588 enabled
devices to within 150 ns can take as long as two minutes.

Correlating PTP to Coordinated Universal Time (UTC)
To ensure synchronization across networked devices, you must be aware of the time protocol utilized
by those other devices on the network.

The most widely accepted time scale is Coordinated Universal Time (UTC); in many places, it is
considered standard time. UTC is nearly the same time as Greenwich Mean Time (GMT), another
very familiar time scale, and for the purposes of the Series 3700A, UTC and GMT are the same.
Local time is offset from UTC according to time zones; additional offsets can occur due to Daylight
Savings Time adjustments.

UTC suffers from discontinuities because of nonperiodic adjustments known as “leap seconds."
These adjustments present problems because they can make events that occurred at different
periods of time appear to occur at the same time. PTP is a time standard that does not have any
discontinuities and has no adjustments for local time (that is, it is not time-zone aware). PTP is
presented as the number of seconds since January 1, 1970.

The Series 3700A offers two versions of time for most IEEE-1588-related commands, .seconds and
.ptpseconds, representing UTC and PTP respectively. IEEE-1588 requires that devices are
synchronized using UTC or PTP time, not local time. The Series 3700A does not distinguish UTC,
PTP, and local time; it is not time-zone aware. You must be aware of this when synchronizing with
devices that are time-zone aware.

When IEEE-1588 selects a time-zone aware device to be the master clock, the Series 3700A accepts
the time of that clock. This time may not agree with the local time of the Series 3700A, especially
when a network spans multiple time zones. If you schedule events on the Series 3700A to occur
according to your local time, events will not occur at the time you expect.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-22 3700AS-901-01 Rev. B/May 2013

You can avoid confusion by setting the time on the Series 3700A to UTC time instead of local time.
Manage the conversion from UTC to local time in your software application. For example, assume
local time is Eastern Standard Time in the United States (EST), which is equivalent to GMT-5 (hours).
Therefore, if the current local time is 3:00 PM, the UTC time is 8:00 PM. Set the time of the Series
3700A clock to 8:00 PM. If it is then synchronized with a time-zone aware master clock, its time will
not change significantly.

The Series 3700A does not differentiate UTC and PTP time. The ptp.utcoffset (on page 8-317)
attribute is zero unless a master clock that is aware of the difference between UTC and PTP time
populates this value. This value is volatile and does not persist through a power cycle.

Configuring and enabling IEEE-1588
To configure IEEE-1588, connect the Series 3700A to the LAN, along with any other IEEE-1588
enabled devices that you want to synchronize to the Series 3700A. Refer to the Series 3700A User
Manual for information on connecting the Series 3700A to the LAN. If you want to synchronize
multiple Series 3700A instruments on a LAN, each instrument must have the same PTP subdomain
name.

The default PTP subdomain name is _DFLT for all Series 3700A devices. Use the ptp.subdomain
attribute to change the subdomain name for any Series 3700A on the LAN. After changing the
subdomain name, you must power cycle the Series 3700A to restart its clocks. If you have changed
the subdomain name of any third-party IEEE-1588 enabled device in that subdomain, you must also
restart its clock.

Cycling the power to the Series 3700A does not return the IEEE-1588-related parameters to factory
default state. To return these to factory defaults, perform a LAN configuration reset. This can be
done using the lan.status.reset() function on the remote command interface. You can also perform a
reset through the front-panel interface by entering the Main menu, selecting LAN, and selecting
Reset.

Use the ptp.enable (on page 8-314) attribute to enable IEEE-1588 on the Series 3700A. The IEEE-
1588 protocol then determines the master clock. The IEEE-1588 indicator on the front panel of the
Series 3700A updates to display the IEEE-1588 status.

• If the indicator is off, IEEE-1588 is disabled or the device is not connected to a working network.
• If the network is not working, the LAN indicator blinks. If the indicator is solidly on, the IEEE-1588

is successfully enabled and synchronized, and the Series 3700A is a subordinate (slave) clock.
• If the indicator blinks once every second, IEEE-1588 is successfully enabled and synchronized,

and the Series 3700A is the master clock.
• If the indicator blinks once every two seconds, IEEE-1588 is successfully enabled and

synchronized, and the Series 3700A is the grandmaster clock.

You can also use the ptp.synchronized attribute to determine if the Series 3700A is a master or
subordinate on the LAN.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-23

The ptp.enable (on page 8-314) attribute is saved in nonvolatile memory. Therefore, if you turn off a
Series 3700A with IEEE-1588 enabled and then turn on the Series 3700A power on a different
network, it attempts to synchronize with any other IEEE-1588 enabled devices on that new network.
You do not need to re-enable IEEE-1588.

Monitoring alarms with LAN triggers and LXI event log
Use the LXI event log to monitor the firing of scheduled alarms. The LXI event log in the Series
3700A only captures LAN triggers that occur in its defined LXI domain. To monitor alarms, configure
the alarm to generate a LAN trigger by using schedule.alarm[N].EVENT_ID (on page 8-351) as the
control source for lan.trigger[N].stimulus (on page 8-288) in the trigger model. You can define up to
eight LAN triggers.

Use lan.lxidomain (on page 8-273) to specify the LXI domain. Additionally, you can broadcast LAN
triggers to all devices on an LXI domain, or you can transmit LAN triggers between two individual
devices. To configure the LAN trigger broadcast, use lan.trigger[N].protocol (on page 8-287).

The following example demonstrates how to generate a LAN trigger when a scheduled alarm fires:
-- configure the LXI domain
lan.lxidomain=0
-- configure the LXI trigger to broadcast to all devices in this LXI domain
lan.trigger[2].protocol=2
lan.trigger[2].connect()
-- associate the firing of the alarm to the generation of a LAN trigger
lan.trigger[2].stimulus = schedule.alarm[1].EVENT_ID

LXI event log

The LXI event log of a Series 3700A monitors all LAN triggers that the instrument receives or
generates. The LXI event log has nine comma-delimited fields. Below is an example entry to an LXI
event log and a description of the log fields in order of appearance.
"17:26:35.690 10 Oct 2007, LAN0, 192.168.1.102, LXI, 0, 1192037132,

1192037155.733269000, 0, 0x0"

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-24 3700AS-901-01 Rev. B/May 2013

Value Description
“17:26:35.690 10 Oct

2007”
Formatted UTC time in 24-hour format including fractional
seconds.

“LAN0” Event identifier. This event identifier is zero-based (LAN0-
LAN7). When specifying the LAN trigger using
lan.trigger[N], the minimum value for N is 1. Therefore
LAN0 to LAN 7 corresponds to lan.trigger[1] through
lan.trigger[8], respectively.

“192.168.1.102” IP address of the device that issued the LAN trigger.
"LXI" LXI version identifier. Currently only LXI is defined.
“0” LXI Domain number.
“1192037132” Sequence number from the device that issued the LAN

trigger. This number is incremented after generation of
each LAN trigger.

"1192037155.733269000” PTP time formatted as a floating point number.
“0” The overflow from PTP seconds. Currently, this is “0”. Also

referred to as IEEE-1588 Epoch.
"0x0" Hex value of the flag field, which is the logical OR of

several conditions (error=1, retransmission=2, hardware=4,
acknowledgement=8).

Files

File formats
Each script, reading buffer, and saved setup is represented on a flash drive as a separate file.

Directories on a flash drive used with the Series 3700A can only contain a limited number of files. The
top-level directory is limited to approximately 150 files, while subdirectories are limited to
approximately 500 files. Once the limit has been reached, a "file system full" error message is
generated.

Default file extensions
You must specify the full filename, including the extension, when sending commands. Note, however,
that the front panel automatically generates a generic filename that you can use as a base for naming
your files. Also, some commands (for example, io.open() (on page 8-264)) will work with either a
relative or absolute path to the current working directory.

The Model 3706A has the following set of default extensions:

• .tsp (Test Script Processor) for scripts
• .csv (comma-separated values) for reading buffers
• .set for saved setups

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-25

File system navigation
The Lua FS library provides the command set necessary to navigate the file system and list the
available files on a flash drive. The instrument encapsulates this command set as an fs logical
instrument, so that the file system of any given node is available to the entire TSP-Link® system. For
example, the command node[5].fs.readdir(".") can be used to read the contents of the
current working directory on Node 5.

To allow for future enhancements, the root folder of the USB flash drive has the absolute path
/usb1/.

Both slash (/) and backslash (\) are supported as directory separators, but because backslash is an
escape character in Lua, it appears as a double backslash in this context.

The following Lua FS commands, which support basic navigation and directory listing, are included
for your reference.

• fs.chdir() (on page 8-258)
• fs.cwd() (on page 8-258)
• fs.is_dir() (on page 8-258)
• fs.is_file() (on page 8-259)
• fs.mkdir() (on page 8-259)
• fs.readdir() (on page 8-260)
• fs.rmdir() (on page 8-260)

The following Lua FS commands are not supported at this time:

• fs.chmod
• fs.chown
• fs.stat

File I/O
You can use the file I/O commands to open and close directories and files, write data, or to read a file
on an installed USB flash drive. File I/O commands are organized into two groups:

• Commands that reside in the fs and io table, for example: io.open(), io.close(),
io.input(), and io.output(). Use these commands to manage file system directories; open
and close file descriptors; and perform basic I/O operations on a pair of default files (one input
and one output).

• Commands that reside in the file descriptors (for example: fileVar:seek(),
fileVar:write(), and fileVar:read()) operate exclusively on the file with which they are
associated.

The root folder of the USB flash drive has the absolute path:

"/usb1/"

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-26 3700AS-901-01 Rev. B/May 2013

You can use either the slash (/) or backslash (\) as a directory separator. However, the backslash is
also used as an escape character, so if you use it as a directory separator, you will generally need to
use a double backslash (\\) when you are creating scripts or sending commands to the instrument.

For basic information about navigation and directory listing of files on a flash drive, see File system
navigation (on page 6-12).

File descriptor commands for file I/O use a colon (:) to separate the command parts rather than a
period (.), like the io commands.

File descriptors cannot be passed between nodes in a TSP-Link® system, so the io.open(),
fileVar::read(), and fileVar::write commands are not accessible to the TSP-Link system.
However, the default input and output files mentioned above allow for the execution of many file I/O
operations without any reference to a file descriptor.

fileVar:close() (on page 8-252)
fileVar:flush() (on page 8-252)
fileVar:read() (on page 8-253)
fileVar:seek() (on page 8-254)
fileVar:write() (on page 8-254)
fs.chdir() (on page 8-258)
fs.cwd() (on page 8-258)
fs.is_dir() (on page 8-258)
fs.is_file() (on page 8-259)
fs.mkdir() (on page 8-259)
fs.readdir() (on page 8-260)
fs.rmdir() (on page 8-260)
io.close() (on page 8-262)
io.flush() (on page 8-262)
io.input() (on page 8-263)
io.open() (on page 8-264)
io.output() (on page 8-264)
io.read() (on page 8-265)
io.type() (on page 8-266)
io.write() (on page 8-266)
os.remove()
os.rename()

The following standard I/O commands are not supported at this time:

File I/O
• fileVar:lines()
• fileVar:setvbuf()

• io.lines()
• io.popen()

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-27

Script examples
The following script will open three different files to help illustrate the differences between the io
commands and file descriptor commands. After opening the files, the script designates each one as
the default output file (using the io.output command). While each file is the default for file writes
(using the io.write command), the script also uses the file descriptor from the io.open to write to
the file (file:write command).

After all files are closed (using the io.close command), the script will open the files again for
reading. Two files are read by:

• Designating the file the default input file (using the io.input command)

• Being the default read contents of file (using the io.read command)

The third file is read by using the file descriptor from the open (file:read command). After reading
all files, they are closed using the file descriptor and close option (file:close command).

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-28 3700AS-901-01 Rev. B/May 2013

loadscript file_io_test
 -- get the current date and time
 date_time = os.date("%c", os.time())
 -- open the three files for writing
 myfile1, myfile1_err, myfile1_errnum = io.open("/usb1/myfile_io1", "w")
 myfile2, myfile2_err, myfile2_errnum = io.open("/usb1/myfile_io2", "w")
 myfile3, myfile3_err, myfile3_errnum = io.open("/usb1/myfile_io3", "w")
 if (io.type(myfile1) == "file") then
 if (io.type(myfile2) == "file") then
 if (io.type(myfile3) == "file") then
 -- make myfile1 the default output file
 io.output(myfile1)
 -- write some data to the default file
 io.write("Using io write to myfile1 to io output\n")
 io.write(date_time)
 io.write("\n")
 -- now write to myfile2 using descriptor rather than io write

command
 myfile2:write(" file handle to write to myfile2\n")
 myfile2:write(" while myfile1 is output file for io\n")
 -- make myfile2 the default output file
 io.output(myfile2)
 -- write some data to the default file
 io.write("Using io write to myfile2 to io output\n")
 io.write(date_time)
 io.write("\n")
 -- now write to myfile3 using descriptor rather than io write

command
 myfile3:write(" file handle to write to myfile3\n")
 myfile3:write(" while myfile2 is output file for io\n")
 -- make myfile3 the default output file
 io.output(myfile3)
 -- write some data to the default file
 io.write("Using io write to myfile3 to io output\n")
 io.write(date_time)
 io.write("\n")
 -- now write to myfile1 using descriptor rather than io write

command
 myfile1:write(" file handle to write to myfile1\n")
 myfile1:write(" while myfile3 is output file for io\n")
 -- use the io close rather than file descriptor close command
 io.close(myfile1)
 io.close(myfile2)
 io.close(myfile3)
 else
 print("myfile3 did not open for write")
 print("error string is " .. myfile3_err)
 print("error number is " .. myfile3_errnum)
 end
 else
 print("myfile2 did not open for write")
 print("error string is " .. myfile2_err)
 print("error number is " .. myfile2_errnum)
 end
 else
 print("myfile1 did not open for write")
 print("error string is " .. myfile1_err)

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-29

 print("error number is " .. myfile1_errnum)
 end
 -- open the 3 files again for reading
 myfile1, myfile1_err, myfile1_errnum = io.open("/usb1/myfile_io1", "r")
 myfile2, myfile2_err, myfile2_errnum = io.open("/usb1/myfile_io2", "r")
 myfile3, myfile3_err, myfile3_errnum = io.open("/usb1/myfile_io3", "r")
 if (io.type(myfile1) == "file") then
 if (io.type(myfile2) == "file") then
 if (io.type(myfile3) == "file") then
 -- make myfile1 the default input file
 io.input(myfile1)
 -- read the default file
 filecontents = io.read("*a")
 print("contents of myfile1 are:")
 print(filecontents)
 print()
 -- make myfile2 the default input file
 io.input(myfile2)
 -- read the default file
 filecontents = io.read("*a")
 print("contents of myfile2 are:")
 print(filecontents)
 print()
 -- read myfile3 using file descriptor instead of io read
 filecontents = myfile3:read("*a")
 print("contents of myfile3 are:")
 print(filecontents)
 print()
 -- use file descriptor close command rather than io close
 myfile1:close()
 myfile2:close()
 myfile3:close()
 else
 print("myfile3 did not open for read")
 print("error string is " .. myfile3_err)
 print("error number is " .. myfile3_errnum)
 end
 else
 print("myfile2 did not open for read")
 print("error string is " .. myfile2_err)
 print("error number is " .. myfile2_errnum)
 end
 else
 print("myfile1 did not open for read")
 print("error string is " .. myfile1_err)
 print("error number is " .. myfile1_errnum)
 end
endscript

After downloading the above script, type file_io_test() to execute the script:
file_io_test()

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-30 3700AS-901-01 Rev. B/May 2013

The following output is returned after executing the file_io_test() script:
contents of myfile1 are:
Using io write to myfile1 to io output
11/27/07 07:57:23
 file handle to write to myfile1
 while myfile3 is output file for io

contents of myfile2 are:
 file handle to write to myfile2
 while myfile1 is output file for io
Using io write to myfile2 to io output
11/27/07 07:57:23

contents of myfile3 are:
 file handle to write to myfile3
 while myfile2 is output file for io
Using io write to myfile3 to io output
11/27/07 07:57:23

The following script will open a file called myfiletest three times. The first time it is opened is for
writing. Note that opening an existing file for writing deletes any existing information in the file. The
second time it is opened is for appending more data to the existing data in the file. Opening a file for
append will not delete any existing data; it only adds data to the end of the existing file contents. The
third time the file is opened is for reading the entire contents of the file (existing data and appended
data).

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-31

loadscript filetest
 -- script to write 2 lines to a file
 -- append 2 lines to the same file
 -- read the entire file contents and print them

 -- open the file for writing
 myfile = io.open("/usb1/myfiletest", "w")
 if io.type(myfile) == "file" then
 myfile:write("This is my first line WRITING\n")
 myfile:write("This is my next line WRITING\n")
 myfile:close()

 -- open the file for appending
 myfile = io.open("/usb1/myfiletest", "a")
 if io.type(myfile) == "file" then
 myfile:write("This is my first APPEND line\n")
 myfile:write("This is my next APPEND line\n")
 myfile:close()
 -- open the file for reading
 myfile = io.open("/usb1/myfiletest", "r")
 if io.type(myfile) == "file" then
 filecontents = myfile:read("*a")
 print("the file contains:")
 print()
 print(filecontents)
 myfile:close()
 else
 print("The file did not open correctly for reading")
 end
 else
 print("The file did not open correctly for appending")
 end
 else
 print("The file did not open correctly for writing")
 end
endscript

After downloading the above script, type filetest() to execute the script. Here are the output
results:
the file contains:
This is my first line WRITING
This is my next line WRITING
This is my first APPEND line
This is my next APPEND line

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-32 3700AS-901-01 Rev. B/May 2013

Display operations

Display functions and attributes
You will use the display functions and attributes to perform the display operations covered in this
section. The following table lists each display function or attribute (in alphabetic order) and cross
references it to the section topic where the function or attribute is explained.

TSP command reference (on page 8-1) provides additional information about the display functions
and attributes.

Cross-referencing functions and attributes to section topics

Function or attribute Section topic

display.clear() Clearing the display (on page 3-33)

display.getannunciators() Indicators (on page 3-38)
display.getcursor() Cursor position (on page 3-33)

display.getlastkey() Capturing key-press codes (on page 3-42)
display.gettext() Displaying text messages (on page 3-34)
display.inputvalue() Parameter value prompting (on page 3-37)
display.loadmenu.add()
display.loadmenu.delete()

Load test menu (on page 3-40)

display.locallockout LOCAL lockout (on page 3-39)

display.menu() Menu (on page 3-36)
display.prompt() Parameter value prompting (on page 3-37)

display.screen Display screen

display.sendkey() Sending key codes (on page 3-42)
display.setcursor() Cursor position (on page 3-33)

display.settext() Displaying text messages (on page 3-34)

Display messages

Most of the display functions and attributes that are associated with display messaging will
automatically select the user screen. The attribute for the display screen is explained in Display
screen.

The reset() function has no effect on the defined display message or its configuration, but will set
the display mode back to the previous display mode.

The display of the Series 3700A can be used to display user-defined messages. For example, while a
test is running, the following message can be displayed on the Series 3700A.

 Test in Process
 Do Not Disturb

The top line of the display can accommodate up to 20 characters (including spaces). The bottom line
can display up to 32 characters (including spaces) at a time.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-33

The display.clear(), display.setcursor(), and display.settext() functions (which
are explained in the following paragraphs) are overlapped, nonblocking commands. The script will
NOT wait for one of these commands to complete.

These nonblocking functions do not immediately update the display. For performance
considerations, they write to a shadow and will update the display as soon as processing time
becomes available.

Clearing the display
When sending a command to display a message, a previously defined user message is not cleared.
The new message starts at the end of the old message on that line. It is good practice to routinely
clear the display before defining a new message.

After displaying an input prompt, the message will remain displayed even after the operator performs
the prescribed action. The clear() function must be sent to clear the display. To clear both lines of
the display, but not affect any of the indicators, send the following function:
display.clear()

Cursor position
When displaying a message, the cursor position determines where the message will start. On power-
up, the cursor is positioned at row 1, column 1 (see the following figure). At this cursor position, a
user-defined message will be displayed on the top row (row 1).

Top line text will not wrap to the bottom line of the display automatically. Any text that does not fit on
the current line will be truncated. If the text is truncated, the cursor will be left at the end of the line.

Figure 58: Row/column format for display messaging

The function to set cursor position can be used two ways:

display.setcursor(row, column)
display.setcursor(row, column, style)

Where:

row 1 or 2

column 1 to 20 (row 1)
1 to 32 (row 2)

style 0 (invisible)
1 (blink)

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-34 3700AS-901-01 Rev. B/May 2013

When set to 0, the cursor will not be seen. When set to 1, a display character will blink to indicate its
position.

The display.getcursor() function returns the present cursor position, and can be used three
ways:

row, column, style = display.getcursor()
row, column = display.getcursor()
row = display.getcursor()

The following programming example illustrates how to position the cursor on row 2, column 1, and
then read the cursor position:
display.setcursor(2, 1)
row, column = display.getcursor()
print(row, column)

Output:

2.00000e+00 1.00000e+00

Displaying text messages
To define and display a message, use the display.settext(text)function (text is the text
string to be displayed). The message will start at the present cursor position. The following
programming example illustrates how to display “Test in Process” on the top line, and “Do Not
Disturb” on the bottom line:
display.clear()
display.setcursor(1, 1, 0)
display.settext("Test in Process")
display.setcursor(2, 6, 0)
display.settext("Do Not Disturb")

Character codes

The following special codes can be embedded in the text string to configure and customize the
message:

$N Starts text on the next line (newline). If the cursor is already on line 2, text will be ignored after the
‘$N’ is received.

$R Sets text to Normal.
$B Sets text to Blink.
$D Sets text to Dim intensity.
$F Set text to background blink.
$$ Escape sequence to display a single “$”.

In addition to displaying alphanumeric characters, you can display other special characters. Refer to
Display character codes for a complete listing of special characters and their corresponding codes.
The following programming example illustrates how to display the Greek symbol omega (Ω) :
display.clear()
c = string.char(18)
display.settext(c)

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-35

The following programming example illustrates how to use the $N and $B character codes to display
the message “Test in Process” on the top line and the blinking message “Do Not Disturb” on the
bottom line:
display.clear()
display.settext("Test in Process NBDo Not Disturb")

The following programming example illustrates how to use the $$ character code to display the
message “You owe me $8” on the top line:
display.clear()
display.setcursor(1, 1)
display.settext("You owe me $$8")

If the extra $ character is not included, the $8 would be interpreted as an undefined character code
and will be ignored. The message “You owe me” will instead be displayed.

Be careful when embedding character codes in the text string; it is easy to forget that the character
following the $ is part of the code. For example, assume you want to display “Hello” on the top line
and “Nate” on the bottom line, and so you send the following command:

display.settext("Hello$Nate")

The above command displays “Hello” on the top line and “ate” on the bottom line. The correct syntax
for the command is as follows:

display.settext("Hello$NNate")

Returning a text message

The display.gettext() function returns the displayed message (text) and can be used in five
ways:

text = display.gettext()
text = display.gettext(embellished)
text = display.gettext(embellished, row)
text = display.gettext(embellished, row, columnStart)
text = display.gettext(embellished, row, columnStart, columnEnd)

Where:

embellished Returns text as a simple character string (false) or includes character codes (true)

row The row to read text from (1 or 2); if not included, text from both rows is read

columnStart Starting column for reading text

columnEnd Ending column for reading text

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-36 3700AS-901-01 Rev. B/May 2013

Sending the command without the row parameter returns both lines of the display. The $N character
code will be included to show where the top line ends and the bottom line begins. The $N character
code will be returned even if embellished is set to false.

With embellished set to true, all other character codes that were used in the creation of each
message line will be returned along with the message. With embellished set to false, only the
message will be returned.

Sending the command without the columnStart parameter defaults to column 1. Sending the
command without the columnEnd argument defaults to the last column (column 20 for row 1, column
32 for row 2).

Input prompting
Display messaging can be used along with front panel controls to make a user script interactive. In an
interactive script, input prompts are displayed so that the operator can perform a prescribed action
using the front panel controls. While displaying an input prompt, the test will pause and wait for the
operator to perform the prescribed action from the front panel.

Menu
A user-defined menu can be presented on the display. The menu consists of the menu name on the
top line, and a selectable list of menu items on the bottom line. To define a menu, use the
display.menu(menu, items) function.

Where:

menu The name of the menu; use a string of up to 20 characters (including spaces)
items A string is made up of one or more menu items; each item must be separated by white space

When the display.menu() function is sent, script execution waits for the operator to select one of
the menu items. Rotate the navigation wheel to place the blinking cursor on a menu item. Items
that do not fit in the display area are displayed by rotating the navigation wheel to the right. With
the cursor on the menu item, press the navigation wheel (or the ENTER key) to select it.

Pressing the EXIT (LOCAL) key does not abort the script while the menu is displayed, but it will return
nil. The script can be aborted by calling the exit() function when nil is returned.

The following programming example illustrates how to present the operator with the choice of two
menu items: Test1 or Test2. If Test1 is selected, the message Running Test1 is displayed. If Test2
is selected, the message Running Test2 is displayed.
display.clear()
menu = display.menu("Sample Menu", "Test1 Test2")
if menu == "Test1" then
 display.settext("Running Test1")
else
 display.settext("Running Test2")
end

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-37

Parameter value prompting
There are two functions that you can use to create an editable input field on the user screen at the
present cursor position: display.inputvalue() and display.prompt().

The display.inputvalue() function uses the user screen at the present cursor position. Once
the command is finished, it returns the user screen to its previous state. The display.prompt()
function creates a new edit screen and does not use the user screen.

Each of these two functions can be used in four ways:

display.inputvalue(format)
display.inputvalue(format, default)
display.inputvalue(format, default, min)
display.inputvalue(format, default, min, max)
display.prompt(format, units, help)
display.prompt(format, units, help, default)
display.prompt(format, units, help, default, min)
display.prompt(format, units, help, default, min, max)

Where:

format String that creates an editable input field on the user screen at the present cursor position
(examples: +0.00 00, +00, 0.00000E+0)
Value field:
+ = Include for positive/negative value entry; omitting the + prevents negative value entry
0 = Defines the digit positions for the value (up to six zeros (0))
Exponent field (optional):
E = include for exponent entry
+ = Include for positive/negative exponent entry; omitting the + prevents negative value entry
0 = Defines the digit positions for the exponent

default Option to set a default value for the parameter, which will be displayed when the command is
sent

min Option to specify minimum limits for the input field
• When NOT using the “+” sign for the value field, the minimum limit cannot

be set to less than zero
• When using the “+” sign, the minimum limit can be set to less than zero

(for example, -2)
max Option to specify maximum limits for the input field

units Text string to identify the units for the value (8 characters maximum), for example:
Units text is “V” for volts and “A” for amperes

help Informational text string to display on the bottom line (32 characters maximum).

Both the display.inputvalue() and display.prompt() functions display the editable input
field, but the display.inputvalue() function does not include the text strings for units and
help.

After one of the above functions is executed, command execution will pause and wait for the operator
in input the source level. The program will continue after the operator enters the value by pressing the
navigation wheel or the ENTER key.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-38 3700AS-901-01 Rev. B/May 2013

In this example, the command display.prompt prompts the operator to input a measurement
speed. If the operator does not enter a value, the default level of 1 is set when the operator presses
ENTER. The operator must input values that are within the limits (minimum of 0.01 and maximum of
3.0); any other values are not accepted.

Example: Interactive script

Code Output

myFunc = display.menu ("Select function",
 "dcvolts twowireohms")
if (myFunc == "dcvolts") then
 myRange = display.menu("Select range",

"10 100")
 if (myRange == "10") then
 rangeValue = 10
 else
 rangeValue = 100
 end
else
 myRange = display.menu("Select range",

"1000 10000")
 if (myRange == "1000") then
 rangeValue = 1000
 else
 rangeValue = 10000
 end
end
speed = display.prompt("0.00", "NPLC",

"Enter measure speed", 1, 0.01, 3)
dmm.reset("all")
dmm.func = myFunc
dmm.range = rangeValue
dmm.nplc = speed
print(dmm.measure())

Prompt operator to select function.

Prompt for range based on function selected.

Prompt operator to set the measurement speed.

Wait for operator to set the measurement
speed.

Display trigger wait and clear
The display.trigger.wait() function causes the instrument to wait for the front panel TRIG key
to be pressed, while the display.trigger.clear() function clears the trigger event detector.

Indicators
To determine which display indicators are turned on, use the display.getannunciators()
function. For example, to determine which display indicators are turned on, send the following
commands.
annun = display.getannunciators()
print(annun)

The 16-bit binary equivalent of the returned value is a bitmap. Each bit corresponds to an indicator. If
the bit is set to “1”, the indicator is turned on. If the bit is set to “0”, the indicator is turned off.

The following table identifies the bit position for each indicator. The table also includes the weighted
value of each bit. The returned value is the sum of all the weighted values for the bits that are set.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-39

For example, assume the returned bitmap value is 34061. The binary equivalent of this value is as
follows:

1000010100001101

For the above binary number, the following bits are set to “1”: 16, 11, 9, 4, 3 and 1. Using the table,
the following indicators are on: REL, REM, EDIT, AUTO, 4W and FILT.

Bit identification for indicators
Bit B16 B15 B14 B13 B12 B11 B10 B9

Annunciator REL REAR SRQ LSTN TALK REM ERR EDIT

Weighted value* 32768 16384 8192 4096 2048 1024 512 256
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Bit B8 B7 B6 B5 B4 B3 B2 B1

Annunciator SMPL STAR TRIG ARM AUTO 4W MATH FILT

Weighted value* 128 64 32 16 8 4 2 1
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
* The weighted values are for bits that are set to “1.” Bits set to “0” have no value.

Not all of the above indicators shown in above table may be used by the Series 3700A.

Local lockout
You can use the front-panel EXIT (LOCAL) key to cancel remote operation and return control to the
front panel. However, this key can be locked-out to prevent a test from being interrupted. When
locked, this key becomes a NO-OP (no operation). Configure the following attribute to lock or unlock
the EXIT (LOCAL) key:

display.locallockout = lockout

Where lockout is set to one of the following values:

 0 or display.UNLOCK

 1 or display.LOCK

For example, to lock out the EXIT (LOCAL) key:
display.locallockout = display.LOCK

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-40 3700AS-901-01 Rev. B/May 2013

Load test menu
Allows you to run scripts and code from the front panel that you created through the communication
interface, or configuration scripts created by pressing the front-panel MENU key, then selecting
SCRIPT > CREATE-CONFIG.

To open this menu, press LOAD.

The User option loads code that was added to Load Test with the display.loadmenu.add() (on page 8-
138) command.

The Scripts option loads named scripts that were added to the runtime environment. See Manage
scripts (on page 7-3) for information on creating and loading scripts.

After selecting code or script from the User or Scripts option, you can press RUN to execute the
selected code or script.

User tests
User tests can be added to or deleted from the USER TESTS submenu.

Adding USER TESTS menu entries

You can use the following function in either of two ways to add an entry into the USER TESTS menu:
display.loadmenu.add(displayname, code)
display.loadmenu.add(displayname, code, memory)

Where:

displayname The name string that is added to the USER TESTS menu.

code The code that is run from the USER TESTS menu when the RUN
button is pressed. It can include any valid Lua code.

memory A value that specifies if the code and displayname parameters are
saved in nonvolatile memory. Set to one of the following values:
0 or display.DONT_SAVE
1 or display.SAVE (this is the default setting)

Scripts, functions, and variables that are used in the code are not saved when display.SAVE is
used. Functions and variables need to be saved with the script (see Manage scripts (on page 7-3)). If
the script is not saved in nonvolatile memory, it is lost when the Series 3700A is turned off. See
Example 1 below.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-41

Example 1:

Assume a script with a function named “DUT1” has been loaded into the Series 3700A, and the script
has not been saved in nonvolatile memory.

Now assume you want to add a test named “Test” to the USER TESTS menu. You want the test to
run the function named “DUT1” and sound the beeper. The following programming example illustrates
how to add “Test” to the menu, define the code, and then save displayname and code in
nonvolatile memory:
display.loadmenu.add("Test", "DUT1() beeper.beep(2, 500)", display.SAVE)

When “Test” is run from the front-panel USER TESTS menu, the function named “DUT1” executes
and the beeper beeps for two seconds.

Now assume you turn the Series 3700A power off and then on again. Because the script was not
saved in nonvolatile memory, the function named “DUT1” is lost. When “Test” is again run from the
front panel, the beeper beeps, but “DUT1” will not execute because it no longer exists in the run-time
environment.

Example 2:

The following command adds an entry called “Part1” to the front-panel USER TESTS submenu for
the code “testpart([[Part1]], 5.0)”, and saves it in nonvolatile memory:
display.loadmenu.add("Part1", "testpart([[Part1]], 5.0)", display.SAVE)

Deleting USER TESTS menu entries

You can use the following function to delete an entry from the front-panel USER TESTS menu:

display.loadmenu.delete(displayname)

Where:

displayname Name to delete from the menu.

The following programming example removes the entry named “Part1” from the front-panel USER
TESTS menu:
display.loadmenu.delete("Part1")

LOAD TEST menu options
Allows you to run scripts and code from the front panel that you created through the communication
interface, or configuration scripts created by pressing the front-panel MENU key, then selecting
SCRIPT > CREATE-CONFIG.

To open this menu, press LOAD.

The User option loads code that was added to Load Test with the display.loadmenu.add() (on page 8-
138) command.

The Scripts option loads named scripts that were added to the run-time environment. See Manage
scripts (on page 7-3) for information on creating and loading scripts.

After selecting code or script from the User or Scripts option, you can press RUN to execute the
selected code or script.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-42 3700AS-901-01 Rev. B/May 2013

Key-press codes
Sending key codes
Key codes are provided to remotely simulate pressing a front-panel key or the navigation wheel .
There are also key codes to simulate rotating the navigation wheel to the left or right (one click at a
time). Use the display.sendkey() function to perform these actions. The following programming
examples illustrate how to simulate pressing the MENU key in two different ways:
display.sendkey(display.KEY_MENU)
display.sendkey(68)

Capturing key-press codes
A history of the key code for the last pressed front panel key is maintained by the Series 3700A.
When the instrument is turned on (or when transitioning from local to remote operation), the key code
is set to 0 (display.KEY_NONE).

When a front-panel key is pressed, the key code value for that key can be captured and returned.
There are two functions associated with the capture of key-press codes: display.getlastkey()
and display.waitkey().

display.getlastkey()

The display.getlastkey() function is used to immediately return the key code for the last
pressed key. The following programming example illustrates how to display the last key pressed:
key = display.getlastkey()
print(key)

The above code will return the key code value (see the following table). Remember that a value of 0
(display.KEY_NONE) indicates that the key code history had been cleared.

Key code values returned for display.getlastkey

Value Key list Value key list

0 (display.KEY_NONE) 82 (display.KEY_ENTER)
65 (display.KEY_RANGEUP) 83 (display.KEY_MEASB)
67 (display.KEY_RELB) 84 (display.DIGITSB)
68 (display.KEY_MENU) 85 (display.KEY_RECALL)
69 (display.KEY_MODEA) 86 (display.KEY_MEASA)
70 (display.KEY_RELA) 87 (display.KEY_DIGITSA)
71 (display.KEY_RUN) 90 (display.KEY_LIMITB)
72 (display.KEY_DISPLAY) 91 (display.KEY_SPEEDB)
73 (display.KEY_AUTO) 92 (display.KEY_TRIG)
74 (display.KEY_FILTERB) 93 (display.KEY_LIMITA)
75 (display.KEY_EXIT) 94 (display.KEY_SPEEDA)
76 (display.KEY_SRCB) 95 (display.KEY_LOAD)
77 (display.KEY_FILTERA) 97 (display.WHEEL_ENTER)
78 (display.KEY_STORE) 103 (display.KEY_RIGHT)
79 (display.KEY_SRCA) 104 (display.KEY_LEFT)
80 (display.KEY_CONFIG) 114 (display.WHEEL_RIGHT)
81 (display.KEY_RANGEDOWN)

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-43

display.waitkey()

The display.waitkey() function captures the key code value for the next key press:
key = display.waitkey()

After sending the display.waitkey() function, the script will pause and wait for the operator to
press a front-panel key. For example, if the MENU key is pressed, the function will return the value
68, which is the key code for that key. The key code values are the same as listed in
display.getlastkey() (on page 8-134).

The following programming example illustrates how to prompt the user to press the EXIT (LOCAL)
key to abort the script, or any other key to continue it:
display.clear()
display.setcursor(1, 1)
display.settext("Press EXIT to Abort")
display.setcursor(2, 1)
display.settext("or any key to continue")
key = display.waitkey()
display.clear()
display.setcursor(1, 1)
if key == 75 then
 display.settext("Test Aborted")
 exit()
else
 display.settext("Test Continuing")
end

The above code captures the key that is pressed by the operator. The key code value for the EXIT
(LOCAL) key is 75. If the EXIT (LOCAL) key is pressed, the script aborts. If any other key is pressed,
the script continues.

Digital I/O

Digital I/O port
The Keithley Instruments Series 3700A System Switch/Multimeter has a digital input/output port that
can be used to control external digital circuitry. For example, a handler that is used to perform binning
operations can be used with a digital I/O port.

Port configuration
The digital I/O port, a standard female DB-25 connector (shown below), is located on the rear panel.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-44 3700AS-901-01 Rev. B/May 2013

Figure 59: Digital I/O port

Pin Description
1
...
9

Digital I/O #1
...
Digital I/O #9

10
...
14

Digital I/O #10 (high-current pins; see NOTE)
...
Digital I/O #14

15 to 21 Ground
22 V EXT
23 V EXT
24 Pin reserved for future use
25 V EXT

For a schematic diagram of the digital I/O hardware, refer to the Series 3700A Specifications on the
Keithley Instruments support website (http://www.keithley.com/support).
High-current pins (pins 10 to 14) can be used for binning applications or for external relays.

Connecting cables

Use a cable equipped with a standard male DB-25 connector (Keithley Instruments part number
CA-126-1).

http://www.keithley.com/support

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-45

Vext

The Series 3700A digital I/O provides flyback diode pins named Vext. When connected, Vext can
clamp external inductive circuitry (for example, relay drive coils) from +5 V to +33 V. Refer to the
figure below for a simplified digital I/O schematic.

Figure 60: Vext flyback diode digital I/O schematic

Hardware interlocks

Some switching cards are capable of switching high-voltage signals. For safety reasons, hardware
interlocks are provided. The hardware interlocks are present on the switching card itself and are
designed to keep the switching card disconnected from the system backplane. This means that when
the interlock circuit is disengaged, no measurements can be performed through a switching card.
However, channel relays can continue to operate.

Below is a simplified schematic of the interlock circuit present on the applicable switching cards.

Digital I/O configuration
The following figure shows the basic configuration of the digital I/O port. Writing a 1 to a line sets that
line high (~ +5 V). Writing a 0 to a line sets that line low (~0 V). Note that an external device pulls an
I/O line low by shorting it to ground, so that a device must be able to sink at least 980 µA per I/O line.

Figure 61: 3700AS Digital I_O port configuration

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-46 3700AS-901-01 Rev. B/May 2013

Controlling digital I/O lines
Although the digital I/O lines are primarily intended for use with a device handler for limit testing, they
can also be used for other purposes, such as controlling external logic circuits. You can control lines
either from the front panel or over a remote interface.

You must write a 1 to all digital I/O lines that are to be used as inputs.
The trigger mode for the line must be set to digio.TRIG_BYPASS in order to use the line for digital
I/O. See Trigger model (on page 3-2) for more information.
The digital I/O lines are not affected by any reset. However, they are affected by a power cycle.

To set digital I/O values from the front panel:
1. Press the MENU key, select DIGIO, and then press the ENTER key or press the navigation wheel

.
2. Select DIGIO-OUTPUT, and then press the ENTER key or the navigation wheel .
3. Set the decimal value as required to set digital I/O lines in the range of 0 to 16,383 (see the table

in Digital I/O bit weighting (on page 3-47)), and then press the ENTER key or the navigation
wheel .
For example, to set digital I/O lines 3 and 8, set the value to 132.

4. Press the EXIT (LOCAL) key as needed to return to the main menu.

To write-protect specific digital I/O lines to prevent their values from being changed:
1. Press the MENU key, then select DIGIO, and then press the ENTER key or the navigation wheel

.
2. Select WRITE-PROTECT, and then press the ENTER key or the navigation wheel .
3. Set the decimal value as required to write-protect digital I/O lines within the range of 0 to 16,383

(see Digital I/O bit weighting (on page 3-47)), and then press the ENTER key or the navigation
wheel .
For example, to write-protect digital I/O lines 4 and 10, set the value to 520.

4. Press the EXIT (LOCAL) key as needed to return to the main menu.

To remove write protection, reset the decimal value to include only the lines that you want to write
protect. To remove write protection from all lines, set the value to 0.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-47

Digital I/O bit weighting

Bit weighting for the digital I/O lines is shown in the following table.

Digital bit weight

Line # Bit Decimal weighting Hexadecimal weighting
1 B1 1 0x0001

2 B2 2 0x0002

3 B3 4 0x0004
4 B4 8 0x0008
5 B5 16 0x0010
6 B6 32 0x0020
7 B7 64 0x0040
8 B8 128 0x0080
9 B9 256 0x0100
10 B10 512 0x0200
11 B11 1,024 0x0400
12 B12 2,048 0x0800
13 B13 4,096 0x1000
14 B14 8,192 0x2000

Remote digital I/O commands

Commands that control and access the digital I/O port are summarized in the following table. See the
TSP command reference (on page 8-1) for complete details on these commands. See the following
table for decimal and hexadecimal values used to control and access the digital I/O port and
individual lines. Use these commands to trigger the Series 3700A using external trigger pulses
applied to the digital I/O port, or to provide trigger pulses to external devices.

Use these commands to perform basic steady-state digital I/O operations such as reading and writing
to individual I/O lines or reading and writing to the entire port.

The digital I/O lines can be used for both input and output. You must write a 1 to all digital I/O lines
that are to be used as inputs.

Remote digital I/O commands

Command Description

digio.readbit(bit) Read one digital I/O input line
digio.readport() Read digital I/O port
digio.writebit(bit, data) Write data to one digital I/O output line
digio.writeport(data) Write data to digital I/O port
digio.writeprotect = mask Write protect mask to digital I/O port

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-48 3700AS-901-01 Rev. B/May 2013

Digital I/O programming example

The programming commands below illustrate how to set bit B1 of the digital I/O port high, and then
read the entire port value.
digio.trigger[1].mode = digio.TRIG_BYPASS
-- Set Bit B1 high.
digio.writebit(1,1)
-- Read digital I/O port.
data = digio.readport()

TSP-Link synchronization lines
The Series 3700A has three synchronization lines that you can use for triggering, digital I/O, and to
synchronize multiple instruments on a TSP-Link® network.

The Models 2604A, 2614A, and 2634A do not have a TSP-Link® interface.

Connecting to the TSP-Link system
The TSP-Link® synchronization lines are built into the TSP-Link connection. Use the TSP-Link
connectors located on the back of the Series 3700A. If you are using a TSP-Link network, you do not
have to modify any connections. See TSP-Link system expansion interface (on page 7-45) for
detailed information about connecting to the TSP-Link system.

Using TSP-Link synchronization lines for digital I/O
Each synchronization line is an open-drain signal. When using the TSP-Link® synchronization lines
for digital I/O, any node that sets the programmed line state to zero (0) causes all nodes to read 0
from the line state. This occurs regardless of the programmed line state of any other node. See the
table in the Digital I/O bit weighting (on page 3-47) topic for digital bit weight values.

Remote TSP-Link synchronization line commands
Commands that control and access the TSP-Link® synchronization port are summarized in the
following table. See the TSP command reference (on page 8-1) for complete details on these
commands. See the table in Digital I/O bit weighting (on page 3-47) for the decimal and hexadecimal
values used to control and access the digital I/O port and individual lines.

Use the commands in following table to perform basic steady-state digital I/O operations; for example,
you can program the Series 3700A to read and write to a specific TSP-Link synchronization line or to
the entire port.

The TSP-Link synchronization lines can be used for both input and output. You must write a 1 to all
TSP-Link synchronization lines that are used as inputs.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-49

Remote synchronization line commands

Command Description

tsplink.readbit(bit) Reads one digital I/O input line.

tsplink.readport() Reads the digital I/O port.
tsplink.writebit(bit, data) Writes data to one digital I/O line.
tsplink.writeport(data) Writes data to the digital I/O port.
tsplink.writeprotect = mask Sets write-protect mask of the digital I/O port.

Programming example

The programming example below illustrates how to set bit B1 of the TSP-Link digital I/O port high,
and then read the entire port value:
tsplink.trigger[1].mode = tsplink.TRIG_BYPASS
-- Set bit B1 high.
tsplink.writebit(1, 1)
-- Read I/O port.
data = tsplink.readport()

Reading buffers

Buffer overview
Reading buffers capture measurements, channels or channel patterns, instrument status, and
measure functions of the Keithley Instruments Series 3700A.

The Series 3700A uses synchronous reading acquisitions to take readings for a dynamically-created
reading buffer. The instrument stores the numbered readings that are acquired during the storage
process. Each reading includes reading units with options that include timestamp and channel
information. All routines that return measurements can return the measurements in a reading buffer.
Synchronous measurements return a single value or both a single value and a reading buffer. More
advanced users can access the additional information stored in the reading buffer.

You can configure single-point measurement routines to make multiple measurements when only one
would ordinarily be made. Also, the measured value is not the only component of a reading. The
measurement status (for example, limit or overflow) is also data associated with a particular reading.

Create and configure buffers using the front panel or through a remote interface using remote
commands.

Once you create a reading buffer, if you use that buffer name for another buffer or variable, you can
no longer access the original buffer.

Reading buffer names are just like any other global variables in the system. For example, if buf1 is a
reading buffer name, buf1 = 5 will cause the reading buffer data currently associated with buf1 to
be lost and buf1 to equal 5.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-50 3700AS-901-01 Rev. B/May 2013

The various instrument operations, including buffer operation, are performed on the input signal in a
specific, predetermined order. For example, if both REL and MXB (a math operation) are enabled,
the REL operation will always be performed before MXB.

Front-panel buffer operation
In the following procedures, pressing in the navigation wheel will perform the same function as
pressing the ENTER key. Also, you can turn the navigation wheel instead of using the CURSOR
keys.

Read Creating and selecting a reading buffer (on page 3-50) or Selecting a reading buffer (on page 3-
51) before performing the following procedures:

• Storing readings (on page 3-51)
• Saving readings (on page 3-51)
• Clearing readings (on page 3-52)
• Deleting a reading buffer (on page 3-52)
• Recalling readings (on page 3-52)
• Buffer configuration (front panel) (on page 3-53)
• Appending readings (on page 3-53)

Creating and selecting a reading buffer
To create a new reading buffer that will be automatically selected after it is created:
1. Press the STORE key.
2. Select CREATE from the buffer choices and press the ENTER key.
3. Using the navigation wheel and the CURSOR keys, scroll through the characters, changing

them until the desired name is shown.
NAME = _ _ _ _ _ _ _ _ _ _ _ _

4. Press the ENTER key. The starting name is:
f p b u f n _ _ _ _ _ _
Where:
fp = front panel
buf = buffer
n = number, sequentially incremented

5. Specify the number of readings to store in the buffer.
6. Press the ENTER key. The append attribute of this buffer is enabled (set to 1).

The newly-created buffer is automatically selected as the buffer for storing front-panel readings.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-51

Selecting a reading buffer
You can only select an existing reading buffer. If necessary, create it first. See Creating and selecting
a reading buffer (on page 3-50) for more information.

When you create a new reading buffer from the front panel, it is automatically selected.

To select a reading buffer:
1. Set up the Model 3706A to take measurements.
2. Press the STORE key.
3. Select SELECT from the buffer choices and press the ENTER key.
4. Use the CURSOR keys to select the desired buffer.

Storing readings
Before storing readings, make sure you have selected the desired reading buffer. See Selecting a
reading buffer (on page 3-51) for more information.

To store a reading, press the TRIG key or execute a scan. The asterisk (*) annunciator turns on,
which indicates that the buffer is enabled, and turns off when storage is finished. The annunciator
stays on as long as the created buffer's capacity is less than the number of readings stored.

To stop the buffer, press the EXIT key, or if you are taking continuous readings, press the TRIG key.

Stored readings are lost when the instrument is turned off. To save your stored readings, see Saving
readings (on page 3-51).

Saving readings
When saving readings to a USB flash drive, you must select a non-empty reading buffer. See
Selecting a reading buffer (on page 3-51) for more information.

To save readings to a USB flash drive:
1. Select a reading buffer that is not empty.
2. Press the STORE key. The bufferVar MENU is displayed.
3. Select the SAVE menu item, and press the ENTER key. The SAVE RD BUFFER menu is

displayed.
4. Press the ENTER key when USB is highlighted.

5. Using the navigation wheel and CURSOR keys, enter the filename where the data will be
saved on the installed USB flash drive. The starting name is:
<reading buffer name>_nn_ _ _
Where: nn starts at 01 and automatically increments. For example, if the selected reading buffer
is fpbuf1, then the starting name is fpbuf1_01_ _ _.

6. Press the ENTER key to save the data to the installed USB flash drive or the EXIT key to cancel.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-52 3700AS-901-01 Rev. B/May 2013

Clearing readings
When clearing readings, you must select a reading buffer. See Selecting a reading buffer (on page 3-
51) for more information.

To clear readings:
1. Select a reading buffer.
2. Press the STORE key. The bufferVar MENU is displayed.
3. Select the CLEAR menu item, and press the ENTER key.
4. At the prompt, select YES or NO and press the ENTER key.

Deleting a reading buffer
To delete a reading buffer:
1. Select the reading buffer you want to delete.
2. Press the STORE key. The bufferVar MENU is displayed.
3. Select the DELETE menu item, and press the ENTER key.

4. At the prompt, select YES or NO and press the ENTER key.
• If you select YES, the RD BUFF ACTION MENU is displayed.
• If you select NO, the bufferVar MENU is displayed.

To delete a buffer (including front-panel buffers) remotely (over the bus), set the buffer's name to
nil. For example, to delete a buffer named FPBUF1, send the command: FPBUF1 = nil.

Recalling readings
When recalling readings, you must select a reading buffer that is not empty. See Selecting a reading
buffer (on page 3-51) for more information.

Readings stored in the buffer are displayed by pressing the REC key. Turn the navigation wheel or
use the CURSOR keys to cycle through the buffer's contents. A message is displayed if a buffer is
empty.

When recalling a buffer, the display contains the following information:

• Measurement reading for each entry is at the top right.
• Buffer location number is at the bottom left.
• Timestamp (on page 3-52) (if used) is positioned at the bottom right.
• Channel display (on page 3-53) or channel pattern (if used) associated with the reading for each

entry is at the top left.

Timestamp

When timestamps are enabled, they are shown in absolute time and stored as the number of seconds
in Universal Coordinated Time (UTC) format. Therefore, the displayed timestamp will show month,
day, and year, as well as hour, minutes, seconds, and fractional seconds.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-53

Channel display

The returned value provides different information, based on what is opened or closed when the
reading is acquired:

• If no channel or channel pattern is closed when the reading is acquired, "None" is displayed.
• If only a single channel or backplane relay is closed, the channel number is displayed (for

example, 5003 or 5915).
• If a channel or backplane relay plus another backplane relay or other channel is closed, then the

channel number is displayed, followed by a + sign (for example, 3005+ or 3915+). The channel is
in the image unless the last close operation involved only backplane relays.

• If multiple channels and/or backplane relays are closed in a channel list, the last channel
specified is stored. Channels take precedence over backplane relays when stored. However, if
only multiple backplane relays are specified, then the first one is stored.

• If a channel pattern is closed, then the first eight characters of the channel pattern name are
returned (for example, mypattern1 is shown as mypatter).

Displaying other buffer readings and statistics
To display other readings in the reading buffer:
1. While still in the buffer recall mode, if viewing the data stored in the buffer, turn the navigation

wheel to increment and decrement the selected digit of the location number by one. Press the
navigation wheel and then turn it or use the CURSOR keys to move to the next digit that the
navigation wheel will change.

2. To exit from the reading buffer recall mode, press the EXIT (LOCAL) key.

Buffer configuration (front panel)
When configuring the buffer through the front panel, you must select a reading buffer. See Selecting a
reading buffer (on page 3-51) for more information.
To configure a buffer from the front panel:
1. Press the CONFIG key.
2. Press the STORE key. The RD BUFFER ATTR menu opens.
3. To view the count and capacity of a selected buffer, select the COUNT or CAPACITY menu

choice. To configure the buffer's append mode, select APPEND, then ON or OFF.

Appending readings
When the buffer append mode is disabled, the buffer is cleared (readings are lost) before a new
storage operation starts.

When buffer append mode is enabled, the buffer is not cleared and each subsequent storage
operation appends the readings to the buffer. When the buffer is filled to capacity, the storage
process stops. The readings must be cleared before the next storage operation starts.

See bufferVar.appendmode (on page 8-18) for more information.

Buffers created on the front panel have the append mode enabled by default.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-54 3700AS-901-01 Rev. B/May 2013

Remote buffer operation
You can control the Model 3706A buffer using remote commands.

Data store (buffer) commands
The following commands are associated with data store operation:

• dmm.appendbuffer() (on page 8-152)
• dmm.buffer.catalog() (on page 8-158)
• dmm.buffer.info() (on page 8-159)
• dmm.buffer.maxcapacity (on page 8-160)
• dmm.buffer.usedcapacity (on page 8-160)
• dmm.makebuffer() (on page 8-204)
• dmm.savebuffer() (on page 8-236)

To delete a dynamically allocated buffer, use the command bufferVar = nil.

Command Description
dmm.appendbuffer() Creates a file on a USB flash drive if it doesn't already

exist. If the file already exists on the flash drive, it will be
overwritten.

dmm.buffer.catalog() An iterator that can act on all reading buffer names in the
system.

dmm.buffer.info("buffer name") Returns the number of stored readings in the specified
buffer, along with the overall buffer capacity. The first
returned value is the stored readings number, while the
second is the capacity.

dmm.buffer.maxcapacity Returns the overall maximum storage capacity of all
reading buffers in the system.

dmm.buffer.usedcapacity Returns the sum storage capacity allocated for all
currently created reading buffers in the system.

dmm.makebuffer() Creates buffer to sore measurement data.
dmm.savebuffer() Saves buffer data to a file on a USB flash drive. If the file

already exists on the flash drive, it will be overwritten.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-55

To see the current storage number and capacity of all reading buffers in the system, use the following
at a Test Script Processor (TSPTM) prompt or in a script:
for n in dmm.buffer.catalog() do stored, cap = dmm.buffer.info(n) print(n, 'stored

= ' .. stored, 'capacity = ' .. cap) end

Sample output:

buf1 stored = 0 capacity = 1000
buf2 stored = 0 capacity = 2000
buf4 stored = 0 capacity = 4000
buf5 stored = 0 capacity = 5000
buf3 stored = 0 capacity = 3000

As the sample output shows, the system has five reading buffers, but currently none of them have
data stored in them (stored = 0). The storage capacity of the buffers ranges from 1000 to 5000. If
you send:
print(dmm.buffer.usedcapacity)

The output is 1.500000000e+004.

This means the system is allocating 15000 of its maximum storage capacity for reading buffers.

Reading buffers
A reading buffer is based on a Lua table. The measurements themselves are accessed by ordinary
array notation. If rb is a reading buffer, the first measurement is accessed as rb[1], the ninth
measurement as rb[9], and so on. The additional information in the table is accessed as additional
members of the table.

Reading buffer designations

To access the buffer, include the buffer attribute in the respective command. For example, the
following commands store five readings from the DMM into a buffer named readingbuffer:
-- Sets how many readings to take with the dmm.measure command.
dmm.measurecount = 5
-- Takes the measurements and stores them in readingbuffer.
dmm.measure(readingbuffer)

Do not use quotation marks around the reading buffer name when you send the
dmm.measure(readingbuffer) command from the instrument front panel, because a data type
error message will be logged to the error queue.

Buffer storage control attributes ****3700A***

Buffer storage attributes are summarized in the following table. To control which elements are stored
in the buffer, enable the desired attribute for the buffer (which sets it to 1). The following attributes are
all available per reading buffer. For example, to access the appendmode attribute for a buffer named
rb, send rb.appendmode.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-56 3700AS-901-01 Rev. B/May 2013

Attribute Description
appendmode When off, a new measurement to this buffer will clear the

previous contents before storing the new measurement.
When on, the first new measurement will be stored at
what was formerly rb[n+1].
This attribute is initialized to off when the buffer is created
over the bus. However, the default is on for the front panel
or web interface to allow triggered readings to fill a buffer
without clearing the previous ones.

cachemode When this attribute is on, the reading buffer cache
improves access speed to reading buffer data. When
running successive operations that overwrite reading
buffer data without running any commands that
automatically invalidate the cache, the reading buffer may
return stale cache data. This attribute is initialized to on
when the buffer is created.

collectchannels When on, channel or channel pattern information is stored
with readings in the buffer. This requires eight extra bytes
of storage per reading.
This value, off or on, can only be changed when the
buffer is empty (cleared). When the buffer is created, this
attribute is initialized to on.

collecttimestamps When on, timestamps will be stored with readings in the
buffer. This requires eight extra bytes of storage per
reading.
This value, off or on, can only be changed when the
buffer is empty (cleared). When the buffer is created, this
attribute is initialized to on.

Buffer read-only attributes

Use buffer read-only attributes to access the information contained in an existing buffer. The following
attributes are available per reading buffer (for example, rb.basetimeseconds would access
basetimeseconds for reading buffer rb, and the number of readings the reading buffer can store is
accessed as rb.capacity).

Attribute Description
basetimefractional The fractional portion of the timestamp of when the

reading at rb[1] was stored in the reading buffer (in
seconds).

basetimeseconds The seconds portion of the timestamp, in whole seconds,
when the reading at rb[1] was stored in the buffer.

capacity The total number of readings that can be stored in the
reading buffer.

timestampresolution The timestamp resolution, in seconds. The resolution is
fixed at 1e-9 seconds.

Buffer programming examples

Refer to the following for buffer control programming examples. In the example, the buffer is named
readingbuffer.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-57

You must clear the buffer using the readingbuffer.clear() command before changing buffer
control attributes.

Command Description
readingbuffer.collectchannels = 1 Enable channel storage.
readingbuffer.appendmode = 1 Enable the buffer append mode.
readingbuffer.collecttimestamps = 0 Disable timestamp storage.

Refer to the following for buffer read-only attribute programming examples. In the example, the buffer
is named readingbuffer.

Command Description
number = readingbuffer.n Request number of readings stored in

the buffer.
buffer_size = readingbuffer.capacity Request the buffer storage capacity.

Buffer reading attributes

The table in Buffer recall attributes (on page 3-57) lists the attributes that control which elements are
recalled from the buffer. To access specific elements, append the desired attribute to the buffer
designation.

For example, the following command line returns 100 readings from readingbuffer1:
printbuffer(1, 100, readingbuffer1.readings)

Similarly, the following command line returns 100 channel values from readingbuffer1:
printbuffer(1, 100, readingbuffer1.channels)

The default reading buffer recall attribute is readings, which can be omitted. Thus, the following
command line also returns 100 readings from readingbuffer1:
printbuffer(1, 100, readingbuffer1)

Buffer recall attributes

The following table lists the attributes that control which elements are recalled from the buffer. Each is
actually a nested table. Related entries are stored at the same index as the relevant measurement.

The default attribute is readings and can be omitted. For example, readingbuffer1 and
readingbuffer1.readings will both return readings from the buffer named readingbuffer1.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-58 3700AS-901-01 Rev. B/May 2013

Recall attribute Description
channels An array (a Lua table) of strings indicating the channel or channel

pattern associated with the measurement.
The returned value provides different information, based on what was
opened or closed when the reading was acquired:
• If no channel or channel pattern is closed when the reading was acquired,

"None" is displayed.
• If only a single channel or backplane relay was closed, the channel

number is displayed (for example, 5003 or 5915).
• If a channel or backplane relay plus another backplane relay or other

channel is closed, then the channel number will be displayed followed by
a + sign (for example, 3005+ or 3915+). The channel will be in the image
unless the last close operation involved only backplane relays.

• If multiple channels and backplane relays were closed in a channel list,
the last channel specified will be stored. Channels take precedence over
backplane relays when stored. However, if only multiple backplane relays
are specified, then the first one will be stored.

• If a channel pattern was closed, then the first eight characters of the
channel pattern name are returned (for example, mypattern1 is shown
as mypatte).

dates An array (a Lua table) of strings, indicating the date of the reading
formatted in month, day, and year.

formattedreadings An array (a Lua table) of strings indicating the formatted reading as
viewed on the display.

ptpseconds An array (a Lua table) of the seconds portion of the time stamp of when
the reading was stored. These seconds are absolute and in PTP
format.

readings An array (a Lua table) of the readings stored in the reading buffer. This
array holds the same data that is returned when the reading buffer is
accessed directly, that is, rb[2] and rb.readings[2] are the same
value.

relativetimestamps An array (a Lua table) of timestamps, in seconds, of when each reading
occurred relative to the timestamp of reading buffer entry number 1.
These are equal to the time that has lapsed for each reading since the
first reading was stored in the buffer. Therefore, the relative timestamp
for entry number 1 in the buffer will equal 0.

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-59

Recall attribute Description
statuses An array (a Lua table) of status values for all readings in the buffer. The

status values are floating-point numbers that encode the status value
into a floating-point value (see the table in Buffer status (on page 3-
59)).

times An array (a Lua table) of strings, indicating the time of the reading
formatted in hours, minutes, and seconds.

timestamps An array (a Lua table) of strings, indicating the timestamp of the reading
formatted in month, day, year, hours, minutes, seconds, and fractional
seconds.

fractionalseconds An array (a Lua table) of the fractional portion of the timestamps, in
seconds, of when each reading occurred. These are absolute fractional
times.

seconds An array (a Lua table) of the seconds portion of the timestamp when the
reading was stored, in seconds. These seconds are absolute and in
UTC format.

units An array (Lua table) of the strings, indicating the unit of measure stored
with readings in the buffer. Units may be designated as one of the
following: Volts AC, Volts DC, Amps AC, Amps DC, dB VAC, dB VDC,
Ohms 2wire, Ohms 4wire, Ohms ComSide, Fahrenheit, Kelvin, Celsius,
Hertz, Seconds, and Continuity.

Example to access recall attributes

To see seconds, fractional seconds, and relative timestamps for entry numbers 2 and 3 in buffer
mybuffer2, assuming mybuffer2.collecttimestamps was set to 1 when the readings were
stored (mybuffer2.collecttimestamps = 1):
printbuffer(2,3, mybuffer2.seconds)
printbuffer(2,3, mybuffer2.fractionalseconds)
printbuffer(2,3, mybuffer2.relativetimestamps)

Time and date values
Time and date values are represented as a number of UTC seconds since 12:00 a.m. Jan. 1, 1970.
The os.time() command returns values in this format. Use os.date() to return values in month,
day, year, hours, and minutes format, or to access the timestamp table. The only exception to this is
the use of the ptpseconds recall attribute, which has the seconds in PTP format.

Time and date values are represented as the number of seconds since some base. Representing
time as a number of seconds is referred to as “standard time format.” The three time bases used for
the Series 3700A are:

• UTC 12:00 am Jan 1, 1970. Some examples of UTC time are reading buffer seconds, adjustment
dates, and the value returned by os.time().

• Instrument on. References time to when the instrument was turned on. The value returned by
os.clock() is referenced to the turn-on time.

• Event. Time referenced to an event, such as the first reading stored in a reading buffer.

Buffer status
The buffer reading status attribute can include the status information as a numeric value shown in the
following table. To access status information, send the following command:
stat_info = readingbuffer.statuses[2]

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-60 3700AS-901-01 Rev. B/May 2013

Buffer status bits

Bit Name Hex value Remote command

B0 Low limit 1 0x01 dmm.buffer.LIMIT1_LOW_BIT
B1 High limit 1 0x02 dmm.buffer.LIMIT1_HIGH_BIT
B2 Low limit 2 0x04 dmm.buffer.LIMIT2_LOW_BIT
B3 High limit 2 0x08 dmm.buffer.LIMIT2_HIGH_BIT
B6 Measure overflow 0x40 dmm.buffer.MEAS_OVERFLOW_BIT
B7 Measure connect

question
0x80 dmm.buffer.MEAS_CONNECT_QUESTION_BIT

Dynamically-allocated buffers
RAM reading buffers are created and dynamically allocated with the dmm.makebuffer(N)
command, where N is the maximum number of readings the buffer can store.

Example 1

To allocate a buffer named mybuffer that can store 100 readings:
mybuffer = dmm.makebuffer(100)

Example 2
To delete an allocated buffer named mybuffer:
mybuffer = nil

Example 3

To see if the high limit 1 was exceeded during the reading:
stat_info = readingbuffer.statuses[3]
if (bit.bitand(stat_info, dmm.buffer.LIMIT1_HIGH_BIT) ==
 dmm.buffer.LIMIT1_HIGH_BIT) then
print("Limit 1 high exceeded")
else
print("Limit 1 high okay")
end

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-61

Dynamic buffer programming example
The programming example below shows how to store data using a dynamically-allocated buffer
named mybuff.
-- Reset the DMM.
dmm.reset("all")
-- Create a buffer named mybuffer and allocate space for 100,000 readings.
mybuffer = dmm.makebuffer(100000)
-- Enable append buffer mode.
mybuffer.appendmode = 1
-- Set count to 1.
dmm.measurecount = 1
-- Select the DMM function as DC volts.
dmm.func = dmm.DC_VOLTS
-- Start for . . . do loop. Measure and store readings in buffer. End loop.
for x = 1, 100 do
 dmm.measure(mybuffer)
end
-- Return readings 1 through 100.
printbuffer(1, 100, mybuffer.readings)
-- Return units 1 through 100.
printbuffer(1, 100, mybuffer.units)

Buffer for . . . do loops
The following examples illustrate the use of for . . . do loops when recalling buffer data from a reading
buffer called mybuffer. The following code may be sent as one command line or as part of a script.
Sample outputs follow the line of code. Also see the printbuffer() (on page 8-307) command.

Buffer mybuffer has time stamp collection enabled in the example below.

This example loop uses the printbuffer() command to show the reading, units, and relative
timestamps for all readings stored in the buffer. The information for each reading (reading, units, and
relative timestamps) is shown on a single line with the elements comma-delimited.
for x = 1,mybuffer.n do
 printbuffer(x,x,mybuffer, mybuffer.units, mybuffer.relativetimestamps)
end

Sample comma-delimited output of above code:
3.535493836e-002, Volts DC, 0.000000000e+000
-4.749810696e-002, Volts DC, 5.730966000e-002
-8.893087506e-002, Volts DC, 7.722769500e-002
4.164193198e-002, Volts DC, 1.246876800e-001
-6.900507957e-002, Volts DC, 1.815213600e-001
-8.851423860e-002, Volts DC, 2.009161500e-001
3.891038895e-002, Volts DC, 2.647790700e-001
-7.581630349e-002, Volts DC, 3.032140350e-001
-8.236359060e-002, Volts DC, 3.226125750e-001
-8.551311493e-002, Volts DC, 3.425625900e-001

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-62 3700AS-901-01 Rev. B/May 2013

The following loop uses the print command instead of the printbuffer command. This loop
shows the same information described in the previous example (reading, units, and relative
timestamps for all readings stored in the buffer). However, because the print command is used
over printbuffer, each line is tab-delimited (rather than comma-delimited) to produce a columnar
output, as shown below:
for x = 1,mybuffer.n do
 print(mybuffer.readings[x], mybuffer.units[x],

mybuffer.relativetimestamps[x])
end

Sample columnar output of above code:
3.535493836e-002 Volts DC 0.000000000e+000
-4.749810696e-002 Volts DC 5.730966000e-002
-8.893087506e-002 Volts DC 7.722769500e-002
4.164193198e-002 Volts DC 1.246876800e-001
-6.900507957e-002 Volts DC 1.815213600e-001
-8.851423860e-002 Volts DC 2.009161500e-001
3.891038895e-002 Volts DC 2.647790700e-001
-7.581630349e-002 Volts DC 3.032140350e-001
-8.236359060e-002 Volts DC 3.226125750e-001
-8.551311493e-002 Volts DC 3.425625900e-001

If data was collected by executing a three-channel scan list with a scan count of 10, the buffer has 30
readings in it. To see the comma-delimited data on the three-channel boundary, send:
x = 1
y = 3
for z = 1, 10 do
 printbuffer(x, y, mybuffer, mybuffer.channels)
 x = x + 3
 y = y + 3
end

The sample output from the above code has six comma-delimited entries per line (reading, channel,
reading, channel, reading, channel):

3.181298825e-002, 2001+, -5.602844334e-002, 2002+, -7.811298360e-002, 2003+
3.228547367e-002, 2001+, -5.299202901e-002, 2002+, -8.676257870e-002, 2003+
3.736769697e-002, 2001+, -3.247188344e-002, 2002+, -5.106155438e-002, 2003+
-6.473406636e-002, 2001+, -9.218081926e-002, 2002+, 3.419026595e-002, 2003+
-3.856921662e-002, 2001+, -6.672781529e-002, 2002+, -7.762540017e-002,
2003+
2.876431571e-002, 2001+, -4.056434134e-002, 2002+, -6.119288115e-002, 2003+
-7.301064720e-002, 2001+, 2.893913659e-002, 2002+, -3.164065858e-002, 2003+
-6.794576932e-002, 2001+, -8.067066262e-002, 2002+, 2.339088329e-002, 2003+
-5.288247880e-002, 2001+, -6.769966949e-002, 2002+, -7.572277347e-002,
2003+
2.618149827e-002, 2001+, -3.164126270e-002, 2002+, -6.306067024e-002, 2003+

Series 3700A System Switch/Multimeter Reference Manual Section 3: Functions and features

3700AS-901-01 Rev. B/May 2013 3-63

If you want to see more information about the readings, add the appropriate buffer recall attribute to
the printbuffer line in the sample code. For example, to see the relative timestamp with each
reading, add mybuffer.relativetimestamps to the printbuffer command as follows:
printbuffer(x, y, mybuffer, mybuffer.channels, mybuffer.relativetimestamps)

In the output from this printbuffer command, nine comma-delimited entries appear on each
line. Each line will include the following entries: Reading, channel, relative timestamp, reading,
channel, relative timestamp, reading, channel, relative timestamp.

Exceeding reading buffer capacity
If the reading buffer count is not exceeded, readings are stored as expected. But if new readings
would exceed reading buffer capacity when they are added to the current buffer index, the count is
lowered to a new count so it does not exceed the buffer capacity. Once the buffer is full (to the new
count), no more readings are taken and error code 4915, "Attempting to store past capacity of reading
buffer," is displayed. If you attempt to store additional readings in a full buffer, the same message
appears, and no readings are taken.

Example

Create a buffer with:

• A capacity for 50 readings
• Append mode enabled
• Measure count to 30

Tell the instrument to print the current number of buffer elements stored and take readings to store in
the buffer. The following occurs:

1. The first time the measurement is called, the buffer is empty (no readings), so it stores 30
readings.

2. The second time the measurement is called it stores only 20 readings. This is because 30 + 30 is
60 readings, which exceeds buffer capacity (50). Because 30 readings are already stored, only
20 readings are taken and stored. Error code 4915, "Attempting to store past capacity of reading
buffer," is displayed.

3. The third time the measurement is called, the buffer is full (already has 50 readings). Because
there is no more room, no readings are taken (nil response for reading) and error code 4915,
"Attempting to store past capacity of reading buffer," is again displayed.

Section 3: Functions and features Series 3700A System Switch/Multimeter Reference Manual

3-64 3700AS-901-01 Rev. B/May 2013

The code for the previous example follows:
-- Create a buffer named buf and allocate space for 50 readings.
buf = dmm.makebuffer(50)
-- Enable append buffer mode.
buf.appendmode = 1
-- Set count to 30.
dmm.measurecount = 30
-- Show the current number of readings in the buffer,
-- and then measure and store readings in the
-- buffer (first pass).
-- Output from the print command:
-- 0.000000000e+000
-- 5.245720223e-002
print(buf.n, dmm.measure(buf))
-- Show the current number of readings in the buffer,
-- and then measure and store readings in the
-- buffer (second pass).
-- Output from the print command:
-- 3.000000000e+001
-- -1.388141960e-001
-- 4915, Attempting to store past capacity of reading buffer
print(buf.n, dmm.measure(buf))
-- Show the current number of readings in the buffer,
-- and then measure and store readings in the
-- buffer (third pass).
-- Output from the print command:
-- 5.000000000e+001
-- nil
-- 4915, Attempting to store past capacity of reading buffer
print(buf.n, dmm.measure(buf))

In this section:

DMM measurement capabilities ... 4-1
High-energy circuit safety precautions 4-2
Performance considerations... 4-2
System considerations ... 4-6
Voltage measurements (DC volts and AC volts) 4-9
Current measurements (DC current and AC current) 4-14
Resistance measurements ... 4-17
Temperature measurements .. 4-23
Frequency and period measurements 4-35
Continuity testing .. 4-38
Refining measurements ... 4-41

DMM measurement capabilities

The DMM is not available on the Models 3706-S or 3706-SNFP.

The DMM of the Model 3706A can make the following measurements:

• DC voltage measurements from –10 nV to 300 V
• AC voltage measurements from 100 nV to 300 V
• DC current measurements from 1pA to 3.0 A
• AC current measurements from 1 nA to 3.0 A
• Two-wire resistance measurements from 1 µΩ to 120 MΩ
• Four-wire resistance measurements from 100 µΩ to 120 MΩ
• Commonside ohms resistance measurements from 1 µΩ to 2 kΩ
• Frequency measurements from 3 Hz to 500 kHz
• Period measurements from 2 µs to 330 ms
• Temperature measurements from –200 °C to 1820 °C
• Continuity testing using the 1 kΩ range

When using a switching module, do not exceed the maximum signal levels of the module.

Section 4

Basic DMM operation

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-2 3700AS-901-01 Rev. B/May 2013

For information on verification and calibration of the DMM, see Verification (on page C-1).

High-energy circuit safety precautions
To optimize safety when measuring voltage in high-energy distribution circuits, read and use the
directions in the following warning.

Dangerous arcs of an explosive nature in a high-energy circuit can cause severe personal
injury or death. If the multimeter is connected to a high-energy circuit when set to a current
range or low resistance range, the circuit is virtually shorted. Dangerous arcing can result
even when the multimeter is set to a voltage range if the minimum voltage spacing is
reduced in the external connections.

As described in International Electrotechnical Commission (IEC) Standard IEC 664, the
Model 3706A is Installation Category I and signal lines must not be directly connected to AC
mains.

When making measurements in high-energy circuits, use test leads that meet the following
requirements:

• Test leads should be fully insulated.
• Only use test leads that can be connected to the circuit (for example, alligator clips and spade

lugs) for hands-off measurements.
• Do not use test leads that decrease voltage spacing. These diminish arc protection and create a

hazardous condition.

Use the following procedure when testing power circuits:

1. Turn off power to the circuit using the regular installed connect-disconnect device. For example,
remove the device's power cord or turn off the power switch.

2. Attach the test leads to the circuit under test. Use appropriate safety rated test leads for this
application. If over 42 V, use double-insulated test leads or add an additional insulation barrier for
the operator.

3. Set the multimeter to the proper function and range.
4. Power the circuit using the installed connect-disconnect device and make measurements without

disconnecting the multimeter.
5. Remove power from the circuit using the installed connect-disconnect device.
6. Disconnect the test leads from the circuit under test.

Performance considerations
There are several settings and conditions that apply to all DMM measurements, as described in the
following sections.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-3

Warmup time
After the Model 3706A is turned on, it must be allowed to warm up for at least two hours to allow the
internal temperature to stabilize. If the instrument has been exposed to extreme temperatures, allow
extra warmup time.

Autozero
When the autozero feature is enabled, the Model 3706A periodically measures internal voltages that
correspond to offset (zero) and amplifier gain reference points. The Model 3706A includes these
measurements when it calculates the reading of the input signal. This helps maintain stability and
accuracy over time and changes in temperature.

You can disable autozero to improve measurement speed. However, if autozero is disabled for long
periods, the zero and gain reference points will drift, resulting in inaccurate readings.

To maintain accuracy of your DMM readings, you should disable autozero for only short periods.

When autozero is enabled after being disabled for a long period, the internal reference points are not
updated immediately. This initially results in inaccurate measurements, especially if the ambient
temperature has changed by several degrees.

To force a rapid update of the internal reference points, you can set the AUTOZERO attribute for the
function to ONCE. This updates the internal reference points once and stops. See dmm.autozero (on
page 8-157) for more information. For example, you could send the following commands to update
the internal reference points and then enable autozero if autozero had been set to off for a long
period:
dmm.autozero = dmm.AUTOZERO_ONCE
dmm.autozero = dmm.ON
first_reading = dmm.measure()

Internal temperature references used for thermocouple measurements are performed regardless of
the autozero state because they do not have a significant effect on measurement speed.

To set autozero from the front panel for the selected function:

1. Press the CONFIG key.
2. Press the DMM key.
3. Use the navigation wheel to select AUTOZERO.
4. Select:

• OFF to disable autozero
• ON to enable autozero
• ONCE to update the reference points once and then disable autozero

1. Press the navigation wheel or ENTER to save the setting for the selected function.

To set autozero remotely, see dmm.autozero (on page 8-157).

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-4 3700AS-901-01 Rev. B/May 2013

Line cycle synchronization
Using line synchronization helps increase common mode and normal mode noise rejection. When
line cycle synchronization is enabled, measurements are initiated at the first positive-going zero
crossing of the power line cycle after the trigger.

Line cycle synchronization only applies to the following DMM functions:

• Commonside ohms
• Continuity
• DC current
• DC volts
• Four wire ohms
• Temperature
• Two wire ohms

Line synchronization can be enabled for NPLC measurements, increasing NMRR and CMRR.

To set line synchronization from the front panel for the selected function:

1. Press the CONFIG key.
2. Press the DMM key.
3. Use the navigation wheel to select LINESYNC.
4. Select:

• OFF to disable line synchronization
• ON to enable line synchronization

1. Press the navigation wheel or ENTER to save the setting for the selected function.

To set line synchronization remotely, see dmm.linesync (on page 8-203).

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-5

Autodelay
Autodelay applies a wait period at the start of measurement. The delay allows cables, Series 3700A
cards, or internal DMM circuitry to settle for best measurement accuracy. For the AC current and AC
volts functions, the autodelay includes both the RMS filter and AC coupling capacitor settling times.

When autodelay is disabled, no wait time is applied. When autodelay is enabled, every start of
measurement for a function is delayed by the same amount of time.

You can also use autodelay once to include a delay for only the first measurement in a set of
measurements. Each measurement after the first one has no additional delay.
To set autodelay from the front panel for the selected function:
1. Press the CONFIG key.
2. Press the DMM key.
3. Use the navigation wheel to select AUTODELAY.
4. Select:

• OFF to disable auto delay
• ON to enable auto delay
• ONCE to enable auto delay for only the first measurement

1. Press the navigation wheel or ENTER to save the setting for the selected function.

To set autodelay remotely, dmm.autodelay (on page 8-154).

Measure count
The DMM can be set up to take multiple measurements when MEASURE is selected from the DMM
Action Menu on the front panel or when a single trigger is sent. This is useful in channel closures or in
a scan list where multiple measurements are required per channel.

To set up multiple measurements from the front panel:

1. Press the DMM key.
2. Use the navigation wheel to select COUNT.
3. Set the number of measurements to take (maximum of 450,000).
4. Press the navigation wheel or ENTER to save the setting. Note that this settings affects all

measurements for all functions (it is not tied to a specific function).

To set the measurement counts remotely,see dmm.measurecount (on page 8-214).

When continuous measurements are taken with the front panel TRIG key, they are taken at 250 ms
intervals. You take continuous measurements by pressing and holding the TRIG key in for a few
seconds. After doing this, the TRIG annunciator will flash to indicate that readings are being triggered.

The front panel TRIG key will perform the number of measurements equal to the measurecount
number. Press EXIT or send dmm.measurecount=1 to halt triggering.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-6 3700AS-901-01 Rev. B/May 2013

Change the display resolution
You can set the display resolution for measurements that are shown on the front panel of the instrument. You
can set the resolution to 3½, 4½, 5½, 6½, or 7½ digits. Display resolution can be set for all functions except
"nofunction" and "continuity".
The display resolution does not affect the number of digits returned in a remote command reading, and does not
affect the accuracy or speed of measurements.

To set the display resolution delay from the front panel for the selected function:

1. Press the CONFIG key.
2. Press the DMM key.
3. Use the navigation wheel to select DIGITS.
4. Select 3, 4, 5, 6,or 7 to select a 3½, 4½, 5½, 6½, or 7½ digit display, respectively.
5. Press the navigation wheel or ENTER to save the setting for the selected function.

To set display resolution remotely, see dmm.displaydigits (on page 8-180).

System considerations

Relationship between DMM functions and attributes
Each DMM function can be modified by a set of attributes. For example, you can use the relative
offset attribute to set a value that zeroes out noise in a measurement.

Attribute settings apply only to the function that is active when the attribute is set. They remains in
effect for that function until the instrument is powered off, reset, or a saved configuration is recalled.

If you set the same attribute for a different function, the setting changes for the new function, but does
not change for the previous function. An example is shown here using the remote commands, but the
same concept applies to front panel settings.

reset()
dmm.func = "acvolts"
print(dmm.func, dmm.autorange)

Reset the instrument.
Set the function to AC volts. Print the function and
autorange values.
Output:
acvolts 1.000000000e+000

This indicates that the active function is AC volts, with
autorange set on.

dmm.func = "accurrent"
dmm.autorange = "dmm.OFF"
print(dmm.func, dmm.autorange)

Change to the AC current function and turn autorange
off. Print the function and autorange values.
Output:
accurrent 0.000000000e+000

This indicates that the active function is AC current,
with autorange set off.

dmm.func = "acvolts"
print(dmm.func, dmm.autorange)

Return to AC volts as the active function. Print the
function and autorange values.
Output:
acvolts 1.000000000e+000

Note that when AC volts is the active function, the
autorange value is on.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-7

Relationship between front panel settings and remote commands
When you change the active DMM function from the front panel, the active function for all other
interfaces is changed as well. This is also true for attributes.

When you change the active DMM function through a remote interface, the front panel settings are
also changed.

Save DMM configurations
After you set up the attributes for a DMM function, you can save the settings for future use using the
DMM configuration options. You can use this configuration to:

• Switch quickly between set ups
• Assign the configuration to channels or channel patterns
• Assign the configuration to scanning

DMM configurations include all the attribute settings for the selected DMM function. You can save
multiple configurations with different names so that you can save different sets of attributes for the
DMM functions.

When the DMM configuration is assigned to channels, channel patterns or scans, the Model 3706A
verifies that the attributes that are set in the DMM configuration are valid for all the channels included
in the channel list, pattern, or scan. If there are attributes that are not valid, an error occurs and you
cannot take measurements.

However, the DMM configuration and the pole setting of the channel can be incompatible without
causing an error. For example, the DMM configuration may have a channel configured for two-pole
measurement (for example, DC volts), while the pole setting may be configured for four-pole. Or, a
channel may have a DMM configuration of four-wire ohms while the pole setting is at two-pole. If the
pole settings conflict, the pole settings that take precedence depend on the operation:

• If you send dmm.close or dmm.open, the pole setting in the DMM configuration is used.

• If you send channel.close, channel.open, channel.exclusiveclose, or
channel.exclusiveslotclose, the pole setting of the channel is used.

The DMM configurations are saved in configuration scripts. See Create a configuration script (on
page 2-102) for more information on configuration scripts.

DMM configurations are deleted if the system is reset. They are not affected by a DMM reset
(dmm.reset).

Memory available for DMM configurations
All DMM configurations are allocated 32 KB of memory. The number of DMM configurations you can
store varies with the number of characters of the name of the DMM configuration and the number of
attributes associated with a particular function. For example, if each DMM configuration name is six
characters, you can store 78 temperature configurations (temperature has 41 unique DMM attribute
settings). However, if the the function is set to DC volts, and each name is six characters, you can
store 99 DMM configurations (DC volts only has 31 unique DMM attribute settings). You can use the
DMM configuration query command to determine how many attributes are associated with a function
(see dmm.configure.query (see "dmm.configure.query()" on page 8-171)).

To see how much of the DMM configuration memory is available or used, see the memory.available()
(on page 8-302) or memory.used() (on page 8-303) commands.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-8 3700AS-901-01 Rev. B/May 2013

How to save a DMM configuration
To create and save a DMM configuration from the front panel:
1. Press DMM.
2. Use the navigation wheel to select SAVE.
3. Press the navigation wheel or press ENTER.
4. Assign a name to the configuration.
5. Press ENTER.

To create a configuration script from the web interface:
1. From the Cards listing, select the slot that you want to set up configuration for.
2. Click DMM Config. The DMM Configuration dialog box is displayed.
3. Complete the values in the Configuration dialog box as needed.
4. Click Save as to save the settings.

To create a configuration script from the remote interface:

Send the command:
dmm.configure.set(name)

Where name is the name you want to assign to the DMM configuration.

Open and close relay operation
The OPEN and CLOSE keys operate differently if they are configured for switch operation or DMM
operation.

If they are configured for DMM operation, backplane relays are automatically closed to connect the
channel to the DMM to make a measurement. If you assign a DMM configuration to a channel, the
OPEN or CLOSE keys behave as a DMM operation — the input signals are automatically routed to
the DMM through the backplane relays.

In switch operation, backplane relays are not closed unless they are assigned to a channel. When
that channel is closed, the associated backplane channel also closes. A backplane relay cannot be
closed as a stand-alone channel from the front panel. By default, the channels are not assigned a
measurement function ("nofunction") and the OPEN or CLOSE keys behave as a switch.

If error code 1114, "Settings conflict error," is displayed, the channel that is being closed has
"nofunction" assigned to it. For remote operation, to use dmm.close, you must assign a valid
function to a channel.

Front panel close and open operation is shown in the following example.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-9

Example 1: Close channel and take measurement using the DMM operation
method
When you assign a measurement function to a channel and press the Close key, the Close key
routes the input signal automatically to the DMM through the appropriate backplane relays. This
behavior is referred to as DMM operation.

Figure 62: Close channel and trigger measurement on instrument using the DMM method

1. Assign a measurement function of two-wire ohms to channel 1031:

a. Use navigation wheel to modify the channel designation from 001 to 031.

b. Use navigation wheel to select twowireohms as the measurement function.
1. Press the CLOSE key to close channel 1031.
2. Press the TRIG key to acquire and display a single measurement.

Voltage measurements (DC volts and AC volts)
The Model 3706A can make DC volt measurements from –10 nV to 300 V and AC volt
measurements from 100 nV to 300 VRMS (425 V peak for AC waveforms).

• DC volt input resistance: 100 mV through 10 V ranges: more than 10 GΩ
• 100 V and 300 V ranges: more than or equal to 10 MΩ

Refer to the specifications for complete and up-to-date information and tolerances.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-10 3700AS-901-01 Rev. B/May 2013

Settings available for voltage measurement
The following DMM attributes are available for voltage measurements:

• aperture (range of 10e-6 s to 0.250 s for 50 Hz; 8.33e-6 s to 0.250 s for 60 Hz)
• autodelay (dmm.AUTODELAY_ONCE, dmm.ON or dmm.OFF)

• autorange (dmm.ON or dmm.OFF)

• autozero (dmm.AUTOZERO_ONCE, dmm.ON or dmm.OFF)

• DB reference (1e-7 V to 1000 V)
• detector bandwidth (3, 30, or 300)
• display digits (3, 4, 5, 6, or 7)
• filter count (1 to 100)
• filter enable (dmm.ON or dmm.OFF)

• filter type (dmm.FILTER_MOVING_AVG or dmm.FILTER_REPEAT_AVG)

• filter window (0 to 10%)
• input divider (dmm.ON or dmm.OFF)

• DMM limit auto clear (dmm.ON or dmm.OFF)

• DMM limit enable (dmm.ON or dmm.OFF)

• DMM limit high fail (0 or 1)
• DMM limit high value (–4294967295 to +4294967295)
• DMM limit low fail (0 or 1)
• DMM limit low value (–4294967295 to +4294967295)
• line synchronization (dmm.ON or dmm.OFF)

• math enable (dmm.ON or dmm.OFF)

• math format (dmm.MATH_NONE, dmm.MATH_MXB, dmm.MATH_PERCENT, or
dmm.MATH_RECIPROCAL)

• math mxb b factor (–4294967295 to +4294967295)
• math mxb m factor (–4294967295 to +4294967295)
• math mxb units
• math percent (–4294967295 to +4294967295)
• nplc (0.0005 to 15 for 60 Hz; 0.0005 to 12 for 50 Hz)
• range (0 to 303)
• relative offset enable (dmm.ON or dmm.OFF)

• relative offset level
• units (dmm.UNITS_VOLTS or dmm.UNITS_DECIBELS)

Autodelay and auto range settings
The following table provides times for autodelay and autorange time for the Model 3706A DMM
functions.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-11

Function Detector
bandwidth

Range and delays

DC volts

Not applicable Range 100 mV 1 V 10 V 100 V 300 V
Autodelay 1 ms 1 ms 1 ms 5 ms 5 ms
Autorange 1 ms 1 ms 1 ms 5 ms 5 ms

AC volts

Not applicable Range 100 mV 1 V 10 V 100 V 300 V
3 or 30 Hz Autodelay 200 ms 200 ms 200 ms 200 ms 1 s

Autorange 200 ms 200 ms 200 ms 200 ms 1 s
300 Hz Autodelay 50 ms 50 ms 50 ms 50 ms 250 ms

Autorange 50 ms 50 ms 50 ms 50 ms 250 ms

Voltage measurement connections

Even though the Model 3706A can measure up to 300V, the maximum input to a switching
module may be less. Exceeding the voltage rating of a switching module may cause damage
and create a safety hazard.

Make sure the insulation and wire sizes used are appropriate for the voltages and current
being applied to the Model 3706A analog backplane connector. Use supplementary
insulation as needed. Exceeding the voltage rating of a wiring may cause damage and
create a safety hazard.

Figure 63: DCV connection

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-12 3700AS-901-01 Rev. B/May 2013

Figure 64: ACV connection

Voltage measurement procedure front panel

If both the analog backplane connector and a switching module's terminals are connected
at the same time, all wiring and connections must be rated to the highest voltage that is
connected. For example, if 300 V is connected to the analog backplane connector, the test
lead insulation for the switching module must also be rated for 300 V.

Do not apply more than maximum input levels indicated or instrument damage may occur. The
voltage limit is subject to the 8 × 107 VHz product.

Perform the following steps to change a DMM function and its attributes.

1. Press the OPENALL key to open all switching channels.
2. Select the voltage measurement function by pressing the CONFIG key, and then pressing the

DMM key. FUNC flashes on, then off. Press the ENTER key or wheel. Function? is displayed on
the first line of the display and the second line displays available functions. Use the left or right
arrow keys or the knob to select DCV.

3. Use the RANGE and keys to:
• Select a measurement range
• Adjust the attributes after selecting the desired function under the Config DMM menu
• Press the AUTO key to select autoranging (AUTO annunciator turns on)

1. Apply the voltages to be measured.
2. If using a Series 3700A switch card, perform the following steps to assign a range of channels

and assign the channel a DMM configuration:
a. Using the navigation wheel:

• Press once to select 3700 card slot number and adjust 1-6.
• Press a second time to select the start channel number.
• Press a third time to select the end channel.
• Press a fourth time to allow DMM configuration assignment to the channel or range of channels.

b. Press the CLOSE key.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-13

1. Press the TRIG key and observe the display. If the "Overflow" message is displayed, select a
higher range until a normal reading is displayed (or press the AUTO key for autoranging). For
manual ranging, use the lowest possible range for the best resolution.

2. To measure other switching channels, repeat steps 5 and 6.
3. When finished, press the OPENALL key to open all channels.

Voltage measurement procedure remote commands

If both the analog backplane connector and a switching module's terminals are connected
at the same time, all wiring and connections must be rated to the highest voltage that is
connected. For example, if 300 V is connected to the analog backplane connector, the test
lead insulation for the switching module must also be rated for 300 V.

Do not apply more than maximum input levels indicated or instrument damage may occur. The
voltage limit is subject to the 8 × 107 V Hz product.

Use dmm.func to set the active function to AC volts, then set attributes as needed for your
application. An example is shown in the following table.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-14 3700AS-901-01 Rev. B/May 2013

Example program code for voltage measurement

Code Notes and comments

reset() Reset the Series 3700A to the factory
defaults.

dmm.func="acvolts"
dmm.range=1
dmm.detectorbandwidth=300

Sets the DMM function to AC volts, with a
range of 10 and detector bandwidth of 300.

dmm.nplc=0.06
dmm.autozero=0

When bandwidth set to 300, NPLC can be
programmed from 0.0005 plc to 12 plc at
60 Hz or 15 plc at 50 Hz.

dmm.autodelay=dmm.AUTODELAY_ONCE Include a single 50 ms delay before each
measurement after channel closure.

scan.measurecount=25 DMM takes a 25 readings on the same
channel.

dmm.configure.set("my-1Vac") Define this group of DMM settings as "my-
1Vac".

dmm.setconfig("4004, 4024", "my-1Vac")

Assign the configuration for channels 4 and
24 to "my-1Vac".

buf=dmm.makebuffer(200)
buf.clear()
buf.appendmode=1

Set the buffer size set to 200 readings, clear
the buffer, and set the readings to be
appended to the existing buffer content.

scan.create("4004, 4024") Create a scan list that includes channels 4
and 24. Backplane channels 4911 and 4921
are automatically paired.

scan.scancount=4 Set the scan to loop 4 times.

scan.execute(buf)
for x=1,buf.n do printbuffer(x,x,buf,

buf.relativetimestamps)
end

Start the scan.
Note that x,x prints reading and time
vertically so you can copy and paste the
information into Microsoft® Excel®.

Current measurements (DC current and AC current)
The Model 3706A can make DC current measurements from 1 pA to 3 A and AC current
measurements from 1 mA to 3 ARMS.

To prevent electric shock, never make or break connections while power is present in the
test circuit.

Also see crest factor information contained in AC voltage measurements and crest factor (on page 5-
5).

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-15

Settings available for current measurements
The following DMM attributes are available for AC current and DC current measurements:

• aperture (range of 10e-6 s to 0.250 s for 50 Hz; 8.33e-6 s to 0.250 s for 60 Hz)
• autodelay (dmm.AUTODELAY_ONCE, dmm.ON or dmm.OFF)

• autorange (dmm.ON or dmm.OFF)

• autozero (dmm.AUTOZERO_ONCE, dmm.ON or dmm.OFF)

• display digits (3, 4, 5, 6, or 7)

• filter count (1 to 100)
• filter enable (dmm.ON or dmm.OFF)

• filter type (dmm.FILTER_MOVING_AVG or dmm.FILTER_REPEAT_AVG)

• filter window (0 to 10%)
• DMM limit auto clear (dmm.ON or dmm.OFF)

• DMM limit enable (dmm.ON or dmm.OFF)

• DMM limit high fail (0 or 1)
• DMM limit high value (–4294967295 to +4294967295)
• DMM limit low fail (0 or 1)

• DMM limit low value (–4294967295 to +4294967295)
• line synchronization (dmm.ON or dmm.OFF) (dc only)

• math enable (dmm.ON or dmm.OFF)

• math format (dmm.MATH_NONE, dmm.MATH_MXB, dmm.MATH_PERCENT, or
dmm.MATH_RECIPROCAL)

• math mxb b factor (–4294967295 to +4294967295)
• math mxb m factor (–4294967295 to +4294967295)

• math mxb units
• math percent (–4294967295 to +4294967295)
• nplc (0.0005 to 15 for 60 Hz; 0.0005 to 12 for 50 Hz)
• range (0 to 3.1)
• relative offset enable (dmm.ON or dmm.OFF)

• relative offset level

Autodelay and auto range settings
The following table provides times for autodelay and autorange time for the Model 3706A DMM
current function.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-16 3700AS-901-01 Rev. B/May 2013

Function Detector
bandwidth

Range and delays

DC current Not applicable Range 10 µA 100 µA 1 mA 10 mA 100 mA 1 A 3 A
Autodelay 13 ms 2 ms 2 ms 2 ms 2 ms 2 ms 2 ms
Autorange 13 ms 2 ms 2 ms 2 ms 2 ms 2 ms 2 ms

AC current Not applicable Range 1 mA 10 mA 100 mA 1 A 3 A
3 or 30 Hz Autodelay 200 ms 200 ms 200 ms 200 ms 300 ms

Autorange 200 ms 200 ms 200 ms 200 ms 300 ms
300 Hz Autodelay 50 ms 50 ms 50 ms 50 ms 75 ms

Autorange 50 ms 50 ms 50 ms 50 ms 75 ms

Current measurement connections
See the Model 3721 information in the Series 3700 Switch and Control Cards Reference Manual for
connection information.

The Model 3721 switch card is the only card that supports DC current and AC current functions. You
can only assign DC current or AC current to channels 41 and 42. If DC current or AC current is
assigned to Channel 1-40, error 1116 "function mismatch in configuration" is displayed. Also, if a
function other than DC or AC current is assigned to channel 41 or 42, error 1114 "function mismatch
in configuration" is displayed.

Current measurement procedure from the front panel
1. Press the OPENALL key to open all switching channels.
2. Select the current measurement function by pressing the CONFIG key, and then pressing the

DMM key. FUNC flashes on, then off. Press the ENTER key or wheel. Function? is displayed on
the first line of the display and the second line displays available functions. Use the left or right
arrow keys or the knob to select ACI or DCI.

3. Use the RANGE and keys to:
• Select a measurement range
• Adjust the attributes after selecting the desired function under the Config DMM menu

1. Press the AUTO key to select autoranging (AUTO annunciator turns on).
2. Apply the currents to be measured.

3. If using a Series 3700A switch card, perform the following steps to assign a range of channels
and assign the channel a DMM configuration:

a. Using the navigation wheel:
• Press once to select 3721 card slot number and adjust 1-6.
• Press a second time to select the start channel number.
• Press a third time to select the end channel.
• Press a fourth time to allow DMM configuration assignment to the channel or range of channels.

b. Press the CLOSE key.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-17

1. Press the TRIG key and observe the display. If the "Overflow" message is displayed, select a
higher range until a normal reading is displayed (or press the AUTO key for autoranging). For
manual ranging, use the lowest possible range for the best resolution.

2. To measure other switching channels, repeat steps.
3. When finished, press the OPENALL key to open all channels.

When an amps-only channel is closed, you cannot select a non-amps function.

When making measurements less than 1 µA, to minimize 50/60 Hz noise, use a twisted pair for
current and DMM connections.

Current measurement procedure through remote commands
To set the DMM function for AC current measurements, send the command:
dmm.func = "accurrent"

To set the DMM function for DC current measurements, send the command:
dmm.func = "dccurrent"

Resistance measurements
The Model 3706A can make resistance measurements from 0.1 µΩ to 120 MΩ. For resistances more
than 1 kΩ, the two-wire method is typically used for measurements. For resistances more than or
equal to 1 kΩ, the four-wire measurement method should be used to cancel the effect of test lead and
channel path resistances.

DMM resistance measurement methods
The method that the Model 3706A uses to measure resistance depends on the resistance range. For
resistance ranges from 1 Ω to 1 MΩ , the Model 3706A uses the constant-current method to measure
resistance. For resistance ranges from 10 MΩ to 100 MΩ ranges, the ratiometric method is used.

When the constant-current method is used, the Model 3706A sources a constant current (I) to the
device under test and measures the voltage (V). Resistance (R) is then calculated and displayed
using the known current and measured voltage (R = V/I).

When the ratiometric method is used, test current is generated by a 6.4 V reference through a 10 MΩ
reference resistance (RREF).

For more detail on these methods, see Constant-current source method (on page 5-9) and
Ratiometric method (on page 5-9).

The Model 3706A uses four methods to detect open leads. For detail, see Open lead detection (on
page 5-14).

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-18 3700AS-901-01 Rev. B/May 2013

Settings available for resistance measurements
The following DMM attributes are available for resistance measurements:

• aperture (range of 10e-6 s to 0.250 s for 50 Hz; 8.33e-6 s to 0.250 s for 60 Hz)
• autodelay (dmm.AUTODELAY_ONCE, dmm.ON or dmm.OFF)

• autorange (dmm.ON or dmm.OFF)

• autozero (dmm.AUTOZERO_ONCE, dmm.ON or dmm.OFF)

• display digits (3, 4, 5, 6, or 7)

• dry circuit (dmm.ON or dmm.OFF) (only for four-wire ohms and commonside ohms)

• filter count (1 to 100)
• filter enable (dmm.ON or dmm.OFF)

• filter type (dmm.FILTER_MOVING_AVG or dmm.FILTER_REPEAT_AVG)

• filter window (0 to 10%)
• DMM limit auto clear (dmm.ON or dmm.OFF)

• DMM limit enable (dmm.ON or dmm.OFF)

• DMM limit high fail (0 or 1)

• DMM limit high value (–4294967295 to +4294967295)
• DMM limit low fail (0 or 1)
• DMM limit low value (–4294967295 to +4294967295)
• line synchronization (dmm.ON or dmm.OFF)

• math enable (dmm.ON or dmm.OFF)

• math format (dmm.MATH_NONE, dmm.MATH_MXB, dmm.MATH_PERCENT, or
dmm.MATH_RECIPROCAL)

• math mxb b factor (–4294967295 to +4294967295)
• math mxb m factor (–4294967295 to +4294967295)

• math mxb units
• math percent (–4294967295 to +4294967295)
• nplc (0.0005 to 15 for 60 Hz; 0.0005 to 12 for 50 Hz)
• offset compensation (dmm.ON or dmm.OFF) (only for four-wire ohms and commonside ohms)

• open detector (dmm.ON or dmm.OFF) (only for four-wire ohms and commonside ohms)

• range (0 to 120e6)
• relative offset enable (dmm.ON or dmm.OFF)

• relative offset level

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-19

Autodelay and auto range settings
The following table provides times for autodelay and autorange time for the Model 3706A DMM
functions.

When measuring resistances that are more than 10 KΩ, cable and Series 3700A card capacitance,
along with dielectric absorption, can cause uncertainties, such as low readings. The low readings are
caused by insufficient settling time after the closure of a Series 3700A switch card channel. Automatic
delays have been optimized to allow proper settling after the close of a channel. See below settling
times. If the application requires an additional settling delay, use the following commands to add
delays to the channel or slot:
channel.setdelay("4004", 0.050)

Adds 50 ms of delay after closing channel 4 in slot 4.
channel.setdelay("slot4", 0.050)

Adds 50 ms of delay to all channels in slot 4.

For continuity, the range is 1 kΩ with an autodelay of 3 ms and auto range of 2.5 ms.

Function Range and delays

2-wire ohm
and 4-wire
ohm

Range 1 - 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ 100 MΩ

Autodelay 3 ms 3 ms 13 ms 25 ms 100 ms 250 ms 375 ms

Autorange 2.5 ms 2.5 ms 12.5 ms 25 ms 100 ms 250 ms 375 ms

Dry circuit
ohms

Range 1 - 10Ω 100 - 2kΩ

Autodelay 3 ms 13 ms

Autorange 2.5 ms 12.5 ms

Resistance measurement connections
Analog backplane connector (rear panel)
Connections for resistance measurements are shown below.

For 2-wire resistance measurements, connect the leads to INPUT HI and LO.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-20 3700AS-901-01 Rev. B/May 2013

Figure 65: Two-wire resistance measurements

For 4-wire resistance, connect the leads to INPUT HI and LO, and sense Ω4 HI and LO.

Figure 66: Four-wire resistance measurement

Switching module connections
Connections for the switching module are shown below. As shown, each of the 40 channels can be
used to perform 2-wire resistance measurements.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-21

Figure 67: Two-wire switching module resistance connection

For 4-wire resistance measurements, a channel pair is used for each 4-wire measurement, as shown
below. For 4-wire resistance connections on a 40-channel switching module, channels 1 through 20
(which are used as the INPUT terminals) are paired to channels 21 through 40 (which are used as the
SENSE terminals). Channel 1 is paired to channel 21, channel 2 is paired to channel 22, and so on.

Figure 68: Four-wire switching module resistance connection

Cable leakage
For high resistance measurements in a high humidity environment, use TeflonTM insulated cables to
minimize errors due to cable leakage.

Shielding
To achieve a stable reading, it helps to shield resistances greater than 100 kΩ. As shown in Analog
backplane connector (rear panel) (on page 4-19), place the resistance in a shielded enclosure and
connect the shield to the INPUT LO terminal of the instrument electrically.

Commonside ohms
The following figure provides a switching schematic for the Model 3721 when measuring 4-wire
commonside ohms.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-22 3700AS-901-01 Rev. B/May 2013

Resistance measurements from the front panel

Inputs: Do not apply more than 425 V peak between INPUT HI and LO. Failure to observe this
caution may result in instrument damage.
Switching cards: Do not apply more than 300 V DC or 300 VRMS (425 Vpeak) for AC waveforms
between any two pins. Failure to observe this caution may result in switching module damage.
For example, if INPUT channel 1 HI is 300 VDC from channel 1 LO, channel 1 LO must be ≈ 0 VDC
from chassis ground.

Perform the following steps to measure resistance:
1. Press the OPENALL key to open all switching channels. Refer to DCV for DMM function, range,

and other settings.
2. Connect the resistances to be measured.
3. Select the resistance measurement function by pressing the CONFIG key, and then pressing the

DMM key. FUNC flashes on, then off. Press the ENTER key or wheel. Function? is displayed on
the first line of the display and the second line displays available functions. Use the left or right
arrow keys or the knob to select TWOWIREOHMS, FOURWIREOHMS, or COMMONSIDE.

4. Use the RANGE and keys to:
• Select a measurement range
• Adjust the attributes after selecting the desired function under the Config DMM menu
• Press the AUTO key to select autoranging (AUTO annunciator turns on)

1. Apply the resistances to be measured.
2. If using a Series 3700A switch card, perform the following steps to assign a range of channels

and assign the channel a DMM configuration:
a. Using the navigation wheel:

• Press once to select 3700 card slot number and adjust 1-6.
• Press a second time to select the start channel number.
• Press a third time to select the end channel.
• Press a fourth time to allow DMM configuration assignment to the channel or range of channels.

b. Press the CLOSE key.

1. Press the TRIG key and observe the display. If the "Overflow" message is displayed, select a
higher range until a normal reading is displayed (or press the AUTO key for autoranging). For
manual ranging, use the lowest possible range for the best resolution.

2. To measure other switching channels, repeat steps 5 and 6.
3. When finished, press the OPENALL key to open all channels.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-23

Resistance measurements through remote interface
Examples of remote interface measurements setups through the remote interface are shown here.

dmm.func = "twowireohms"
dmm.autodelay = dmm.ON
dmm.measurecount = 10
ReadingBufferOne = dmm.makebuffer(1000)
dmm.measure(ReadingBufferOne)

An automatic delay is applied to each
measurement when the DMM is measuring
two-wire ohms. Take 10 measurements and
store them in a reading buffer named
ReadingBufferOne that can store up to 1000
readings.

dmm.func = "fourwireohms"
dmm.autodelay = dmm.AUTODELAY_ONCE
dmm.measurecount = 10
ReadingBufferTwo = dmm.makebuffer(1000)
dmm.measure(ReadingBufferTwo)

Sets an auto delay for the first of the ten
four-wire ohm readings. Readings two
through ten will occur as quickly as possible,
with readings stored in a reading buffer
called ReadingBufferTwo that can store up
to 1000 readings.

Temperature measurements
The Model 3706A can measure temperature using various thermoelectric transducers, including:
thermocouples, thermistors, and 3 or 4-wire resistance temperature detectors (RTDs).

When deciding which type to use, note that the thermocouple is the most versatile and useful for
significant distances between the sensor and the instrument, the thermistor is the most sensitive, the
4-wire RTD is the most stable, and the 3-wire RTD minimizes the number of conductors per sensor
(3).

Settings available for temperature measurements
• aperture (range of 10e-6 s to 0.250 s for 50 Hz; 8.33e-6 s to 0.250 s for 60 Hz)
• autodelay (dmm.AUTODELAY_ONCE, dmm.ON or dmm.OFF)

• autozero (dmm.AUTOZERO_ONCE, dmm.ON or dmm.OFF)

• display digits (3, 4, 5, 6, or 7)
• filter count (1 to 100)
• filter enable (dmm.ON or dmm.OFF)

• filter type (dmm.FILTER_MOVING_AVG or dmm.FILTER_REPEAT_AVG)

• filter window (0 to 10%)
• Four-wire RTD (dmm.RTD_PT100, dmm.RTD_D100, dmm.RTD_F100, dmm.RTD_PT385,

dmm.RTD_PT3916, dmm.RTD_USER) (only with dmm.transducer set to dmm.TEMP_FOURRTD)

• DMM limit auto clear (dmm.ON or dmm.OFF)

• DMM limit enable (dmm.ON or dmm.OFF)

• DMM limit high fail (0 or 1)
• DMM limit high value (–4294967295 to +4294967295)
• DMM limit low fail (0 or 1)

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-24 3700AS-901-01 Rev. B/May 2013

• DMM limit low value (–4294967295 to +4294967295)
• line synchronization (dmm.ON or dmm.OFF)

• math enable (dmm.ON or dmm.OFF)

• math format (dmm.MATH_NONE, dmm.MATH_MXB, dmm.MATH_PERCENT, or
dmm.MATH_RECIPROCAL)

• math mxb b factor (–4294967295 to +4294967295)
• math mxb m factor (–4294967295 to +4294967295)
• math mxb units

• math percent (–4294967295 to +4294967295)
• nplc (0.0005 to 15 for 60 Hz; 0.0005 to 12 for 50 Hz)
• offset compensation (dmm.ON or dmm.OFF)

• open detector (dmm.ON or dmm.OFF)

• reference junction (dmm.REF_JUNCTION_SIMULATED, dmm.REF_JUNCTION_INTERNAL, or
dmm.REF_JUNCTION_EXTERNAL) (only available when transducer type is set to
thermocouple).

• relative offset enable (dmm.ON or dmm.OFF)

• relative offset level
• RTD alpha (0 to 0.01) (only with dmm.transducer set to dmm.TEMP_FOURRTD or

dmm.TEMP_THREERTD)

• RTD beta (0 to 1.0) (only with dmm.transducer set to dmm.TEMP_FOURRTD or
dmm.TEMP_THREERTD)

• RTD delta (0 to 5) (only with dmm.transducer set to dmm.TEMP_FOURRTD or
dmm.TEMP_THREERTD)

• RTD zero (0 to 10000) (only with dmm.transducer set to dmm.TEMP_FOURRTD or
dmm.TEMP_THREERTD)

• simulated reference temperature (Celsius (0 °C to 65 °C), Fahrenheit (32 °F to 149 °F), or Kelvin
(273 °K to 338 °K)) (only with dmm.transducer set to dmm.TEMP_THERMOCOUPLE)

• thermistor type (2252, 5000, or 10000) (only with dmm.transducer set to
dmm.TEMP_THERMISTOR)

• thermocouple type (dmm.THERMOCOUPLE_J, dmm.THERMOCOUPLE_K, dmm.THERMOCOUPLE_T,
dmm.THERMOCOUPLE_E, dmm.THERMOCOUPLE_R, dmm.THERMOCOUPLE_S,
dmm.THERMOCOUPLE_B, dmm.THERMOCOUPLE_N) (only with dmm.transducer set to
dmm.TEMP_THERMOCOUPLE)

• three-wire RTD type (dmm.RTD_PT100, dmm.RTD_D100, dmm.RTD_F100, dmm.RTD_PT385,
dmm.RTD_PT3916, dmm.RTD_USER) (only with dmm.transducer set to dmm.TEMP_THREERTD)

• transducer type (dmm.TEMP_THERMOCOUPLE, dmm.TEMP_THERMISTOR, dmm.TEMP_THREERTD,
or dmm.TEMP_FOURRTD)

• units (dmm.UNITS_CELSIUS, dmm.UNITS_KELVIN, or dmm.UNITS_FAHRENHEIT)

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-25

Autodelay and auto range settings
The following table provides times for autodelay and auto range time for the Model 3706A DMM
functions.

For the standard RTD values (PT100, D100, F100, PT385, and PT3916), use 1 kΩ. For user-set
RTDs, use 1 kΩ or 10 kΩ, depending on the alpha, beta, delta, and Ro values.

For thermocouples, the autodelay and auto range functions are 1 ms.

For thermistors, for:

• 2252Ω and 5kΩ: 100 MΩ to 10 MΩ, dependent on temperature
• 10kΩ: 1 kΩ to 10 MΩ, dependent on temperature

Thermocouples
For thermocouples, temperature measurement range depends on which type of thermocouple is
being used. Thermocouples that are supported include types J, K, N, T, E, R, S, and B.

Type Range Resolution
J -200 °C to +760 °C 0.001 °C
K -200 °C to +1372 °C 0.001 °C
N -200 °C to +1300 °C 0.001 °C
T -200 °C to +400 °C 0.001 °C
E -150 °C to +1000 °C 0.001 °C
R 0 °C to +1768 °C 0.1 °C
S 0 °C to +1786 °C 0.1 °C
B +350 °C to +1820 °C 0.1 °C

When two wires made up of dissimilar metals are joined together, a voltage is generated. The
generated voltage is a function of temperature. As temperature changes, the voltage changes. The
thermocouple voltage equates to a temperature reading. This is the basic operation principle of the
thermocouple.

When you connect a thermocouple directly to the input of the Model 3706A, at least one of those
connections will be a junction made up of two dissimilar metals. Hence, another voltage is introduced
and is algebraically added to the thermocouple voltage. The result will be an erroneous temperature
measurement.

To cancel the affects of the unwanted thermal voltage, the thermocouple circuit requires a reference
junction that is at a known temperature.

 The Model 3706A has an open thermocouple detection circuit. Long lengths of thermocouple wire
can have a large amount of capacitance, which is seen at the input of the DMM. If an intermittent
open occurs in the thermocouple circuit, the capacitance can cause an erroneous on-scale reading.
The open thermocouple detection circuit, when enabled, applies a 100 µA pulse of current to the
thermocouple before the start of each temperature measurement. For more detail, see Open
thermocouple detection (on page 5-19).

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-26 3700AS-901-01 Rev. B/May 2013

The default setting is for open thermocouple detection to be on (dmm.opendetector = dmm.ON).

Thermocouple connections
Connections for thermocouples are shown below. Thermocouples are color coded to identify the
positive (+) and negative (–) leads (see the table). Note that the negative (–) lead for U.S. type T/Cs is
red.

T/C type Positive (+) Negative (–) T/C type Positive (+) Negative (–)
J White Red E U.S. Purple Red

Yellow Blue British Brown Blue
Red Blue DIN Red Black
Red White Japanese Red White
Yellow Black French Yellow Blue

K Yellow Red R U.S. Black Red
Brown Blue British White Blue
Red Green DIN Red White
Red White Japanese Red White
Yellow Purple French Yellow Green

N Orange Red S U.S. Black Red
— — British White Blue
— — DIN Red White
— — Japanese Red White
— — French Yellow Green

T Blue Red B U.S. Gray Red
White Blue British — —
Red Brown DIN Red Gray
Red White Japanese Red Gray
Yellow Blue French — —

When using the Model 3706A analog backplane connector, use a simulated reference junction for
thermocouple temperature measurements. An ice bath, as shown below, serves as an excellent cold
junction because it is relatively easy to hold the temperature to 0 °C. Notice that copper wires are
used to connect the thermocouple to the Model 3706A input.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-27

Figure 69: Simulated reference junction

The positive lead of the type T thermocouple is made of copper. Therefore, that lead can be
connected directly to the input of the switching module (it does not have to be maintained at the
simulated reference temperature, in other words, immersed in an ice bath).

For the thermocouple-capable switching modules, you can also use a simulated reference junction as
shown, or you can connect the thermocouple wires directly to the screw terminals (internal reference
junction). Using a simulated reference junction may be inconvenient, but it will provide more accurate
temperature measurements (assuming the user enters a precise reference temperature).

Figure 70: Simulated reference junction switching module

Figure 71: Internal reference junction (40 channel switching module)

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-28 3700AS-901-01 Rev. B/May 2013

Thermocouple measurement from the front panel

If the Model 3706A is being controlled remotely, place the instrument in local control by pressing the
EXIT key.

To make a thermocouple measurement from the front panel:
1. Press the OPENALL key to open all switching channels.
2. Select the temperature measurement function by pressing the CONFIG key, and then pressing

the DMM key. FUNC flashes on, then off. Press the ENTER key or wheel. FUNCTION? is
displayed on the first line of the display and the second line displays available functions. Use the
left or right arrow keys of the knob to select TEMP.

3. Press the CONFIG key and then the DMM key. The "TEMP ATTR MENU" opens.

4. Set units of measurement degrees:
• Turn the navigation wheel to scroll to the "UNITS" menu item (right most menu item) and press the

ENTER key.
• Turn the navigation wheel to select desired units (Celsius, Kelvin, or Fahrenheit) and press the ENTER

key.

1. Set THERMO device attributes:
• Turn the navigation wheel to scroll to the "THERMO" menu item and press the ENTER key.
• Turn the navigation wheel to scroll to the "THERMOCOUPLE" type and press the ENTER key.
• Turn the navigation wheel to select desired type and press the ENTER key.

1. Press the EXIT key twice to leave the "TEMP ATTR MENU."
2. Connect the temperature transducers to be measured.
3. If using a switching module, perform the following steps to close the desired channel.

a. Use the navigation wheel to dial in the channel number.
b. Press the CLOSE key.

1. Press the TRIG key and observe the displayed reading.
2. To measure other channels, repeat steps 7 and 8.
3. When finished, press the OPENALL key to open all channels.

Thermocouple measurement through the remote interface
To take thermocouple measurements through the remote interface:

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THERMOCOUPLE
dmm.thermocouple = dmm.THERMOCOUPLE_J

Sets the thermocouple type to J.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-29

Thermistors
The temperature measurement range for thermistors is –80 °C to 150 °C (0.01 ° resolution).
Thermistor types that are supported include the 2.2 kΩ, 5 kΩ, and 10 kΩ types.

The thermistor is a temperature sensitive resistor. Its resistance changes non-linearly with changes in
temperature. Most thermistors have a negative temperature coefficient — as temperature increases,
the resistance decreases. The Model 3706A measures the resistance of the thermistor and calculates
the temperature reading.

Of all the temperature transducers, the thermistor is the most sensitive. It can detect minute changes
in temperature. It is a good choice when measuring slight changes in temperature. The downside for
this increased sensitivity is the loss of linearity. Because they are especially non-linear at high
temperatures, it is best to use them for measurements below 100 °C.

Curve fitting constants are used in the equation to calculate thermistor temperature. The thermistor
manufacturer’s specified curve fitting may not be exactly the same as the ones used by the Model
3706A.

Thermistor connections
A thermistor can be connected directly to the analog backplane connector or to any of the applicable
input channels of a thermistor capable switching module.

Figure 72: Thermistor analog backplane connection

Figure 73: Thermistor switching module connection

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-30 3700AS-901-01 Rev. B/May 2013

Thermistor measurement from the front panel
To configure thermistor measurements from the front panel:
1. If needed, change to the temperature function ("TMP" is displayed) by pressing the FUNC key.
2. Select the temperature measurement function by pressing the CONFIG key, and then pressing

the DMM key. FUNC flashes on, then off. Press the ENTER key or wheel. FUNCTION? is
displayed on the first line of the display and the second line displays available functions. Use the
left or right arrow keys of the knob to select TEMP.

3. Set units of measurement degrees:
• Turn the navigation wheel to scroll to the "UNITS" menu item (right most menu item) and press the

ENTER key.
• Turn the navigation wheel to select desired units (Celsius, Kelvin, or Fahrenheit) and press the ENTER

key.

1. Set THERMO device attributes:
• Turn the navigation wheel to scroll to the "THERMO" menu item and press the ENTER key.
• Turn the navigation wheel to scroll to the "THERMISTOR" temperature connection and press the

ENTER key.
• Turn the navigation wheel to select desired resistance (2252Ω, 5000Ω, or 10000Ω) and press the

ENTER key.
1. Press the EXIT key twice to leave the "TEMP ATTR MENU."

Thermistor measurement through the remote interface
This sample remote code configures a thermistor type 2252 and assigns it to a 4-channel scan list.
reset()
dmm.func=dmm.TEMPERATURE
dmm.transducer= dmm.TEMP_THERMISTOR -- or 2
dmm.thermistor=2.252e3
dmm.units=dmm.UNITS_FAHRENHEIT -- or 4
dmm.configure.set("my_thermist")
dmm.setconfig("4011:4014", "my_thermist")
scan.measurecount=1
buf=dmm.makebuffer(20)
buf.clear()
buf.appendmode=1
scan.create("4011:4014")
scan.scancount=5
scan.execute(buf)
for x=1, buf.n do printbuffer (x,x,buf) end
channel.open("allslots")

Also see remote command dmm.thermistor (on page 8-240) for more information on setting
thermistor measurement attributes.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-31

RTDs (Resistance Temperature Detector)
Of all the temperature transducers, the resistance temperature detector (RTD) exhibits the most
stability and linearity. The Model 3706A supports 3-wire and 4-wire RTD types of:

• PT100
• D100
• F100
• PT385
• PT3916

A USER type is also available to modify RTD parameters, such as the resistance at 0°C. The USER
type can be enabled from the front panel, but the settings can only be changed using remote
programming.

For 4-wire RTDs, the temperature measurement range is –200 °C to 630 °C (0.01 °C resolution).

The RTD has a metal construction (typically platinum). The resistance of the RTD changes with
change with temperature. The Model 3706A measures the resistance and calculates the temperature
reading. When using default RTD parameters, the resistance of the RTD will be 100 Ω at 0°C.

By default, the Model 3706A performs the 4-wire measurement using offset-compensated ohms,
which provides the most accurate way to measure the low resistance of the RTD. For faster RTD
measurements when the most accurate measurements are not required, offset-compensation may be
disabled for 4-wire RTD measurements.

Use of a 3-wire RTD requires a special math capability to compensate for lead resistance on the 3rd
wire.

3-wire RTD connections
Shown below are 3-wire RTD connections to the Model 3706A. For a 3-wire RTD capable 40-channel
switching module, paired channels perform the 3-wire measurement. For example, the two input
leads of the RTD are connected to a primary channel (1 through 20), while only the LO sense lead is
connected to its paired channel (21 through 40). Channel 1 is paired to channel 21, channel 2 is
paired to channel 22, and so on.

The HI sense of the paired channels are not used for 3-wire RTD.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-32 3700AS-901-01 Rev. B/May 2013

Figure 74: Three-wire RTD connections

Figure 75: Three-wire RTD switching module connections

4-wire RTD connections
Shown below are 4-wire RTD connections to the Model 3706A. For a 4-wire RTD capable 40-channel
switching module, paired channels are used to perform the 4-wire measurement. For example, the
two input leads of the RTD are connected to a primary channel (1 through 20), while the two sense
leads are connected to its paired channel (21 through 40). Channel 1 is paired to channel 21, channel
2 is paired to channel 22, and so on.

Figure 76: Four-wire RTD connections

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-33

Figure 77: Four-wire RTD switching module connections

RTD temperature measurement configuration
The alpha, beta, delta, and Ω at 0 °C parameters for the five basic RTD types are provided in the
table below.

These parameters can be modified using remote commands for USER type RTDs.

Type Standard Alpha Beta Delta Ω at 0 °C
PT100 ITS-90 0.00385055 0.10863 1.49990 100
D100 ITS-90 0.003920 0.10630 1.49710 100
F100 ITS-90 0.003900 0.11000 1.49589 100
PT385 IPTS-68 0.003850 0.11100 1.50700 100
PT3916 IPTS-68 0.003916 0.11600 1.50594 100

RTD measurement from the front panel
To configure 3 or 4-wire RTD measurements from the front panel:

1. If needed, change to the temperature function ("TMP" is displayed) by pressing the FUNC key.
2. Select the temperature measurement function by pressing the CONFIG key, and then pressing

the DMM key. FUNC flashes on, then off. Press the ENTER key or wheel. FUNCTION? is
displayed on the first line of the display and the second line displays available functions. Use the
left or right arrow keys of the knob to select TEMP.

3. Set units of measurement degrees:
• Turn the navigation wheel to scroll to the "UNITS" menu item (right most menu item).
• Press the ENTER key.
• Using the navigation wheel, select desired units (Celsius, Kelvin, or Fahrenheit).
• Press the ENTER key.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-34 3700AS-901-01 Rev. B/May 2013

1. Set three-wire or four-wire RTD device attributes:
• Turn the navigation wheel to scroll to the "THERMO" menu item and press the ENTER key.
• Turn the navigation wheel to scroll to the "THREERTD" or "FOURRTD" temperature connection and

press the ENTER key.
• Turn the navigation wheel to select desired RTD type (PT100, D100, F100, PT3916, PT385, or USER)

and press the ENTER key.

1. Press the EXIT key twice to leave the "TEMP ATTR MENU."
2. Connect the temperature transducers to be measured.
3. If using a switching module, perform the following steps to close the desired channel. Note that

for 3 or 4-wire RTD measurements, you will close the primary (INPUT) channel (1 through 10).
The channel that it is paired to will close automatically.

a. Use the navigation wheel to dial in the channel number.
b. Press the CLOSE key.

1. Press the TRIG key and observe the displayed reading.
2. To measure other switching channels, repeat steps 6 and 7.
3. When finished, press the OPENALL key to open all channels.

RTD measurement from the remote interface
You can use the remote command dmm.fourrtd (on page 8-186) or dmm.threertd (on page 8-242) to
set attributes.

For example, the following remote commands configure temperature function to a custom RTD and
assign it to a 10-channel scan list.
reset()
dmm.func=dmm.TEMPERATURE
-- or 3, or dmm.TEMP_FOURRTD, or 4
dmm.transducer= dmm.TEMP_THREERTD
-- dmm.fourrtd also supported
dmm.threertd=dmm.RTD_USER
-- allowed values are 0 to 0.01
dmm.rtdalpha= 0.003
-- allowed values are 0 to 1.00
dmm.rtdbeta= 0.105
-- allowed values are 0 to 5.00
dmm.rtddelta = 1.51
-- allowed values are 0 to 10,000
dmm.rtdzero= 125
-- default dmm.ON
dmm.offsetcompensation=dmm.OFF
dmm.configure.set("my_rtd_user")
dmm.setconfig("4001:4010", "my_rtd_user")
scan.measurecount=1
buf=dmm.makebuffer(20)
buf.clear()
buf.appendmode=1
scan.create("4001:4010")
scan.scancount=2
scan.execute(buf)
for x=1, buf.n do printbuffer (x,x,buf) end
channel.open("allslots")

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-35

Frequency and period measurements
The Model 3706A is specified for frequency measurements from 3 Hz to 500 kHz on voltage ranges
of 100 mV, 1 V, 10 V, 100 V, and 300 V. Period (1/ frequency) measurements can be taken from 2 µs
to 333 ms on the same voltage ranges as the frequency.

the input impedance is 1 MΩ || less than 100 pF, AC coupled.

The instrument uses the volts input to measure frequency. The AC voltage range can be changed
with the RANGE ▼ and ▲ keys. The signal voltage must be greater than 10% of the full-scale range.

Frequency or period measurements as low as 0.5 Hz (2 seconds) and less than or equal to 1 MHz
(1 µs) are possible but depend on the selected range.

Do not apply more than maximum input levels indicated or instrument damage may occur.The
voltage limit is subject to the 8 x 107 VHz product.

Settings available for frequency and period measurements
• aperture (range of 0.01 s to 0.273 s)
• autodelay (dmm.AUTODELAY_ONCE, dmm.ON or dmm.OFF)

• autozero (dmm.AUTOZERO_ONCE, dmm.ON or dmm.OFF)

• display digits (3, 4, 5, 6, or 7)
• DMM limit auto clear (dmm.ON or dmm.OFF)

• DMM limit enable (dmm.ON or dmm.OFF)

• DMM limit high fail (0 or 1)
• DMM limit high value (–4294967295 to +4294967295)
• DMM limit low fail (0 or 1)
• DMM limit low value (–4294967295 to +4294967295)
• math enable (dmm.ON or dmm.OFF)

• math format (dmm.MATH_NONE, dmm.MATH_MXB, dmm.MATH_PERCENT, or
dmm.MATH_RECIPROCAL)

• math mxb b factor (–4294967295 to +4294967295)
• math mxb m factor (–4294967295 to +4294967295)
• math mxb units
• math percent (–4294967295 to +4294967295)
• relative offset enable (dmm.ON or dmm.OFF)

• relative offset level
• threshold (0 to 303 V)

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-36 3700AS-901-01 Rev. B/May 2013

Autodelay and auto range settings
The following table provides times for autodelay and autorange time for the Model 3706A DMM
functions.

Function Ranges and delays

Frequency and
periods

Range 100 mV 1 V 10 V 100 V 300 V

Autodelay 100 ms

Autorange 100 ms

Trigger level
Frequency and period use a zero-crossing trigger, meaning that a count is taken when the frequency
crosses the zero level. The Model 3706A uses a reciprocal counting technique to measure frequency
and period. This method generates constant measurement resolution for any input frequency. The
multimeter's AC voltage measurement section performs input signal conditioning. If the input signal
voltage exceeds the selected voltage range, 000.0000 mHz (0.000000 µs) will be returned.

Gate time
The gate time is the amount of time the Model 3706A uses to sample frequency or period
readings.The gate time can be set from 0.01 to 0.273 s by setting the DMM aperture attribute.

The Model 3706A completes a reading when it receives its first positive zero-crossing after the gate
time expires. For example, for any arbitrary frequency, you may wait up to the gate time plus two
times the period of the input waveform before the Model 3706A returns a reading.

Frequency connections
Frequency connections for the Model 3706A and a switching module are shown below.

Figure 78: FREQ and PERIOD input connections

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-37

Figure 79: FREQ and PERIOD connections (switching module)

Frequency and period measurement procedure from front panel

Do not apply more than the maximum input levels for the Model 3706A or installed switching module
(whichever is lower) or instrument damage may occur.

If the Model 3706A is being controlled remotely, place the instrument in local control by pressing the
LOCAL or EXIT key.

1. Press the OPENALL key to open all switching channels.
2. Select the CONFIG key, and then select the DMM key. Select the FUNC menu by pressing

ENTER. Scroll through the menu until FREQ or PERIOD is displayed, using the navigation wheel
or left right arrows.

3. Set threshold voltage:
• Turn the navigation wheel to scroll to the "THRESHOLD" menu item (right most menu item) and press

the ENTER key.
• Using the navigation wheel, dial in the desired voltage to be used as a threshold (0 V to 303 V; default

is the 10 V range).
• Press the ENTER key to set.
• Press the EXIT key to leave the "FREQ ATTR MENU."

1. Apply the AC voltages to be measured (see CAUTION).

When observing the displayed readings, if 000.0000 mHz or 000.0000 ms is displayed, select a
lower range until a normal reading is displayed. Use the lowest possible range for the best
resolution.

2. Press the TRIG key and observe the displayed reading.
3. To measure other switching channels, repeat steps 5 and 6.
4. When finished, press the OPENALL key to open all channels.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-38 3700AS-901-01 Rev. B/May 2013

Frequency and period measurement procedure through remote
interface

Do not apply more than the maximum input levels for the Model 3706A or installed switching module
(whichever is lower) or instrument damage may occur.

To set the frequency through the remote command interface:

dmm.func = "frequency"
dmm.threshold = 30

Sets the threshold range for frequency to 30.

Continuity testing
The Model 3706A can test continuity using the 2-wire 1 kΩ range with a user selectable threshold
resistance level (1 Ω to 1000 Ω). When the measured circuit is below the set threshold level, the
instrument displays the resistance readings. When the measured circuit is above the threshold level,
the instrument displays the message "OPEN."

The continuity function does not support relative offset. Use the math calculations (see "Settings
available for continuity testing" on page 4-38), with b as an offset, to compensate for cable and 3700A
card path resistance.

The reading rate for continuity is fixed at 0.006 power line cycles. Limits and digital outputs cannot
be used when testing continuity with the continuity (CONT) function. If you need to use these
operations, use the two-wire ohm function to test continuity.

Settings available for continuity testing
• autodelay (dmm.AUTODELAY_ONCE, dmm.ON or dmm.OFF)

• display digits (3, 4, 5, 6, or 7)
• line synchronization (dmm.ON or dmm.OFF)

• math enable (dmm.ON or dmm.OFF)

• math format (dmm.MATH_NONE, dmm.MATH_MXB, dmm.MATH_PERCENT, or
dmm.MATH_RECIPROCAL)

• math mxb b factor (–4294967295 to +4294967295)
• math mxb m factor (–4294967295 to +4294967295)
• math mxb units
• math percent (–4294967295 to +4294967295)
• nplc (0.0005 to 15 for 60 Hz; 0.0005 to 12 for 50 Hz)
• threshold (1 to 1000 Ω)

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-39

Autodelay and auto range settings
The following table provides times for autodelay and auto range time for the Model 3706A DMM
functions.

Function Detector bandwidth Range and delays

 Range 1kΩ

Continuity Autodelay 3ms

 Autorange 2.5ms

Continuity testing connections
When using the rear analog backplane connector, connect the test leads to the INPUT HI and LO
terminals as shown below.

Figure 80: Continuity connections

Connections to test continuity using a switching module are shown below. Because this is a 2-wire
ohm measurement, channels 1 through 40 of a 40-channel switching module can be used.

Figure 81: Continuity connections using a switching module

Continuity testing procedure

If the Model 3706A is in remote, place the unit in local by pressing the LOCAL key (or the EXIT key).
Refer to DCV measurements for function configuration and menus.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-40 3700AS-901-01 Rev. B/May 2013

1. Select the continuity measurement function:
a. Press the CONFIG key, and then press the DMM key. FUNC flashes on, then off.

b. Press the ENTER key or navigation wheel . The "Function?" menu is displayed.

c. Turn the navigation wheel to highlight CONT, then push the navigation wheel to select it.
d. Press the EXIT key to leave the "Function?" menu.

1. Set threshold resistance:
e. Press the CONFIG key, and then press the DMM key. FUNC flashes on, then off.
f. Turn the navigation wheel to scroll to the THRESHOLD menu item, and then press the ENTER key.
g. Using the <mw>, dial in the desired resistance to be used as a threshold (1 Ω to 1000 Ω).
h. Press the ENTER key to set.
i. Press the EXIT key to leave the "CONT ATTR MENU."

1. Apply the resistance to be tested. If using a switching module, perform the following steps to
close the appropriate channel.
j. Use the navigation wheel to dial in the channel number.
k. Press the CLOSE key.

1. Press the TRIG key and observe the displayed reading.
2. To measure other switching channels, repeat steps 5 and 6.

If the measured circuit is below the set threshold level, the instrument will display the resistance
readings. If the measured circuit is above the threshold level, the instrument will display the message
"OPEN."

3. To disable continuity testing, select a different function (for example, DCV).
4. When finished, press the OPENALL key to open all channels.

Limits and digital outputs cannot be used when testing continuity with the continuity (CNT) function. If
you need to use these operations, use the 2WΩ function to test continuity.

Also see the bus command dmm.threshold (on page 8-243) for more information on threshold
attributes.

dmm.threshold is a common command. To enable a unique continuity threshold, first select the
function dmm.func = "continuity", then select the threshold value. The threshold value will be
remembered after exiting when returning to the function (unless reset).

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-41

Refining measurements

Relative offset
You can use the relative offset (REL) feature to set offsets to zero (0) or subtract a baseline reading
from present and future readings. With relative offset enabled, subsequent readings are the
difference between the actual input value and the relative offset value, as follows:

Displayed reading = Actual input − Relative offset value

Once a relative offset value is established for a measurement function, the value is the same for all
ranges.

When relative offset is enabled, the REL indicator turns on. Changing measurement functions
changes the relative offset value to the established relative offset value and state for that
measurement function.

The various instrument operations, including relative offset, are performed on the input signal in a
specific, predetermined order. For example, if both relative offset and a math operation are enabled,
the relative offset operation is always performed before the math operation.

Set relative offset from the front panel
You can set a relative offset through front panel by acquiring the offset or by setting an offset
manually.

To set and enable a relative offset through the front panel by acquiring the offset:
1. Select the desired measurement function and an appropriate range setting.
2. Apply the signal to which you want to apply a relative offset to a switching channel input or to the

Model 3706A inputs.
3. If you are using a switching module, close the input channel. (see Operation keys for basic

information about the front panel user interface).
4. Press the REL key to acquire the relative offset value. The REL annunciator turns on. The

displayed value will not become zero until a new reading is triggered.
5. Apply the signal to be measured. The relative offset value is subtracted from the next reading that

is triggered.

To set and enable a relative offset through the front panel manually:
1. Select the desired measurement function and an appropriate range setting.
2. If you are using a switching module, close the input channel. (see Operation keys for basic

information about the front panel user interface).
3. Press CONFIG, then press the REL key. The Relative Offset Menu is displayed.
4. Select ENABLE.
5. Select Yes. The REL annunciator turns on.
6. Press EXIT to return to the Relative Offset Menu.
7. Select LEVEL.
8. Set the relative offset value as needed.
9. Apply the signal to be measured. The relative offset value is subtracted from the next reading that

is triggered.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-42 3700AS-901-01 Rev. B/May 2013

If you press the REL key, the manually entered value will be overwritten with an acquired value.

To disable the relative offset function:

Press REL a second time to disable the relative offset function.

You can perform the equivalent of relative offset manually by using the mX+b (on page 4-44) math
function. Set m to 1 and b to the value of the offset.

Set relative offset through the remote interface
The dmm.rel.level() command is used to specify the relative offset value for the active function.

The dmm.rel.acquire() command uses the input signal as the relative offset value for the active
function. The dmm.rel.acquire() command is typically used to zero the display. For example, if
the instrument is displaying a 1 µV offset, sending dmm.rel.acquire() and enabling relative offset
(dmm.rel.enable = dmm.ON) zeros the display.

The following command sequence is equivalent to pressing the front panel REL key:
dmm.rel.acquire()
dmm.rel.enable=dmm.ON

To manually set a relative offset value of 1.5 µV, use this command sequence:
dmm.rel.level=1.5e-6
dmm.rel.enable=dmm.ON

For example, if the instrument is on the DCV function, the dmm.rel.acquire() command is
applicable to DCV measurements.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-43

Scanning
When a scan is configured, each channel can have its own unique relative offset value. For remote
programming, the channel list parameter is used to configure channels for a scan.

For example:

To attach a 1 µV relative offset level to a configuration, send the following commands:
-- Select DC volts function.
dmm.func = "dcvolts"
-- Reset DC volts only.
dmm.reset("active")
-- Set the relative offset level.
dmm.rel.level=1e-6
-- Enable relative offset.
dmm.rel.enable = dmm.ON
-- Call the configuration myconfig.
dmm.configure.set("myconfig")
-- Set channels 1001 to 1030 to use myconfig configuration.
dmm.setconfig("1001:1030", "myconfig")
-- Create scan list of channels 1001 to 1030 using myconfig.
scan.create("1001:1030")

Math calculations
The Model 3706A has three built-in math calculations:

• mX+b
• percent
• reciprocal (1/X)

The various instrument operations, including Math, are performed on the input signal in a specific,
predetermined order. For example, if both relative offset and a math operation are enabled, the
relative offset operation is always performed before the math operation.

Basic math operation
1. Select the measurement function.
2. Configure and enable the mX+b, percent, or reciprocal (1/X) math function.
3. Apply the signal to be measured to a switching channel input.
4. Close the input channel. The result of the math calculation is displayed when a reading is

triggered.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-44 3700AS-901-01 Rev. B/May 2013

mX+b
The mx+b math operation lets you manipulate normal display readings (x) mathematically according
to the following calculation:

mx + b = Y

Where:

• m is a user-defined constant for the scale factor
• x is the measurement reading (if you are using a relative offset, this is the measurement with

relative offset applied)
• b is the user-defined constant for the offset factor
• Y is the displayed result

When the mx+b math operation is active, the unit of measure for the front-panel readings is X. You
cannot change this units designator.

Set the relative offset using mX+b

You can use the mX+b function to manually establish a relative offset value. To do this, set the scale
factor (m) to 1 and set the offset (b) to the offset value. Each subsequent reading will be the
difference between the actual input and the offset value.

Set mX+b units from the front panel

The attribute for mX+b must be one character. It can be any letter of the alphabet, the degrees
symbol (°), the micro symbol (µ), or the ohms symbol (Ω).

To set mX+B units from the front panel:

The following procedure sets MXBUNITS. You can change the other MATH menu options
(BFACTOR and MFACTOR) by changing the b and m values.

1. Press the CONFIG key.
2. Press the DMM key.
3. Turn the navigation wheel to highlight the MATH menu item.
4. With MATH highlighted, press the ENTER key. The MATH MENU opens.
5. Select the MXBUNITS menu item.
6. With MXBUNITS highlighted, press the ENTER key.

7. Press the navigation wheel to enter EDIT mode.
8. Scroll until the desired character is displayed, and then press the ENTER key. The MATH MENU

will open.
9. From the MATH MENU, turn the navigation wheel to highlight and select the ENABLE menu

item.
10. Select ON and press the ENTER key.
11. Press the EXIT key twice to return to the main display.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-45

Set mX+b units through the remote interface

You can set mX+b units through the remote interface with the command dmm.math.mxb.units.
The attribute for dmm.math.mxb.units must be one character enclosed in single or double quotes.
It can be any letter of the alphabet, the degrees symbol (°), the micro symbol (µ), or the ohms symbol
(Ω).

The ohm symbol (Ω), the micro symbol (µ), and the degree symbol (°) are not ASCII characters and
must be substituted with the ']', '[' and '\' characters. Valid characters are therefore:

• A to Z
•] for ohms
• [for microvolts
• \ for degrees

To use the ohms symbol (Ω) as units designator:
value = ']'
dmm.math.mxb.units = value

To use the micro symbol (µ) as units designator:
value = '['
dmm.math.mxb.units = value

To use the degrees symbol (°) as units designator:
value = '\\'
dmm.math.mxb.units = value

When sending mxb units remotely, to embed a '\' into a string, precede the '\' with an additional '\'
(see the previous example code).

Use dmm.math.mxb.bfactor (on page 8-209) and dmm.math.mxb.mfactor (on page 8-210) to set the
b and m factor for mX+b.

Once all settings are configured, set dmm.math.enable (on page 8-206) to dmm.ON to enable math
operation.

For more detail, see dmm.math.mxb.units (on page 8-211).

Percent
The percent math function displays measurements as percent deviation from a specified constant.
The percent calculation is:

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-46 3700AS-901-01 Rev. B/May 2013

Where:

Percent: The result

Input: The measurement (if relative offset is being used, this is the relative offset value)

Reference: The user-specified constant

The result of the percent calculation is positive when the input is more than the reference. The result
is negative when the input is less than the reference. The result of the percent calculation may be
displayed in exponential notation. For example, a displayed reading of +2.500E+03 % is equivalent to
2500 % (2.5K %).

Set percent from the front panel
To set a percent value on the front panel:
1. Open the function attribute menu:

• Press the CONFIG key.
• Press the DMM key.

1. Turn the navigation wheel to highlight the MATH menu item.
2. With MATH highlighted, press the ENTER key. The MATH MENU opens.
3. Select the PERCENT menu item.
4. Press the ENTER key to enter edit mode.
5. Turn the navigation wheel to edit the value.

6. Once the desired value is displayed, press the ENTER key. The MATH MENU opens.
7. From the MATH MENU, turn the navigation wheel to highlight and select the ENABLE menu

item.
8. Select ON and press the ENTER key.
9. Press the EXIT key twice to return to the main display.

Set percent through the remote interface

The dmm.math.percent attribute (see dmm.math.percent (on page 8-212)) specifies the reference
value for the percent calculation, while the dmm.rel.acquire function (see dmm.rel.acquire (see
"dmm.rel.acquire()" on page 8-224)) uses the input signal as the reference value.

The acquire function triggers a single reading and uses the result as the new relative offset value.
When a value is set using dmm.math.percent (on page 8-212), the dmm.math.percent (on page 8-
212) query command returns the programmed value. When reference is set using dmm.rel.acquire()
(on page 8-224), the dmm.math.percent (on page 8-212) query command returns the acquired
reference value.

To set a percent value from a remote interface, send the following commands:
-- Set percent to 5
dmm.math.percent = 5
-- Sends 5 to the computer for display
print(dmm.math.percent)

You can use the relative offset used to set the percent as follows:
-- Sets percent with relative offset acquire value.
dmm.math.percent = dmm.rel.acquire()
-- Send the result of relative offset acquire to a computer.
print(dmm.math.percent)

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-47

Reciprocal (1/X)
You can set math operation to reciprocal to display the reciprocal of a reading.

The reciprocal is 1/X, where X is the reading. If relative offset is on, the 1/X calculation uses the input
signal with the relative offset applied.

The displayed units designator for reciprocal readings is "R." You cannot change this units
designator.

The result of the 1/X calculation may be displayed in exponential notation. For example, a displayed
reading of +2.500E+03 R is equivalent to 2500 R (2.5K R).

Example:

Assume the normal displayed reading is 002.5000 Ω. The reciprocal of resistance is conductance.
When the reciprocal math function is enabled, the following conductance reading is displayed:
0.400000 R

Scanning

When a scan is configured, each channel can have its own unique math setup. For remote
programming, the channel list parameter is used to configure channels for a scan.

Example:

To perform the reciprocal math operation on DC volt measurements, send the following commands:
-- Select DC volts function.
dmm.func = "dcvolts"
-- Reset DC volts only.
dmm.reset("active")
-- Set the math operation to be reciprocal for measurements.
dmm.math.format = dmm.MATH_RECIPROCAL
-- Enable the math operation for measurements.
dmm.math.enable = dmm.ON
-- Call the configuration mymath.
dmm.configure.set("mymath")
-- Set Channels 1001 to 1030 to use the mymath configuration.
dmm.setconfig("1001:1030", "mymath")
-- Create scan list of channels 1001 to 1030 using mymath.
scan.create("1001:1030")

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-48 3700AS-901-01 Rev. B/May 2013

dB commands
Expressing DC or AC voltage in decibels (dB) makes it possible to compress a large range of
measurements into a much smaller scope. The relationship between dB and voltage is defined by the
following equation:

Where:

VIN: DC or AC input signal.

VREF: Specified voltage reference level.

The instrument will read 0 dB when the reference voltage level is applied to the input. If a relative
value is in effect when dB is selected, the value is converted to dB, and then relative offset is applied
to the dB value. If relative offset is applied after dB has been selected, dB has relative offset applied
to it.

The dB calculation takes the absolute value of the ratio VIN/VREF. The largest negative value of dB is -
160 dB. This will accommodate a ratio of VIN = 1 µV and VREF = 1000 V.

dB configuration
You can select UNITS (V or dB) from the front panel or from the remote interface.
To select UNITS from the front panel, while the active DMM function is DCV or ACV:
1. Press the CONFIG key.
2. Press the DMM key.
3. Turn the navigation wheel to scroll to the UNITS menu item.
4. Press the navigation wheel (or the ENTER key) to select.
5. Select units: V for voltage or dB for decibels.
6. Press the navigation wheel (or the ENTER key) to set.
7. Press the EXIT key to close the attribute menu.

To select dB configuration over the remote interface:

Set the active DMM function to DCV or ACV and set dmm.dbreference. For example:
dmm.func = "dcvolts"
dmm.dbreference = 5

dB scanning
Each channel in a scan may be configured to use dB.

Create a configuration that has dB enabled for units for the desired function by using the
dmm.configure.set (see "dmm.configure.set()" on page 8-175) command. Once the configuration
exists, use the dmm.setconfig() (on page 8-237) command to connect the configuration to the desired
channels. Now the channels can be added to scanning (see scan.create() (on page 8-325) and
scan.add() (on page 8-319) commands). To remotely control the units for AC and DC volts, use the
dmm.units (on page 8-245) command.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-49

Range
You can use the range to set an expected measurement value. The instrument will select the range
appropriate to measure that value.

If you set a range, the autorange feature is automatically disabled. The instrument selects the range
to best match the expected measure value for the functions, as shown below.

The range setting is saved with the DMM function setting, so if you select another function, then
return to the previous function, the range settings you set previously are retained.

You cannot select a range that includes different channel types.

A power cycle or an instrument reset will clear the saved ranges.

Measurement ranges and maximum readings
The range that is selected affects both measurement accuracy and the maximum measurable level.
Input values that exceed the maximum readings cause an "Overflow" message to be displayed.

Function Ranges Maximum reading
DCV (DC voltage) 100 mV, 1 V, 10 V, 100 V, 300 V ± 303 V
ACV (AC voltage) 100 mV, 1 V, 10 V, 100 V, 300 V ± 303 V
DCI (DC current) 10 µA, 100 µA, 1 mA, 10 mA,

100 mA, 1 A, 3 A
± 3.1 A

ACI (AC current) 1 mA, 10 mA, 100 mA, 1 A, 3 A ± 3.1 A

Ω2 (2-wire ohm) 10 Ω, 100 Ω, 1 kΩ, 10 kΩ,
100 kΩ, 1 MΩ, 10 MΩ, 100 MΩ

120 MΩ

Ω4 (4-wire ohm) 1 Ω, 10 Ω, 100 Ω, 1 kΩ, 10 kΩ,
100 kΩ, 1 MΩ, 10 MΩ, 100 MΩ

120 MΩ

Ω4 OC (4-wire ohm offset
compensated)

1 Ω, 10 Ω, 100 Ω, 1 kΩ, 10 kΩ 12 kΩ

Ω4 DRY+ (4-wire ohm dry
circuit)

1 Ω, 10 Ω, 100 Ω, 1 kΩ, 10 kΩ 2.4 kΩ

TMP (temperature) –200 °C to 1820 °C Sensor dependent
FREQ (frequency) 100 mV, 1 V, 10 V, 100 V, 300 V 3 Hz to 500 kHz
PER (period) 100 mV, 1 V, 10 V, 100 V, 300 V 2 µs to 333 ms
CNT (continuity) 1 kΩ

Threshold adjustable 1 Ω
to

CSΩ (commonside ohm) 1 Ω, 10 Ω, 100 Ω, 1 kΩ, 10 kΩ,
100 kΩ, 1 MΩ, 10 MΩ, 100 MΩ

120 MΩ

Temperature
There is no range selection for temperature measurements, which are performed on a single fixed
range. Depending on the sensor, the maximum temperature readings range from –200 °C to 1820 °C.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-50 3700AS-901-01 Rev. B/May 2013

Select a range from the front panel
To change the range for the active DMM function, press the RANGE ▲ or ▼ key. The instrument
changes one range value of the active function for each key press. The selected range is displayed in
the attribute list on the second line of the front panel display.

If the instrument displays the "Overflow" message on a particular range, select a higher range until an
on-range reading is displayed. For best accuracy and resolution, use the lowest range available that
does not cause an overflow.

Select range through the remote interface
To select a range through the remote interface, specify the expected reading as an absolute value for
the dmm.range (on page 8-222) command. The Model 3706A will then go to the most sensitive
range for that expected reading.

For example, if you expect a reading of approximately 3 V, send:
dmm.range = 3

The instrument will select the 10 V range.

Set up autoranging from the front panel
To enable autorange, press the AUTO key. The AUTO indicator turns on when autoranging is
selected. While autoranging is enabled, the instrument automatically selects the best range at which
to measure the applied signal.

Autoranging should not be used when optimum speed is required.

The AUTO key has no effect on temperature measurements.

Up-ranging occurs at 120% of range. The Model 3706A will down-range when the reading is less than
10% of nominal range.

To disable auto ranging, press the AUTO key. This will leave the instrument set to the present range.

Autoranging is automatically disabled when you select a specific range by pressing the ▲ or ▼ key or
by sending the remote command dmm.range.

Set up autorange through the remote interface
Autorange is enabled by setting the dmm.autorange attribute (see dmm.autorange (on page 8-155))
to either dmm.ON or 1.

When autorange is enabled, the range is changed automatically for the selected range value.

To disable autorange, either set the dmm.autorange attribute to dmm.OFF or 0, or send a valid
dmm.range attribute (see dmm.range (on page 8-222)).

When autorange is disabled, the instrument remains at the selected range.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-51

Scanning
Each channel of scan configuration can be associated with a unique digital multimeter (DMM)
configuration (which includes a range setting). When a scan completes, the DMM remains in the
configuration associated with the last completed measurement step. For remote programming, the
channel list parameter is used to configure channels for a scan.

See dmm.configure.set() (on page 8-175), dmm.setconfig() (on page 8-237), scan.create() (on page
8-325), and scan.add() (on page 8-319) commands, and the Scanning and triggering (on page 3-1)
section for more details, including front panel operation.

Optimizing measurement speed
Rate
The integration time (measurement speed) of the A/D converter controls how long the input signal is
measured (also known as aperture). The integration time affects the amount of reading noise, as well
as the ultimate reading rate of the instrument.

The integration time is specified in parameters based on a number of power line cycles (NPLC),
where 1 PLC for 60 Hz is 16.67 ms (1/60) and 1 PLC for 50 Hz is 20 ms (1/50).

In general, the fastest integration time is 0.1 PLC using the front panel RATE key, or 0.0005 PLC
from the remote interface or through the DMM > CONFIG NPLC menu. This results in increased
reading noise and fewer usable digits.

The slowest integration time is 5 PLC using the front panel RATE key, or 15 PLC from the remote
interface or through the DMM > CONFIG NPLC menu. This provides the best common-mode and
normal-mode rejection.

In-between settings are a compromise between speed and noise.

The Model 3706A has a parabola-like shape for its speed versus noise characteristics. The Model
3706A is optimized for the 1 PLC to 5 PLC reading rate. At these rates (lowest noise region in graph),
the Model 3706A will make corrections for its own internal drift and will still be fast enough to settle a
step response of less than 100 ms.

Figure 82: Speed compared to noise characteristics

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-52 3700AS-901-01 Rev. B/May 2013

You can use unique rate settings for each function when using the front panel or the remote interface.

Rate cannot be set for continuity. The continuity rate is fixed at 0.006 PLC.

The Model 3706A uses internal references to calculate an accurate and stable reading. When the
NPLC setting is changed, each reference is automatically updated to the new NPLC setting before a
reading is generated. Therefore, frequent NPLC setting changes can result in slower measurement
speed.

Setting Rate from the front panel

The RATE key sets measurement speed from the front panel. Press the RATE key until the speed
message is displayed. The second line of the display contains the NPLC setting.

The front panel rate settings for all but the AC functions are as follows:

• FAST sets integration time to 0.1 PLC. Use FAST if speed is of primary importance (at the
expense of increased reading noise and fewer usable digits).

• MED sets integration time to a medium rate of 1 PLC. Use MED when a compromise between
noise performance and speed is acceptable.

• SLOW sets integration time to 5 PLC. SLOW provides better noise performance at the expense
of speed.

For the AC functions (ACV, ACV dB, and ACI), the RATE key sets integration time and bandwidth.
FAST sets NPLC to 1, while the MED and SLOW NPLC settings are ignored.

A summary of the rate settings are shown in the following table.

Function Slow Medium Fast
DCV, DCI NPLC=5 NPLC=1 NPLC=0.1
ACV, ACI NPLC=X, BW=3 NPLC=X, BW=30 NPLC=1, BW=300
Ω2, Ω4, CSΩ NPLC=5 NPLC=1 NPLC=0.1
FREQ, PERIOD APER=0.250s APER=0.1s APER=0.01s
Continuity X X NPLC=0.006
NOTES:
 NPLC = Number of power line cycles.
 BW = Bandwidth (in Hz).
 APER = Aperture in seconds.
 X = Setting ignored (fixed NPLC).

You can also set the rate using the NPLC option in the function attribute menu. Press CONFIG, then
DMM to display the function attribute menu. From the function attribute menu, select NPLC to select
a specific value for NPLC.

Setting measurement speed from a remote interface

Use the dmm.aperture (on page 8-150) or dmm.nplc (on page 8-217) command to set the
measurement speed (integration time) through the remote interface.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-53

For dmm.nplc settings that are less than 0.2 power line cycles, sending dmm.AUTOZERO_ONCE
results in significant delays. For example, the delay time at a NPLC of 0.0005 is 2.75 s. The delay
time at 0.199 is 5.45 s.

Bandwidth

There are three bandwidth settings for AC volt and AC current measurements. The RATE setting
determines the bandwidth setting as follows:

• SLOW: 3 Hz to 30 Hz
• MEDium: 30 Hz to 300 Hz
• FAST: 300 Hz to 300 MHz

When the slow bandwidth is chosen, the signal goes through an analog root-mean-square (RMS)
converter. The output of the RMS converter goes to a fast (1 kHz) sampling A/D and the RMS value
is calculated from 1200 digitized samples (1.2 s).

When the medium bandwidth is chosen, the same converter is used. However, only 120 samples
(120 ms) are needed for an accurate calculation because the analog RMS converter has turned most
of the signal to DC.

In the fast bandwidth, the output of the analog RMS converter (nearly pure DC at these frequencies)
is measured at 1 power line cycle (PLC) (16.6 ms). For remote programming, the integration rate can
be set from 0.0005 PLC to 12 PLC or 15 PLC.

To achieve the best accuracy for AC volt and AC current measurements, use the bandwidth setting
that best reflects the frequency of the input signal. For example, if the input signal is 40 Hz, a
bandwidth setting of 30 should be used.

A rate command (dmm.nplc (on page 8-217) or dmm.aperture (on page 8-150)) for AC volts and AC
current is only valid if the bandwidth for that AC function is set to 300 (300 Hz to 300 kHz).
Bandwidth is set using the dmm.detectorbandwidth (on page 8-179) remote command or the
DETECTBW menu option under the function's attribute menu.

DC voltage, DC current, and resistance measurement speed
To optimize measurement speed, select:

• dmm.autozero=dmm.OFF

• dmm.autodelay=dmm.OFF

• dmm.nplc=0.0005

• dmm.filter=dmm.OFF

• dmm.autorange=dmm.OFF

• dmm.measurecount>=1000

For resistance, assumed two-wire ohm.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-54 3700AS-901-01 Rev. B/May 2013

AC voltage and AC current optimize speed
Select:

• dmm.detectorbandwidth=300

• dmm.autodelays=dmm.OFF

• dmm.autozero=dmm.OFF

• dmm.autorange=dmm.OFF

• dmm.filter=dmm.OFF

• dmm.nplc=0.0005

Temperature optimize measurement speed
Select:

• dmm.transducer=dmm.TEMP_THERMOCOUPLE

• dmm.opendetector=dmm.OFF

• dmm.nplc=0.0005

• dmm.autozero=dmm.OFF

• dmm.filter=dmm.OFF

• dmm.autodelay=dmm.OFF

Optimizing measurement accuracy
The following two charts represent root-mean-square (RMS) noise versus aperture time (or NPLC)
and reading rate versus aperture time (or NPLC). Refer to these charts when selecting best accuracy
at a given reading rate. Generally, increasing the aperture time reduces the RMS noise. For aperture
times more than 100 ms or 5 power line cycles, thermal offsets can increase the RMS noise.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-55

Figure 83: Readings Rate versus Aperture Time

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-56 3700AS-901-01 Rev. B/May 2013

Figure 84: RMS Noise vs. Aperture Time

DC voltage, DC current, and resistance measurement accuracy
To optimize measurement accuracy:

• 1 or 5 NPLC, filter off, fixed range.
• Use relative offset on DC voltage and 2-wire resistance measurements when appropriate.
• Use four-wire, offset compensation on, and line sync on for resistance measurements, especially

through a 3700A switch card, for best accuracy.

AC voltage and AC current optimize accuracy
Select Detectorbandwidth 3, autodelays On, and fixed range.

Temperature optimize accuracy
1 or 5 NPLC.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-57

Voltage
DC volts input divider

Normally, the input resistance for the 100 mVDC, 1 VDC, and 10 VDC ranges is more than 10 GΩ.
You can set the input resistance for the three lower DC volt ranges to 10 MΩ by enabling the input
divider.

When you enable the input divider:

• The measurement INPUT HI is connected to INPUT LO
• Some external devices (such as a high voltage probe) must be terminated to a 10 MΩ load
• The measurement of open leads is maintained near 0 V
• Internal IBIAS through the 10 MΩ causes an open input to read less than – 0.4 mV. With a short

circuit (and the input divider on or off), the short circuit to read less than ±0.9 µV.

The input divider can be enabled from the front panel when function is "dcvolts" by pressing the
CONFIG key, then the DMM key.

To control the divider over the remote interface, use the dmm.inputdivider (on page 8-190) command.

Low level considerations

For sensitive measurements, external considerations affect the accuracy. Effects that are not
noticeable when working with higher voltages are significant in microvolt signals. The Model 3706A
reads only the signal received at its input; therefore, it is important that this signal be properly
transmitted from the source. The following paragraphs indicate factors that affect accuracy, including
stray signal pick-up and thermal offsets.

Shielding

AC voltages that are extremely large compared with the DC signal to be measured may produce an
erroneous output. Therefore, to minimize AC interference, the circuit should be shielded, with the
shield connected to the Model 3706A input low (particularly for low level sources). Improper shielding
can cause the Model 3706A to behave in one or more of the following ways:

• Unexpected offset voltages
• Inconsistent readings between ranges
• Sudden shifts in reading

To minimize pick-up, keep the voltage source and the Model 3706A away from strong AC magnetic
sources. The voltage induced due to magnetic flux is proportional to the area of the loop formed by
the input leads. Therefore, minimize the loop area of the input leads and connect each signal at only
one point.

Thermal EMFs

Thermal EMFs (thermoelectric potentials) are generated by temperature differences between the
junctions of dissimilar metals. These can be large compared to the signals that the Model 3706A can
measure. Thermal EMFs can cause the following conditions:

• Instability or zero offset is much higher than expected.
• The reading is sensitive to (and responds to) temperature changes. This effect can be

demonstrated by touching the circuit, by placing a heat source near the circuit, or by a regular
pattern of instability (corresponding to changes in sunlight or the activation of heating and air
conditioning systems).

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-58 3700AS-901-01 Rev. B/May 2013

To minimize the drift caused by thermal EMFs, use copper leads to connect the circuit to the Model
3706A.

A clean, oxidized-free, copper conductor such as #10 bus wire is ideal. For switching modules, use
#20 AWG copper wire to make connections. The leads to the Model 3706A may be shielded or
unshielded, as necessary.

Widely varying temperatures within the circuit can also create thermal EMFs. Therefore, maintain
constant temperatures to minimize these thermal EMFs. A shielded enclosure around the circuit
under test also helps by minimizing air currents.

The relative offset control can be used to null out constant offset voltages.

AC voltage offset

The Model 3706A, at 5½ digits resolution, will typically display 100 counts of offset on AC volts with
the input shorted. This offset is caused by the offset of the TRMS converter. This offset will not affect
reading accuracy and should not be zeroed out using the relative offset feature. The following
equation expresses how this offset (VOFFSET) is added to the signal input (VIN):

Example:
Range= 1 VAC, Offset = 100 counts (1.0 mV), Input = 100 mVRMS

Therefore, the displayed reading is 0.100005 V.

The offset is seen as the last digit, which is not displayed. Therefore, the offset is negligible. If relative
offset were used to zero the display, the 100 counts of offset would be subtracted from VIN, resulting
in an error of 100 counts in the displayed reading.

Resistance
Optimizing low ohm measurement and speed

When measuring resistance of 100 ohms or less, cable, connectors, and Model 3706A switch cards
can have thermal offsets, which can result in additional reading uncertainties.

Auto delays for 100 ohms or less have been optimized for throughput and settling, resulting in the
best measurement. If thermal offsets cause additional uncertainty, adding a delay of 10 ms can
improve accuracies. Refer to the Auto Delay table for additional details. If the application requires
additional settling delay, send the following commands to the channel or slot of interest:
channel.setdelay("4004", 0.010)

Adds 10 ms of delay after closing channel 4 in slot 4.
channel.setdelay("slot4", 0.010)

Adds 10 ms of delay to all channels in slot 4.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-59

Dry circuit ohms (DRY+)

Standard resistance measurements have open-circuit voltage levels from 6.4 V to 14.7 V, depending
on the selected range. Dry circuit ohms limits open-circuit voltage to between 20 mV and 27 mV. This
allows you to perform resistance measurements that require low open-circuit voltage, such as power
and low-glitch resistance measurements.

Dry circuit ohms can be used on the 1 Ω, 10 Ω, 100 Ω, 1 kΩ, and 10 kΩ ranges (maximum resistance
of 2.4 kΩ) for the four-wire ohm function.

Offset-compensated ohms (OC+) can be used with dry circuit ohms to cancel the effect of thermal
EMFs. When dry circuit is enabled, offset compensation is automatically set to on.

Measuring contact resistance (oxide film build-up)

The ideal resistance between switch connectors, or relay contacts is 0 Ω. However, an oxide film may
be present on the switch or relay contacts. This oxide film could add resistance on the order of
several hundred milliohms. Also, this oxide film changes the contact resistance over time and with
changes in the environmental conditions (such as temperature and humidity).

Typically, the four-wire ohm function of the Model 3706A or a standard DMM is used to measure low
resistance. However, if standard resistance measurements are performed, the relatively high open-
circuit voltage may puncture the oxide film, and render the test meaningless.

Dry circuit ohms limit voltage to 20 mV to minimize any physical and electrical changes in a measured
contact junction. This low open-circuit voltage will not puncture the film, and will therefore provide a
resistance measurement that includes the resistance of the oxide film.

Oxide films may also build up in connections on a semiconductor wafer. To accurately measure the
resistance introduced by the oxide film, dry circuit ohms should be used to prevent oxide film
puncture.

Measuring resistance of voltage-sensitive devices

Dry circuit ohms should be used for any device that could be damaged by high open circuit voltage. If
you are not sure the slightly degraded accuracy is a consideration, it is good practice to use dry circuit
ohms to measure low resistance.

Dry circuit ohms measurement considerations

Dry circuit ohms uses a constant current source with voltage monitoring that is used to clamp the
current source voltage. The current source will remain constant as long as the monitoring voltage is
less than 20 mV. When the voltage exceeds 20 mV, the current source shunts current internal to the
DMM until 20 mV is maintained at the DUT.

When using dry circuit ohms, the DUT is shunted by 100 kΩ and 0.9 µF for the 1, 10, and 100 ohm
ranges. For the 1 K and 10 K ranges, it is shunted by a 10 MΩ and 0.015 µF. This allows the current
source to have minimal overshoot voltage under transient conditions. When used with a switching
system, the overshoot is less than 40 mV in 20 µs.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-60 3700AS-901-01 Rev. B/May 2013

Enable or disable dry circuit ohms from the front panel

Dry circuit ohms is an attribute set for the 4-wire ohm DMM function.

When the dry circuit ohms attribute is enabled, the offset-compensated ohms attribute is
automatically enabled (OC+ annunciator). If you do not wish to use offset-compensated ohms, after
setting dry circuit ohms, disable offset-compensated ohms using the information in
Enabling/disabling offset-compensated ohms (on page 4-62).

If the Model 3706A is being controlled remotely, press the EXIT key to place it in local mode.

To enable offset-compensated ohms, the Model 3706A DMM function must be set to four-wire ohms.
The Model 3706A is in 4-wire ohm mode when 4WΩ is displayed. Dry Circuit is active when the
DRY+ is displayed (see the figure below).

Figure 85: Enabling dry-circuit ohms

To enable/disable dry circuit ohms from the front panel:
1. Press the CONFIG key .
2. Press the DMM key .
3. Turn the navigation wheel to scroll to the "DRYCIRCUIT" menu item.
4. Press the navigation wheel to display ON/OFF settings for dry circuit ohms.
5. Select "ON" or "OFF" and press the navigation wheel again.
6. Press the EXIT key to leave the menu.

Figure 86: Four-wire Ohm ATTR MENU: DRYCIRCUIT

When enabled, the dry circuit ohms annunciator is on (DRY+).

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-61

Enable or disable dry circuit ohms through the remote interface

To enable dry circuit ohms through the remote interface, send the commands:
dmm.func = "fourwireohms"
dmm.drycircuit = dmm.ON

To disable dry circuit ohms through the remote interface, send the command:
dmm.drycircuit = dmm.OFF

Performing dry circuit ohms measurements

Make sure you use four-wire connections to the DUT as detailed in Analog backplane connector (rear
panel) (on page 4-19) or specific to the module used for switching.
To perform dry circuit ohms measurements:

Do not make connections to the device under test (DUT) until after the dry circuit ohms attribute is
enabled in step 2.

1. Press the OPENALL key to open all switching channels.
2. If not already on, enable dry circuit ohms (see Enabling/disabling dry circuit ohms (see "Enable or

disable dry circuit ohms from the front panel" on page 4-60)).
• Dry circuit ohms enabled: DRY+
• Dry circuit ohms disabled: DRY-

When dry circuit measurement is enabled (DRY+), offset-compensated ohms will also enable (OC+
annunciator turns on). If you do not wish to use offset-compensated ohms, disable it (see
Enabling/disabling offset-compensated ohms (on page 4-62)).

1. Make 4-wire connections to the DUT. See 4-wire connection information contained in analog
backplane connector (rear panel) (on page 4-19) and Switching module (see "Switching module
connections" on page 4-20).

2. Use the RANGE and keys to select the 1Ω, 10Ω, 100Ω, 1kΩ, or 10kΩ range, or press the
AUTO key to enable auto range.

3. If using a switching module, perform the following steps to close the desired channel:
a. Use the navigation wheel to dial in the channel number.

b. Press the CLOSE key.

1. Press the TRIG key and observe the displayed reading. If the "Overflow" message is displayed,
select a higher range until a normal reading is displayed (or press the AUTO key for autoranging).
For manual ranging, use the lowest possible range for the best resolution.

2. To measure other switching channels, repeat steps 5 and 6.
3. When finished, press the OPENALL key to open all channels.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-62 3700AS-901-01 Rev. B/May 2013

The on or off states of dry circuit ohms and offset-compensated ohms are saved with four-wire ohm
function. If you select a different measurement function, then select four-wire ohms again, the
previous attribute states of dry circuit ohms and offset-compensated ohms will be restored.

Offset-compensated ohms

The presence of thermal EMFs (VEMF) can adversely affect low-resistance measurement accuracy. To
overcome these unwanted offset voltages, you can use offset-compensated ohms. Offset-
compensated ohms measurements can be performed on the 1 Ω, 10 Ω, 100 Ω, 1 kΩ, and 10 kΩ
ranges for the four-wire ohm measurement function. It cannot be done on the two-wire ohm
measurement function.

The various instrument operations, including offset-compensated ohms, are performed on the input
signal in a sequential manner.

For a normal resistance measurement, the Model 3706A sources a current (I) and measures the
voltage (V). The resistance (R) is then calculated as (R=V/I) and the reading is displayed.

For offset-compensated ohms, two measurements are performed: one normal resistance
measurement, and one using the lowest current source setting.

The offset-compensated ohms reading is then calculated as follows:

V1 is the voltage measurement with the current source at its normal level.

V2 is the voltage measurement using the lowest current source setting.

I1 is the current measurement with the source set to a specific level.

I2 is the current measurement with the source set to zero.

This 2-point measurement process and reading calculation eliminates the resistance contributed by
the presence of VEMF.

When the source is turned on, the output cycles between the programmed value and zero (0 A or
0 V) to derive the offset-compensated ohms measurement.

Enabling/disabling offset-compensated ohms

Offset-compensated ohms is an attribute that can be set for the 4-wire ohms measurement function.
To enable or disable it from the front panel:

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-63

Figure 87: Enabling offset-compensated ohms

The Model 3706A is in 4-wire ohm mode when 4WΩ is displayed. Offset compensation is active
when the OC+ is displayed (OC- is shown in the above figure).

1. Set the Model 3706A for the 4-wire ohm measurement function.
2. Press the CONFIG key .
3. Press the DMM key .
4. Turn the navigation wheel to scroll to the "OFFSETCOMP" menu item. Press the navigation

wheel to select.
5. Turn the navigation wheel to select the ON/OFF settings for Offset Compensation as desired and

press the navigation wheel to set.
6. Press the EXIT key to leave the menu.

Figure 88: Four-wire Ohm ATTR MENU: OFFSETCOMP

Performing offset-compensated ohms measurements

Make sure you use 4-wire connections to the DUT as detailed in analog backplane connector (rear
panel) (on page 4-19) or if using a module for switching, the connections specific to the module.

1. Press the OPENALL key to open all switching channels.
2. If not already on, enable offset compensated ohms (OC+ annunciator is lit). See

Enabling/disabling offset-compensated ohms (on page 4-62).
3. Use the RANGE and keys to select the range, or press the AUTO key to enable auto range.

If using auto range, offset-compensated ohms measurements will not be performed if the
instrument goes to the 100 kΩ (or higher) range.

4. Perform steps 4 through 8 of the Standard resistance measurements (see "Resistance
measurements from the front panel" on page 4-22) procedure.

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-64 3700AS-901-01 Rev. B/May 2013

Offset compensation can be enabled for any 4-wire range. The internal DMM will perform offset
compensation for the <=10k-ohm ranges and automatically disable for >=100K-ohm ranges. Send the
following remote commands and the Series 3700A returns the reading and a "1" or a logic "True", but
the DMM only performed a standard 4-wire measurement.
dmm.func="fourwireohms"
dmm.range=100e3
dmm.offsetcompensation=1
print(dmm.measure())
print(dmm.offsetcompensation)

With dry circuit ohms enabled, the 10 kΩ range (measuring a maximum resistance of 2.4 kΩ) is the
highest offset-compensated ohms range that can be selected.

For buffer recall, there is no way to distinguish between a normal ohms reading and an offset-
compensated ohms reading. The OC annunciator (– or +) has no significance for recalled resistance
readings that are displayed.

The offset-compensated ohms setting is saved with the measurement function. If you change
measurement functions, then return to the previous function, the offset-compensated ohms will be at
the same setting it was previously.

dmm.offsetcompensation is a common command and is shared with fourwireohms,
drycircuit, threertd and fourrtd. To activate dmm.offsetcompensation, select the
desired function first, and then send dmm.offsetcompensation = dmm.ON or OFF.

Filter
You can use the digital filter to stabilize noisy measurements. When the filter is applied, the
displayed, stored, or transmitted reading is a windowed-average of a number of reading conversions
(from 1 to 100).

The filter setup is saved specific to each measurement function (DC volts, AC volts, DC current, AC
current, two-wire ohms, four-wire ohms, commonside ohms, and temperature). When you select a
function, the instrument will return to the last filter that was set up for that function.

The various instrument operations, including filter, are performed on the input signal in a specific,
predetermined order. For example, if both relative offset and MXB (a math operation) are enabled,
the relative offset operation will always be performed before MXB.

Filter characteristics

In general, the digital filter places a specified number of A/D conversions (the filter count) into a
memory stack. These A/D conversions must occur consecutively within a selected reading window
(the filter window). The readings in the stack are then averaged to yield a single filtered reading. The
stack can be filled using the moving or repeating average filters.

Digital filter types

There are two digital filter types: Moving and repeating.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-65

Moving average filter

The moving average filter uses a first-in first-out stack, where the newest reading conversion replaces
the oldest. An average of the stacked reading conversions yields a filtered reading. After the specified
number of reading conversions (filter count) fill the stack, the moving filter gives a new reading for
every new conversion.

Figure 89: Moving average filter

Repeating average filter

The repeating filter takes a specified number of conversions, averages them, and yields a filtered
reading. It then clears its stack and starts over. This setting is useful when scanning because
readings for other channels are not averaged with the present channel. The stack is then cleared and
the process starts over.

The moving filter cannot be used when scanning (see Scanning). If a scan channel is set up to use
the moving filter, the filter will not turn on.

Figure 90: Repeating average filter

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-66 3700AS-901-01 Rev. B/May 2013

Digital filter window

The digital filter uses a noise window to control the filter threshold. As long as the input signal remains
within the selected window, A/D conversions continue to be placed in the stack. If the signal changes
to a value outside the window, the filter resets and starts processing again, starting with a new initial
conversion value from the A/D converter.

The noise window, which is expressed as a percentage of range (or maximum temperature reading),
allows a faster response time to large signal step changes (for example, scanned readings). A
reading conversion outside the plus or minus noise window fills the filter stack immediately.

If the noise does not exceed the selected window, the reading is based on the average of the reading
conversions. If the noise does exceed the selected window, the reading is a single reading
conversion and new averaging starts from this point. The noise window for the two filter types are
compared in the filter window below.

Series 3700A System Switch/Multimeter Reference Manual Section 4: Basic DMM operation

3700AS-901-01 Rev. B/May 2013 4-67

Figure 91: Filter window

Section 4: Basic DMM operation Series 3700A System Switch/Multimeter Reference Manual

4-68 3700AS-901-01 Rev. B/May 2013

For both front panel and remote programming, the window can be set to any value from 0.0% to 10%,
where 0.0% represents no window being applied.

For voltage, current, and resistance, the filter window is expressed as a percent of range. For
example, on the 10V range, a 10% window means that the filter window is ±1V.

For temperature, the filter window is expressed as a percent of the maximum temperature reading.
The maximum temperature depends on which thermocouple is being used. For example, for a Type J
thermocouple, the maximum reading is 760 °C; a 10 % window means that the filter window is
±76 °C. For temperatures below 0 °C, the overflow point is –200 ºC, so a 10% filter window is ±20 ºC.
If using ºF units, a 20% filter window is calculated as follows: 9/5 x 20 = 36. The filter window for the
20% window is ±36 ºC.

In this section:

DMM .. 5-1
Understanding Precision Time Protocol (PTP) 5-22

DMM

Rear panel, backplane, and DMM connect relays schematic
Refer to the following figure for a schematic of the rear panel, backplane, and DMM connect relays
with a typical card.

Section 5

Theory of operation

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-2 3700AS-901-01 Rev. B/May 2013

Figure 92: Rear panel to backplane to DMM connect relays schematic

Line cycle synchronization
Synchronizing A/D conversions with the frequency of the power line increases common mode and
normal mode noise rejection. When line cycle synchronization is enabled, the measurement is
initiated at the first positive-going zero crossing of the power line cycle after the trigger.

The following figure shows a measurement process that consists of two A/D conversions. If the
trigger occurs during the positive cycle of the power line (Trigger #1), the A/D conversion starts with
the positive-going zero crossing of the power line cycle. If the next trigger (Trigger #2) occurs during
the negative cycle, then the measurement process also starts with the positive-going zero crossing.

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-3

Line synchronization is not available for the AC functions (ACV, ACI, FREQ, or PERIOD). Line
synchronization can be enabled for any DC function and any NPLC measurement, increasing NMRR
and CMRR.

See dmm.linesync (on page 8-203) in the Reference Manual for remote programming information.

Figure 93: Line cycle synchronization

4-Wire Ohms are sensitive to 50 / 60Hz power line noise, due to cabling and Model 3700A switch
card loop area.

Figure 94: 4-Wire Line Synchronization Block Diagram

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-4 3700AS-901-01 Rev. B/May 2013

Traditional DMM 4-wire measurements are made in two phases, S HI and S LO. If the dmm.nplc is
set to 1 or a multiple of the power line, theoretically, the average AC noise is 0. Refer to the 4W-Rdg
calculation (http://www.maxim-ic.com/appnotes.cfm/appnote_number/1041/).

Figure 95: 1plc Line Sychronization Block Diagram

For Line Synchronization off and <1plc, reading rate increases, but measurement uncertainty and
noise increases due to the Average AC noise during the S HI phase not canceling with the S LO
phase. With line synchronization ON, the S HI and S LO measurement phases are triggered at the
rising edge of the power line zero crossing. This improves reading uncertainty and noise by >30x
while minimal reading rate reduction.

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-5

Figure 96: Line Sync Off and On <1plc

AC voltage measurements and crest factor
The root-mean-square (RMS) value of any periodic voltage or current is equal to the value of the DC
voltage or current which delivers the same power to a resistance as the periodic waveform does.
Crest factor is the ratio of the peak value to the RMS value of a particular waveform. This is
represented by the following equations:

The crest factor of various waveforms is different, because the peak-to-RMS ratios are variable. For
example, the crest factor for a pulse waveform is related to the duty cycle; as the duty cycle
decreases, the crest factor increases. The RMS calculations and crest factor (CF) for various
waveforms are shown in the following figures.

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-6 3700AS-901-01 Rev. B/May 2013

Figure 97: RMS calculations and crest factor

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-7

Figure 98: RMS calculations and crest factor

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-8 3700AS-901-01 Rev. B/May 2013

The Model 3706A is an AC-coupled RMS meter. For an AC waveform with DC content, the DC
component is removed before the RMS is calculated. This affects the crest factor because the peak
value for the DC-coupled waveform is different than the peak value for the AC-coupled waveform. In
an AC-coupled waveform, the peak value is measured from the original DC average value, not DC
zero. For example, if a voltage pulse is measured on the AC function of the Model 3706A with a peak
voltage of VP and a low voltage of zero volts, the AC-coupled peak value will be calculated as
follows:

ACPEAK = VP • (1 - duty cycle)

Therefore, the AC-coupled crest factor will differ from the DC-coupled waveform. The RMS function
will calculate the RMS value based on the pulsed waveform with an average value of zero.

The reason to consider crest factor in accuracy of RMS measurements is because the meter has a
limited bandwidth. Theoretically, a sine wave can be measured with a finite bandwidth because all of
its energy is contained in a single frequency. Most other common waveforms have a number of
spectral components requiring an almost infinite bandwidth above the fundamental frequency to
measure the signal exactly. Because the amount of energy contained in the harmonics becomes
smaller with increasing frequency, very accurate measurements can be made with a limited
bandwidth meter, as long as enough spectral components are captured to produce an acceptable
error.

Crest factor is a relative measurement of the harmonic content of a particular waveform and reflects
the accuracy of the measurement. For a rectangular pulse train, the higher the crest factor, the higher
the harmonic content of the waveform. This is not always true when making spectral comparisons
between different types of waveforms. A sine wave, for example, has a crest factor of 1.414, and a
square wave has a crest factor of 1. The sine wave has a single spectral component and the square
wave has components at all odd harmonics of the fundamental.

The Model 3706A RMS AC volts and AC amps accuracies are specified for sine waves of different
frequency ranges.

Additional error uncertainties are also specified for non-sinusoidal waveforms of specific crest factors
and frequencies. The Model 3706A has capabilities of measuring AC waveforms of crest factors up to
5.

DMM resistance measurement methods
The method that the Model 3706A uses to measure resistance depends on the resistance range. For
resistance ranges from 1 Ω to 1 MΩ , the Model 3706A uses the constant-current method to measure
resistance. For resistance ranges from 10 MΩ to 100 MΩ ranges, the ratiometric method is used.

When the constant-current method is used, the Model 3706A sources a constant current (I) to the
device under test and measures the voltage (V). Resistance (R) is then calculated and displayed
using the known current and measured voltage (R = V/I).

When the ratiometric method is used, test current is generated by a 6.4 V reference through a 10 MΩ
reference resistance (RREF).

For more detail on these methods, see Constant-current source method (on page 5-9) and
Ratiometric method (on page 5-9).

The Model 3706A uses four methods to detect open leads. For detail, see Open lead detection (on
page 5-14).

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-9

Constant-current source method
For the 1 Ω to 1 MΩ ranges, the Model 3706A uses the constant-current method to measure
resistance. The Model 3706A sources a constant current (ISOUR) to the device under test (DUT) and
measures the voltage (VMEAS). Resistance (RDUT) is then calculated (and displayed) using the known
current and measured voltage (RDUT = VMEAS/ISOUR).

The constant-current method is shown below. The test current sourced to the DUT depends on the
selected measurement range. For example, for the 100 Ω range, the test current is 1 mA. Because
the voltmeter of the Model 3706A has very high input impedance (>10 GΩ), virtually all the test
current (1 mA) flows through the DUT. For DUT ≤1 kΩ, 4-wire ohms measurements should be used
as shown. Because the voltage is measured at the DUT, voltage drop in the test leads is eliminated
(this voltage could be significant when measuring low-ohm DUT).

The 2-wire constant-current method is shown below.

Figure 99: Two-wire constant-current source method

The 4-wire constant-current method is shown below.

Figure 100: Four-wire constant-current source method

Ratiometric method
For the 10 MΩ and 100 MΩ ranges, the ratiometric method is used to measure resistance. Test
current for this method is generated by a 6.4V voltage source through a 10 MΩ reference resistance
(RREF), as shown.

Basic circuit theory dictates that IREF is equal to the IDUT. Because the voltmeter of the Model 3706A
(VMEAS) has very high input impedance (>10GΩ), current through the voltmeter branch is insignificant
and can be discounted. Therefore, as shown in the following Figures Equation 1, IREF = IDUT

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-10 3700AS-901-01 Rev. B/May 2013

Figure 101: Two-wire ratiometric method

Because I = V/R, Equation 1 is modified using the V/R equivalents in place of IREF and IDUT. Therefore:

ISOUR = (VMEAS / RREF) + (VMEAS / RDUT)

Note that VMEAS is measured by the Model 3706A. With VMEAS, ISOUR, RREF known, the Model 3706A
calculates the resistance of the DUT and displays the result. RREF is learned during calibration and
VSOUR is routinely self-calibrated when the dmm.autozero attribute is enabled (dmm.autozero =
dmm.ON).

As shown, the four-wire ohm function can also be used to measure ohms for the 10MΩ and 100 MΩ
ranges. To minimize the effects of charge injection when dmm-autozero is enabled, the 10 MΩ to
100 MΩ is actually a 3-wire ohm measurement. SENSE HI is not used. SENSE HI is connected to the
DUT but is not required (it can be left open). The measurement method is similar to the ratiometric
method for two-wire ohms, but it performs an extra voltage measurement (VLEAD) to compensate for
voltage drop in the input test leads.

Note that VMEAS includes the voltage drops of the input test leads (Input HI and Input LO). Therefore,
the actual voltage drop across the DUT is VMEAS minus the two voltage drops in the test leads.
Because matched inputs are used, the voltage drop is 2 x VLEAD. Therefore:

VDUT = VMEAS - 2(VLEAD).

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-11

Figure 102: Four-wire ratiometric method

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-12 3700AS-901-01 Rev. B/May 2013

Figure 103: Fast Alternating Scan block diagram

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-13

Reference junctions
A reference junction is the cold junction in a thermocouple circuit that is held at a stable, known
temperature. The cold junction is where dissimilar wire connections must be made. As long as the
temperature of the cold junction is known, the Model 3706A can factor in the reference temperature to
calculate the actual temperature reading at the thermocouple.

The standard reference temperature is the ice point (0° C). The ice point can be precisely controlled,
and the National Institute of Standards and Technology (NIST) uses it as the fundamental reference
for its voltage-to-temperature conversion tables. However, other known temperatures can be used.

There are two ways for the Model 3706A to acquire the cold junction temperature. It can measure the
cold junction using a thermistor or 4-wire RTD, or the known temperature value can be entered by the
user.

There are two reference junction types supported by the Model 3706A:

• Simulated reference junction
• Internal reference junction
• External reference junction

These reference junctions are explained in the following paragraphs.

Simulated reference junction
An example of a simulated reference junction is an ice bath as shown in the paragraph titled
Thermocouple connections (on page 4-26). The copper wire to thermocouple wire connections are
immersed (but electrically isolated) in the ice bath, and the user enters the 0 °C simulated reference
temperature into the Model 3706A. The simulated reference temperature for the Model 3706A can be
set from 0 °C to 65 °C.

The Model 3706A measures the input voltage and factors in the simulated reference temperature to
calculate the temperature reading at the thermocouple.

The most accurate temperature measurements are achieved by using a simulated reference junction
using an ice point reference.

Internal reference junction
"Internal" implies that temperature transducers are used to measure the cold junction. For specific
switching modules, the cold junction can be the switching module's screw terminals with voltage
temperature sensors strategically placed to measure the temperature of the cold junction (see
Thermocouple connections (on page 4-26)).

The Model 3706A measures the temperature of the cold junction (screw terminals), measures the
input voltage, and then calculates the temperature reading at the thermocouple.

To help maintain stability and accuracy over time and changes in temperature, the Model 3706A
periodically measures internal voltages corresponding to offsets (zero) and amplifier gains. For
thermocouple temperature measurements using the internal reference junction, the internal
temperature is also measured. These measurements are used in the algorithm to calculate the
reading of the input signal. This process is known as autozeroing. Note that internal temperature
references are collected regardless of whether or not autozero is enabled.

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-14 3700AS-901-01 Rev. B/May 2013

External reference junction
Thermocouple readings may be configured to use an external reference junction setting. The Series
3700 assumes the external reference junction is connected to channel 1 of a slot. It is recommend
that this channel be configured for thermistor or RTD temperature reading. However, the unit does
not error check against this. Each time a reading is taken on the external reference junction channel
(channel 1 of a slot) it will be used as the new external reference junction value in subsequent
external reference readings. External reference readings work with dmm.close as well as scanning.

For non-simulated thermocouple measurements, first perform a thermistor or RTD measurement prior
to enabling external reference junction.

Open lead detection
The Model 3706A has four methods to detect open lead conditions:

• ISOUR open voltage
• VMEAS open voltage
• Calculated measurement
• dmm.opendetector

The following figures show open lead detection schematics for various measurements.

Figure 104: Simplified normal 4-wire ohm open detection schematic

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-15

Figure 105: Model 3706A Internal DMM

ISOUR open voltage
1 Ω through 1 MΩ ranges: A hardware detector detects an open input lead. The hardware detector
uses a comparator circuit to monitor the voltage on the ohm ISOUR VOPEN-HI-LEAD terminal.

• For the lower ohms ranges (1 Ω, 10 Ω, and 10 kΩ), open circuit voltage on the ohm ISOUR VOPEN-HI-

LEAD terminal is more than 7.1 V.
• For the higher ohms ranges (100 kΩ through 1 MΩ), open circuit voltage on the ohm ISOUR VOPEN-

HI-LEAD terminal is more than 12.8 V.

When an input lead (HI or LO) is open, as shown, voltage rises to the open-circuit level, then the A/D
will abort in less than 100 µsec and the "Overflow" message is displayed.

VMEAS open voltage
If either Input Sense HI or Sense LO VMEAS is outside the enclosed table voltages, the A/D will stop in
less than 100 µsec and return an overflow reading.

Range VMEAS SHI or SLO
high limit open lead
detection

VMEAS SHI or SLO low
limit open lead
detection

1 Ω to 100 Ω > 128 mV < –10 mV

1 kΩ to 100 kΩ > 1.28 V < –100 mV
1 MΩ > 12.8 V < –1.0 V

Calculated measurement open voltage
A calculated measurement that exceeds 120 percent of the range returns an overflow reading.

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-16 3700AS-901-01 Rev. B/May 2013

Figure 106: 4-wire open detector with Series 3700A card

dmm.opendetector open voltage
With dmm.opendetector = dmm.ON, a separate -1.5 A IOPENLEAD SHI and a separate SLO current
source will pulse on and off before the start of each measurement while ISOUR remains enabled. The
A/D will monitor SHI for 2 ms, then switch to SLO for an additional 2 ms. During either phase, if the
input voltage exceeds the above table, the A/D will stop in less than 100 µs and return an overflow
reading. If there are no open leads detected during the IOPENLEAD phase, the IOPENLEAD is disabled and
standard 4-wire is enabled.

VMEAS with open input:

If Sense HI is disconnected, VMEAS will droop less than –1V, causing an A/D overflow.

VMEAS with valid connections:

For valid connections, INPUT Sense HI, VMEAS, will dip during the 4 ms IOPENLEAD phase. The amount
of the voltage dip is the sum of IOPENLEAD and the range ISOUR and RDUT load. For example, if
measuring a 100 kΩ on the 100 kΩ range, the VMEAS across the 100 kΩ will be 0.85 V (10 A to
1.5 µA) x 100 KΩ during IOPENLEAD and 1 V during measurement phase.

The tables below note timing with dmm.opendetector = dmm.ON.

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-17

Range SHI and SLO
IOPENLEAD
Phase
(ms)1

SHI Settle
Time (ms)

Line Freq
(Hz)

SHI Measurement
Time (ms)

1-10 kΩ 4.0 0.5 60 min max
0.0083 250

50 0.010 240
100 kΩ 4.0 2.0 60 0.0083 250

50 0.010 240
1 MΩ 4.0 30.0 60 0.0083 250

50 0.010 240
10 MΩ to
100 MΩ

4.0 5.01 60 0.0083 250

Range Internal
DMM
Comm.
(ms)

SLO
Settle Time
(ms)

SLO
 Measurement
Time
(ms)

Internal
DMM
Comm.

1 to 10 kΩ 0.06

0.5

min max 0.06
 0.0083 250

0.010 240
100 kΩ 0.06

1.0

0.0083 250 0.06
 0.010 240

1 MΩ 0.06

1.0

0.0083 250 0.06
 0.010 240

1. For 10 MΩ and 100 MΩ, Vmeasurement is made on Input HI. Input Sense HI is unused.
2. Default condition for 4-wire is dmm.opendetector=dmm.ON.
3. For dmm.drycircuit=dmm.ON, IOPENLEAD is disabled, but print(dmm.opendetector) returns

1.0.
4. Additional cable and Series 3700A card capacitance can increase settling times, resulting in

additional measurement uncertainty. Keithley Instruments recommend the use of Teflon or other
low-dielectric absorption wire insulation for these measurements.

4-wire dry-circuit open lead detection
The Model 3706A dry-circuit resistance measurement circuitry was designed for low power, low glitch,
and low open voltage applications such as GMRR head testing and air bag / squib testing that require
low energy resistance sourcing. For this reason, dmm.opendetector = dmm.ON is disabled when
dmm.drycircuit = dmm.ON. The IOPENLEAD current pulse would exceed the dry-circuit voltage
application.

The follow schematic provides a simplified view of the Model 3706A 4-wire dry-circuit open lead
detection.

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-18 3700AS-901-01 Rev. B/May 2013

Figure 107: Simplified Dry-Circuit open V-clamp feedback loop schematic

Dry-clamp open lead detector (dry-circuit)

A hardware detector is used to detect an open input lead. The hardware detector uses a internal
circuit to monitor the voltage on the VDRY-CLAMP terminal. The circuit will stop the A/D in less than
100 µs and return an overflow reading if the voltage is greater than 1 V.

VMEAS open voltage (dry-circuit)

If either Input Sense HI or Sense LO VMEAS is outside the enclosed table voltages, the A/D will stop in
less than 100 µs and return an overflow reading.

Range VMEAS SHI or SLO High Limit
Open Lead Detection

VMEAS SHI or SLO Low Limit Open
Lead Detection

1 Ω > 27 mV < –10 mV

10 Ω to 2 kΩ > 20 mV < –10 mV

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-19

Calculated measurement open voltage (dry-circuit)

A calculated measurement that exceeds 120% of the range will return an overflow reading.

INPUT Sense HI is internally connected to INPUT HI. The connection allows proper open circuit
voltage, even with Sense HI disconnected. With INPUT Sense HI disconnected, and the other inputs
properly connected, the measurement will read the VDUT and RLEADVOLTAGE drop.

For dmm.drycircuit = dmm.ON and dmm.opendetector = dmm.ON, IOPENLEAD will be disabled,
but a print(dmm.opendetector) will still return 1.0.

Open thermocouple detection
The Model 3706A open thermocouple detection works in similar fashion to the open lead detection.
Refer to Open lead detection (on page 5-14). The open thermocouple detection performs as follows:

• VMEAS open voltage: If Input HI VMEAS is outside ±120 mV, the A/D will stop in less than 100 µs
and return an overflow reading.

• A calculated measurement outside of the ranges in the following table will cause the "Overflow"
message to be displayed.

 Type Range
 J -200 °C to +760 °C
 K -200 °C to +1372 °C
 N -200 °C to +1300 °C
 T -200 °C to +400 °C
 E -150 °C to +1000 °C
 R 0 °C to +1768 °C
 S 0 °C to +1786 °C
 B +350 °C to +1820 °C

• If during a measurement cycle, with dmm.opendetector = dmm.ON, the ohm's function A
ISOUR is pulsed on and off before the start of each measurement. The A/D will monitor VMEAS for
0.8 ms. During the IONPHASE, if a resistance of more than 1.15 kΩ is detected, or the input
voltage is greater than 120 mV, the A/D will stop in less than 100 µs and return an overflow
reading. If less than 1.15 kΩ is detected and the input voltage is in the range of ±120 mV, the
open lead detection current is turned off and a normal thermocouple temperature measurement is
performed (see Thermocouple connections (on page 4-26)).

• ISOUR open voltage with dmm.opendetector. A hardware detector is used to continuously detect
for open input lead. The hardware detector uses a comparator circuit to monitor the voltage on
the ohm ISOUR VOPEN-HI-LEAD terminal. If during a measurement cycle, the input voltage on
ISOUR VOPEN -HI-LEAD terminal is greater than 7.1 V, the A/D will stop in less than 100 µs and return
an overflow reading. The following table notes timing with dmm.opendetector = dmm.ON.

The thermocouple open detection times are listed in the following table.

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-20 3700AS-901-01 Rev. B/May 2013

Ion
source
settle
(ms)

IOPENLEAD
measure
(ms)

Phase
internal
DMM
comm.
(ms)

Ioff source
settle
(ms)

Line
freq
(Hz)

T/C
measurement
time (ms)

Internal
DMM
comm.
(ms)

1.0 0.8 0.4 1.0 60 min max 0.06
0.0083 250

50 0.010 240

1. Default condition is dmm.opendetector=dmm.ON or 1.
2. For dmm.transducer=dmm.TEMP_THERMISTOR, dmm.TEMP_THREERTD, and

dmm.TEMP_FOURRTD, IOPENLEAD phase is disabled, but print(dmm.opendetector) returns 1.0.
3. dmm.opendetector is a common remote command, shared with fourwireohms. To enable or

disable dmm.opendetector for either function, the appropriate function must be selected before
applying the new dmm.opendetector state. For example, to disable thermocouple open
detection, send dmm.func="temperature" then dmm.opendetector=0.

The following figure is a schematic representation of the Model 3706A open thermocouple detection.

Figure 108: Thermocouple Open Detector drawing

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-21

Accuracy calculations
The following information discusses how to calculate accuracy for both DC and AC characteristics.

Calculating DC characteristics accuracy
DC characteristics accuracy is calculated as follows:

For >=1plc, Accuracy = ±(ppm of reading + ppm of range)
 (ppm = parts per million and 10ppm = 0.001%)

As an example of how to calculate the actual reading limits, assume that you are measuring 5V on
the 10V range. You can compute the reading limit range from one-year DCV accuracy specifications
as follows:

Accuracy = ±(25ppm of reading + 2ppm of range)
 ±[(25ppm × 5V) + (2ppm × 10V)]
 ±(125µV + 20µV)
 ±145µV

Thus, the actual reading range is 5V+/-320uV or from 4.99968V to 5.00032V.Thus, the actual reading
range is: 5V± 145µV or from 4.999855V to 5.000145V.

For <=1plc, Accuracy = +/-(ppm of reading + ppm of range + rms noise addr)

For example, to calculate the accuracy of the above example at 0.006plc:

Accuracy = +/- ((25ppm of reading) + (2ppm of range) + (2.5 x 7ppm of range))
 = +/- ((25ppm x 5V) + (2ppm x 10V) + (2.5 x 7ppm x 10V))
 = +/- (125uV + 20uV + 175uV)
 = +/- 320uV

DC current and resistance calculations are performed in exactly the same manner using the pertinent
specifications, ranges, and input signal values.

Calculating AC characteristics accuracy
AC characteristics accuracy is calculated similarly, except that AC specifications are given as follows:

Accuracy = (% of reading + % of range)

As an example of how to calculate the actual reading limits, assume that you are measuring 120V,
60Hz on the 300V range. You can compute the reading limit range from ACV one-year accuracy
specifications as follows:

Accuracy = ±(0.06% of reading + 0.03% of range)
 ±[(0.0006 × 120V) + (0.0003 × 300V)]
 ±(0.072V + 0.09V)
 ±0.162V

In this case, the actual reading range is: 120V± 0.162V or from 119.838V to 120.162V.

AC current calculations are performed in exactly the same manner using the pertinent specifications,
ranges, and input signal values.

Section 5: Theory of operation Series 3700A System Switch/Multimeter Reference Manual

5-22 3700AS-901-01 Rev. B/May 2013

Calculating dB characteristics accuracy
The relationship between voltage and dB is as follows:

As an example of how to calculate the actual readings limits for dB, with a user-defined VREF of 10V,
you must calculate the voltage accuracy and apply it to the above equation.

To calculate a -60dB measurement, assume 10mV RMS for a VREF of 10V. Using the 100mV range,
one-year, 10Hz - 20kHz frequency band, and SLOW rate, the voltage limits are as follows:

Accuracy = ±[(0.06% of reading) + (0.03% of range)]
 ±[(0.0006 × 10mV) + (0.0003 × 100mV)]
 ±(6µV + 30µV)
 ±36µV

Thus, the actual reading accuracy is 10mV ±36mV or 10.036mV to 9.964mV. Applying the voltage
reading accuracy into the dB equation yields:

Thus, the actual reading accuracy is -60dB + 0.031213dB to -60dB - 0.031326dB.

dBm and dB for other voltage inputs can be calculated in exactly the same manner using pertinent
specifications, ranges, and other reference voltages.

Additional derating factors
In some cases, additional derating factors must be applied to calculate certain accuracy values. For
example, an additional derating for the following conditions:

1. -0.4mV with open inputs and the 10M-ohm divider enabled
2. +/-(8ppm or reading + 5uV) with autozero off for +/-1 degree C and <=10minutes
3. For 2-wire ohms, add 100m-ohm to "ppm of range" with REL
4. Add 0.1% to 10M-ohm range when measuring through a Series 3700A card >50% relative

humidity

Before calculating accuracy, study the associated specifications very carefully to see if any derating
factors apply.

Understanding Precision Time Protocol (PTP)
The Precision Time Protocol (PTP) is a time standard that does not have any discontinuities (that is,
no leap seconds, time zones, or daylight savings). This is important for computing time deltas
between events. Currently, the difference between PTP and UTC is 32 seconds.

Series 3700A System Switch/Multimeter Reference Manual Section 5: Theory of operation

3700AS-901-01 Rev. B/May 2013 5-23

The Model 3706A is not time-zone aware, just like your watch. For a stand-alone Model 3706A, PTP
= UTC = local time. However, things can get confusing if the Model 3706A is synchronized to a
device that is time-zone aware. The Model 3706A will still present UTC, but the other device will
present UTC +/- offset as the local time, and so they will be different. As a result, you should always
use PTP if possible. Programs using PTP will work correctly, regardless of the presence of time-zone
aware devices.

The Model 3706A has two versions of time for most commands, .seconds and .ptpseconds,
which represent UTC and PTP time. Use the ptp.utcoffset value to move between the two times.

This value is zero unless the master clock populates it otherwise based on its information.

The following two statements produce the same value:
print(buffer.seconds[1] + ptp.utcoffset)
print(buffer.ptpseconds[1])

Example:

Run five scans once every hour starting at 3 a.m. tomorrow.

Assume tomorrow is Sept. 27, 2007. The first step is to convert the date and time to UTC format, and
then to PTP.
 -- convert to UTC time
Start_time = os.time{year=2007, month=9, day=27, hour=3}
-- convert to PTP time
Start_time = Start_time + ptp.utcoffset

Set up the alarm as follows:
schedule.alarm[1].ptpseconds = Start_time
schedule.alarm[1].fractionalseconds = 0
schedule.alarm[1].repetition = 5
–– 1 hr = 60 sec.s x 60 mins
schedule.alarm[1].period = 60*60
schedule.alarm[1].enable = 1

Tie the above time event to a simple scan of DCV on channels 1 to 5 (in slot 1):
dmm.setconfig("1001:1005", "dcvolts")
scan.create("1001:1005")
-- 5 scans of 5 channels
buf = dmm.makebuffer(25)
-- initiates the scan start
scan.trigger.arm.stimulus = schedule.alarm[1].EVENT_ID
scan.scancount = 5
scan.background(buf)

The scan will initiate once the time condition is met.

Check the scan progress with the following command:
scan.state()

In this section:

Introduction to TSP operation... 6-1
About TSP commands ... 6-4

Introduction to TSP operation
Instruments that are Test Script Processor (TSP®) enabled operate like conventional instruments by
responding to a sequence of commands sent by the controller. You can send individual commands to
the TSP-enabled instrument the same way you would using any other instrument.

Unlike conventional instruments, TSP-enabled instruments can execute automated test sequences
independently, without an external controller. You can load a series of TSP commands into the
instrument . You can store these commands as a script that can be run later by sending a single
command message to the instrument.

You do not have to choose between using conventional control or script control. You can combine
these forms of instrument control in the way that works best for your test application.

Controlling the instrument by sending individual command messages
The simplest method of controlling an instrument through the communication interface is to send it a
message that contains remote commands. You can use a test program that resides on a computer
(the controller) to sequence the actions of the instrument.

TSP commands can be function-based or attribute-based. Function-based commands are commands
that control actions or activities. Attribute-based commands define characteristics of an instrument
feature or operation.

Constants are commands that represent fixed values.

Functions
Function-based commands control actions or activities. A function-based command performs an
immediate action on the instrument.

Each function consists of a function name followed by a set of parentheses (). You should only
include information in the parentheses if the function takes a parameter. If the function takes one or
more parameters, they are placed between the parentheses and separated by commas.

Example 1

beeper.beep(0.5, 2400)
delay(0.250)
beeper.beep(0.5, 2400)

Emit a double-beep at 2400 Hz. The sequence is
0.5 s on, 0.25 s off, 0.5 s on.

Section 6

Introduction to TSP operation

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-2 3700AS-901-01 Rev. B/May 2013

Example 2

You can use the results of a function-based command directly or assign variables to the results for
later access. The following code defines x and prints it.

x = math.abs(-100)
print(x)

Output:
100

Attributes
Attribute-based commands are commands that set the characteristics of an instrument feature or
operation. For example, some characteristics of TSP-enabled instruments are the model number
(localnode.model) and the state of the beeper (beeper.enable).

Attributes can be read-only, read-write, or write-only. They can be used as a parameter of a function
or assigned to another variable.

To set the characteristics, attribute-based commands define a value. For many attributes, the value is
in the form of a number or a predefined constant.

Example 1: Set an attribute using a number

beeper.enable = 0 This attribute controls the beeps that occur when
front-panel controls are selected. Setting this attribute to 0
turns off the beeper.

Example 2: Set an attribute using a constant

format.data = format.REAL64 Using the constant REAL64 sets the print format
to double precision floating point format.

To read an attribute, you can use the attribute as the parameter of a function, or assign it to another
variable.

Example 3: Read an attribute using a function

print(format.data) Reads the data format by passing the attribute
to the print function. If the data format is set to
3, the output is:
3.00000e+00

This shows that the data format is set to double
precision floating point.

Example 4: Read an attribute using a variable

fd = format.data This reads the data format by assigning the
attribute to a variable named fd.

Queries
Test Script Processor (TSP®) enabled instruments do not have inherent query commands. Like any
other scripting environment, the print() and printnumber() commands generate output in the
form of response messages. Each print() command creates one response message.

Example

x = 10
print(x)

Example of an output response message:
1.00000e+01

Note that your output may be different if you set your ASCII
precision setting to a different value.

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-3

Data retrieval commands
You can send data retrieval commands that return a comma-delimited string. For example,
channel.getcount(channelList) returns a count for each item passed to it through its
parameter, channelList.

The comma-delimited string that is returned starts with the lowest channel and goes to the highest
channel on Slot 1. It then lists each subsequent slot until the highest slot is reached. After the
channels are listed, the analog backplane relays are listed, starting with Bank 1 followed by each
subsequent bank.

For example, assume there is a Model 3720 card installed in slot 4, returning 72 comma-delimited
values. Send the following command:
print(channel.getclose("slot4"))

The first 60 values returned are the closed channel specifiers, starting with 1 and increasing to 60.
The next six values are for analog backplane relays in Bank 1 (starting at 1 and increasing to 6). The
final six values are for analog backplane relays in Bank 2 (starting at 1 and increasing to 6).

If the command was channel.getstate() instead of channel.getclose(), 72 zero (0) or one
(1) values would be returned, with a 0 indicating that the channel or backplane is open, and a 1
indicating that it is closed. The first 60 values are for Channels 1 to 60 (starting at 1 and increasing to
60). The last 12 values are the backplane relays (starting with Bank 1, Relay 1, and increasing to
Bank 2, Relay 6).

If a channel is paired for 4-wire operation by its pole setting, the paired channel state is returned in
parenthesis () after the primary channel. For example, if the card in Slot 4 is a Model 3720 and has
the 4-pole attribute for all channels set, querying for the states of "slot4" returns 72 zero (0) and
one (1) values, with the first 60 shown as the primary channel state (paired channel state); the 12
backplane relays follow.

Sample code and output:
channel.setpole("slot4", 4)
print(channel.getstate("slot4"))

Output from above code:

0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),
0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),
0,0,0,0,0,0,0,0,0,0,0,0

The Model 3721 card has three additional backplane relays for commonside ohms functionality. Use
"slotX" or "allslots" to query settings on this card to return information for channels 1 to 40, 911
to 916, 921 to 926, and then 917, 927, and 928 in the response message (the three additional
commonside ohms backplane relays are listed last).

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-4 3700AS-901-01 Rev. B/May 2013

For example, to print out the channel images on this card when it is in slot 2 after a reset, send the
following:
reset()
print(channel.getimage('slot2'))

Output from above code:

2001;2002;2003;2004;2005;2006;2007;2008;2009;2010;2011;2012;2013;2014;2015;
2016;2017;2018;2019;2020;2021;2022;2023;2024;2025;2026;2027;2028;2029;2030;
2031;2032;2033;2034;2035;2036;2037;2038;2039;2040;2041;2042;2911;2912;2913;
2914;2915;2916;2921;2922;2923;2924;2925;2926;2917;2927;2928

The commonside ohms backplane relays (2917, 2927, and 2928) are listed last (except for the
Model 3721 card; for details see the Series 3700 Switch and Control Cards Reference Manual).

Information on scripting and programming
If you need information about using scripts with your TSP-enabled instrument, see Fundamentals of
scripting for TSP (on page 7-1).

If you need information about using the Lua programming language with the instrument, see
Fundamentals of programming for TSP (on page 7-14).

About TSP commands
This section contains an overview of the TSP commands for the instrument. The commands are
organized into groups, with a brief description of each group. Each section contains links to the
detailed descriptions for each command in the TSP command reference section of this
documentation (see TSP commands (on page 8-10)).

Alarms
schedule.alarm[N].enable (on page 8-350)
schedule.alarm[N].EVENT_ID (on page 8-351)
schedule.alarm[N].fractionalseconds (on page 8-352)
schedule.alarm[N].period (on page 8-353)
schedule.alarm[N].ptpseconds (on page 8-353)
schedule.alarm[N].repetition (on page 8-354)
schedule.alarm[N].seconds (on page 8-355)
schedule.disable() (on page 8-355)

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-5

Bit manipulation and logic operations
The bit functions perform bitwise logic operations on two given numbers, and bit operations on one
given number. Logic and bit operations truncate the fractional part of given numbers to make them
integers.

Logic operations

The bit.bitand(), bit.bitor(), and bit.bitxor() functions in this group perform bitwise
logic operations on two numbers. The Test Script Processor (TSP®) scripting engine performs the
indicated logic operation on the binary equivalents of the two integers. This bitwise logic operation is
performed on all corresponding bits of the two numbers. The result of a logic operation is returned as
an integer.

Bit operations

The rest of the functions in this group are used for operations on the bits of a given number. These
functions can be used to:

• Clear a bit
• Toggle a bit
• Test a bit
• Set a bit or bit field
• Retrieve the weighted value of a bit or field value

All these functions use an index parameter to specify the bit position of the given number. The least
significant bit of a given number has an index of 1, and the most significant bit has an index of 32.

The Test Script Processor (TSP) scripting engine stores all numbers internally as IEEE Std 754
double-precision floating point values. The logical operations work on 32-bit integers. Any fractional
bits are truncated. For numbers larger than 4294967295, only the lower 32 bits are used.

bit.bitand() (on page 8-11)
bit.bitor() (on page 8-11)
bit.bitxor() (on page 8-12)
bit.clear() (on page 8-13)
bit.get() (on page 8-13)
bit.getfield() (on page 8-14)
bit.set() (on page 8-15)
bit.setfield() (on page 8-15)
bit.test() (on page 8-16)
bit.toggle() (on page 8-17)

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-6 3700AS-901-01 Rev. B/May 2013

Channel
Channel functions and attributes allow you to adjust, select, open, and close channels. You can also
set common channel attributes and set up channel patterns.

The channel functions and attributes are:
channel.calibration.adjustcount() (on page 8-41)
channel.calibration.adjustdate() (on page 8-42)
channel.calibration.lock() (on page 8-43)
channel.calibration.password() (on page 8-44)
channel.calibration.save() (on page 8-45)
channel.calibration.step() (on page 8-46)
channel.calibration.unlock() (on page 8-47)
channel.calibration.verifydate() (on page 8-48)
channel.clearforbidden() (on page 8-49)
channel.close() (on page 8-50)
channel.connectrule (on page 8-52)
channel.connectsequential (on page 8-53)
channel.createspecifier() (on page 8-54)
channel.exclusiveclose() (on page 8-56)
channel.exclusiveslotclose() (on page 8-57)
channel.getbackplane() (on page 8-59)
channel.getclose() (on page 8-61)
channel.getcount() (on page 8-63)
channel.getdelay() (on page 8-64)
channel.getforbidden() (on page 8-66)
channel.getimage() (on page 8-67)
channel.getlabel() (on page 8-68)
channel.getmatch() (on page 8-69)
channel.getmatchtype() (on page 8-70)
channel.getmode() (on page 8-71)
channel.getoutputenable() (on page 8-72)
channel.getpole() (on page 8-73)
channel.getpowerstate() (on page 8-74)
channel.getstate() (on page 8-75)
channel.getstatelatch() (on page 8-77)
channel.gettype() (on page 8-78)
channel.open() (on page 8-79)
channel.pattern.catalog() (on page 8-80)
channel.pattern.delete() (on page 8-81)
channel.pattern.getimage() (on page 8-81)
channel.pattern.setimage() (on page 8-82)
channel.pattern.snapshot() (on page 8-84)
channel.read() (on page 8-86)
channel.reset() (on page 8-87)
channel.resetstatelatch() (on page 8-89)
channel.setbackplane() (on page 8-90)
channel.setdelay() (on page 8-93)
channel.setforbidden() (on page 8-94)
channel.setlabel() (on page 8-94)
channel.setmatch() (on page 8-96)
channel.setmatchtype() (on page 8-97)
channel.setmode() (on page 8-98)
channel.setoutputenable() (on page 8-100)
channel.setpole() (on page 8-101)
channel.setpowerstate() (on page 8-103)
channel.setstatelatch() (on page 8-104)
channel.trigger[N].clear() (on page 8-105)
channel.trigger[N].EVENT_ID (on page 8-105)

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-7

channel.trigger[N].get() (on page 8-106)
channel.trigger[N].set() (on page 8-107)
channel.trigger[N].wait() (on page 8-108)
channel.write() (on page 8-109)

Data queue
Use the data queue commands to:

• Share data between test scripts running in parallel
• Access data from a remote group or a local node on a TSP-Link® network at any time

The data queue in the Test Script Processor (TSP®) scripting engine is first-in, first-out (FIFO).

You can access data from the data queue even if a remote group or a node has overlapped
operations in process.

dataqueue.add() (on page 8-115)
dataqueue.CAPACITY (on page 8-116)
dataqueue.clear() (on page 8-117)
dataqueue.count (on page 8-117)
dataqueue.next() (on page 8-118)

Digital I/O

The Models 2604A, 2614A, and 2634A do not have digital input/output lines. The commands to
control the digital input/output lines are not available for these models.

The digital I/O port of the instrument can control external circuitry (such as a component handler for
binning operations).

The I/O port has 14 lines. Each line can be at TTL logic state 1 (high) or 0 (low). See the pinout
diagram in Digital I/O port (on page 2-28, on page 3-43) for additional information.

There are commands to read and write to each individual bit, and commands to read and write to the
entire port.

digio.readbit() (on page 8-120)
digio.readport() (on page 8-120)
digio.trigger[N].assert() (on page 8-121)
digio.trigger[N].clear() (on page 8-122)
digio.trigger[N].EVENT_ID (on page 8-122)
digio.trigger[N].mode (on page 8-123)
digio.trigger[N].overrun (on page 8-124)
digio.trigger[N].pulsewidth (on page 8-125)
digio.trigger[N].release() (on page 8-125)
digio.trigger[N].reset() (on page 8-126)
digio.trigger[N].stimulus (on page 8-127)
digio.trigger[N].wait() (on page 8-129)
digio.writebit() (on page 8-129)
digio.writeport() (on page 8-130)
digio.writeprotect (on page 8-131)

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-8 3700AS-901-01 Rev. B/May 2013

Display
display.clear() (on page 8-131)
display.getannunciators() (on page 8-132)
display.getcursor() (on page 8-133)
display.getlastkey() (on page 8-134)
display.gettext() (on page 8-135)
display.inputvalue() (on page 8-136)
display.loadmenu.add() (on page 8-138)
display.loadmenu.catalog() (on page 8-139)
display.loadmenu.delete() (on page 8-140)
display.locallockout (on page 8-140)
display.menu() (on page 8-141)
display.prompt() (on page 8-142)
display.screen (on page 8-143)
display.sendkey() (on page 8-144)
display.setcursor() (on page 8-145)
display.settext() (on page 8-146)
display.smuX.limit.func
display.smuX.measure.func
display.trigger.clear()
display.trigger.EVENT_ID (on page 8-147)
display.waitkey() (on page 8-147)

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-9

DMM
dmm.adjustment.count (on page 8-148)
dmm.adjustment.date (on page 8-149)
dmm.aperture (on page 8-150)
dmm.appendbuffer() (on page 8-152)
dmm.autodelay (on page 8-154)
dmm.autorange (on page 8-155)
dmm.autozero (on page 8-157)
dmm.buffer.catalog() (on page 8-158)
dmm.buffer.info() (on page 8-159)
dmm.buffer.maxcapacity (on page 8-160)
dmm.buffer.usedcapacity (on page 8-160)
dmm.calibration.ac() (on page 8-161)
dmm.calibration.dc() (on page 8-162)
dmm.calibration.lock() (on page 8-163)
dmm.calibration.password (on page 8-164)
dmm.calibration.save() (on page 8-165)
dmm.calibration.unlock() (on page 8-165)
dmm.calibration.verifydate (on page 8-166)
dmm.close() (on page 8-167)
dmm.configure.catalog() (on page 8-169)
dmm.configure.delete() (on page 8-170)
dmm.configure.query() (on page 8-171)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.connect (on page 8-177)
dmm.dbreference (on page 8-178)
dmm.detectorbandwidth (on page 8-179)
dmm.displaydigits (on page 8-180)
dmm.drycircuit (on page 8-181)
dmm.filter.count (on page 8-182)
dmm.filter.enable (on page 8-183)
dmm.filter.type (on page 8-184)
dmm.filter.window (on page 8-185)
dmm.fourrtd (on page 8-186)
dmm.func (on page 8-187)
dmm.getconfig() (on page 8-189)
dmm.inputdivider (on page 8-190)
dmm.limit[Y].autoclear (on page 8-191)
dmm.limit[Y].clear() (on page 8-192)
dmm.limit[Y].enable (on page 8-193)
dmm.limit[Y].high.fail (on page 8-195)
dmm.limit[Y].high.value (on page 8-197)
dmm.limit[Y].low.fail (on page 8-199)
dmm.limit[Y].low.value (on page 8-201)
dmm.linesync (on page 8-203)
dmm.makebuffer() (on page 8-204)
dmm.math.enable (on page 8-206)
dmm.math.format (on page 8-208)
dmm.math.mxb.bfactor (on page 8-209)
dmm.math.mxb.mfactor (on page 8-210)
dmm.math.mxb.units (on page 8-211)
dmm.math.percent (on page 8-212)
dmm.measure() (on page 8-213)
dmm.measurecount (on page 8-214)
dmm.measurewithptp() (on page 8-216)
dmm.measurewithtime() (on page 8-215)
dmm.nplc (on page 8-217)
dmm.offsetcompensation (on page 8-218)

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-10 3700AS-901-01 Rev. B/May 2013

dmm.open() (on page 8-219)
dmm.opendetector (on page 8-221)
dmm.range (on page 8-222)
dmm.refjunction (on page 8-223)
dmm.rel.acquire() (on page 8-224)
dmm.rel.enable (on page 8-225)
dmm.rel.level (on page 8-226)
dmm.reset() (on page 8-228)
dmm.rtdalpha (on page 8-229)
dmm.rtdbeta (on page 8-231)
dmm.rtddelta (on page 8-233)
dmm.rtdzero (on page 8-234)
dmm.savebuffer() (on page 8-236)
dmm.setconfig() (on page 8-237)
dmm.simreftemperature (on page 8-239)
dmm.thermistor (on page 8-240)
dmm.thermocouple (on page 8-241)
dmm.threertd (on page 8-242)
dmm.threshold (on page 8-243)
dmm.transducer (on page 8-244)
dmm.units (on page 8-245)

Error queue
When errors and events occur, the error and status messages are placed in the error queue. Use the
error queue commands to request error and status message information.

errorqueue.clear() (on page 8-246)
errorqueue.count (on page 8-246)
errorqueue.next() (on page 8-246)

Event log
You can use the event log to view specific details about LAN triggering events.

eventlog.all() (on page 8-247)
eventlog.clear() (on page 8-248)
eventlog.count (on page 8-249)
eventlog.enable (on page 8-249)
eventlog.next() (on page 8-250)
eventlog.overwritemethod (on page 8-251)

File I/O
You can use the file I/O commands to open and close directories and files, write data, or to read a file
on an installed USB flash drive. File I/O commands are organized into two groups:

• Commands that reside in the fs and io table, for example: io.open(), io.close(),
io.input(), and io.output(). Use these commands to manage file system directories; open
and close file descriptors; and perform basic I/O operations on a pair of default files (one input
and one output).

• Commands that reside in the file descriptors (for example: fileVar:seek(),
fileVar:write(), and fileVar:read()) operate exclusively on the file with which they are
associated.

The root folder of the USB flash drive has the absolute path:

"/usb1/"

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-11

You can use either the slash (/) or backslash (\) as a directory separator. However, the backslash is
also used as an escape character, so if you use it as a directory separator, you will generally need to
use a double backslash (\\) when you are creating scripts or sending commands to the instrument.

For basic information about navigation and directory listing of files on a flash drive, see File system
navigation (on page 6-12).

File descriptor commands for file I/O use a colon (:) to separate the command parts rather than a
period (.), like the io commands.

File descriptors cannot be passed between nodes in a TSP-Link® system, so the io.open(),
fileVar::read(), and fileVar::write commands are not accessible to the TSP-Link system.
However, the default input and output files mentioned above allow for the execution of many file I/O
operations without any reference to a file descriptor.

fileVar:close() (on page 8-252)
fileVar:flush() (on page 8-252)
fileVar:read() (on page 8-253)
fileVar:seek() (on page 8-254)
fileVar:write() (on page 8-254)
fs.chdir() (on page 8-258)
fs.cwd() (on page 8-258)
fs.is_dir() (on page 8-258)
fs.is_file() (on page 8-259)
fs.mkdir() (on page 8-259)
fs.readdir() (on page 8-260)
fs.rmdir() (on page 8-260)
io.close() (on page 8-262)
io.flush() (on page 8-262)
io.input() (on page 8-263)
io.open() (on page 8-264)
io.output() (on page 8-264)
io.read() (on page 8-265)
io.type() (on page 8-266)
io.write() (on page 8-266)
os.remove()
os.rename()

The following standard I/O commands are not supported at this time:

File I/O
• fileVar:lines()
• fileVar:setvbuf()

• io.lines()
• io.popen()

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-12 3700AS-901-01 Rev. B/May 2013

File system navigation
The Model 3706A can use commands from the Lua fs library to navigate and list files that are
available on a flash drive. These Lua commands are in the fs command group in the instrument.

The fs commands make the file system of any given node available to the entire TSP-Link® system.
For example, you can use the command node[5].fs.readdir(".") to read the contents of the
current working directory on node 5.

The root folder of the USB flash drive has the absolute path:

"/usb1/"

You can use either the slash (/) or backslash (\) as a directory separator. However, the backslash is
also used as an escape character, so if you use it as a directory separator, you will generally need to
use a double backslash (\\) when you are creating scripts or sending commands to the instrument.

The instrument supports the following Lua fs commands:

fs.chdir() (on page 8-258)
fs.cwd() (on page 8-258)
fs.is_dir() (on page 8-258)
fs.is_file() (on page 8-259)
fs.mkdir() (on page 8-259)
fs.readdir() (on page 8-260)
fs.rmdir() (on page 8-260)

The following Lua fs commands are not supported at this time:

fs.chmod()
fs.chown()
fs.stat()

GPIB
These commands store the GPIB address and indicate whether GPIB communication is enabled.

comm.gpib.enable (on page 8-110)
gpib.address (on page 8-261)

Instrument identification
These commands store strings that describe the instrument.

localnode.description (on page 8-293)
localnode.model (on page 8-295)
localnode.revision (on page 8-299)
localnode.serialno (on page 8-299)

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-13

LAN and LXI
The LAN commands have options that allow you to review and configure network settings.

The lan.config.* commands allow you to configure LAN settings over the remote interface. Note
that you must send lan.applysettings() for the configuration settings to take effect.

The lan.status.* commands help you determine the status of the LAN.

The lan.trigger[N].* commands allow you to set up and assert trigger events that are sent over
the LAN.

Other LAN commands allow you to reset the LAN, restore defaults, check LXI domain information,
and enable or disable the Nagle algorithm.

comm.lan.enable (on page 8-110)
comm.lan.rawsockets.enable (on page 8-111)
comm.lan.telnet.enable (on page 8-112)
comm.lan.vxi11.enable (on page 8-113)
comm.lan.web.enable (on page 8-114)
lan.applysettings() (on page 8-267)
lan.autoconnect
lan.config.dns.address[N] (on page 8-267)
lan.config.dns.domain (on page 8-268)
lan.config.dns.dynamic (on page 8-269)
lan.config.dns.hostname (on page 8-269)
lan.config.dns.verify (on page 8-270)
lan.config.gateway (on page 8-271)
lan.config.ipaddress (on page 8-271)
lan.config.method (on page 8-272)
lan.config.speed
lan.config.subnetmask (on page 8-272)
lan.linktimeout
lan.lxidomain (on page 8-273)
lan.nagle (on page 8-274)
lan.reset() (on page 8-274)
lan.restoredefaults() (on page 8-274)
lan.status.dns.address[N] (on page 8-275)
lan.status.dns.name (on page 8-276)
lan.status.duplex (on page 8-276)
lan.status.gateway (on page 8-277)
lan.status.ipaddress (on page 8-277)
lan.status.macaddress (on page 8-278)
lan.status.port.dst (on page 8-278)
lan.status.port.rawsocket (on page 8-279)
lan.status.port.telnet (on page 8-279)
lan.status.port.vxi11 (on page 8-280)
lan.status.speed (on page 8-280)
lan.status.subnetmask (on page 8-281)
lan.timedwait
lan.trigger[N].assert() (on page 8-281)
lan.trigger[N].clear() (on page 8-282)
lan.trigger[N].connect() (on page 8-283)
lan.trigger[N].connected (on page 8-283)
lan.trigger[N].disconnect() (on page 8-284)
lan.trigger[N].EVENT_ID (on page 8-284)
lan.trigger[N].ipaddress (on page 8-285)
lan.trigger[N].mode (on page 8-286)
lan.trigger[N].overrun (on page 8-287)
lan.trigger[N].protocol (on page 8-287)
lan.trigger[N].pseudostate (on page 8-288)

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-14 3700AS-901-01 Rev. B/May 2013

lan.trigger[N].stimulus (on page 8-288)
lan.trigger[N].wait() (on page 8-291)
localnode.description (on page 8-293)
localnode.password (on page 8-295)
localnode.passwordmode (on page 8-296)

Local node
Commands that allow you to set and read from the local node.

localnode.define.* (on page 8-292)
localnode.description (on page 8-293)
localnode.linefreq (on page 8-294)
localnode.model (on page 8-295)
localnode.password (on page 8-295)
localnode.passwordmode (on page 8-296)
localnode.prompts (on page 8-296)
localnode.prompts4882 (on page 8-297)
localnode.reset() (on page 8-298)
localnode.revision (on page 8-299)
localnode.serialno (on page 8-299)
localnode.showerrors (on page 8-300)
node[N].execute() (on page 8-304)
node[N].getglobal() (on page 8-304)
node[N].setglobal() (on page 8-305)
settime() (on page 8-366)

PTP
Use these functions and attributes to configure the IEEE Std 1588 Precision Time Protocol (PTP).
IEEE-1588 allows multiple devices to synchronize time to a less than 10 ms accuracy. Further
information on the protocol, operation, and terminology is available from the IEEE organization
documentation and other third-party sources.

The Series 3700A commands support the 2008 IEEE-1588 standards, as indicated below.

ptp.domain (on page 8-311)
ptp.ds.info() (on page 8-312)
ptp.enable (on page 8-314)
ptp.portstate (on page 8-315)
ptp.slavepreferred (on page 8-316)
ptp.time() (on page 8-316)
ptp.utcoffset (on page 8-317)

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-15

Reading buffer
Reading buffers capture measurements, ranges, instrument status, and output states of the
instrument.

bufferVar.appendmode (on page 8-18)
bufferVar.basetimefractional (on page 8-19)
bufferVar.basetimeseconds (on page 8-19)
bufferVar.cachemode (on page 8-20)
bufferVar.capacity (on page 8-21)
bufferVar.channels (on page 8-21)
bufferVar.clear() (on page 8-23)
bufferVar.clearcache() (on page 8-23)
bufferVar.collectchannels (on page 8-24)
bufferVar.collecttimestamps (on page 8-25)
bufferVar.dates (on page 8-26)
bufferVar.formattedreadings (on page 8-27)
bufferVar.fractionalseconds (on page 8-28)
bufferVar.n (on page 8-29)
bufferVar.ptpseconds (on page 8-30)
bufferVar.readings (on page 8-31)
bufferVar.relativetimestamps (on page 8-32)
bufferVar.seconds (on page 8-34)
bufferVar.statuses (on page 8-35)
bufferVar.times (on page 8-36)
bufferVar.timestampresolution (on page 8-37)
bufferVar.timestamps (on page 8-38)
bufferVar.units (on page 8-39)

Reset
Resets settings to their default settings.

digio.trigger[N].reset() (on page 8-126)
lan.reset() (on page 8-274)
localnode.reset() (on page 8-298)
reset() (on page 8-317)
timer.reset() (on page 8-421)
trigger.blender[N].reset() (on page 8-424)
trigger.timer[N].reset() (on page 8-433)
tsplink.trigger[N].reset() (on page 8-446)

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-16 3700AS-901-01 Rev. B/May 2013

Queries and response messages
You can use the print(), printbuffer(), and printnumber() functions to query the
instrument and generate response messages. The format attributes control how the data is formatted
for the print functions used.

The localnode commands determine if generated errors are automatically sent and if prompts are
generated.
format.asciiprecision (on page 8-255)
format.byteorder (on page 8-256)
format.data (on page 8-257)
localnode.prompts (on page 8-296)
localnode.prompts4882 (on page 8-297)
localnode.showerrors (on page 8-300)
print() (on page 8-306)
printbuffer() (on page 8-307)
printnumber() (on page 8-310)

Saved setups
Use the saved setups commands to save and restore the configuration of the instrument. You can
save or restore configurations to or from the instrument's nonvolatile memory or an installed USB
flash drive. You can use the setup.poweron attribute to specify which setup is recalled when the
instrument is turned on.

createconfigscript() (on page 8-115)
setup.cards() (on page 8-368)
setup.poweron (on page 8-369)
setup.recall() (on page 8-370)
setup.save() (on page 8-370)

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-17

Scan
The scan functions and attributes allow you to set up scanning over the remove interface.

scan.abort() (on page 8-318)
scan.add() (on page 8-319)
scan.addimagestep() (on page 8-321)
scan.addwrite() (on page 8-322)
scan.background() (on page 8-323)
scan.bypass (on page 8-324)
scan.create() (on page 8-325)
scan.execute() (on page 8-327)
scan.list() (on page 8-328)
scan.measurecount (on page 8-330)
scan.mode (on page 8-331)
scan.nobufferbackground() (on page 8-332)
scan.nobufferexecute() (on page 8-333)
scan.reset() (on page 8-334)
scan.scancount (on page 8-335)
scan.state() (on page 8-336)
scan.stepcount (on page 8-337)
scan.trigger.arm.clear() (on page 8-337)
scan.trigger.arm.set() (on page 8-338)
scan.trigger.arm.stimulus (on page 8-338)
scan.trigger.channel.clear() (on page 8-340)
scan.trigger.channel.set() (on page 8-341)
scan.trigger.channel.stimulus (on page 8-341)
scan.trigger.clear() (on page 8-343)
scan.trigger.measure.clear() (on page 8-344)
scan.trigger.measure.set() (on page 8-344)
scan.trigger.measure.stimulus (on page 8-345)
scan.trigger.sequence.clear() (on page 8-346)
scan.trigger.sequence.set() (on page 8-347)
scan.trigger.sequence.stimulus (on page 8-348)

Scripting
Scripting helps you combine commands into a block of code that the instrument can run. Scripts help
you communicate with the instrument efficiently. These commands describe how to create, load,
modify, run, and exit scripts.

For detail on using scripts, see Fundamentals of scripting for TSP (on page 7-1).

createconfigscript() (on page 8-115)
script.anonymous (on page 8-355)
script.delete() (on page 8-356)
script.load() (on page 8-357)
script.new() (on page 8-358)
script.newautorun() (on page 8-359)
script.restore() (on page 8-359)
script.run() (on page 8-360)
script.user.catalog() (on page 8-361)
scriptVar.autorun (on page 8-361)
scriptVar.list() (on page 8-362)
scriptVar.name (on page 8-363)
scriptVar.run() (on page 8-364)
scriptVar.save() (on page 8-365)
scriptVar.source (on page 8-365)

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-18 3700AS-901-01 Rev. B/May 2013

Status model
The status model is a set of status registers and queues. You can use the following commands to
manipulate and monitor these registers and queues to view and control various instrument events.

status.condition (on page 8-391)
status.measurement.* (on page 8-393)
status.node_enable (on page 8-396)
status.node_event (on page 8-398)
status.operation.* (on page 8-399)
status.operation.user.* (on page 8-401)
status.questionable.* (on page 8-403)
status.request_enable (on page 8-405)
status.request_event (on page 8-407)
status.reset() (on page 8-409)
status.standard.* (on page 8-409)
status.system.* (on page 8-411)
status.system2.* (on page 8-413)
status.system3.* (on page 8-415)
status.system4.* (on page 8-417)
status.system5.* (on page 8-419)

Slot
The slot attributes configure and read the settings of the cards in the slots. You can also set up
pseudocards.

slot[X].banks.matrix (on page 8-371)
slot[X].columns.matrix (on page 8-372)
slot[X].commonsideohms (on page 8-372)
slot[X].digio (on page 8-373)
slot[X].endchannel.* (on page 8-373)
slot[X].idn (on page 8-377)
slot[X].isolated (on page 8-380)
slot[X].matrix (on page 8-380)
slot[X].maxvoltage (on page 8-381)
slot[X].multiplexer (on page 8-381)
slot[X].poles.four (on page 8-382)
slot[X].poles.one (on page 8-383)
slot[X].poles.two (on page 8-384)
slot[X].pseudocard (on page 8-384)
slot[X].startchannel.* (on page 8-386)
slot[X].tempsensor (on page 8-390)
slot[X].thermal.state (on page 8-390)

Time
bufferVar.collecttimestamps (on page 8-25)
bufferVar.timestampresolution (on page 8-37)
delay() (on page 8-119)
gettimezone() (on page 8-261)
os.time()
settime() (on page 8-366)
settimezone() (on page 8-367)
timer.measure.t() (on page 8-421)
timer.reset() (on page 8-421)

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-19

Top level instrument controls
These commands work with other commands to control general instrument functions. They are also
used to set and gather instrument information.

The beeper commands allow you to enable or disable and sound the instrument beeper.

delay() stops instrument operation for a specified period of time. It is typically used to soak a device
at a specific voltage or current for a period of time.

memory.available() and memory.used() allow you to determine the amount of memory in the
instrument.

The os commands are Lua functions that allow you to change directory and file names.

opc() sets the operation complete status bit when all overlapped commands are completed.

The upgrade functions allow you to upgrade or downgrade the Model 3706A firmware.

The userstring commands allow you to manage user-defined strings in nonvolatile memory.

waitcomplete() allows you to send a command to wait for all overlapped operations in a group to
complete.

beeper.beep() (on page 8-10)
beeper.enable (on page 8-10)
delay() (on page 8-119)
memory.available() (on page 8-302)
memory.used() (on page 8-303)
opc() (on page 8-306)
upgrade.previous() (on page 8-462)
upgrade.unit() (on page 8-463)
userstring.add() (on page 8-463)
userstring.catalog() (on page 8-464)
userstring.delete() (on page 8-465)
userstring.get() (on page 8-465)
waitcomplete() (on page 8-466)

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-20 3700AS-901-01 Rev. B/May 2013

Triggering
The triggering commands allow you to set the conditions that the instrument uses to determine when
measurements are captured.

digio.trigger[N].assert() (on page 8-121)
digio.trigger[N].clear() (on page 8-122)
digio.trigger[N].EVENT_ID (on page 8-122)
digio.trigger[N].mode (on page 8-123)
digio.trigger[N].overrun (on page 8-124)
digio.trigger[N].pulsewidth (on page 8-125)
digio.trigger[N].release() (on page 8-125)
digio.trigger[N].reset() (on page 8-126)
digio.trigger[N].stimulus (on page 8-127)
digio.trigger[N].wait() (on page 8-129)
display.trigger.EVENT_ID (on page 8-147)
lan.trigger[N].assert() (on page 8-281)
lan.trigger[N].clear() (on page 8-282)
lan.trigger[N].connect() (on page 8-283)
lan.trigger[N].connected (on page 8-283)
lan.trigger[N].disconnect() (on page 8-284)
lan.trigger[N].EVENT_ID (on page 8-284)
lan.trigger[N].ipaddress (on page 8-285)
lan.trigger[N].mode (on page 8-286)
lan.trigger[N].overrun (on page 8-287)
lan.trigger[N].protocol (on page 8-287)
lan.trigger[N].pseudostate (on page 8-288)
lan.trigger[N].stimulus (on page 8-288)
lan.trigger[N].wait() (on page 8-291)
trigger.blender[N].clear() (on page 8-422)
trigger.blender[N].EVENT_ID (on page 8-422)
trigger.blender[N].orenable (on page 8-423)
trigger.blender[N].overrun (on page 8-424)
trigger.blender[N].reset() (on page 8-424)
trigger.blender[N].stimulus[M] (on page 8-425)
trigger.blender[N].wait() (on page 8-427)
trigger.clear() (on page 8-428)
trigger.EVENT_ID (on page 8-428)
trigger.timer[N].clear() (on page 8-429)
trigger.timer[N].count (on page 8-429)
trigger.timer[N].delay (on page 8-430)
trigger.timer[N].delaylist (on page 8-430)
trigger.timer[N].EVENT_ID (on page 8-431)
trigger.timer[N].overrun (on page 8-431)
trigger.timer[N].passthrough (on page 8-432)
trigger.timer[N].reset() (on page 8-433)
trigger.timer[N].stimulus (on page 8-433)
trigger.timer[N].wait() (on page 8-435)
trigger.wait() (on page 8-435)
tsplink.trigger[N].assert() (on page 8-441)
tsplink.trigger[N].clear() (on page 8-441)
tsplink.trigger[N].EVENT_ID (on page 8-442)
tsplink.trigger[N].mode (on page 8-443)
tsplink.trigger[N].overrun (on page 8-444)
tsplink.trigger[N].pulsewidth (on page 8-445)
tsplink.trigger[N].release() (on page 8-445)
tsplink.trigger[N].reset() (on page 8-446)
tsplink.trigger[N].stimulus (on page 8-447)
tsplink.trigger[N].wait() (on page 8-448)

Series 3700A System Switch/Multimeter Reference Manual Section 6: Introduction to TSP operation

3700AS-901-01 Rev. B/May 2013 6-21

TSP-Link
These functions and attributes allow you to set up and work with a system that is connected by a
TSP-Link® network.

The TSP-Link® is not available on the Models 2604A, 2614A, and 2634A. These commands are not
available on those models.

tsplink.group (on page 8-436)
tsplink.master (on page 8-437)
tsplink.node (on page 8-437)
tsplink.readbit() (on page 8-438)
tsplink.readport() (on page 8-438)
tsplink.reset() (on page 8-439)
tsplink.state (on page 8-440)
tsplink.trigger[N].assert() (on page 8-441)
tsplink.trigger[N].clear() (on page 8-441)
tsplink.trigger[N].EVENT_ID (on page 8-442)
tsplink.trigger[N].mode (on page 8-443)
tsplink.trigger[N].overrun (on page 8-444)
tsplink.trigger[N].pulsewidth (on page 8-445)
tsplink.trigger[N].release() (on page 8-445)
tsplink.trigger[N].reset() (on page 8-446)
tsplink.trigger[N].stimulus (on page 8-447)
tsplink.trigger[N].wait() (on page 8-448)
tsplink.writebit() (on page 8-449)
tsplink.writeport() (on page 8-449)
tsplink.writeprotect (on page 8-450)

TSP-Net
The TSP-Net module provides a simple socket-like programming interface to Test Script Processor
(TSP®) enabled instruments.
tspnet.clear() (on page 8-451)
tspnet.connect() (on page 8-451)
tspnet.disconnect() (on page 8-452)
tspnet.execute() (on page 8-453)
tspnet.idn() (on page 8-454)
tspnet.read() (on page 8-455)
tspnet.readavailable() (on page 8-456)
tspnet.reset() (on page 8-457)
tspnet.termination() (on page 8-457)
tspnet.timeout (on page 8-458)
tspnet.tsp.abort() (on page 8-458)
tspnet.tsp.abortonconnect (on page 8-459)
tspnet.tsp.rbtablecopy() (on page 8-460)
tspnet.tsp.runscript() (on page 8-461)
tspnet.write() (on page 8-461)

Section 6: Introduction to TSP operation Series 3700A System Switch/Multimeter Reference Manual

6-22 3700AS-901-01 Rev. B/May 2013

Userstrings
Use the functions in this group to store and retrieve user-defined strings in nonvolatile memory.
These strings are stored as key-value pairs. Key-value pairs are associated arrays of data items,
where the key is used to index into the array. The key is a unique identifier such as a part number or
identification string. The value is a data item or a pointer to where that data item is stored.

You can use the userstring functions to store custom, instrument-specific information in the
instrument, such as department number, asset number, or manufacturing plant location.

userstring.add() (on page 8-463)
userstring.catalog() (on page 8-464)
userstring.delete() (on page 8-465)
userstring.get() (on page 8-465)

In this section:

Fundamentals of scripting for TSP ... 7-1
Fundamentals of programming for TSP 7-14
Using Test Script Builder (TSB) ... 7-34
Advanced scripting for TSP .. 7-36
TSP-Link system expansion interface 7-45
TSP-Net ... 7-55

Fundamentals of scripting for TSP

Though it can improve your process to use scripts, you do not have to create scripts to use the
instrument. Most of the examples in the documentation can be run by sending individual command
messages. The next few sections of the documentation describe scripting and programming features
of the instrument. You only need to review this information if you are using scripting and
programming.

Scripting helps you combine commands into a block of code that the instrument can run. Scripts help
you communicate with the instrument more efficiently.

Scripts offer several advantages compared to sending individual commands from the host controller
(computer):

• Scripts are easier to save, refine, and implement than individual commands.
• The instrument performs more quickly and efficiently when it processes scripts than it does when

it processes individual commands.
• You can incorporate features such as looping and branching into scripts.
• Scripts allow the controller to perform other tasks while the instrument is running a script,

enabling some parallel operation.
• Scripts eliminate repeated data transfer times from the controller.

In the instrument, the Test Script Processor (TSP®) scripting engine processes and runs scripts.

This section describes how to create, load, modify, and run scripts.

Section 7

Instrument programming

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-2 3700AS-901-01 Rev. B/May 2013

What is a script?
A script is a collection of instrument control commands and programming statements. Scripts that you
create are referred to as user scripts.

Your scripts can be interactive. Interactive scripts display messages on the front panel of the
instrument that prompt the operator to enter parameters.

Run-time and nonvolatile memory storage of scripts
Scripts are loaded into the run-time environment of the instrument. From there, they can be stored in
the nonvolatile memory.

The run-time environment is a collection of global variables, which include scripts, that the user has
defined. A global variable can be used to store a value while the instrument is turned on. When you
create a script, the instrument creates a global variable with the same name so that you can
reference the script more conveniently. After scripts are loaded into the run-time environment, you
can run and manage them from the front panel of the instrument or from a computer. Information in
the run-time environment is lost when the instrument is turned off.

Nonvolatile memory is where information is stored even when the instrument is turned off. Save
scripts to nonvolatile memory to save them even if the power is cycled. The scripts that are in
nonvolatile memory are loaded into the run-time environment when the instrument is turned on.

Scripts are placed in the run-time environment when:

• The instrument is turned on. All scripts that are saved to nonvolatile memory are copied to the
run-time environment when the instrument is turned on.

• Loaded over a remote command interface.

For detail on the amount of memory available in the run-time environment, see Memory
considerations for the run-time environment (on page 7-43).

If you make changes to a script in the run-time environment, the changes are lost when the
instrument is turned off. To save the changes, you must save them to nonvolatile memory. See
Working with scripts in nonvolatile memory (on page 7-10).

What can be included in scripts?
Scripts can include combinations of TSP commands and Lua code. TSP commands instruct the
instrument to do one thing and are described in the command reference (see TSP commands (on
page 8-10)). Lua is a scripting language that is described in Fundamentals of programming for TSP
(on page 7-14).

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-3

Commands that cannot be used in scripts
Though an instrument accepts the following commands, you cannot use these commands in scripts.

Commands that cannot be used in scripts

General commands IEEE Std 488.2 common commands
abort
endflash
endscript
flash
loadscript
loadandrunscript
password

*CLS
*ESE
*ESE?
*ESR?
*IDN?
*OPC
*OPC?

*RST
*SRE
*SRE?
*STB?
*TRG
*TST?
*WAI

Manage scripts
This section describes how to create scripts by sending commands over the remote interface and
using TSB Embedded.

Tools for managing scripts
To manage scripts, you can send messages to the instrument, use your own development tool or
program, use Keithley Instruments Test Script Builder (TSB) software, or use TSB Embedded on the
instrument's web interface. TSB and TSB Embedded are described below.

• Test Script Builder (TSB) software: TSB software is a programming tool that is on the Test
Script Builder Software Suite CD-ROM (included with your Series 3700A). You can use it to
create, modify, debug, and store Test Script Processor (TSP®) scripting engine scripts. For more
information about using the TSB software, see Using Test Script Builder (TSB) (on page 7-34).

• TSB Embedded: TSB Embedded is a tool with a reduced set of features than the complete
Keithley TSB software. TSB Embedded has both script-building functionality and console
functionality (single-line commands). It is accessed from a web browser.

If you are using TSB or TSB Embedded to create scripts, you do not need to use the commands
loadscript or loadandrunscript and endscript.

Create and load a script
You create scripts by loading them into the run-time environment of the instrument. You can load a
script as a named script or as the anonymous script.

Once a script is loaded into the instrument, you can execute it remotely or from the front panel.

Anonymous scripts

If a script is created with the loadscript or loadandrunscript command with no name defined,
it is called the "anonymous" script. There can only be one anonymous script in the run-time
environment. If another anonymous script is loaded into the run-time environment, it replaces the
existing anonymous script.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-4 3700AS-901-01 Rev. B/May 2013

Named scripts

A named script is a script with a unique name. You can have as many named scripts as needed in
the instrument (within the limits of the memory available to the run-time environment). When a named
script is loaded into the run-time environment with the loadscript or loadandrunscript
commands, a global variable with the same name is created to reference the script.

Key points regarding named scripts:

• If you load a new script with the same name as an existing script, the existing script becomes an
unnamed script, which in effect removes the existing script if there are no variables that reference
it.

• Sending revised scripts with different names will not remove previously loaded scripts.
• Named scripts can be saved to internal nonvolatile memory. Saving a named script to nonvolatile

memory allows the instrument to be turned off without losing the script. See Working with scripts
in nonvolatile memory (on page 7-10).

Load a script by sending commands over the remote interface

To load a script over the remote interface, you can use the loadscript, loadandrunscript, and
endscript commands.

The loadscript and loadandrunscript commands start the collection of messages that make
up the script. When the instrument receives either of these commands, it starts collecting all
subsequent messages. Without these commands, the instrument would run them immediately as
individual commands.

The endscript command tells the instrument to compile the collection of messages. It compiles the
messages into one group of commands. This group of commands is loaded into the run-time
environment.

The following figure shows an example of how to load a script named “test.” The first command tells
the instrument to start collecting the messages for the script named “test.” The last command marks
the end of the script. When this script is run, the message “This is a test” is displayed on the
instrument and sent to the computer.

Figure 109: Loadscript and endscript example

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-5

To load a named script by sending commands:
1. Send the command loadscript scriptName, where scriptName is the name of the script.

The name must be a legal Lua variable name.
2. Send the commands that need to be included in the script.
3. Send the command endscript.
4. You can now run the script. See Run scripts (on page 7-5).

To run the script immediately, use loadandrunscript scriptName instead of loadscript.

Create a script using TSB Embedded

If you are using TSB Embedded to create scripts, you do not need to use the commands
loadscript or loadandrunscript and endscript.

You can create a script from the instrument web page with TSB Embedded. When you save the script
in TSB Embedded, it is loaded into the run-time environment and saved in the nonvolatile memory of
the instrument. For information about using TSB Embedded, select the Help button on a web page or
the Help option from the navigation pane on the left side of the web interface.

To create a script using TSB Embedded:
1. In the TSP Script box, enter a name for the script.
2. In the input area, enter the sequence of commands to be included in the script.
3. Click Save Script. The name is added to the User Scripts list on the left.

Create a script using the create configuration script feature

The create configuration script feature captures the present settings of the instrument. Once saved,
you can use this script to return to that configuration, or use it as a starting point to create your own
scripts.

Once created, the configuration script is a normal TSP script — you can use it as you do any other
script.

For detail on creating a configuration script, see Save the present configuration (on page 2-100).

Run scripts
This section describes how to run the anonymous and named scripts.

If the instrument is in local control when the script is started, it switches to remote control (REM is
displayed) while the script is running. The instrument is returned to local control when the script
completes. If you press the front-panel EXIT (LOCAL) key while the script is running, the script is
stopped.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-6 3700AS-901-01 Rev. B/May 2013

Run the anonymous script

The anonymous script can be run many times without reloading it. It remains in the run-time
environment until a new anonymous script is created or until the instrument is turned off.

To run the anonymous script, use any one of these commands:

• run()

• script.run()

• script.anonymous()

• script.anonymous.run()

Run a named script

You can run any named script that is in the run-time environment using one of the following
commands:

• scriptVar()

• scriptVar.run()

Where: scriptVar is the user-defined name of the script.

To run a named script from TSB Embedded, select the script from the User Scripts list and click Run.

When a script is named, it can be accessed using the global variable scriptVar.

Example: Run a named script

test3() If the script test3 is loaded into the
run-time environment, the instrument
executes test3.

Scripts that run automatically
You can set up scripts to run automatically when you power on the instrument. To do this, either set
the autorun attribute for the script to yes (see Autorun scripts (on page 7-6)), or create a script with
the script name autoexec (see Autoexec script (on page 7-7)).

Autorun scripts

Autorun scripts run automatically when the instrument is turned on. You can set any number of scripts
to autorun. The run order for autorun scripts is arbitrary, so make sure the run order is not important.

As shown in the example below, you can set a script to run automatically by setting the .autorun
attribute of the script to "yes" and then saving the script.

Example:
scriptVar.autorun = "yes"
scriptVar.save()

Where: scriptVar is the user-defined name of the script.

To disable autorun, set the script's .autorun attribute to "no" and then save the script.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-7

The scriptVar.save() command saves the script to nonvolatile memory, which makes the
change persistent through a power cycle. See Save a user script to nonvolatile memory (on page 7-
10) for more detail.

Example: Set a script to run automatically

test5.autorun = "yes"
test5.save()

Assume a script named test5 is in the
run-time environment.
The next time the instrument is turned on,
test5 script automatically loads and
runs.

Autoexec script

The autoexec script runs automatically when the instrument is turned on. It runs after all the scripts
have loaded and any scripts marked as autorun have run.

To create a script that executes automatically, create and load a new script and name it autoexec.
See Create and load a script (on page 7-3).

You must save the autoexec script to nonvolatile memory if you want to use it after instrument power
has been turned off and then turned on again. See Save a user script to nonvolatile memory (on
page 7-10) for more detail.

Example: Creating an autoexec script with loadscript command

loadscript autoexec
display.clear()
display.settext("Hello from autoexec")
endscript
autoexec.save()

Creates the script autoexec.
Saves the autoexec script to nonvolatile
memory. The next time the instrument is
turned on, "Hello from autoexec" is
displayed.

Example: Creating an autoexec script using TSB Embedded

display.clear()
display.settext("Hello from autoexec")

In the TSP Script box, enter autoexec.
Enter the code in the entry box.
Click Save Script.
Creates a new script that clears the
display when the instrument is turned on
and displays "Hello from autoexec."

Save the anonymous script as a named script
To save the anonymous script to nonvolatile memory, you must name it first.
To save the anonymous script as a named script:
1. To name the script, send the command script.anonymous.name = "myTest" (where

myTest is the name of the script).
2. Send the script.anonymous.save() command to save myTest to nonvolatile memory.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-8 3700AS-901-01 Rev. B/May 2013

Retrieve a user script
There are several ways to retrieve the source code of a user script:

• One line at a time: Use scriptVar.list() to retrieve the source code one line at a time

• Entire script: Use the print(scriptVar.source) command to retrieve the script source code
as a single string

• Use TSB Embedded

See Create and load a script (on page 7-3) for information about recreating the script and loading it
back into the instrument.

To get a list of scripts that are in nonvolatile memory, use the script.user.catalog() (on page 8-361)
function.

Retrieve source code one line at a time

To retrieve the source code one line at a time, send the scriptVar.list() command. When this
command is received, the instrument sends the entire script. Each line of the script is sent as a
separate response message. The output includes the loadscript or loadandrunscript and
endscript keywords.

After retrieving the source code, you can modify and save the command lines as a user script under
the same name or a new name.

To retrieve the source code of a script one line at a time, send the command:
scriptVar.list()

Where scriptVar is the name of the script.

To retrieve the commands in the anonymous script, use script.anonymous.list().

Example: Retrieve source code one line at a time

test.list() Retrieve the source of a script named "test".
The output will look similar to:
loadscript test
display.clear()
display.settext("This is a test")
print("This is a test")
endscript

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-9

Retrieve a script as a single string

To retrieve the entire user script source code as a single string, use the scriptVar.source
attribute. The loadscript or loadandrunscript and endscript keywords are not included.

To retrieve the source code as a single string, send the command:
print(scriptVar.source)

Where scriptVar is the name of the script.

Example: Retrieve the source code as a single string

print(test.source) Retrieve the source of a script named
"test".
Output might look similar to:
display.clear()

display.settext("This is a
test") print("This is a
test")

Script example: Retrieve the content of scripts

This set of examples:

• Retrieves the source of a script using scriptVar.list()

• Retrieves the source of a script using scriptVar.source

Example: Retrieve the content of a script with scriptVar.list()

test.list()

Request a listing of the source of test.
An example of the possible instrument output is
shown here (note that the loadscript and
endscript commands are included).

Output:
loadscript scriptVarTest
listTones = {100, 400, 800}
for index in listTones do
 beeper.beep(.5, listTones[index])
end
endscript

Example: Retrieve the content of a script with scriptVar.source

print(test.source)

Request a listing of the source of the script named
test. The loadscript and endscript
commands are not included.
An example of the possible instrument output is:
listTones = {100, 400, 800}
for index in listTones do
 beeper.beep(.5, listTones[index])
end

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-10 3700AS-901-01 Rev. B/May 2013

Working with scripts in nonvolatile memory
The Fundamentals of scripting for TSP (on page 7-1) section in this manual describes working with
scripts, primarily in the run-time environment. You can also work with scripts in nonvolatile memory.

The run-time environment and nonvolatile memory are separate storage areas in the instrument. The
information in the run-time environment is lost when the instrument is turned off. The nonvolatile
memory remains intact when the instrument is turned off. When the instrument is turned on,
information in nonvolatile memory is loaded into the run-time environment.

Save a user script
You can save scripts to nonvolatile memory using commands or TSB Embedded.

Only named scripts can be saved to nonvolatile memory. The anonymous script must be named
before it can be saved to nonvolatile memory.

If a script is not saved to nonvolatile memory, the script is lost when the instrument is turned off.

To save a script to nonvolatile memory:
1. Create and load a named script (see Create and load a script (on page 7-3)).
2. Do one of the following:

• Send the command scriptVar.save(), where scriptVar is the name of the script.
• In TSB Embedded, click Save Script.

Example: Save a user script to nonvolatile memory

test1.save() Assume a script named test1
has been loaded. test1 is
saved into nonvolatile memory.

Delete user scripts

These steps remove a script from nonvolatile memory. To completely remove a script from the
instrument, there are additional steps you must take. See Delete user scripts from the instrument (on
page 7-43).

To delete a script from nonvolatile memory using a remote interface:

You can delete the script from nonvolatile memory by sending either of the following commands:

• script.delete("name")

• script.user.delete("name")

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-11

Where: name is the user-defined name of the script.

To delete a script from nonvolatile memory using TSB Embedded:
1. In TSB Embedded, select the script from the User Scripts list.
2. Click Delete. There is no confirmation message.

Example: Delete a user script from nonvolatile memory

script.delete("test8") Delete a user script named test8
from nonvolatile memory.

Run a user script from the instrument front panel
From the instrument front panel, you can load and run a user script.

To run the code from the front panel and add it to the USER menu:

1. Press the LOAD key.
2. Select USER.
3. Select the user chunk from list and press the ENTER key. The chunk is loaded into the run-time

environment.

If you are used to using print in Test Script Builder, note that the output of the prints using this
procedure will not function the same as when you are in Test Script Builder. You may find that it
makes more sense to use Test Script Builder to get the output you need.

4. Press the RUN key to execute.

To run a script directly without adding it to the USER menu:

1. Press the LOAD key.
2. Select SCRIPTS and press the ENTER key. There may be a short pause before a menu is

displayed that represents the scripts in the instrument.
3. Select the script from the list and press the ENTER key. Now the script is loaded for front panel

execution.

Figure 110: VARIABLE - NOTE

If you are used to using print in Test Script Builder, note that the output of the prints using this procedure

will not function the same as when you are in Test Script Builder. You may find that it makes more
sense to use Test Script Builder to get the output you need.

4. Press the RUN key to execute.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-12 3700AS-901-01 Rev. B/May 2013

Load a script from the instrument front panel
You can load scripts to the run-time environment of the instrument from a USB flash drive.

When you load a named script from the flash drive, the script is named using the name that follows
the loadscript shell keyword (not the filename on the flash drive). The script is loaded into the
script.user.scripts table.

If the loaded file does not contain loadscript and endscript shell keywords, the code is loaded
as the anonymous script. Loading an unnamed script overwrites the existing anonymous script.

The file must be a valid script file. If not, an error message is posted and no further action is taken.
You can view the errors on the front panel of the instrument.

To load a script from a USB flash drive:

1. Insert the flash drive into the USB port on the instrument.
2. Press the MENU key.
3. Select the SCRIPT option.
4. Select the LOAD option.
5. Select the USB option. A menu is displayed that lists the .tsp files and directories on the flash

drive.
6. If the files are in a directory, use the navigation wheel to select the directory. A new menu is

displayed that lists the .tsp files and directories in that directory.
7. Use the navigation wheel to select the .tsp file you want to load.
8. If the script has the same name as a script that is already in memory, you are prompted to

overwrite the script.
• Select "Yes" to continue.
• Select "No" to return to the list of files. You must select a file to continue.

1. The SCRIPT ACTION menu is displayed.
2. Select SAVE_INTERNAL.
3. The SAVE SCRIPT INTERNAL prompt is displayed. Select Yes to save the file to nonvolatile

memory. (This is the same as sending scriptVar.save() with no parameters.)
4. The SCRIPT ACTION menu is displayed again.
5. If you would like to set the script to run from the RUN button:

a. Select ACTIVE_FOR_RUN. MAKE ACTIVE SCRIPT is displayed.
b. Select YES.

1. Loading is complete. To return to the MAIN menu, press EXIT (LOCAL) until the MAIN menu is
displayed.

2. If you selected ACTIVE_FOR_RUN, you can select RUN to run the script.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-13

Save a script from the instrument front panel
You can save scripts from the run-time environment to nonvolatile memory from the instrument front
panel.

If you want to save the anonymous script to nonvolatile memory, you must name it first. See Save
the anonymous script as a named script (on page 7-7).

To save a script to nonvolatile memory from the front panel:

1. Press the MENU key.
2. Select the SCRIPT option.
3. Select the SAVE option.

A list of the scripts available to save is displayed. It may take a few seconds to display. The
displayed list is from the script.user.scripts table in the instrument.

4. Turn the navigation wheel to select the script that you want to save.
5. Select INTERNAL. Press the navigation wheel. The script is saved to nonvolatile memory using

the script's name attribute.
6. Press EXIT (LOCAL) several times to return to the Main Menu.

Interactive script
An interactive script prompts the operator to input values using the instrument front panel. The
following example script uses display messages to prompt the operator to:

• Enter the digital I/O line on which to output a trigger
• Enter the output trigger pulsewidth

After the output trigger occurs, the front display displays a message to the operator.

When an input prompt is displayed, the script waits until the operator inputs the parameter or presses
the ENTER key.

The example shown here assumes that you are using TSB or TSB Embedded. If you are using a
remote interface, you need to add the loadscript and endscript commands to the example
code. See Load a script by sending commands over the remote interface (on page 7-4) for details.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-14 3700AS-901-01 Rev. B/May 2013

-- Clear the display.
display.clear()

-- Prompt user for digital I/O line on which to output trigger.
myDigioLine = display.menu("Select digio line", "1 2 3 4 5 6 7 8 9")

-- Convert user input to a number.
intMyDigioLine = tonumber(myDigioLine)

-- Prompt user for digital output trigger mode.
myDigioEdge = display.menu("Select digio mode", "Rising Falling")
if myDigioEdge == "Rising" then
 edgeMode = digio.TRIG_RISING
else
 edgeMode = digio.TRIG_FALLING
end

-- Prompt user for output trigger pulsewidth.
myPulseWidth = display.prompt(

"000.0", "us", "Enter trigger pulsewidth", 10, 10, 100)

-- Scale the entered pulsewidth.
myPulseWidth = myPulseWidth * 1e-6

-- Generate the pulse.
digio.trigger[intMyDigioLine].mode = edgeMode
digio.trigger[intMyDigioLine].pulsewidth = myPulseWidth
digio.trigger[intMyDigioLine].assert()

-- Alert the user through the display that the
-- output trigger has occurred.
display.setcursor(1, 1)
display.settext("Trigger asserted $Non digital I/O line " .. intMyDigioLine)

-- Wait five seconds and then return to main screen.
delay(5)
display.screen = display.MAIN

Fundamentals of programming for TSP

Introduction
To conduct a test, a computer (controller) is programmed to send sequences of commands to an
instrument. The controller orchestrates the actions of the instrumentation. The controller is typically
programmed to request measurement results from the instrumentation and make test sequence
decisions based on those measurements.

To take advantage of the advanced features of the instrument, you can add programming commands
to your scripts. Programming commands control script execution and provide tools such as variables,
functions, branching, and loop control.

The Test Script Processor (TSP®) scripting engine is a Lua interpreter. In TSP-enabled instruments,
the Lua programming language has been extended with Keithley-specific instrument control
commands.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-15

What is Lua?
Lua is a programming language that can be used with TSP-enabled instruments. Lua is an efficient
language with simple syntax that is easy to learn.

Lua is also a scripting language, which means that scripts are compiled and run when they are sent
to the instrument. You do not compile them before sending them to the instrument.

Lua basics
This section contains the basics about the Lua programming language to allow you to start adding
Lua programming commands to your scripts quickly.

For more information about Lua, see the Lua website (http://www.lua.org). Another source of useful
information is the Lua users group (http://lua-users.org), created for and by users of Lua programming
language.

Comments
Comments start anywhere outside a string with a double hyphen (--). If the text immediately after a
double hyphen (--) is anything other than double left brackets ([[), the comment is a short comment,
which continues only until the end of the line. If double left brackets ([[) follow the double hyphen (--),
it is a long comment, which continues until the corresponding double right brackets (]]) close the
comment. Long comments may continue for several lines and may contain nested [[. . .]] pairs.
The table below shows how to use code comments.

Using code comments

Type of
comment

Comment
delimiters

Usage Example

Short
comment

 -- Use when the
comment text is
short enough that it
will not wrap to a
second line.

--Disable the beeper.
beeper.enable = beeper.OFF

Long
comment

--[[]] Use when the
comment text is long
enough that it wraps
to additional lines.

--[[Display a menu with three menu
items. If the second menu item is
selected, the selection will be
given the value Test2.]]

Function and variable name restrictions
You cannot use Lua reserved words and top level command names for function or variable names.

You cannot use the following Lua reserved words for function or variable names.

Lua reserved words
and for or

break function repeat

do if return
else in then
elseif local true
end nil until
false not while

http://www.lua.org/
http://lua-users.org/

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-16 3700AS-901-01 Rev. B/May 2013

You also cannot use top-level command names as variable names. If you use these names, it will
result in the loss of use of the commands. For example, if you send the command digio = 5, you
cannot access the digio.* commands until you turn the instrument power off and then turn it on
again. These groups include:

Top level command names
beeper lan
bit localnode
channel opc
dataqueue reset
delay scan
digio slot
display status
errorqueue timer
eventlog trigger
exit tsplink
format tspnet
fs userstring
gpib waitcomplete
io

Values and variable types
In Lua, you use variables to store values in the run-time environment for later use.

Lua is a dynamically-typed language; the type of the variable is determined by the value that is
assigned to the variable.

Variables in Lua are assumed to be global unless they are explicitly declared to be local. A global
variable is accessible by all commands. Global variables do not exist until they have been assigned a
value.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-17

Variable types
Variables can be one of the following types.

Variable types and values

Variable type returned Value Notes

"nil" not declared The type of the value nil, whose
main property is to be different from
any other value; usually it represents
the absence of a useful value.

"boolean" true or false Boolean is the type of the values
false and true. In Lua, both nil
and false make a condition
false; any other value makes it
true.

"number" number All numbers are real numbers; there
is no distinction between integers
and floating-point numbers.

"string" sequence of words or
characters

"function" a block of code Functions perform a task or compute
and return values.

"table" an array New tables are created with { }
braces. For example,
{1, 2, 3.00e0}.

To determine the type of a variable, you can call the type() function, as shown in the examples
below.

The output you get from these examples may vary depending on the data format that is set.

Example: Nil

x = nil
print(x, type(x))

nil nil

Example: Boolean

y = false
print(y, type(y))

false boolean

Example: String and number

x = "123"
print(x, type(x))

x = x + 7
print(x, type(x))

123 string

Adding a number to x forces its type to
number.
1.30 number

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-18 3700AS-901-01 Rev. B/May 2013

Example: Function

function add_two(first_value,
 second_value)
 return first_value + second_value
end
print(add_two(3, 4), type(add_two))

7 function

Example: Table

atable = {1, 2, 3, 4}
print(atable, type(atable))
print(atable[1])
print(atable[4])

Defines a table with four numeric
elements.
Note that the "table" value (shown here
as a096cd30) will vary.

table: a096cd30 table
1
4

Delete a global variable
To delete a global variable, assign nil to the global variable. This removes the global variable from
the run-time environment.

Functions
With Lua, you can group commands and statements using the function keyword. Functions can
take zero, one, or multiple parameters, and they return zero, one, or multiple values.

You can use functions to form expressions that calculate and return a value. Functions can also act
as statements that execute specific tasks.

Functions are first-class values in Lua. That means that functions can be stored in variables, passed
as arguments to other functions, and returned as results. They can also be stored in tables.

Note that when a function is defined, it is stored in the run-time environment. Like all data that is
stored in the run-time environment, the function persists until it is removed from the run-time
environment, is overwritten, or the instrument is turned off.

Create functions using the function keyword

Functions are created with a message or in Lua code in either of the following forms:
function myFunction(parameterX) functionBody end
myFunction = function (parameterX) functionBody end

Where:

• myFunction: The name of the function.

• parameterX: Parameter names. To use multiple parameters, separate the names with commas.

• functionBody is the code that is executed when the function is called.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-19

To execute a function, substitute appropriate values for parameterX and insert them into a message
formatted as:
myFunction(valueForParameterX, valueForParameterY)

Where valueForParameterX and valueForParameterY represent the values to be passed to
the function call for the given parameters.

The output you get from these examples will vary depending on the data format settings of the
instrument.

Example 1

function add_two(first_value,
second_value)

 return first_value + second_value
end
print(add_two(3, 4))

Creates a variable named add_two that
has a variable type of function.
Output:
7

Example 2

add_three = function(first_value,
 second_value, third_value)
 return first_value + second_value +
 third_value
end
print(add_three(3, 4, 5))

Creates a variable named add_three
that has a variable type of function.
Output:
12

Example 3

function sum_diff_ratio(first_value,
 second_value)
 psum = first_value + second_value
 pdif = first_value - second_value
 prat = first_value / second_value
 return psum, pdif, prat
end
sum, diff, ratio = sum_diff_ratio(2, 3)
print(sum)
print(diff)
print(ratio)

Returns multiple parameters (sum,
difference, and ratio of the two numbers
passed to it).
Output:
5
-1
0.66666666666667

Create functions using scripts

You can use scripts to define functions. Scripts that define a function are like any other script: They
do not cause any action to be performed on the instrument until they are executed. The global
variable of the function does not exist until the script that created the function is executed.

A script can consist of one or more functions. Once a script has been run, the computer can call
functions that are in the script directly.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-20 3700AS-901-01 Rev. B/May 2013

The following steps use TSB Embedded. You can also use the loadscript and endscript
commands to create the script over the remote interface. See Load a script by sending commands
over the remote interface (on page 7-4).

Steps to create a function using a script:
1. In TSB Embedded, enter a name into the TSP Script box. For example, type MakeMyFunction.
2. Enter the function as the body of the script. This example concatenates two strings:

MyFunction = function (who)
 print("Hello " .. who)
end

3. Click Save Script.
MakeMyFunction is now on the instrument in a global variable with the same name as the script
(MakeMyFunction). However, the function defined in the script does not yet exist because the
script has not been executed.

4. Run the script as a function. For this example, send:
MakeMyFunction()
This instructs the instrument to run the script, which creates the MyFunction global variable.
This variable is of the type "function" (see Variable types (on page 7-17)).

5. Run the new function with a value.
MyFunction("world")
The response message is:
Hello world

Group commands using the function keyword

The following script contains instrument commands that display the name of the person that is using
the script on the front panel of the instrument. It takes one parameter to represent this name. When
this script is run, the function is loaded in memory. Once loaded into memory, you can call the
function outside of the script to execute it.

When calling the function, you must specify a string for the name argument of the function. For
example, to set the name to John, call the function as follows:
myDisplay("John")

Example: User script

User script created in Test Script Builder or
TSB Embedded

User script created in user's own program

function myDisplay(name)
 display.clear()
 display.settext(
 name .. "$N is here!")
end

loadscript
function myDisplay(name)
 display.clear()
 display.settext(
 name .. " $N is here!")
end
endscript

Operators
You can compare and manipulate Lua variables and constants using operators.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-21

Arithmetic operators

Operator Description

+ addition
− subtraction
* multiplication
/ division
- negation (for example, c = −a)
^ exponentiation

Relational operators

Operator Description

< less than
> greater than
<= less than or equal
>= greater than or equal
~=

not equal

== equal

Logical operators

The logical operators in Lua are and, or, and not. All logical operators consider both false and
nil as false and anything else as true.

The operator not always returns false or true.

The conjunction operator and returns its first argument if the first argument is false or nil;
otherwise, and returns its second argument. The disjunction operator or returns its first argument if
this value is different from nil and false; otherwise, or returns its second argument. Both and and
or use shortcut evaluation, that is, the second operand is evaluated only if necessary.

The example output you get may vary depending on the data format settings of the instrument.

Example

print(10 or errorqueue.next())
print(nil or "a")
print(nil and 10)
print(false and errorqueue.next())
print(false and nil)
print(false or nil)
print(10 and 20)

1.00000e+01
a
nil
false
false
nil
2.00000e+01

String concatenation

String operators

Operator Description

.. Concatenates two strings. If either argument is a number, it is coerced to a string (in
a reasonable format) before concatenation.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-22 3700AS-901-01 Rev. B/May 2013

Example: Concatenation

print(2 .. 3)
print("Hello " .. "World")

23
Hello World

Operator precedence

Operator precedence in Lua follows the order below (from higher to lower priority):

• ^ (exponentiation)

• not, - (unary)

• *, /

• +, −

• .. (concatenation)

• <, >, <=, >=, ~=, ==

• and

• or

You can use parentheses to change the precedences in an expression. The concatenation ("..") and
exponentiation ("^") operators are right associative. All other binary operators are left associative. The
examples below show equivalent expressions.

Equivalent expressions
reading + offset < testValue/2+0.5 = (reading + offset) <

((testValue/2)+0.5)

3+reading^2*4 = 3+((reading^2)*4)

Rdg < maxRdg and lastRdg <=
 expectedRdg

= (Rdg < maxRdg) and (lastRdg <=
expectedRdg)

-reading^2 = -(reading^2)
reading^testAdjustment^2 = reading^(testAdjustment^2)

Conditional branching
Lua uses the if, else, elseif, then, and end keywords to do conditional branching.

Note that in Lua, nil and false are false and everything else is true. Zero (0) is true in Lua.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-23

The syntax of a conditional block is as follows:
if expression then
 block
elseif expression then
 block
else
 block
end

Where:

• expression is Lua code that evaluates to either true or false

• block consists of one or more Lua statements

Example: If

if 0 then
 print("Zero is true!")
else
 print("Zero is false.")
end

Output:
Zero is true!

Example: Comparison

x = 1
y = 2
if x and y then
 print("Both x and y are true")
end

Output:
Both x and y are true

Example: If and else

x = 2
if not x then
 print("This is from the if block")
else
 print("This is from the else block")
end

Output:
This is from the else
block

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-24 3700AS-901-01 Rev. B/May 2013

Example: Else and elseif

x = 1
y = 2
if x and y then
 print("'if' expression 2 was not false.")
end

if x or y then
 print("'if' expression 3 was not false.")
end

if not x then
 print("'if' expression 4 was not false.")
else
 print("'if' expression 4 was false.")
end

if x == 10 then
 print("x = 10")
elseif y > 2 then
 print("y > 2")
else
 print("x is not equal to 10, and y is not greater than 2.")
end

Output:
'if' expression 2 was not false.
'if' expression 3 was not false.
'if' expression 4 was false.
x is not equal to 10, and y is not greater than 2.

\

Loop control
If you need to repeat code execution, you can use the Lua while, repeat, and for control
structures. To exit a loop, you can use the break keyword.

While loops

To use conditional expressions to determine whether to execute or end a loop, you use while loops.
These loops are similar to Conditional branching (on page 7-22) statements.
while expression do
 block
end

Where:

• expression is Lua code that evaluates to either true or false

• block consists of one or more Lua statements

The output you get from this example may vary depending on the data format settings of the
instrument.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-25

Example: While

list = {
 "One", "Two", "Three", "Four", "Five", "Six"}
print("Count list elements on numeric index:")
element = 1
while list[element] do
 print(element, list[element])
 element = element + 1
end

This loop exits when list[element]
= nil.
Output:
Count list elements on
 numeric index:
1 One
2 Two
3 Three
4 Four
5 Five
6 Six

Repeat until loops

To repeat a command, you use the repeat ... until statement. The body of a repeat statement
always executes at least once. It stops repeating when the conditions of the until clause are met.
repeat
 block
until expression

Where:

• block consists of one or more Lua statements

• expression is Lua code that evaluates to either true or false

The output you get from this example may vary depending on the data format settings of the
instrument.

Example: Repeat until

list = {
 "One", "Two", "Three", "Four", "Five", "Six"}
print("Count elements in list using repeat:")
element = 1
repeat
 print(element, list[element])
 element = element + 1
until not list[element]

Output:
Count elements in list
 using repeat:
1 One
2 Two
3 Three
4 Four
5 Five
6 Six

For loops

There are two variations of for statements supported in Lua: numeric and generic.

In a for loop, the loop expressions are evaluated once, before the loop starts.

The output you get from these examples may vary depending on the data format settings of the
instrument.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-26 3700AS-901-01 Rev. B/May 2013

Example: Numeric for

list = {"One", "Two", "Three", "Four", "Five", "Six"}
---------- For loop -----------
print("Counting from one to three:")
for element = 1, 3 do
 print(element, list[element])
end
print("Counting from one to four, in steps of two:")
for element = 1, 4, 2 do
 print(element, list[element])
end

The numeric for loop repeats a block of code while a control variable runs through an
arithmetic progression.
Output:
Counting from one to three:
1 One
2 Two
3 Three
Counting from one to four, in steps of two:
1 One
3 Three

Example: Generic for

days = {"Sunday",
 "Monday", "Tuesday",
 "Wednesday", "Thursday",
 "Friday", "Saturday"}

for i, v in ipairs(days) do
 print(days[i], i, v)
end

The generic for statement works by using functions called iterators. On each iteration, the
iterator function is called to produce a new value, stopping when this new value is nil.
Output:
Sunday 1 Sunday
Monday 2 Monday
Tuesday 3 Tuesday
Wednesday 4 Wednesday
Thursday 5 Thursday
Friday 6 Friday
Saturday 7 Saturday

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-27

Break

The break statement can be used to terminate the execution of a while, repeat, or for loop,
skipping to the next statement after the loop. A break ends the innermost enclosing loop.

Return and break statements can only be written as the last statement of a block. If it is necessary to
return or break in the middle of a block, an explicit inner block can be used.

The output you get from these examples may vary depending on the data format settings of the
instrument.

Example: Break with while statement

local numTable = {5, 4, 3, 2, 1}
local k = table.getn(numTable)
local breakValue = 3
while k > 0 do
 if numTable[k] == breakValue then
 print("Going to break and k = ", k)
 break
 end
 k = k - 1
end
if k == 0 then
 print("Break value not found")
end

This example defines a break value
(breakValue) so that the break
statement is used to exit the while loop
before the value of k reaches 0.
Output:
Going to break and k = 3

Example: Break with while statement enclosed by comment delimiters

local numTable = {5, 4, 3, 2, 1}
local k = table.getn(numTable)
--local breakValue = 3
while k > 0 do
 if numTable[k] == breakValue then
 print("Going to break and k = ", k)
 break
 end
 k = k - 1
end
if k == 0 then
 print("Break value not found")
end

This example defines a break value
(breakValue), but the break value
line is preceded by comment delimiters
so that the break value is not
assigned, and the code reaches the
value 0 to exit the while loop.
Output:
Break value not found

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-28 3700AS-901-01 Rev. B/May 2013

Example: Break with infinite loop

a, b = 0, 1
while true do
 print(a, b)
 a, b = b, a + b
 if a > 500 then
 break
 end
end

This example uses a break statement
that causes the while loop to exit if the
value of a becomes greater than 500.
Output:
0 1
1 1
1 2
2 3
3 5
5 8
8 13
13 21
21 34
34 55
55 89
89 144
144 233
233 377
377 610

Tables and arrays
Lua makes extensive use of the data type table, which is a flexible array-like data type. Table indices
start with 1. Tables can be indexed not only with numbers, but with any value except nil. Tables can
be heterogeneous, which means that they can contain values of all types except nil.

Tables are the sole data structuring mechanism in Lua. They may be used to represent ordinary
arrays, symbol tables, sets, records, graphs, trees, and so on. To represent records, Lua uses the
field name as an index. The language supports this representation by providing a.name as an easier
way to express a["name"].

The output you get from this example may vary depending on the data format settings of the
instrument.

Example: Loop array

atable = {1, 2, 3, 4}
i = 1
while atable[i] do
 print(atable[i])
 i = i + 1
end

Defines a table with four numeric
elements.
Loops through the array and prints
each element.
The Boolean value of
atable[index] evaluates to true if
there is an element at that index. If
there is no element at that index, nil
is returned (nil is considered to be
false).
Output:
1
2
3
4

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-29

Standard libraries
In addition to the standard programming constructs described in this document, Lua includes
standard libraries that contain useful functions for string manipulation, mathematics, and related
functions. Test Script Processor (TSP®) scripting engine instruments also include instrument control
extension libraries, which provide programming interfaces to the instrumentation that can be
accessed by the TSP scripting engine. These libraries are automatically loaded when the TSP
scripting engine starts and do not need to be managed by the programmer.

The following topics provide information on some of the basic Lua standard libraries. For additional
information, see the Lua website (http://www.lua.org).

When referring to the Lua website, please be aware that the TSP scripting engine uses Lua 5.0.2.

Base library functions
Base library functions

Function Description

collectgarbage()
collectgarbage(limit)

Sets the garbage-collection threshold to the given limit (in
kilobytes) and checks it against the byte counter. If the new
threshold is smaller than the byte counter, Lua immediately
runs the garbage collector. If there is no limit parameter, it
defaults to zero (0), which forces a garbage-collection cycle.
See the "Lua memory management" topic below for more
information.

gcinfo() Returns the number of kilobytes of dynamic memory that the
Test Script Processor (TSP®) scripting engine is using, and
returns the present garbage collector threshold (also in
kilobytes). See the "Lua memory management" topic below for
more information.

tonumber(x)
tonumber(x, base)

Returns x converted to a number. If x is already a number, or a
convertible string, the number is returned; otherwise, it returns
nil.
An optional argument specifies the base to use when
interpreting the numeral. The base may be any integer between
2 and 36, inclusive. In bases above 10, the letter A (in either
upper or lower case) represents 10, B represents 11, and so
forth, with Z representing 35. In base 10, the default, the
number may have a decimal part, as well as an optional
exponent. In other bases, only unsigned integers are accepted.

tostring(x) Receives an argument of any type and converts it to a string in
a reasonable format.

type(v) Returns (as a string) the type of its only argument. The possible
results of this function are "nil" (a string, not the value nil),
"number", "string", "boolean", "table", "function",
"thread", and "userdata".

http://www.lua.org/

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-30 3700AS-901-01 Rev. B/May 2013

Lua memory management

Lua automatically manages memory, which means you do not have to allocate memory for new
objects and free it when the objects are no longer needed. Lua occasionally runs a garbage collector
to collect all objects that are no longer accessible from Lua. All objects in Lua are subject to automatic
management, including tables, variables, functions, threads, and strings.

Lua uses two numbers to control its garbage-collection cycles. One number counts how many bytes
of dynamic memory Lua is using; the other is a threshold. When the number of bytes crosses the
threshold, Lua runs the garbage collector, which reclaims the memory of all inaccessible objects. The
byte counter is adjusted and the threshold is reset to twice the new value of the byte counter.

String library functions
This library provides generic functions for string manipulation, such as finding and extracting
substrings. When indexing a string in Lua, the first character is at position 1 (not 0, as in ANSI C).
Indices may be negative and are interpreted as indexing backward from the end of the string. Thus,
the last character is at position −1, and so on.

String library functions

Function Description

string.byte(s)
string.byte(s, i)
string.byte(s, i, j)

Returns the internal numeric codes of the characters s[i],
s[i+1], ···, s[j]. The default value for i is 1; the default
value for j is i.

string.char(···) Receives zero or more integers. Returns a string with length equal
to the number of arguments, in which each character has the
internal numeric code equal to its corresponding argument.

string.format(
 formatstring,

...)

Returns a formatted version of its variable number of arguments
following the description given in its first argument, which must be
a string. The format string follows the same rules as the printf
family of standard C functions. The only differences are that the
modifiers *, l, L, n, p, and h are not supported and there is an
extra option, q. The q option formats a string in a form suitable to
be safely read back by the Lua interpreter; the string is written
between double quotes, and all double quotes, newlines,
embedded zeros, and backslashes in the string are correctly
escaped when written.
For example, the call:
string.format('%q', 'a string with "quotes" and

\n new line')
will produce the string:
"a string with \"quotes\" and \

new line"
The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number
as argument. q and s expect a string. This function does not
accept string values containing embedded zeros, except as
arguments to the q option.

string.len(s)

Receives a string and returns its length. The empty string "" has
length 0. Embedded zeros are counted, so "a\000bc\000" has
length 5.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-31

String library functions

Function Description

string.lower(s) Receives a string and returns a copy of this string with all
uppercase letters changed to lowercase. All other characters are
left unchanged.

string.rep(s, n) Returns a string that is the concatenation of n copies of the
string s.

string.sub(s, i)
string.sub(s, i, j)

Returns the substring of s that starts at i and continues until j; i
and j can be negative. If j is absent, it is assumed to be equal
to -1 (which is the same as the string length). In particular, the call
string.sub(s, 1, j) returns a prefix of s with length j, and
string.sub(s, -i) returns a suffix of s with length i.

string.upper(s) Receives a string and returns a copy of this string with all
lowercase letters changed to uppercase. All other characters are
left unchanged.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-32 3700AS-901-01 Rev. B/May 2013

Math library functions
This library is an interface to most of the functions of the ANSI C math library. All trigonometric
functions work in radians. The functions math.deg() and math.rad() convert between radians
and degrees.

Math library functions

Function Description

math.abs(x) Returns the absolute value of x.
math.acos(x) Returns the arc cosine of x.
math.asin(x) Returns the arc sine of x.
math.atan(x) Returns the arc tangent of x.
math.atan2(y, x) Returns the arc tangent of y/x, but uses the signs of both parameters to

find the quadrant of the result (it also handles correctly the case of x
being zero).

math.ceil(x) Returns the smallest integer larger than or equal to x.
math.cos(x) Returns the cosine of x.
math.deg(x) Returns the angle x (given in radians) in degrees.
math.exp(x) Returns the value ex.
math.floor(x) Returns the largest integer smaller than or equal to x.
math.frexp(x) Returns m and e such that x = m2e, where e is an integer and the

absolute value of m is in the range [0.5, 1] (or zero when x is zero).
math.ldexp(x, n) Returns m2e (e should be an integer).
math.log(x) Returns the natural logarithm of x.
math.log10(x) Returns the base-10 logarithm of x.
math.max(x, ...) Returns the maximum value among its arguments.
math.min(x, ...) Returns the minimum value among its arguments.
math.pi The value of π (3.141592654).

math.pow(x, y) Returns xy (you can also use the expression x^y to compute this value).

math.rad(x) Returns the angle x (given in degrees) in radians.
math.random()
math.random(m)
math.random(m, n)

This function is an interface to the simple pseudorandom generator
function rand provided by ANSI C.
When called without arguments, returns a uniform pseudorandom real
number in the range [0,1]. When called with an integer number m,
math.random() returns a uniform pseudorandom integer in the
range [1, m]. When called with two integer numbers m and n,
math.random() returns a uniform pseudorandom integer in the
range [m, n].

math.randomseed(x) Sets x as the seed for the pseudorandom generator: equal seeds
produce equal sequences of numbers.

math.sin(x) Returns the sine of x.
math.sqrt(x) Returns the square root of x. (You can also use the expression x^0.5 to

compute this value.)
math.tan(x) Returns the tangent of x.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-33

Programming example

Programming example: Script with a for loop
The following script puts a message on the front panel display slowly — one character at a time. The
intent of this example is to demonstrate:

• The use of a for loop

• Simple display remote commands
• Simple Lua string manipulation

When creating a script using the TSB Embedded, you do not need the shell commands
loadscript and endscript, as shown in the examples below.

Example: User script

User script created in TSB Embedded User script created in user's own program

 loadscript

display.clear()
myMessage = "Hello World!"
for k = 1, string.len(myMessage) do
 x = string.sub(myMessage, k, k)
 display.settext(x)
 print(x)
 delay(1)
end

display.clear()
myMessage = "Hello World!"
for k = 1, string.len(myMessage) do
 x = string.sub(myMessage, k, k)
 display.settext(x)
 print(x)
 delay(1)
end

 endscript

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-34 3700AS-901-01 Rev. B/May 2013

Using Test Script Builder (TSB)
Keithley Instruments Test Script Builder (TSB) is a software tool that simplifies building test scripts.
You can use TSB to perform the following operations:

• Send remote commands and Lua statements
• Receive responses (data) from commands and scripts
• Upgrade instrument firmware
• Create, manage, and run user scripts
• Debug scripts
• Import factory scripts to view or edit and convert to user scripts

The Keithley Instruments Test Script Processor (TSP®) scripting engine is a Lua interpreter. In TSP-
enabled instruments, the Lua programming language has been extended with Keithley-specific
instrument control commands. For more information about using the Lua scripting language with
Keithley TSP-enabled instruments, refer to the Fundamentals of programming for TSP (on page 7-14)
section.

Keithley has created a collection of remote commands specifically for use with Keithley TSP-enabled
instruments; for detailed information about those commands, refer to the "Command reference"
section of the documentation for your specific instrument. You can build scripts from a combination of
these commands and Lua programming statements. Scripts that you create are referred to as "user
scripts." Also, some TSP-enabled instruments come with a number of built-in factory scripts.The
following figure shows an example of the Test Script Builder. As shown, the workspace is divided into
these areas:

• Project navigator
• Script editor
• Outline view
• Programming interaction
• Help files

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-35

Figure 111: Example of the Test Script Builder workspace

Item Description
1 Project navigator
2 Script editor; right-click to run the script that is displayed
3 Outline view
4 Programming interaction

5 Help; includes detailed information on using Test Script Builder

Installing the TSB software
The installation files for the Test Script Builder software are available on the Test Script Builder
Software Suite CD (Keithley Instruments part number KTS-850 F01 or later) that came with your
Model 3706A. You can also get it from the Keithley Instruments support website
(http://www.keithley.com/support).

To install the Test Script Builder (TSB) software:
1. Close all programs.
2. Place the Test Script Builder Software Suite CD into your CD-ROM drive or start the software

from the downloaded file.
3. Follow the on-screen instructions.

If you are using the CD-ROM and the web browser does not start automatically and display a screen
with software installation links, open the installation file (setup.exe) located on the CD-ROM to start
installation.

http://www.keithley.com/support

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-36 3700AS-901-01 Rev. B/May 2013

Project navigator
The project navigator consists of project folders and the script files (.tsp) created for each project.
Each project folder can have one or more script files.

To view the script files in a project folder, click the plus (+) next to the project folder. To hide the folder
contents, click the minus (−) next to the project folder.

You can download a TSP project to the instrument and run it, or you can run it from the TSB
interface.

Script editor
The script editor is where scripts are written, modified, and debugged.

To open and display a script file, double-click the file name in the project navigator. You can have
multiple script files open in the script editor at the same time. Each open script file is displayed on a
separate tab.

To display another script file that is already open, click the tab that contains the script in the script
editor area.

Programming interaction
This part of the workspace is where you interact with the scripts that you are building in Test Script
Builder (TSB). The actual contents of the programming interaction area of the workspace can vary.

You can send commands from the Instrument Console command line, retrieve data, view variables
and errors, and view and set breakpoints when using the debug feature.

Advanced scripting for TSP
The following topics describe advanced information that can help you understand how the Test Script
Processor (TSP®) scripting engine works.

Global variables and the script.user.scripts table
When working with script commands, it is helpful to understand how scripts are handled in the
instrument.

Scripts are loaded into the run-time environment from nonvolatile memory when you turn the
instrument on. They are also added to the run-time environment when you load them into the
instrument.

A script in the run-time environment can be:

• A named script
• An unnamed script
• The anonymous script (which is a special unnamed script)

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-37

Script names can be assigned by using the loadscript command or by defining the scriptVar
parameter of the script.new() function. When a named script is loaded into the run-time
environment:

• A global variable with the same name is created so that you can reference the script more
conveniently.

• An entry for the script is added to the script.user.scripts table.

When you create a script using the script.new() function without providing a name, the script is
added to the run-time environment as an unnamed script. The script.new() function returns the
script, but the script is not added to the script.user.scripts table.

When the anonymous script is loaded, it does not have a global variable or an entry in the
script.user.scripts table. If there is an existing anonymous script, it is replaced by the new
one.

When the instrument is turned off, everything in the run-time environment is deleted, including the
scripts and global variables.

See the figure below to see how the scripts, global variables, and script.user.scripts table
interrelate.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-38 3700AS-901-01 Rev. B/May 2013

Figure 112: Global variables and scripts in the runtime environment

Create a script using the script.new() command
Use the script.new() function to copy an existing script from the local node to a remote node. This
enables parallel script execution.

You can create a script with the script.new() function using the command:
scriptVar = script.new(code, name)

Where:

scriptVar = Name of the variable created when the script is loaded into the run-time environment
code = Content of the script
name = Name that is added to the script.user.scripts table

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-39

For example, to set up a two-second beep, you can send the command:
beepTwoSec = script.new("beeper.enable = 1 beeper.beep(2, 2400)", "beepTwoSec")

To run the new script, send the command:
beepTwoSec()

When you add beepTwoSec, the global variable and script.user.scripts table entries are
made to the run-time environment as shown in the following figure.

Figure 113: Runtime environment after creating a script

Create an unnamed script using script.new()

Unnamed scripts are not available from the front-panel display of the instrument. Only the
anonymous script and named scripts are available from the front-panel display.

When you create a script using script.new(), if you do not include name, the script is added to the
run-time environment as an unnamed script. The script.new() function returns the script. You can
assign it to a global variable, a local variable, or ignore the return value. A global variable is not
automatically created.

For example, send the following command:
hello = script.new('display.clear() display.settext("hello")')

A script is created in the run-time environment and a global variable is created that references the
script.

To run the script, send the command:
hello()

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-40 3700AS-901-01 Rev. B/May 2013

Figure 114: Create an unnamed script

A script will become unnamed if you create a new script with the same name. In this circumstance,
the name of the script in the script.user.scripts table is set to an empty string before it is
replaced by the new script.

For example, if beepTwoSec already exists in the script.user.scripts table and you sent:
beepTwoSec1200 = script.new("beeper.enable = 1 beeper.beep(2, 1200)", "beepTwoSec")

The following actions occur:

• beepTwoSec1200 is added as a global variable.

• The script that was in the run-time environment as beepTwoSec is changed to an unnamed script
(the name attribute is set to an empty string).

• The global variable beepTwoSec remains in the run-time environment unchanged (it points to the
now unnamed script).

• A new script named beepTwoSec is added to the run-time environment.

In this example, you can access the new script by sending either of the following commands:
beepTwoSec1200()
script.user.scripts.beepTwoSec()

To access the unnamed script, you can send the command:
beepTwoSec()

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-41

Figure 115: Create a new script with the name of an existing script

Restore a script to the run-time environment
You can retrieve a script that was removed from the run-time environment but is still saved in
nonvolatile memory.

To restore a script from nonvolatile memory into the run-time environment, you can use
script.restore("scriptName"), where scriptName is the user-defined name of the script to
be restored.

For example, to restore a user script named "test9" from nonvolatile memory:
script.restore("test9")

Rename a script
You can rename a script. You might want to rename a script if you need to name another script the
same name as the existing script. You could also rename an existing script to be the autoexec script.

To change the name of a script, use the command:
scriptVar.name = "renamedScript"

Where:
scriptVar = The global variable name
"renamedScript" = The new name of the user script that was referenced by the scriptVar

global variable

After changing the name, you need to save the original script to save the change to the name
attribute.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-42 3700AS-901-01 Rev. B/May 2013

For example:
beepTwoSec.name = "beep2sec"
beepTwoSec.save()

Run the beep2sec script using the following command:
script.user.scripts.beep2sec()

If the new name is the same as a name that is already used for a script, the name of the existing
script is removed and that script becomes unnamed. This removes the existing script if there are no
other variables that reference the previous script. If variables do reference the existing script, the
references remain intact.

Changing the name of a script does not change the name of any variables that reference that script.
After changing the name, the script is located in the script.user.scripts table under its new
name.

Figure 116: Rename script

For example, to change the name of the script named test2 to be autoexec:
test2.name = "autoexec"
test2.save()

The autoexec script runs automatically when the instrument is turned on. It runs after all the scripts
have loaded and any scripts marked as autorun have run.

You can also use the script.new() and the scriptVar.source attribute commands to create a
script with a new name. For example, if you had an existing script named test1, you could create a
new script named test2 by sending the command:
test2 = script.new(test1.source, "test2")
See script.new() (on page 8-358).

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-43

Delete user scripts from the instrument
In most circumstances, you can delete a script using script.delete() (as described in Delete
user scripts (on page 7-10)), and then turn the instrument off and back on again. However, if you
cannot turn the instrument off, you can use the following steps to completely remove a script from the
instrument.

When you completely remove a script, you delete all references to the script from the run-time
environment, the script.user.scripts table, and nonvolatile memory.

To completely remove a script:
1. Remove the script from the run-time environment. Set any variables that refer to the script to

nil or assign the variables a different value. For example, to remove the script "beepTwoSec"
from the run-time environment, send the following code:
beepTwoSec = nil

2. Remove the script from the script.user.scripts table. Set the name attribute to an empty
string (""). This makes the script nameless, but does not make the script become the anonymous
script. For example, to remove the script named "beepTwoSec", send the following code:
script.user.scripts.beepTwoSec.name = ""

3. Remove the script from nonvolatile memory. To delete the script from nonvolatile memory,
send the command:
script.delete("name")
Where name is the name that the script was saved as. For example, to delete "beepTwoSec",
you would send:
script.delete("beepTwoSec")

Memory considerations for the run-time environment
The run-time environment has a fixed amount of memory for storing user scripts channel patterns,
DMM configurations, and other run-time information.

You can check the amount of memory in the instrument using the memory.used() and
memory.available()functions. These functions return the percentage of memory that is used or
available. When you send this command, memory used or available is returned as a comma-
delimited string with percentages for used memory.

The format is systemMemory, scriptMemory, patternMemory, configurationMemory,
where:

• systemMemory: The percentage of memory used or available in the instrument

• scriptMemory: The percentage of memory used or available in the instrument to store user
scripts

• patternMemory: The percentage of memory used or available in the instrument to store
channel patterns

• configurationMemory: The percentage of memory available to store DMM configurations.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-44 3700AS-901-01 Rev. B/May 2013

For example, if you send the command:
MemUsed = memory.used()
print(MemUsed)

You will get back a value such as:

69.14, 0.16, 12.74, 15.35

Where:

• 69.14 is the percentage of memory used in the instrument

• 0.16 is the percentage used for script storage

• 12.74 is the percentage used for channel pattern storage

• 15.35 is the percentage used for DMM configuration storage

See memory.available() (on page 8-302) and memory.used() (on page 8-303) for more detail on
using these functions.

Some suggestions for increasing the available memory:

• Turn the instrument off and on. This deletes scripts that have not been saved and reloads only scripts
that have been stored in nonvolatile memory.

• Remove unneeded scripts from nonvolatile memory. Scripts are loaded from nonvolatile memory into
the run-time environment when the instrument is turned on. See Delete user scripts from the instrument
(on page 7-43).

• Reduce the number of TSP-Link® nodes.
• Delete unneeded channel patterns (this affects only pattern memory, not instrument memory). See

Channel patterns (on page 2-96).
• Delete unneeded DMM configurations (this affects only configuration memory, not instrument memory.

See Save DMM configurations (on page 4-7).
• Delete unneeded global variables from the run-time environment by setting them to nil.
• Set the source attribute of all scripts to nil.
• Adjust the collectgarbage() settings in Lua. See Lua memory management (on page 7-30) for

information.
• Review scripts to optimize their memory usage. In particular, you can see memory gains by changing

string concatenation lines into a Lua table of string entries. You can then use the table.concat()
function to create the final string concatenation.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-45

The example below shows an example that optimizes a channel pattern that consists of five
channels.

Example

String concatenation lines Optimized with the table.concat function

ch1 = "" .. 5 * 1000 + 15 .. ","
ch2 = "" .. 5 * 1000 + 25 .. ","
ch3 = "" .. 5 * 1000 + 35 .. ","
ch4 = "" .. 5 * 1000 + 915 .. ","
ch5 = "" .. 5 * 1000 + 925
testPattern = ch1 .. ch2 .. ch3 .. ch4 ..

ch5
print(testPattern)

testTable = { }
testTable[1] = "5015,"
testTable[2] = "5025,"
testTable[3] = "5035,"
testTable[4] = "5915,"
testTable[5] = "5925"
testPattern =
 table.concat(testTable)
print(testPattern)

The output is:
5015,5025,5035,5915,5925

The output is:
5015,5025,5035,5915,5925

If the instrument encounters memory allocation errors when memory used is above 95 percent, the
state of the instrument cannot be guaranteed. After attempting to save any important data, it is
recommended that you turn off power to the instrument and turn it back on to return the instrument to
a known state. Cycling power resets the run-time environment. Unsaved scripts and channel
patterns will be lost.

TSP-Link system expansion interface

Overview
The TSP-Link® expansion interface allows the Series 3700A instrument to communicate with other
Test Script Processor (TSP®) enabled instruments. The test system can be expanded to include up to
32 TSP-Link enabled instruments.

Combining two Series 3700A instruments to achieve greater currents in both source voltage and
source current applications requires specific precautions, including configuration settings. Make sure
that you adequately understand the risks involved and the measures needed to accommodate the
combination of two Series 3700A instruments. To prevent damage to the Series 3700A, connected
instruments, and the device under test, make sure proper procedures are used. For further
information, visit the Keithley Instruments website (http://www.keithley.com) for application notes on
combining two Series 3700A channels.

http://www.keithley.com/

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-46 3700AS-901-01 Rev. B/May 2013

Master and subordinates
In a TSP-Link® system, one of the nodes (instruments) is the master node and the other nodes are
the subordinate nodes. The master node in a TSP-Link® system can control the other nodes
(subordinates) in the system.

When any node transitions from local operation to remote operation, it becomes the master of the
system. All other nodes also transition to remote operation and become its subordinates. When any
node transitions from remote operation to local, all other nodes also transition to local operation, and
the master/subordinate relationship between nodes is dissolved.

In a TSP-Link® system, one of the nodes (instruments) is the master node and the other nodes are
the subordinate nodes. The master node in a TSP-Link® system can control the other nodes
(subordinates) in the system.

When any node transitions from local operation to remote operation, it becomes the master of the
system. All other nodes also transition to remote operation and become its subordinates. When any
node transitions from remote operation to local, all other nodes also transition to local operation, and
the master/subordinate relationship between nodes is dissolved.

The expanded system can be stand-alone or computer-based.

Stand-alone system: You can run a script from the front panel of any instrument (node) connected
to the system. When a script is run, all nodes in the system go into remote operation (REM indicators
turn on). The node running the script becomes the master and can control all of the other nodes,
which become its subordinates. When the script is finished running, all the nodes in the system return
to local operation (REM indicators turn off), and the master/subordinate relationship between nodes is
dissolved.

Computer-based system: You can use a computer and a LAN, GPIB, or RS-232 interface to any
single node in the system. This node becomes the interface to the entire system. When a command
is sent through this node, all nodes go into remote operation (REM indicators turn on). The node that
receives the command becomes the master and can control all of the other nodes, which become its
subordinates. In a computer-based system, the master/subordinate relationship between nodes can
only be dissolved by performing an abort operation.

TSP-Link system
You can use the TSP-Link® expansion interface to expand your test system to include up to 32
addressable TSP® enabled instruments that use the TSP-LINK®. The expanded system can be stand-
alone or computer-based.

Stand-alone system: You can run a script from the front panel of any instrument (node) connected
to the system. When a script is run, all nodes in the system go into remote operation (REM indicators
turn on). The node running the script becomes the master and can control all of the other nodes,
which become its subordinates. When the script is finished running, all the nodes in the system return
to local operation (REM indicators turn off), and the master/subordinate relationship between nodes is
dissolved.

Computer-based system: You can use a computer and a LAN, GPIB, or RS-232 interface to any
single node in the system. This node becomes the interface to the entire system. When a command
is sent through this node, all nodes go into remote operation (REM indicators turn on). The node that
receives the command becomes the master and can control all of the other nodes, which become its
subordinates. In a computer-based system, the master/subordinate relationship between nodes can
only be dissolved by performing an abort operation.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-47

TSP-Link nodes
Each instrument (node) attached to the TSP-Link® network must be identified by assigning it a unique
TSP-Link node number.

Commands for remote nodes are stored in the node table. An individual node is accessed as
node[N], where N is the node number assigned to the node.

All TSP-accessible remote commands can be accessed as elements of the specific node. The
following attributes are examples of items you can access:

• node[N].model: The product model number string of the node.

• node[N].revision: The product revision string of the node.

• node[N].serialno: The product serial number string of the node.

You do not need to know the node number of the node that is running a script. The variable
localnode is an alias for the node entry of the node where the script is running. For example, if a
script is running on node 5, you can use the global variable localnode as an alias for node[5].
With this in mind, to access the product model number for this example, use localnode.model.

Connections
Connections for an expanded system are shown in the following figure. As shown, one instrument is
optionally connected to the computer using the GPIB, LAN, or RS-232 interface. Details about these
computer communication connections are described in Remote communication interfaces (on page 2-
53).

All the instruments in the system are connected in a sequence (daisy-chained) using LAN crossover
cables.

Initialization
Before a TSP-Link® system can be used, it must be initialized. For initialization to succeed, each
instrument in a TSP-Link system must be assigned a different node number.

Assigning node numbers
At the factory, each Series 3700A instrument is assigned as node 1. The node number for each
instrument is stored in its nonvolatile memory and remains in storage when the instrument is turned
off. You can assign a node number to a Series 3700A using the front panel or by using a remote
command. Note that there can only be 32 physical nodes, but you can assign node numbers from 1
to 64.

To assign a node number from the front panel of the instrument:
1. Press the MENU key, then select TSPLINK > NODE.
2. Press the navigation wheel and select the desired number.
3. Press the ENTER key to save the node number.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-48 3700AS-901-01 Rev. B/May 2013

To assign a node number using a remote command:

Set the tsplink.node attribute of the instrument:
tsplink.node = N

 Where: N = 1 to 64

To determine the node number of an instrument, you can read the tsplink.node attribute by
sending the following command:
print(tsplink.node)

The above print command outputs the node number. For example, if the node number is 1, a 1 is
displayed.

Resetting the TSP-Link network
After all the node numbers are set, you must initialize the system by performing a TSP-Link® network
reset.

If you change the system configuration after initialization, you must reinitialize the system by
performing a TSP-Link network reset. Changes that require that you reinitialize the TSP-Link network
include turning off power or rebooting any instrument in the system, or rearranging or disconnecting
the TSP-Link cable connections between instruments.

Front panel operation
To reset the TSP-Link® network from the front panel:
1. Power on all instruments connected to the TSP-Link network.
2. Press the MENU key, select TSPLINK, and then press the ENTER key.
3. Turn the navigation wheel to select RESET, and then press the ENTER key.

Remote programming
The commands associated with the TSP-Link® system reset are listed in the following table.

TSP-Link reset commands

Command Description

tsplink.reset() Initializes the TSP-Link network
tsplink.state Reads the state of the TSP-Link network:

• “online” if the most recent TSP-Link reset was
successful

• “offline” if the reset operation failed

An attempted TSP-Link reset operation will fail if any of the following conditions are true:

• Two or more instruments in the system have the same node number
• There are no other instruments connected to the instrument performing the reset (only if the

expected number of nodes was not provided in the reset call)
• One or more of the instruments in the system is turned off
• If the actual number of nodes is less than the expected number

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-49

The programming example below illustrates a TSP-Link reset operation and displays its state:
tsplink.reset()
print(tsplink.state)

If the reset operation is successful, online is output to indicate that communications with all nodes
have been established.

Using the expanded system
Accessing nodes
You can access all the remote commands for a specific node by adding node[N]. to the beginning
of the remote command, where N is the node number.

The variable localnode is an alias for node[N], where N is the node number of the node on which
the code is running. For example, if node 1 is running the code, localnode can be used instead of
node[1].

The following programming examples illustrate how to access instruments in the TSP-Link system
(shown in TSP-Link connections):

• You can use any one of the following three commands to reset all channels of node 1 (which, in
this example, is the master). The other nodes in the system are not affected.

channel.reset("allslots")
localnode.channel.reset("allslots")
node[1].channel.reset("allslots")

• The following command will reset all channels of node 4, which is a subordinate. The other nodes
are not affected.

node[4].channel.reset("allslots")

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-50 3700AS-901-01 Rev. B/May 2013

Using the reset() command
Most TSP-Link® system operations target a single node in the system, but the reset() command
affects the system as a whole by resetting all nodes to their default settings:
-- Reset all nodes in a TSP-Link system to their default state.
reset()

Using the reset() command in a TSP-Link network differs from using the tsplink.reset()
command. The tsplink.reset() command reinitializes the TSP-Link network, but does not
change the state of the individual nodes in the system.

Use node[N].reset() or localnode.reset() to reset only one of the nodes. The other nodes
are not affected. The following programming example shows this type of reset operation with code
that is run on node 1.
-- Reset node 1 only.
node[1].reset()
-- Reset node 1 only.
localnode.reset()
-- Reset node 4 only.
node[4].reset()

A TSP-Link® reset command populates the node table. Each instrument in the system corresponds to
an entry in this table. Each entry is indexed by the node number of the instrument. The variable
node[N] (where N is the node number) is used to access any node in the system. For example, node
1 is represented as entry node[1] in the node table.

Each of these entries is a table holding all the remote commands shared by the corresponding
instrument. Source-measure unit (SMU) A on node 1, therefore, could be accessed as
node[1].smua.

Using the abort command
An abort command terminates an executing script and returns all nodes to local operation (REM
indicators turn off). This dissolves the master/subordinate relationships between nodes. To invoke an
abort operation, either send an abort command to a specific node or press the EXIT (LOCAL) key
on any node in the system.

You can also perform an abort operation by pressing the OUTPUT ON/OFF control on any node. The
results are the same as above, with the addition that all outputs in the system are turned off.

Triggering with TSP-Link
The TSP-Link® expansion interface has three synchronization lines that function similarly to the digital
I/O synchronization lines. See Digital I/O (on page 3-43) and Triggering for more information.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-51

TSP advanced features
Use the Test Script Processor (TSP®) scripting engine's advanced features to:

• Run test scripts simultaneously
• Manage resources allocated to test scripts that are running simultaneously
• Use the data queue to facilitate real-time communication between nodes on the TSP-Link®

network

When test scripts are run simultaneously, it improves functional testing, provides higher throughput,
and expands system flexibility.

There are two methods you can use to run test scripts simultaneously:

• Create multiple TSP-Link networks
• Use a single TSP-Link network with groups

The following figure displays the first method, which consists of multiple TSP-Link networks. Each
TSP-Link network has a master node and a GPIB connection to the computer.

Another method you can use to run simultaneous test scripts is to use groups with a single TSP-Link
network. Each group on the TSP-Link network can run a test while other groups are running different
tests.

A group consists of one or more nodes with the same group number. The following figure displays a
single TSP-Link network with groups. This method requires one TSP-Link network and a single GPIB
connection to the computer.

The following table shows an example of the functions of a single TSP-Link network. Each group in
this example runs a different test script than the other groups, which allows the system to run multiple
tests simultaneously.

Using groups to manage nodes on TSP-Link network
The primary purpose of groups is to allow each group to run a different test script simultaneously.

A group can consist of one or more nodes. You must assign group numbers to each node using
remote commands. If you do not assign a node to a group, it defaults to group 0, which will always be
grouped with the master node (regardless of the group to which the master node is assigned).

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-52 3700AS-901-01 Rev. B/May 2013

Master node overview
The master node can be assigned to any group. You can also include other nodes in the group that
includes the master. Note that any nodes that are set to group 0 are automatically included in the
group that contains the master node, regardless of the group that is assigned to the master node.

The master node is always the node that coordinates activity on the TSP-Link network.

The master node:

• Is the only node that can use the execute() command on a remote node

• Cannot initiate remote operations on any node in a remote group if any node in that remote group
is performing an overlapped operation (a command that continues to operate after the command
that initiated it has finished running)

• Can execute the waitcomplete() command to wait for the group to which the master node
belongs; to wait for another group; or to wait for all nodes on the TSP-Link network to complete
overlapped operations (overlapped commands allow the execution of subsequent commands
while device operations of the overlapped command are still in progress)

Group leader overview
Each group has a dynamic group leader. The last node in a group that performs any operation
initiated by the master node is the group leader.

The group leader:

• Performs operations initiated by the master node
• Initiates remote operations on any node with the same group number
• Cannot initiate remote operations on any node with a different group number
• Can use the waitcomplete() command without a parameter to wait for all overlapped

operations running on nodes in the same group

Assigning groups
Group numbers can range from zero (0) to 64. The default group number is 0. You can change the
group number at any time. You can also add or remove a node to or from a group at any time.

Each time the node's power is turned off, the group number for that node changes to 0.

The following example code dynamically assigns a node to a group:
-- Assign node 3 to group 1.
node[3].tsplink.group = 1

Running simultaneous test scripts
You can send the execute() command from the master node to initiate a test script and Lua code
on a remote node. The execute() command places the remote node in the overlapped operation
state. As a test script runs on the remote node, the master node continues to process other
commands simultaneously.

Use the following code to send the execute() command for a remote node. The N parameter
represents the node number that runs the test script (replace N with the node number).

To set the global variable "setpoint" on node N to 2.5:
node[N].execute("setpoint = 2.5")

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-53

The following code demonstrates how to run a test script that is defined on the local node. For this
example, scriptVar is defined on the local node, which is the node that initiates the code to run on
the remote node. The local node must be the master node.
To run scriptVar on node N:
node[N].execute(scriptVar.source)

The programming example below demonstrates how to run a test script that is defined on a remote
node. For this example, scriptVar is defined on the remote node.

To run a script defined on the remote node:
node[N].execute("scriptVar()")

It is recommended that you copy large scripts to a remote node to improve system performance. See
Copying test scripts across the TSP-Link network (on page 7-54) for more information.

Coordinating overlapped operations in remote groups
All overlapped operations on all nodes in a group must have completed before the master node can
send a command to the group. If you send a command to a node in a remote group when an
overlapped operation is running on any node in that group, errors will occur.

You can execute the waitcomplete() command on the master node or group leader to wait for
overlapped operations. The action of waitcomplete() depends on the parameters specified.

If you want to wait for completion of overlapped operations for:

• All nodes in the local group: Use waitcomplete() without a parameter from the master node
or group leader.

• A specific group: Use waitcomplete(N) with a group number as the parameter from the
master node. This option is not available for group leaders.

• All nodes in the system: Use waitcomplete(0) from the master node. This option is not
available for group leaders.

For additional information, see waitcomplete() (on page 8-466).

The following code shows two examples of using the waitcomplete() command from the master
node:
-- Wait for each node in group N to complete all overlapped operations.
waitcomplete(N)
-- Wait for all groups on the TSP-Link network to complete overlapped operations.
waitcomplete(0)

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-54 3700AS-901-01 Rev. B/May 2013

A group leader can issue the waitcomplete() command to wait for the local group to complete all
overlapped operations.

The following code is an example of how to use the waitcomplete() command from a group
leader:
-- Wait for all nodes in the local group to complete all overlapped operations.
waitcomplete()

Presently, the Series 3700A has no overlapped commands implemented. However, other
TSP-enabled products, such as the Series 2600A System SourceMeter® Instruments, have
overlapped commands. Therefore, when the Series 3700A is a TSP master to a subordinate device
with overlapped commands, use this function to wait until all overlapped operations are completed.

Using the data queue for real-time communication
Nodes that are running test scripts at the same time can store data in the data queue for real-time
communication. Each instrument has an internal data queue that uses the first-in, first-out (FIFO)
structure to store data. You can use the data queue to post numeric values, strings, and tables.

Use the data queue commands to:

• Share data between test scripts running in parallel
• Access data from a remote group or a local node on a TSP-Link® network at any time

You cannot access the reading buffers or global variables from any node in a remote group while a
node in that group is performing an overlapped operation. However, you can use the data queue to
retrieve data from any node in a group that is performing an overlapped operation. In addition, the
master node and the group leaders can use the data queue as a way to coordinate activities.

Tables in the data queue consume one entry. When a node stores a table in the data queue, a copy
of the data in the table is made. When the data is retrieved from the data queue, a new table is
created on the node that is retrieving the data. The new table contains a completely separate copy of
the data in the original table, with no references to the original table or any subtables.

You can access data from the data queue even if a remote group or a node has overlapped
operations in process. See the dataqueue commands in the TSP command reference (on page 8-1)
for more information.

Copying test scripts across the TSP-Link network
To run a large script on a remote node, copy the test script to the remote node to increase the speed
of test script initiation.

The code in the example below copies a test script across the TSP-Link® network, creating a copy of
the script on the remote node with the same name.

-- Add the source code from the script
-- testScript to the data queue.
node[2].dataqueue.add(testScript.source)
-- Create a new script on the remote node
-- using the source code from testScript.
node[2].execute(testScript.name ..

"= script.new(dataqueue.next(), [[" .. testScript.name .. "]])")

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-55

Removing stale values from the reading buffer cache
The node that acquires the data also stores the data for the reading buffer. To optimize data access,
all nodes can cache data from the node that stores the reading buffer data.

When you run Lua code remotely, it can cause reading buffer data that is held in the cache to
become stale. If the values in the reading buffer change while the Lua code runs remotely, another
node can hold stale values. Use the clearcache() command to clear the cache. For additional
detail on the reading buffer cache commands, see bufferVar.cachemode (on page 8-20) and
bufferVar.clearcache() (on page 8-23).

The following example code demonstrates how stale values occur and how to use the
clearcache() command to clear the cache on node 2, which is part of group 7.

-- Create a reading buffer on a node in a remote group.
node[2].tsplink.group = 7
node[2].execute("rbremote = dmm.makebuffer(20) " ..
 "dmm.measure.count = 20 " ..
 "dmm.measure(rbremote)")
-- Create a variable on the local node to
-- access the reading buffer.
rblocal = node[2].getglobal("rbremote")
-- Access data from the reading buffer.
print(rblocal[1])
-- Run code on the remote node that updates the reading buffer.
node[2].execute("dmm.measure(rbremote)")
-- Use the clearcache command if the reading buffer contains cached data.
rblocal.clearcache()
-- If you do not use the clearcache command, the data buffer
-- values will never update. Every time the print command is
-- issued after the first print command, the same data buffer
-- values will print.
print(rblocal[1])

TSP-Net

Overview
The TSP-Net® library allows the Series 3700A to control LAN-enabled devices directly through its
LAN port. This enables the Series 3700A to communicate directly with a device that is not TSP®
enabled without the use of a controlling computer.

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-56 3700AS-901-01 Rev. B/May 2013

TSP-Net capabilities
The TSP-Net library permits the Series 3700A to control a remote instrument through the LAN port for
both Test Script Processor (TSP®) and non-TSP instruments. Using TSP-Net library methods, you
can transfer string data to and from a remote instrument, transfer and format data into Lua variables,
and clear input buffers. The TSP-Net library is only accessible using commands from a remote
command interface.

You can use TSP-Net commands to communicate with any ethernet-enabled instrument. However,
specific TSP-Net commands exist for TSP-enabled instruments to allow for support of features unique
to the TSP scripting engine. These features include script downloads, reading buffer access, wait
completion, and handling of TSP scripting engine prompts.

Using TSP-Net commands with TSP-enabled instruments, a Series 3700A can download a script to
another TSP-enabled instrument and have both instruments run scripts independently. The Series
3700A can read the data from the remote instrument and either manipulate the data or send the data
to a different remote instrument on the LAN. You can simultaneously connect to a maximum of
32 devices using standard TCP/IP networking techniques through the LAN port of the Series 3700A.

Using TSP-Net with any Ethernet-enabled device

Refer to TSP commands (on page 8-10) for more details about the commands presented in this
section.

To communicate to a remote ethernet-enabled device from the Series 3700A, perform the following
steps:
1. Connect to the remote device through the LAN port. If you are connecting:

• Directly from the Series 3700A to an ethernet-enabled device: Use an ethernet crossover cable.
• The Series 3700A to any other device on the LAN: Use a straight-through ethernet cable and a hub.

1. Establish a new connection to a remote device at a specific IP address using
tspnet.connect().

2. If the device is not TSP-enabled, you must also provide the port number. If not, the Series 3700A
assumes the remote device is TSP-enabled and enables TSP prompts and error handling.
If the Series 3700A is not able to make a connection to the remote device, it generates a timeout
error. Use tspnet.timeout to set the timeout value. The default timeout value is 20 seconds.

Set tspnet.tsp.abortonconnect to 1 to abort any script currently running on a remote TSP
device.

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-57

3. Use tspnet.write() or tspnet.execute() to send strings to a remote device.
tspnet.write() sends strings to the device exactly as indicated, and you must supply any
needed termination characters or other lines. Use tspnet.termination() to specify the
termination character. If you use tspnet.execute() (on page 8-453) instead, the Series
3700A appends termination characters to all strings sent to the command.

4. Retrieve responses from the remote device using tspnet.read(). The Series 3700A suspends
operation until data is available or a timeout error is generated. You can check if data is available
from the remote device using tspnet.readavailable().

Disconnect from the remote device using tspnet.disconnect(). Terminate all remote
connections using tspnet.reset().

Example script
The following example demonstrates how to connect to a remote device that is not Test Script
Processor (TSP®) enabled, and send and receive data from this device:
-- Disconnect all existing TSP-Net connections.
tspnet.reset()
-- Set tspnet timeout to 5 seconds.
tspnet.timeout = 5
-- Establish connection to another device with
-- IP address 192.168.1.51 at port 1394.
id_instr = tspnet.connect("192.168.1.51",1394, "*rst\r\n")

-- Print the device ID from connect string.
print("ID is: ", id_instr)
-- Set termination character to CRLF. You must do this
-- on a per connection basis after connection has been made.
tspnet.termination(id_instr, tspnet.TERM_CRLF)
-- Send the command string to the connected device
tspnet.write(id_instr, "*idn?" .. "\r\n")
-- Read the data available, then prints it.
print("instrument write/read returns:: , tspnet.read(id_instr))
-- Disconnect all existing TSP-Net sessions.
tspnet.reset()

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-58 3700AS-901-01 Rev. B/May 2013

Using TSP-Net with any ethernet-enabled instrument

Refer to TSP command reference (on page 8-1) for details about the commands presented in this
section.

The Series 3700A LAN connection is auto-sensing (Auto-MDIX), so you can use either a LAN
crossover cable or a LAN straight-through cable to connect directly from the Series 3700A to an
ethernet device or to a hub.

To set up communication to a remote ethernet-enabled instrument that is TSP® enabled:
1. Send the following command to configure TSP-Net to send an abort command when a

connection to a TSP instrument is established:
 tspnet.tsp.abortonconnect = 1

If the scripts are allowed to run, the connection is made, but the remote instrument may be busy.
2. Send the command:
 connectionID = tspnet.connect(ipAddress)

Where:
• connectionID is the connection ID that will be used as a handle in all other TSP-Net function calls.
• ipAddress is the IP address of the remote instrument.

See tspnet.connect() (on page 8-451) for additional detail.
To set up communication to a remote ethernet-enabled device that is not TSP enabled:
1. Send the command:
 connectionID = tspnet.connect(ipAddress, portNumber, initString)

Where:
• connectionID is the connection ID that will be used as a handle in all other tspnet function calls.
• ipAddress is the IP address of the remote device.
• portNumber is the port number of the remote device.
• initString is the initialization string that is to be sent to ipAddress.

See tspnet.connect() (on page 8-451) for additional detail.
To communicate to a remote ethernet device from the Series 3700A:
1. Connect to the remote device using one of the above procedures. If the Series 3700A cannot

make a connection to the remote device, it generates a timeout error. Use tspnet.timeout to
set the timeout value. The default timeout value is 20 seconds.

2. Use tspnet.write() or tspnet.execute() to send strings to a remote device. If you use:
• tspnet.write(): Strings are sent to the device exactly as indicated, and you must supply any

needed termination characters.
• tspnet.execute(): The Series 3700A appends termination characters to all strings that are sent.

Use tspnet.termination() to specify the termination character.

1. To retrieve responses from the remote instrument, use tspnet.read(). The Series 3700A
suspends operation until the remote device responds or a timeout error is generated. To check if
data is available from the remote instrument, use tspnet.readavailable().

2. Disconnect from the remote device using the tspnet.disconnect() function. Terminate all
remote connections using tspnet.reset().

Series 3700A System Switch/Multimeter Reference Manual Section 7: Instrument programming

3700AS-901-01 Rev. B/May 2013 7-59

Example script
The following example demonstrates how to connect to a remote device that is not TSP® enabled,
and send and receive data from this device:
-- Disconnect all existing TSP-Net connections.
tspnet.reset()
-- Set tspnet timeout to 5 seconds.
tspnet.timeout = 5
-- Establish connection to another device with IP address 192.168.1.51
-- at port 1394.
id_instr = tspnet.connect("192.168.1.51", 1394, "*rst\r\n")
-- Print the device ID from connect string.
print("ID is: ", id_instr)
-- Set the termination character to CRLF. You must do this
-- for each connection after the connection has been made.
tspnet.termination(id_instr, tspnet.TERM_CRLF)
-- Send the command string to the connected device.
tspnet.write(id_instr, "*idn?" .. "\r\n")
-- Read the data available, then print it.
print("instrument write/read returns: ", tspnet.read(id_instr))
-- Disconnect all existing TSP-Net sessions.
tspnet.reset()

TSP-Net compared to TSP-Link to communicate with TSP-enabled
devices

The TSP-Link® network interface is the preferred communication method for most applications where
communication occurs between the Series 3700A and another TSP-enabled instrument.

One of the advantages of using the TSP-Link network interface is that TSP-Link connections have
three synchronization lines that are available to each device on the TSP-Link network. You can use
any one of the synchronization lines to perform hardware triggering between devices on the TSP-Link
network. Refer to Hardware trigger modes (on page 3-10) for details.

However, if the distance between the Series 3700A and the TSP-enabled device is longer than
15 feet, use TSP-Net commands.

TSP-Net instrument commands: General device control
The following instrument commands provide general device control:

tspnet.clear() (on page 8-451)
tspnet.connect() (on page 8-451)
tspnet.disconnect() (on page 8-452)
tspnet.execute() (on page 8-453)
tspnet.idn() (on page 8-454)
tspnet.read() (on page 8-455)
tspnet.readavailable() (on page 8-456)
tspnet.reset() (on page 8-457)
tspnet.termination() (on page 8-457)
tspnet.timeout (on page 8-458)
tspnet.write() (on page 8-461)

Section 7: Instrument programming Series 3700A System Switch/Multimeter Reference Manual

7-60 3700AS-901-01 Rev. B/May 2013

TSP-Net instrument commands: TSP-enabled device control
The following instrument commands provide TSP-enabled device control:

tspnet.tsp.abort() (on page 8-458)
tspnet.tsp.abortonconnect (on page 8-459)
tspnet.tsp.rbtablecopy() (on page 8-460)
tspnet.tsp.runscript() (on page 8-461)

Example: Using tspnet commands
function telnetConnect(ipAddress, userName, password)
 -- Connect through Telnet to a computer.
 id = tspnet.connect(ipAddress, 23, "")
 -- Read the title and login prompt from the computer.
 print(string.format("from computer--> (%s)", tspnet.read(id, "%n")))
 print(string.format("from computer--> (%s)", tspnet.read(id, "%s")))
 -- Send the login name.
 tspnet.write(id, userName .. "\r\n")
 -- Read the login echo and password prompt from the computer.
 print(string.format("from computer--> (%s)", tspnet.read(id, "%s")))
 -- Send the password information.
 tspnet.write(id, password .. "\r\n")
 -- Read the telnet banner from the computer.
 print(string.format("from computer--> (%s)", tspnet.read(id, "%n")))
 print(string.format("from computer--> (%s)", tspnet.read(id, "%n")))
 print(string.format("from computer--> (%s)", tspnet.read(id, "%n")))
 print(string.format("from computer--> (%s)", tspnet.read(id, "%n")))
end

function test_tspnet ()
 tspnet.reset()
 -- Connect to a computer using Telnet.
 telnetConnect("192.0.2.1", "my_username", "my_password")
 -- Read the prompt back from the computer.
 print(string.format("from computer--> (%s)", tspnet.read(id, "%n")))
 -- Change directory and read the prompt back from the computer.
 tspnet.write(id, "cd c:\\\r\n")
 print(string.format("from computer--> (%s)", tspnet.read(id, "%s")))
 -- Make a directory and read the prompt back from the computer.
 tspnet.write(id, "mkdir TEST_TSP\r\n")
 print(string.format("from computer--> (%s)", tspnet.read(id, "%s")))
 -- Change to the newly created directory.
 tspnet.write(id, "cd c:\\TEST_TSP\r\n")
 print(string.format("from computer--> (%s)", tspnet.read(id, "%s")))
 -- if you have data print it to the file.
 -- 11.2 is an example of data collected.
 cmd = "echo " .. string.format("%g", 11.2) .. " >> datafile.dat\r\n"
 tspnet.write(id, cmd)
 print(string.format("from computer--> (%s)", tspnet.read(id, "%s")))
 tspnet.disconnect(id)
end
test_tspnet()

In this section:

Command programming notes ... 8-1
Using the TSP command reference ... 8-6
TSP commands .. 8-10

Command programming notes

Placeholder text
This manual uses italicized text to represent the parts of remote commands that must be replaced by
user specified values. The following examples show typical uses of italicized text:

Example 1:
gpib.address = address

Where:

address is an integer (0 to 30) that you specify. For example, to set this attribute to 15 you would
send:

gpib.address = 15

Example 2:
digio.trigger[N].assert()

Where:

N is an integer (1 to 14) that you specify. For example, to assert trigger line 7 you would send:

digio.trigger[7].assert()

To assert a trigger line with a variable as the integer, you would send:

triggerline = 7

digio.trigger[triggerline].assert()

Section 8

TSP command reference

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-2 3700AS-901-01 Rev. B/May 2013

Syntax rules
The following table lists syntax requirements to build well-formed instrument control commands.

Syntax rules for instrument commands

Syntax rule Details Examples

Case sensitivity:
Instrument
commands are case
sensitive.

Match the case
shown in the
command reference
descriptions.

Function and attribute
names should be in
lowercase characters.

An example of the scriptVar.save()
function (where test8 is the name of the
script):
test8.save()

Parameters can use a
combination of
lowercase and
uppercase characters.

Attribute constants use
uppercase characters

In the command below, which sets the format of
data transmitted from the instrument to
double-precision floating point,
format.REAL64 is the attribute constant and
format.data is the attribute command:
format.data = format.REAL64

White space: Not
required in a function.

Functions can be sent
with or without white
spaces.

The following functions, which set digital I/O line
3 low, are equivalent:
digio.writebit(3,0)
digio.writebit (3, 0)

Function
parameters: All
functions are required
to have a set of
parentheses ()
immediately following
the function.

You can specify the
function parameters by
placing them between
the parentheses. Note
that the parentheses
are required even when
there are no parameters
specified.

The following function specifies all overlapped
commands in the nodes in group G that must
complete before commands from other groups
can execute:
waitcomplete(G)

The command below reads the value of the
local time zone (no parameters are needed):
timezone = gettimezone()

Multiple parameters:
Must be separated by
commas (,).

Some commands
require multiple
parameters, which must
be separated by
commas (,).

This command sets the beeper to emit a
double-beep at 2400 Hz, with a beep sequence
of 0.5 seconds on, 0.25 seconds off, and then
0.5 seconds on:
beeper.beep(0.5, 2400)
delay(0.250)
beeper.beep(0.5, 2400)

Parameter range:
Range values must
be separated with a
colon (:).

Place a colon (:)
between two values to
specify a range in a
parameter.

The command below replaces the active scan
list with an empty scan list, and then adds
channels 1 through 10 on slot 1:
scan.create("1001:1010")

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-3

Logical instruments
You would normally refer to all instrumentation in one enclosure or node as a single instrument. In the
context of Test Script Processor (TSP®) scripting engine and instrument commands, it is useful to
think of each individual subdivision in an enclosure, such as a card slot or the channels, as a
stand-alone instrument. To avoid confusion, all subdivisions of the instrumentation in an enclosure
are referred to as "logical instruments."

Each logical instrument is given a unique identifier in a system. These identifiers are used as part of
all commands that control a given logical instrument.

The logical instruments are:

• beeper • memory
• bit • ptp
• channel • scan
• dataqueue • schedule
• digio • setup
• display • slot
• dmm • status
• errorqueue • timer
• eventlog • trigger
• format • tsplink
• fs • tspnet
• gpib • upgrade
• io • userstring
• lan

Do not create variable names that are the same as names of logical instruments. Doing so will result
in the loss of use of the logical instrument and its associated commands. For example, if you send
the command digio = 5, you cannot access the digio.* commands until you turn off the power to
the instrument, and then turn it on again.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-4 3700AS-901-01 Rev. B/May 2013

Using channel.*() commands
Unless otherwise noted, channel.*() remote commands use the channel list syntax described
below.

• The channel list is specified according to the syntax presented in the channel list legend. Not all
remote commands support the fully described syntax. Any exclusions are noted in the
documentation for a specific command.

• There are five different types of channels available on the supported Series 3700A cards. These
include switch (or relay), backplane, totalizer, DAC, and digital I/O. Even though the channels are
specified in an identical manner, not all remote commands act on all channel types. The
description of each remote command provides more information.

• When acting on a range of channels is necessary or more convenient, use the ":" notation. For
example, to specify channels 1 through 20 on slot 4, use 4001:4020.

 print(channel.getlabel("4001:4020"))

• When acting on an entire slot is necessary or more convenient, use the slotX notation. For
example, to specify all channels on slot 4, use slot4.

 print(channel.getlabel("slot4"))

• When acting on an entire instrument is necessary or more convenient, use the allslots
notation. For example, to specify channels on all slots (1 through 6), use allslots.

 print(channel.getlabel("allslots"))

• When a range (including slotX and allslots notation) includes mixed channel types, the
invalid channel types are ignored. If an invalid channel type is individually specified, then an error
is generated.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-5

The following errors can occur because of invalid channel list syntax or specification.

Error Message Description
invalid specified channel The channel is specified with the correct

syntax, but does not exist on the card.
invalid character in channel

list
The channel list contains an invalid
character or syntax sequence.

invalid slot in channel list The slot specified in the channel list is
empty.

invalid channel type in channel
list

The channel is specified with the correct
syntax, but the channel type is not
supported by the specified remote
command.

no valid channels in channel
list

After processing, no valid channels remain
in the command to act upon.

invalid label or pattern name A string was found in the channel list that
does not specify any known label or pattern
name.

no patterns accepted A pattern was specified for a remote
command that does not support patterns as
input.

no multiple channels accepted Multiple channels were specified for a
remote command that acts only on a single
channel.

no range specifier accepted A range was specified for a remote
command that does not support a range as
input.

no slot specifier accepted An entire slot was specified using slotX
(for example, slot1) for a remote
command that does not support slotX as
input.

no all slots specifier accepted All slots were specified using allslots for
a remote command that does not support
allslots as input.

no labels accepted A label was specified for a remote
command that does not support labels as
input.

no paired channels accepted A channel was specified for a remote
command that does not act on paired
channels.

no single channels accepted A single channel was specified for a remote
command that only supports acting on
groups of channels.

no multiple specifiers accepted Multiple descriptions were specified for a
remote command that does not support
multiple descriptions in a list.

channels all must be of same
type

The provided channel list contains channels
of various channel types, but the remote
command supports only channel lists that
contain a single, consistent channel type.

forbidden channel The channel specified is forbidden to be
closed.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-6 3700AS-901-01 Rev. B/May 2013

Time and date values
Time and date values are represented as a number of UTC seconds since 12:00 a.m. Jan. 1, 1970.
The os.time() command returns values in this format. Use os.date() to return values in month,
day, year, hours, and minutes format, or to access the timestamp table. The only exception to this is
the use of the ptpseconds recall attribute, which has the seconds in PTP format.

Time and date values are represented as the number of seconds since some base. Representing
time as a number of seconds is referred to as “standard time format.” The three time bases used for
the Series 3700A are:

• UTC 12:00 am Jan 1, 1970. Some examples of UTC time are reading buffer seconds, adjustment
dates, and the value returned by os.time().

• Instrument on. References time to when the instrument was turned on. The value returned by
os.clock() is referenced to the turn-on time.

• Event. Time referenced to an event, such as the first reading stored in a reading buffer.

Using the TSP command reference
The TSP command reference contains detailed descriptions of each of the TSP commands that you
can use to control your instrument. Each command description is broken into subsections. The figure
below shows an example of a command description.

Figure 117: Example instrument command description

The subsections contain information about the command. The subsections are:

• Command name and summary table
• Usage
• Details
• Example
• Also see

The content of each of these subsections is described in the following topics.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-7

Command name and standard parameters summary
Each instrument command description starts with the command name, followed by a table with
relevant information for each command. Definitions for the numbered items in the figure below are
listed following the figure.

Figure 118: Command name and summary table

1. Instrument command name. Signals the beginning of the command description and is followed
by a brief description of what the command does.

2. Type of command. Options are:
• Function. Function-based commands control actions or activities, but are not always directly related to

instrument operation. Function names are always followed by a set of parentheses, for example,
digio.writeport(15). If the function does not need a parameter, the parentheses set remains
empty, for example, exit().

• Attribute (R), (RW), or (W). Attribute-based commands set or read the characteristics of an instrument
feature or operation by defining a value. For example, a characteristic of a TSP-enabled instrument is
the model number (localnode.model); another characteristic is the number of errors in the error
queue (errorqueue.count). For many attributes, the defined value is a number or predefined
constant. Attributes can be read-only (R), read-write (RW), or write-only (W), and can be used as a
parameter of a function or assigned to another variable.

• Constant. A constant command represents a fixed value when used in a script.

1. TSP-Link accessible. Yes or No; indicates whether or not the command can accessed through a
TSP-Link network.

2. Affected by. Commands or actions that have a direct effect on the instrument command.
• DMM configuration recall
• DMM function change
• DMM reset
• LAN reset
• Recall setup

• Reset: Reset commands affect commands in different ways, depending on the type of reset. Types of
reset include:

 - Channel reset - Status reset

 - Digital I/O trigger reset - Trigger blender reset

 - Instrument reset - Trigger timer reset

 - Local node reset - TSP-Link trigger reset

 - Scan reset

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-8 3700AS-901-01 Rev. B/May 2013

1. Where saved. Indicates where the command settings reside once they are used on an
instrument. Options include:
• Create configuration script: This command is saved as part of the configuration script if you save the

current configuration into a script with the createconfigscript() command or the MENU >
SCRIPT > CREATE-CONFIG option from the front panel.

• Not saved: Command is not saved anywhere and must be typed each time you use it.
• Nonvolatile memory: Storage area in the instrument where information is saved when the instrument

is turned off.
• Saved setup
• Setup: Instrument settings are captured in an internal or external setup file to be recalled later.

1. Default value: Lists the default value or constant for the command. The parameter values are
defined in the Usage or Details sections of the command description.

Command usage
The Usage section of the remote command listing shows how to properly structure the command.
Each line in the Usage section is a separate variation of the command usage; all possible command
usage options are shown here.

Figure 119: Command usage section

1 Structure of command usage: Shows how the parts of the command should be organized. If a
parameter is shown to the left of the command, it is the return when you print the command.
Information to the right are the parameters or other items you need to enter.

2. User-supplied parameters: Indicated by italics. For example, for the function
beeper.beep(duration, frequency), replace duration with the number of seconds and
frequency with the frequency of the tone. beeper.beep(2, 2400) generates a two-second,
2400 Hz tone.

Some commands have optional parameters. If there are optional parameters, they must be
entered in the order presented in the Usage section. You cannot leave out any parameters that
precede the optional parameter. Optional parameters are shown as separate lines in usage,
presented in the required order with each valid permutation of the optional parameters.
For example:
printbuffer(startIndex, endIndex, buffer1)
printbuffer(startIndex, endIndex, buffer1, buffer2)

3. Parameter value options: Descriptions of the options that are available for the user-defined
parameter.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-9

Command details
This section lists additional information you need to know to successfully use the remote commands.

Figure 120: Details section of command listing

Example section
The Example section of the remote command description shows some simple examples of how the
command can be used.

Figure 121: Code examples in command listings

1 Actual example code that you can copy from this table and paste into your own programming
application.

2 Description of the code and what it does. This may also contain the output of the code.

Related commands and information
The Also See section of the remote command description lists additional commands that are related
to the command being described.

Figure 122: Links to related commands and information

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-10 3700AS-901-01 Rev. B/May 2013

TSP commands

beeper.beep()
generates an audible tone.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

beeper.beep(duration, frequency)

duration The amount of time to play the tone in seconds (0.1 to 100)

frequency The frequency of the tone in Hertz (Hz)

Details

You can use the beeper of the Model 3706A to provide an audible signal at a specified frequency and time
duration. For example, you can use the beeper to signal the end of a lengthy sweep.
The beeper will not sound if it is disabled. It can be disabled or enabled with the beeper enable command, or
through the front panel.

Example

beeper.enable = beeper.ON
beeper.beep(2, 2400)

Enables the beeper and generates a
two-second, 2400 Hz tone.

Also see

beeper.enable (on page 8-10)

beeper.enable
This command allows you to turn the beeper on or off.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Recall setup
Instrument reset

Saved setup
Create configuration script

1 (beeper.ON)

Usage

state = beeper.enable
beeper.enable = state

state Disable the beeper: beeper.OFF or 0
Enable the beeper: beeper.ON or 1

Details

This command enables or disables the beeper. When enabled, a beep signals that a front-panel key has been
pressed. Disabling the beeper also disables front-panel key clicks.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-11

Example

beeper.enable = beeper.ON
beeper.beep(2, 2400)

Enables the beeper and generates a
two-second, 2400 Hz tone.

Also see

beeper.beep() (on page 8-10)

bit.bitand()
This function performs a bitwise logical AND operation on two numbers.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

result = bit.bitand(value1, value2)

result Result of the logical AND operation
value1 Operand for the logical AND operation
value2 Operand for the logical AND operation

Details

Any fractional parts of value1 and value2 are truncated to form integers. The returned result is also an
integer.

Example

testResult = bit.bitand(10, 9)

print(testResult)

Performs a logical AND operation on decimal 10
(binary 1010) with decimal 9 (binary 1001), which
returns a value of decimal 8 (binary 1000).
Output:
8.00000e+00

Also see

Bit manipulation and logic operations (on page 6-5)
bit.bitor() (on page 8-11)
bit.bitxor() (on page 8-12)

bit.bitor()
This function performs a bitwise logical OR operation on two numbers.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

result = bit.bitor(value1, value2)

result Result of the logical OR operation
value1 Operand for the logical OR operation
value2 Operand for the logical OR operation

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-12 3700AS-901-01 Rev. B/May 2013

Details

Any fractional parts of value1 and value2 are truncated to make them integers. The returned result is also
an integer.

Example

testResult = bit.bitor(10, 9)

print(testResult)

Performs a bitwise logical OR operation on decimal
10 (binary 1010) with decimal 9 (binary 1001), which
returns a value of decimal 11 (binary 1011).
Output:
1.10000e+01

Also see

Bit manipulation and logic operations (on page 6-5)
bit.bitand() (on page 8-11)
bit.bitxor() (on page 8-12)

bit.bitxor()
This function performs a bitwise logical XOR (exclusive OR) operation on two numbers.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

result = bit.bitxor(value1, value2)

result Result of the logical XOR operation
value1 Operand for the logical XOR operation
value2 Operand for the logical XOR operation

Details

Any fractional parts of value1 and value2 are truncated to make them integers. The returned result is also
an integer.

Example

testResult = bit.bitxor(10, 9)

print(testResult)

Performs a logical XOR operation on decimal 10
(binary 1010) with decimal 9 (binary 1001), which
returns a value of decimal 3 (binary 0011).
Output:
3.00000e+00

Also see

Bit manipulation and logic operations (on page 6-5)
bit.bitand() (on page 8-11)
bit.bitor() (on page 8-11)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-13

bit.clear()
This function clears a bit at a specified index position.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

result = bit.clear(value, index)

result Result of the bit manipulation
value Specified number
index One-based bit position within value to clear (1 to 32)

Details

Any fractional part of value is truncated to make it an integer. The returned result is also an integer.
The least significant bit of value is at index position 1; the most significant bit is at index position 32.

Example

testResult = bit.clear(15, 2)

print(testResult)

The binary equivalent of decimal 15 is 1111. If you
clear the bit at index position 2, the returned
decimal value is 13 (binary 1101).
Output:
1.30000e+01

Also see

Bit manipulation and logic operations (on page 6-5)
bit.get() (on page 8-13)
bit.set() (on page 8-15)
bit.test() (on page 8-16)
bit.toggle() (on page 8-17)

bit.get()
This function retrieves the weighted value of a bit at a specified index position.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

result = bit.get(value, index)

result Result of the bit manipulation
value Specified number
index One-based bit position within value to get (1 to 32)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-14 3700AS-901-01 Rev. B/May 2013

Details

This function returns the value of the bit in value at index. This is the same as returning value with all other
bits set to zero (0).
The least significant bit of value is at index position 1; the most significant bit is at index position 32.
If the indexed bit for the number is set to zero (0), the result will be zero (0).

Example

testResult = bit.get(10, 4)

print(testResult)

The binary equivalent of decimal 10 is 1010. If you
get the bit at index position 4, the returned decimal
value is 8.
Output:
8.00000e+00

Also see

Bit manipulation and logic operations (on page 6-5)
bit.clear() (on page 8-13)
bit.set() (on page 8-15)
bit.test() (on page 8-16)
bit.toggle() (on page 8-17)

bit.getfield()
This function returns a field of bits from the value starting at the specified index position.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

result = bit.getfield(value, index, width)

result Result of the bit manipulation
value Specified number
index One-based bit position within value to get (1 to 32)
width The number of bits to include in the field (1 to 32)

Details

A field of bits is a contiguous group of bits. This function retrieves a field of bits from value starting at index.
The index position is the least significant bit of the retrieved field. The number of bits to return is specified by
width.
The least significant bit of value is at index position 1; the most significant bit is at index position 32.

Example

myResult = bit.getfield(13, 2, 3)

print(myResult)

The binary equivalent of decimal 13 is 1101.
The field at index position 2 and width 3
consists of the binary bits 110. The returned value
is decimal 6 (binary 110).
Output:
6.00000e+00

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-15

Also see

Bit manipulation and logic operations (on page 6-5)
bit.get() (on page 8-13)
bit.set() (on page 8-15)
bit.setfield() (on page 8-15)

bit.set()
This function sets a bit at the specified index position.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

result = bit.set(value, index)

result Result of the bit manipulation
value Specified number
index One-based bit position within value to set (1 to 32)

Details

This function returns result, which is value with the indexed bit set. The index must be between 1 and 32.
The least significant bit of value is at index position 1; the most significant bit is at index position 32.
Any fractional part of value is truncated to make it an integer.

Example

testResult = bit.set(8, 3)

print(testResult)

The binary equivalent of decimal 8 is 1000. If the bit at
index position 3 is set to 1, the returned value is
decimal 12 (binary 1100).
Output:
1.20000e+01

Also see

Bit manipulation and logic operations (on page 6-5)
bit.clear() (on page 8-13)
bit.get() (on page 8-13)
bit.getfield() (on page 8-14)
bit.setfield() (on page 8-15)
bit.test() (on page 8-16)
bit.toggle() (on page 8-17)

bit.setfield()
This function overwrites a bit field at a specified index position.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-16 3700AS-901-01 Rev. B/May 2013

Usage

result = bit.setfield(value, index, width, fieldValue)

result Result of the bit manipulation
value Specified number
index One-based bit position in value to set (1 to 32)
width The number of bits to include in the field (1 to 32)
fieldValue Value to write to the field

Details

This function returns result, which is value with a field of bits overwritten, starting at index. The index
specifies the position of the least significant bit of value. The width bits starting at index are set to
fieldValue.
The least significant bit of value is at index position 1; the most significant bit is at index position 32.
Before setting the field of bits, any fractional parts of value and fieldValue are truncated to form integers.
If fieldValue is wider than width, the most significant bits of the fieldValue that exceed the width are
truncated. For example, if width is 4 bits and the binary value for fieldValue is 11110 (5 bits), the most
significant bit of fieldValue is truncated and a binary value of 1110 is used.

Example

testResult = bit.setfield(15, 2, 3, 5)

print(testResult)

The binary equivalent of decimal 15 is 1111. After
overwriting it with a decimal 5 (binary 101) at index
position 2, the returned value is decimal 11 (binary
1011).
Output:
1.10000e+01

Also see

Bit manipulation and logic operations (on page 6-5)
bit.get() (on page 8-13)
bit.set() (on page 8-15)
bit.getfield() (on page 8-14)

bit.test()
This function returns the Boolean value (true or false) of a bit at the specified index position.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

result = bit.test(value, index)

result Result of the bit manipulation
value Specified number
index One-based bit position within value to test (1 to 32)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-17

Details

This function returns result, which is the result of the tested bit.
The least significant bit of value is at index position 1; the most significant bit is at index position 32.
If the indexed bit for value is 0, result is false. If the bit of value at index is 1, the returned value is true.
If index is bigger than the number of bits in value, the result is false.

Example

testResult = bit.test(10, 4)

print(testResult)

The binary equivalent of decimal 10 is 1010.
Testing the bit at index position 4 returns a
Boolean value of true.
Output:
true

Also see

Bit manipulation and logic operations (on page 6-5)
bit.clear() (on page 8-13)
bit.get() (on page 8-13)
bit.set() (on page 8-15)
bit.toggle() (on page 8-17)

bit.toggle()
This function toggles the value of a bit at a specified index position.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

result = bit.toggle(value, index)

result Result of the bit manipulation
value Specified number
index One-based bit position within value to toggle (1 to 32)

Details

This function returns result, which is the result of toggling the bit index in value.
Any fractional part of value is truncated to make it an integer. The returned value is also an integer.
The least significant bit of value is at index position 1; the most significant bit is at index position 32.
The indexed bit for value is toggled from 0 to 1, or 1 to 0.

Example

testResult = bit.toggle(10, 3)

print(testResult)

The binary equivalent of decimal 10 is 1010.
Toggling the bit at index position 3 returns a
decimal value of 14 (binary 1110).
Output:
1.40000e+01

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-18 3700AS-901-01 Rev. B/May 2013

Also see

Bit manipulation and logic operations (on page 6-5)
bit.clear() (on page 8-13)
bit.get() (on page 8-13)
bit.set() (on page 8-15)
bit.test() (on page 8-16)

bufferVar.appendmode
This attribute sets the state of the reading buffer's append mode.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script
Saved setup

See Details

Usage

state = bufferVar.appendmode
bufferVar.appendmode = state

state The reading buffer append mode; set to one of the following:
• 0: Append mode off; new measurement data overwrites the previous buffer content
• 1: Append mode on; appends new measurement data to the present buffer content

bufferVar The reading buffer

Details

Assigning a value to this attribute enables or disables the buffer append mode. This value can only be changed
with an empty buffer. Use bufferVar.clear() to empty the buffer.
When a buffer is created over a remote interface, the append mode attribute default setting is off (0). However,
when using the front panel or web interface, the default setting is on (1) to allow triggered readings to fill a buffer
without clearing the previous readings.
If the append mode is set to 0, any stored readings in the buffer are cleared before new ones are stored. If
append mode is set to 1, any stored readings remain in the buffer and new readings are added to the buffer after
the stored readings.
With append mode on, the first new measurement is stored at rb[n+1], where n is the number of readings
stored in buffer rb.

Example

buffer1.appendmode = 1 Append new readings to contents of the
reading buffer named buffer1.

Also see

bufferVar.clear() (on page 8-23)
Reading buffers (on page 3-55, on page 3-49)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-19

bufferVar.basetimefractional
When enabled by the bufferVar.collecttimestamps attribute, this attribute contains the fractional portion of the
timestamp (in seconds) for the first reading stored in the reading buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

value = bufferVar.basetimefractional

value The fractional seconds of the timestamp
bufferVar The reading buffer

Details

The bufferVar.basetimefractional information from a reading buffer is only available if the
bufferVar.collecttimestamps attribute is set to 1 (default setting). If it is set to 0, you will not be able to
access any time information from a reading buffer. You may change the collect timestamps setting when the
buffer is empty (bufferVar.clear()).
A read-only attribute for each existing reading buffer in the instrument.
The attribute represents the fractional seconds of the timestamp when reading 1 was stored in the buffer

Example

baseFractional = buffer1.basetimefractional Read the basetimefractional attribute
for buffer1 and store it in a variable called
baseFractional.

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.basetimeseconds
When enabled by the bufferVar.collecttimestamps attribute, this attribute represents the nonfractional
seconds of the timestamp for the first reading stored in the reading buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

value = bufferVar.basetimeseconds

value The nonfractional seconds of the timestamp
bufferVar The reading buffer

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-20 3700AS-901-01 Rev. B/May 2013

Details

The basetime seconds information from a reading buffer is only available if the
bufferVar.collecttimestamps attribute is set to 1 (default setting). If it is set to 0, you will not be able to
access any time information from a reading buffer. You may change the collect timestamps setting when the
buffer is empty (bufferVar.clear()).
This attribute is a read-only attribute for each existing reading buffer in the instrument.
This attribute represents the nonfractional seconds of the timestamp when reading 1 was stored in the buffer.

Example

basedSeconds = buffer1.basetimeseconds Read the basetimeseconds attribute for
buffer1 and store in a variable called
baseSeconds.

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.cachemode
This attribute enables or disables the reading buffer cache (on or off).

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Clearing the buffer cache
Instrument reset
Recall setup

Not saved 1 (enabled)

Usage

cacheMode = bufferVar.cachemode
bufferVar.cachemode = cacheMode

cacheMode The reading buffer cache mode; set to one of the following:
• 0: Cache mode disabled (off)
• 1: Cache mode enabled (on)

bufferVar The reading buffer

Details

Assigning a value to this attribute enables or disables the reading buffer cache. When enabled, the reading
buffer cache improves access speed to reading buffer data.
If you run successive operations that overwrite reading buffer data, the reading buffer may return stale cache
data. To avoid this, make sure that you include commands that automatically invalidate the cache as needed (for
example, explicit calls to the bufferVar.clearcache() function) or disable the cache using this attribute
(bufferVar.cachemode).

Example

buffer1.cachemode = 1 Enables reading buffer cache.

Also see

bufferVar.clearcache() (on page 8-23)
Reading buffers (on page 3-55, on page 3-49)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-21

bufferVar.capacity
This attribute contains the capacity of the buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Instrument reset
Recall setup

Create configuration script
Save setup

Not applicable

Usage

bufferCapacity = bufferVar.capacity

bufferCapacity The maximum number of readings the buffer can store
bufferVar The reading buffer

Details

This read-only attribute reads the number of readings that can be stored in the buffer.

Example

bufferCapacity = buffer1.capacity

print(bufferCapacity)

Reads the capacity of a reading buffer
named buffer1.
Output:
1.00000e+05
The above output indicates that the buffer
can hold 100000 readings.

Also see

Reading buffers (on page 3-55, on page 3-49)

bufferVar.channels
When enabled by the bufferVar.collectchannels attribute, this buffer recall attribute gets the channel,
backplane relay, or channel pattern information stored with readings in the buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

channels = bufferVar.channels[N]

bufferVar The reading buffer

N The reading number (1 to bufferVar.n)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-22 3700AS-901-01 Rev. B/May 2013

Details

The channels information from a reading buffer is only available if the bufferVar.collectchannels attribute
is set to 1 (default setting). If it is set to 0, you will not be able to access the channels information from a reading
buffer. You may change the collect channels setting when the buffer is empty (bufferVar.clear()).
This read-only attribute is an array (a Lua table) of strings indicating the channel or channel pattern associated
with the measurement.
The returned value provides different information, based on what was opened or closed when the reading was
acquired:

• If no channel or channel pattern is closed when the reading was acquired, None is displayed.

• If only a single channel or backplane relay was closed, the channel number is displayed (for
example, 5003 or 5915).

• If a channel or backplane relay plus another backplane relay or other channel is closed, then the
channel number is displayed followed by a plus sign (+) (for example, 3005+ or 3915+). The
channel is in the image unless the last close operation involved only backplane relays.

• If multiple channels and backplane relays were closed in a channel list, the last channel specified
is stored. Channels take precedence over backplane relays when stored. However, if only
multiple backplane relays are specified, then the first one is stored.

• If a channel pattern was closed, then the first eight characters of the channel pattern name are
returned (for example, mypattern1 is shown as mypatter).

Example

reset()
testData = dmm.makebuffer(1000)
testData.collectchannels = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.channels[1])

printbuffer(1, 6, testData.channels)

This example creates a reading buffer named
testData, configures the buffer to collect
channel data, sets and saves the DMM
configuration, creates a scan list, and then
runs the scan.

The print() command then ouputs the first
measurement channel.
Output:
2035+

The printbuffer() command then ouputs
the channels for measurements 1 to 6 in the
reading buffer.
Output:
2035+, 2036+, 2037+, 2038+, 2039+,
2040+

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collectchannels (on page 8-24)
Reading buffers (on page 3-55, on page 3-49)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-23

bufferVar.clear()
 empties the buffer.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

bufferVar.clear()

bufferVar The reading buffer

Details

clears all readings and statistics from the specified buffer. (for example, time, status, channels, and units) from
the specified buffer.

Example

testData = dmm.makebuffer(50)
testData.appendmode = 1
dmm.measurecount = 3
dmm.measure(testData)

printbuffer(1,testData.n, testData)

testData.clear()
print("Readings in buffer after clear ="

 .. testData.n)

dmm.measurecount = 3
dmm.measure(testData)
printbuffer(1,testData.n, testData)

Create a reading buffer named testData and
enable append mode for it. Take three readings and
store them in testData, and then view the
readings.
Output:
3.515871341e-07, 5.596728126e-07,
3.944283032e-07
Next, clear the data and verify there are no readings
in buffer.
Output:
Readings in buffer after clear = 0

Store three new readings in the buffer and view
those when done.
Output:
4.923509754e-07, 3.332266330e-07,
3.974883867e-07

Also see

Reading buffers (on page 3-55, on page 3-49)

bufferVar.clearcache()
This function clears the cache.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

bufferVar.clearcache()

bufferVar The reading buffer

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-24 3700AS-901-01 Rev. B/May 2013

Details

This function clears all readings from the specified cache.
If you run successive operations that overwrite reading buffer data, the reading buffer may return stale cache
data. This can happen when initiating successive scans without reconfiguring the scan measurements. Watch for
this when running Lua code remotely on more than one node, because values in the reading buffer cache may
change while the Lua code is running.To avoid this, you can include explicit calls to the
bufferVar.clearcache() function to remove stale values from the reading buffer cache.

Example

testData.clearcache() Clears the reading buffer cache for a
user-defined buffer named testData.

Also see

bufferVar.cachemode (on page 8-20)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.collectchannels
This attribute sets the storage state of channel information with the readings in the buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script
Save setup

1 (enabled)

Usage

state = bufferVar.collectchannels
bufferVar.collectchannels = state

state The reading buffer collect channels mode; set to one of the following:
• 0: Collect channels mode disabled (off); channel information is not stored in the reading

buffer
• 1: Collect channels mode enabled (on); channel information is stored in the reading

buffer
bufferVar The reading buffer

Details

Assigning a value to this attribute enables or disables the storage of channel information, which includes
channel, backplane relay, or channel pattern information associated with the reading. Reading this attribute
returns the state of channel information collection.
When on, channel information is stored with readings in the buffer. This requires eight extra bytes of storage per
reading.
This value, off (0) or on (1), can only be changed when the buffer is empty. Empty the buffer using the
bufferVar.clear() function.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-25

Example

reset()
testData = dmm.makebuffer(1000)
testData.collectchannels = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.channels[1])

printbuffer(1, 6, testData.channels)

This example creates a reading buffer named
testData, configures the buffer to collect
channel data, sets and saves the DMM
configuration, creates a scan list, and then
runs the scan.

The print() command then ouputs the first
measurement channel.
Output:
2035+

The printbuffer() command then ouputs
the channels for measurements 1 to 6 in the
reading buffer.
Output:
2035+, 2036+, 2037+, 2038+, 2039+,
2040+

Also see

bufferVar.clear() (on page 8-23)
bufferVar.channels (on page 8-21)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.collecttimestamps
This attribute sets whether or not timestamp values are stored with the readings in the buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script
Save setup

1 (enabled)

Usage

state = bufferVar.collecttimestamps
bufferVar.collecttimestamps = state

state Timestamp value collection status; set to one of the following:
• 0: Timestamp value collection disabled (off)
• 1: Timestamp value collection enabled (on)

bufferVar The reading buffer

Details

Assigning a value to this attribute enables or disables the storage of timestamps. Reading this attribute returns
the state of timestamp collection.
When on, timestamp values are stored with readings in the buffer. This requires four extra bytes of storage for
each reading.
This value, off (0) or on (1), can only be changed when the buffer is empty. Empty the buffer using the
bufferVar.clear() function.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-26 3700AS-901-01 Rev. B/May 2013

Example

reset()
testData = dmm.makebuffer(1000)
testData.collecttimestamps = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.timestamps[1])

printbuffer(1, 6, testData.timestamps)

This example creates a reading buffer named
testData, configures the buffer to collect
timestamp data, sets and saves the DMM
configuration, creates a scan list, and then runs
the scan.

The print() command then outputs the first
measurement timestamp.
Output:
07/11/2011 09:14:48.509762161

The printbuffer() command then outputs
the timestamps for measurements 1 to 6 in the
reading buffer.
Output:
07/11/2011 09:14:48.509762161,
07/11/2011 09:14:48.528708001,
07/11/2011 09:14:48.547659196,
07/11/2011 09:14:48.566612446,
07/11/2011 09:14:48.585565606,
07/11/2011 09:14:48.681325966

Also see

bufferVar.clear() (on page 8-23)
bufferVar.timestamps (on page 8-38)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.dates
When enabled by the bufferVar.collecttimestamps attribute, this attribute contains the dates (month, day,
and year) of readings stored in the reading buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

dates = bufferVar.dates[N]

bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Details

The bufferVar.dates information from a reading buffer is only available if the
bufferVar.collecttimestamps attribute is set to 1 (default setting). If it is set to 0, you will not be able to
access any time information from a reading buffer. You may change the collect timestamps setting when the
buffer is empty (bufferVar.clear()).
This read-only attribute is an array (a Lua table) of strings indicating the date of the reading, formatted in month,
day, and year format.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-27

Example

reset()
testData = dmm.makebuffer(1000)
testData.collecttimestamps = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.dates[1])

printbuffer(1, 6, testData.dates)

This example creates a reading buffer named
testData, configures the buffer to collect
time and date data, sets and saves the DMM
configuration, creates a scan list, and then
runs the scan.

The print() command then outputs the first
measurement date.
Output:
07/11/2011

The printbuffer() command then outputs
the dates for measurements 1 to 6 in the
reading buffer.
Output:
07/11/2011, 07/11/2011,
07/11/2011, 07/11/2011,
07/11/2011, 07/11/2011

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.formattedreadings
This attribute contains the stored readings shown as they are formatted on the front-panel display.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

readings = bufferVar.formattedreadings[N]

bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Details

This attribute outputs an array (a Lua table) of strings that contain the stored readings. The readings are shown
as they would appear on the front-panel display.
Use this attribute to access the reading elements N as they appear on the front panel.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-28 3700AS-901-01 Rev. B/May 2013

Example

reset()
testData = dmm.makebuffer(1000)
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.formattedreadings[1])

printbuffer(1, 6, testData.formattedreadings)

This example creates a reading buffer
named testData, sets and saves the DMM
configuration, creates a scan list, and then
runs the scan.

The print() command outputs the first
reading, formatted as it appears on the
front-panel display.
Output:
+000.0006e-3
The printbuffer() command then
outputs readings 1 to 6 in the reading buffer
as they appear on the front-panel display.
Output:
6.000000000e-07, 7.000000000e-07,
5.000000000e-07, 7.000000000e-07,
7.000000000e-07, 6.000000000e-07

Also see

bufferVar.readings (on page 8-31)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.fractionalseconds
This attribute contains the fractional portion of the timestamp (in seconds) when each reading occurred.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

fractionalseconds = bufferVar.fractionalseconds[N]

bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Details

The bufferVar.fractionalseconds information from a reading buffer is only available if the
bufferVar.collecttimestamps attribute is set to 1 (default setting). If it is set to 0, you will not be able to
access any time information from a reading buffer. You may change the collect timestamps setting when the
buffer is empty (bufferVar.clear()).
This read-only attribute is an array (a Lua table) of the fractional portion of the timestamps, in seconds, of when
each reading occurred. These are absolute fractional times.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-29

Example

reset()
testData = dmm.makebuffer(1000)
testData.collecttimestamps = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.fractionalseconds[1])

printbuffer(1, 6, testData.fractionalseconds)

This example creates a reading buffer
named testData, configures the buffer to
collect time and date data, sets and saves
the DMM configuration, creates a scan list,
and then runs the scan.

The print() command outputs the
fractional portion of the timestamp for the
first measurement in the buffer.
Output:
5.097621610e-01

The printbuffer() command then
outputs the fractional portion of the
timestamp for the first six measurements in
the buffer.
Output:
5.097621610e-01, 5.287080010e-01,
5.476591960e-01, 5.666124460e-01,
5.855656060e-01, 6.813259660e-01

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.n
This attribute contains the number of readings in the buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Clearing the buffer
Reset
Recall setup

Not saved Not applicable

Usage

numberOfReadings = bufferVar.n

numberOfReadings The number of readings stored in the buffer
bufferVar The reading buffer

Details

This read-only attribute contains the number of readings presently stored in the buffer.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-30 3700AS-901-01 Rev. B/May 2013

Example

numberOfReadings = buffer1.n

print(numberOfReadings)

Reads the number of readings stored in
a reading buffer named buffer1.
Output:
1.250000+02
The above output indicates that there are 125
readings stored in the buffer.

Also see

bufferVar.formattedreadings (on page 8-27)
bufferVar.fractionalseconds (on page 8-28)
bufferVar.readings (on page 8-31)
bufferVar.relativetimestamps (on page 8-32)
bufferVar.seconds (on page 8-34)
bufferVar.statuses (on page 8-35)
bufferVar.times (on page 8-36)
bufferVar.units (on page 8-39)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.ptpseconds
When enabled by the bufferVar.collecttimestamps attribute, this attribute contains the absolute seconds
portion of the timestamp of when the reading was stored, in PTP format.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

value = bufferVar.ptpseconds[N]

bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Details

The ptp seconds information from a reading buffer is only available if the bufferVar.collecttimestamps
attribute is set to 1 (default setting). If it is set to 0, you will not be able to access any time information from a
reading buffer. You may change the collect timestamps setting when the buffer is empty
(bufferVar.clear()).
These seconds are absolute and in PTP format.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-31

Example

reset()
testData = dmm.makebuffer(1000)
testData.collecttimestamps = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.ptpseconds[1])

printbuffer(1, 6, testData.ptpseconds)

This example creates a reading buffer
named testData, configures the buffer to
collect time and date data, sets and saves
the DMM configuration, creates a scan list,
and then runs the scan.

The print() command outputs the
absolute seconds portion of the timestamp
of first measurement in the buffer, in PTP
format.
Output:
1.310375688e+09

The printbuffer() command outputs the
absolute seconds portion of the timestamp
for measurements 1 to 6 in the reading
buffer, in PTP format.
Output:
1.310375688e+09, 1.310375688e+09,
1.310375688e+09, 1.310375688e+09,
1.310375688e+09, 1.310375688e+09

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.readings
This attribute contains the readings stored in a specified reading buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

reading = bufferVar.readings[N]

reading The value of the reading in the specified reading buffer
bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Details

The readings buffer recall attribute is like an array (a Lua table) of the readings stored in the reading buffer.
This array holds the same data that is returned when the reading buffer is accessed directly; that is, rb[2] and
rb.readings[2] access the same value.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-32 3700AS-901-01 Rev. B/May 2013

Example

reset()
testData = dmm.makebuffer(1000)
testData.collectchannels = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.readings[1])

printbuffer(1, 6, testData.readings)

This example creates a reading buffer named
testData, configures the buffer to collect
channel data, sets and saves the DMM
configuration, creates a scan list, and then
runs the scan.
The print() command then outputs the first
reading in the reading buffer.
Output:
6.239269805e-07

The printbuffer() command then outputs
the readings for measurements 1 to 6 in the
reading buffer.
Output:
6.239269805e-07, 6.943093615e-07,
4.954026325e-07, 7.432710179e-07,
6.943093615e-07, 6.331072911e-07

NOTE: An alternative way to use the
printbuffer() command for this example
is printbuffer(1, 6, testData),
because "readings" is an optional
parameter and is assumed if it has not been
specified.

Also see

bufferVar.formattedreadings (on page 8-27)
bufferVar.fractionalseconds (on page 8-28)
bufferVar.relativetimestamps (on page 8-32)
bufferVar.seconds (on page 8-34)
bufferVar.statuses (on page 8-35)
bufferVar.times (on page 8-36)
bufferVar.units (on page 8-39)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.relativetimestamps
When enabled by the bufferVar.collecttimestamps attribute, this attribute contains the timestamps, in
seconds, of when each reading occurred relative to the timestamp of reading buffer entry number 1.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

1

Usage

relativetimestamp = bufferVar.relativetimestamps[N]

bufferVar The reading buffer

N The reading number (1 to bufferVar.n)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-33

Details

The relative timestamps information from a reading buffer is only available if the
bufferVar.collecttimestamps attribute is set to 1 (default setting). If it is set to 0, you will not be able to
access any time information from a reading buffer. You may change the collect timestamps setting when the
buffer is empty (bufferVar.clear()).
This read-only attribute is an array (a Lua table) of timestamps, in seconds, of when each reading occurred
relative to the timestamp of reading buffer entry number 1. These timestamps are equal to the time that has
lapsed for each reading since the first reading was stored in the buffer. Therefore, the relative timestamp for
entry number 1 in the buffer will equal 0.

Example

reset()
testData = dmm.makebuffer(1000)
testData.collecttimestamps = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.relativetimestamps[1])

printbuffer(1, 6, testData.relativetimestamps)

This example creates a reading buffer
named testData, configures the buffer to
collect time and date data, sets and saves
the DMM configuration, creates a scan list,
and then runs the scan.

The print() command then outputs the
relative timestamp of the first measurement
in the reading buffer.
Output:
0.000000000e+00

The printbuffer() command then
outputs the relative timestamp for
measurements 1 to 6 in the reading buffer.
Output:
0.000000000e+00,

1.894584000e-02,
3.789703500e-02,
5.685028500e-02,
7.580344500e-02,
1.715638050e-01

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
Reading buffers (on page 3-55, on page 3-49)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-34 3700AS-901-01 Rev. B/May 2013

bufferVar.seconds
When enabled by the bufferVar.timestamps attribute, this attribute contains the nonfractional seconds
portion of the timestamp when the reading was stored, in UTC format.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

seconds = bufferVar.seconds[N]

bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Details

The bufferVar.seconds information from a reading buffer is only available if the
bufferVar.collecttimestamps attribute is set to 1 (default setting). If it is set to 0, you will not be able to
access any time information from a reading buffer. You may change the collect timestamps setting when the
buffer is empty (bufferVar.clear()).
This read-only attribute is an array (a Lua table) of the seconds portion of the timestamp when the reading was
stored, in seconds. These seconds are absolute and in UTC format.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-35

Example

reset()
testData = dmm.makebuffer(1000)
testData.collecttimestamps = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.seconds[1])

printbuffer(1, 6, testData.seconds)

This example creates a reading buffer
named testData, configures the buffer to
collect time and date data, sets and saves
the DMM configuration, creates a scan list,
and then runs the scan.

The print() command then ouputs the
seconds portion of the timestamp of the first
reading in the reading buffer.
Output:
1.310375688e+09

The printbuffer() command then
ouputs the seconds portion of the
timestamps for measurements 1 to 6 in the
reading buffer.
Output:
1.310375688e+09, 1.310375688e+09,
1.310375688e+09, 1.310375688e+09,
1.310375688e+09, 1.310375688e+09

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.statuses
This attribute contains the status values of readings in the reading buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

statusInformation = bufferVar.statuses[N]

statusInformation
The status value when reading N of the specified buffer was acquired

bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Details

This read-only buffer recall attribute is like an array (a Lua table) of the status values for all the readings in the
buffer. The status values are floating-point numbers that encode the status value; see the following table for
values.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-36 3700AS-901-01 Rev. B/May 2013

Buffer status bits

Bit Name Hex value Remote command

B0 Low limit 1 0x01 dmm.buffer.LIMIT1_LOW_BIT
B1 High limit 1 0x02 dmm.buffer.LIMIT1_HIGH_BIT
B2 Low limit 2 0x04 dmm.buffer.LIMIT2_LOW_BIT
B3 High limit 2 0x08 dmm.buffer.LIMIT2_HIGH_BIT
B6 Measure overflow 0x40 dmm.buffer.MEAS_OVERFLOW_BIT
B7 Measure connect

question
0x80 dmm.buffer.MEAS_CONNECT_QUESTION_BIT

Example

reset()
testData = dmm.makebuffer(1000)
testData.collectchannels = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.statuses[1])

printbuffer(1, 6, testData.statuses)

This example creates a reading buffer named
testData, configures the buffer to collect
channel data, sets and saves the DMM
configuration, creates a scan list, and then
runs the scan.
The print() command then ouputs the
status value of the first measurement channel
in the reading buffer.
Output:
0.000000000e+00

The printbuffer() command then ouputs
the status values for measurements 1 to 6 in
the reading buffer.
Output:
0.000000000e+00, 0.000000000e+00,
0.000000000e+00, 0.000000000e+00,
0.000000000e+00, 0.000000000e+00

Also see

bufferVar.timestamps (on page 8-38)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.times
When enabled by the bufferVar.collecttimestamps attribute, this attribute contains the time of the
readings (in hours, minutes, and seconds format) in the reading buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

time = bufferVar.times[N]

bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-37

Details

The times information from a reading buffer is only available if the bufferVar.collecttimestamps attribute
is set to 1 (default setting). If it is set to 0, you cannot access any time information from a reading buffer. You
may change the collect timestamps setting when the buffer is empty (bufferVar.clear()).
This read-only attribute is an array (a Lua table) of strings indicating the time of the reading formatted in hours,
minutes, and seconds.
These seconds are absolute and in UTC format.

Example

reset()
testData = dmm.makebuffer(1000)
testData.collecttimestamps = 1
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.times[1])

printbuffer(1, 6, testData.times)

This example creates a reading buffer
named testData, configures the buffer to
collect time and date data, sets and saves
the DMM configuration, creates a scan list,
and then runs the scan.

The print() command then ouputs the
time of the first reading in the reading buffer.
Output:
09:14:48

The printbuffer() command then
ouputs the time of readings 1 to 6 in the
reading buffer.
Output:
09:14:48, 09:14:48, 09:14:48,
09:14:48, 09:14:48, 09:14:48

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.timestampresolution
This attribute contains the timestamp's resolution.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Reset
Recall setup

Not saved Not applicable

Usage

resolution = bufferVar.timestampresolution

resolution Timestamp resolution in seconds
bufferVar The reading buffer

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-38 3700AS-901-01 Rev. B/May 2013

Details

Reading this attribute returns the timestamp resolution value.
The finest timestamp resolution is 0.000001 seconds (1 μs). At this resolution, the reading buffer can store
unique timestamps for up to 71 minutes. This value can be increased for very long tests.
The value specified when setting this attribute will be rounded to an even power of 2 μs.

Example

buffer1.timestampresolution = 0.000008

Sets the timestamp resolution of
reading buffer 1 to 8 μs.

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
bufferVar.timestamps (on page 8-38)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.timestamps
When enabled by the bufferVar.collecttimestamps attribute, this attribute contains the timestamp (in
seconds) of when each reading saved in the specified reading buffer occurred.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Buffer storage settings
Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

timestamp = bufferVar.timestamps[N]

timestamp The timestamp of reading number N in the specified buffer when the reading was
acquired

bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Details

The bufferVar.timestamps information from a reading buffer is only available if the
bufferVar.collecttimestamps attribute is set to 1 (default setting). If it is set to 0, you cannot access any
time information from a reading buffer.
If enabled, this buffer recall attribute is like an array (a Lua table) that contains timestamps, in seconds, of when
each reading occurred. These are relative to the bufferVar.basetimestamp for the buffer. See Reading
buffer commands for more information.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-39

Example

printbuffer(1, 6, buffer1.timestamps) Print the timestamp of the first 6 readings
stored in buffer 1.
Example output:
07/11/2011 09:14:48.509762161,
07/11/2011 09:14:48.528708001,
07/11/2011 09:14:48.547659196,
07/11/2011 09:14:48.566612446,
07/11/2011 09:14:48.585565606,
07/11/2011 09:14:48.681325966

Also see

bufferVar.clear() (on page 8-23)
bufferVar.collecttimestamps (on page 8-25)
bufferVar.measurefunctions
bufferVar.measureranges
bufferVar.n (on page 8-29)
bufferVar.readings (on page 8-31)
bufferVar.sourcefunctions
bufferVar.sourceoutputstates
bufferVar.sourceranges
bufferVar.sourcevalues
bufferVar.statuses (on page 8-35)
Reading buffers (on page 3-55, on page 3-49)

bufferVar.units
This attribute contains the unit of measure stored with readings in the reading buffer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Clearing the buffer
Instrument reset
Recall setup

USB flash drive using
dmm.savebuffer or
dmm.appendbuffer

Not applicable

Usage

units = bufferVar.units[N]

bufferVar The reading buffer
N The reading number (1 to bufferVar.n)

Details

This attribute is an array (Lua table) of the strings that indicate the unit of measure that is stored with readings in
the buffer. You can designate units as one of the following: Volts AC, Volts DC, Amps AC, Amps DC, dB VAC,
dB VDC, Ohms 2wire, Ohms 4wire, Ohms ComSide, Fahrenheit, Kelvin, Celsius, Hertz, Seconds, and
Continuity.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-40 3700AS-901-01 Rev. B/May 2013

Example

reset()
testData = dmm.makebuffer(1000)
dmm.nplc = 0.5
dmm.range = 0
dmm.configure.set("Dcv_100mV")
dmm.setconfig("slot2", "Dcv_100mV")
scan.create("2035:2040")
scan.execute(testData)

print(testData.units[1])

printbuffer(1, 6, testData.units)

This example creates a reading buffer
named testData, sets and saves the DMM
configuration, creates a scan list, and then
runs the scan.

The print() command outputs the units of
the first reading in the reading buffer.
Output:
Volts DC

The printbuffer() command outputs the
units of readings 1 to 6 in the reading buffer.
Output:
Volts DC, Volts DC, Volts DC,
Volts DC, Volts DC, Volts DC

Also see

Reading buffers (on page 3-55, on page 3-49)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-41

channel.calibration.adjustcount()
This function gets the number of times that a card has been adjusted.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

count = channel.calibration.adjustcount(channelList)

count Return value representing the number of times the instrument has been adjusted

channelList A string contains slotX, where X is a number from 1 to 6

Details

This command can be used with channels that are locked or unlocked. If no channelList is provided, the
currently unlocked channels are assumed.
There is only one adjustment count per card. Therefore, with no channel unlocked, the only acceptable values for
channelList are "slot1", "slot2", and so on. An error is generated if any other values are used.

Example

Count = channel.calibration.adjustcount("slot1")
print(Count)

Assign the number of times the card in slot 1 has been adjusted to a user variable named Count.
Output the value.
3

This shows that the instrument has been adjusted 3 times.

Also see

Channel list notation
channel.calibration.adjustdate() (on page 8-42)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-42 3700AS-901-01 Rev. B/May 2013

channel.calibration.adjustdate()
This function sets or gets the adjustment date in UTC format (number of seconds since January 1, 1970) on the
unlocked channel.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

returnDate = channel.calibration.adjustdate(channelList)
returnDate = channel.calibration.adjustdate(channelList, date)

returnDate The adjustment date in UTC format

channelList A string contains slotX, where X is a number from 1 to 6
date The date of the adjustment (UTC formatted)

Details

This command can get the adjust date whether calibration is currently locked or unlocked. If the channelList
parameter is not specified, it uses the currently unlocked card.
This command can only set the adjustment date on a previously unlocked card. The date is not permanently
saved until the channel.calibration.save() command is sent.
There is only one adjustment date per card. Therefore, the only acceptable values for channelList are slotX.
An error is generated if any other values are used.

Example 1

adjustmentDate =
channel.calibration.adjustdate("slot2")

Gets the adjustment date for the
card in slot 2.

Example 2

NewAdjustDate = os.time{year=2010, month=12, day=28, hour=17, min=35, sec=0}
channel.calibration.unlock("slot5", "KI3706")
myDate = channel.calibration.adjustdate("slot5", NewAdjustDate)
channel.calibration.save()
channel.calibration.lock()
print(os.date("%c", myDate))

Assign the UTC time for December 28, 2010 at 17:35:00 GMT to NewAdjustDate.
Unlock the calibration for the card in slot 5, assuming the default password.
Set the adjustment date using NewAdjustDate for the card in slot 5.
Save the adjustment date on the card on slot 5.
Lock the calibration for the card in slot 5.
View the date for myDate.

Also see

ChannelList notation
Lua date and time (see Lua date and time - http://www.lua.org/pil/22.1.html)
UTC Calculator (see UTC Calculator - http://www.mbari.org/staff/rich/utccalc.htm)
channel.calibration.adjustcount() (on page 8-41)
channel.calibration.save() (on page 8-45)
channel.calibration.verifydate() (on page 8-48)

http://www.lua.org/pil/22.1.html
http://www.mbari.org/staff/rich/utccalc.htm

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-43

channel.calibration.lock()
This function prevents further calibration on the currently unlocked card.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.calibration.lock()

Details

Calibration data is locked during normal operation. To perform calibration, calibration must be unlocked
(channel.calibration.unlock()) for the card.
Only one card can be calibrated at a time. Therefore, channel.calibration.lock() works only on the
currently unlocked card. Once locked, you must unlock calibration to perform it again.
This command locks calibration on the card being calibrated, but does not save calibration data.

Calibration data is lost if it is not saved before locking. Refer to channel.calibration.save()
for more information.

An error is generated if this command is issued when calibration is already locked.

Example

channel.calibration.unlock("slot1","KI3706")
-- Perform operations to generate the calibration data
channel.calibration.save()
channel.calibration.lock()

Unlock the card calibration for slot 1 using the default password.
Use the channel.calibration.step command to generate the calibration data.
Save the calibration data for the card in slot 1, if no errors occurred while generating the calibration data.
Lock the calibration data for the card in slot 1.

Also see

channel.calibration.save() (on page 8-45)
channel.calibration.step() (on page 8-46)
channel.calibration.unlock() (on page 8-47)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-44 3700AS-901-01 Rev. B/May 2013

channel.calibration.password()
This function sets the password needed to unlock the calibration functionality of a card.

Type TSP-Link accessible Affected by Where saved Default value

Function No Not applicable Card nonvolatile memory KI3706

Usage

channel.calibration.password(password)

password A string of characters that contain the desired password

Details

There is only one password per card. Therefore, channel.calibration.password() works only on the
currently unlocked card.
Make note of the password, because there is no command to query for the password once it has been set on
the instrument. The password is not permanently saved until the channel.calibration.save() command is
sent. Passwords are alphanumeric and case-sensitive.
This command generates an error if calibration is locked or if the password string length is greater than six
characters.
The default password from the factory is KI3706. The first two characters in the password are capital K capital I
(for Keithley Instruments).

Example

channel.calibration.unlock("slot3","KI3706"
)

channel.calibration.password("Unlock")
channel.calibration.save()
channel.calibration.lock()

Unlock the calibration for the card in slot 3,
assuming the default password is still valid.
Set the password to "Unlock" for the card in
slot 3.
Saved the password for the card in slot 3 for
subsequent unlocks.
Lock the calibration for the card in slot 3.

Also see

channel.calibration.lock() (on page 8-43)
channel.calibration.unlock() (on page 8-47)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-45

channel.calibration.save()
This function saves the calibration data to the card.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.calibration.save()

Details

Only one card can be calibrated at a time. Therefore, channel.calibration.save() works only on the
presently unlocked card. An error is generated if this command is issued when calibration is already locked.
The system must receive this command before the channel.calibration.lock() command or the
calibration data will be lost.
This command saves the present values of the calibration constants and calibration date, and increases the
calibration count by one, regardless of errors in the data. You should not issue
channel.calibration.save() unless the calibration procedure was performed with no errors.
If no calibration date was specified using either channel.calibration.adjustdate() or
channel.calibration.verifydate(), the date is automatically assigned based on the system date.

Example

channel.calibration.unlock("slot1","KI3706")
-- Perform operations to generate the calibration data
channel.calibration.save()
channel.calibration.lock()

Unlock the card calibration for slot 1 using the default password.
Use the channel.calibration.step command to generate the calibration data.
Save the calibration data for the card in slot 1, if no errors occurred while generating the calibration data.
Lock the calibration data for the card in slot 1.

Also see

channel.calibration.adjustcount() (on page 8-41)
channel.calibration.adjustdate() (on page 8-42)
channel.calibration.lock() (on page 8-43)
channel.calibration.unlock() (on page 8-47)
channel.calibration.verifydate() (on page 8-48)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-46 3700AS-901-01 Rev. B/May 2013

channel.calibration.step()
This function sends a calibration command.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.calibration.step(channel, step)
channel.calibration.step(channel, step, value)

channel The channel to be calibrated
step The number corresponding to the specified step
value The measured value for the specified step when the step value is even

Details

The specified channel must be on the unlocked slot. Only DAC and totalizer channels can be calibrated. It is best
to calibrate a single channel sequentially to completion before changing channels.
The card assumes that the given voltage or current value is exactly what it is sourcing for the given step. This
command generates an error if the step is out of sequence, does not exist, or the calibration is locked. Also, an
error is generated if the calibration step does not complete successfully, if the value passed is invalid or out of
range for the step, or not needed.

For DAC channels, a calibration sequence includes these steps:

1. Set voltage, –12 V to +12 V range, generate negative point 1.
2. Send reading.
3. Set voltage, –12 V to +12 V range, generate negative point 2.
4. Send reading.
5. Set voltage, –12 V to +12 V range, generate positive point 1.
6. Send reading.
7. Set voltage, –12 V to +12 V range, generate positive point 2.
8. Send reading.
9. Set current, 0 mA to +20 mA range, generate point 1.
10. Send reading.
11. Set current, 0 mA to +20 mA range, generate point 2.
12. Send reading.
13. Set current, +4 mA to +20 mA range, generate point 1.
14. Send reading.
15. Set current, +4 mA to +20 mA range, generate point 2.
16. Send reading.

For totalizer channels, a calibration sequence includes these steps:

1. Calibrate 0 V totalizer threshold
2. Calibrate 1.5 V totalizer threshold

You must save the calibration after calibrating and before locking. Use
channel.calibration.save() to save the calibration.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-47

All calibration progress is lost if the calibration data is not saved before you lock the channel.

After calibration, the channel must be locked using channel.calibration.lock().

Also see

ChannelList notation
channel.calibration.lock() (on page 8-43)
channel.calibration.save() (on page 8-45)
channel.calibration.unlock() (on page 8-47)

channel.calibration.unlock()
This function unlocks calibration functionality for a card so that calibration operations can be performed.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

channel.calibration.unlock(slotX, password)

slotX A string containing slotX, where X is a slot number from 1 to 6
password The password that unlocks calibration

Details

Calibration data is locked during normal operation. This command enables calibration functionality. When
calibration is completed, calibration functionality must once again be locked
(channel.calibration.lock()). Only one card at a time may be unlocked.
There is only one password per card. Therefore, the only acceptable values for channel list are "slot1",
"slot2", and so on. Otherwise, an error is generated.
An error is generated if the password that is entered does not match the one that was saved with
channel.calibration.password().
The password can only contain six case-sensitive, alphanumeric characters.
The default password from the factory is KI3706. The first two characters in the password are capital K capital I
(for Keithley Instruments).

Example

channel.calibration.unlock("slot1","KI3706")
-- Perform operations to generate the calibration data
channel.calibration.save()
channel.calibration.lock()

Also see

channel.calibration.lock() (on page 8-43)
channel.calibration.password() (on page 8-44)
channel.calibration.save() (on page 8-45)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-48 3700AS-901-01 Rev. B/May 2013

channel.calibration.verifydate()
This function gets or sets the date the calibration was verified in UTC format (number of seconds since January 1,
1970).

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

returnDate = channel.calibration.verifydate(slotX)
returnDate = channel.calibration.verifydate(slotX, date)

returnDate The verification date returned from the function call
slotX A string containing slotX, where X is 1 to 6
date UTC formatted date to which to set the calibration verification date

Details

This command gets the verification date whether calibration is currently locked or unlocked. If the slot is not
defined, the unlocked channel is assumed.
This command can only set the verification date on a previously unlocked card. The date is not permanently
saved until channel.calibration.save() is issued.
There is only one verification date per card. If more than one slot is defined, an error is generated.

Example

channel.calibration.unlock("slot1", "KI3706")
print(channel.calibration.verifydate(os.time{year=2010, month=8, day=5}))
channel.calibration.save()
channel.calibration.lock()
print(os.date("%m/%d/%Y", channel.calibration.verifydate("slot1")))

Unlock the calibration for the card in slot 1 using the default password.
Set the verify calibration date to August 5, 2010.
Get the newly set verification date in a user-readable format.
Save the new verification date.
Lock the calibration.
Output:
1281009600
08/05/2010

Also see

Lua date and time (see Lua date and time - http://www.lua.org/pil/22.1.html)
UTC calculator (see UTC Calculator - http://www.mbari.org/staff/rich/utccalc.htm)
channel.calibration.adjustdate() (on page 8-42)
channel.calibration.save() (on page 8-45)

http://www.lua.org/pil/22.1.html
http://www.mbari.org/staff/rich/utccalc.htm

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-49

channel.clearforbidden()
This function clears the list of channels specified from being forbidden to close.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.clearforbidden(channelList)

channelList String that specifies a list of channels, using channel list notation

Details

The channelList parameter indicates the channels that will no longer be forbidden to close, and may include:
• allslots or slotX (where X equals 1 to 6)
• Channel ranges or individual channels
• Analog backplane relays

This function allows all items contained in the channelList parameter to be closed. It removes the "forbidden
to close" attribute that can be applied to a channel using channel.setforbidden().
Command processing stops as soon as an error is detected. If an error is found, the channels are not cleared
from being forbidden to close.

Example

channel.clearforbidden("2002,2004,2006,2008") Clears channels 2, 4, 6, and 8 on slot 2 from
being forbidden to close.

channel.clearforbidden("allslots") Clears all channels from being forbidden to
close.

channel.clearforbidden("3005:3010") Clears channels 5 through 10 on slot 3 from
being forbidden to close.

Also see

channel.getforbidden() (on page 8-66)
channel.setforbidden() (on page 8-94)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-50 3700AS-901-01 Rev. B/May 2013

channel.close()
This function closes the channels, analog backplane relays, and channel patterns that are specified by the
channel list parameter without opening any channels.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.close(channelList)

channelList A string that lists the channels, analog backplane relays, and channel patterns to
close

Details

Channels closed with this command are appended to the already closed channels (no previously closed
channels are opened by this command).
The channelList parameter can include channels with analog backplane relays. If this is the case,
channel.close closes the specified channels and any associated analog backplane relays. For channel
patterns, the analog backplane relays that are closed are the ones that were specified when the pattern was
created. However, for channels, they are the ones specified with the channel.setbackplane() function.
Another option for closing analog backplane relays with this command is to include them in the channelList
parameter.
This command has no effect on how the DMM is configured.
Actions associated with this function include:

• Close the specified items in channelList
• Incur the settling time and any user-specified delay

This command is not available for digital I/O, DAC, and totalizer channels. Calling on a specific channel
generates an error. If the digital I/O, DAC, or totalizer channel is in the range of channels, the channel is ignored.

• For delay time, see channel.setdelay()
• For analog backplane relays with channels, see channel.setbackplane()
• For channels associated with a channel, see channel.getimage()
• For channels associated with a channel pattern, see

 channel.pattern.getimage()
• For channel states (open/close), see channel.getstate()
• For closed channels, see channel.getclose().

An error is generated if:
• The parameter string contains slotX, where X is 1 to 6, or allslots
• A forbidden item is specified
• Specified channel does not support being closed, such as a digital I/O channel
• Channel is paired with another bank for a multiwire application

Once an error is detected, the command stops processing and no channels are closed.

Example

channel.close("1001:1005, 3003, Chans") Close channels 1 to 5 on slot 1, channel 3 on slot
3, and the channel pattern or label Chans.

channel.close("2001, 2913") Close channel 1 on slot 2 and analog backplane
relay 3 in bank 1 on slot 2.

Also see

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-51

channel.exclusiveclose() (on page 8-56)
channel.exclusiveslotclose() (on page 8-57)
channel.getclose() (on page 8-61)
channel.open() (on page 8-79)
channel.getimage() (on page 8-67)
channel.getstate() (on page 8-75)
channel.pattern.getimage() (on page 8-81)
channel.pattern.snapshot() (on page 8-84)
channel.pattern.setimage() (on page 8-82)
channel.setbackplane() (on page 8-90)
channel.setdelay() (on page 8-93)
dmm.close() (on page 8-167)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-52 3700AS-901-01 Rev. B/May 2013

channel.connectrule
This attribute controls the connection rule for closing and opening channels in the instrument.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script
Save setup

channel.BREAK_BEFORE_MAKE

Usage

rule = channel.connectrule
channel.connectrule = rule

rule • channel.BREAK_BEFORE_MAKE or 1: Break-before-make (BBM) connections for
relays in the instrument

• channel.MAKE_BEFORE_BREAK or 2: Make-before-break (MBB) connections for
relays in the instrument

• channel.OFF or 0: Does not guarantee a connection rule. The instrument closes
relays as efficiently as possible to improve speed performance without applying a rule

Details

The connection rule describes the order in which switch channels are opened and closed when using
channel.exclusiveclose(), channel.exclusiveslotclose(), dmm.close(), and scanning
commands like scan.execute() and scan.background(). These commands may both open and close
switch channels in a single command. The connection rule dictates the algorithm used by the instrument to order
the opening and closing of switches.
The connection rule affects the operating time of these commands. These commands do not allow the
instrument to continue execution until the settle time of the relays has expired.
When the connection rule is set to channel.BREAK_BEFORE_MAKE, the instrument ensures that all switch
channels open before any switch channels close. When switch channels are both opened and closed, this
command executes not less than the addition of both the open and close settle times of the indicated switch
channels.
When the connection rule is set to channel.MAKE_BEFORE_BREAK, the instrument ensures that all switch
channels close before any switch channels open. This behavior should be applied with caution because it will
connect two test devices together for the duration of the switch close settle time. When switch channels are both
opened and closed, the command executes not less than the addition of both the open and close settle times of
the indicated switch channels.
With no connection rule (set to channel.OFF), the instrument attempts to simultaneously open and close switch
channels in order to minimize the command execution time. This results in faster performance at the expense of
guaranteed switch position. During the operation, multiple switch channels may simultaneously be in the close
position. Make sure your device under test can withstand this possible condition. When switch channels are both
opened and closed, the command executes not less than the greater of either the open or close settle times of
the indicated switch channels.

You cannot guarantee the sequence of open and closure operations when the channel connect rule
set to OFF. It is highly recommended that you implement cold switching when the channel connect
rule is set to OFF.

In general, the settling time of single commands that open and close switch channels depends on several
factors, such as card type and channel numbers. However, the opening and closing of two sequential channels
including no others can be guaranteed as follows:

• channel.BREAK_BEFORE_MAKE open settle time + close settle time
• channel.MAKE_BEFORE_BREAK close settle time + open settle time

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-53

• channel.OFF maximum of open settle time or close settle time
This behavior is also affected by channel.connectsequential and any additional user delay times.

Make-before-break (also known as hot switching) can dry-weld reed relays so that they will
always be on. Hot switching is recommended only when external protection is provided.

Example

channel.connectrule = channel.BREAK_BEFORE_MAKE Sets the connect rule in the instrument to
channel.BREAK_BEFORE_MAKE

Also see

channel.connectsequential (on page 8-53)
channel.exclusiveclose() (on page 8-56)
channel.exclusiveslotclose() (on page 8-57)
dmm.close() (on page 8-167)
scan.background() (on page 8-323)
scan.execute() (on page 8-327)

channel.connectsequential
This attribute controls whether or not channels are closed sequentially.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script channel.OFF

Usage

sequential = channel.connectsequential
channel.connectsequential = sequential

sequential • channel.OFF or 0: Disable sequential connections
• channel.ON or 1: Enable sequential connections

Details

When channel.connectsequential is enabled, the list of channel actions is acted on
sequentially. No two relays are opened or closed simultaneously.

Using a sequential close allows you to determine the time for a close operation to happen. For
example, if you close three channels and each takes 4 ms to closej (assuming no additional user
delay times), with sequential on, it will take 12 ms. With sequential off, it may be 4, 8 or 12 ms,
depending on whether or not the card can close multiple channels at once.

The order in which channels are opened or closed is not guaranteed with sequential off.

The sequential setting affects all channels in the instrument.

Example

channel.connectsequential = channel.ON Specifies that channels close sequentially.

Also see

channel.connectrule (on page 8-52)
Switch operation (on page 2-77)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-54 3700AS-901-01 Rev. B/May 2013

channel.createspecifier()
This function creates a string channel descriptor from a series of card-dependent integer arguments.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

There are five variants of this function that can be used, depending upon the type of card in the specified slot:
Variant 1 <string> = channel.createspecifier(<slot>, <bank>, <row>, <column>)

Variant 2 <string> = channel.createspecifier(<slot>, <row>, <column>)

Variant 3 <string> = channel.createspecifier(<slot>, <bank>, <index>)

Variant 4 <string> = channel.createspecifier(<slot>, <index>)

Variant 5 <string> = channel.createspecifier(<slot>, <backplane>)

slot Specifies the slot number to use
bank Specifies the bank number to use (if applicable)
row Specifies the row number to use
column Specifies the column number to use
index Specifies the index to use
backplane Specifies the backplane to use

Details

The arguments are dependent upon the card type in the specified slot. This command can only create valid
channel descriptors; if an illegal argument is sent for the type of card in the specified slot, an error is generated.
Variants of this function can be used, depending on the type of card in the specified slot:
Type of card in slot Code variants to use
Matrix card containing banks Variant 1 or 5
Matrix card without banks Variant 2 or 5
Multiplexer cards Variant 3, 4, or 5

Example 1

cd = channel.createspecifier(3, 1, 2, 101)
print(cd)

Creates a channel descriptor on
the Model 3732 card configured
as a single 4x112 matrix in slot 3,
bank 1, row 2, column 101.
Output:
312A1

Example 2

for row = 1,8 do
 for col = 1,28 do
 ch = channel.createspecifier(1,1,row,col)
 channel.setpole(ch, 2)
 end
end

Sets the pole setting to 2 for all
channels in bank 1 on a Model
3732 card configured as a dual
8x28 matrix in slot 1.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-55

Example 3

cd = createspecifier(2, 2, 1)
print(cd)

Creates a channel descriptor on
the Model 3724 multiplexer card
in slot 2, bank 2, index 1.
Output:
2031

Example 4

cd = createspecifier(1, 911)
print(cd)

Creates a channel descriptor on
the Model 3724 multiplexer card
in slot 1, backplane 911.
Output:
1911

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-56 3700AS-901-01 Rev. B/May 2013

channel.exclusiveclose()
This function closes the specified channels so that they are the only channels that are closed on the instrument.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.exclusiveclose(channelList)

channelList A string listing the channels (including analog backplane relays) and channel
patterns to exclusively close

Details

This command allows you to close specific channels and open any other channels on the instrument. When you
send this command, any presently closed channel opens if it is not specified to be closed in the parameter. For
channel patterns, the analog backplane relays that are closed or opened are the ones that were specified when
the pattern was created with channel.pattern.setimage() or channel.pattern.snapshot(). For
channels, the analog backplane relays that are closed or opened are the ones specified with
channel.setbackplane(), or that are specified in channelList.
When you send this command:

• Any presently closed channels and analog backplane relays that are not specified in channelList are
opened.

• The channels and analog backplane relays in channelList are closed.
• Settling and user-specified delay times are applied as defined by the connection rules and delay

settings.

This function has no affect on how the DMM is configured and does not use analog backplane relays
associated with DMM configuration.

If the channelList parameter is an empty string or a string of spaces, all channels and analog backplane
relays are opened. Therefore, sending channel.exclusiveclose("") is equivalent to
channel.open(channel.getclose("allslots")). However, sending the equivalent commands when
nothing is closed generates an error because nil (the response of channel.getclose("allslots")) is
being sent to the open command.
An error is generated if:

• The parameter string contains slotX, where X = 1 to 6 or allslots
• A specified channel or channel pattern is invalid
• Channel number does not exist for slot specified
• Slot is empty
• A forbidden item is specified
• Channel is paired with another bank for a multi-wire application

Once an error is detected, the command stops processing. Channels open or close only if no errors are found.
This command is not available for digital I/O, DAC, and totalizer channels. Calling on a specific channel for these
channels generates an error. If the digital I/O, DAC, or totalizer channel is in the range of specified channels, the
channel is ignored.

Example 1

channel.setbackplane("3003","3913")
channel.exclusiveclose("3003")

Associate analog backplane relay 3 in bank 1 on
slot 3 with channel 3 on slot 3.
Open all channels and close slot 3, channel 3
and its associated analog backplane relay (3 in
bank 1 on slot 3), if it is not already closed.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-57

Example 2

channel.exclusiveclose("3003, 3913") Close channel 3 on slot 3 and its associated
analog backplane relay 3 in bank 1 on slot 3. By
specifying the backplane relay directly, you
eliminate the need for associating the backplane
with channel.setbackplane.

Also see

channel.close() (on page 8-50)
channel.connectrule (on page 8-52)
channel.connectsequential (on page 8-53)
channel.exclusiveslotclose() (on page 8-57)
channel.getclose() (on page 8-61)
channel.getimage() (on page 8-67)
channel.getstate() (on page 8-75)
channel.open() (on page 8-79)
channel.pattern.getimage() (on page 8-81)
channel.setbackplane() (on page 8-90)
channel.pattern.setimage() (on page 8-82)
channel.pattern.snapshot() (on page 8-84)
channel.setdelay() (on page 8-93)
dmm.close() (on page 8-167)

channel.exclusiveslotclose()
This function closes the specified channels and channel patterns on the associated slots and opens any channels
that are not specified.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.exclusiveslotclose(channelList)

channelList A string that lists the channels and channel patterns to exclusively close on the
cards in associated slots (you can specify analog backplane relays)

Details

This command allows you to bundle the closing of channels with the opening of channels. Any currently closed
channels or analog backplane relays open if they are not specified to be closed on the slots related to the
channels in channelList. Using this command guarantees that only the specified channels and channel
patterns are closed on the slots associated with channels in the channelList.
For channel patterns, the analog backplane relays that are closed or opened are the ones that were specified
when the pattern was created (see channel.pattern.setimage() or channel.pattern.snapshot()).
For channels, the analog backplane relays are the ones specified with the channel.setbackplane()
command. If you do not want to use the channel.setbackplane() command, you can close the analog
backplane relays by including them in the channelList parameter.When this command is sent:

• Closed channels or analog backplane relays for the associated slots are opened if they are not
specified in the channelList

• Channels or analog backplane relays specified by the items in channelList are closed
• Any settling times and user-specified delay times are incurred before command processing is complete

This function has no effect on how the DMM is configured

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-58 3700AS-901-01 Rev. B/May 2013

For example, if channel 1 is closed on each of the six slots, specifying a channelList parameter of
"2002, 4004" with this command opens channel 1 on slots 2 and 4 only. Then, channel 2 on slot 2
and channel 4 on slot 4 close. Channel 1 remains closed on slots 1, 3, 5, and 6.

The command is not available for digital I/O, DAC, and totalizer channels. Calling on one of these channels
generates an error. If the digital I/O, DAC, or totalizer channel is in the range of channels, the channel is ignored.
An error is generated if:

• The parameter string contains slotX (where X = 1 to 6) or allslots
• The parameter string is empty or parameter string with just spaces
• A specified channel is invalid or does not exist for the slot
• Channel pattern does not exist or the image of the pattern is an empty channel list
• A forbidden item is specified
• Channel is paired with another bank for a multi-wire application
Once an error is detected, the command stops processing. Channels open or close only if no errors are found
and remain unchanged with any parsing or syntax error.

Example

channel.exclusiveslotclose("3003")
channel.exclusiveslotclose("1005, 2005")
channel.pattern.setimage("5007, 5017, 5027, 5915," "RouteA")
channel.exclusiveslotclose("RouteA")

Close channel 3 on slot 3 and open all other channels on slot 3 without affecting any
other slot.
Close channel 5 on slots 1 and 2 and open all other channels on slots 1 and 2
without affecting any other slots.
Create a channel pattern called RouteA that includes channels 7, 17, and 27 on slot
5. Analog backplane relay 5 in bank 1 on slot 5 is also in the pattern. Have only the
RouteA channels close on slot 5 (channels 7, 17, and 27, and analog backplane
relay 5 in bank 1 on slot 5.

Also see

Channel list notation
channel.close() (on page 8-50)
channel.connectrule (on page 8-52)
channel.connectsequential (on page 8-53)
channel.exclusiveclose() (on page 8-56)
channel.getclose() (on page 8-61)
channel.getimage() (on page 8-67)
channel.open() (on page 8-79)
channel.pattern.getimage() (on page 8-81)
channel.setbackplane() (on page 8-90)
channel.setdelay() (on page 8-93)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-59

channel.getbackplane()
Returns a string that lists the analog backplane relays that are controlled when the specified channels are used
with switching operations.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup
Pole setting change

Create configuration script
Save setup

None or nil

Usage

analogBusList = channel.getbackplane(channelList)

analogBusList A string listing analog backplane relays associated with items in channelList.

channelList A string listing the channels being queried.

Details

The response indicates the analog backplane relays that are used during processing of the command:

• channel.close()

• channel.exclusiveclose()

• channel.open()

• scan.execute() or scan.background() if the channel is configured for switching
The response will be changed by channel.setbackplane(), replacing the analog backplane relays with the
new specified list.
The response will be cleared if channel.setpole() sets a new pole selection.
The analog backplane relays indicated by this response are not used or affected by:

• dmm.close() or dmm.open()

• scan.execute() or scan.background() if channel is configured for measuring
The parameter string can contain "slotX", where X equals 1 to 6, or "allslots".
An error is generated if:

• A specified channel does not exist for the card installed in a slot
• A channel pattern is specified in parameter list
• A specified channel does not have analog backplane relays associated with it, such as digital I/O
• An analog backplane relay is specified in parameter list
When channelList contains multiple items, the string returned includes the analog backplane relay channels
of a single channel separated by a comma. A semicolon is used to delineate channels.
For channel patterns, the analog backplane relays must be specified when creating the pattern in the channel list
parameter — see channel.pattern.setimage() or channel.pattern.snapshot(). Therefore, to see
the channels and analog backplane relays associated with a channel pattern, use the
channel.pattern.getimage() function.
Command processing stops as soon as an error is detected and a nil response is then returned. No partial list
is returned.
For digital I/O, DAC, and totalizer channels, nothing is returned.

Example

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-60 3700AS-901-01 Rev. B/May 2013

channel.setpole("slot5", 4)
channel.setbackplane("slot5", "5911, 5922")
print(channel.getbackplane("slot5"))

Assume a Model 3720 in slot 5.
Set all channels on the card in slot 5 to be
4-pole, which makes the card have 30 4-
pole channels.
Set all channels in slot 5 to have
associated analog backplane relays 911
and 922 on slot 5.
Get the associated analog backplane
relays for channels on slot 5.
Output:
5911,5922,5911,5922,5911,5922,5

911,5922,5911,5922,5911,5922
,5911,5922,5911,5922,5911,59
22,5911,5922,5911,5922,5911,
5922,5911,5922,5911,5922,591
1,5922,5911,5922,5911,5922,5
911,5922,5911,5922,5911,5922
,5911,5922,5911,5922,5911,59
22,5911,5922,5911,5922,5911,
5922,5911,5922,5911,5922,591
1,5922

Also see

Channel list notation
Data retrieval commands (on page 6-3)
channel.close() (on page 8-50)
channel.exclusiveclose() (on page 8-56)
channel.open() (on page 8-79)
channel.pattern.getimage() (on page 8-81)
channel.pattern.setimage() (on page 8-82)
channel.pattern.snapshot() (on page 8-84)
channel.setbackplane() (on page 8-90)
channel.setpole() (on page 8-101)
dmm.close() (on page 8-167)
dmm.open() (on page 8-219)
scan.background() (on page 8-323)
scan.execute() (on page 8-327)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-61

channel.getclose()
This function queries for the closed channels indicated by the channel list parameter.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

closed = channel.getclose(channelList)
closed A string listing the channels that are presently closed in the specified channel list

parameter
channelList A string representing the channels, channel patterns, and backplane relays that will

be queried

Details

If more than one channel is closed, they are comma-delimited in the string. If channelList equals "slotX"
(where X is 1 to 6), the response indicates the channels and backplane relays that are closed on that slot.
Similarly, if channelList equals "allslots", the response indicates all channels and analog backplane
relays that are closed in the instrument. The format of each channel returned is slot, row, column (matrix
channels) or slot, channel (MUX channels). When the channelList contains a channel pattern, only the closed
channels in that image are returned.
You can use "allslots" to query for all channels closed and not worry about an error if one of the slots is
empty or does not support close channels.
An error message is generated if an empty parameter string is specified or if the specified channel list contains
no valid channels that can be closed (for example, a channel list equaling "slotX" or "allslots").
If nothing is closed within the specified scope, a nil response is returned.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-62 3700AS-901-01 Rev. B/May 2013

Example 1

channel.setpole("slot5", 4)
channel.setbackplane("slot5", "5911, 5922")
channel.close("5003, 5005")
closedSlot5 = channel.getclose("slot5")
print(closedSlot5)

Configure the channel on slot 5 to be four-pole.
Associate the slot 5 channels with analog
backplane relays 911 and 922 on slot 5.
Close channels 3 and 5 on slot 5.
Gets the channels and analog backplane relays
that are closed on slot 5 and output the closed
channels on slot 5.
Output:
5003(5033);5055(5035);5911;5922

Example 2

allClosed = channel.getclose("allslots") Gets all channels and analog backplane relays
that are closed in the instrument.

Example 3

closedChans = channel.getclose("Chans") Gets all channels closed in a pattern called
"Chans".

Example 4

closedRange = channel.getclose("3001:3020") Gets all channels that are closed on channels 1
to 20 on slot 3.

Example 5

closedOnes = channel.getclose("3001, 3002,
3003, 3005, 3911, 3912")

Gets all channels that are closed on channels 1,
2, 3, 5 and analog backplane relay 1 and 2 in
bank 1 on slot 3.

Also see

Channel list notation
channel.close() (on page 8-50)
channel.exclusiveclose() (on page 8-56)
channel.getstate() (on page 8-75)
channel.open() (on page 8-79)
Data retrieval commands (on page 6-3)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-63

channel.getcount()
This function returns a string with the close counts for the specified channels.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

counts = channel.getcount(channelList)

counts A comma-delimited string listing the channel close counts
channelList A string listing the items to query, which can include:

• Channels
• Backplane relays
• Channel patterns (channels will be listed in the order in which they are listed in the

pattern)
• slotX, where X equals 1 to 6
• allslots

Details

A close count is the number of times a relay has been closed. The count values are returned in the order in
which the channels are specified. The close counts for an analog backplane relay can be included in the
channelList parameter.
If channelList includes a pattern, you can use channel.pattern.getimage() with the pattern name to
see the channel order and the channels to which the close counts pertain.

When the channelList parameter for this function is "slotX", the response first lists the channels starting
from lowest to highest (from slot 1 to slot 6). Because each slot is processed completely before going to the next,
all slot 1 channels and backplane relays are listed before slot 2 channels.
An error is generated if:

• A specified channel is invalid
• The channel does not have a count closure associated with it

If an error is detected, a nil value is returned. No partial list of close counts is returned.

Pseudocards do not support counts, so count values are generated numbers, not actual count values, if a
pseudocard is used.

Example 1

counts = channel.getcount("2001:2005")
print(counts)

Gets the close counts for channels 1 to 5 on slot
2.
Example output for channels 2001, 2002, 2003,
2004, and 2005:
672,495,547,479,518

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-64 3700AS-901-01 Rev. B/May 2013

Example 2

counts = channel.getcount("slot2")
print(counts)

Get the close counts for all channels and analog
backplane relays on slot 2 assuming a 3721 card
is installed in the slot.
Sample output that shows the counts for
channels 1 to 41, analog backplane relays 911 to
917, analog backplane relays 921 to 928:
672,495,547,479,518,459,522,599,452

,451,464,427,426,428,426,425,428
,424,424,425,5,3,3,3,4,3,3,5,3,3
3,33,33,33,33,33,32,32,32,32,32,
119,3,56,0,0,0,0,0,0,14,68,0,0,0
,0,16,0

Example 3

channel.pattern.setimage("2003, 2005, 2023,
2915", "Path")

PathList = channel.pattern.getimage("Path")
print(PathList)
print(channel.getcount(PathList))
print(channel.getcount("Path"))

Create the a pattern called Path, then get the
close counts for channels and analog backplane
relays in channel pattern called "Path"
Sample output:
2003, 2005,2023,2915
547,518,3,0
547,518,3,0

Also see

Channel list notation
channel.pattern.getimage() (on page 8-81)
channel.pattern.setimage() (on page 8-82)
Data retrieval commands (on page 6-3)

channel.getdelay()
This function queries for the additional delay time for the specified channels.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

0

Usage

delayTimes = channel.getdelay(channelList)

delayTimes A comma-delimited string consisting of the delay times (in seconds) for channels
specified in channelList

channelList A string listing the channels to query for their delay times

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-65

Details

The channelList parameter may contain slotX (where X equals 1 to 6) or allslots.
A command, after closing the state of channels, incurs the delay time indicated in the response for a channel
before it completes. However, the internal settling time must elapse before the user delay is incurred. Therefore,
the sequence is:

1. Command is processed
2. Channel closes
3. Settling time is incurred
4. User delay is incurred
5. Command completes

The delay times are comma-delimited in the same order that the items were specified in the channelList
parameter. A value of zero (0) indicates that no additional delay time is incurred before a close command
completes.
An error message is generated for the following reasons:

• The specified channels do not support a delay time
• A channel pattern is specified

Command processing stops as soon as an error is detected and a nil response is generated.

Pseudocards do not support user delays, so this value is always zero (0) if a pseudocard is used.

Example

Example 1

delaytime = channel.getdelay("5001, 5003")
print(delaytime)

Query channels 1 and 3 on slot 5 for their delay
times.
Example output:
0.000e+00,0.000e+00

Example 2

patternChannels =
channel.pattern.get("chans")

DelayPatternTimes =
 channel.getdelay(patternChannels)

Gets the delay of the channels in the chans
channel pattern if chans does not contain
backplane relays. If it does contain backplane
relays, you will receive error code 1115,
"Parameter error invalid channel type in channel
list."

Also see

Channel list notation
channel.setdelay() (on page 8-93)
Data retrieval commands (on page 6-3)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-66 3700AS-901-01 Rev. B/May 2013

channel.getforbidden()
This function returns a string listing the channels and analog backplane relays in the channel list that are
forbidden to close.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

Permitted to close

Usage

forbiddenList = channel.getforbidden(channelList)

forbiddenList Comma-delimited string listing the channels and analog backplane relays in the
channel list that are forbidden to close

channelList A string listing the channels, backplane relays, and channel patterns that are to be
checked to see if they are forbidden to close

Details

The channelList parameter indicates which channels to check, and may include:
• allslots or slotX (where X equals 1 to 6)
• Channel ranges or individual channels
• Analog backplane relays
• Channel patterns

If there are no channels in the scope of the channelList that are on the forbidden list, the string returned is
empty or nil. The format of the channels in the response string is slot, channel for multiplexer channels or slot,
row, column for matrix channels.

Example 1

Forbidden =
 channel.getforbidden("allslots")

Query for the channels and analog backplane
relays that are forbidden to close in the
instrument.

Example 2

channel.setforbidden("3003, 3005, 3925")
Forbidden =
 channel.getforbidden("slot3")
print(Forbidden)

Set channels 3 and 5 and analog backplane
relay 5 in bank 2 to forbidden to close on
slot 3.
Query for the channels and analog backplane
relays that are forbidden to close on slot 3.
Sample output:
3003,3005,3925

Example 3

Forbidden =
 channel.getforbidden("1911:1916" ..
 ",2004,2008,2012")

Query for channels and analog backplane
relays in a specified list. This list is only
checking channels and analog backplane
relays 1 to 6 on slot 1 and channels 4, 8 and
12 on slot 2 and returning the channels and
analog backplane relays that are forbidden to
close.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-67

Also see

Channel list notation
channel.clearforbidden() (on page 8-49)
channel.setforbidden() (on page 8-94)
Data retrieval commands (on page 6-3)

channel.getimage()
This function queries a channel for items associated with that channel when used in a switching operation.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup
Related backplane relays
Pole settings

Not applicable channel identifier

Usage

channels = channel.getimage(channelList)

channels A string listing the channels and analog backplane relays associated with the
specified items

channelList A string representing the channels and analog backplane relays to query

Details

The parameter string can contain "slotX"(where X equals 1 to 6) or "allslots".
The returned string lists the channels in slot, channel format or slot, row, column format. A request for multiple
channels is delimited by a semicolon. Note that commas delimit the specific channels and analog backplane
relays for an individual channel in the string.
If an error is detected, the response is nil.
An error is generated if:

• A channel pattern is specified
• An empty parameter string is specified
• slotX is empty or allslots parses to specify no valid channels because all slots are empty

Example 1

channel.setpole("2005", 2)
channel.setbackplane("2005", "2911")
channels = channel.getimage("2005")
print(channels)

Set channel 5 on slot 2 for a 2-wire switch
application.
Associate analog backplane relay 1 in bank 1 on
slot 2 with channel 5 on slot 2.
Query channel 5 on slot 2.
Output:
2005,2911

Example 2

channel.setpole("2003", 4)
channel.setbackplane("2003", "2911,2922")
channels = channel.getimage("2003")
print(channels)

Set channel 3 on slot 2 for a 4-wire switch
application.
Associate analog backplane relays 1 in bank 1
and 2 in slot 2 with channel 3 on slot 2.
Query channel 3 on slot 2 (assuming channel 3
on slot 2 is on a 40-channel card).
Output:
2003(2023),2911,2922

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-68 3700AS-901-01 Rev. B/May 2013

Example 3

channels = channel.getimage("2003, 2005")
print(channels)

Query for channels 2003 and 2005 in a single
call (assuming they are configured as shown in
examples 1 and 2).
Output:
2003(2023),2911,2922;2005,2911

Example 4

channels = channel.getimage("2023")
print(channels)

Query channel 2023.
Query channel 3 on slot 2 (assuming channel 23
on slot 2 is on a 40-channel card).
Output:
nil
2023 is paired for 4-wire operation

Also see

Channel list notation
channel functions and attributes
channel.pattern.getimage() (on page 8-81)
Data retrieval commands (on page 6-3)

channel.getlabel()
This function retrieves the label associated with one or more channels.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

slot, row, column or slot, channel
identifier

Usage

label = channel.getlabel(channelList)

label A string listing the comma-delimited labels for items in channelList

channelList A string listing the channels to query for the label associated with them

Details

The channelList parameter can contain more than one channel. If it does, a comma delimits the labels for the
channels. The return string lists the labels in the same order that the channels were specified. The
channelList parameter cannot be an empty string and must be a valid channel.
The channelList parameter can contain slotX (where X equals 1 to 6) or allslots. In this case, the
channels are listed before the analog backplane relays.
An error is generated if:

• A specified channel does not exist
• The slot is empty
• The specified channel is not on the installed card
• A channel pattern is specified

Command processing stops as soon as an error is detected, and then a nil response is generated. No partial
list of labels is returned.
Labels are also supported for digital I/O, DAC, and totalizer channels.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-69

Example

channel.reset("5001")
print(channel.getlabel("5001"))
channel.setlabel("5001", "Device")
print(channel.getlabel("5001"))

Reset the channel.
Print the default label of the channel.
Set the label to "Device".
Return the new label.
Output:
5001
Device

Also see

Channel list notation
channel.setlabel() (on page 8-94)
Data retrieval commands (on page 6-3)

channel.getmatch()
This function gets the match value.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

0

Usage

matchValue = channel.getmatch(channelList)

matchValue Return string listing the comma-delimited match values for channels in
channelList

channelList String specifying digital I/O or totalizer channels to query, using normal channel list
syntax

Details

If a width greater than 1 is specified with channel.setmatch(), the matchValue contains the additional
channel width specified at set time. For example, the value of 65535 with a width of 2 returns 65535. If the width
is 1, 255 is returned.
DAC, backplane, and switch channels are not supported. If they are included in a range or slot specifier, they are
ignored. If they are specified directly, an error is generated.

Example

print(channel.getmatch("slot6")) Query the match values set for digital I/O channels 1 to 5 on
slot 6 and totalizer channels 6 to 9 on slot 6, assuming a
Model 3750 card.
Output (assuming defaults):
0,0,0,0,0,0,0,0,0

Also see

channel.setmatch() (on page 8-96)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-70 3700AS-901-01 Rev. B/May 2013

channel.getmatchtype()
Gets the match type.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

4 (channel.MATCH_NONE)

Usage

matchType = channel.getmatchtype(channelList)

matchType Return string listing the comma-delimited states for channels in channelList

channelList String specifying the digital I/O or totalizer channels to query, using normal channel
list syntax

Details

The channel match types are:

• 1 for match exactly
• 2 for match any
• 3 for match not exact
• 4 for match none
DAC, backplane, and switch channels are not supported. If these channels are included in a range or slot
specifier, they are ignored; otherwise, an error is generated.

Example

print(channel.getmatchtype("6001:6009")) Query the match type for digital I/O channels 1
through 5 and totalizer channels 6 through 9 on
slot 6 (assuming a 3750 card).
Output:
4,4,4,4,4,4,4,4,4

Also see

Channel List notation
channel.setmatchtype() (on page 8-97)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-71

channel.getmode()
Gets the present mode attribute for a channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

0 for digital I/O channels
3 for totalizer channels
49 for DAC channels

Usage

mode = channel.getmode(channelList)

mode Return string of a comma-delimited list of modes

channelList String specifying digital I/O, DAC, or totalizer channels to query, using normal
channel list syntax

Details

For digital I/O channels, the following modes are supported:

• channel.MODE_INPUT (default) or 0
• channel.MODE_OUTPUT or 1
• channel.MODE_PROTECT_OUTPUT or 3
For totalizer channels, the following modes are supported:

• channel.MODE_RISING_EDGE or 1
• channel.MODE_FALLING_EDGE or 0
• channel.MODE_RISING_TTL_EDGE (default) or 3
• channel.MODE_FALLING_TTL_EDGE or 2
• channel.MODE_RISING_EDGE_READ_RESET or 5
• channel.MODE_FALLING_EDGE_READ_RESET or 4
• channel.MODE_RISING_TTL_EDGE_READ_RESET or 7
• channel.MODE_FALLING_TTL_EDGE_READ_RESET or 6
For DAC channels, the following modes are supported:

• channel.MODE_VOLTAGE_1 or 17
• channel.MODE_CURRENT_1 or 1
• channel.MODE_CURRENT_2 or 2
• channel.MODE_PROTECT_VOLTAGE_1 (default) or 49
• channel.MODE_PROTECT_CURRENT_1 or 33
• channel.MODE_PROTECT_CURRENT_2 or 34
Switch and analog backplane channels do not have modes. If included in a range or slot specifier, they are
ignored. If they are specified directly, an error is generated.

Example

print(channel.getmode("slot6")) Query the configuration of the channels on slot 6.
Assuming a 3750, channels 1 to 5 are digital I/O,
channels 6 to 9 are totalizers, and channels 10 to
11 are DACs.
Output:
0,0,0,0,0,3,3,3,3,49,49

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-72 3700AS-901-01 Rev. B/May 2013

Also see

Channel list notation
channel.setmode() (on page 8-98)

channel.getoutputenable()
Gets the present output enable attribute for a channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

0

Usage

outputEnable = channel.getoutputenable(channelList)

outputEnable Return string of a comma-delimited list of output enable values

channelList String specifying DAC channels to query, using normal channel list syntax

Details

For DAC channels, output enable indicates whether or not the DAC is driving the output. Response values are:

• 0: Output enable is OFF
• 1: Output enable is ON
Switch, digital I/O, totalizer, and backplane channels do not have modes. If they included in a range or slot
specifier, they are ignored. If they are specified directly, an error is generated.

Example

print(channel.getoutputenable("slot1")) Query the state of all DAC channels on slot 1
(assuming a Model 3750 card, this would be
channels 10 and 11).
Output:
0,0

Also see

channel.setoutputenable() (on page 8-100)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-73

channel.getpole()
Queries the pole settings for the specified channels.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

Card dependent, typically 2

Usage

poles = channel.getpole(channelList)

poles Returns a string consisting of the poles, comma separated, based on
channelList

channelList A string listing the channels to query for their pole settings

Details

channelList can contain "slotX", where X equals 1 to 6, or "allslots".
When the channel list parameter for this function is "slotX", the response first lists the channels starting from
lowest to highest.
When the channel list parameter for this function is "allslots", the response starts with slot 1 and increases
to slot 6. Each slot is processed completely before going to the next. Keeping this in mind, all slot 1 channels are
listed before slot 2 channels.
The response is the numeric value representing the pole selection and not the text. For example, 4-pole
selection is 4 and not channel.POLES_FOUR.
An error message is generated if:

• An empty parameter string is specified.
• The specified channel does not exist for card installed in slot.
• Parameter syntax error such as incorrect format for channelList.

• A channel pattern was specified.
• An analog backplane relay was specified.
• Channel does not support pole setting like a digital I/O.
Command processing stops as soon as an error is detected. No partial list is returned. If an error is detected or
the slot is empty, the response is nil.
Digital I/O, DAC, backplane, and totalizer channels are not supported.

Example

channel.reset("slot5")
channel.setpole("5003, 5007", 4)
polesSlot5 = channel.getpole("5001, 5003,

5005, 5007")
print(polesSlot5)

Reset the channels on slot 5 only.
Set the pole attribute for channels 3 and 7 on slot
5 to be 4.
Query channels 1, 3, 5, and 7 on slot 5 for pole
settings.
View the pole attribute for the specified channels.
Output:
2,4,2,4

Also see

Data retrieval commands (on page 6-3)
channel.setpole() (on page 8-101)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-74 3700AS-901-01 Rev. B/May 2013

channel.getpowerstate()
Gets the current power state attribute for a totalizer or DAC channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

1

Usage

states = channel.getpowerstate(channelList)

states Return string of a comma-delimited list of power states
channelList String specifying the channels to query, using normal channel list syntax

Details

See card-specific documentation for important potential implications (warm-up times, effective coverage, use
cases, and so on) when disabling or enabling power to a channel.
Not all channels can be disabled. If a channel that cannot be disabled is included in a range, it is ignored. If it is
specified directly, an error is generated.

Example

print(channel.getpowerstate("1006")) Get the current power state attribute for a
totalizer channel 6 of slot 1 (assuming a
Model 3750 card).
Output (assuming defaults):
1

Also see

channel.setpowerstate() (on page 8-103)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-75

channel.getstate()
Queries the state indicators of the channels in the instrument.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Not saved 0

Usage

state = channel.getstate(channelList)
state = channel.getstate(channelList, indicatorMask)

state Return string listing the comma-delimited states for the channels in channelList
channelList String specifying the channels to query, using normal channel list syntax
indicatorMask Value to specify only certain indicators; if omitted, all indicators are returned

Details

Each bit in the state represents a different indicator. Therefore, multiple indicators can be present (the OR
operation is performed bitwise). All state or state latch commands behave in this manner.
Different channel types support different state information (indicators). The optional state indicatorMask can
be used to return only certain indicators. If there is no indicatorMask, then all indicators are returned.
The following status indicators are defined:

• channel.IND_CLOSED
• channel.IND_OVERLOAD
• channel.IND_MATCH
• channel.IND_OVERFLOW

Indicators can be latched or unlatched, depending on other system settings. Latched indicators mean that the
condition has occurred since the last reset command (or power cycle). Unlatched indicators mean that the
condition occurred when the channel.getstate() command was issued. The overflow and overload
indicators default to a latched condition.
Although the channel.getstate() command returns a string representing a number, this can be easily
changed to a number and then compared to one of the provided Lua constants.
For switch channels, the only state information is an indicator of relay state (channel.IND_CLOSED).
For digital I/O channels, the state information includes an indicator for the state of auto protection and whether
the match value has been matched (channel.IND_OVERLOAD and channel.IND_MATCH).
For totalizer channels, the state information includes an indicator for overflow and whether the match value has
been matched (channel.IND_OVERFLOW and channel.IND_MATCH).
For DAC channels, the state information includes an indicator for the state of auto protection
(channel.IND_OVERLOAD).
For more specific information about the overflow and overload indicators, refer to the documentation for the
specific card on which the specified channel resides.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-76 3700AS-901-01 Rev. B/May 2013

Example 1

channel.close("4005, 4007, 4017, 4003")
State = channel.getstate("4001:4020")
print(State)

Close channels 5, 7, 17, and 3 on slot 4.
Query the state of the first 20 channels on slot 4.
View the response assigned to State.
Output (assuming a Model 3720):
0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0

,0,0

Example 2

PathList = channel.pattern.getimage("Path")
print(Path)
print(channel.getstate(Path))

See the state of channels and analog backplane
relays in the channel pattern called "Path".
Output:
4003,4005,4007,4017,4911,4922
1,1,1,1,1,1

Example 3

PathState = channel.getstate("Path")
print(PathState)

Another way to see the state of channels and
analog backplane relays in channel pattern
"Path" in Example 2 without getting the
channels and analog backplane relays first.
Output:
1,1,1,1,1,1

Example 4

if bit.bitand(channel.IND_OVERLOAD,
 tonumber(channel.getstate("4010"))) == 1
then
 print("OVERLOAD")
end

Use the following command to check for an
overload on a DAC channel.
In the previous example,
channel.getstate() returns a string that is
converted to a number using the Lua
tonumber() command.
channel.IND_OVERLOAD equates to the
number 2. Because the state is a bit-oriented
value, a logical AND operation must be
performed on the state and the overload
constant to isolate it from other indicators.
The tonumber() command only works with a
single channel. When multiple channels are
returned (for example,
channel.getstate("slot4")), this string
must be parsed by the comma delimiter to find
each value.

Also see

channel.getclose() (on page 8-61)
channel.setmatch() (on page 8-96)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-77

channel.getstatelatch()
This function gets the mask representing the states that would be latched if they occurred.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

14 for overload, match, and
overflow

Usage

state = channel.getstatelatch(channelList)

state Return string listing the comma-delimited latch states for channels in
channelList:
• 2: Channel overload
• 4: Channel match
• 8: Channel overflow

channelList String specifying the channels to query, using normal channel list syntax

Details

Applicable to digital I/O, totalizer, and DAC channels only.
Each indicator is represented by a bit in the mask.

Example

myState = channel.getstatelatch("1001")
print(myState)

Queries the state event latch on digital I/O
channel 1 in slot 1 assuming a Model 3750.

Example

channel.setstatelatch("6010", bit.bitor(channel.IND_OVERFLOW,
channel.IND_OVERLOAD))

print(channel.getstatelatch("6010"))

Generate either an overflow or overload event on DAC channel 10 in slot 6, assuming a Model 3750.
Query for the state latch for channel 10 on slot 6.
Output:
10

Also see

channel.setstatelatch() (on page 8-104)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-78 3700AS-901-01 Rev. B/May 2013

channel.gettype()
This function returns the type associated with a channel.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

type = channel.gettype(channelList)

type Returns a string listing the comma-delimited types for channels in channelList

channelList String specifying the channels to query, using normal channelList syntax

Details

The channel type is defined by the physical hardware of the card on which the channel exists. The following are
valid channel types:

• channel.TYPE_SWITCH or 1

• channel.TYPE_BACKPLANE or 2

• channel.TYPE_DAC or 8

• channel.TYPE_DIGITAL or 4

• channel.TYPE_TOTALIZER or 16
Refer to the card-specific documentation for more information about the channel types available for your card.

Example 1

print(channel.gettype("1001, 1911")) Query the channel type of channel 1 and analog
backplane relay 1 of bank 1 in slot 1, assuming a
Model 3720.
Output:
1,2

Example 2

print(channel.gettype("slot6")) Query the channel types on slot 6, assuming a
Model 3750.
Output:
4,4,4,4,4,16,16,16,16,8,8

This shows that channels 1 to 5 are digital I/O
types, channels 6 to 9 are totalizer types, and
channels 10 and 11 are DAC types.

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-79

channel.open()
This function opens the specified channels, analog backplane relays, and channel patterns.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.open(channelList)

channelList String listing the channels, analog backplane relays, and channel patterns to open

Details

This function opens the specified channels based on the channel's switching configuration.
For the items specified to open, the channels associated with them open, as well as the associated analog
backplane relays for each. For channel patterns, the analog backplane relays that get opened are the ones that
are specified when the pattern is created (through channel.pattern.setimage() and
channel.pattern.snapshot()). For channels, they are the ones specified with the
channel.setbackplane() function. Another option for opening analog backplane relays with this command is
to include them in the channelList parameter.

This command has no effect on how the DMM is configured.
The settling time associated with a channel must elapse before the command completes. User delay is not
added when a relay opens.
For digital I/O, DAC, and totalizer channels, there is no valid behavior; calling on a specific channel generates an
error. If a digital I/O, DAC, or totalizer channel is in the range of channels, the channel is ignored.

Example 1

channel.open("1001:1005, 3003, Chans") Opens channels 1 to 5 on slot 1, channel 3 on
slot 3, and the channel pattern or label Chans.

Example 2

channel.open("slot3, slot5") Opens all channels on slots 3 and 5.

Example 3

channel.open("allslots") Opens all channels on all slots.

Also see

channel.close() (on page 8-50)
channel.exclusiveclose() (on page 8-56)
channel.exclusiveslotclose() (on page 8-57)
channel.getclose() (on page 8-61)
channel.getdelay() (on page 8-64)
channel.pattern.getimage() (on page 8-81)
channel.pattern.setimage() (on page 8-82)
channel.pattern.snapshot() (on page 8-84)
channel.getstate() (on page 8-75)
channel.setdelay() (on page 8-93)
channel.setforbidden() (on page 8-94)
channel.setbackplane() (on page 8-90)
dmm.close() (on page 8-167)
dmm.open() (on page 8-219)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-80 3700AS-901-01 Rev. B/May 2013

channel.pattern.catalog()
This function creates a list of the user-created channel patterns.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

for name in channel.pattern.catalog() do
 ...
end

name String representing the user-defined name of the channel pattern that is assigned
by the catalog function during the for loop

Details

This function allows you to print or delete all user-created channel patterns in the run-time environment. The
entries that are returned are listed in random order.

Example

channel.pattern.setimage("3001,3031",
 "patternA")
channel.pattern.setimage("3002,3032",
 "patternB")
channel.pattern.setimage("3003,3033",
 "patternC")

for name in channel.pattern.catalog() do
 print(name .. " = " ..
 channel.pattern.getimage(name))
 channel.pattern.delete(name)
end

This example prints the names and items
associated with all user-created channel
patterns. It then deletes the channel pattern.
patternC = 3003,3033
patternA = 3001,3031
patternB = 3002,3032

Also see

channel.pattern.delete() (on page 8-81)
channel.pattern.getimage() (on page 8-81)
channel.pattern.setimage() (on page 8-82)
channel.pattern.snapshot() (on page 8-84)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-81

channel.pattern.delete()
This function deletes a channel pattern.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.pattern.delete(name)

name A string representing the name of the channel pattern to delete

Details

An error is generated if the name does not exist as a channel pattern.

Example

channel.pattern.delete("Channels") Deletes a channel pattern called Channels.

Also see

channel.pattern.catalog() (on page 8-80)
channel.pattern.getimage() (on page 8-81)
channel.pattern.setimage() (on page 8-82)
channel.pattern.snapshot() (on page 8-84)

channel.pattern.getimage()
This function queries a channel pattern for associated channels and analog backplane relays.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup
Pole setting change

Create configuration script
Save setup

Not applicable

Usage

channelList = channel.pattern.getimage(name)

channelList A string specifying a list of channels and analog backplane relays that are
represented by the name

name A string representing the name of the channel pattern to query

Details

The returned string lists the channels in the slot, column or slot, row, column format, even if a channel pattern
was used to create it. Results for multiple channel patterns are delimited by a semicolon (;). Commas delimit the
specific channels and analog backplane relays in a single channel pattern in the string.
If you change a pole setting for a channel that is associated with a channel pattern, the channel pattern is
deleted. Be sure to configure the pole setting for channels (channel.setpole) before creating a channel
pattern.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-82 3700AS-901-01 Rev. B/May 2013

Example

-- Set up two patterns
channel.pattern.setimage("4001:4005", "myPattern")
channel.pattern.setimage("2001,2003,2005", "myRoute")

-- Print images
myImage = channel.pattern.getimage("myPattern")
print(myImage)
print(channel.pattern.getimage("myRoute"))
print(channel.pattern.getimage("myRoute,
 myPattern"))

Using a Model 3721 (or similar model) card in slots 2 and 4, this example creates two channel patterns and
then queries these patterns.

Output:
4001,4002,4003,4004,4005
2001,2003,2005
2001,2003,2005;4001,4002,4003,4004,4005

Also see

channel.pattern.catalog() (on page 8-80)
channel.pattern.delete() (on page 8-81)
channel.pattern.setimage() (on page 8-82)
channel.setpole() (on page 8-101)

channel.pattern.setimage()
This function creates a channel pattern and associates it with the specified name.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup
Pole setting change

Create configuration script
Save setup

Not applicable

Usage

channel.pattern.setimage(channelList, name)

channelList A string listing the channels, channel patterns, or analog backplane relays to use
when creating the new channel pattern

name A string representing the name to associate with the new channel pattern

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-83

Details

If name is used for an existing channel pattern, that pattern is overwritten with the new pattern channel image (if
no errors occur). The previous image associated with the name is lost. The DMM configuration associated with
the pattern remains unchanged in this scenario.
The channel pattern is not created if an error is detected. You can create a channel pattern with an empty
channelList parameter. This will create a pattern that has no channels or analog backplane relays associated
with it. The behavior of using an empty pattern in a channel list parameter is dependent on the command. For
example:

channel.pattern.setimage("", "Empty_pattern") Creates an empty pattern.

channel.close("Empty_pattern") Generates error code 1115, "Parameter
error no valid channels in channel list."

channel.exclusiveslotclose("Empty_pattern") Generates error code 1115, "Parameter
error no valid channels in channel list."

channel.open("Empty_pattern") Generates error code 1115, "Parameter
error no valid channels in channel list."

channel.exclusiveclose("Empty_pattern") Opens any closed channels or analog
backplane relays in the instrument.

channel.close("Empty_pattern, 5005") Closes channel 5005.
channel.exclusiveslotclose("Empty_pattern, 5003") Opens any closed channel on slot 5 and

closes channel 3 on slot 5.
A channel pattern must include the analog backplane relays and the desired channels. Once a channel pattern is
created, the only way to add a channel or analog backplane relay to an existing pattern is to delete the old
pattern and recreate the pattern with the new items.
If you change a pole setting for a channel that is associated with a channel pattern, the channel pattern is
deleted. Be sure to configure the pole setting for channels (channel.setpole) before creating a channel
pattern.

Channel patterns are stored when you run the createconfigscript() command or setup.save()
command.
Channel patterns are lost when power is cycled. Use setup.recall() or a script created with
createconfigscript() to restore them.
Including any channels of type digital I/O, DAC, and totalizer generates an error.
The following restrictions exist when naming a channel pattern:

• The name must contain only letters, numbers, or underscores
• The name must start with a letter
• The name is case sensitive

Examples of valid names:
• Channels
• Chans
• chans
• Path1
• Path20
• path_3

Examples of invalid names:
• 1path (invalid because it starts with a number)
• my chans (invalid because it contains a space)
• My,chans (invalid because it contains a comma)
• Path1:10 (invalid because it contains a colon)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-84 3700AS-901-01 Rev. B/May 2013

An error is generated if:
• The name parameter already exists as a label
• Any channel is forbidden to close
• Insufficient memory exists to create the channel pattern
• The parameter string contains slotX (where X equals 1 to 6) or allslots
• The name parameter contains a space character
• The pattern name exceeds 19 characters

Example 1

channel.pattern.setimage("3001:3010", "Channels")

oldList = channel.pattern.getimage("Channels")
newList = oldList .. ", 3911"
channel.pattern.delete("Channels")
channel.pattern.setimage(newList, "Channels")
channel.open("slot3")
channel.close("Channels")
print(channel.getclose("slot3"))

For this example, assume there is a
Keithley Model 3721 or similar card in
slot 3.

Create a pattern.
Append a channel to the pattern by
retrieving the pattern and recreating it.
Recreate the pattern with the new image.
Open all channels on slot 3 and close the
pattern Channels.
Output:
3001;3002;3003;3004;3005;3006;3

007;3008;3009;3010;3911

Example 2

channel.pattern.setimage("3001:3010", "Channels")
channel.open("slot3")
channel.close("Channels, 3911")
print(channel.getclose("slot3"))

An alternate solution to the example above
is to create the pattern, then add the
analog backplane relay when you close the
channel. This eliminates the need to get
the image, delete the image and recreate it.
Output:
3001;3002;3003;3004;3005;3006;
3007;3008;3009;3010;3911

Also see

createconfigscript() (on page 8-115)
channel.pattern.catalog() (on page 8-80)
channel.pattern.delete() (on page 8-81)
channel.pattern.getimage() (on page 8-81)
channel.pattern.snapshot() (on page 8-84)
channel.setpole() (on page 8-101)
setup.save() (on page 8-370)
setup.recall() (on page 8-370)

channel.pattern.snapshot()
This function creates a channel pattern.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup
Pole setting change

Create configuration script
Save setup

Not applicable

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-85

Usage

channel.pattern.snapshot(name)

name A string representing the name to associate with the present state of channels and
analog backplane relays

Details

This command stores an image of presently closed channels and analog backplane relays and associates them
with the name parameter.
If name is already used for an existing channel pattern, that pattern is overwritten with the new pattern channel
image (if no errors occur). The DMM configuration associated with the pattern remains unchanged.
The following restrictions exist when naming a channel pattern:

• The name must contain only letters, numbers, or underscores
• The name must start with a letter
• The name is case sensitive

Examples of valid names:
• Channels
• Chans
• chans
• Path1
• Path20
• path_3

Examples of invalid names:
• 1path (invalid because it starts with a number)
• my chans (invalid because it contains a space)
• My,chans (invalid because it contains a comma)
• Path1:10 (invalid because it contains a colon)

An error is generated if:
• The name parameter already exists as a label
• Insufficient memory exists to save the channel pattern and name in persistent memory
• The pattern name exceeds 19 characters or contains a space

Issuing this function on an existing pattern invalidates the existing scan list (the pattern may or may not be used
in the current scan list). Creating a new pattern does not invalidate the existing scan list.
Channels of type DAC, totalizer, and digital I/O are ignored.
Channel patterns are stored when you run the createconfigscript() command or setup.save()
command.
Channel patterns are lost when power is cycled. Use setup.recall() or a script created with
createconfigscript() to restore them.
If you change a pole setting for a channel that is associated with a channel pattern, the channel pattern is
deleted. Be sure to configure the pole setting for channels (channel.setpole) before creating a channel
pattern.

Example

channel.pattern.snapshot("voltagePath") Creates a pattern named voltagePath that
contains the presently closed channels and
analog backplane relays.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-86 3700AS-901-01 Rev. B/May 2013

Also see

createconfigscript() (on page 8-115)
channel.pattern.catalog() (on page 8-80)
channel.pattern.delete() (on page 8-81)
channel.pattern.getimage() (on page 8-81)
channel.pattern.setimage() (on page 8-82)
channel.setpole() (on page 8-101)
setup.save() (on page 8-370)
setup.recall() (on page 8-370)

channel.read()
This function reads a value from a channel.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

value = channel.read(channelList)
value = channel.read(channelList, width)
value = channel.read(channelList, width, readingBuffer)

value Return string that lists the comma-delimited read values for the channels in
channelList

channelList String that specifies a list of channels, using channel list notation
width Specifies reading over multiple consecutive channels (default 1)
readingBuffer Reading buffer to store read values

Details

For digital I/O channels, only a width of 1, 2, 3, or 4 is supported. Any information (bits) greater than the specified
width is returned as zero. For example, if channels 1 and 2 are both 255, a reading with a width of 1 returns
255 and a width of 2 with channel 1 returns 65535. Values read from outputs reflect their current setting. If the
read channel is in the overload state, the read value is indeterminate.
For widths greater than 1, the specified channel occupies the least significant byte. For example, reading the
value 4293844224 (hex ffeedd00) from channel 1 with a width of 4 indicates channel 1 is 0 (hex 0), channel 2
is 221 (hex dd), channel 3 is 238 (hex ee), and channel 4 is 255 (hex ff). Reading the value of 0 (hex 0) from
channel 1 with a width of 1 indicates channel 1 is 0 (hex 0) and other channels are not included.Totalizer and
DAC channels do not support a width other than 1 and result in an error if specified.
Switch and backplane channels are not supported.
For a channel with a power state of OFF, the returned value is DISABLED. The value into the reading buffer is
indeterminate.

Example

count = channel.read("1006") Read the count from the first totalizer channel
(channel 6) in slot 1, assuming a Model 3750.

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-87

channel.reset()
This function resets the specified channel list items to factory default settings.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.reset(channelList)

channelList A string that lists the items to reset; the string can include:
• allslots
• slotX, where X is the slot number
• channel patterns
• channels, including a range of channels
• analog backplane relays

Details

For the items specified in channelList, the following actions occur:
• Any closed channels and analog backplane relays open
• Any 4-pole channels reset to 2-pole operation and their paired channels are changed to match
• Additional user delay is set to zero (0)
• Labels are removed
• Analog backplane relays specified by the channel.setbackplane()function are cleared
• If the channel is forbidden to close, it is cleared from being forbidden to close
• If the channels are used in channel patterns, the channel patterns that contain the channels are deleted.
• The DMM configurations of all channels are set to nofunction

Using this function to reset a channel or backplane relay involved in scanning invalidates the existing scan list.
The list has to be recreated before scanning again.
For all channels, any trigger settings are removed.
For digital I/O channels, operation is set to input, the match is set to zero (0), and auto-protect is turned on.
For totalizer channels, operation is set to falling edge and TTL level.
For DAC channels, output is turned off and auto-protect is turned on. Operation is set to –12 V to + 12 V.
The rest of the instrument settings are unaffected. To reset the entire system to factory default settings, use the
reset() command.

Example 1

channel.reset("allslots") Performs a reset operation on all channels on

the instrument.

Example 2

channel.reset("slot1") Resets channels on slot 1 only.

Example 3

channel.reset("3001:3005") Resets only channels 1 to 5 on slot 3.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-88 3700AS-901-01 Rev. B/May 2013

Example 4

channel.reset("5005, 5915") Resets only channel 5 and analog backplane
relay 5 in bank 1 on slot 5

Also see

Channel functions and attributes
Channel list notation
channel.setbackplane() (on page 8-90)
dmm.reset() (on page 8-228)
reset() (on page 8-317)
scan.reset() (on page 8-334)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-89

channel.resetstatelatch()
This function resets the channel state.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.resetstatelatch(channelList, state)

channelList String that specifies the channels that need to have their states reset, using normal
channel list syntax

state String that lists the comma-delimited states for channels in channelList that are
to have their states reset

Details

This function is applicable to digital I/O, totalizer, and DAC channels only.
The values for state are:

• channel.IND_MATCH or 4

• channel.IND_OVERFLOW or 8

• channel.IND_OVERLOAD or 2
Multiple states can be set by performing a logical OR operation on the values.
For channelList, use channel.ALL to reset all states.
States can be latched or unlatched, depending on other system settings. Latched states indicate that the
condition occurred since the last reset (or power cycle). Unlatched states indicate that the condition has occurred
when the channel.getstate() command was issued. The Overflow and Overload states default to latched.
If states are not cleared using channel.resetstatelatch(), you may not be reading the present state of the
channel.
If the state is reset but the condition that caused the channel state to latch still exists, the state is reset, but a
second event is generated through the channel trigger model.

Example

channel.resetstatelatch("1001",
channel.IND_MATCH)

Clears out a match indicator that was
latched on digital I/O channel 1 of slot 1,
assuming a Model 3750.

Also see

channel.getstate() (on page 8-75)
channel.getstatelatch() (on page 8-77)
channel.setstatelatch() (on page 8-104)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-90 3700AS-901-01 Rev. B/May 2013

channel.setbackplane()
This function specifies the list of analog backplane relays to use with the specified channels when they are used
in switching applications.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup
Pole setting change

Create configuration script
Save setup

None

Usage

channel.setbackplane(channelList, abuslist)

channelList A string that lists the channels to change

abuslist A string that lists the analog backplane relays to set for the channels specified in
channelList

Details

The parameter string channelList can contain "slotX", where X equals 1 to 6, or "allslots".
The abuslist parameter must specify the entire list of analog backplane relays that are needed.
The analog backplane relays specified in the abuslist parameter are used or affected by:

• channel.close(), used during the processing of the command

• channel.exclusiveclose(), used during the processing of the command

• channel.open(), used during the processing of the command

• channel.setpole() clears the analog backplane relays

• scan.execute() or scan.background(), if channels are configured for switching (the
assigned DMM configuration has the function set to "nofunction")

The analog backplane relays specified in the abuslist parameter are not used or affected by:

• dmm.close()

• dmm.open()

• scan.execute() or scan.background() if the channels are configured for measuring (the
DMM configuration has the function set to something other than "nofunction").

For channel patterns, the analog backplane relays are specified when the pattern is created (see
channel.pattern.getimage() (on page 8-81) and channel.pattern.snapshot() (on page 8-84)). Channel patterns do
not have a poles setting associated with them.
If this command is updated, the previous list is replaced with the new specified analog backplane relays in the
abuslist parameter.
For channels, as their pole setting change, the list of analog backplane relays gets cleared. Therefore, after
changing the pole settings, send channel.setbackplane()with the appropriate analog backplane relay
channels. When clearing the backplane channels, this can involve clearing the paired channel, whether pairing or
un-pairing channels. For example, on a 40-channel card, channels 1 and 21 are paired when the poles for
channel 1 is set to 4. Therefore, setting the poles setting on channel 1 to 4 clears the backplane channels for
channels 1 and 21. Likewise, they are both cleared when the poles setting is set back to 2 on channel 1.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-91

Calling this function on an existing channel involved in scanning invalidates the existing scan list.
An error is generated if:

• An empty slot is specified.
• A specified channel or analog backplane relay does not exist for the card installed in a slot.

• An empty parameter string is received for channelList. An empty string is allowed for
abuslist. A parameter string of just spaces is treated like an empty string.

• A specified channel does not have analog backplane relays associated with it, such as digital I/O.

• An analog backplane relay is specified in channelList.

• A channel is specified in abuslist.

• A channel pattern is specified.
If a syntax error occurs, command processing stops and no changes are made.

Example 1

channel.setbackplane("2002", "2913, 2914")
channel.open("allslots")
channel.close("2002")
print(channel.getclose("allslots"))

Use analog backplane relays 3 and 4 in bank 1
of slot 2 for a switching application on channel 2
of slot 2.
Open all channels in the instrument.
Close channel 2 on slot 2.
Query for all closed channels in the instrument.

Output (assuming channel 2002 is configured for
2-pole operation):
2002;2913;2914

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-92 3700AS-901-01 Rev. B/May 2013

Example 2

print(channel.getbackplane("2002"))

channel.open("slot2")
channel.setpole("2002", 4)

channel.close("2002")
print(channel.getclose("slot2"))

channel.open("slot2")
channel.setbackplane("2002", "2911, 2922")

channel.close("2002")
print(channel.getclose("slot2"))

Query the analog backplane relays for channel 2
of slot 2, assuming the configuration of the
previous example.
Output:
2913,2914

Open all channels on slot 2 only.
Change the poles on channel 2 of slot 2 to 4 (this
clears previously assigned backplanes to the
channel).
Close channel 2 on slot 2.
Query for closed channels on slot 2 (note that
the backplane relays have been cleared and the
paired channel, 2022, is in parentheses)
Output:
2002(2022)

Open all channels on slot 2 only.
Assign analog backplane relay 1 of bank 1 and
relay 1 of bank 2 of slot 2 to channel 2 of slot 2.

Close channel 2 on slot 2.
Query for closed channels on slot 2.
Output:
2002(2022);2911;2922

Also see

channel.close() (on page 8-50)
channel.exclusiveclose() (on page 8-56)
channel.getbackplane() (on page 8-59)
channel.open() (on page 8-79)
channel.setpole() (on page 8-101)
scan.background() (on page 8-323)
scan.execute() (on page 8-327)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-93

channel.setdelay()
This function sets additional delay time for specified channels.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recalls setup

Create configuration script
Save setup

0

Usage

channel.setdelay(channelList, value)

channelList A string listing the channels that need modifications to their delay time

value Desired delay time for items in channelList. Minimum is 0 seconds

Details

Setting a delay only applies to switch channels. An error occurs for a read/write channel such as digital
input/output. The delay being specified by value may be updated based on a card's resolution for delay. To see if
the delay value was modified after setting, use the channel.getdelay() command to query.
Channel patterns get their delay from the channels that comprise the pattern. Therefore, specify the delay for a
pattern through the channels. A pattern incurs the longest delay of all channels comprising that pattern.

An error message is generated if:
• The value is an invalid setting for the specified channel
• A channel pattern is specified
• The channel is for an empty slot
• An analog backplane relay is specified.

Command processing will stop as soon as an error is detected and no delay times will be modified.

Pseudocards do not replicate the additional delay time.

Example 1

channel.setdelay("5001, 5003" , 50e-6) Sets channels 1 and 3 on slot 5 for a delay time
of 50 microseconds.

Example 2

channel.setdelay ("slot3", 0) Sets the channels on slot 3 for 0 delay time.

Also see

channel.getdelay() (on page 8-64)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-94 3700AS-901-01 Rev. B/May 2013

channel.setforbidden()
This function prevents the closing of specified channels and analog backplane relays.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

Not forbidden

Usage

channel.setforbidden(channelList)

channelList A string that lists the channels and analog backplane relays to make forbidden to
close

Details

The channelList parameter indicates the scope of channels affected and may include:
• allslots or slotX (where X equals 1 to 6)
• Channel ranges or individual channels
• Analog backplane relays

This function prevents all items contained in the channel list parameter from closing. It applies the "forbidden to
close" attribute to the specified channels. To remove the "forbidden to close" attribute, use
channel.clearforbidden().
If a channel that is being set to forbidden is used in a channel pattern, the channel pattern is deleted when the
channel or analog backplane relay is set to forbidden. Note that if the channelList parameter includes a
channel pattern, the channel pattern will be deleted when the channels in the patterns are successfully set to
forbidden to close.
The channels or analog backplane relays in the channelList parameter must be installed in the instrument.
If the scan list contains a channel or analog backplane relay that is forbidden, the scan list is invalidated.

Example

channel.setforbidden("2002,2004,2006,2008") Marks channels 2, 4, 6, and 8 of slot 2 as
forbidden to close.

channel.setforbidden("slot3") Marks all channels and analog backplane relays
on slot 3 as forbidden to close.

Also see

channel.clearforbidden() (on page 8-49)
channel.getforbidden() (on page 8-66)

channel.setlabel()
This function sets the label associated with a channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

No label

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-95

Usage

channel.setlabel(channelList, label)

channelList A string that lists the channel to which to set the label

label A string that represents the label for the channel in channelList, up to 19 characters

Details

This command sets the label of the channel specified in channelList to the value specified in the label
parameter. The channel attributes associated with each channel remain unchanged except for their labels.
The label parameter must be unique. In addition, it cannot be the same as the name of a channel pattern. If
you specify a label that already exists, an error message is generated that indicates a parameter error and
channel that that is already associated the specified label.
For example, channel one on slot 4 has a label of start. If you send channel.setlabel("5001",
"start"), error code 1115, "Parameter error label already used with channel 4001," is generated.
To clear the label, set label to an empty string ("") or to a string with a space as the first character.
After defining a label, you can use it to specify the channel instead of using the channel specifier.
An error is generated if:

• The card in the channel slot does not support a label setting
• The label contains a space; however, if the first character is a space, the label is cleared
• The label is already used to represent a channel pattern

The label does not persist through a power cycle.

Example 1

channel.setlabel("3001", "start")
channel.close("start")
print(channel.getclose("allslots"))

Sets the label for channel 1 on slot 3 to "start"
and closes "start".
Output:
3001

Example 2

channel.setlabel("3001", "") Clears the label for channel 1 on slot 3 back to
"3001".

Example 3

channel.setlabel("3001", " ") Also clears the label for channel 1 slot 3 back to
"3001".

Also see

Channel list notation
channel functions and attributes

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-96 3700AS-901-01 Rev. B/May 2013

channel.setmatch()
This function sets the match value on a channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

0

Usage

channel.setmatch(channelList, matchValue)
channel.setmatch(channelList, matchValue, mask)
channel.setmatch(channelList, matchValue, mask, width)

channelList String that specifies the channels to query, using normal channel list syntax

matchValue Channel value to compare on the specified channel
mask Value to specify the bits used to mask matchValue
width Value that specifies matches over multiple consecutive channels (default 1)

Details

A bitwise AND operation is performed on mask and matchValue to determine the final match value used on
the channel.
The default mask is channel.ALL (all bits).
For digital I/O channels, a width of 1, 2, 3, or 4 channels is supported. Any bits greater than the specified
width are ignored. If a width crosses channels, the match status indicator is only on the channel specified in
the match value. For example, setting a value with a 2 width on channel 3 drives the indicator on channel 3,
not channel 4. Match values for output channels are ignored.
Totalizer and DAC channels only support a width of 1, and mask is ignored.
Switch and backplane channels are not supported. If they are included in a range or slot specifier, they are
ignored. If they are specified directly, an error is generated.

Example 1

channel.setmatchtype("1001",
channel.MATCH_EXACT)

channel.setmatch("1001", 32)

Generates a match state event on bit B6
of digital I/O channel 1, assuming a Model
3750.

Example 2

channel.setmatchtype("6007",channel.MATCH_EXACT)
channel.setmatch("6007", 300)

Assuming a model 3750, configure the
totalizer channel 7 on slot 6 to generate a
match state event when it reaches 300.

Also see

channel.getmatch() (on page 8-69)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-97

channel.setmatchtype()
This function sets the match type on a channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

4 (channel.MATCH_NONE)

Usage

channel.setmatchtype(channelList, type)

channelList String specifying the channels to set, using normal channel list syntax
type A value for setting the match operation used on this specific channel

Details

There are four types of match values:

• channel.MATCH_EXACT or 1

• channel.MATCH_ANY or 2

• channel.MATCH_NOT_EXACT or 3

• channel.MATCH_NONE or 4
For an EXACT match, the state match indicator only becomes TRUE when the match value AND match mask
value EQUAL the channel read value.
For an ANY match, the state match indicator only becomes TRUE when the match value OR match mask value
EQUAL the channel read value.
For a NOT_EXACT match, the state match indicator only becomes TRUE when the match value AND match
mask value AND channel read value are NOT EQUAL to the match value AND match mask value AND last
channel read value. In other words, the match value should be the current value, and if the value changes at all
away from the original value, then a match is declared.
For NONE, matching is effectively disabled. This is the default.
For totalizer channels, only MATCH_EXACT and MATCH_NONE are supported.
This command is not supported on DAC, backplane, and switch channels.

Example

channel.setmatchtype("1001", channel.MATCH_EXACT) Assuming a Model 3750, defines the
match type for digital I/O channel 1 to
be a MATCH_EXACT type.

Also see

channel.getmatchtype() (on page 8-70)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-98 3700AS-901-01 Rev. B/May 2013

channel.setmode()
This function sets the mode attribute on a channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

Digital I/O: 0 (channel.MODE_INPUT)
Totalizer: 3
(channel.MODE_RISING_TTL_EDGE)
DAC: 49
(channel.MODE_PROTECT_VOLTAGE_1)

Usage

channel.setmode(channelList, mode)

channelList String specifying the channels to set, using normal channel list syntax
mode The value that sets the mode of a channel's operation

Details

Different channel types contain additional configurable settings. These settings are grouped together by channel
type as described in the following paragraphs.
For digital I/O channels, the mode indicates the direction of the channel (input or output). The following modes
are supported:

• channel.MODE_INPUT (default) or 0

• channel.MODE_OUTPUT or 1

• channel.MODE_PROTECT_OUTPUT or 3
For totalizer channels, the mode indicates the configuration of the channel (edge and reset). The following
modes are supported:

• channel.MODE_RISING_EDGE or 1

• channel.MODE_FALLING_EDGE or 0

• channel.MODE_RISING_TTL_EDGE (default) or 3

• channel.MODE_FALLING_TTL_EDGE or 2

• channel.MODE_RISING_EDGE_READ_RESET or 5

• channel.MODE_FALLING_EDGE_READ_RESET or 4

• channel.MODE_RISING_TTL_EDGE_READ_RESET or 7

• channel.MODE_FALLING_TTL_EDGE_READ_RESET or 6
For DAC channels, the mode indicates the output of the channel (function and range). The output is switched off
before any mode change is made, and remains off after the mode has changed. The following modes are
supported:

• channel.MODE_VOLTAGE_1 or 17

• channel.MODE_CURRENT_1 or 1

• channel.MODE_CURRENT_2 or 2

• channel.MODE_PROTECT_VOLTAGE_1 (default) or 49

• channel.MODE_PROTECT_CURRENT_1 or 33

• channel.MODE_PROTECT_CURRENT_2 or 34
Changing the mode setting can impact the power consumption of the card. The instrument verifies that power is
available before changing the mode. If an insufficient power capability exists, the command generates an error.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-99

Consult the card-specific documentation for more detailed information on mode settings and functionality.
For digital I/O channels, changing the mode from input to output or from output to input adds an additional
channel delay (channel.setdelay()).
For switch and backplane channels, there is no valid mode setting. Setting a mode on a specific switch or
backplane channel generates an error. If the switch or backplane channel is in the range of channels, the switch
or backplane channel is ignored.
The specified channel list must use only one channel type. For example, channel list “1001:1004” is only valid if
channels 1, 2, 3, and 4 are of the same type. If channel 3 is a different type of channel, the channel list is invalid
and an error is generated.

Example

channel.setmode("6003:6005", channel.MODE_OUTPUT)

channel.setmode("6007", channel.MODE_FALLING_TTL_EDGE)

Assuming a Model 3750, set
digital I/O channels 3 to 5 to be
configured for output on slot 6,
assuming a Model 3750.

Set the totalizer channel 7 on slot
6 to count the falling edges of a
TTL signal.

Also see

channel.setdelay() (on page 8-93)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-100 3700AS-901-01 Rev. B/May 2013

channel.setoutputenable()
This function sets the output enable attribute on a channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

0 (channel.OFF)

Usage

channel.setoutputenable(channelList, state)

channelList String specifying the channels to set, using normal channel list syntax

state A value representing the desired state of the channel’s output

Details

For DAC channels, output enable indicates whether or not the DAC is driving the output. The following possible
states are supported:

• channel.ON

• channel.OFF (default)
For DAC channels, changing the output state to ON adds an additional channel delay to
channel.setdelay().
Channels with output set to OFF consume less power.
Changing the output setting impacts the power consumption of the card. The instrument verifies that power is
available before changing the mode. If there is insufficient power capability, the command generates an error.
Consult the specific card documentation for information on a channel’s output characteristics.
For switch, backplane, digital I/O, and totalizer channels, there is no valid output enable value. Setting output
enable on a specific channel generates an error. If one of these channels is in the range of channels, the channel
is ignored.

Example

channel.setoutputenable("1010",
channel.OFF)

Assuming a Model 3750, turns the output off on
the first DAC channel (channel 10) in slot 1.

Also see

channel.getoutputenable() (on page 8-72)
channel.setdelay() (on page 8-93)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-101

channel.setpole()
This function specifies the pole setting for a list of channels.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

Card dependent, but typically 2
(channel.POLES_TWO)

Usage

channel.setpole(channelList, value)

channelList String that specifies a list of channels, using channel list notation

value Desired pole setting for the channels in channelList. Use the following:
• For one-pole: channel.POLES_ONE or 1
• For two-pole: channel.POLES_TWO or 2
• For four-pole: channel.POLES_FOUR or 4

Details

The parameter string can contain allslots or slotX, where X equals 1 to 6.
Channel patterns do not have a pole setting associated with them. For channel patterns, the pole setting
indicates if the paired channel should be used when the pattern is created and the analog backplane relays must
be specified when creating the pattern (with channel.pattern.setimage() and
channel.pattern.snapshot()). Channel patterns get deleted as the pole settings of the channels in the
pattern image get changed.
You manipulate the analog backplane relays after setting the desired pole setting by using the
channel.setbackplane() function for channels. For channels, as the pole setting changes, their analog
backplane relays, specified by channel.setbackplane(), get cleared. Therefore, after a pole setting change,
you need to add the desired analog backplane relays for the desired pole setting by using
channel.setbackplane().
When clearing the backplane channels, this can involve clearing the paired channel, whether pairing or unpairing
channels. For example, on a 40-channel card, channels 1 and 21 are paired when the pole setting for channel 1
is set to 4. Therefore, when changing the pole setting on channel 1 to 4, the backplane channels for channels 1
and 21 are cleared. Likewise, they both are cleared when the pole setting is set back to 2 on channel 1.
Calling this function on an existing channel involved in scanning invalidates the existing scan list.
An error message is generated for the following reasons:

• An empty parameter string is specified.
• The value parameter is an invalid setting for the specified channel.
• The specified channel does not exist for the card installed in a slot.
• The channel is for an empty slot.
• The value parameter is invalid for command – parameter out of range error.
• A channel pattern or analog backplane relay was specified.
Command processing stops as soon as an error is detected and no pole settings are modified.

Example 1

channel.setpole("5001, 5003",
channel.POLES_FOUR)

Sets channels 1 and 3 on slot 5 to four-
pole.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-102 3700AS-901-01 Rev. B/May 2013

Example 2

channel.reset("slot2")

channel.setpole("2001, 2003",

channel.POLES_FOUR)
channel.close("2001, 2003")
print(channel.getclose("slot2"))

channel.open("slot2")

channel.setbackplane("2001", "2915")

channel.setbackplane("2003", "2925")

channel.close("2001, 2003")
print(channel.getclose("slot2"))

print(channel.getimage("2001, 2003"))

channel.open("slot2")
channel.setpole("slot2", 2)
print(channel.getimage("2001, 2003"))

Assuming a Model 3721, reset channels on
slot 2 only.
Set channels 1 and 3 on slot 2 to 4-pole.
Close channels 1 and 3 on slot 2.
Query slot 2 for closed channels and
analog backplane relays.
Output:
2001(2021);2003(2023)

Note that the channels in parentheses are
the paired channels because they are in a
4-pole configuration.

Open all channels and analog backplane
relays on slot 2.
Associate analog backplane relay 5 in bank
1 of slot 2 with channel 1 on slot 2.
Associate analog backplane relay 5 in bank
2 of slot 2 with channel 3 on slot 2.

Close channels 1 and 3 on slot 2.
Query slot 2 for closed channels and
analog backplane relays.
Output:
2001(2021);2003(2023);2915;2925

Query for channels and analog backplane
relays that are manipulated when open and
close channels 1 and 3 on slot 2.
Output:
2001(2021),2915;2003(2023),2925

Clear paired channels and analog
backplane relays.
Output:
2001;2003

Note that channels are no longer paired or
have analog backplane relays associated
with them.

Also see

channel.getbackplane() (on page 8-59)
channel.getpole() (on page 8-73)
channel.pattern.setimage() (on page 8-82)
channel.pattern.snapshot() (on page 8-84))
channel.setbackplane() (on page 8-90)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-103

channel.setpowerstate()
This function sets the power state on a channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

Dependent on installed card, but
usually 1 (channel.ON)

Usage

channel.setpowerstate(channelList, state)

channelList String that specifies a list of channels, using channel list notation
state • channel.OFF or 0: Disable the power

• channel.ON or 1: Enable the power

Details

When a channel that was previously off is turned on, the channel attributes are reset to their default values
(except the power state attribute).
Changing the output setting impacts the power consumption of the card. Channels with an off power state
consume less power. Before enabling power, the instrument verifies that power is available before changing the
state. If insufficient power capability exists, the command generates an error.
Consult the specific card documentation for information on a channel’s power usage characteristics, including
default state, possible warmup issues, especially for DAC channels, and effects on other channels.
When a channel with an off power state is used in a scan, results are undefined. No error notification is issued.
For switch, backplane, and digital I/O channels, there is no valid power state attribute. Setting the power state on
a specific channel generates an error.
On some cards for totalizer channels, setting the power state of a single channel can affect the power state of
other channels. If a single totalizer channel is turned on, all totalizer channels are reset to their defaults.

Example

channel.setpowerstate("1010", channel.ON) Sets the power state for DAC channel 10 on the
card in slot 1 to ON, assuming a Model 3750.

Also see

channel.getpowerstate() (on page 8-74)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-104 3700AS-901-01 Rev. B/May 2013

channel.setstatelatch()
This function sets the state indicators to either latching or nonlatching.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

14 for overload, match, and
overflow

Usage

channel.setstatelatch(channelList, stateLatchMask)

channelList String that specifies a list of channels, using channel list notation

stateLatchMask A value specifying the indicators to latch:
• channel.IND_MATCH or 4
• channel.IND_OVERFLOW or 8
• channel.IND_OVERLOAD or 2

Details

Applicable to digital I/O, totalizer, and DAC channels only.
Each indicator is represented by a bit in the mask.
For nonlatching applications, the state indicator clears automatically when the causing condition clears itself. For
latching applications, the condition is cleared using the channel.resetstatelatch() command.
When using the trigger model, events are always nonlatching (or pulse oriented). However, in latching operation,
the event is only generated once at the beginning. In nonlatching operation, the event is generated anytime the
condition begins.
Set multiple states by performing a logical OR operation on the values.

Example 1

channel.setstatelatch("1001", channel.IND_MATCH) Generate only a match state event on
digital I/O channel 1 in slot 1, assuming a
Model 3750.

Example 2

channel.setstatelatch("6010", bit.bitor(channel.IND_OVERFLOW,
channel.IND_OVERLOAD))

print(channel.getstatelatch("6010"))

Generate either an overflow or overload event on DAC channel 10 in slot 6, assuming a Model 3750.
Query for the state latch for channel 10 on slot 6.
Output:
10

Also see

channel.getstate() (on page 8-75)
channel.getstatelatch() (on page 8-77)
channel.resetstatelatch() (on page 8-89)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-105

channel.trigger[N].clear()
This function clears any pending events.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.trigger[N].clear()

N Number indicating the trigger line to clear (1 to 8)

Details

This function clears any pending events for the channel trigger specified by N.

Example

channel.trigger[1].clear() Clears any pending events on channel trigger 1

Also see

channel.trigger[N].set() (on page 8-107)

channel.trigger[N].EVENT_ID
This constant indicates the trigger event generated by the channel trigger N.

Type TSP-Link accessible Affected by Where saved Default value
Constant Yes

Usage

X = channel.trigger[N].EVENT_ID

X The trigger event number

N Number indicating the channel trigger event ID (1 to 8)

Example

scan.trigger.channel.stimulus = channel.trigger[1].EVENT_ID

Use channel trigger 1 events to pace the channel action of the scanning or set the trigger stimulus of the
channel event detector to channel trigger 1.

Also see

channel.trigger[N].set() (on page 8-107)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-106 3700AS-901-01 Rev. B/May 2013

channel.trigger[N].get()
This function gets the channel status trigger information that is used to watch the state of a specific channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

Empty channel list
State match 0

Usage

channelList, stateMatch = channel.trigger[N].get()

channelList Returns a string specifying the channels watched by this trigger

stateMatch Returns a value specifying the state to match when triggering an event
N Number indicating the channel trigger to get (1 to 8)

Details

This command works for DAC, digital I/O and totalizer channels. Switch channels are not supported.

Example

channel.trigger[1].set("1010", channel.IND_MATCH)
chan_list, state_match = channel.trigger[1].get()
print(chan_list, state_match)

Assuming a Model 3750, defines
channel trigger event 1 to occur
when totalizer channel 10
matches its defined match
value.
Query for the channels and state
conditions associated with
channel trigger 1.
Output:
1010 4.000000000e+00

Example

channel.trigger[5].set("6003, 6005",
channel.IND_MATCH)

print(channel.trigger[5].get())

Assuming a Model 3750 card,
define a channel trigger event 5 to
occur when either digital I/O
channel 3 or 5 on slot 6 match
their defined values.
View the trigger information
associated with channel trigger 5.
Output:
6003,6005

4.000000000e+00

Also see

channel.trigger[N].set() (on page 8-107)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-107

channel.trigger[N].set()
This function sets the channel status trigger model to watch the state of a specific channel.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

Empty channel list
State match 0

Usage

channel.trigger[N].set(channelList, stateMatch)

channelList String that specifies a list of channels, using channel list notation

stateMatch Value specifying the status to match when triggering an event
N Number indicating the channel trigger to set (1 to 8)

Details

If the channel list contains more than one channel, the trigger acts as a logical OR. When any one of the
channels in the list matches the desired state, a trigger event is generated. Therefore, if an indicator is present in
both the match and the actual state, an event is triggered. If the match contains more than one state indicator,
only one of those indicators needs to be present to trigger the event.
There are a total of eight channel trigger events per Series 3700A, defined by N. Using this mechanism, a trigger
can be generated when a pattern is matched on an I/O, a totalizer matches a defined count, or an I/O has an
overcurrent condition.
Latching functionality is not supported.
This command works for DAC, digital I/O and totalizer channels. Switch channels are not supported.
To clear a trigger that is no longer needed, pass an empty channel list ("" or " ") .

Example 1

channel.trigger[1].set("1001", channel.IND_MATCH) Assuming a Model 3750, defines
a channel trigger event 1 to occur
when digital I/O channel 1
matches its defined match value.

Example 2

channel.trigger[5].set("6003, 6005",
channel.IND_MATCH)

print(channel.trigger[5].get())

channel.trigger[5].set(" ", channel.IND_MATCH)
print(channel.trigger[5].get())

Assuming a Model 3750 card,
define a channel trigger event 5 to
occur when either digital I/O
channel 3 or 5 on slot 6 match their
defined values.
View the trigger information
associated with channel trigger 5.
Clear the trigger information
associated with channel trigger 5.
View the trigger information
associated with channel trigger 5.
Output:
6003,6005

4.000000000e+000
 0.000000000e+000

Also see

channel.trigger[N].get() (on page 8-106)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-108 3700AS-901-01 Rev. B/May 2013

channel.trigger[N].wait()
This function waits for the desired trigger or timeout period, whichever comes first.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

triggered = channel.trigger[N].wait(timeout)

triggered Returns an indication that a trigger occurred
N Number indicating the channel trigger to wait for (1 to 8)
timeout The number of seconds to wait

Details

If one or more trigger events were detected since the last time channel.trigger[N].wait or
channel.trigger[N].clear was called, this function returns immediately.
After waiting for a trigger with this function, the event detector is automatically reset and rearmed. This is true
regardless of the number of events detected.
The value for timeout must be greater than zero and less than 10,000.

Example

channel.trigger[1].wait(5) Wait 5 seconds for channel trigger event 1 to
occur or timeout if trigger event is not detected
in 5 seconds.

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-109

channel.write()
This function writes a value to a channel.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

channel.write(channelList, value)
channel.write(channelList, value, width)

channelList String that specifies a list of channels, using channel list notation

value The value to be written to the channel (must be decimal value)

width Value that specifies the channel width of the write

Details

For widths greater than 1, the specified channel occupies the least significant byte. For example, writing the
value of 4278255360 (hexadecimal FF00FF00) to channel 1 with a width of 4 sets channel 1 to 0, channel 2 to
255 (hexadecimal FF), channel 3 to 0, and channel 4 to 255 (hexadecimal FF). Writing the value of 4278255360
to channel 1 with a width of 1 sets channel 1 to 0 and leaves other channels untouched.

You must use decimal values when sending commands to the Series 3700A.

For digital I/O channels, only widths of 1, 2, 3, or 4 are supported. All other widths are ignored. Values written to
inputs are ignored. If no specified channel is set for output, then an error is generated. If a width crosses
channels, then only the channels set to output are affected.
Totalizers, DACs, and switch channels do not support a width other than 1. Specifying a width greater than 1
results in an error.
For a channel with a power state of OFF, an error is generated. No action is taken on any channel in the specified
channel list.
For DAC channels, the value is expected to be the desired floating point voltage or current. Also, an error is
generated if the value is out of range. No action is taken on any channel in the specified channel list.
For digital I/O channels, the value becomes the settings of the digital output.
For totalizer channels, the value becomes the new current totalizer count.
The time it takes to execute the write command is affected by the channel delay setting.

Example

channel.write("1001", 33)
channel.write("1006", 0)

Output a value of 33 to digital I/O channel 1.
Set totalizer channel 6 on slot 1 (assuming a
Model 3750 card) to 0.

Also see

None

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-110 3700AS-901-01 Rev. B/May 2013

comm.gpib.enable
This attribute describes whether or not communication using the GPIB connection is enabled.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile
memory

true (enabled)

Usage

state = comm.gpib.enable
comm.gpib.enable = state

state true: Enabled
false: Disabled

Details

This performs the same function as the MENU > GPIB > ENABLE option that is available through the front panel
of the instrument.

Also see

Set the GPIB address (on page 2-59)

comm.lan.enable
This attribute controls whether or not any communication using the LAN connection is enabled.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile
memory

true (enabled)

Usage

state = comm.lan.enable
comm.lan.enable = state

state true: Enabled
false: Disabled

Details

This is the master control setting. When this is true (enabled), you may individually control web, Telnet , VXI-11
and raw socket access to the instrument. However, when this is false (disabled), all LAN communication is
disabled and this overrides the individual LAN enabled settings.
To disable only certain LAN communication with the instrument, enable this attribute and set the specific LAN
communication attribute to false for raw sockets, Telnet, VXI-11 or web.

Example

comm.lan.enable = false Disable all LAN communication with
instrument.

Also see

comm.lan.rawsockets.enable (on page 8-111)
comm.lan.telnet.enable (on page 8-112)
comm.lan.vxi11.enable (on page 8-113)
comm.lan.web.enable (on page 8-114)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-111

comm.lan.rawsockets.enable
This attribute describes whether or not communication using raw socket is enabled.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile
memory

true (enabled)

Usage

state = comm.lan.rawsockets.enable
comm.lan.rawsockets.enable = state

state true: Enabled
false: Disabled

Details

This performs the same function as the MENU > LAN > ENABLE > RAW option available through the front
panel of the instrument.

Example

comm.lan.enable = true
comm.lan.rawsockets.enable = false

Enable all LAN communication with
instrument, then disable only raw sockets
over the LAN.

Also see

comm.lan.enable (on page 8-110)
comm.lan.telnet.enable (on page 8-112)
comm.lan.vxi11.enable (on page 8-113)
comm.lan.web.enable (on page 8-114)
lan.status.port.rawsocket (on page 8-279)
Raw socket connection

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-112 3700AS-901-01 Rev. B/May 2013

comm.lan.telnet.enable
This attribute describes whether or not communication using Telnet is enabled.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile
memory

true (enabled)

Usage

state = comm.lan.telnet.enable
comm.lan.telnet.enable = state

state true: Enabled
false: Disabled

Details

This performs the same function as the MENU > LAN > ENABLE > TELNET option that is available through the
front panel of the instrument.

Example

comm.lan.enable = true
comm.lan.telnet.enable = false

Enable all LAN communication with
instrument, then disable only Telnet over the
LAN.

Also see

comm.lan.enable (on page 8-110)
comm.lan.rawsockets.enable (on page 8-111)
comm.lan.vxi11.enable (on page 8-113)
comm.lan.web.enable (on page 8-114)
lan.status.port.telnet (on page 8-279)
Telnet connection

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-113

comm.lan.vxi11.enable
This attribute describes whether or not communication using a VXI-11 connection is enabled.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile
memory

true (enabled)

Usage

state = comm.lan.vxi11.enable
comm.lan.vxi11.enable = state

state true: Enabled
false: Disabled

Details

This performs the same function as the MENU > LAN > ENABLE > VXI11 option that is available through the
front panel of the instrument.

Example

comm.lan.enable = true
comm.lan.vxi11.enable = false

Enable all LAN communication with
instrument, then disable only VXI-11 over
the LAN.

Also see

comm.lan.enable (on page 8-110)
comm.lan.rawsockets.enable (on page 8-111)
comm.lan.telnet.enable (on page 8-112)
comm.lan.web.enable (on page 8-114)
lan.status.port.vxi11 (on page 8-280)
VXI-11 connection

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-114 3700AS-901-01 Rev. B/May 2013

comm.lan.web.enable
This attribute describes whether or not communication using the web interface is enabled.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile
memory

true (enabled)

Usage

state = comm.lan.web.enable
comm.lan.web.enable = state

state true: Enabled
false: Disabled

Details

This performs the same function as the MENU > LAN > ENABLE > WEB option that is available through the
front panel of the instrument.

Example

comm.lan.enable = true
comm.lan.web.enable = false

Enable all LAN communication with
instrument, then disable only web
communication over the LAN.

Also see

comm.lan.enable (on page 8-110)
comm.lan.rawsockets.enable (on page 8-111)
comm.lan.telnet.enable (on page 8-112)
comm.lan.vxi11.enable (on page 8-113)
Web connection

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-115

createconfigscript()
This function captures the present settings of the instrument.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

createconfigscript(scriptName)

scriptName A string that represents the name of the script that will be created

Details

If scriptName is set to autoexec, the autoexec script in the instrument is replaced by the new configuration
script.
If scriptName is set to the name of an existing script, the existing script is overwritten.
Once created, the configuration script can be run and edited like any other script.

Example

createconfigscript("August2013") Captures the present settings of the instrument
into a script named August2013.

Also see

Create a configuration script (on page 2-102)
Save the present configuration (on page 2-100)

dataqueue.add()
This function adds an entry to the data queue.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

result = dataqueue.add(value)
result = dataqueue.add(value, timeout)

result The resulting value of true or false based on the success of the function
value The data item to add; value can be of any type
timeout The maximum number of seconds to wait for space in the data queue

Details

You cannot use the timeout value when accessing the data queue from a remote node (you can only use the
timeout value while adding data to the local data queue).
The timeout value is ignored if the data queue is not full.
The dataqueue.add() function returns false:

• If the timeout expires before space is available in the data queue
• If the data queue is full and a timeout value is not specified

If the value is a table, a duplicate of the table and any subtables is made. The duplicate table does not contain
any references to the original table or to any subtables.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-116 3700AS-901-01 Rev. B/May 2013

Example

dataqueue.clear()
dataqueue.add(10)
dataqueue.add(11, 2)
result = dataqueue.add(12, 3)
if result == false then
 print("Failed to add 12 to the dataqueue")
end
print("The dataqueue contains:")
while dataqueue.count > 0 do
 print(dataqueue.next())
end

Clear the data queue.
Each line adds one item to the data queue.
Output:
The dataqueue contains:
1.00000e+01
1.10000e+01
1.20000e+01

Also see

dataqueue.CAPACITY (on page 8-116)
dataqueue.clear() (on page 8-117)
dataqueue.count (on page 8-117)
dataqueue.next() (on page 8-118)

dataqueue.CAPACITY
This constant is the maximum number of entries that you can store in the data queue.

Type TSP-Link accessible Affected by Where saved Default value
Constant Yes

Usage

count = dataqueue.CAPACITY

count The variable that is assigned the value of dataqueue.CAPACITY

Details

This constant always returns the maximum number of entries that can be stored in the data queue.

Example

MaxCount = dataqueue.CAPACITY
while dataqueue.count < MaxCount do
 dataqueue.add(1)
end
print("There are " .. dataqueue.count
 .. " items in the data queue")

This example fills the data queue until it is full
and prints the number of items in the queue.
Output:
There are 128 items in the data

queue

Also see

dataqueue.add() (on page 8-115)
dataqueue.clear() (on page 8-117)
dataqueue.count (on page 8-117)
dataqueue.next() (on page 8-118)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-117

dataqueue.clear()
This function clears the data queue.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dataqueue.clear()

Details

This function forces all dataqueue.add() commands that are in progress to time out and deletes all data from
the data queue.

Example

MaxCount = dataqueue.CAPACITY
while dataqueue.count < MaxCount do
 dataqueue.add(1)
end
print("There are " .. dataqueue.count
 .. " items in the data queue")
dataqueue.clear()
print("There are " .. dataqueue.count
 .. " items in the data queue")

This example fills the data queue and prints the
number of items in the queue. It then clears the
queue and prints the number of items again.
Output:
There are 128 items in the data

queue
There are 0 items in the data queue

Also see

dataqueue.add() (on page 8-115)
dataqueue.CAPACITY (on page 8-116)
dataqueue.count (on page 8-117)
dataqueue.next() (on page 8-118)

dataqueue.count
This attribute contains the number of items in the data queue.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Power cycle Not saved Not applicable

Usage

count = dataqueue.count

count The number of items in the data queue

Details

The count gets updated as entries are added with dataqueue.add() and read from the data queue with
dataqueue.next(). It is also updated when the data queue is cleared with dataqueue.clear().
A maximum of dataqueue.CAPACITY items can be stored at any one time in the data queue.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-118 3700AS-901-01 Rev. B/May 2013

Example

MaxCount = dataqueue.CAPACITY
while dataqueue.count < MaxCount do
 dataqueue.add(1)
end
print("There are " .. dataqueue.count
 .. " items in the data queue")
dataqueue.clear()
print("There are " .. dataqueue.count
 .. " items in the data queue")

This example fills the data queue and prints the
number of items in the queue. It then clears the
queue and prints the number of items again.
Output:
There are 128 items in the data queue
There are 0 items in the data queue

Also see

dataqueue.add() (on page 8-115)
dataqueue.CAPACITY (on page 8-116)
dataqueue.clear() (on page 8-117)
dataqueue.next() (on page 8-118)

dataqueue.next()
This function removes the next entry from the data queue.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

value = dataqueue.next()
value = dataqueue.next(timeout)

value The next entry in the data queue
timeout The number of seconds to wait for data in the queue

Details

If the data queue is empty, the function waits up to the timeout value.
If data is not available in the data queue before the timeout expires, the return value is nil.
The entries in the data queue are removed in first-in, first-out (FIFO) order.
If the value is a table, a duplicate of the original table and any subtables is made. The duplicate table does not
contain any references to the original table or to any subtables.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-119

Example

dataqueue.clear()
for i = 1, 10 do
 dataqueue.add(i)
end
print("There are " .. dataqueue.count
 .. " items in the data queue")

while dataqueue.count > 0 do
 x = dataqueue.next()
 print(x)
end
print("There are " .. dataqueue.count
 .. " items in the data queue")

Clears the data queue, adds ten entries, then
reads the entries from the data queue. Note that
your output may differ depending on the setting
of format.asciiprecision.
Output:
There are 10 items in the data

queue
1.0000000e+00
2.0000000e+00
3.0000000e+00
4.0000000e+00
5.0000000e+00
6.0000000e+00
7.0000000e+00
8.0000000e+00
9.0000000e+00
1.0000000e+01
There are 0 items in the data queue

Also see

dataqueue.add() (on page 8-115)
dataqueue.CAPACITY (on page 8-116)
dataqueue.clear() (on page 8-117)
dataqueue.count (on page 8-117)
format.asciiprecision (on page 8-255)

delay()
This function delays the execution of the commands that follow it.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

delay(seconds)

seconds The number of seconds to delay (1 to 100,000 s)

Details

You cannot set a delay for zero seconds.
The instrument delays execution of the commands for at least the specified number of seconds and fractional
seconds. However, the processing time may cause the instrument to delay 5 μs to 10 μs (typical) more than the
requested delay.

Example 1

beeper.beep(0.5, 2400)
delay(0.250)
beeper.beep(0.5, 2400)

Emit a double-beep at 2400 Hz. The sequence is
0.5 s on, 0.25 s off, 0.5 s on.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-120 3700AS-901-01 Rev. B/May 2013

Example 2

dataqueue.clear()
dataqueue.add(35)
timer.reset()
delay(0.5)
dt = timer.measure.t()
print("Delay time was " .. dt)
print(dataqueue.next())

Clear the data queue, add 35 to it, and then delay
0.5 seconds before reading it.
Output:
Delay time was 0.500099
3.500000000e+01

Also see

None

digio.readbit()
This function reads one digital I/O line. This function is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

data = digio.readbit(N)

data The state of the I/O line

N Digital I/O line number to be read (1 to 14)

Details

A returned value of zero (0) indicates that the line is low. A returned value of one (1) indicates that the line is
high.

Example

print(digio.readbit(4)) Assume line 4 is set high, and it is then read.
Output:
1.00000e+00

Also see

digio.readport() (on page 8-120)
digio.writebit() (on page 8-129)
digio.writeport() (on page 8-130)
Digital I/O port (on page 2-28, on page 3-43)

digio.readport()
This function reads the digital I/O port. This function is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-121

Usage

data = digio.readport()

data The present value of the input lines on the digital I/O port

Details

The binary equivalent of the returned value indicates the value of the input lines on the I/O port. The least
significant bit (bit B1) of the binary number corresponds to line 1; bit B14 corresponds to line 14.
For example, a returned value of 170 has a binary equivalent of 000000010101010, which indicates that lines 2,
4, 6, and 8 are high (1), and the other 10 lines are low (0).

Example

data = digio.readport()
print(data)

Assume lines 2, 4, 6, and 8 are set high when
the I/O port is read.
Output:
1.70000e+02

This is binary 10101010

Also see

digio.readbit() (on page 8-120)
digio.writebit() (on page 8-129)
digio.writeport() (on page 8-130)
Digital I/O port (on page 2-28, on page 3-43)

digio.trigger[N].assert()
This function asserts a trigger on one of the digital I/O lines. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

digio.trigger[N].assert()

N Digital I/O trigger line (1 to 14)

Details

The set pulsewidth determines how long the trigger is asserted.

Example

digio.trigger[2].assert() Asserts a trigger on digital I/O line 2.

Also see

digio.trigger[N].pulsewidth (on page 8-125)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-122 3700AS-901-01 Rev. B/May 2013

digio.trigger[N].clear()
This function clears the trigger event on a digital I/O line. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

digio.trigger[N].clear()

N Digital I/O trigger line (1 to 14)

Details

The event detector of a trigger enters the detected state when an event is detected. It is cleared when
digio.trigger[N].wait() or digio.trigger[N].clear() is called.
digio.trigger[N].clear() clears the event detector of the specified trigger line, discards the history of the
trigger line, and clears the digio.trigger[N].overrun attribute.

Example

digio.trigger[2].clear() Clears the trigger event detector on I/O line 2.

Also see

digio.trigger[N].overrun (on page 8-124)
digio.trigger[N].wait() (on page 8-129)

digio.trigger[N].EVENT_ID
This constant identifies the trigger event generated by the digital I/O line N. This constant is not available on the
Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Constant Yes

Usage

eventID = digio.trigger[N].EVENT_ID

eventID The trigger event number
N Digital I/O trigger line (1 to 14)

Details

To have another trigger object respond to trigger events generated by the trigger line, set the other object's
stimulus attribute to the value of this constant.

Example 1

digio.trigger[5].stimulus =
digio.trigger[3].EVENT_ID

Uses a trigger event on digital I/O
trigger line 3 to be the stimulus for
digital I/O trigger line 5.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-123

Example 2

scan.trigger.arm.stimulus =
 digio.trigger[3].EVENT_ID

Uses a trigger event on digital I/O
trigger line 3 to be the stimulus for
starting a scan.

Also see

None

digio.trigger[N].mode
This attribute sets the mode in which the trigger event detector and the output trigger generator operate on the
given trigger line. This attribute is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Digital I/O trigger N reset
Recall setup

Create configuration script
Save setup

0
(digio.TRIG_BYPASS)

Usage

triggerMode = digio.trigger[N].mode
digio.trigger[N].mode = triggerMode

triggerMode The trigger mode; see Details for values
N Digital I/O trigger line (1 to 14)

Details

Set triggerMode to one of the following values:

Trigger mode values
triggerMode Description

digio.TRIG_BYPASS or 0 Allows direct control of the line.
digio.TRIG_FALLING or 1 Detects falling-edge triggers as input; asserts a TTL-low pulse for

output.
digio.TRIG_RISING or 2 If the programmed state of the line is high, the

digio.TRIG_RISING mode behavior is similar to
digio.TRIG_RISINGA. If the programmed state of the line is low,
the digio.TRIG_RISING mode behavior is similar to
digio.TRIG_RISINGM. This setting should only be used if
necessary for compatibility with other Keithley Instruments products.

digio.TRIG_EITHER or 3 Detects rising- or falling-edge triggers as input. Asserts a TTL-low
pulse for output.

digio.TRIG_SYNCHRONOUSA or 4 Detects the falling-edge input triggers and automatically latches and
drives the trigger line low. Asserting the output trigger releases the
latched line.

digio.TRIG_SYNCHRONOUS or 5 Detects the falling-edge input triggers and automatically latches and
drives the trigger line low. Asserts a TTL-low pulse as an output
trigger.

digio.TRIG_SYNCHRONOUSM or 6 Detects rising-edge triggers as input. Asserts a TTL-low pulse for
output.

digio.TRIG_RISINGA or 7 Detects rising-edge triggers as input. Asserts a TTL-low pulse for
output.

digio.TRIG_RISINGM or 8 Asserts a TTL-high pulse for output. Input edge detection is not
possible in this mode.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-124 3700AS-901-01 Rev. B/May 2013

When programmed to any mode except digio.TRIG_BYPASS, the output state of the I/O line is controlled by
the trigger logic, and the user-specified output state of the line is ignored.
Use of either digio.TRIG_SYNCHRONOUSA or digio.TRIG_SYNCHRONOUSM is preferred over
digio.TRIG_SYNCHRONOUS, because digio.TRIG_SYNCHRONOUS is provided for compatibility with the digital
I/O and TSP-Link triggering on other Keithley Instruments products.
To control the line state, set the mode to digio.TRIG_BYPASS and use the digio.writebit() and
digio.writeport() commands.

Example

digio.trigger[4].mode = 2 Sets the trigger mode for I/O line 4 to
digio.TRIG_RISING.

Also see

digio.trigger[N].clear() (on page 8-122)
digio.trigger[N].reset() (on page 8-126)
digio.writebit() (on page 8-129)
digio.writeport() (on page 8-130)
Scanning and triggering (on page 3-1)

a

digio.trigger[N].overrun
Use this attribute to read the event detector overrun status. This attribute is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Instrument reset
Digital I/O trigger N clear
Digital I/O trigger N reset
Recall setup

Not saved Not applicable

Usage

overrun = digio.trigger[N].overrun

overrun Trigger overrun state (true or false)
N Digital I/O trigger line (1 to 14)

Details

If this is true, an event was ignored because the event detector was already in the detected state when the
event occurred.
This is an indication of the state of the event detector built into the line itself. It does not indicate if an overrun
occurred in any other part of the trigger model or in any other detector that is monitoring the event.

Example

overrun = digio.trigger[1].overrun
print(overrun)

If there is no trigger overrun, the following
text is output:
false

Also see

digio.trigger[N].clear() (on page 8-122)
digio.trigger[N].reset() (on page 8-126)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-125

digio.trigger[N].pulsewidth
This attribute describes the length of time that the trigger line is asserted for output triggers. This attribute is not
available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Digital I/O trigger N reset
Recall setup

Create configuration script
Save setup

10e-6 (10 µs) digital I/O lines 1
through 9
20 µs digital I/O lines 10 through 14

Usage

width = digio.trigger[N].pulsewidth
digio.trigger[N].pulsewidth = width

width The pulse width (seconds)
N Digital I/O trigger line (1 to 14)

Details

Setting width to zero (0) seconds asserts the trigger indefinitely. To release the trigger line, use
digio.trigger[N].release().

Example

digio.trigger[4].pulsewidth = 20e-6 Sets the pulse width for trigger line 4 to
20 μs.

Also see

digio.trigger[N].assert() (on page 8-121)
digio.trigger[N].reset() (on page 8-126)
digio.trigger[N].release() (on page 8-125)

digio.trigger[N].release()
This function releases an indefinite length or latched trigger. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

digio.trigger[N].release()

N Digital I/O trigger line (1 to 14)

Details

Releases a trigger that was asserted with an indefinite pulse width time. It also releases a trigger that was
latched in response to receiving a synchronous mode trigger. Only the specified trigger line is affected.

Example

digio.trigger[4].release() Releases digital I/O trigger line 4.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-126 3700AS-901-01 Rev. B/May 2013

Also see

digio.trigger[N].assert() (on page 8-121)
digio.trigger[N].pulsewidth (on page 8-125)

digio.trigger[N].reset()
This function resets trigger values to their factory defaults. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

digio.trigger[N].reset()

N Digital I/O trigger line (1 to 14)

Details

This function resets the following attributes to factory default settings:
• digio.trigger[N].mode
• digio.trigger[N].pulsewidth
• digio.trigger[N].stimulus

It also clears digio.trigger[N].overrun.

Example

digio.trigger[3].mode = 2
digio.trigger[3].pulsewidth = 50e-6
digio.trigger[3].stimulus = digio.trigger[5].EVENT_ID
print(digio.trigger[3].mode, digio.trigger[3].pulsewidth,

digio.trigger[3].stimulus)
digio.trigger[3].reset()
print(digio.trigger[3].mode, digio.trigger[3].pulsewidth,

digio.trigger[3].stimulus)

Set the digital I/O trigger line 3 for a falling edge with a pulsewidth of 50 microseconds.
Use digital I/O line 5 to trigger the event on line 3.
Reset the line back to factory default values.
Output before reset:
2.00000e+00 5.00000e-05 5.00000e+00

Output after reset:
0.00000e+00 1.00000e-05 0.00000e+00

Also see

digio.trigger[N].mode (on page 8-123)
digio.trigger[N].overrun (on page 8-124)
digio.trigger[N].pulsewidth (on page 8-125)
digio.trigger[N].stimulus (on page 8-127)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-127

digio.trigger[N].stimulus
This attribute selects the event that causes a trigger to be asserted on the digital output line.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Digital I/O trigger N reset
Save setup

Create configuration script
Save setup

0

Usage

triggerStimulus = digio.trigger[N].stimulus
digio.trigger[N].stimulus = triggerStimulus

triggerStimulus The event identifier for the triggering event
N Digital I/O trigger line (1 to 14)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-128 3700AS-901-01 Rev. B/May 2013

Details

Set this attribute to zero (0) to disable the automatic trigger output.
Do not use the stimulus attribute for generating output triggers under script control. Use
digio.trigger[N].assert() instead.
The trigger stimulus for a digital I/O line may be set to one of the existing trigger event IDs, described in the
following table.

Trigger event IDs

Trigger event ID Description

channel.trigger[N].EVENT_ID A channel trigger event starts the scan.

digio.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

display.trigger.EVENT_ID The trigger key on the front panel is pressed.
dmm.trigger.EVENT_LIMIT1_HIGH A DMM trigger event that indicates a measurement

has exceed the high limit value on limit 1.
dmm.trigger.EVENT_LIMIT1_LOW A DMM trigger event that indicates a measurement

has exceed the low limit value on limit 1.
dmm.trigger.EVENT_LIMIT2_HIGH A DMM trigger event that indicates a measurement

has exceed the high limit value on limit 2.
dmm.trigger.EVENT_LIMIT2_LOW A DMM trigger event that indicates a measurement

has exceed the low limit value on limit 2.
trigger.EVENT_ID A *trg message on the active command interface. If

GPIB is the active command interface, a GET
message also generates this event.

trigger.blender[N].EVENT_ID A combination of events has occurred.
trigger.timer[N].EVENT_ID A delay expired.

tsplink.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the
configuration of the line) on the TSP-Link trigger line.

lan.trigger[N].EVENT_ID A LAN trigger event has occurred.
scan.trigger.EVENT_SCAN_READY Scan ready event.

scan.trigger.EVENT_SCAN_START Scan start event.
scan.trigger.EVENT_CHANNEL_READY Channel ready event.

scan.trigger.EVENT_MEASURE_COMP Measure complete event.
scan.trigger.EVENT_SEQUENCE_COMP Sequence complete event.
scan.trigger.EVENT_SCAN_COMP Scan complete event.
scan.trigger.EVENT_IDLE Idle event.
schedule.alarm[N].EVENT_ID A scan starts when alarm N fires.

Example 1

digio.trigger[3].stimulus = 0 Clear the trigger
stimulus of digital
I/O line 3.

Example 2

digio.trigger[3].stimulus =
scan.trigger.EVENT_CHANNEL_READY

Set the trigger
stimulus of digital
I/O line 3 to be the
channel ready
event during a
scan.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-129

Also see

digio.trigger[N].assert() (on page 8-121)
digio.trigger[N].clear() (on page 8-122)
digio.trigger[N].reset() (on page 8-126)

digio.trigger[N].wait()
This function waits for a trigger. This function is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

triggered = digio.trigger[N].wait(timeout)

triggered The value true if a trigger is detected, or false if no triggers are detected during
the timeout period

N Digital I/O trigger line (1 to 14)
timeout Timeout in seconds

Details

This function pauses for up to timeout seconds for an input trigger. If one or more trigger events are detected
since the last time digio.trigger[N].wait() or digio.trigger[N].clear() was called, this function
returns a value immediately. After waiting for a trigger with this function, the event detector is automatically reset
and ready to detect the next trigger. This is true regardless of the number of events detected.

Example

triggered = digio.trigger[4].wait(3)
print(triggered)

Waits up to three seconds for a trigger to be
detected on trigger line 4, then outputs the
results.
Output if no trigger is detected:
false

Output if a trigger is detected:
true

Also see

digio.trigger[N].clear() (on page 8-122)

digio.writebit()
This function sets a digital I/O line high or low. This function is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

digio.writebit(N, data)

N Digital I/O trigger line (1 to 14)

data The value to write to the bit:
• 0 (low)
• Non-zero (high)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-130 3700AS-901-01 Rev. B/May 2013

Details

If the output line is write-protected using the digio.writeprotect attribute, the command is ignored.
The reset() function does not affect the present state of the digital I/O lines.
Use the digio.writebit() and digio.writeport() commands to control the output state of the
synchronization line when trigger operation is set to digio.TRIG_BYPASS.
The data must be zero (0) to clear the bit. Any value other than zero (0) sets the bit.

Example

digio.writebit(4, 0) Sets digital I/O line 4 low (0).

Also see

digio.readbit() (on page 8-120)
digio.readport() (on page 8-120)
digio.trigger[N].mode (on page 8-123)
digio.writeport() (on page 8-130)
digio.writeprotect (on page 8-131)

digio.writeport()
This function writes to all digital I/O lines. This function is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

digio.writeport(data)

data Value to write to the port (0 to 16383)

Details

The binary representation of data indicates the output pattern to be written to the I/O port. For example, a data
value of 170 has a binary equivalent of 00000010101010. Lines 2, 4, 6, and 8 are set high (1), and the other 10
lines are set low (0).
Write-protected lines are not changed.
The reset() function does not affect the present states of the digital I/O lines.
Use the digio.writebit() and digio.writeport() commands to control the output state of the
synchronization line when trigger operation is set to digio.TRIG_BYPASS.

Example

digio.writeport(255) Sets digital I/O Lines 1 through 8 high (binary
00000011111111).

Also see

digio.readbit() (on page 8-120)
digio.readport() (on page 8-120)
digio.writebit() (on page 8-129)
digio.writeprotect (on page 8-131)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-131

digio.writeprotect
This attribute contains the write-protect mask that protects bits from changes from the digio.writebit() and
digio.writeport() functions. This attribute is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script
Save setup

0

Usage

mask = digio.writeprotect
digio.writeprotect = mask

mask Sets the value that specifies the bit pattern for write-protect

Details

Bits that are set to one cause the corresponding line to be write-protected.
The binary equivalent of mask indicates the mask to be set for the I/O port. For example, a mask value of 7 has a
binary equivalent of 00000000000111. This mask write-protects lines 1, 2, and 3.

Example

digio.writeprotect = 15 Write-protects lines 1, 2, 3, and 4.

Also see

digio.writebit() (on page 8-129)
digio.writeport() (on page 8-130)

display.clear()
This function clears all lines of the display.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

display.clear()

Details

This function switches to the user screen and then clears the display.
The display.clear(), display.setcursor(), and display.settext() functions are overlapped
commands. That is, the script does not wait for one of these commands to complete. These functions do not
immediately update the display. For performance considerations, they update the physical display as soon as
processing time becomes available.

Also see

display.setcursor() (on page 8-145)
display.settext() (on page 8-146)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-132 3700AS-901-01 Rev. B/May 2013

display.getannunciators()
This function reads the annunciators (indicators) that are presently turned on.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

annunciators = display.getannunciators()

annunciators The bitmasked value that shows which indicators are turned on

Details

This function returns a bitmasked value showing which indicators are turned on. The 16-bit binary equivalent of
the returned value is the bitmask. The return value is a sum of set annunciators, based on the weighted value, as
shown in the following table.

Annunciator (indicator) bitmasked values and equivalent constants

Indicator Bit Weighted
value

Equivalent constant

FILT 1 1 display.ANNUNCIATOR_FILTER
MATH 2 2 display.ANNUNCIATOR_MATH
4W 3 4 display.ANNUNCIATOR_4_WIRE
AUTO 4 8 display.ANNUNCIATOR_AUTO
ARM 5 16 display.ANNUNCIATOR_ARM
TRIG 6 32 display.ANNUNCIATOR_TRIGGER
* (star) 7 64 display.ANNUNCIATOR_STAR
SMPL 8 128 display.ANNUNCIATOR_SAMPLE
EDIT 9 256 display.ANNUNCIATOR_EDIT
ERR 10 512 display.ANNUNCIATOR_ERROR
REM 11 1024 display.ANNUNCIATOR_REMOTE
TALK 12 2048 display.ANNUNCIATOR_TALK
LSTN 13 4096 display.ANNUNCIATOR_LISTEN
SRQ 14 8192 display.ANNUNCIATOR_SRQ
REAR 15 16384 display.ANNUNCIATOR_REAR
REL 16 32768 display.ANNUNCIATOR_REL

Example 1

testAnnunciators = display.getannunciators()
print(testAnnunciators)

rem = bit.bitand(testAnnunciators, 1024)
if rem > 0 then
 print("REM is on")
else
 print("REM is off")
end

REM indicator is turned on.
Output:
1.28000e+03
REM is on

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-133

Example 2

print(display.ANNUNCIATOR_EDIT)

print(display.ANNUNCIATOR_TRIGGER)

print(display.ANNUNCIATOR_AUTO)

Output:
2.56000e+02

3.20000e+01

8.00000e+00

Also see

bit.bitand() (on page 8-11)

display.getcursor()
This function reads the present position of the cursor on the front panel display.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

row, column, style = display.getcursor()

row The row where the cursor is: 1 (top row); 2 (bottom row)

column The column where the cursor is:
• If the cursor is in the top row: 1 to 20
• If the cursor is in the bottom row: 1 to 32

style Visibility of the cursor: 0 (invisible cursor); 1 (blinking cursor)

Details

This function switches the display to the user screen (the text set by display.settext()), and then returns
values to indicate the cursor's row and column position and cursor style.
Columns are numbered from left to right on the display.

Example 1

testRow, testColumn = display.getcursor()
print(testRow, testColumn)

This example reads the cursor position
into local variables and prints them.
Example output:
1.00000e+00 1.00000e+00

Example 2

print(display.getcursor()) This example prints the cursor position
directly. In this example, the cursor is in
row 1 at column 3, with an invisible cursor:
1.00000e+00 3.00000e+00

0.00000e+00

Also see

display.gettext() (on page 8-135)
display.screen (on page 8-143)
display.setcursor() (on page 8-145)
display.settext() (on page 8-146)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-134 3700AS-901-01 Rev. B/May 2013

display.getlastkey()
This function retrieves the key code for the last pressed key.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

keyCode = display.getlastkey()

keyCode A returned value that represents the last front-panel key pressed; see Details for
more information

Details

A history of the key code for the last pressed front-panel key is maintained by the instrument. When the
instrument is turned on, or when it is transitioning from local to remote operation, the key code is set to 0
(display.KEY_NONE).
Pressing the EXIT (LOCAL) key normally aborts a script. To use this function with the EXIT (LOCAL) key, you
must set display.locallockout to display.LOCK.

The table below lists the keyCode value for each front-panel action.

Key codes

Value Key list Value Key list

0 display.KEY_NONE 82 display.KEY_ENTER

65 display.KEY_RANGEUP 83 display.KEY_REC

66 display.KEY_FUNC 84 display.KEY_DMM

67 display.KEY_REL 85 display.KEY_DELETE

68 display.KEY_MENU 86 display.KEY_STEP

69 display.KEY_CLOSE 87 display.KEY_CHAN

70 display.KEY_SLOT 90 display.KEY_RATE

71 display.KEY_RUN 91 display.KEY_LIMIT

72 display.KEY_DISPLAY 92 display.KEY_TRIG

73 display.KEY_AUTO 93 display.KEY_OPEN

74 display.KEY_FILTER 94 display.KEY_PATT

75 display.KEY_EXIT 95 display.KEY_LOAD

76 display.KEY_STORE 97 display.WHEEL_ENTER

77 display.KEY_SCAN 103 display.KEY_RIGHT

78 display.KEY_INSERT 104 display.KEY_LEFT

79 display.KEY_OPENALL 107 display.WHEEL_LEFT

80 display.KEY_CONFIG 114 display.WHEEL_RIGHT

81 display.KEY_RANGEDOWN

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-135

Example

key = display.getlastkey()
print(key)

On the front panel, press the MENU key and
then send the code shown here. This retrieves
the key code for the last pressed key.
Output:
6.80000e+01

Also see

display.locallockout (on page 8-140)
display.sendkey() (on page 8-144)

display.gettext()
This function reads the text displayed on the instrument front panel.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

text = display.gettext()
text = display.gettext(embellished)
text = display.gettext(embellished, row)
text = display.gettext(embellished, row, columnStart)
text = display.gettext(embellished, row, columnStart, columnEnd)

text The returned value, which contains the text that is presently displayed

embellished Indicates type of returned text: false (simple text); true (text with embedded
character codes)

row Selects the row from which to read the text: 1 (row 1); 2 (row 2). If row is not
included, both rows of text are read

columnStart Selects the first column from which to read text; for row 1, the valid column numbers
are 1 to 20; for row 2, the valid column numbers are 1 to 32; if nothing is selected, 1
is used

columnEnd Selects the last column from which to read text; for row 1, the valid column numbers
are 1 to 20; for row 2, the valid column numbers are 1 to 32; the default is 20 for row
1, and 32 for row 2

Details

Using the command without any parameters returns both lines of the display.
The $N character code is included in the returned value to show where the top line ends and the bottom line
begins. This is not affected by the value of embellished.
When embellished is set to true, all other character codes are returned along with the message. When
embellished is set to false, only the message and the $N character code is returned. For information on the
embedded character codes, see display.settext() (on page 8-146).
The display is not switched to the user screen (the screen set using display.settext()). Text will be read
from the active screen.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-136 3700AS-901-01 Rev. B/May 2013

Example 1

display.clear()
display.setcursor(1, 1)
display.settext("ABCDEFGHIJ$DKLMNOPQRST")
display.setcursor(2, 1)
display.settext("abcdefghijklm$Bnopqrstuvwxyz$F123456")
print(display.gettext())
print(display.gettext(true))
print(display.gettext(false, 2))
print(display.gettext(true, 2, 9))
print(display.gettext(false, 2, 9, 10))

This example shows how to retrieve the display text in multiple ways. The output is:

ABCDEFGHIJKLMNOPQRST$Nabcdefghijklmnopqrstuvwxyz123456
$RABCDEFGHIJ$DKLMNOPQRSTNRabcdefghijklm$Bnopqrstuvwxyz$F123456
abcdefghijklmnopqrstuvwxyz123456
$Rijklm$Bnopqrstuvwxyz$F123456
ij

Example 2

display.clear()
display.settext("User Screen")
text = display.gettext()
print(text)

This outputs all text in both lines of the display:
User Screen $N

This indicates that the message “User Screen” is on the top line. The bottom line is blank.

Also see

display.clear() (on page 8-131)
display.getcursor() (on page 8-133)
display.setcursor() (on page 8-145)
display.settext() (on page 8-146)

display.inputvalue()
This function displays a formatted input field on the instrument display that the operator can edit.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

display.inputvalue(format)
display.inputvalue(format, default)
display.inputvalue(format, default, minimum)
display.inputvalue(format, default, minimum, maximum)

format A string that defines how the input field is formatted; see Details for more information
default The default value for the input value
minimum The minimum input value
maximum The maximum input value

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-137

Details

The format parameter uses zeros (0), the decimal point, polarity sign, and exponents to define how the input
field is formatted. The format parameter can include the options shown in the following table.

Option Description Examples

E Include the E to display the value exponentially 0.00000e+0
+ Allows operators to enter positive or negative values; if the

"+" sign is not included, the operator cannot enter a
negative value

+0.00

0 Defines the digit positions for the value; you can use up to
six zeros (0)

+00.0000e+00

. Include to have a decimal point appear in the value +0.00

The default parameter is the value shown when the value is first displayed.
The minimum and maximum parameters can be used to limit the values that can be entered. When + is not
selected for format, the minimum limit must be more than or equal to zero (0). When limits are used, you
cannot enter values above or below these limits.
The input value is limited to ±1e37.
Before calling display.inputvalue(), you should send a message prompt to the operator using
display.prompt(). Make sure to position the cursor where the edit field should appear.

After this command is sent, script execution pauses until you enter a value and press the ENTER key.
For positive and negative entry (plus sign (+) used for the value field and/or the exponent field), polarity of a
nonzero value or exponent can be toggled by positioning the cursor on the polarity sign and turning the
navigation wheel . Polarity will also toggle when using the navigation wheel to decrease or increase the
value or exponent past zero. A zero (0) value or exponent (for example, +00) is always positive and cannot be
toggled to negative polarity.
After executing this command and pressing the EXIT (LOCAL) key, the function returns nil.

Example

display.clear()
display.settext("Enter value between$N -0.10 and 2.00: ")
value = display.inputvalue("+0.00", 0.5, -0.1, 2.0)
print("Value entered = ", value)

Displays an editable field (+0.50) for operator input. The valid input range is -0.10 to +2.00, with a default of
0.50.

Output:
Value entered = 1.35000e+00

Also see

display.prompt() (on page 8-142)
display.setcursor() (on page 8-145)
display.settext() (on page 8-146)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-138 3700AS-901-01 Rev. B/May 2013

display.loadmenu.add()
This function adds an entry to the USER TESTS menu, which can be accessed by pressing the LOAD key on the
instrument front panel.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

display.loadmenu.add(displayName, code)
display.loadmenu.add(displayName, code, memory)

displayName The name that is added to the USER TESTS menu

code The code that is run from the USER TESTS menu
memory Determines if code is saved to nonvolatile memory:

0 or display.DONT_SAVE: Does not save the code to nonvolatile memory
1 or display.SAVE: Saves the code to nonvolatile memory (default)

Details

After adding code to the load menu, you can run it from the front panel by pressing the LOAD key, then selecting
USER TESTS to select from the available code to load. Pressing the RUN key will then run the script.
You can add items in any order. They are always displayed in alphabetic order when the menu is selected.
Any Lua code can be can be included in the code parameter. If memory is set to display.SAVE, the entry
(name and code) is saved in nonvolatile memory. Scripts, functions, and variables used in the code are not
saved by display.SAVE. Functions and variables need to be saved with the code. If the code is not saved in
nonvolatile memory, it will be lost when the Series 3700A is turned off. See Example 2 below.

If you do not make a selection for memory, the code is automatically saved to nonvolatile memory.

You can create a script that defines several functions, and then use the
display.loadmenu.add() command to add items that call those individual functions. This allows
the operator to run tests from the front panel.

Example 1

display.loadmenu.add("Test9", "Test9()") Assume a user script named "Test9" has
been loaded into the run-time environment.
Adds the menu entry to the User menu to run
the script after loading.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-139

Example 2

display.loadmenu.add(
 "Test", "DUT1() beeper.beep(2, 500)",

display.SAVE)

Assume a script with a function named
“DUT1” has already been loaded into the
instrument, and the script has NOT been
saved in nonvolatile memory.
Now assume you want to add a test named
“Test” to the USER TESTS menu. You want
the test to run the function named “DUT1”
and sound the beeper. This example adds
“Test” to the menu, defines the code, and
then saves the displayName and code in
nonvolatile memory.
When “Test” is run from the front panel USER
TESTS menu, the function named “DUT1”
executes and the beeper beeps for two
seconds.
Now assume you turn off instrument power.
Because the script was not saved in
nonvolatile memory, the function named
“DUT1” is lost when you turn the instrument
on. When “Test” is again run from the front
panel, an error is generated because DUT1
no longer exists in the instrument as a
function.

Example 3

display.loadmenu.add("Part1",
"testpart([[Part1]], 5.0)", display.SAVE)

Adds an entry called “Part1” to the front panel
“USER TESTS” load menu for the code
testpart([[Part1]], 5.0), and saves it
in nonvolatile memory.

Also see

display.loadmenu.delete() (on page 8-140)

display.loadmenu.catalog()
This function creates an iterator for the user menu items accessed using the LOAD key on the instrument front
panel.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

for displayName in display.loadmenu.catalog() do body end
for displayName, code in display.loadmenu.catalog() do body end

displayName The name displayed in the menu
code The code associated with the displayName
body The body of the code to process the entries in the loop

Details

Each time through the loop, displayName and code will take on the values in the USER TESTS menu.
The instrument goes through the list in random order.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-140 3700AS-901-01 Rev. B/May 2013

Example

for displayName, code in
display.loadmenu.catalog() do

 print(displayName, code)
end

Output:
Test DUT1() beeper.beep(2, 500)
Part1 testpart([[Part1]], 5.0)
Test9 Test9()

Also see

display.loadmenu.add() (on page 8-138)
display.loadmenu.delete() (on page 8-140)

display.loadmenu.delete()
This function removes an entry from the USER TESTS menu, which can be accessed using the LOAD key on the
instrument front panel.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

display.loadmenu.delete(displayName)

displayName The name to be deleted from the USER TESTS menu

Details

If you delete an entry from the USER TESTS menu, you can no longer run it by pressing the LOAD key.

Example

display.loadmenu.delete("Test9")
for displayName, code in

display.loadmenu.catalog() do
 print(displayName, code)
end

Deletes the entry named "Test9"
Output:
Test DUT1() beeper.beep(2, 500)
Part1 testpart([[Part1]], 5.0)

Also see

display.loadmenu.add() (on page 8-138)
display.loadmenu.catalog() (on page 8-139)

display.locallockout
This attribute describes whether or not the EXIT (LOCAL) key on the instrument front panel is enabled.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Power cycle Not saved 0 (display.UNLOCK)

Usage

lockout = display.locallockout
display.locallockout = lockout

lockout 0 or display.UNLOCK: Unlocks EXIT (LOCAL) key
1 or display.LOCK: Locks out EXIT (LOCAL) key

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-141

Details

Set display.locallockout to display.LOCK to prevent the user from interrupting remote operation by
pressing the EXIT (LOCAL) key.
Set this attribute to display.UNLOCK to allow the EXIT (LOCAL) key to interrupt script or remote operation.

Example

display.locallockout = display.LOCK Disables the front-panel EXIT (LOCAL) key.

Also see

None

display.menu()
This function presents a menu on the front panel display.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

selection = display.menu(name, items)

selection Name of the variable that holds the selected menu item
name Menu name to display on the top line
items Menu items to display on the bottom line

Details

The menu consists of the menu name string on the top line, and a selectable list of items on the bottom line. The
menu items must be a single string with each item separated by whitespace. The name for the top line is limited
to 20 characters.
After sending this command, script execution pauses for the operator to select a menu item. An item is selected
by rotating the navigation wheel to place the blinking cursor on the item, and then pressing the navigation
wheel (or the ENTER key). When an item is selected, the text of that selection is returned.
Pressing the EXIT (LOCAL) key will not abort the script while the menu is displayed, but it will return nil. The
script can be aborted by calling the exit function when nil is returned.

Example

selection = display.menu("Menu", "Test1 Test2 Test3")
print(selection)

Displays a menu with three
menu items. If the second menu
item is selected, selection is
given the value Test2.
Output:
Test2

Also see

None

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-142 3700AS-901-01 Rev. B/May 2013

display.prompt()
This function prompts the user to enter a parameter from the front panel of the instrument.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

display.prompt(format, units, help)
display.prompt(format, units, help, default)
display.prompt(format, units, help, default, minimum)
display.prompt(format, units, help, default, minimum, maximum)

format A string that defines how the input field is formatted; see Details for more information
units Set the units text string for the top line (eight characters maximum); this indicates the units (for

example, "V" or "A") for the value
help Text string to display on the bottom line (32 characters maximum)
default The value that is shown when the value is first displayed
minimum The minimum input value that can be entered
maximum The maximum input value that can be entered (must be more than minimum)

Details

This function creates an editable input field at the present cursor position, and an input prompt message on the
bottom line. Example of a displayed input field and prompt:
0.00V
Input 0 to +2V
The format parameter uses zeros (0), the decimal point, polarity sign, and exponents to define how the input
field is formatted.

The format parameter can include the options shown in the following table.

Option Description Examples

E Include the E to display the value exponentially. Include a
plus sign (+) for positive/negative exponent entry. Do not
include the plus sign (+) to prevent negative value entry. 0
defines the digit positions for the exponent.

0.00000E+0

+ Allows operators to enter positive or negative values. If
the plus sign (+) is not included, the operator cannot enter
a negative value.

+0.00

0 Defines the digit positions for the value. You can use up to
six zeros (0).

+00.0000E+00

. The decimal point where needed for the value. +0.00

The minimum and maximum parameters can be used to limit the values that can be entered. When a plus sign
(+) is not selected for format, the minimum limit must be greater than or equal to zero (0). When limits are used,
the operator cannot enter values above or below these limits.
The input value is limited to ±1e37.
After sending this command, script execution pauses for the operator to enter a value and press ENTER.
For positive and negative entry (plus sign (+) used for the value field and the exponent field), polarity of a
nonzero value or exponent can be toggled by positioning the cursor on the polarity sign and turning the
navigation wheel . Polarity will also toggle when using the navigation wheel to decrease or increase the
value or exponent past zero. A zero value or exponent (for example, +00) is always positive and cannot be
toggled to negative polarity.
After executing this command and pressing the EXIT (LOCAL) key, the value returns nil.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-143

Example

value = display.prompt("0.00", "V", "Input 0 to +2V", 0.5, 0, 2)
print(value)

The above command prompts the operator to enter a voltage value. The valid input range is 0 to +2.00, with a
default of 0.50:
0.50V
Input 0 to +2V

If the operator enters 0.70, the output is:
7.00000e-01

Also see

display.inputvalue() (on page 8-136)

display.screen
This attribute contains the selected display screen.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script
Save setup

display.MAIN

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Saved setup Models 2601A/2611A/2635A:
0 (display.SMUA)
Models
2602A/2604A/2612A/2614A/2636A:
2 (display.SMUA_SMUB)

Usage

displayID = display.screen
display.screen = displayID

displayID One of the following values:
• 1 or display.MAIN: Displays the main screen
• 2 or display.USER: Displays the user screen

Details

Setting this attribute selects the display screen for the front panel. This performs the same action as pressing the
DISPLAY key on the front panel. The text for the display screen is set by display.settext().
Read this attribute to determine which of the available display screens was last selected.

This does not support the CLOSED CHANNELS option that is available from the DISPLAY key.

Example

display.screen = display.USER Selects the user display.

Also see

display.settext() (on page 8-146)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-144 3700AS-901-01 Rev. B/May 2013

display.sendkey()
This function sends a code that simulates the action of a front panel control.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

display.sendkey(keyCode)

keyCode A parameter that specifies the key press to simulate; see Details for more
information

Details

This command simulates the pressing of a front panel key or navigation wheel, or the turning the navigation
wheel one click to the left or right.

Key codes

Value Key list Value Key list

0 display.KEY_NONE 82 display.KEY_ENTER
65 display.KEY_RANGEUP 83 display.KEY_REC
66 display.KEY_FUNC 84 display.KEY_DMM
67 display.KEY_REL 85 display.KEY_DELETE
68 display.KEY_MENU 86 display.KEY_STEP
69 display.KEY_CLOSE 87 display.KEY_CHAN
70 display.KEY_SLOT 90 display.KEY_RATE
71 display.KEY_RUN 91 display.KEY_LIMIT
72 display.KEY_DISPLAY 92 display.KEY_TRIG

73 display.KEY_AUTO 93 display.KEY_OPEN

74 display.KEY_FILTER 94 display.KEY_PATT
75 display.KEY_EXIT 95 display.KEY_LOAD

76 display.KEY_STORE 97 display.WHEEL_ENTER
77 display.KEY_SCAN 103 display.KEY_RIGHT

78 display.KEY_INSERT 104 display.KEY_LEFT

79 display.KEY_OPENALL 107 display.WHEEL_LEFT
80 display.KEY_CONFIG 114 display.WHEEL_RIGHT

81 display.KEY_RANGEDOWN

When using this function, send built-in constants, such as display.KEY_RIGHT, rather than the
numeric value, such as 103. This allows for better forward compatibility with firmware revisions.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-145

Example

display.sendkey(display.KEY_RUN) Simulates pressing the RUN key.

Also see

Front panel

display.setcursor()
This function sets the position of the cursor.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

display.setcursor(row, column)
display.setcursor(row, column, style)

row The row number for the cursor (1 or 2)
column The active column position to set; row 1 has columns 1 to 20, row 2 has columns 1

to 32
style Set the cursor to invisible (0, default) or blinking (1)

Details

Sending this command selects the user screen and then moves the cursor to the given location.
The display.clear(), display.setcursor(), and display.settext() functions are overlapped
commands. That is, the script does not wait for one of these commands to complete. These functions do not
immediately update the display. For performance considerations, they update the physical display as soon as
processing time becomes available.
An out-of-range parameter for row sets the cursor to row 2. An out-of-range parameter for column sets the
cursor to column 20 for row 1, or 32 for row 2.
An out-of-range parameter for style sets it to 0 (invisible).
A blinking cursor is only visible when it is positioned over displayed text. It cannot be seen when positioned over
a space character.

Example

display.clear()
display.setcursor(1, 8)
display.settext("Hello")
display.setcursor(2, 14)
display.settext("World")

This example displays a message on the
instrument front panel, approximately center.
Note that the top line of text is larger than the
bottom line of text.
The front panel of the instrument displays "Hello"
on the top line and "World" on the second line.

Also see

display.clear() (on page 8-131)
display.getcursor() (on page 8-133)
display.gettext() (on page 8-135)
display.screen (on page 8-143)
display.settext() (on page 8-146)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-146 3700AS-901-01 Rev. B/May 2013

display.settext()
This function displays text on the user screen.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

display.settext(text)

text Text message to be displayed, with optional character codes

Details

This function selects the user display screen and displays the given text.
After the instrument is turned on, the first time you use a display command to write to the display, the message
"User Screen" is cleared. After the first write, you need to use display.clear() to clear the message.
The display.clear(), display.setcursor(), and display.settext() functions are overlapped
commands. That is, the script does not wait for one of these commands to complete. These functions do not
immediately update the display. For performance considerations, they update the physical display as soon as
processing time becomes available.
The text starts at the present cursor position. After the text is displayed, the cursor is after the last character in
the display message.
Top line text does not wrap to the bottom line of the display automatically. Any text that does not fit on the current
line is truncated. If the text is truncated, the cursor remains at the end of the line.
The text remains on the display until replaced or cleared.

The character codes described in the following table can be also be included in the text string.

Display character codes

Character Code Description

$N Newline, starts text on the next line; if the cursor is already on line 2, text will be ignored
after the $N is received

$R Sets text to normal intensity, nonblinking
$B Sets text to blink
$D Sets text to dim intensity
$F Sets the text to background blink
$$ Escape sequence to display a single dollar symbol ($)

Example

display.clear()
display.settext("Normal $BBlinking$N")
display.settext("$DDim $FBackgroundBlink$R $$$$ 2 dollars")

This example sets the display to:
Normal Blinking
Dim BackgroundBlink $$ 2 dollars

with the named effect on each word.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-147

Also see

display.clear() (on page 8-131)
display.getcursor() (on page 8-133)
display.gettext() (on page 8-135)
display.screen (on page 8-143)
display.setcursor() (on page 8-145)

display.trigger.EVENT_ID
This constant is the event ID of the event generated when the front-panel TRIG key is pressed.

Type TSP-Link accessible Affected by Where saved Default value
Constant Yes

Usage

eventID = display.trigger.EVENT_ID

eventID The trigger event number

Details

Set the stimulus of any trigger event detector to the value of this constant to have it respond to front-panel trigger
key events.

Example

scan.trigger.channel.stimulus = display.trigger.EVENT_ID

Have the channel action of the trigger model be paced by a user pressing the front-panel TRIG key.

Also see

scan.trigger.channel.stimulus (on page 8-341)

display.waitkey()
This function captures the key code value for the next front-panel action.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

keyCode = display.waitkey()

keyCode See Details for more information

Details

After you send this function, script execution pauses until a front-panel action (for example, pressing a key or the
navigation wheel , or turning the navigation wheel). After the action, the value of the key (or action) is
returned.
If the EXIT (LOCAL) key is pressed while this function is waiting for a front-panel action, the script is not aborted.
A typical use for this function is to prompt the user to press the EXIT (LOCAL) key to abort the script or press any
other key to continue. For example, if the keyCode value 67 is returned (the EXIT (LOCAL) key was pressed),
the exit() function can be called to abort the script.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-148 3700AS-901-01 Rev. B/May 2013

The table below lists the keyCode value for each front panel action.

Key codes

Value Key list Value Key list

0 display.KEY_NONE 83 display.KEY_RUN
66 display.KEY_DELETE 84 display.KEY_TRIG
67 display.KEY_EXIT 86 display.KEY_STEP
69 display.KEY_CLOSE 87 display.KEY_CHAN
70 display.KEY_SLOT 90 display.KEY_INSERT
72 display.KEY_DISPLAY 91 display.KEY_MENU
74 display.KEY_ENTER 93 display.KEY_OPEN
76 display.KEY_LOAD 94 display.KEY_PATT
77 display.KEY_SCAN 97 display.WHEEL_ENTER
79 display.KEY_OPENALL 107 display.WHEEL_LEFT
80 display.KEY_CONFIG 114 display.WHEEL_RIGHT

When using this function, send built-in constants such as display.KEY_STEP (rather than the
numeric value of 86). This will allow for better forward compatibility with firmware revisions.

Example

key = display.waitkey()
print(key)

Pause script execution until the operator presses
a key or the navigation wheel, or rotates the
navigation wheel.
If the output is:
8.600000000e+01

It indicates that the STEP key was pressed.

Also see

display.getlastkey() (on page 8-134)
display.sendkey() (on page 8-144)
display.settext() (on page 8-146)

dmm.adjustment.count
This attribute indicates the number of times the instrument has been adjusted (calibrated).

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Nonvolatile
memory

Not applicable

Usage

calibrationCount = dmm.adjustment.count

calibrationCount The number of times the instrument has been adjusted or calibrated

Details

Calibration (adjustment) may or may not be unlocked for this attribute to read and return a value.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-149

Example

adjustmentCount = dmm.adjustment.count Queries for the adjustment count.

Also see

dmm.adjustment.date (on page 8-149)
dmm.calibration.unlock() (on page 8-165)

dmm.adjustment.date
This attribute sets or queries the calibration adjustment date in Coordinated Universal Time (UTC) format (number
of seconds since January 1, 1970).

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable DMM nonvolatile
memory

Not applicable

Usage

calibrationDate = dmm.adjustment.date
dmm.adjustment.date = os.time({year=yyyy, month=m, day=d})

calibrationDate The number of seconds since January 1, 1970

os.time{year=yyyy, month=m, day=d} Specifies the date; if a value is not specified, sets the
adjustment date to the present date of the instrument

Details

This attribute can only be set when calibration is unlocked.
For more information about formatting options with os.time or os.date, see the Lua documentation
(http://www.lua.org).

Example 1

dmm.adjustment.date = os.time{year=2007, month=7, day = 4}

Sets the adjustment date to July 4, 2007.

Example 2

print(os.date("%m/%d/%Y", dmm.adjustment.date))

Queries the date and formats the response as mm/dd/yyyy:
07/04/2007

Example 3

print(os.date("%x", dmm.adjustment.date))

Queries the date and formats the response as mm/dd/yy:
02/24/09

Also see

dmm.adjustment.count (on page 8-148)
dmm.calibration.unlock() (on page 8-165)

http://www.lua.org/

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-150 3700AS-901-01 Rev. B/May 2013

dmm.aperture
The aperture setting for the active DMM function in seconds.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Function change
DMM close
Recall DMM configuration
Instrument reset
DMM reset
Recall setup

Save DMM configuration
Create configuration script
Save setup

60 Hz: 1.666666667e-002
50 Hz: 2.000000000e-002

Usage

value = dmm.aperture
dmm.aperture = value

value Represents the desired aperture:
• For 50 Hz line frequency, the range is 10e-6 s to 0.250 s
• For 60 Hz line frequency, the range is 8.33e-6 s to 0.250 s
• For frequency and period, the range is 0.01 s to 0.273 s

Details

The dmm.aperture attribute is available for the following functions.

Function Default value
"accurrent" 1.666667e-02
"acvolts" 1.666667e-02
"commonsideohms" 1.666667e-02
"dccurrent" 1.666667e-02
"dcvolts" 1.666667e-02
"fourwireohms" 1.666667e-02
"frequency" 1.000000e-02
"period" 1.000000e-02
"temperature" 1.666667e-02
"twowireohms" 1.666667e-02

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-151

The aperture setting is not available for the functions "continuity" and "nofunction". If you query the
aperture when either of these functions is selected, nil is returned. If you write the command when either of these
functions is selected, an error is generated.
The aperture value is saved with the dmm.func function setting, so if you use another function, then return to the
previous setting, such as "dcvolts" or "frequency", the aperture value you set previously is retained.
The setting for aperture may be automatically adjusted based on what the DMM supports. Therefore, after
setting the aperture, query the value to see if it was adjusted.
If the detector bandwidth (dmm.detectorbandwidth) setting is 30 or less for "acvolts" or "accurrent",
an error message is generated if you try to set the aperture for these functions.

Example

dmm.func = "dcvolts"
dmm.aperture = 16.67e-3

Set the aperture to 16.67 milliseconds for
DC volts.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.detectorbandwidth (on page 8-179)
dmm.func (on page 8-187)
dmm.nplc (on page 8-217)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-152 3700AS-901-01 Rev. B/May 2013

dmm.appendbuffer()
Appends data from the reading buffer to a file on the USB flash drive. If no file exists, this function creates a file.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.appendbuffer(bufferVar, fileName)
dmm.appendbuffer(bufferVar, fileName, timeFormat)

bufferVar A string with the name of a DMM reading buffer from which you want to append
data to the specified file

fileName A string with the file name of the file on the USB flash drive to which reading
buffer data will be appended

timeFormat How the date and time information should be saved. The values for
timeFormat are:
• dmm.buffer.SAVE_RELATIVE_TIME: Saves relative time stamps only
• dmm.buffer.SAVE_FORMAT_TIME: Saves dates, times and fractional seconds.

This is the default if no time format is specified
• dmm.buffer.SAVE_RAW_TIME: Saves seconds and fractional seconds only
• dmm.buffer.SAVE_TIMESTAMP_TIME: Saves only time stamps

Details

For options that save more than one item of time information, each item is comma delimited. For example, the
default format will be <date>, <time>, and <fractional seconds> for each reading, separated by commas.
The file extension .csv is appended to the filename if necessary. Any file extension other than .csv generates
errors.
Because dmm.appendbuffer() appends data, it does not include header information. The
dmm.savebuffer() function does included header information.
The index column entry starts at 1 for each append operation, which is also what the dmm.savebuffer()
command does.

The reading buffer files saved to the USB flash drive will always have an extension of .csv.

Errors are generated:

• If the reading buffer does not exist.
• If the reading buffer is not a DMM buffer.
• If the destination filename is not specified correctly.
• If the file extension is not set to .csv. (You can leave the file extension blank.)
Examples of valid destination file names:
dmm.appendbuffer("bufferVar", "/usb1/myData")
dmm.appendbuffer("bufferVar", "/usb1/myData.csv")
Invalid destination filename examples:
dmm.appendbuffer("bufferVar", "/usb1/myData.")

— The period is not followed by the csv extension.
dmm.appendbuffer("bufferVar", "/usb1/myData.txt")
— The only allowed extension is .csv. If .csv is not assigned, it is automatically added.
dmm.appendbuffer("bufferVar", "/usb1/myData.txt.csv")

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-153

— Two periods in the file name (myData_txt.csv would be correct).

Example

dmm.appendbuffer("bufferVar",
"/usb1/myData.csv")

Appends readings from a valid DMM buffer
named bufferVar with default time information to
a file named myData.csv on the USB flash
drive.

dmm.appendbuffer("bufferVar",
"/usb1/myDataRel.csv",
dmm.buffer.SAVE_RELATIVE_TIME)

Appends readings from bufferVar with relative
time stamps to a file named myDataRel.csv on
the USB flash drive.

Also see

dmm.makebuffer() (on page 8-204)
dmm.savebuffer() (on page 8-236)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-154 3700AS-901-01 Rev. B/May 2013

dmm.autodelay
The autodelay setting for the selected DMM function.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Function change
DMM close
Recall DMM configuration
Reset
DMM reset
Recall setup

Create configuration script
Save setup
Save DMM configuration

2 (dmm.AUTODELAY_ONCE)

Usage

value = dmm.autodelay
dmm.autodelay = value

state Enable autodelay (dmm.ON or 1)
Disable autodelay (dmm.OFF or 0)
Enable autodelay for the first measurement only (dmm.AUTODELAY_ONCE or 2)

Details

The autodelay setting applies to the function selected by dmm.func. It is available for all functions except
"nofunction".
To have the DMM include a delay before each measurement, set auto delay to dmm.ON or 1.
To have the DMM take a measurement without an automatic delay, set auto delay to dmm.OFF or 0.
To take a measurement for the first measurement in a set or group of measurements, you can use
dmm.AUTODELAY_ONCE or 2. The delay occurs only on the first measurement of each set of measurements. If
dmm.measurecount is set to 1, dmm.AUTODELAY_ONCE acts similarly to On, applying a delay at the start of
every measurement.
An error is generated if you try to set autodelay for "nofunction". Error code 1114, "Setting conflicts with
function selected," is generated. If you query autodelay for "nofunction", nil is returned with the same error.

Example

dmm.func = "twowireohms"
dmm.autodelay = dmm.ON
dmm.measurecount = 10
ReadingBufferOne = dmm.makebuffer(1000)
dmm.measure(ReadingBufferOne)

An automatic delay is applied to each
measurement when the DMM is measuring
two-wire ohms. Take 10 measurements and
store them in a reading buffer named
ReadingBufferOne that can store up to
1000 readings.

dmm.func = "dcvolts"
dmm.autodelay = dmm.OFF

No delay is applied is applied to the DC volt
measurements.

dmm.func = "fourwireohms"
dmm.autodelay = dmm.AUTODELAY_ONCE
dmm.measurecount = 10
ReadingBufferTwo = dmm.makebuffer(1000)
dmm.measure(ReadingBufferTwo)

Sets an auto delay for the first of the ten
four-wire ohm readings. Readings two
through ten will occur as quickly as possible,
with readings stored in a reading buffer
called ReadingBufferTwo that can store up
to 1000 readings.

Also see

Autodelay (on page 4-5)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-155

dmm.measurecount (on page 8-214)

dmm.autorange
The auto range setting for the active DMM function.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1 (dmm.ON)

Usage

value = dmm.autorange
dmm.autorange = value

value Auto range:
• Enable: dmm.ON or 1
• Disable: dmm.OFF or 0

Details

 Auto range selects the best range in which to measure the applied signal. The instrument will auto range at
100% of range. When auto range is enabled, upranging occurs at 120% of range and downranging occurs when
the reading is <10% of nominal range. For example, if you are on the 10 volt range and auto range is enabled,
the instrument will auto range up to the 100 volts range when the measurement exceeds 12 volts and will auto
range down to the 1 volt range when the measurement falls below 1 volt.
The auto range setting applies to the function selected by dmm.func. Auto range is available for the following
functions:

• "accurrent" or dmm.AC_CURRENT

• "acvolts" or dmm.AC_VOLTS

• "commonsideohms" or dmm.COMMON_SIDE_OHMS

• "dccurrent" or dmm.DC_CURRENT

• "dcvolts" or dmm.DC_VOLTS

• "fourwireohms" or dmm.FOUR_WIRE_OHMS

• "twowireohms" or dmm.TWO_WIRE_OHMS
Auto range is not available for any other functions. If you try to set auto range for any other function, an error is
returned. If you query the auto range for any other function, nil is returned and an error is generated.
The auto range value is saved with the dmm.func function setting, so if you use another function, then return to
the previous setting, such as "dcvolts" or "fourwireohms", the autorange setting you set previously is
retained. With auto range enabled, you can use the dmm.range command to view the range that is presently
being used. Using dmm.range to select a fixed range disables auto range.

Example 1

dmm.func = "twowireohms"
dmm.autorange = dmm.ON

Enable auto ranging for 2-wire ohms.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-156 3700AS-901-01 Rev. B/May 2013

Example 2

dmm.func = "dcvolts"
dmm.reset("active")
print(dmm.autorange, dmm.range)
dmm.range = 50e-3
print(dmm.autorange, dmm.range)

Set DMM function to be DC volts.
Reset only the active DMM function (DC volts).
View the default auto range and range selection.
Select a range suitable for a 50 mV reading.
View the default auto range and range selection.
Output:
1.000000000e+00 1.000000000e+01
0.000000000e+00 1.000000000e-01

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.range (on page 8-222)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-157

dmm.autozero
The autozero setting for the active DMM function.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1 (dmm.ON)

Usage

value = dmm.autozero
dmm.autozero = value

value Enable autozero (dmm.ON or 1)
Disable autozero (dmm.OFF or 0)
Refresh the reference points once then disable (dmm.AUTOZERO_ONCE or 2)

Details

The autozero setting applies to the function selected by dmm.func. It is available for all functions except
"continuity" and "nofunction".
You can send dmm.AUTOZERO_ONCE or 2 to refresh the reference points once. When this command is sent, the
reference points are refreshed, and then autozero is set to disabled (dmm.OFF or 0). Querying dmm.autozero
after sending dmm.AUTOZERO_ONCE generates a response of 0.
For dmm.nplc settings that are less than 0.2 plc, sending dmm.AUTOZERO_ONCE or 2 results in significant
delays. For example, the delay time at a NPLC of 0.0005 is 2.75 s. The delay time at 0.199 is 5.45 s.
An error is generated if:

• You try to set dmm.autozero for "continuity" or "nofunction". Error code 1114, "Setting
conflicts with function selected," is generated.

• You query dmm.autozero for "continuity" or "nofunction". nil is returned with error
code 1114, "Setting conflicts with function selected."

Example

dmm.func = "dcvolts"
dmm.autozero = dmm.ON

Enables autozero for DC volts.

dmm.autozero = dmm.AUTOZERO_ONCE
print(dmm.autozero)

Refreshes the reference points once and sets
autozero to dmm.OFF or 0.
Output:
0.000000000e+00

timer.reset()
dmm.autozero=2
time=timer.measure.t()
print(time)

Determines the time delay when autozero is selected.

Also see

Autozero
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.nplc (on page 8-217)
dmm.reset() (on page 8-228)
reset() (on page 8-317)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-158 3700AS-901-01 Rev. B/May 2013

dmm.buffer.catalog()
Creates an iterator for the user-created reading buffers.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

for name in dmm.buffer.catalog() do...end

name A string representing the name of a user created DMM reading buffer

Details

You can access the catalog for the user-created local reading buffers so that you can print the names of all
reading buffers in the system. The entries are enumerated in no particular order. From this list, you may
selectively delete reading buffers from the system.

Do not delete the reading buffers by sending:

 for name in dmm.buffer.catalog() do name = nil end

This locks the system and forces you to stop the command (through the EXIT key on the front
panel). It does not delete the reading buffers from the instrument. This occurs because name is a
string type variable and not a reading buffer type.

Example

for name in dmm.buffer.catalog() do print(name) end Print all user-created local reading
buffers in the system.
Assume the return is:
buf3
buf5
buf1

buf1 = nil
collectgarbage()

Deletes buf1.

Also see

dmm.buffer.info() (on page 8-159)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-159

dmm.buffer.info()
Returns the size and capacity of the reading buffer parameter.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

size, capacity = dmm.buffer.info(bufferVar)

size Number representing the N (presently stored) attribute of the reading buffer
parameter

capacity Number representing the overall capacity attribute of the reading buffer parameter
bufferVar String representing the reading buffer name that you want to query for size and

capacity

Details

This function uses the specified reading buffer input parameter name to find the corresponding size and capacity
to return. Use this function with the dmm.buffer.catalog() function to output the size and capacity for all
reading buffers in the system.

Example

for n in dmm.buffer.catalog() do
 print(dmm.buffer.info(n))
end

Assume the system has the following reading
buffers created: buffer1, buffer2, buffer3, buffer4,
and buffer5.
Query the system for the size and capacity of
each reading buffer without formatting the
results.
The output is:
0.000000000e+00 2.000000000e+03
0.000000000e+00 4.000000000e+03
0.000000000e+00 5.000000000e+03
0.000000000e+00 3.000000000e+03
0.000000000e+00 1.000000000e+03

for n in dmm.buffer.catalog() do
 size, cap = dmm.buffer.info(n)
 print(n, 'size = ' .. size, 'capacity = '

.. cap)
end

Query the system for the name, size, and
capacity of each reading buffer while formatting
the results.
The output is:
buffer2 size = 0 capacity = 2000
buffer4 size = 0 capacity = 4000
buffer5 size = 0 capacity = 5000
buffer3 size = 0 capacity = 3000
buffer1 size = 0 capacity = 1000

Also see

dmm.buffer.catalog() (on page 8-158)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-160 3700AS-901-01 Rev. B/May 2013

dmm.buffer.maxcapacity
The overall maximum capacity for reading buffers in the instrument.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Never Not applicable Not applicable

Usage

maximumCapacity = dmm.buffer.maxcapacity

maximumCapacity A number that represents the overall maximum capacity for the reading buffers

Details

Determines the maximum capacity of the instrument for reading buffer storage. This value represents the total
system reading buffer storage size. A single reading buffer may be created with this as its size, or several
reading buffers may be created in the instrument that are smaller in size. However, the sum total of all reading
buffer sizes in the instrument cannot exceed this maximum.

Example

MaxBuffCap = dmm.buffer.maxcapacity
print(MaxBuffCap)

Reads the maximum reading buffer capacity
for the instrument, which is 650,000
readings.
Output:
6.500000000e+05

Also see

dmm.buffer.info() (on page 8-159)
dmm.buffer.usedcapacity (on page 8-160)
dmm.makebuffer() (on page 8-204)

dmm.buffer.usedcapacity
Indicates how much of the maximum capacity for reading buffers in the instrument is used.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Instrument reset
Recall setup

Not applicable Not applicable

Usage

usedCapacity = dmm.buffer.usedcapacity

usedCapacity The presently used capacity for reading buffers in the instrument

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-161

Details

This value represents the sum total capacity of all reading buffers in the instrument.

Example

buf1 = dmm.makebuffer(300000)
buf2 = dmm.makebuffer(300000)
print(dmm.buffer.usedcapacity)
print(dmm.buffer.maxcapacity -

dmm.buffer.usedcapacity)

Create buffers.
Reads the used reading buffer capacity for
the system.
6.000000000e+05
5.000000000e+04
This shows that there is 50,000 available for
creating additional reading buffers.

Also see

dmm.buffer.info() (on page 8-159)
dmm.buffer.maxcapacity (on page 8-160)

dmm.calibration.ac()
Begins the desired AC adjustment step on the DMM.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.calibration.ac(step)
dmm.calibration.ac(step, value)

step The AC adjustment step to perform
value The value for this adjustment step (if the adjustment step has a value)

Details

This command generates an error if the:

• Calibration is locked
• Step is out of sequence
• Step does not exist
• Step does not complete successfully
• Value passed is invalid for the step, out of range, or not needed

Example

For detail on how to use dmm.calibration.ac(), see AC volts calibration (on page C-29), AC current
calibration (on page C-31), and Frequency calibration (on page C-33).

Also see

dmm.calibration.dc() (on page 8-162)
dmm.calibration.lock() (on page 8-163)
dmm.calibration.unlock() (on page 8-165)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-162 3700AS-901-01 Rev. B/May 2013

dmm.calibration.dc()
Begins the desired DC adjustment step on the DMM.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.calibration.dc(step)
dmm.calibration.dc(step, value)

step The DC adjustment step to perform
value The value for this adjustment step (if the adjustment step has a value)

Details

This command generates an error if the:

• Calibration is locked
• Step is out of sequence
• Step does not exist
• Step does not complete successfully
• Value passed is invalid for the step, out of range, or not needed

Example

For example of use, see DC volts calibration (on page C-25), Resistance calibration (on page C-27), and DC
current calibration (on page C-28).

Also see

dmm.calibration.ac() (on page 8-161)
dmm.calibration.lock() (on page 8-163)
dmm.calibration.unlock() (on page 8-165)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-163

dmm.calibration.lock()
Locks calibration to prevent unintended changes.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.calibration.lock()

Details

Use this command to lock an unlocked calibration. An error is generated if this command is issued when
calibration is already locked.
Once locked, you must unlock calibration before you can perform calibration again.

Save calibration data before locking. Calibration data will be lost if it is not saved before locking.

Example

dmm.calibration.save()
dmm.calibration.lock()

Save calibration, then lock it.

Also see

dmm.calibration.unlock() (on page 8-165)
dmm.calibration.save() (on page 8-165)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-164 3700AS-901-01 Rev. B/May 2013

dmm.calibration.password
This attribute sets the password that must be entered before you can unlock calibration.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (W) Yes Not applicable DMM nonvolatile memory KI003706

Usage

dmm.calibration.password = password

password A string that represents the valid password to unlock calibration

Details

This attribute can only be set when calibration is unlocked.
This attribute generates an error if calibration is locked or if the password string length is greater than ten
characters.

Be sure to record the password; there is no command to query for the password once it is set.

Example

dmm.calibration.unlock("KI003706")
dmm.calibration.password = "myUnlock"
dmm.calibration.lock()

To change the default calibration password,
unlock the calibration with the default
password.
Saves the password as "myUnlock".
Lock calibration. Subsequent unlocks will
use the password "myUnlock".

Also see

dmm.calibration.unlock() (on page 8-165)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-165

dmm.calibration.save()
Saves calibration data.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.calibration.save()

Details

This command saves the calibration constants and adjustment date and increases the adjustment count by 1.
The adjustment count is the number of times calibration has been saved.
This command does not check for errors in calibration data. Calibration data is saved regardless of calibration
data errors.
The calibration date can be specified with dmm.adjustment.date. If it is not specified, the date is based on
the system date.
To prevent data loss, you need to send the save command before locking calibration.
An error is generated if this command is issued when calibration is already locked.

Example

dmm.calibration.save() Saves calibration data.

Also see

dmm.adjustment.date (on page 8-149)
dmm.calibration.lock() (on page 8-163)
dmm.calibration.unlock() (on page 8-165)

dmm.calibration.unlock()
Unlocks calibration if calibration was locked.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.calibration.unlock(password)

password A string representing the password to unlock calibration

Details

If the password does not match the saved password, an error is generated. The default password from the
factory is "KI003706". You can change the default with dmm.calibration.password.

Example

dmm.calibration.unlock("KI003706") Unlocks calibration using the default password.

Also see

dmm.calibration.lock() (on page 8-163)
dmm.calibration.password (on page 8-164)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-166 3700AS-901-01 Rev. B/May 2013

dmm.calibration.verifydate
This attribute sets or queries the calibration verification date in UTC format (number of seconds since January 1,
1970).

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable DMM nonvolatile memory Not applicable

Usage

calibrationVerificationDate = dmm.calibration.verifydate
dmm.calibration.verifydate = os.time()

calibrationVerificationDate The number of seconds since January 1,
1970 when the last calibration verify date was
set

os.time({year=yyyy, month=m, day=d}) Specifies the date; if a value is not specified,
sets the verification date to the present date
of the instrument

Details

When using the os.time() function:

• If no parameters are specified, the current date and time of the instrument is used. See
example 4 below.

• Use a table with entries for year as yyyy, month as mm and day as dd to specify a date. See
example 3 below.

See Lua documentation (http://www.lua.org) for the formatting options that are available for os.date.
This command can only be set when calibration is unlocked.

Example 1

print(os.date("%m/%d/%Y",
dmm.calibration.verifydate))

Assume the system date is July 4,
2007 for this example; queries the
calibration verification date and
formats the response as
mm/dd/yyyy:
07/04/2007

Example 2

print(os.date("%x", dmm.calibration.verifydate)) Assume the system date is July 4,
2007 for this example; queries the
date and formats the response as
mm/dd/yy:
07/04/07

Example 3

dmm.calibration.verifydate = os.time{year=2007,
month=7, day = 4}

Set the calibration verification date
to July 4, 2007.

Example 4

dmm.calibration.verifydate = os.time() Set the calibration verification to
the present date of the instrument.

http://www.lua.org/

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-167

Also see

dmm.adjustment.date (on page 8-149)
dmm.calibration.unlock() (on page 8-165)
Lua documentation (http://www.lua.org)

dmm.close()
Closes the specified channel or channel pattern to prepare for a measurement.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.close(channelList)

channelList A string listing the channel or channel pattern to close

Details

When you close a channel or channel pattern:

• Channels on all slots are opened if they interfere with measurement, including analog backplane
relays 1 and 2 and commonside ohm backplane relays. The opening and closing of channels
mimics that of channel.exclusiveslotclose(). Therefore, when using a for-loop with
dmm.close() command, the last channel on each slot is closed at the end of the for loop
execution.

• To have additional analog backplane relays 3 through 6 close, use them on an alternate slot. If
they need to be on same slot, create a channel pattern.

• To have additional channels close, use patterns. When you use patterns, you must specify all
items to close, including analog backplane relays. With patterns, there is no auto manipulation of
analog backplane relays 1 and 2 as there is with channels.

• Any amp channels will open. If you need to have multiple amp channels closed, create a channel
pattern.

• Associated channels and analog backplane relays will close, which include analog backplane
relay 1 and 2, as needed based on configuration associated with channel (see
dmm.getconfig()) Analog backplane relays specified by channel.setbackplane() are not
used.

The DMM configuration is determined by the configuration associated with the channel or channel pattern being
closed. If the configuration is a default name, the function of that configuration will be reset to factory default
settings. You must create a unique DMM configuration to avoid using factory default settings when assigning to a
channel. For more information on setting DMM configuration, see dmm.configure.set() (on page 8-175),
dmm.setconfig() (on page 8-237), and dmm.getconfig() (on page 8-189).
This command allows you to separate the closing of channels from measuring. Therefore, you may execute any
number of commands between the close and measure commands to satisfy your application needs.

http://www.lua.org/

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-168 3700AS-901-01 Rev. B/May 2013

An error is generated if:

• The specified channel or channel pattern is invalid.
• The channel number does not exist for the slot specified.
• The channel pattern does not exist.
• The specified channel does not support being closed (like a digital I/O channel).
• More than one channel or channel pattern is specified.
• The channel is paired with another bank for a multi-wire application.
• The channel is an analog backplane relay.
• The channel configuration is set to nofunction.
Once an error is detected, the command stops processing. Channels and DMM settings remain unchanged.

Example

dmm.setconfig("3003", "tempMeasure")
dmm.close('3003')

Close channel 3 on slot 3 and prepare the DMM
for measuring temperature with tempMeasure
settings.

dmm.setconfig("channelDCV", "dcvolts")
dmm.close("channelDCV")

Close a channel pattern called channelDCV and
prepare DMM for measuring DC volts at factory
default settings.

Also see

channel.exclusiveslotclose() (on page 8-57)
channel.getclose() (on page 8-61)
channel.getstate() (on page 8-75)
channel.setbackplane() (on page 8-90)
dmm.getconfig() (on page 8-189)
dmm.open() (on page 8-219)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-169

dmm.configure.catalog()
Creates an iterator for user-created DMM configurations.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

for name in dmm.configure.catalog() do … end

name A string representing the name of a user-created DMM configuration.

Details

You can access the catalog for user DMM configurations to print or delete all configurations in the run-time
environment.
The entries are enumerated in no particular order. This only lists user-created DMM configurations; it does not
list the factory default configurations.

Example

for name in dmm.configure.catalog() do
 print(name)
end

Prints the names of all user-created DMM
configurations in the instrument.
The output will look similar to:
TestDcv
TestTemperature
TestTwoWire

This indicates there are three user-created DMM
configurations in the instrument with the names
TestDCV, TestTemperature, and TestTwoWire.

for name in dmm.configure.catalog() do
 dmm.configure.delete(name)
end

Deletes all user-created DMM configurations
from the instrument.

Also see

dmm.configure.delete() (on page 8-170)
dmm.configure.query() (on page 8-171)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-170 3700AS-901-01 Rev. B/May 2013

dmm.configure.delete()
Deletes a user-created DMM configuration from memory.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.configure.delete(name)

name String that contains the name of the DMM configuration to delete

Details

If you delete a DMM configuration that is assigned to channels or channel patterns, those channels and patterns
revert back to the factory default DMM configuration of "nofunction" (dmm.setconfig()).
If you delete a DMM configuration that is used in a scan list, the scan list is modified and the channel is set to
"nofunction" for that configuration.
You cannot delete a DMM configuration on a closed channel. If you attempt to delete it, error code 1114,
"Settings conflict with deleting DMM configuration assigned to closed channel," is generated.
An error is generated if the name specified does not exist as a user configuration.

Example

dmm.configure.delete("DCVDMMConfig") Deletes a user configuration called DCVDMMConfig.

Also see

dmm.configure.catalog() (on page 8-169)
dmm.configure.set() (on page 8-175)
dmm.configure.query() (on page 8-171)
dmm.configure.recall() (on page 8-173)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-171

dmm.configure.query()
Lists DMM settings associated with a configuration.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

config = dmm.configure.query(userConfiguration)
config = dmm.configure.query(userConfiguration, userSeparator)

config An output string that represents the DMM attribute settings of
userConfiguration

userConfiguration A string that contains the name for the DMM configuration to be listed. To
query the settings for the active function, set this parameter to "active"

userSeparator A string that represents the two-character separator that is inserted between
items.The default value is a comma followed by a space (,)

Details

For the specified configuration, this function lists the settings and the corresponding DMM attributes.
If the specified configuration does not exist, a nil response is generated, along with an error message stating that
the referenced name does not exist.
If userSeparator is specified, the attributes are delimited by this two-character separator. If more than two
characters are specified, an error message is generated.
To query the factory default settings for a function, use the function, such as "dvolts" or "temperature", for
the userConfiguration parameter. See dmm.func for valid functions.

Example

dmm.configure.set("DCvConfig")
DCvConfigItems = dmm.configure.query("DCvConfig")
print(DCvConfigItems)

Creates the configuration DCvConfig. Lists the DMM attributes in DCvConfig, separated by commas.
Output:
function = dcvolts,nplc = 5.000000E-001,aperture = 8.333333E-003,range =

1.000000E+001,auto zero = 0,auto delay = 2,filter enable = 0,filter type =
1,filter count = 10,filter window = 1.000000E-001,rel enable = 0,rel level =
0.000000E+000,display digits = 6,dB reference = 1.000000E+000,input divider =
0,units = 0,line sync = 0,limit 1 enable = 1,limit 1 autoclear = 1,limit 1 low
value = -3.000000E+000,limit 1 high value = 5.000000E+000,limit 2 enable =
0,limit 2 autoclear = 1,limit 2 low value = -2.000000E+000,limit 2 high value =
2.000000E+000,math enable = 0,math format = 2,math mxb mfactor =
1.000000E+000,math mxb bfactor = 0.000000E+000,math mxb units = X,math percent
= 1.000000E+000

DCvConfigItems = dmm.configure.query("DCvConfig", "\n")
print(DCvConfigItems)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-172 3700AS-901-01 Rev. B/May 2013

Lists the DMM attributes in DCvConfig separated by new lines.
Output:
function = dcvolts
nplc = 5.000000E-001
aperture = 8.333333E-003
range = 1.000000E+001
auto zero = 0
auto delay = 2
filter enable = 0
filter type = 1
filter count = 10
filter window = 1.000000E-001
rel enable = 0
rel level = 0.000000E+000
display digits = 6
dB reference = 1.000000E+000
input divider = 0
units = 0
line sync = 0
limit 1 enable = 1
limit 1 autoclear = 1
limit 1 low value = -3.000000E+000
limit 1 high value = 5.000000E+000
limit 2 enable = 0
limit 2 autoclear = 1
limit 2 low value = -2.000000E+000
limit 2 high value = 2.000000E+000
math enable = 0
math format = 2
math mxb mfactor = 1.000000E+000
math mxb bfactor = 0.000000E+000
math mxb units = X
math percent = 1.000000E+000
FactoryDCV = dmm.configure.query("dcvolts", "\n")
print(FactoryDCV)

Lists the factory default settings for DC volts separated by new lines.
ActiveFunc = dmm.configure.query("active", "\n")
print(ActiveFunc)

Lists the DMM attributes for the active function separated by new lines.

Also see

dmm.configure.catalog() (on page 8-169)
dmm.configure.delete() (on page 8-170)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-173

dmm.configure.recall()
Recalls a user or factory DMM configuration and replaces attributes in the present configuration with attributes
from the recalled version.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.configure.recall(configuration)

configuration A string that represents the name of the DMM configuration to recall

Details

This command recalls the DMM configuration for one function.
When a configuration is recalled, the function associated with the configuration becomes active.
When you recall a DMM configuration, the existing DMM configuration settings for the function are replaced by
the settings in the recalled configuration. Settings for other functions are not affected. For example, if the function
associated with the configuration was temperature, only temperature settings are recalled. If a factory
configuration is recalled, the function's attributes are set to their factory default values.
The DMM configuration can be user-defined or factory-defined.
User-defined DMM configurations are set with dmm.configure.set(). The factory-defined DMM
configurations are:
• "accurrent"
• "acvolts"
• "commonsideohms"
• "continuity"

• "dccurrent"
• "dcvolts"
• "fourwireohms"
• "frequency"

• "nofunction"
• "period"
• "temperature"
• "twowireohms"

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-174 3700AS-901-01 Rev. B/May 2013

Example

dmm.func = "dcvolts"
dmm.reset("active")
dmm.nplc = 0.5
dmm.range = 10
dmm.configure.set("TestDcv")
dmm.configure.recall("dcvolts")
print(dmm.func, dmm.autorange, dmm.range, dmm.nplc)
dmm.configure.recall("TestDcv")
print(dmm.func, dmm.autorange, dmm.range, dmm.nplc)
dmm.setconfig("slot1", "TestDcv")
dmm.setconfig("2001:2015", "TestDcv")
dmm.setconfig("3005", "TestDcv")

Set the DMM to the DC volts function.
Reset DC volts back to factory defaults.
Set the NPLC for DC volts to 0.5.
Select the 10 volt range for DC volts and disable autorange.
Save a user DMM configuration for DC volts called "TestDcv".
Recall and configure the DMM for factory DC volts.
Output the settings for factory-defined DC volts.
Recall the user DMM configuration called "TestDcv".
Output the settings for TestDcv.
Set the DMM configuration for slot 1, channels 2001 to 2005, and channel 3005 to TestDcv.
Output:
dcvolts 1.000000000e+00 1.000000000e+01 1.000000000e+00
dcvolts 0.000000000e+00 1.000000000e+01 5.000000000e-01

Also see

dmm.configure.delete() (on page 8-170)
dmm.configure.query() (on page 8-171)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-175

dmm.configure.set()
Creates a named DMM configuration for the selected function. The configuration includes pertinent attributes for
that function.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Reset
Recall setup

Create configuration script
Save setup

See Details

Usage

dmm.configure.set(name)

name A string that contains the name of the DMM configuration that you are creating

Details

This command saves the selected function and its pertinent settings. You can recall this configuration using
dmm.configure.recall(). You can also apply the configuration using dmm.setconfig() to channels or
channel patterns.
dmm.configure.set() stores only pertinent settings. For example, if dmm.func is set to "dcvolts",
temperature settings are not stored.
DMM configurations are not saved through a power cycle. To save the configuration through a power cycle, use
setup.save() or createconfigscript(). These options save all DMM user configurations.
If the name of the configuration:

• Already exists, the existing configuration is overwritten with the new configuration.
• Is the same as that of a factory-default configuration, an error is generated.
• Is longer than 30 characters, an error is generated.
• Any channels that were configured to use that configuration will be evaluated to determine if the

new settings are valid for the channels. If they are, the channels will start using the new
configuration settings. If not, the configuration associated with that channel will revert to the
factory default setting of "nofunction".

Some DMM configurations are preset. The factory default configuration names are:
• "accurrent"
• "acvolts"
• "commonsideohms"
• "continuity"

• "dccurrent"
• "dcvolts"
• "fourwireohms"
• "frequency"

• "nofunction"
• "period"
• "temperature"
• "twowireohms"

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-176 3700AS-901-01 Rev. B/May 2013

If you change the settings for an existing DMM configuration, the existing scan list will be updated to use the new
settings for the existing DMM configuration. However, if the function or a setting is not valid for a channel in the
scan list, the scan list will be reset to the default configuration of "nofunction".

Example

dmm.func = "dcvolts"
dmm.reset("active")
dmm.nplc = 0.5
dmm.range = 10
dmm.configure.set("TestDcv")
dmm.configure.recall("dcvolts")
print(dmm.func, dmm.autorange, dmm.range, dmm.nplc)
dmm.configure.recall("TestDcv")
print(dmm.func, dmm.autorange, dmm.range, dmm.nplc)

Set the DMM to the DC volts function.
Reset DC volts back to factory defaults.
Set the NPLC for DC volts to 0.5.
Select the 10 volt range for DC volts and disable autorange.
Save a user DMM configuration for DC volts called "TestDcv".
Recall and configure the DMM for factory DC volts.
Output the settings for factory DC volts.
Recall the user DMM configuration called "TestDcv".
Output the settings for the TestDcv configuration.
Output:
dcvolts 1.000000000e+00 1.000000000e+01 1.000000000e+00
dcvolts 0.000000000e+00 1.000000000e+01 5.000000000e-01

Also see

createconfigscript() (on page 8-115)
dmm.configure.catalog() (on page 8-169)
dmm.configure.delete() (on page 8-170)
dmm.configure.query() (on page 8-171)
dmm.configure.recall() (on page 8-173)
dmm.func (on page 8-187)
dmm.setconfig() (on page 8-237)
setup.save() (on page 8-370)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-177

dmm.connect
Indicates how the DMM relays should be connected to the analog backplane.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

7 (dmm.CONNECT_ALL)

Usage

value = dmm.connect
dmm.connect = value

value The DMM relay connection setting. See Details for valid values

Details

Use of this command is not recommended with the exception of special cases. The default setting
should handle most applications.

This setting affects all DMM functions. Valid values are shown in the table below.

Valid values

Value Relays connected

dmm.CONNECT_NONE or 0 None
dmm.CONNECT_ALL or 7 All
dmm.CONNECT_TWO_WIRE or 1 2-wire
dmm.CONNECT_FOUR_WIRE or 3 2-wire and sense
dmm.CONNECT_TWO_WIRE_AMPS or 5 2-wire & amp
dmm.CONNECT_AMPS or 4 amp

The relays are bitmapped into the lower 3 bits of the value as shown in the following table.

Relay bitmap

Bit Value Relays represented

0 1 2-wire
1 2 sense
2 4 amp

To close a relay, set the appropriate bit to 1.
To open a relay, set the appropriate bit to 0.
An error is generated if:

• The sense relay bit is set to a 1 and the sense relay with amps is selected. These two settings
correspond to a value of 2 or 6, respectively.

• The value is less than 0 or greater than 7.
Example

dmm.connect = dmm.CONNECT_TWO_WIRE_AMPS Connects the DMM 2-wire and amp relays to
the analog backplane.

Also see

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-178 3700AS-901-01 Rev. B/May 2013

None

dmm.dbreference
The decibel (DB) reference setting for the DMM in volts.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1.000000E+00

Usage

value = dmm.dbreference
dmm.dbreference = value

value The desired DB reference in volts (1e-7 to 1000)

Details

The DB reference setting applies only when dmm.func is set to "dcvolts" or "acvolts". If you query this
value for any other function, nil is returned.
An error is generated:

• If you send this command for any function other than "dcvolts" or "acvolts".

• If the value is out of range.
The DB reference setting is saved with the dmm.func function setting, so if you use another function, then return
to "dcvolts" or "acvolts", the DB reference setting you set previously are retained.

Example

dmm.func = "dcvolts"
dmm.dbreference = 5

Sets the DB reference to 5 volts for DC volts.

Also see

Express DC or AC voltage in decibels (see "dB commands" on page 4-48)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-179

dmm.detectorbandwidth
The AC detector bandwidth setting for the DMM in Hertz.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

300

Usage

value = dmm.detectorbandwidth
dmm.detectorbandwidth = value

value The detector bandwidth in Hertz

Details

Only applies when dmm.func is set to "acvolts" or "accurrent".
If you query this value for any other function, nil is returned.
When you send this value, the input value is adjusted as follows:

Write value Read value
< 30 3

Between 30 and 300 30
≥ 300 300

An error is generated:

• If you send this command for any function other than "accurrent" or "acvolts"

• If you set dmm.aperture and the detector bandwidth read value is 30 or less

• If the value is below 3
Example

reset()
dmm.func = "acvolts"
print(dmm.func, dmm.detectorbandwidth)
dmm.detectorbandwidth = 35
print(dmm.func, dmm.detectorbandwidth)
dmm.func = "accurrent"
print(dmm.func, dmm.detectorbandwidth)
dmm.func = "acvolts"
print(dmm.func, dmm.detectorbandwidth)

Sets the detector bandwidth to 35 Hz for
AC volts. 35 is adjusted to 30. AC current is
still at 300 Hz.
Output:
acvolts 3.000000000e+02
acvolts 3.000000000e+01
accurrent 3.000000000e+02
acvolts 3.000000000e+01

Also see

dmm.aperture (on page 8-150)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-180 3700AS-901-01 Rev. B/May 2013

dmm.displaydigits
The display digits setting for the selected DMM function.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

See table in Details

Usage

value = dmm.displaydigits
dmm.displaydigits = value

value 7½ display digits: dmm.DIGITS_7_5 or 7
6½ display digits: dmm.DIGITS_6_5 or 6
5½ display digits: dmm.DIGITS_5_5 or 5
4½ display digits: dmm.DIGITS_4_5 or 4
3½ display digits: dmm.DIGITS_3_5 or 3

Details

This is not available for "nofunction".
This attribute affects how the reading for a function is displayed on the front panel of the instrument. It does not
affect the number of digits returned in a remote command reading. It also does not affect the accuracy or speed
of measurements.
The display digits setting is saved with the dmm.func function setting, so if you use another function, then return
to the function for which you set display digits, the display digits setting you set previously is retained.
To change the number of digits returned in a remote command reading, use format.asciiprecision.

Defaults

If dmm.func is… The default is…

"accurrent", "acvolts", "temperature" 5
"commonsideohms", "dccurrent", "dcvolts",
"twowireohms", "fourwireohms", "frequency", "period"

6

"continuity" 4
An error is generated:

• If the value is invalid
• If dmm.func is set to "nofunction", if the command is queried, nil is returned

• dmm.func is set to "nofunction" or "continuity", if the command is written, error code 1114,
"Settings conflict with function selected," is returned

Example

dmm.func = "dcvolts"
dmm.displaydigits = dmm.DIGITS_7_5

Enables display digits to 7½ for DC volts.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
format.asciiprecision (on page 8-255)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-181

dmm.drycircuit
The dry circuit setting for the selected DMM function.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.OFF)

Usage

state = dmm.drycircuit
dmm.drycircuit = state

state Enable dry circuit (dmm.ON or 1)
Disable dry circuit (dmm.OFF or 0)

Details

The dry circuit setting only applies when dmm.func is set to "fourwireohms" or "commonsideohms".
For power and low-glitch resistance measurements requiring a low open-circuit voltage (20 mV), dry circuit ohms
can be used on the 1 Ω, 10 Ω, 100 Ω, 1 kΩ, and 10 kΩ ranges (maximum of 2.4 kΩ) for the 4-wire ohm function.
When dry circuit is enabled, offset compensation is automatically set to on.
This command automatically sets dmm.offsetcompensation to dmm.ON when dmm.func =
"fourwireohms" or "commonsideohms".
An error is generated if:

• You try to set dmm.drycircuit for a function other than "fourwireohms" or
"commonsideohms". Error 1114, "Setting conflicts with function selected" is generated.

• You query dmm.drycircuit for a function other than "fourwireohms" or
"commonsideohms". nil is returned, along with error 1114.

• The state is invalid.
The dry circuit setting is saved with the dmm.func function setting, so if you use another function, then return to
the previous function, the dry circuit setting you set previously is retained.

Example

dmm.func = "fourwireohms"
dmm.drycircuit = dmm.ON

Enable dry circuit for 4-wire ohms.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.offsetcompensation (on page 8-218)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-182 3700AS-901-01 Rev. B/May 2013

dmm.filter.count
The filter count setting for the selected DMM function.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

10

Usage

value = dmm.filter.count
dmm.filter.count = value

value The filter count setting from 1 to 100

Details

The number of measured readings that will yield one filtered measurement when filtered measurements are
enabled.
The filter count setting only applies when dmm.func is set to one of the following:

• "accurrent"

• "acvolts"

• "commonsideohms"

• "dccurrent"

• "dcvolts"

• "fourwireohms"

• "temperature"
• "twowireohms"
If you query the setting for any other function, nil is returned.
The filter count setting is saved with the dmm.func function setting, so if you use another function, then return to
the previous function, the filter count setting you set previously is retained.
An error is generated if:

• You send the setting for any other function.
• The value is out of range.

Example

dmm.func = "twowireohms"
dmm.filter.count = 5
dmm.filter.enable = dmm.ON

Sets the filter count for 2-wire ohms to 5 and
enables filtered measurements.

Also see

dmm.configure.set() (on page 8-175)
dmm.configure.recall() (on page 8-173)
dmm.filter.enable (on page 8-183)
dmm.filter.type (on page 8-184)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-183

dmm.filter.enable
Indicates if filtered measurements are enabled or disabled for the selected DMM function.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.OFF)

Usage

value = dmm.filter.enable
dmm.filter.enable = value

value Filter measurements setting:
• dmm.ON or 1: Filter measurements enabled
• dmm.OFF or 0: Filter measurements disabled

Details

The filter enable setting only applies when dmm.func is set to one of the following:

• "accurrent"

• "acvolts"

• "commonsideohms"

• "dccurrent"

• "dcvolts"

• "fourwireohms"

• "temperature"

• "twowireohms"
Querying the setting for any other function will return nil and an error message.
The filter enable setting is saved with the dmm.func function setting, so if you use another function, then return
to the previous function, the filter enable setting you set previously is retained.

Example

dmm.func = "twowireohms"
dmm.filter.type = dmm.FILTER_MOVING_AVG
dmm.filter.count = 3
dmm.filter.enable = dmm.ON

Enable filtered measurements for 2-wire
ohms using a moving average filter type with
a count of 3 for each measurement.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.filter.count (on page 8-182)
dmm.filter.type (on page 8-184)
dmm.filter.window (on page 8-185)
dmm.func (on page 8-187)
dmm.reset() (on page 8-228)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-184 3700AS-901-01 Rev. B/May 2013

dmm.filter.type
The filter type for the DMM measurements for selected DMM functions.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1
(dmm.FILTER_REPEAT_AVG)

Usage

value = dmm.filter.type
dmm.filter.type = value

value The filter type setting:
• dmm.FILTER_MOVING_AVG or 0 for moving average filter
• dmm.FILTER_REPEAT_AVG or 1 for repeating filter

Details

The filter type setting only applies when dmm.func is set to one of the following:

• "accurrent"

• "acvolts"

• "commonsideohms"

• "dccurrent"

• "dcvolts"

• "fourwireohms"

• "temperature"

• "twowireohms"
Querying the setting for any other function returns nil. An error is generated if this setting is written or read for
any other function.
You can choose from two averaging filter types: Repeating and moving. When the repeating filter type is
selected, the stack (filter count) is filled, and the conversions are averaged to yield a reading. The stack is then
cleared, and the process starts over.
When the moving average filter type is selected, a first-in, first-out stack is used. When the stack (filter count)
becomes full, the measurement conversions are averaged to yield a reading. For each subsequent conversion
placed into the stack, the oldest conversion is discarded. The stack is then re-averaged to yield a new reading.
The filter type setting is saved with the dmm.func function setting, so if you use another function, then return to
the previous function, the filter type setting you set previously is retained.

Example

dmm.func = "twowireohms"
dmm.filter.type = dmm.FILTER_MOVING_AVG
dmm.filter.enable = dmm.ON

Set the filter type for 2-wire ohms to moving
average and enable filtered measurements.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.filter.count (on page 8-182)
dmm.filter.enable (on page 8-183)
dmm.filter.window (on page 8-185)
dmm.func (on page 8-187)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-185

dmm.filter.window
The filter window for the DMM measurements.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1.000000E-01 (0.1)

Usage

value = dmm.filter.window
dmm.filter.window = value

value The filter window setting; the range is between 0 and 10 to indicate percent of range

Details

The filter window setting only applies when dmm.func is set to one of the following:

• "accurrent"

• "acvolts"

• "commonsideohms"

• "dccurrent"

• "dcvolts"

• "fourwireohms"

• "temperature"

• "twowireohms"
Querying the setting for any other function returns nil. An error is generated if this setting is written or read for
any other function.
An error is generated if the value is out of range.
The filter window setting is saved with the dmm.func function setting, so if you use another function, then return
to the previous function, the filter window setting you set previously is retained.

Example

dmm.func = "twowireohms"
dmm.filter.window = 0.25
dmm.filter.enable = dmm.ON

Set the filter window for 2-wire ohms to 0.25
and enable filtered measurements.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.filter.enable (on page 8-183)
dmm.filter.count (on page 8-182)
dmm.filter.type (on page 8-184)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-186 3700AS-901-01 Rev. B/May 2013

dmm.fourrtd
The type of four-wire RTD being used.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.RTD_PT100)

Usage

value = dmm.fourrtd
dmm.fourrtd = value

value The desired type for four-wire RTD:
• dmm.RTD_PT100 or 0 for type PT100
• dmm.RTD_D100 or 1 for type D100
• dmm.RTD_F100 or 2 for type F100
• dmm.RTD_PT385 or 3 for type PT385
• dmm.RTD_PT3916 or 4 for type PT3916
• dmm.RTD_USER or 5 for user-specified type

Details

This attribute is only valid when dmm.func is set to "temperature" and dmm.transducer is set to
dmm.TEMP_FOURRTD. For all other transducer types, the attribute is set but is not used until the transducer type
is set for four-wire RTD.
All other functions generate an error and return nil when queried. An illegal parameter value error message is
generated if the value specified is not a supported RTD type value as listed in the usage table.
The four-wire RTD setting is saved with the dmm.func function setting, so if you use another function, then
return to "temperature", the four-wire RTD settings you set previously are retained.

Example

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_FOURRTD
dmm.fourrtd = dmm.RTD_PT3916

Sets the type of four-wire RTD for PT3916.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.transducer (on page 8-244)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-187

dmm.func
The selected function for the DMM.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
DMM reset
Recall setup

Create configuration script
Save setup

dmm.DC_VOLTS

Usage

function = dmm.func
dmm.func = function

function One of the following DMM functions:
 • "accurrent" or dmm.AC_CURRENT

• "acvolts" or dmm.AC_VOLTS
• "commonsideohms" or

dmm.COMMON_SIDE_OHMS
• "continuity" or dmm.CONTINUITY
• "dccurrent" or dmm.DC_CURRENT
• "dcvolts" or dmm.DC_VOLTS

• "fourwireohms" or dmm.FOUR_WIRE_OHMS
• "frequency" or dmm.FREQUENCY
• "nofunction" or dmm.NO_FUNCTION
• "period" or dmm.PERIOD
• "temperature" or dmm.TEMPERATURE
• "twowireohms" or dmm.TWO_WIRE_OHMS

Details

This attribute determines the selected DMM function and indicates how the other DMM attributes are to be
processed.
When the DMM functionality changes, the attributes for the new DMM function become active. Unless you
update these attributes, they will be the factory defaults or the values that were used the last time the function
was used. If you want to see settings for a particular function, change to that function with dmm.func, then write
or read the desired settings specifically. To see all attributes at once, use dmm.configure.query with a first
parameter value of "active" as shown in the example below.
An error is generated:

• If the setting does not match one of the ones specified in usage.
• If a user DMM configuration name is used to set the function.
If an error is found, no change is made to the function.

Example

dmm.func = "temperature" Makes "temperature" the active DMM function.
dmm.func = "dcvolts"
dcv_nplc = dmm.nplc

Check the NPLC setting for DC volts.

dmm.func = dmm.DC_VOLTS
dmm.nplc = 0.5
dmm.range = 10
dmm.func = "twowireohms"
dmm.nplc = 0.1
dmm.range = 100000
dmm.func = "dcvolts"
print(dmm.nplc)
print(dmm.range)
dmm.func = dmm.TWO_WIRE_OHMS
print(dmm.nplc)
print(dmm.range)

Example showing how the instrument retains
values for each function.
Output:
0.5
10
.1
100000

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-188 3700AS-901-01 Rev. B/May 2013

dmm.func = "dcvolts"
print(dmm.configure.query("active",

"\n"))

Select DC volts for the DMM function, then query
the active settings to see how the DC volts function
is presently configured.
Example output:
function = dcvolts
nplc = 5.000000E-001
aperture = 8.333333E-003
range = 1.000000E+001
auto zero = 1
auto delay = 2
filter enable = 0
filter type = 1
filter count = 3
filter window = 5.300000E+000
rel enable = 0
rel level = 0.000000E+000
display digits = 6
dB reference = 1.000000E+000
input divider = 0
units = 0
line sync = 0
limit 1 enable = 0
limit 1 autoclear = 1
limit 1 low value = -1.000000E+000
limit 1 high value = 1.000000E+000
limit 2 enable = 0
limit 2 autoclear = 1
limit 2 low value = -2.000000E+000
limit 2 high value = 2.000000E+000
math enable = 0
math format = 2
math mxb mfactor = 1.000000E+000
math mxb bfactor = 0.000000E+000
math mxb units = X
math percent = 1.000000E+000

Also see

dmm.configure.query() (on page 8-171)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-189

dmm.getconfig()
Queries for the DMM configurations that are associated with the specified channels or channel patterns.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Recall setup

Create configuration script
Save setup

"nofunction"

Usage

DMMconfiguration = dmm.getconfig(channelList)

DMMconfiguration A comma-delimited string that lists the DMM configurations associated with items
in channelList

channelList The channels or channel patterns to query

Details

The response is a comma-delimited string that lists the user-defined and factory-defined configurations. They are
listed in the same order in which they are specified in channelList.
The configurations indicate how the DMM will be configured when the corresponding channel or channel pattern
is closed with the dmm.close() function or used in a scan list without an overriding DMM configuration.
An error is generated if:

• A specified channel or channel pattern is invalid.
• A channel number does not exist for slot based on installed card.
• Channel pattern does not exist.
• Channel being specified does not support a configuration setting (for example, a digital I/O

channel or analog backplane relay).
Example

slot1_2Configs = dmm.getconfig("slot1, slot2")
print(slot1_2Configs)

Queries channels on slots 1 and 2.

chan3001_3010Configs =
dmm.getconfig("3001:3010")

print(chan3001_3010Configs)

Queries channels 1 to 10 on slot 3.
Sample output may be:
dcvolts,dcvolts,dcvolts,dcvolt

s,dcvolts,temperature,tempe
rature,temperature,temperat
ure,temperature

This shows that channels 3001 to 3005
are configured for "dcvolts" and 3006
to 3010 are configured for
"temperature".

Also see

dmm.close() (on page 8-167)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.setconfig() (on page 8-237)
scan.add() (on page 8-319)
scan.create() (on page 8-325)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-190 3700AS-901-01 Rev. B/May 2013

dmm.inputdivider
Enables or disables the 10 M ohm input divider.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.OFF)

Usage

state = dmm.inputdivider
dmm.inputdivider = state

state Enable input divider (dmm.ON or 1)
Disable input divider (dmm.OFF or 0)

Details

This attribute is only valid when dmm.func is set to DC volts.
The input divider setting is saved with the dmm.func function setting, so if you use another function, then return
to "dcvolts", the input divider setting you set previously is retained.
An error is generated if you try to set input divider for any DMM function other than "dcvolts". Error code 1114,
"Setting conflicts with function selected," is generated. If you query any DMM function other than "dcvolts" for
input divider, nil is returned with the same error.

Example

dmm.func = "dcvolts"
dmm.inputdivider = dmm.ON

Enables the input divider for DC volts.

Also see

DC volts input divider (on page 4-57)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-191

dmm.limit[Y].autoclear
Indicates if limit Y should be cleared automatically or not.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1 (dmm.ON)

Usage

value = dmm.limit[Y].autoclear
dmm.limit[Y].autoclear = value

value The auto clear setting:
• Enable: dmm.ON or 1
• Disable: dmm.OFF or 0

Y 1 or 2 for limit number

Details

This attribute is valid for all functions except "continuity" and "nofunction". A nil response and an error is
generated if the command is received when dmm.func is set to either of these functions.
When this attribute is enabled, a limit fail condition tracks how the measurements are taken. If a measurement
fails limit, the fail indication is set. If the next measurement passes limit, the failed limit condition clears.
Therefore, if you are scanning or taking a series of measurements with auto clear enabled for a limit, the last
measurement limit dictates the fail indication for the limit.
To know if any of a series of measurements failed the limit, set the auto clear setting to off. When set to
dmm.OFF, a failed indication will not be cleared automatically and will remain set until it is cleared by
dmm.limit[Y].clear().
The auto clear setting affects both the high and low limits of Y.

Example

dmm.func = "twowireohms"
dmm.limit[2].autoclear = dmm.ON

Enables auto clear on limit 2 for two-wire
ohms.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.limit[Y].clear() (on page 8-192)
dmm.measure() (on page 8-213)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-192 3700AS-901-01 Rev. B/May 2013

dmm.limit[Y].clear()
Clears the test results of limit Y.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.limit[Y].clear()

Y 1 or 2 for limit number

Details

Use this command to clear the test results of limit Y when the limit auto clear (dmm.limit[Y].autoclear)
command is disabled. Both the high and low test results are cleared.
To avoid the need to manually clear the test results for a limit, enable the auto clear command.

Example

dmm.func = "twowireohms"
dmm.limit[2].clear()

Clears the test results for the high and low limit 2
for two-wire ohms.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.limit[Y].autoclear (on page 8-191)
dmm.limit[Y].high.fail (on page 8-195)
dmm.limit[Y].low.fail (on page 8-199)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-193

dmm.limit[Y].enable
Enable or disable limit Y testing.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.OFF)

Usage

value = dmm.limit[Y].enable
dmm.limit[Y].enable = value

value Limit Y testing:
• Enable: dmm.ON or 1
• Disabled: dmm.OFF or 0

Y 1 or 2 for limit number

Details

This attribute is valid for all functions except "continuity" and "nofunction". A nil response and an error is
generated if the command is received when dmm.func is set to either of these functions.
When this attribute is enabled, the limit Y testing occurs on each measurement taken by the DMM. Limit Y testing
compares the measurements to the high and low limit values. If a measurement falls outside these limits, the test
fails. The low limit is specified by dmm.limit[Y].low.value and the high limit is specified by
dmm.limit[Y].high.value.
When this is enabled, limit testing occurs whether it is requested by the dmm.measure function or as part of a
scan sequence. However, if events are not assigned to a trigger stimulus for a digital I/O line, there is no
hardware indication of limits. The events that can be assigned to a trigger stimulus include:

• dmm.trigger.EVENT_LIMIT1_HIGH

• dmm.trigger.EVENT_LIMIT1_LOW

• dmm.trigger.EVENT_LIMIT2_HIGH

• dmm.trigger.EVENT_LIMIT2_LOW
To see the test results, use the dmm.limit[Y].low.fail and dmm.limit[Y].high.fail attributes.
When limit testing is disabled, no measurements are tested and the status bits are not updated, the fail indication
does not get updated, and hardware lines are not generated.

Example

This example enables limits 1 and 2 for DC volt, measurements. Limit 1 is checking for readings to be between
3 and 5 volts while limit 2 is checking for the readings to be between 1 and 7 volts. The auto clear feature is
disabled, so if any reading is outside these limits, the corresponding fail will be 1 afterwards. Therefore, if any
one of the fails is 1, analyze the reading buffer data to find out which reading failed the limits.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-194 3700AS-901-01 Rev. B/May 2013

dmm.func = "dcvolts" -- set the DMM for DC volts functionality
dmm.reset("active") -- reset DC volts to default settings
dmm.range = 10 -- set the range to 10 volts
dmm.nplc = 0.1 -- set the nplc to 0.1
dmm.limit[1].autoclear = dmm.OFF -- disable auto clearing for limit 1
dmm.limit[1].high.value = 5 -- set high limit on 1 to fail if reading

 -- exceeds 5 volts
dmm.limit[1].low.value = 3 -- set low limit on 1 to fail if reading

 -- is less than 3 volts
dmm.limit[1].enable = dmm.ON -- enable limit 1 checking for DC volt

 -- measurements
dmm.limit[2].autoclear = dmm.OFF -- disable auto clearing for limit 2
dmm.limit[2].high.value = 7 -- set high limit on 2 to fail if reading

 -- exceeds 7 volts
dmm.limit[2].low.value = 1 -- set low limit on 2 to fail if reading

 -- is less than 1 volts
dmm.limit[2].enable = dmm.ON -- enable limit 2 checking for DC volt

 -- measurements
dmm.measurecount = 50 -- set the measure count to 50
LimitBuffer = dmm.makebuffer(100) -- create a reading buffer that can store

 -- 100 readings
dmm.measure(LimitBuffer) -- take 50 readings and store them in

 -- LimitBuffer
 -- then check if any of the 50 readings

 -- were outside of the limits
print("limit 1 high fail = " .. dmm.limit[1].high.fail)
print("limit 1 low fail = " .. dmm.limit[1].low.fail)
print("limit 2 high fail = " .. dmm.limit[2].high.fail)
print("limit 2 low fail = " .. dmm.limit[2].low.fail)
dmm.limit[1].clear() -- clear limit 1 conditions
dmm.limit[2].clear() -- clear limit 2 conditions

Sample output that shows all readings are within limit values (all readings between 3 and 5 volts):
limit 1 high fail = 0
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit 1 high values (a 6 volt reading would cause this
condition or a reading greater than 5 but less than 7.):
limit 1 high fail = 1
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit limit 1 and 2 low values (a 0.5 volts reading would
cause this condition or a reading less than 1):
limit 1 high fail = 0
limit 1 low fail = 1
limit 2 high fail = 0
limit 2 low fail = 1

Also see

Reading buffers (on page 3-55, on page 3-49)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.limit[Y].high.fail (on page 8-195)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-195

dmm.limit[Y].high.value (on page 8-197)
dmm.limit[Y].low.fail (on page 8-199)
dmm.limit[Y].low.value (on page 8-201)
dmm.measure() (on page 8-213)

dmm.limit[Y].high.fail
Query for the high test results of limit Y.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0

Usage

value = dmm.limit[Y].high.fail

value The high fail indication for limit Y:
• 0 indicates test passed – measurement within the high limit
• 1 indicates test failed – measurement has exceeded high limit

Y 1 or 2 for limit number

Details

This attribute is valid for all functions except "continuity" and "nofunction". A nil response and an error is
generated if the command is received when dmm.func is set to either of these functions.
This attribute returns the results of high limit Y testing. If this is 1 (failed), the measurement was above the high
limit (dmm.limit[Y].high.value).
Note that if you are scanning or taking a series of measurements with auto clear (dmm.limit[Y].autoclear)
enabled for a limit, the last measurement limit dictates the fail indication for the limit. If autoclear is disabled, you
can take a series of readings and read fails to see if any of one of the readings failed.
To use this attribute, you must set the limit to enable.
If autoclear and limit are not set, the high fail value indicates the results of the last limit test that occurred when
limits were enabled.
In addition to this attribute, you can see the fail indication by reading the measurement event register of the
status model. If the readings are stored in a reading buffer, the values are associated with
bufferVar.statuses for the readings.
You can use the digital I/O line trigger stimulus commands to generate a pulse when a limit fails. The events that
can be assigned to a trigger stimulus include:

• dmm.trigger.EVENT_LIMIT1_HIGH

• dmm.trigger.EVENT_LIMIT1_LOW

• dmm.trigger.EVENT_LIMIT2_HIGH

• dmm.trigger.EVENT_LIMIT2_LOW

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-196 3700AS-901-01 Rev. B/May 2013

Example

This example enables limits 1 and 2 for DC volt, measurements. Limit 1 is checking for readings to be between
3 and 5 volts while limit 2 is checking for the readings to be between 1 and 7 volts. The auto clear feature is
disabled, so if any reading is outside these limits, the corresponding fail will be 1 afterwards. Therefore, if any
one of the fails is 1, analyze the reading buffer data to find out which reading failed the limits.

dmm.func = "dcvolts" -- set the DMM for DC volts functionality
dmm.reset("active") -- reset DC volts to default settings
dmm.range = 10 -- set the range to 10 volts
dmm.nplc = 0.1 -- set the nplc to 0.1
dmm.limit[1].autoclear = dmm.OFF -- disable auto clearing for limit 1
dmm.limit[1].high.value = 5 -- set high limit on 1 to fail if reading

 -- exceeds 5 volts
dmm.limit[1].low.value = 3 -- set low limit on 1 to fail if reading

 -- is less than 3 volts
dmm.limit[1].enable = dmm.ON -- enable limit 1 checking for DC volt

 -- measurements
dmm.limit[2].autoclear = dmm.OFF -- disable auto clearing for limit 2
dmm.limit[2].high.value = 7 -- set high limit on 2 to fail if reading

 -- exceeds 7 volts
dmm.limit[2].low.value = 1 -- set low limit on 2 to fail if reading

 -- is less than 1 volts
dmm.limit[2].enable = dmm.ON -- enable limit 2 checking for DC volt

 -- measurements
dmm.measurecount = 50 -- set the measure count to 50
LimitBuffer = dmm.makebuffer(100) -- create a reading buffer that can store

 -- 100 readings
dmm.measure(LimitBuffer) -- take 50 readings and store them in

 -- LimitBuffer
 -- then check if any of the 50 readings

 -- were outside of the limits
print("limit 1 high fail = " .. dmm.limit[1].high.fail)
print("limit 1 low fail = " .. dmm.limit[1].low.fail)
print("limit 2 high fail = " .. dmm.limit[2].high.fail)
print("limit 2 low fail = " .. dmm.limit[2].low.fail)
dmm.limit[1].clear() -- clear limit 1 conditions
dmm.limit[2].clear() -- clear limit 2 conditions

Sample output that shows all readings are within limit values (all readings between 3 and 5 volts):
limit 1 high fail = 0
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit 1 high values (a 6 volt reading would cause this
condition or a reading greater than 5 but less than 7.):
limit 1 high fail = 1
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit limit 1 and 2 low values (a 0.5 volts reading would
cause this condition or a reading less than 1):
limit 1 high fail = 0
limit 1 low fail = 1
limit 2 high fail = 0
limit 2 low fail = 1

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-197

Also see

Reading buffers (on page 3-55, on page 3-49)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.limit[Y].autoclear (on page 8-191)

dmm.limit[Y].high.value
The high limit value for limit Y when dmm.limit[Y].enable is set to dmm.ON.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

limit 1: 1.000000E+00
limit 2: 2.000000E+00

Usage

value = dmm.limit[Y].high.value
dmm.limit[Y].high.value = value

value The high value for limit Y; range is -4294967295 to +4294967295
Y 1 or 2 for limit number

Details

This attribute is valid for all functions except "continuity" and "nofunction". A nil response and an error is
generated if the command is received when dmm.func is set to either of these functions.
This attribute specifies or queries the high limit value of limit Y. When limit Y testing is enabled
(dmm.limit[Y].enable = 1), a fail indication occurs when the measurement value is greater than this value.
You may set or get the value regardless if the limit is set to a digio trigger stimulus:

• dmm.trigger.EVENT_LIMIT1_HIGH

• dmm.trigger.EVENT_LIMIT1_LOW

• dmm.trigger.EVENT_LIMIT2_HIGH

• dmm.trigger.EVENT_LIMIT2_LOW

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-198 3700AS-901-01 Rev. B/May 2013

Example

This example enables limits 1 and 2 for DC volt, measurements. Limit 1 is checking for readings to be between
3 and 5 volts while limit 2 is checking for the readings to be between 1 and 7 volts. The auto clear feature is
disabled, so if any reading is outside these limits, the corresponding fail will be 1 afterwards. Therefore, if any
one of the fails is 1, analyze the reading buffer data to find out which reading failed the limits.

dmm.func = "dcvolts" -- set the DMM for DC volts functionality
dmm.reset("active") -- reset DC volts to default settings
dmm.range = 10 -- set the range to 10 volts
dmm.nplc = 0.1 -- set the nplc to 0.1
dmm.limit[1].autoclear = dmm.OFF -- disable auto clearing for limit 1
dmm.limit[1].high.value = 5 -- set high limit on 1 to fail if reading

 -- exceeds 5 volts
dmm.limit[1].low.value = 3 -- set low limit on 1 to fail if reading

 -- is less than 3 volts
dmm.limit[1].enable = dmm.ON -- enable limit 1 checking for DC volt

 -- measurements
dmm.limit[2].autoclear = dmm.OFF -- disable auto clearing for limit 2
dmm.limit[2].high.value = 7 -- set high limit on 2 to fail if reading

 -- exceeds 7 volts
dmm.limit[2].low.value = 1 -- set low limit on 2 to fail if reading

 -- is less than 1 volts
dmm.limit[2].enable = dmm.ON -- enable limit 2 checking for DC volt

 -- measurements
dmm.measurecount = 50 -- set the measure count to 50
LimitBuffer = dmm.makebuffer(100) -- create a reading buffer that can store

 -- 100 readings
dmm.measure(LimitBuffer) -- take 50 readings and store them in

 -- LimitBuffer then check if any
 -- of the 50 readings were

 -- outside of the limits
print("limit 1 high fail = " .. dmm.limit[1].high.fail)
print("limit 1 low fail = " .. dmm.limit[1].low.fail)
print("limit 2 high fail = " .. dmm.limit[2].high.fail)
print("limit 2 low fail = " .. dmm.limit[2].low.fail)
dmm.limit[1].clear() -- clear limit 1 conditions
dmm.limit[2].clear() -- clear limit 2 conditions

Sample output that shows all readings are within limit values (all readings between 3 and 5 volts):
limit 1 high fail = 0
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit 1 high values (a 6 volt reading would cause this
condition or a reading greater than 5 but less than 7.):
limit 1 high fail = 1
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit limit 1 and 2 low values (a 0.5 volts reading would
cause this condition or a reading less than 1):
limit 1 high fail = 0
limit 1 low fail = 1
limit 2 high fail = 0
limit 2 low fail = 1

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-199

Also see

Reading buffers (on page 3-55, on page 3-49)
digio.trigger[N].stimulus (on page 8-127)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.limit[Y].enable (on page 8-193)
dmm.limit[Y].high.fail (on page 8-195)
dmm.limit[Y].low.value (on page 8-201)

dmm.limit[Y].low.fail
Queries for the low test results of limit Y.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0

Usage

value = dmm.limit[Y].low.fail

value The low fail indication of limit Y:
• Test passed: 0 (measurement above the low limit)
• Test failed: 1 (measurement below the low limit)

Y 1 or 2 for limit number

Details

This attribute is valid for all functions except "continuity" and "nofunction". A nil response and an error is
generated if the command is received when dmm.func is set to either of these functions.
This attribute returns the results of low limit Y testing. If this is 1 (failed) is returned, the measurement was below
the low limit.
Note that if you are scanning or taking a series of measurements with auto clear (dmm.limit[Y].autoclear)
enabled for a limit, the last measurement limit dictates the fail indication for the limit. If autoclear is disabled, you
can take a series of readings and read fails to see if any of one of the readings failed.
To use this attribute, you must set the limit to enable.
If autoclear and limit are not set, the low fail value indicates the results of the last limit test that occurred when
limits were enabled.
In addition to this attribute, you can see the fail indication by reading the measurement event register of the
status model. If the readings are stored in a reading buffer, the values are associated with
bufferVar.statuses for the readings.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-200 3700AS-901-01 Rev. B/May 2013

Example

This example enables limits 1 and 2 for DC volt, measurements. Limit 1 is checking for readings to be between
3 and 5 volts while limit 2 is checking for the readings to be between 1 and 7 volts. The auto clear feature is
disabled, so if any reading is outside these limits, the corresponding fail will be 1 afterwards. Therefore, if any
one of the fails is 1, analyze the reading buffer data to find out which reading failed the limits.

dmm.func = "dcvolts" -- set the DMM for DC volts functionality
dmm.reset("active") -- reset DC volts to default settings
dmm.range = 10 -- set the range to 10 volts
dmm.nplc = 0.1 -- set the nplc to 0.1
dmm.limit[1].autoclear = dmm.OFF -- disable auto clearing for limit 1
dmm.limit[1].high.value = 5 -- set high limit on 1 to fail if reading
 -- exceeds 5 volts
dmm.limit[1].low.value = 3 -- set low limit on 1 to fail if reading
 -- is less than 3 volts
dmm.limit[1].enable = dmm.ON -- enable limit 1 checking for DC volt
 -- measurements
dmm.limit[2].autoclear = dmm.OFF -- disable auto clearing for limit 2
dmm.limit[2].high.value = 7 -- set high limit on 2 to fail if reading
 -- exceeds 7 volts
dmm.limit[2].low.value = 1 -- set low limit on 2 to fail if reading
 -- is less than 1 volts
dmm.limit[2].enable = dmm.ON -- enable limit 2 checking for DC volt
 -- measurements
dmm.measurecount = 50 -- set the measure count to 50
LimitBuffer = dmm.makebuffer(100) -- create a reading buffer that can store
 -- 100 readings
dmm.measure(LimitBuffer) -- take 50 readings and store them in
 -- LimitBuffer
 -- then check if any of the 50 readings
 -- were outside of the limits
print("limit 1 high fail = " .. dmm.limit[1].high.fail)
print("limit 1 low fail = " .. dmm.limit[1].low.fail)
print("limit 2 high fail = " .. dmm.limit[2].high.fail)
print("limit 2 low fail = " .. dmm.limit[2].low.fail)
dmm.limit[1].clear() -- clear limit 1 conditions
dmm.limit[2].clear() -- clear limit 2 conditions

Sample output that shows all readings are within limit values (all readings between 3 and 5 volts):
limit 1 high fail = 0
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit 1 high values (a 6 volt reading would cause this
condition or a reading greater than 5 but less than 7.):
limit 1 high fail = 1
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit limit 1 and 2 low values (a 0.5 volts reading would
cause this condition or a reading less than 1):
limit 1 high fail = 0
limit 1 low fail = 1
limit 2 high fail = 0
limit 2 low fail = 1

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-201

Also see

Reading buffers (on page 3-55, on page 3-49)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.limit[Y].autoclear (on page 8-191)

dmm.limit[Y].low.value
The low limit value for limit Y when dmm.limit[Y].enable is set to dmm.ON.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

limit 1: -1.000000E+00
limit 2: -2.000000E+00

Usage

value = dmm.limit[Y].low.value
dmm.limit[Y].low.value = value

value The low limit value of limit Y; The valid range is -4294967295 to +4294967295
Y Limit number 1 or 2

Details

This attribute is valid for all functions except "continuity" and "nofunction". A nil response and an error is
generated if the command is received when dmm.func is set to either of these functions.
This attribute specifies or queries the low limit value of limit Y. When limit Y testing is enabled
(dmm.limit[Y].enable = 1), a fail indication occurs when the measurement value is less than this value.
You may set or get the value regardless if the limit is set to a digital I/O trigger stimulus:

• dmm.trigger.EVENT_LIMIT1_HIGH

• dmm.trigger.EVENT_LIMIT1_LOW

• dmm.trigger.EVENT_LIMIT2_HIGH

• dmm.trigger.EVENT_LIMIT2_LOW

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-202 3700AS-901-01 Rev. B/May 2013

Example

This example enables limits 1 and 2 for DC volt, measurements. Limit 1 is checking for readings to be between
3 and 5 volts while limit 2 is checking for the readings to be between 1 and 7 volts. The auto clear feature is
disabled, so if any reading is outside these limits, the corresponding fail will be 1 afterwards. Therefore, if any
one of the fails is 1, analyze the reading buffer data to find out which reading failed the limits.

dmm.func = "dcvolts" -- set the DMM for DC volts functionality
dmm.reset("active") -- reset DC volts to default settings
dmm.range = 10 -- set the range to 10 volts
dmm.nplc = 0.1 -- set the nplc to 0.1
dmm.limit[1].autoclear = dmm.OFF -- disable auto clearing for limit 1
dmm.limit[1].high.value = 5 -- set high limit on 1 to fail if reading

 -- exceeds 5 volts
dmm.limit[1].low.value = 3 -- set low limit on 1 to fail if reading

 -- is less than 3 volts
dmm.limit[1].enable = dmm.ON -- enable limit 1 checking for DC volt

 -- measurements
dmm.limit[2].autoclear = dmm.OFF -- disable auto clearing for limit 2
dmm.limit[2].high.value = 7 -- set high limit on 2 to fail if reading

 -- exceeds 7 volts
dmm.limit[2].low.value = 1 -- set low limit on 2 to fail if reading

 -- is less than 1 volts
dmm.limit[2].enable = dmm.ON -- enable limit 2 checking for DC volt

 -- measurements
dmm.measurecount = 50 -- set the measure count to 50
LimitBuffer = dmm.makebuffer(100) -- create a reading buffer that can store

 -- 100 readings
dmm.measure(LimitBuffer) -- take 50 readings and store them in

 -- LimitBuffer then check if any
 -- of the 50 readings were

 -- outside of the limits
print("limit 1 high fail = " .. dmm.limit[1].high.fail)
print("limit 1 low fail = " .. dmm.limit[1].low.fail)
print("limit 2 high fail = " .. dmm.limit[2].high.fail)
print("limit 2 low fail = " .. dmm.limit[2].low.fail)
dmm.limit[1].clear() -- clear limit 1 conditions
dmm.limit[2].clear() -- clear limit 2 conditions

Sample output that shows all readings are within limit values (all readings between 3 and 5 volts):
limit 1 high fail = 0
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit 1 high values (a 6 volt reading would cause this
condition or a reading greater than 5 but less than 7.):
limit 1 high fail = 1
limit 1 low fail = 0
limit 2 high fail = 0
limit 2 low fail = 0

Sample output showing at least one reading failed limit limit 1 and 2 low values (a 0.5 volts reading would
cause this condition or a reading less than 1):
limit 1 high fail = 0
limit 1 low fail = 1
limit 2 high fail = 0
limit 2 low fail = 1

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-203

Also see

Reading buffers (on page 3-55, on page 3-49)
digio.trigger[N].stimulus (on page 8-127)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.limit[Y].enable (on page 8-193)
dmm.limit[Y].high.value (on page 8-197)
dmm.limit[Y].low.fail (on page 8-199)

dmm.linesync
Selects if line sync is used during the measurement.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.OFF)

Usage

state = dmm.linesync
dmm.linesync = state

state Enable line sync (dmm.ON or 1).
Disable line sync (dmm.OFF or 0).

Details

This attribute is only valid when dmm.func is set to "commonsideohms", "continuity", "dccurrent",
"dcvolts", "fourwireohms", "temperature", or "twowireohms". All other functions generate an error
when written and return nil when queried.
When dmm.linesync is enabled, measurements are initiated at the first positive-going zero crossing of the
power line cycle after the trigger.
The line sync setting is saved with the dmm.func function setting, so if you use another function, then return to a
previous function, the line sync you set previously is retained.

Example

dmm.func = "fourwireohms"
dmm.linesync = dmm.ON

Enables line sync for the "fourwireohms"
function.

Also see

Line cycle synchronization (on page 4-4)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-204 3700AS-901-01 Rev. B/May 2013

dmm.makebuffer()
Creates a user buffer for storing readings. Reading buffers are allocated dynamically.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Reset
Recall setup

Create configuration script
Save setup

None

Usage

bufferVar = dmm.makebuffer(bufferSize)

bufferVar The variable name for the buffer being created
bufferSize Maximum number of readings that the buffer can store

Details

To be able to store readings, a reading buffer needs to be created. Once created, the reading buffer can be used
to store readings from dmm.measure() command and from scanning (scan.execute() or
scan.background())
To delete a buffer, set bufferVar to nil.
Once a buffer is created, the attributes that can be accessed are:

• bufferVar.appendmode = 1 (ON) or 0 (OFF); default is zero (0) over a bus interface, and 1 for
buffers created on the front panel.

• bufferVar.basetimeseconds returns the seconds for reading buffer entry 1 (read-only
attribute).

• bufferVar.basetimefractional returns the seconds and fractional seconds for reading
buffer entry 1 (read-only attribute).

• bufferVar.capacity returns the overall buffer size.

• bufferVar.collecttimestamps = 1 (ON) or 0 (OFF); default is 1.

• bufferVar.collectchannels = 1 (ON) or 0 (OFF); default is 1.

• bufferVar.n returns the number of readings currently stored in the buffer.

• bufferVar.timestampresolution returns the resolution of the time stamping (read-only
attribute).

The following buffer bits indicate buffer statuses:

• dmm.buffer.LIMIT1_LOW_BIT or 1

• dmm.buffer.LIMIT1_HIGH_BIT or 2

• dmm.buffer.LIMIT2_LOW_BIT or 4

• dmm.buffer.LIMIT2_HIGH_BIT or 8

• dmm.buffer.MEAS_OVERFLOW_BIT or 64

• dmm.buffer.MEAS_CONNECT_QUESTION_BIT or 128
To see readings in buffer:
printbuffer(x, y, bufferVar)

Where x and y represent the reading numbers desired.
To see readings, channels, and units:
printbuffer(x, y, bufferVar, bufferVar.channels, bufferVar.units)

Where x and y represent reading numbers desired.
To see time stamps in buffer:

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-205

bufferVar.collecttimestamps = 1
print(x, y, bufferVar, bufferVar.timestamps)

Where x and y represent readings and time stamps for elements x to y.
To see seconds, fractional seconds, and relative time stamps:
bufferVar.collecttimestamps = 1
printbuffer(x,y, bufferVar.seconds)
printbuffer(x,y, bufferVar.fractionalseconds)
printbuffer(x,y, bufferVar.relativetimestamps)

Once you create a reading buffer, using that buffer name for another buffer or variable will cause
access to the original data to be lost.

Example 1

bufferVar = dmm.makebuffer(300) Creates a user reading buffer named
bufferVar with a capacity of 300.

Example 2

dmm.measurecount = 10
dmm.measure(bufferVar2)
printbuffer(1, bufferVar2.n, bufferVar2)
bufferVar2 = nil

Take ten measurements on the active function
and store them in the reading buffer, bufferVar2.
View those ten readings.
Delete bufferVar2.
Sample output (actual output depends on how
the active function is configured and what you
are measuring):
1.134154698e+01, 1.132708486e+01,

1.134213865e+01,
1.134037749e+01,
1.132735758e+01,
1.134099844e+01,
1.133705087e+01,
1.132571507e+01,
1.134000616e+01, 1.133721111e+01

Also see

Reading buffers (on page 3-55, on page 3-49)
dmm.measure() (on page 8-213)
printbuffer() (on page 8-307)
scan.background() (on page 8-323)
scan.execute() (on page 8-327)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-206 3700AS-901-01 Rev. B/May 2013

dmm.math.enable
Enable or disable math operation on measurements.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.OFF)

Usage

value = dmm.math.enable
dmm.math.enable = value

value The math enable setting:
• Enable: dmm.ON or 1
• Disable: dmm.OFF or 0

Details

This attribute is not available for "nofunction". If you write this attribute for "nofunction", an error
message is generated.
When this attribute is set to dmm.ON, the math operation specified by math format attribute (dmm.math.format)
will be performed before completing a measurement.

Example

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-207

dmm.func = "dcvolts"
dmm.reset("active")
dmm.measurecount = 5
MathBuffer = dmm.makebuffer(100)

MathBuffer.appendmode = 1
dmm.measure(MathBuffer)
dmm.math.format = dmm.MATH_MXB
dmm.math.mxb.mfactor = 1e6
dmm.math.mxb.bfactor = 0
dmm.math.mxb.units = "["
dmm.math.enable = dmm.ON

dmm.measure(MathBuffer)

printbuffer(1, 5, MathBuffer)
printbuffer(6, MathBuffer.n, MathBuffer)

dmm.measurecount = 1
for x = 1, 3 do
 print(dmm.measure())
end

Configure the DMM for DC volts.
Reset DC volts to the default settings.
Set the measure count to 5.
Create a reading buffer named MathBuffer that can
store 100 readings.

Set the buffer to append readings.
Take 5 readings and store them in MathBuffer with
no math operation.
Enable math operations for mx+b operation, with m
set to 1e6 and b set to 0, with units set to micro .

Store the 5 additional readings in MathBuffer with
math operations enabled.

View the readings with and without math operation.

Take 3 additional math readings without using the
buffer.

Sample output assuming no load was connected to
DMM:
Readings with no math operation:

3.898423119e-07, 4.066727213e-07,

5.122452892e-07,
4.724643216e-07,
4.770544332e-07

Readings with math operation:

5.061251403e-01, 4.158529446e-01,

5.504962196e-01,
3.821921259e-01,
6.132277455e-01

5.367258847e-01
6.040475222e-01
6.132277455e-01

Also see

Math calculations (on page 4-43)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.math.format (on page 8-208)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-208 3700AS-901-01 Rev. B/May 2013

dmm.math.format
Specifies the math operation to perform on measurements.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

2 (dmm.MATH_PERCENT)

Usage

state = dmm.math.format
dmm.math.format = state

state Math operation to be performed on measurements:
• dmm.MATH_NONE or 0
• dmm.MATH_MXB or 1
• dmm.MATH_PERCENT or 2
• dmm.MATH_RECIPROCAL or 3

Details

This is not available for "nofunction". If this command is queried when "nofunction" is selected, nil is
returned. If it is written when "nofunction" is selected, an error is returned.
If you set this attribute to dmm.MATH_NONE, math operation is disabled, even if math operation
(dmm.math.enable) is enabled.
Use a setting of dmm.MATH_MXB to have

Equation 1: S3700A dmm_math_mxb_formula

where:

• X is the normal measurement

• m is user-entered constant for scale factor (dmm.math.mxb.mfactor)

• b is user-entered constant for offset (dmm.math.mxb.bfactor)

• Y is the result
If you are using relative offset measurement control (dmm.rel.enable), the relative offset reading is used for X.
Use a setting of dmm.MATH_PERCENT to have:

Equation 2: dmm.MATH_PERCENT Equation

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-209

where:

• Input is the normal measurement (if using dmm.rel.enable, it will be the relative offset value)

• Reference is user entered constant (dmm.math.percent)
• Percent is the result
Use a setting of dmm.MATH_RECIPROCAL for 1/X operation, where X is normal or the measurement value with
relative offset applied.
The desired math operation is performed before any of the enabled limit testing.

Example

dmm.math.format = dmm.MATH_RECIPROCAL
dmm.math.enable = dmm.ON

Enables the reciprocal operation on
measurements

Also see

Math calculations (on page 4-43)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.math.enable (on page 8-206)
dmm.math.percent (on page 8-212)
dmm.math.mxb.bfactor (on page 8-209)
dmm.math.mxb.mfactor (on page 8-210)
dmm.rel.enable (on page 8-225)

dmm.math.mxb.bfactor
Specifies the offset for the y = mx + b operation.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0.000000e+00

Usage

value = dmm.math.mxb.bfactor
dmm.math.mxb.bfactor = value

value The offset for the y = mx + b operation; the valid range is -4294967295 to
+4294967295

Details

This is not available for "nofunction.". If command is queried when "nofunction" is selected, nil is
returned. If it is written when "nofunction" is selected, an error is returned.
This attribute specifies the offset (b) for an mx + b operation.

Example

dmm.math.mxb.bfactor = 50 Sets the offset for mx +b operation to 50.

Also see

Math calculations (on page 4-43)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.math.format (on page 8-208)
dmm.math.mxb.mfactor (on page 8-210)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-210 3700AS-901-01 Rev. B/May 2013

dmm.math.mxb.mfactor
Specifies the scale factor for the y = mx + b operation.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1.000000E+00

Usage

value = dmm.math.mxb.mfactor
dmm.math.mxb.mfactor = value

value The scale factor; valid range is -4294967295 to +4294967295

Details

This is not available for "nofunction". If command is queried when "nofunction" is selected, nil is
returned. If it is written when "nofunction" is selected, an error is returned.
This attribute represents the scale factor (m) for an mx + b operation.

Example

dmm.math.mxb.mfactor = 0.80 Sets the scale factor for the mx +b operation
to 0.80.

Also see

Math calculations (on page 4-43)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.math.format (on page 8-208)
dmm.math.mxb.bfactor (on page 8-209)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-211

dmm.math.mxb.units
Specifies the unit character for the y = mX + b operation.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

X

Usage

value = dmm.math.mxb.units
dmm.math.mxb.units = value

value The unit character for the y = mx + b operation. Valid values are:
• A to Z
• [(left bracket) for the micro (µ) symbol
•] (right bracke) for the ohm (Ω) symbol
• \\ (two backslashes) for the degree (°) symbol

Details

This attribute is not available for the "nofunction" selection. If the command is queried when "nofunction"
is selected, nil is returned. If it is written when "nofunction" is selected, an error is returned.
This attribute represents the unit character to use when the math format is set for mx + b (dmm.math.format =
dmm.MATH_MXB).

Example

dmm.math.mxb.units = "Q" Sets the units for the mX +b operation to
"Q".

Also see

Math calculations (on page 4-43)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.math.format (on page 8-208)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-212 3700AS-901-01 Rev. B/May 2013

dmm.math.percent
Specifies the constant to use for the percent operation.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1.000000E+00

Usage

value = dmm.math.percent
dmm.math.percent = value

value The constant for the percent operation; the range is -4294967295 to +4294967295

Details

This is not available for "nofunction". If command is queried when "nofunction" is selected, nil is
returned. If it is written when "nofunction" is selected, an error is returned.
This attribute represents the constant to use for percent when dmm.math.format = dmm.MATH_PERCENT.

Example 1

dmm.math.percent = 1250 Set constant for percent operation to 1250.
dmm.math.percent = dmm.measure() Acquire the percent constant.

Example 2

dmm.func = "dcvolts"
dmm.reset("active")
dmm.math.format = dmm.MATH_PERCENT
dmm.measurecount = 1
dmm.math.percent = dmm.measure()
dmm.math.enable = dmm.ON
dmm.measurecount = 5
MathBuffer = dmm.makebuffer(100)
dmm.measure(MathBuffer)
printbuffer(1, MathBuffer.n,

MathBuffer)
dmm.measurecount = 1
for x = 1, 3 do
 print(dmm.measure())
end

Configure the DMM for DC volts and reset the DC volts
function to the default settings.

Set math format to percent.
Acquire 1 reading to use as the relative percent value.
Take 5 readings with percent math enabled and store
them in a buffer called MathBuffer that can store 100
readings.

Take three additional readings without using the reading
buffer.

Sample output assuming no load was connected to DMM:
2.717115286e+01, 1.259150986e+01,

1.259150986e+01, 9.277954635e+00,
3.313555227e+01

1.292338066e+01
2.452080209e+01
1.557421984e+01

Also see

Math calculations (on page 4-43)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.math.format (on page 8-208)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-213

dmm.measure()
Returns the last reading of the measurement process without using the trigger model.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

reading = dmm.measure()
reading = dmm.measure(bufferVar)

reading The last reading of the measurement process

bufferVar A previously created reading buffer where all readings are stored

Details

This is not available for "nofunction". If the command is queried when "nofunction" is selected, nil is
returned. If it is written when "nofunction" is selected, an error is returned.
When a reading buffer is used with a command or action that involves taking multiple readings, such as
dmm.measure or scanning, all readings are available in the reading buffer. However, only the last reading is
returned as a reading with the command.
You can also use a reading buffer to store additional information that is acquired while making a measurement.
The dmm.measurecount attribute determines how many measurements are performed. When you use a buffer,
it also determines if the reading buffer has enough room to store the requested readings. The amount of room is
based on readings already stored in the buffer (bufferVar.n), the capacity of the buffer
(bufferVar.capacity), and the append mode of the reading buffer (bufferVar.appendmode). If the
append mode is set to 0, any stored readings in the buffer are cleared before new ones are stored. If append
mode is set to 1, any stored readings remain in the buffer and new ones are added to the buffer after the stored
ones.

Example

DCVBuffer = dmm.makebuffer(100)
dmm.func = "dcvolts"
dmm.measurecount = 100
dmm.measure(DCVBuffer)

Performs 100 DC voltage measurements and
stores them in a buffer called DCVBuffer.

Also see

Reading buffers (on page 3-55, on page 3-49)
bufferVar.appendmode (on page 8-18)
bufferVar.capacity (on page 8-21)
bufferVar.n (on page 8-29)
dmm.makebuffer() (on page 8-204)
dmm.measurecount (on page 8-214)
dmm.measurewithtime() (on page 8-215)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-214 3700AS-901-01 Rev. B/May 2013

dmm.measurecount
The number of measurements to take when a measurement is requested by a DMM measure command.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1

Usage

count = dmm.measurecount
dmm.measurecount = count

count The number of measurements to take when a DMM measure function is used
(maximum 450,000)

Details

This attribute controls the number of measurements taken any time a measurement is requested (through
dmm.measure, dmm.measurewithtime, or the front panel MEASURE menu option). When using a reading
buffer with a measure command, the count also controls the number of readings to be stored.
It has no effect on the trigger model, and the trigger model does not affect this setting.
This setting is applied to all functions (the setting is not related to a specific function).

Example

DMMbuffer = dmm.makebuffer(500)
dmm.measure(bufferVar)
dmm.measurecount = 50

Create a reading buffer called DMMbuffer that can
store 500 readings.
Store 50 readings in DMMbuffer.
Set the measure count of the DMM to 50.

Also see

Reading buffers (on page 3-55, on page 3-49)
dmm.autodelay (on page 8-154)
dmm.makebuffer() (on page 8-204)
dmm.measure() (on page 8-213)
dmm.measurewithtime() (on page 8-215)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-215

dmm.measurewithtime()
Returns the last actual measurement and time information in UTC format without using the trigger model. You can
also use a reading buffer to store additional information that is acquired while making a measurement.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

reading, seconds, fractional = dmm.measurewithtime()
reading, seconds, fractional = dmm.measurewithtime(bufferVar)

reading The last reading of the measurement process
seconds Seconds in UTC format
fractional Fractional seconds
bufferVar A previously created reading buffer variable in which all readings are stored

Details

This is not available for "nofunction". If the command is queried when "nofunction" is selected, nil is
returned. If it is written when "nofunction" is selected, an error is returned.
When a reading buffer is used with a command or action that involves taking multiple readings, such as
dmm.measure or scanning, all readings are available in the reading buffer. However, only the last reading and
time information (seconds and fractional seconds) is returned as a reading with the command.
You can also use a reading buffer to store additional information that is acquired while making a measurement.
The dmm.measurecount attribute determines how many measurements are performed. When you use a buffer,
it also determines if the reading buffer has enough room to store the requested readings. The amount of room is
based on readings already stored in the buffer (bufferVar.n), the capacity of the buffer
(bufferVar.capacity), and the append mode of the reading buffer (bufferVar.appendmode). If the
append mode is set to 0, any stored readings in the buffer are cleared before new ones are stored. If append
mode is set to 1, any stored readings remain in the buffer and new ones are added to the buffer after the stored
ones.

Example

DCVbuffer = dmm.makebuffer(100)
dmm.func = "dcvolts"
dmm.measurecount = 100
reading, seconds, fractional = dmm.measurewithtime(DCVbuffer)
print(reading, seconds, fractional)

Create a reading buffer.
Perform 100 DC voltage measurements.
Store the measurements in a buffer called DCVbuffer.
Print the last measurement and time information in UTC format, which will look similar to:

-1.064005867e-02 1.779155900e+07 1.245658350e-01

Also see

Reading buffers (on page 3-55, on page 3-49)
dmm.makebuffer() (on page 8-204)
dmm.measure() (on page 8-213)
dmm.measurecount (on page 8-214)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-216 3700AS-901-01 Rev. B/May 2013

dmm.measurewithptp()
This function returns the last actual measurement and time information in PTP format without using the trigger
model. You can also use a reading buffer to store additional information that is acquired while making a
measurement.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

reading, seconds, fractional = dmm.measurewithptp()
reading, seconds, fractional = dmm.measurewithptp(bufferVar)

reading The last reading of the measurement process

seconds Seconds in PTP format
fractional Fractional seconds
bufferVar A previously created reading buffer variable in which all readings are stored

Details

This is not available for "nofunction". If the command is queried when "nofunction" is selected, nil is
returned. If it is written when "nofunction" is selected, an error is returned.
When a reading buffer is used with a command or action that involves taking multiple readings, such as
dmm.measure or scanning, all readings are available in the reading buffer. However, only the last reading and
time information (seconds and fractional seconds) is returned as a reading with the command.
You can also use a reading buffer to store additional information that is acquired while making a measurement.
The dmm.measurecount attribute determines how many measurements are performed. When you use a buffer,
it also determines if the reading buffer has enough room to store the requested readings. The amount of room is
based on readings already stored in the buffer (bufferVar.n), the capacity of the buffer
(bufferVar.capacity), and the append mode of the reading buffer (bufferVar.appendmode). If the
append mode is set to 0, any stored readings in the buffer are cleared before new ones are stored. If append
mode is set to 1, any stored readings remain in the buffer and new ones are added to the buffer after the stored
ones.

Example

DCVbuffer = dmm.makebuffer(100)
dmm.func = "dcvolts"
dmm.measurecount = 100
reading, seconds, fractional = dmm.measurewithptp(DCVbuffer)
print(reading, seconds, fractional)

Create a reading buffer.
Perform 100 DC voltage measurements.
Store the measurements in a buffer called DCVbuffer.
Print the last measurement and time information in PTP format, which will look similar to:

-1.064005867e-02 1.779155900e+07 1.245658350e-01

Also see

Reading buffers (on page 3-55, on page 3-49)
dmm.makebuffer() (on page 8-204)
dmm.measure() (on page 8-213)
dmm.measurecount (on page 8-214)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-217

dmm.nplc
The integration rate in line cycles for the DMM for the function selected by dmm.func.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1.000000E+000

Usage

value = dmm.nplc
dmm.nplc = value

value The integration rate in line cycles:
• 60 Hertz: 0.0005 to 15
• 50 Hertz: 0.0005 to 12

Details

This attribute is not applicable for "frequency", "period", and "nofunction". If you query this attribute for
one of these functions, nil is returned. Note that "continuity" is fixed at 6.000000E-003 and cannot be changed.
The setting for NPLC may be adjusted based on what the DMM supports. Therefore, after setting the NPLC,
query the value to see if it was adjusted.

For dmm.nplc settings that are less than 0.2, sending dmm.AUTOZERO_ONCE results in significant
delays. For example, the delay time at an NPLC of 0.0005 is 2.75 s. The delay time at 0.199 is
5.45 s.

An error is generated if the command is used when dmm.func is set to "frequency", "period",
"continuity", or "nofunction".
The NPLC setting is saved with the dmm.func function setting, so if you use another function, then return to the
previous function, the NPLC setting you set previously is retained.

Example

dmm.func = "twowireohms"
dmm.nplc = 0.5
dmm.func = "dcvolts"
dmm.nplc = 0.1

Set the NPLC for 2-wire ohms to 0.5, then
set the NPLC for DC volts to 0.1.

Also see

dmm.aperture (on page 8-150)
dmm.autozero (on page 8-157)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-218 3700AS-901-01 Rev. B/May 2013

dmm.offsetcompensation
The offset compensation setting for the DMM for the function selected by dmm.func.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.OFF) for "commonsideohms" and
"fourwireohms"
1 (dmm.ON) for "temperature"

Usage

state = dmm.offsetcompensation
dmm.offsetcompensation = state

state The offset compensation setting:
• Enable: dmm.ON or 1
• Disable: dmm.OFF or 0

Details

The command applies when dmm.func is set to "fourwireohms", "commonsideohms" or "temperature".
When dmm.func = "temperature", this attribute applies only when the transducer type is 3- or 4-wire RTD.
Set this command as you would for 4-wire ohm measurements.
This command is automatically set to dmm.ON when dmm.drycircuit is set to dmm.ON and dmm.func =
"fourwireohms" or "commonsideohms".
The offset compensation setting is saved with the dmm.func function setting, so if you use another function,
then return to "fourwireohms", "commonsideohms" or "temperature", the offset compensation setting
you set previously is retained.
If you query this attribute and the function is not "fourwireohms", "commonsideohms", or "temperature",
nil is returned.

Example 1

dmm.func = "fourwireohms"
dmm.offsetcompensation = dmm.ON

Enable offset compensation for 4-wire ohms.

Example 2

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.offsetcompensation = dmm.OFF

Disable offset compensation for 3-wire RTD
temperature measurements.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-219

dmm.open()
Opens the specified channel or channel pattern.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.open(channelList)

channelList A string that lists the channel or channel pattern to open

Details

This command allows you to separate the opening and closing of channels and analog backplane relays when
measuring. You can execute any number of commands between the open and close commands to meet your
application needs.
The configuration (dmm.getconfig()) associated with the specified channel dictates whether a paired channel
is open or not. For channel patterns, the channels associated with it are opened. A channel pattern includes a
paired channel for multi-wire measurement if a channel is configured that way when the pattern is created (see
commands channel.setpole() and channel.pattern.setimage())
The configuration (dmm.getconfig()) dictates whether analog backplane relays 1 and 2 are opened and if a
paired channel is opened. The dmm.open() function does not use the analog backplane relays specified by the
channel.setbackplane() function or pole settings set by the channel.setpole() function.
An error is generated and the channels do not open if:

• An empty parameter string is specified.
• The specified channel or channel pattern is invalid.
• A channel number does not exist for installed card in slot specified.
• A slot is empty.
• The channel pattern does not exist.
• The channel does not support being closed (for example, a digital I/O channel).
• The channel is paired with another bank for a multi-wire application.
• The channel configuration is "nofunction".
• More than one channel or channel pattern is specified in the parameter.

Example 1

reset()
channel.setpole("slot2" , 4)
channel.pattern.setimage("2005, 2911, 2922", "Chan5_4W")
dmm.setconfig("Chan5_4W", "fourwireohms")
dmm.open("Chan5_4W")
print(channel.pattern.getimage("Chan5_4W"))

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-220 3700AS-901-01 Rev. B/May 2013

Assume a Model 3721 is installed in slot 2.
Reset the instrument.
Configure the slot 2 channels for 4-pole operation.
Create a pattern called Chan5_4W.
Assign 4-wire ohms configuration to the Chan5_4W pattern.
Open the channels associated with Chan5_4W and display image of the Chan5_4W.
Output:
2005(2025),2911,2922

Example 2

dmm.setconfig("slot3", "dcvolts")
dmm.close("3030")
print(channel.getclose("slot3"))
dmm.open("3030")
print(channel.getclose("slot3"))
dmm.close("3031")
print(channel.getclose("slot3"))
dmm.open("3031")
print(channel.getclose("slot3"))

Assume a 3720 installed in slot 3.
Set the configuration for DC volts.
Close and open the channels.
Output:
3030;3911
nil
3031;3921
nil

Also see

channel.getclose() (on page 8-61)
channel.pattern.getimage() (on page 8-81)
channel.pattern.setimage() (on page 8-82)
channel.setbackplane() (on page 8-90)
channel.setpole() (on page 8-101)
dmm.close() (on page 8-167)
dmm.getconfig() (on page 8-189)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-221

dmm.opendetector
Determines if the detection of open leads is enabled or disabled.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.OFF) for "commonsideohms"
1 (dmm.ON) for "fourwireohms" and
"temperature"

Usage

state = dmm.opendetector
dmm.opendetector = state

state Enable open lead detector (dmm.ON or 1)
Disable open lead detector (dmm.OFF or 0)

Details

The command applies when dmm.func is set to "fourwireohms", "commonsideohms", or "temperature".
When dmm.func is set to temperature, the open detector setting is only used when the transducer type is
thermocouple. For all other transducer types, it is set, but not used until the transducer type is set to
thermocouple.
The open detector setting is saved with the dmm.func function setting, so if you use another function, then
return to "fourwireohms", "commonsideohms", or "temperature", the open detector setting you set
previously is retained.
An error is generated if dmm.func is set to any function other than "fourwireohms", "commonsideohms", or
"temperature". If you query the setting for any other function, nil is returned.

Example

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THERMOCOUPLE
dmm.opendetector = dmm.ON

Enable the thermocouple open detector.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-222 3700AS-901-01 Rev. B/May 2013

dmm.range
Indicates the range of DMM for the selected function.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

See Details

Usage

value = dmm.range
dmm.range = value

value The range for the function selected by dmm.func

Details

Set this value to the expected measurement value and the instrument will select the range appropriate to
measure that value. Setting the range with this attribute will automatically disable the autorange setting
(dmm.autorange command).
The instrument selects the range to best match the expected measure value for the functions, as shown below.

Ranges and defaults

If dmm.func is… The range is… The default is…

"dcvolts" 0 to 303 303
"acvolts" 0 to 303 10
"dccurrent" 0 to 3.1 3.1
"accurrent" 0 to 3.1 3.1
"twowireohms" 0 to 120e6 1000
"fourwireohms" 0 to 120e6 1000
"commonsideohms" 0 to 120e6 1000

The range setting is saved with the dmm.func function setting, so if you use another function, then return to the
previous function, the range settings you set previously are retained.
If you query the range when the selected function does not have a range associated with it, nil is returned.
An error is generated if:

• The dmm.range is received when dmm.func is "temperature", "frequency", "period",
"continuity", or "nofunction".

• If value does not make sense for selected function.

Example

dmm.func = "dcvolts"
dmm.range = 5
dmm.func = "twowireohms"
dmm.range = 35000
print(dmm.range)

Set the range for DC volts to 10. Select a range on 2-
wire ohms suitable for measuring 35000. View the selected
range.
Output:
1.000000000e+05

Also see

dmm.autorange (on page 8-155)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.reset() (on page 8-228)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-223

dmm.refjunction
The type of the thermocouple reference junction.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1 (dmm.REF_JUNCTION_INTERNAL)
for "temperature"

Usage

state = dmm.refjunction
dmm.refjunction = state

state The reference junction type:
• dmm.REF_JUNCTION_SIMULATED or 0
• dmm.REF_JUNCTION_INTERNAL or 1
• dmm.REF_JUNCTION_EXTERNAL or 2

Details

This attribute is only valid when dmm.func is set to "temperature". All other functions generate an error and
return nil when queried.
This attribute only applies when the transducer type is set to thermocouple. For all other transducer types, the
reference junction may be set, but it is not used until the transducer type is set to thermocouple.
The reference junction setting is saved with the dmm.func function setting, so if you use another function, then
return to "temperature", the reference junction settings you set previously are retained.

Example

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THERMOCOUPLE
dmm.refjunction = dmm.REF_JUNCTION_SIMULATED

Enables the simulated thermocouple
reference junction.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.transducer (on page 8-244)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-224 3700AS-901-01 Rev. B/May 2013

dmm.rel.acquire()
Acquires an internal measurement to store as the relative level value.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

relativeValue = dmm.rel.acquire()

relativeValue The internal measurement acquired for the relative offset level value

Details

This attribute is not applicable for "continuity" and "nofunction".
This function triggers the DMM to take a new measurement for the selected function. This measurement is then
stored as the new relative offset level setting.
After executing this command, use the dmm.rel.level attribute to see the last relative level value that was
acquired or set by the user. Setting the relative level value with the acquire function does not use the math, limit,
and filter settings. It is a calibrated reading as if these settings are disabled.
If error occurs during the reading, nil is returned.
An error is generated if:

• dmm.func is set to "continuity" or "nofunction".

• The DMM is unable to take the measurement.
When an error occurs, the relative offset level setting maintains the last valid setting.

Example

dmm.func = "temperature"
rel_value = dmm.rel.acquire()

Acquires a relative offset level value for
temperature.

Also see

dmm.func (on page 8-187)
dmm.rel.level (on page 8-226)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-225

dmm.rel.enable
Enables or disables relative measurement control for the function selected by dmm.func.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.OFF)

Usage

value = dmm.rel.enable
dmm.rel.enable = value

value The setting:
• Enable: dmm.ON or 1
• Disable: dmm.OFF or 0

Details

This attribute is not available if dmm.func is set to "continuity" or "nofunction". If you query this
attribute when either of these functions are selected, nil is returned.
When relative measurements are enabled, all subsequent measured readings are offset by the relative offset
specified by dmm.rel.level. Each returned measured relative reading will be the result of the following
calculation:
Relative reading = Actual measured reading – Relative offset value
If you change functions with dmm.func, the relative enable setting changes to the enable setting for that
function.
The relative enable setting is saved with the dmm.func function setting, so if you use another function, then
return to the previous function, the relative enable settings you set previously are retained.
An error is generated if:

• dmm.func is set to "continuity" or "nofunction".

• If the value is out of range for the selected function.
Example

dmm.func = "accurrent"
dmm.rel.acquire()
dmm.rel.enable = dmm.ON

Enables the relative measurements for AC
current and uses the acquire command to
set the relative level attribute.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.rel.acquire() (on page 8-224)
dmm.rel.level (on page 8-226)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-226 3700AS-901-01 Rev. B/May 2013

dmm.rel.level
The offset value for relative measurements for the function selected by dmm.func.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0.000000E+000

Usage

value = dmm.rel.level
dmm.rel.level = value

value The relative offset level setting

Details

This attribute is not available if dmm.func is set to "continuity" or "nofunction". If you query this attribute
when either of these functions are selected, nil is returned.
When relative measurements are enabled (as set by dmm.rel.enable), all subsequent measured readings are
offset by the specified relative offset value. Specifically, each returned measured relative reading is the result of
the following calculation:
Relative reading = Actual measured reading – Relative offset value
Changing functions with dmm.func reflects the relative level offset setting for that function.
The relative offset level setting is saved with the dmm.func function setting, so if you use another function, then
return to the previous function, the relative offset level settings you set previously are retained.

To set the relative offset level to include math, limits, and filter operations (if enabled) set
dmm.rel.level to dmm.measure(). However, these operations are not used if you use the
dmm.rel.acquire() function to set the relative offset level, even if the operations are enabled.

An error is generated:

• If dmm.func is set to "continuity" or "nofunction".

• If the value is out of range for the selected function.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-227

Example

dmm.func = "accurrent"
dmm.rel.level = dmm.measure()
rel_value = dmm.measure()
dmm.rel.level = rel_value
dmm.func = "temperature"
rel_value = dmm.rel.acquire()

Perform an AC current measurement and use it
as the relative offset value.
Take a measurement and store it in the variable
rel_value.
Use the rel_value to set the relative level
attribute.
Acquire a relative offset level value for
temperature.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.measure() (on page 8-213)
dmm.rel.acquire() (on page 8-224)
dmm.rel.enable (on page 8-225)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-228 3700AS-901-01 Rev. B/May 2013

dmm.reset()
Resets the DMM functions and attributes in the instrument, as indicated by the parameter.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.reset(scope)

scope A string equaling "active" to set the active function only to factory default
settings or "all" to set all functions back to factory default settings

Details

When the scope is set to active, this command resets the DMM attributes for the active function to factory default
values. The settings for other functions are unchanged.
When the scope is set to all, this command resets the DMM functions and attributes to factory default settings.
This function does not affect the DMM configurations (dmm.setconfig() and dmm.getconfig()).
The factory default settings are:

• The selected DMM function is set to "dcvolts".

• The DMM settings are set to the defaults for "dcvolts".

• All attribute settings for other functions are set to factory default settings.

To reset the entire instrument to factory default settings, use the reset command.

Example

dmm.func = "temperature"
dmm.reset("active")
print(dmm.func)
dmm.reset("all")
print(dmm.func)

Set the DMM function to temperature.
Perform a reset on temperature only.
Check the function after resetting only
temperature.
Perform a reset on all DMM functions.
Check the function after resetting all DMM
functions.
Output:
temperature
dcvolts

Also see

dmm.func (on page 8-187)
dmm.getconfig() (on page 8-189)
dmm.setconfig() (on page 8-237)
reset() (on page 8-317)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-229

dmm.rtdalpha
The user type RTD alpha value.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

3.850550E-03

Usage

value = dmm.rtdalpha
dmm.rtdalpha = value

value The RTD alpha value; the range is 0 to 0.01

Details

This attribute is only valid when dmm.func is set to "temperature". All other functions generate an error and
return nil when queried.
This setting only applies when the transducer type is set to 3 or 4-wire RTD. For other transducer types, the
setting is set but not used until the transducer type is set to an RTD type.
Changing functions with dmm.func reflects the setting for that function.
The RTD alpha setting is saved with the dmm.func function setting, so if you use another function, then return to
"temperature", the RTD alpha setting you set previously is retained.

The following attributes share common settings and apply to both 3 and 4-wire RTDs:
dmm.rtdalpha, dmm.rtdbeta, dmm.rtddelta, and dmm.rtdzero. Therefore, when both 3 and
4-wire RTDs are set to USER type for RTD, switching transducers between 3 and 4 will cause both
to use the same settings (for example, dmm.rtdalpha, dmm.rtdbeta). If unique settings are
desired, they must be changed, or use two different DMM configurations.

An error is generated if the value is out of range.

Example 1

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.rtdalpha = 0.005
dmm.transducer = dmm.TEMP_FOURRTD
dmm.rtdalpha = 0.007
dmm.transducer = dmm.TEMP_THREERTD
print(dmm.rtdalpha)

Set an alpha constant for RTD to 0.005 for 3-wire
RTD.
Change to 4-wire RTD and change the alpha
constant to 0.007.
Switch back to 3-wire RTD. The value has been
updated to 0.007.
Output:
7.000000000e-03

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-230 3700AS-901-01 Rev. B/May 2013

Example 2

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.rtdalpha = 0.005
dmm.configure.set("RTD_3wire")
dmm.transducer = dmm.TEMP_FOURRTD
dmm.rtdalpha = 0.007
dmm.configure.set("RTD_4wire")
dmm.configure.recall("RTD_3wire")
print(dmm.transducer, dmm.rtdalpha)
dmm.configure.recall("RTD_4wire")
print(dmm.transducer, dmm.rtdalpha)

This example sets unique alpha constants for 3-wire
and 4-wire RTDs by creating two DMM
configurations with the desired settings.

Output:
3.000000000e+00 5.000000000e-03
4.000000000e+00 7.000000000e-03

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.rtdbeta (on page 8-231)
dmm.rtddelta (on page 8-233)
dmm.rtdzero (on page 8-234)
dmm.transducer (on page 8-244)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-231

dmm.rtdbeta
Indicates the user beta value for user type RTD.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1.086300E-01

Usage

value = dmm.rtdbeta
dmm.rtdbeta = value

value The user type RTD beta value; valid range is 0 to 1.0

Details

This attribute is only valid when dmm.func is set to "temperature". All other functions generate an error and
return nil when queried.
This setting only applies when the transducer type is set to 3 or 4-wire RTD. For other transducer types, the
setting is set but not used until the transducer type is set to an RTD type.
The RTD beta setting is saved with the dmm.func function setting, so if you use another function, then return to
"temperature", the RTD beta setting you set previously is retained.

The following attributes share common settings and apply to both 3 and 4-wire RTDs:
dmm.rtdalpha, dmm.rtdbeta, dmm.rtddelta, and dmm.rtdzero. Therefore, when both 3 and
4-wire RTDs are set to USER type for RTD, switching transducers between 3 and 4 will cause both
to use the same settings (for example, dmm.rtdalpha, dmm.rtdbeta). If unique settings are
desired, they must be changed, or use two different DMM configurations.

An error is generated if the value is out of range.

Example 1

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.rtdbeta = 0.3
dmm.transducer = dmm.TEMP_FOURRTD
dmm.rtdbeta = 0.5
dmm.transducer = dmm.TEMP_THREERTD
print(dmm.rtdbeta)

Set a beta constant for RTD to 0.3 for 3-wire RTD.
Change to 4-wire RTD.
Change the beta constant to 0.5.
Switch back to 3-wire RTD. The value is 0.5.
Output:
5.000000000e-01

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-232 3700AS-901-01 Rev. B/May 2013

Example 2

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.rtdbeta = 0.3
dmm.configure.set("RTD_3wire")
dmm.transducer = dmm.TEMP_FOURRTD
dmm.rtdbeta = 0.5
dmm.configure.set("RTD_4wire")
dmm.configure.recall("RTD_3wire")
print(dmm.transducer, dmm.rtdbeta)
dmm.configure.recall("RTD_4wire")
print(dmm.transducer, dmm.rtdbeta)

This example sets unique beta constants for 3-wire
and 4-wire RTDs by creating two DMM
configurations with the desired settings.
Output:
3.000000000e+00 3.000000000e-01
4.000000000e+00 5.000000000e-01

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.rtdalpha (on page 8-229)
dmm.rtddelta (on page 8-233)
dmm.rtdzero (on page 8-234)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-233

dmm.rtddelta
The user type RTD delta value.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1.499900E+00

Usage

value = dmm.rtddelta
dmm.rtddelta = value

value The user type RTD delta value; valid range is 0 to 5

Details

This attribute is only valid when dmm.func is set to "temperature". All other functions generate an error and
return nil when queried.
This setting only applies when the transducer type is set to 3 or 4-wire RTD. For other transducer types, the
setting is set but not used until the transducer type is set to an RTD type.
The RTD delta setting is saved with the dmm.func function setting, so if you use another function, then return to
"temperature", the RTD delta setting you set previously is retained.

The following attributes share common settings and apply to both 3 and 4-wire RTDs:
dmm.rtdalpha, dmm.rtdbeta, dmm.rtddelta, and dmm.rtdzero. Therefore, when both 3 and
4-wire RTDs are set to USER type for RTD, switching transducers between 3 and 4 will cause both
to use the same settings (for example, dmm.rtdalpha, dmm.rtdbeta). If unique settings are
desired, they must be changed, or use two different DMM configurations.

An error is generated if the value is out of range.

Example 1

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.rtddelta = 3
dmm.transducer = dmm.TEMP_FOURRTD
dmm.rtddelta = 5
dmm.transducer = dmm.TEMP_THREERTD
print(dmm.rtddelta)

Set a delta constant for RTD to 3 for 3-wire RTD.
Change to 4-wire RTD.
Change the delta constant to 5.
Switch back to 3-wire RTD. The value is 5.
Output:
5.000000000e+00

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-234 3700AS-901-01 Rev. B/May 2013

Example 2

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.rtddelta = 3
dmm.configure.set("RTD_3wire")
dmm.transducer = dmm.TEMP_FOURRTD
dmm.rtddelta = 5
dmm.configure.set("RTD_4wire")
dmm.configure.recall("RTD_3wire")
print(dmm.transducer, dmm.rtddelta)
dmm.configure.recall("RTD_4wire")
print(dmm.transducer, dmm.rtddelta)

This example sets unique delta constants for 3-
wire and 4-wire RTDs by creating two DMM
configurations with the desired settings.
Output:
3.000000000e+00 3.000000000e+00
4.000000000e+00 5.000000000e+00

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.rtdalpha (on page 8-229)
dmm.rtdbeta (on page 8-231)
dmm.rtdzero (on page 8-234)

dmm.rtdzero
Indicates the user type RTD zero value.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1.000000E+02

Usage

value = dmm.rtdzero
dmm.rtdzero = value

value The user type RTD zero value; the range is 0 to 10000

Details

This attribute is only valid when dmm.func is set to "temperature". All other configurations generate an error
and return nil when queried.
This setting only applies when the transducer type is set to 3 or 4-wire RTD. For other transducer types, the
setting is set but not used until the transducer type is set to an RTD type.
The RTD zero setting is saved with the dmm.func function setting, so if you use another function, then return to
"temperature", the RTD zero settings you set previously are retained.

The following attributes share common settings and apply to both 3 and 4-wire RTDs:
dmm.rtdalpha, dmm.rtdbeta, dmm.rtddelta, and dmm.rtdzero. Therefore, when both 3 and
4-wire RTDs are set to USER type for RTD, switching transducers between 3 and 4 will cause both
to use the same settings (for example, dmm.rtdalpha, dmm.rtdbeta). If unique settings are
desired, they must be changed, or use two different DMM configurations.

An error is generated if the value is out of range.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-235

Example 1

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.rtdzero = 300
dmm.transducer = dmm.TEMP_FOURRTD
dmm.rtdzero = 500
dmm.transducer = dmm.TEMP_THREERTD
print(dmm.rtdzero)

Set a zero constant for RTD to 300 for 3-wire RTD.
Change to 4-wire RTD.
Change the zero constant to 500.
Switch back to 3-wire RTD. The value is 500.
Output:
5.000000000e+02

Example 2

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.rtdzero = 300
dmm.configure.set("RTD_3wire")
dmm.transducer = dmm.TEMP_FOURRTD
dmm.rtdzero = 500
dmm.configure.set("RTD_4wire")
dmm.configure.recall("RTD_3wire")
print(dmm.transducer, dmm.rtdzero)
dmm.configure.recall("RTD_4wire")
print(dmm.transducer, dmm.rtdzero)

This example sets unique zero constants for 3-wire
and 4-wire RTDs by creating two DMM configurations
with the desired settings.
Output:
3.000000000e+00 3.000000000e+02
4.000000000e+00 5.000000000e+02

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.rtdalpha (on page 8-229)
dmm.rtdbeta (on page 8-231)
dmm.rtddelta (on page 8-233)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-236 3700AS-901-01 Rev. B/May 2013

dmm.savebuffer()
Saves data from the specified reading buffer to a USB flash drive using the specified filename.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

dmm.savebuffer(bufferVar, fileName)
dmm.savebuffer(bufferVar, fileName, timeFormat)

bufferVar A string that specifies the name of the DMM reading buffer that was created by
dmm.makebuffer()

fileName A string with the name of the file on the USB flash drive to which to save the DMM
reading buffer

timeFormat How date and time information from the buffer is saved in the file on the USB flash
drive; the values are:
• dmm.buffer.SAVE_FORMAT_TIME: The default. When this is selected, dates, times,

and fractional seconds are saved
• dmm.buffer.SAVE_RELATIVE_TIME: Relative time stamps are saved
• dmm.buffer.SAVE_RAW_TIME: Seconds and fractional seconds are saved
• dmm.buffer.SAVE_TIMESTAMP_TIME: Time stamps are saved

Details

The filename must specify the full path (including /usb1/). If included, the file extension must be set to .csv (if
no file extension is specified, .csv is added).
For options that save more than one item of time information, each item is comma delimited. For example, the
default format will be <date>, <time>, and <fractional seconds> for each reading, separated by commas.
You use dmm.makebuffer() to create a buffer.
Examples of valid destination file names:
dmm.savebuffer("bufferVar", "/usb1/myData")
dmm.savebuffer("bufferVar", "/usb1/myData.csv")
Invalid destination filename examples:
dmm.savebuffer("bufferVar", "/usb1/myData.")
— The period is not followed by the csv extension.
dmm.savebuffer("bufferVar", "/usb1/myData.txt")

— The only allowed extension is .csv. If .csv is not assigned, it is automatically added.
dmm.savebuffer("bufferVar", "/usb1/myData.txt.csv")

— Two periods in the file name (myData_txt.csv would be correct).
An error is generated if:

• The reading buffer does not exist or is not a DMM buffer.
• The destination filename is not specified correctly.
• The file extension is not .csv (or blank).

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-237

Example

dmm.savebuffer("bufferVar",
"/usb1/myData.csv")

Saves readings from a DMM buffer named
bufferVar with default time information to a file
named myData.csv on the USB flash drive.

dmm.savebuffer("bufferVar",
"/usb1/myDataRel.csv",
dmm.buffer.SAVE_RELATIVE_TIME)

Saves readings from bufferVar with relative
time stamps to a file named myDataRel.csv on
the USB flash drive.

Also see

dmm.appendbuffer() (on page 8-152)
dmm.makebuffer() (on page 8-204)

dmm.setconfig()
Associates a DMM configuration with items specified in parameter channel list.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Reset
Channel reset
Recall setup

Created configuration script
Save setup

"nofunction"

Usage

dmm.setconfig(channelList, dmmConfiguration)

channelList A string that lists the channels and channel patterns to change

dmmConfiguration A string with the name of the DMM configuration that will be assigned to items in
channelList

Details

dmmConfiguration can be the name of a configuration that was saved with dmm.configure.set(). If you
use a saved configuration, the function of the configuration and the supporting DMM attributes for that function
are associated with the channelList parameter items. These supporting DMM attributes may have user-
defined or default values associated with them.
dmmConfiguration can also be a DMM configuration name that matches the DMM function name. If you use a
default DMM configuration name, be aware that the supporting function attribute settings are the default values
and not user-specified (as they may be in a user-defined saved configuration). The DMM function names are:
• "accurrent"
• "acvolts"
• "commonsideohms"
• "continuity"

• "dccurrent"
• "dcvolts"
• "fourwireohms"
• "frequency"

• "nofunction"
• "period"
• "temperature"
• "twowireohms"

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-238 3700AS-901-01 Rev. B/May 2013

To use a channel with the dmm.close() function, dmm.setconfig() cannot be set to "nofunction".
The configuration being assigned determines whether analog backplane relay 1 or 2 get used, based on the
function associated with the configuration when being assigned to a channel. For channel patterns, the pattern
image must include the desired analog backplane relays along with the desired channels. This command has no
effect on the poles setting for a channel (channel.setpole()) or analog backplane relays specified by
channel.setbackplane() function.
.An error is generated if:

• There is more than one DMM configuration specified.
• A DMM configuration is specified that does not exist.
• The desired DMM functionality is not supported on a specified channel.
• An analog backplane relay is specified.
• A specified channel does not exist for the card installed on the slot specified.
• A specified channel is forbidden to close.
• A matrix channel is in channel list parameter (for example, the Model 3730 is 6 x 16 high density

matrix card, so an error is generated if a Model 3730 channel is included in the channel list
parameter).

Once an error is detected, the command stops processing and no channels or channel patterns are modified.

Example

dmm.setconfig("1001:3100", "myDcv") Assigns myDcv to all the channels on slots 1 and
2 and channels 1 to 100 on slot 3.

dmm.setconfig("slot5", "dcvolts") Assigns the factory default settings for dcvolts
to channels on slot 5.

Also see

channel.setbackplane() (on page 8-90)
channel.setpole() (on page 8-101)
dmm.close() (on page 8-167)
dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.getconfig() (on page 8-189)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-239

dmm.simreftemperature
The simulated reference temperature for thermocouples.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

2.300000E+01 (23°C)

Usage

value = dmm.simreftemperature
dmm.simreftemperature = value

value The simulated reference temperature in Celsius (0 °C to 65 °C), Fahrenheit (32 °F
to 149 °F), or Kelvin (273 °K to 338 °K)

Details

This attribute is only valid when dmm.func is set to "temperature". All other functions generate an error and
return nil when queried.
The simulated reference temperature is only used when the transducer type is thermocouple, as set by
dmm.transducer. For all other transducer types, the value is set but not used until the transducer type is set for
thermocouple.
The simulated reference temperature setting is saved with the dmm.func function setting, so if you use another
function, then return to "temperature" with the transducer type set to thermocouple, the simulated reference
temperature setting you set previously is retained.

Example

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THERMOCOUPLE
dmm.units = dmm.UNITS_CELSIUS
dmm.simreftemperature = 30

Sets 30 degrees Celsius as the simulated
reference temperature for thermocouples.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.transducer (on page 8-244)
dmm.units (on page 8-245)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-240 3700AS-901-01 Rev. B/May 2013

dmm.thermistor
The type of thermistor.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

5000

Usage

value = dmm.thermistor
dmm.thermistor = value

value The thermistor type in ohms, 2252, 5000 or 10000; if you enter any other value, it is
converted as shown in the following table:

Parameter Converted value

>= 1950 and < 3500 2252
>= 3500 and < 7500 5000
>= 7500 and <= 10050 10000

Details

This attribute is only valid when dmm.func is set to "temperature". All other functions generate an error and
return nil when queried. If you use a parameter outside of the ranges listed in the usage table, a parameter out
of range error message is generated.
The thermistor attribute is only used when the transducer type is set for thermistor. For all other transducer types,
the setting is set but not used until thermistor is selected for the transducer type (see dmm.transducer).
The thermistor setting is saved with the dmm.func function setting, so if you use another function, then return to
"temperature", the thermistor setting you set previously is retained.

Example

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THERMISTOR
dmm.thermistor = 3000

Sets thermistor type to 2252. Note that the
original value is set to 3000, but is
automatically converted to 2252.

print(dmm.thermistor) 2252

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.transducer (on page 8-244)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-241

dmm.thermocouple
Indicates the thermocouple type.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1 (dmm.THERMOCOUPLE_K)

Usage

value = dmm.thermocouple
dmm.thermocouple = value

value The thermocouple type:
• dmm.THERMOCOUPLE_J or 0
• dmm.THERMOCOUPLE_K or 1
• dmm.THERMOCOUPLE_T or 2
• dmm.THERMOCOUPLE_E or 3
• dmm.THERMOCOUPLE_R or 4
• dmm.THERMOCOUPLE_S or 5
• dmm.THERMOCOUPLE_B or 6
• dmm.THERMOCOUPLE_N or 7

Details

This attribute is only valid when dmm.func is set to "temperature". All other functions generate an error and
return nil when queried. An illegal parameter value error message is generated if the value specified is not a
supported thermocouple type value listed in the usage table.
The thermocouple attribute is only used when the transducer type is thermocouple (see dmm.transducer). For
all other transducer types, the value is set but not used until the transducer type is set for thermocouple.
The thermocouple setting is saved with the dmm.func function setting, so if you use another function, then
return to "temperature", the thermocouple value you set previously is retained.

Example

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THERMOCOUPLE
dmm.thermocouple = dmm.THERMOCOUPLE_J

Sets the thermocouple type to J.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.transducer (on page 8-244)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-242 3700AS-901-01 Rev. B/May 2013

dmm.threertd
The type of three-wire RTD being used.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.RTD_PT100)

Usage

value = dmm.threertd
dmm.threertd = value

value The desired type for 3-wire RTD:
• dmm.RTD_PT100 or 0 for type PT100
• dmm.RTD_D100 or 1 for type D100
• dmm.RTD_F100 or 2 for type F100
• dmm.RTD_PT385 or 3 for type PT385
• dmm.RTD_PT3916 or 4 for type PT3916
• dmm.RTD_USER or 5 for user-specified type

Details

This attribute is only valid when dmm.func is set to "temperature" and dmm.transducer is set to
dmm.TEMP_THREERTD. For all other transducer types, the attribute is set but is not used until the transducer type
is set for three-wire RTD. All other functions generate an error and return nil when queried.
An illegal parameter value error message is generated if the value specified is not a supported RTD type value
as listed in the usage table.
The three-wire RTD setting is saved with the dmm.func function setting, so if you use another function, then
return to "temperature", the three-wire RTD setting you set previously is retained.

Example

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THREERTD
dmm.threertd = dmm.RTD_PT3916

Sets the type of three-wire RTD to PT3916.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)
dmm.transducer (on page 8-244)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-243

dmm.threshold
Indicates the threshold range.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1.000000E+01

Usage

value = dmm.threshold
dmm.threshold = value

value The desired threshold setting. The range for:
• Continuity is from 1 to 1000 Ω
• Frequency and period is from 0 to 303 V

Details

This attribute is only valid when dmm.func is set to "frequency", "period", or "continuity". All other
functions generate an error and return nil when queried.
For frequency and period, this refers to a threshold voltage range.
For continuity, it refers to a threshold resistance in ohms.
Errors are generated if the parameter value does not make sense for selected function.
The threshold value is saved with the dmm.func function setting, so if you use another function, then return to
"frequency", "period", or "continuity", the threshold value you set previously is retained.

Example

dmm.func = "frequency"
dmm.threshold = 30

Sets the threshold range for frequency to 30.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-244 3700AS-901-01 Rev. B/May 2013

dmm.transducer
The transducer type.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

1 (dmm.TEMP_THERMOCOUPLE)

Usage

value = dmm.transducer
dmm.transducer = value

value The transducer type:
• dmm.TEMP_THERMOCOUPLE or 1
• dmm.TEMP_THERMISTOR or 2
• dmm.TEMP_THREERTD or 3
• dmm.TEMP_FOURRTD or 4

Details

This attribute is only valid when dmm.func is set to "temperature". All other functions generate an error and
return nil when queried.

The setting of this attribute affects which other temperature-supported attributes get used. There are
various attributes that are only applicable when the transducer type is a certain type. Although the
transducer type needs to match for the attribute setting to be used, the transducer type does not
need to match to change the setting or read the setting. For example, the transducer type does not
need to be set to dmm.TEMP_FOURRTD to change the dmm.fourrtd attribute setting.

The transducer value is saved with the dmm.func function setting, so if you use another function, then return to
"temperature", the transducer value you set previously is retained.

Example

dmm.func = "temperature"
dmm.transducer = dmm.TEMP_THERMISTOR

Sets transducer to thermistor type.

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.fourrtd (on page 8-186)
dmm.func (on page 8-187)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-245

dmm.units
The units that are used for voltage and temperature measurements.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
DMM reset
Recall setup

Create configuration script
Save setup

0 (dmm.UNITS_VOLTS) for "acvolts" and
"dcvolts"
2 (dmm.UNITS_CELSIUS) for "temperature"

Usage

state = dmm.units
dmm.units = state

value For dcvolts and acvolts, select from the following units:
• dmm.UNITS_VOLTS or 0
• dmm.UNITS_DECIBELS or 1

For temperature, select from the following units:
• dmm.UNITS_CELSIUS or 2
• dmm.UNITS_KELVIN or 3
• dmm.UNITS_FAHRENHEIT or 4

Details

This attribute is only valid when dmm.func is set to "dcvolts", "acvolts", or "temperature".
All other functions generate an error and return nil when queried.
The units value is saved with the dmm.func function setting, so if you use another function, then return to
"dcvolts", "acvolts", or "temperature", the units setting you set previously is retained.
Errors are generated if the parameter value does not make sense for the selected function.

Example

dmm.func = "temperature"
dmm.units = dmm.UNITS_FAHRENHEIT

Sets units for temperature measurements to
Fahrenheit (°F).

Also see

dmm.configure.recall() (on page 8-173)
dmm.configure.set() (on page 8-175)
dmm.func (on page 8-187)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-246 3700AS-901-01 Rev. B/May 2013

errorqueue.clear()
This function clears all entries out of the error queue.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

errorqueue.clear()

Details

See the Error queue topic for additional information about the error queue.

Also see

Error queue
errorqueue.count (on page 8-246)
errorqueue.next() (on page 8-246)

errorqueue.count
This attribute gets the number of entries in the error queue.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Power cycle
Clearing error queue
Reading error messages

Not applicable Not applicable

Usage

count = errorqueue.count

count The number of entries in the error queue

Example

count = errorqueue.count
print(count)

Returns the number of entries in the error
queue.

The output below indicates that there are
four entries in the error queue:
4.00000e+00

Also see

errorqueue.clear() (on page 8-246)
errorqueue.next() (on page 8-246)

errorqueue.next()
This function reads the oldest entry from the error queue and removes it from the queue.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-247

Usage

errorCode, message, severity, errorNode = errorqueue.next()

errorCode The error code number for the entry
message The message that describes the error code
severity The severity level (0, 10, 20, 30, or 40); see Details for more information
errorNode The node number where the error originated

Details

Entries are stored in a first-in, first-out (FIFO) queue. This functions reads the oldest entry and removes it from
the queue.
Error codes and messages are listed in the Error summary list.
If there are no entries in the queue, code 0, "Queue is Empty" is returned.
Returned severity levels are described in the following table.

Severity level descriptions

Number Level Description

0 Informational Indicates that there are no entries in the queue.
10 Informational Indicates a status message or minor error.

20 Recoverable Indicates possible invalid user input; operation continues but action
should be taken to correct the error.

30 Serious Indicates a serious error that may require technical assistance, such as
corrupted data.

40 Fatal Instrument is not operational.

In an expanded system, each TSP-Link enabled instrument is assigned a node number. The variable
errorNode stores the node number where the error originated.

Example

errorcode, message = errorqueue.next()
print(errorcode, message)

Reads the oldest entry in the error queue. The
output below indicates that the queue is empty.

Output:
0.00000e+00 Queue Is Empty

Also see

Error queue
errorqueue.clear() (on page 8-246)
errorqueue.count (on page 8-246)
Error summary list

eventlog.all()
This function returns all entries from the event log as a single string and removes them from the event log.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

logString = eventlog.all()

logString A listing of all event log entries

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-248 3700AS-901-01 Rev. B/May 2013

Details

This function returns all events in the event log. Logged items are shown from oldest to newest. The response is
a string that has the messages delimited with a new line character.
This function also clears the event log.
If there are no entries in the event log, this function returns the value nil.

Example

print(eventlog.all())

Get and print all entries from the event log and remove the entries from the log.
Output:
17:26:35.690 10 Oct 2007, LAN0, 192.168.1.102, LXI, 0, 1192037132,
 1192037155.733269000, 0, 0x0
17:26:39.009 10 Oct 2007, LAN5, 192.168.1.102, LXI, 0, 1192037133,
 1192037159.052777000, 0, 0x0

Also see

eventlog.clear() (on page 8-248)
eventlog.count (on page 8-249)
eventlog.enable (on page 8-249)
eventlog.next() (on page 8-250)
eventlog.overwritemethod (on page 8-251)

eventlog.clear()
This command clears the event log.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

eventlog.clear()

Details

This function removes all messages from the event log.

Also see

eventlog.all() (on page 8-247)
eventlog.count (on page 8-249)
eventlog.enable (on page 8-249)
eventlog.next() (on page 8-250)
eventlog.overwritemethod (on page 8-251)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-249

eventlog.count
This attribute returns the number of events in the event log.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Instrument reset
Clearing event log
Reading event log

Not applicable Not applicable

Usage

N = eventlog.count

N The number of events in the event log

Example

print(eventlog.count) Displays the present number of events in the
instrument event log.
Output looks similar to:
3.00000e+00

Also see

eventlog.all() (on page 8-247)
eventlog.clear() (on page 8-248)
eventlog.enable (on page 8-249)
eventlog.next() (on page 8-250)
eventlog.overwritemethod (on page 8-251)

eventlog.enable
This attribute enables or disables the event log.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script
Save setup

eventlog.ENABLE

Usage

status = eventlog.enable
eventlog.enable = status

status The enable status of the event log:
1 or eventlog.ENABLE: Event log enable
0 or eventlog.DISABLE: Event log disable

Details

When the event log is disabled (eventlog.DISABLE or 0), no new events are added to the event log. You can,
however, read and remove existing events.
When the event log is enabled, new events are logged.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-250 3700AS-901-01 Rev. B/May 2013

Example

print(eventlog.enable)
eventlog.enable = eventlog.DISABLE
print(eventlog.enable)

Displays the present status of the Series
3700A event log.

Output:
1.00000e+00
0.00000e+00

Also see

eventlog.all() (on page 8-247)
eventlog.clear() (on page 8-248)
eventlog.count (on page 8-249)
eventlog.next() (on page 8-250)
eventlog.overwritemethod (on page 8-251)

eventlog.next()
This function returns the oldest message from the event log and removes it from the log.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

logString = eventlog.next()

logString The next log entry

Details

Returns the next entry from the event log and removes it from the log.
If there are no entries in the event log, returns the value nil.

Example 1

print(eventlog.next())

Get the oldest message in the event log and remove that entry from the log.
Output:
17:28:22.085 10 Oct 2009, LAN2, 192.168.1.102, LXI, 0, 1192037134, <no time>, 0,

0x0

Example 2

print(eventlog.next())

If you send this command when there is nothing in the event log, you will get the following output:
nil

Also see

eventlog.all() (on page 8-247)
eventlog.clear() (on page 8-248)
eventlog.count (on page 8-249)
eventlog.enable (on page 8-249)
eventlog.overwritemethod (on page 8-251)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-251

eventlog.overwritemethod
This attribute controls how the event log processes events if the event log is full.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script
Save setup

1
(eventlog.DISCARD_OLDEST)

Usage

method = eventlog.overwritemethod
eventlog.overwritemethod = method

method Set to one of the following values:
• 0 or eventlog.DISCARD_NEWEST: New entries are not logged
• 1 or eventlog.DISCARD_OLDEST: Old entries are deleted as new events are logged

Details

When this attribute is set to eventlog.DISCARD_NEWEST, new entries are not logged.
When this attribute is set to eventlog.DISCARD_OLDEST, the oldest entry is discarded when a new entry is
added.

Example

eventlog.overwritemethod = 0 When the log is full, the event log will ignore
new entries.

Also see

eventlog.all() (on page 8-247)
eventlog.clear() (on page 8-248)
eventlog.count (on page 8-249)
eventlog.enable (on page 8-249)
eventlog.next() (on page 8-250)

exit()
This function stops a script that is presently running.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

exit()

Details

Terminates script execution when called from a script that is being executed.
This command does not wait for overlapped commands to complete before terminating script execution. If
overlapped commands are required to finish, use the waitcomplete() function before calling exit().

Also see

waitcomplete() (on page 8-466)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-252 3700AS-901-01 Rev. B/May 2013

fileVar:close()
This function closes the file that is represented by the fileVar variable.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

fileVar:close()

fileVar The file descriptor variable to close

Details

This command is equivalent to io.close(fileVar).
Note that files are automatically closed when the file descriptors are garbage collected.

Also see

File I/O (on page 3-25)
fileVar:flush() (on page 8-252)
fileVar:read() (on page 8-253)
fileVar:seek() (on page 8-254)
fileVar:write() (on page 8-254)
io.close() (on page 8-262)
io.open() (on page 8-264)

fileVar:flush()
This function writes buffered data to a file.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

fileVar:flush()

fileVar The file descriptor variable to flush

Details

The fileVar:write() or io.write() functions buffer data, which may not be written immediately to the
USB flash drive. Use fileVar:flush() to flush this data. Using this function removes the need to close a file
after writing to it, allowing the file to be left open to write more data. Data may be lost if the file is not closed or
flushed before a script ends.
If there is going to be a time delay before more data is written to a file, and you want to keep the file open, flush
the file after you write to it to prevent loss of data.

Also see

File I/O (on page 3-25)
fileVar:write() (on page 8-254)
io.open() (on page 8-264)
io.write() (on page 8-266)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-253

fileVar:read()
This function reads data from a file.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

data1 = fileVar:read()
data1 = fileVar:read(format1)
data1, data2 = fileVar:read(format1, format2)
data1, ..., datan = fileVar:read(format1, ..., formatn)

data1 First data read from the file
data2 Second data read from the file
datan Last data read from the file
fileVar The descriptor of the file to be read
format1 A string or number indicating the first type of data to be read
format2 A string or number indicating the second type of data to be read
formatn A string or number indicating the last type of data to be read
... One or more entries (or values) separated by commas

Details

The format parameters may be any of the following:
"*n": Returns a number.
"*a": Returns the whole file, starting at the current position (returns an empty string if the current file position is
at the end of the file).
"*l": Returns the next line, skipping the end of line; returns nil if the current file position is at the end of file.
n: Returns a string with up to n characters; returns an empty string if n is zero; returns nil if the current file
position is at the end of file.
If no format parameters are provided, the function will perform as if the function is passed the value "*l".
Any number of format parameters may be passed to this command, each corresponding to a returned data
value.

Also see

File I/O (on page 3-25)
fileVar:write() (on page 8-254)
io.input() (on page 8-263)
io.open() (on page 8-264)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-254 3700AS-901-01 Rev. B/May 2013

fileVar:seek()
This function sets and gets a file's current position.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

position, errorMsg = fileVar:seek()
position, errorMsg = fileVar:seek(whence)
position, errorMsg = fileVar:seek(whence, offset)

position The new file position, measured in bytes from the beginning of the file
errorMsg A string containing the error message
fileVar The file descriptor variable
whence A string indicating the base against which offset is applied; the default is

"cur"
offset The intended new position, measured in bytes from a base indicated by

whence (default is 0)

Details

The whence parameters may be any of the following:
"set": Beginning of file
"cur": Current position
"end": End of file
If an error is encountered, it is logged to the error queue, and the command returns nil and the error string.

Also see

File I/O (on page 3-25)
io.open() (on page 8-264)

fileVar:write()
This function writes data to a file.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

fileVar:write(data)
fileVar:write(data1, data2)
fileVar:write(data1, ..., datan)

fileVar The file descriptor variable
data Write all data to the file
data1 The first data to write to the file
data2 The second data to write to the file
datan The last data to write to the file
... One or more entries (or values) separated by commas

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-255

Details

This function may buffer data until a flush (fileVar:flush() or io.flush()) or close (fileVar:close()
or io.close()) operation is performed.

Also see

File I/O (on page 3-25)
fileVar:close() (on page 8-252)
fileVar:flush() (on page 8-252)
io.close() (on page 8-262)
io.flush() (on page 8-262)
io.open() (on page 8-264)

format.asciiprecision
This attribute sets the precision (number of digits) for all numbers returned in the ASCII format.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) No Instrument reset
Recall setup

Create configuration script
Save setup

***need to define ASCIIPrecision
variable***

Usage

precision = format.asciiprecision
format.asciiprecision = precision

precision A number representing the number of digits to be printed for numbers printed with
the print(), printbuffer(), and printnumber() functions; must be a
number between 1 and 16

Details

This attribute specifies the precision (number of digits) for numeric data printed with the print(),
printbuffer(), and printnumber() functions. The format.asciiprecision attribute is only used with
the ASCII format. The precision value must be a number between 1 and 16.
Note that the precision is the number of significant digits printed. There is always one digit to the left of the
decimal point; be sure to include this digit when setting the precision.

Example

format.asciiprecision = 10
x = 2.54
printnumber(x)
format.asciiprecision = 3
printnumber(x)

Output:
2.540000000e+00

2.54e+00

Also see

format.byteorder (on page 8-256)
format.data (on page 8-257)
print() (on page 8-306)
printbuffer() (on page 8-307)
printnumber() (on page 8-310)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-256 3700AS-901-01 Rev. B/May 2013

format.byteorder
This attribute sets the binary byte order for the data that is printed using the printnumber() and
printbuffer() functions.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset Create configuration script format.LITTLEENDIAN

Usage

order = format.byteorder
format.byteorder = order

order Byte order value as follows:
• Most significant byte first: 0, format.NORMAL, format.NETWORK, or

format.BIGENDIAN
• Least significant byte first: 1, format.SWAPPED or format.LITTLEENDIAN

Details

This attribute selects the byte order in which data is written when you are printing data values with the
printnumber() and printbuffer() functions. The byte order attribute is only used with the
format.SREAL, format.REAL, format.REAL32, and format.REAL64 data formats.
format.NORMAL, format.BIGENDIAN, and format.NETWORK select the same byte order. format.SWAPPED
and format.LITTLEENDIAN select the same byte order. Selecting which to use is a matter of preference.
Select the format.SWAPPED or format.LITTLEENDIAN byte order when sending data to a computer with a
Microsoft Windows operating system.

Example

x = 1.23
format.data = format.REAL32
format.byteorder = format.LITTLEENDIAN
printnumber(x)
format.byteorder = format.BIGENDIAN
printnumber(x)

Output depends on the terminal program
you use, but will look something like:
#0¤p??
#0??p¤

Also see

format.asciiprecision (on page 8-255)
format.data (on page 8-257)
printbuffer() (on page 8-307)
printnumber() (on page 8-310)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-257

format.data
This attribute sets the data format for data that is printed using the printnumber() and printbuffer()
functions.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) No Instrument reset
Recall setup

Create configuration script
Saved setup

1 (format.ASCII)

Usage

value = format.data
format.data = value

value The format to use for data, set to one of the following values:
• ASCII format: 1 or format.ASCII
• Single-precision IEEE Std 754 binary format: 2, format.SREAL, or format.REAL32
• Double-precision IEEE Std 754 binary format: 3, format.REAL, format.REAL64, or

format.DREAL

Details

The precision of numeric values can be controlled with the format.asciiprecision attribute. The byte order
of format.SREAL, format.REAL, format.REAL32, and format.REAL64 can be selected with the
format.byteorder attribute.
REAL32 and SREAL select the same single precision format. REAL and REAL64 select the same double
precision format. They are alternative identifiers. Selecting which to use is a matter of preference.
The IEEE Std 754 binary formats use four bytes for single-precision values and eight bytes for double-precision
values.
When data is written with any of the binary formats, the response message starts with “#0” and ends with a new
line. When data is written with the ASCII format, elements are separated with a comma and space.

Binary formats are not intended to be interpreted by humans.

Example

format.asciiprecision = 10
x = 3.14159265
format.data = format.ASCII
printnumber(x)
format.data = format.REAL64
printnumber(x)

Output a number represented by x in ASCII
using a precision of 10, then output the
same number in binary using double
precision format.
Output:
3.141592650e+00
#0ñÔÈSû! @

Also see

format.asciiprecision (on page 8-255)
format.byteorder (on page 8-256)
printbuffer() (on page 8-307)
printnumber() (on page 8-310)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-258 3700AS-901-01 Rev. B/May 2013

fs.chdir()
This function sets the current working directory.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

workingDirectory = fs.chdir(path)

workingDirectory Returned value containing the working path

path A string indicating the new working directory path

Details

The new working directory path may be absolute or relative to the current working directory.
An error is logged to the error queue if the given path does not exist.

Example

testPath = fs.chdir("/usb1/") Change the working directory to usb1.

Also see

None

fs.cwd()
This function returns the absolute path of the current working directory.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

path = fs.cwd()

path The absolute path of the current working directory

Also see

File I/O (on page 3-25)

fs.is_dir()
This function tests whether or not the specified path refers to a directory.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-259

Usage

status = fs.is_dir(path)

status Whether or not the given path is a directory (true or false)

path The path of the file system entry to test

Details

The file system path may be absolute or relative to the current working system path.
An error is logged to the error queue if the given path does not exist.

Also see

File I/O (on page 3-25)
fs.is_file() (on page 8-259)

fs.is_file()
Tests whether the specified path refers to a file (as opposed to a directory).

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

status = fs.is_file(path)

status true if the given path is a file; otherwise, false

path The path of the file system entry to test

Details

The file system path may be absolute or relative to the current working system path.
An error is logged to the error queue if the given path does not exist.

Also see

File I/O (on page 3-25)
fs.is_dir() (on page 8-258)

fs.mkdir()
This function creates a directory at the specified path.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

path = fs.mkdir(newPath)

path The returned path of the new directory
newpath Location (path) of where to create the new directory

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-260 3700AS-901-01 Rev. B/May 2013

Details

The directory path may be absolute or relative to the current working directory.
An error is logged to the error queue if the parent folder of the new directory does not exist, or if a file system
entry already exists at the given path.

Also see

File I/O (on page 3-25)
fs.rmdir() (on page 8-260)

fs.readdir()
This function returns a list of the file system entries in the directory.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

files = fs.readdir(path)

files A table containing the names of all the file system entries in the specified
directory

path The directory path

Details

The directory path may be absolute or relative to the current working directory.
This command is nonrecursive. For example, entries in subfolders are not returned.
An error is logged to the error queue if the given path does not exist or does not represent a directory.

Also see

File I/O (on page 3-25)

fs.rmdir()
This function removes a directory from the file system.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

fs.rmdir(path)

path The path of the directory to remove

Details

This path may be absolute or relative to the present current directory.
An error is logged to the error queue if the given path does not exist, or does not represent a directory, or if the
directory is not empty.

Also see

File I/O (on page 3-25)
fs.mkdir() (on page 8-259)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-261

gettimezone()
This function retrieves the local time zone.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

timeZone = gettimezone()

timeZone The local timezone of the instrument

Details

See settimezone() for additional details about the time zone format and a description of the fields.
timeZone can be in either of the following formats:

• If one parameter was used with settimezone(), the format used is:
GMThh:mm:ss

• If four parameters were used with settimezone(), the format used is:
GMThh:mm:ssGMThh:mm:ss,Mmm.w.dw/hh:mm:ss,Mmm.w.dw/hh:mm:ss

Example

timezone = gettimezone() Reads the value of the local timezone.

Also see

settimezone() (on page 8-367)

gpib.address
This attribute contains the GPIB address.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) No Not applicable Nonvolatile memory 16

Usage

address = gpib.address
gpib.address = address

address The GPIB address of the instrument (0 to 30)

Details

The GPIB address value is set to 16 at the factory. The address can be set to any address value between 0 and
30. However, the address must be unique in the system. It cannot conflict with an address that is assigned to
another instrument or to the GPIB controller.
A new GPIB address takes effect when the command to change it is processed. If there are response messages
in the output queue when this command is processed, they must be read at the new address.
If command messages are being queued (sent before this command has executed), the new settings may take
effect in the middle of a subsequent command message, so care should be exercised when setting this attribute
from the GPIB interface.
You should allow ample time for the command to be processed before attempting to communicate with the
instrument again. After sending this command, make sure to use the new address to communicate with the
instrument.
The reset() function does not affect the GPIB address.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-262 3700AS-901-01 Rev. B/May 2013

Example

gpib.address = 26
address = gpib.address
print(address)

Sets the GPIB address and reads the address.
Output:
2.600000e+01

Also see

GPIB setup (on page 2-58)

io.close()
This function closes a file.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes (see Details)

Usage

io.close()
io.close(file)

file The descriptor of the file to close

Details

If a file is not specified, the default output file closes.
Only io.close(), used without specifying a parameter, can be accessed from a remote node.

Example

testFile, testError = io.open("testfile.txt", "w")
if nil == testError then
 testFile:write("This is my test file")
 io.close(testFile)
end

Opens file testfile.txt
for writing. If no errors were
found while opening, writes
"This is my test
file" and closes the file.

Also see

fileVar:close (see "fileVar:close()" on page 8-252)
Script examples (on page 3-27)
io.open() (on page 8-264)

io.flush()
This function saves buffered data to a file.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

io.flush()

Details

You must use the io.flush() or io.close() functions to write data to the file system.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-263

Data is not automatically written to a file when you use the io.write() function. The io.write()
function buffers data; it may not be written to the USB drive immediately. Use the io.flush()
function to immediately write buffered data to the drive.

This function only flushes the default output file.
Using this command removes the need to close a file after writing to it and allows it to be left open to write more
data. Data may be lost if the file is not closed or flushed before an application ends. To prevent the loss of data if
there is going to be a time delay before more data is written (and when you want to keep the file open and not
close it), flush the file after writing to it.

Also see

Script examples (on page 3-27)
fileVar:flush() (on page 8-252)
fileVar:write() (on page 8-254)
io.write() (on page 8-266)

io.input()
This function assigns a previously opened file, or opens a new file, as the default input file.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes (see Details)

Usage

fileVar = io.input()
fileVar = io.input(newfile)

fileVar The descriptor of the input file or an error message (if the function fails)
newfile A string representing the path of a file to open as the default input file, or the

file descriptor of an open file to use as the default input file

Details

The newfile path may be absolute or relative to the current working directory.
When using this function from a remote TSP-Link® node, this command does not accept a file descriptor and
does not return a value.
If the function fails, an error message is returned.

Also see

Script examples (on page 3-27)
io.open() (on page 8-264)
io.output() (on page 8-264)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-264 3700AS-901-01 Rev. B/May 2013

io.open()
This function opens a file for later reference.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

fileVar, errorMsg = io.open(path)
fileVar, errorMsg = io.open(path, mode)

fileVar The descriptor of the opened file
errorMsg Indicates whether an error was encountered while processing the

function
path The path of the file to open
mode A string representing the intended access mode ("r" = read,

"w" = write, and "a" = append)

Details

The path to the file to open may be absolute or relative to the current working directory. If you successfully open
the file, errorMsg is nil and fileVar has the descriptor that can be used to access the file.
If an error is encountered, the command returns nil for fileVar and an error string.

Example

testFile, testError = io.open("testfile.txt", "w")
if testError == nil then
 testFile:write("This is my test file")
 io.close(testFile)
end

Opens file testfile.txt for
writing. If no errors were found
while opening, writes "This is
my test file" and closes the
file.

Also see

Script examples (on page 3-27)
fileVar:close (see "fileVar:close()" on page 8-252)
io.close() (on page 8-262)

io.output()
This function assigns a previously opened file or opens a new file as the default output file.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes (see Details)

Usage

fileVar = io.output()
fileVar = io.output(newfile)

fileVar The descriptor of the output file or an error message (if the function fails)

newfile A file descriptor to assign (or the path of a file to open) as the default output
file

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-265

Details

The path of the file to open may be absolute or relative to the current working directory.
When accessed from a remote node using the TSP-Link network, this command does not accept a file descriptor
parameter and does not return a value.
If the function fails, an error message is returned.

Also see

Script examples (on page 3-27)
io.input() (on page 8-263)
io.open() (on page 8-264)

io.read()
This function reads data from the default input file.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

data1 = io.read()
data1 = io.read(format1)
data1, data2 = io.read(format1, format2)
data1, ..., dataN = io.read(format1, ..., formatN)

data1 The data read from the file
data2 The data read from the file
dataN The data read from the file; the number of return values matches the number

of format values given
format1 A string or number indicating the type of data to be read
format2 A string or number indicating the type of data to be read
formatN A string or number indicating the type of data to be read
... One or more entries (or values) separated by commas

Details

The format parameters may be any of the following:

Format parameter Description

"*N" Returns a number

"*a" Returns the whole file, starting at the present position; returns an empty string if it is at the
end of file

"*l" Returns the next line, skipping the end of line; returns nil if the present file position is at the
end of file

N Returns a string with up to N characters; returns an empty string if N is zero (0); returns nil if
the present file position is at the end of file

Any number of format parameters may be passed to this command, each corresponding to a returned data
value.
If no format parameters are provided, the function will perform as if the function was passed the value "*l".

Also see

fileVar:read() (on page 8-253)
Script examples (on page 3-27)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-266 3700AS-901-01 Rev. B/May 2013

io.type()
This function checks whether or not a given object is a file handle.

Type TSP-Link accessible Affected by Where saved Default value

Function No

Usage

type = io.type(obj)

type Indicates whether the object is an open file handle
obj Object to check

Details

Returns the string "file" if the object is an open file handle. If it is not an open file handle, nil is returned.

Also see

Script examples (on page 3-27)
io.open() (on page 8-264)

io.write()
This function writes data to the default output file.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

io.write()
io.write(data1)
io.write(data1, data2)
io.write(data1, ..., dataN)

data1 The data to be written
data2 The data to be written
dataN The data to be written
... One or more values separated by commas

Details

All data parameters must be either strings or numbers.

Data is not immediately written to a file when you use the io.write() function. The io.write()
function buffers data; it may not be written to the USB drive immediately. Use the io.flush()
function to immediately write buffered data to the drive.

Also see

Script examples (on page 3-27)
io.flush() (on page 8-262)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-267

lan.applysettings()
This function re-initializes the LAN interface with new settings.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

lan.applysettings()

Details

Disconnects all existing LAN connections to the instrument and re-initializes the LAN with the present
configuration settings.
This function initiates a background operation. LAN configuration could be a lengthy operation. Although the
function returns immediately, the LAN initialization continues to run in the background.
Even though the LAN configuration settings may not have changed since the LAN was last connected, new
settings may take effect due to the dynamic nature of dynamic host configuration protocol (DHCP) or dynamic
link local addressing (DLLA) configuration.
Re-initialization takes effect even if the configuration has not changed since the last time the instrument
connected to the LAN.

Example

lan.applysettings() Re-initialize the LAN interface with new settings.

Also see

None

lan.config.dns.address[N]
Configures DNS server IP addresses.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes LAN restore defaults Nonvolatile memory "0.0.0.0"

Usage

dnsAddress = lan.config.dns.address[N]
lan.config.dns.address[N] = dnsAddress

dnsAddress DNS server IP address

N Entry index (1 or 2)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-268 3700AS-901-01 Rev. B/May 2013

Details

This attribute is an array of DNS (domain name system) server addresses. These addresses take priority for
DNS lookups and are consulted before any server addresses that are obtained using DHCP. This allows local
DNS servers to be specified that take priority over DHCP-configured global DNS servers.
You can specify up to two addresses. The address specified by 1 is consulted first for DNS lookups.
dnsAddress must be a string specifying the DNS server’s IP address in dotted decimal notation.
Unused entries are returned as "0.0.0.0" when read. To disable an entry, set its value to "0.0.0.0" or the
empty string "".
Although only two address may be manually specified here, the instrument will use up to three DNS server
addresses. If two are specified here, only one that is given by a DHCP server is used. If no entries are specified
here, up to three addresses that are given by a DHCP server are used.

Example

dnsaddress = "164.109.48.173"
lan.config.dns.address[1] = dnsaddress

Configure DNS address 1 to
"164.109.48.173"

Also see

lan.config.dns.domain (on page 8-268)
lan.config.dns.dynamic (on page 8-269)
lan.config.dns.hostname (on page 8-269)
lan.config.dns.verify (on page 8-270)
lan.restoredefaults() (on page 8-274)

lan.config.dns.domain
Configures the dynamic DNS domain.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes LAN restore defaults Nonvolatile memory ""

Usage

domain = lan.config.dns.domain
lan.config.dns.domain = domain

domain Dynamic DNS registration domain; use a string of 255 characters or less

Details

This attribute holds the domain to request during dynamic DNS registration. Dynamic DNS registration works
with DHCP to register the domain specified in this attribute with the DNS server.
The length of the fully qualified host name (combined length of the domain and host name with separator
characters) must be less than or equal to 255 characters. Although up to 255 characters are allowed, you must
make sure the combined length is also no more than 255 characters.

Example

print(lan.config.dns.domain) Outputs the present dynamic DNS domain. For
example, if the domain is "Matrix", the response
would be:
Matrix

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-269

Also see

lan.config.dns.dynamic (on page 8-269)
lan.config.dns.hostname (on page 8-269)
lan.config.dns.verify (on page 8-270)
lan.restoredefaults() (on page 8-274)

lan.config.dns.dynamic
Enables or disables the dynamic DNS registration.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes LAN restore defaults Nonvolatile memory 1 (lan.ENABLE)

Usage

state = lan.config.dns.dynamic
lan.config.dns.dynamic = state

state The dynamic DNS registration state. It may be one of the following values:
1 or lan.ENABLE: Enabled
0 or lan.DISABLE: Disabled

Details

Dynamic DNS registration works with DHCP to register the host name with the DNS server. The host name is
specified in the lan.config.dns.hostname attribute.

Example

print(lan.config.dns.dynamic) Outputs the dynamic registration state.

If dynamic DNS registration is enabled, the
response is:
1.00000e+00

Also see

lan.config.dns.hostname (on page 8-269)
lan.restoredefaults() (on page 8-274)

lan.config.dns.hostname
This attribute defines the dynamic DNS host name.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile memory Instrument specific
(see Details)

Usage

hostName = lan.config.dns.hostname
lan.config.dns.hostname = hostName

hostName The host name to use for dynamic DNS registration; the host name must:
• be a string of 15 characters or less
• start with a letter
• end with a letter or digit
• contain only letters, digits, and hyphens

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-270 3700AS-901-01 Rev. B/May 2013

Details

This attribute holds the host name to request during dynamic DNS registration. Dynamic DNS registration works
with DHCP to register the host name specified in this attribute with the DNS server.
The factory default value for hostName is "K-<model number>-<serial number>", where <model
number> and <serial number> are replaced with the actual model number and serial number of the
instrument (for example, "K-3706A-1234567"). Note that hyphens separate the characters of hostName.
The length of the fully qualified host name (combined length of the domain and host name with separator
characters) must be less than or equal to 255 characters. Although up to 15 characters can be entered here,
care must be taken to be sure the combined length is no more than 255 characters.
Setting this attribute to an empty string (in other words, setting this attribute to a string of length zero, or one
consisting entirely of whitespace characters) will revert the host name to the factory default value.

Example

print(lan.config.dns.hostname) Outputs the present dynamic DNS host name.

Also see

lan.config.dns.dynamic (on page 8-269)
lan.restoredefaults() (on page 8-274)

lan.config.dns.verify
This attribute defines the DNS host name verification state.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes LAN restore defaults Nonvolatile memory 1 (lan.ENABLE)

Usage

state = lan.config.dns.verify
lan.config.dns.verify = state

state DNS hostname verification state:
1 or lan.ENABLE: DNS host name verification enabled
0 or lan.DISABLE: DNS host name verification disabled

Details

When this is enabled, the instrument performs DNS lookups to verify that the DNS host name matches the value
specified by lan.config.dns.hostname.

Example

print(lan.config.dns.verify) Outputs the present DNS host name verification
state.

If it is enabled, the output is:
1.00000e+00

Also see

lan.config.dns.hostname (on page 8-269)
lan.restoredefaults() (on page 8-274)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-271

lan.config.gateway
This attribute contains the LAN default gateway address.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes LAN restore defaults Nonvolatile memory "0.0.0.0"

Usage

gatewayAddress = lan.config.gateway
lan.config.gateway = gatewayAddress

gatewayAddress LAN default gateway address; must be a string specifying the default
gateway’s IP address in dotted decimal notation

Details

This attribute specifies the default gateway IP address to use when manual or DLLA configuration methods are
used to configure the LAN. If DHCP is enabled, this setting is ignored.
This attribute does not indicate the actual setting that is presently in effect. Use the lan.status.gateway
attribute to determine the present operating state of the LAN.
The IP address must be formatted in four groups of numbers, each separated by a decimal.

Example

print(lan.config.gateway) Outputs the default gateway address. For example,
you might see the output:
192.168.0.1

Also see

lan.restoredefaults() (on page 8-274)
lan.status.gateway (on page 8-277)

lan.config.ipaddress
This command specifies the LAN IP address.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes LAN restore defaults Nonvolatile memory "192.168.0.2"

Usage

ipAddress = lan.config.ipaddress
lan.config.ipaddress = ipAddress

ipAddress LAN IP address; must be a string specifying the IP address in dotted decimal
notation

Details

This command specifies the LAN IP address to use when the LAN is configured using the manual configuration
method. This setting is ignored when DLLA or DHCP is used.
This attribute does not indicate the actual setting that is presently in effect. Use the lan.status.ipaddress
attribute to determine the present operating state of the LAN.

Example

ipaddress = lan.config.ipaddress Retrieves the presently set LAN IP address.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-272 3700AS-901-01 Rev. B/May 2013

Also see

lan.restoredefaults() (on page 8-274)
lan.status.ipaddress (on page 8-277)

lan.config.method
This attribute contains the LAN settings configuration method.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes LAN restore defaults Nonvolatile memory 0 (lan.AUTO)

Usage

method = lan.config.method
lan.config.method = method

method The method for configuring LAN settings; it can be one of the following
values:
0 or lan.AUTO: Selects automatic sequencing of configuration methods
1 or lan.MANUAL: Use only manually specified configuration settings

Details

This attribute controls how the LAN IP address, subnet mask, default gateway address, and DNS server
addresses are determined.
When method is lan.AUTO, the instrument first attempts to configure the LAN settings using dynamic host
configuration protocol (DHCP). If DHCP fails, it tries dynamic link local addressing (DLLA). If DLLA fails, it uses
the manually specified settings.
When method is lan.MANUAL, only the manually specified settings are used. Neither DHCP nor DLLA are
attempted.

Example

print(lan.config.method) Outputs the current method.
For example:
1.00000e+00

Also see

lan.restoredefaults() (on page 8-274)

lan.config.subnetmask
This attribute contains the LAN subnet mask.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes LAN restore defaults Nonvolatile memory "255.255.255.0"

Usage

mask = lan.config.subnetmask
lan.config.subnetmask = mask

mask String that specifies the LAN subnet mask value in dotted decimal notation

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-273

Details

This attribute specifies the LAN subnet mask that will be used when the manual configuration method is used to
configure the LAN. This setting is ignored when DLLA or DHCP is used.
This attribute does not indicate the actual setting presently in effect. Use the lan.status.subnetmask
attribute to determine the present operating state of the LAN.

Example

print(lan.config.subnetmask) Outputs the LAN subnet mask, such as:
255.255.255.0

Also see

lan.restoredefaults() (on page 8-274)
lan.status.subnetmask (on page 8-281)

lan.lxidomain
This attribute contains the LXI domain.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes LAN restore defaults Nonvolatile memory 0

Usage

domain = lan.lxidomain
lan.lxidomain = domain

domain The LXI domain number (0 to 255)

Details

This attribute sets the LXI domain number.
All outgoing LXI packets will be generated with this domain number. All inbound LXI packets will be ignored
unless they have this domain number.

Example

print(lan.lxidomain) Displays the LXI domain.

Also see

lan.restoredefaults() (on page 8-274)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-274 3700AS-901-01 Rev. B/May 2013

lan.nagle
This attribute controls the state of the LAN Nagle algorithm.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Power cycle Not saved 0 (lan.DISABLE)

Usage

state = lan.nagle
lan.nagle = state

state 1 or lan.ENABLE: Enable the LAN Nagle algorithm for TCP connections
0 or lan.DISABLE: Disable the Nagle algorithm for TCP connections

Details

This attribute enables or disables the use of the LAN Nagle algorithm on transmission control protocol (TCP)
connections.

Also see

lan.restoredefaults() (on page 8-274)

lan.reset()
This function resets the LAN interface.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

lan.reset()

Details

This function resets the LAN interface. It performs the commands lan.restoredefaults() and
lan.applysettings().

Also see

lan.applysettings() (on page 8-267)
lan.restoredefaults() (on page 8-274)

lan.restoredefaults()
This function resets LAN settings to default values.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

lan.restoredefaults()

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-275

Details

The settings that are restored are shown in the following table.

Settings that are restored to default

Attribute Default setting

lan.config.dns.address[N] "0.0.0.0"
lan.config.dns.domain ""
lan.config.dns.dynamic lan.ENABLE

lan.config.dns.hostname "K-<model number>-<serial number>"

lan.config.dns.verify lan.ENABLE

lan.config.gateway "0.0.0.0"
lan.config.ipaddress "0.0.0.0"

lan.config.method lan.AUTO

lan.config.subnetmask "255.255.255.0"
lan.lxidomain 0

localnode.password "admin"

The lan.restoredefaults() function does not reset the LAN password. The localnode.password
attribute controls the web password, which can be reset separately.
This command is run when lan.reset() is sent.

Example

lan.restoredefaults() Restores the LAN defaults.

Also see

lan.reset() (on page 8-274)
localnode.password (on page 8-295)

lan.status.dns.address[N]
This attribute contains the DNS server IP addresses.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

dnsAddress = lan.status.dns.address[N]

dnsAddress DNS server IP address
N Entry index (1, 2, or 3)

Details

This attribute is an array of DNS server addresses. The instrument can use up to three addresses.
Unused or disabled entries are returned as "0.0.0.0" when read. The dnsAddress returned is a string
specifying the IP address of the DNS server in dotted decimal notation.
You can only specify two addresses manually. However, the instrument uses up to three DNS server addresses.
If two are specified, only the one given by a DHCP server is used. If no entries are specified, up to three address
given by a DHCP server are used.
The value of lan.status.dns.address[1] is referenced first for all DNS lookups. The values of
lan.status.dns.address[2] and lan.status.dns.address[3] are referenced second and third,
respectively.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-276 3700AS-901-01 Rev. B/May 2013

Example

print(lan.status.dns.address[1]) Outputs DNS server address 1, for example:
164.109.48.173

Also see

lan.status.dns.name (on page 8-276)

lan.status.dns.name
This attribute contains the present DNS fully qualified host name.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

hostName = lan.status.dns.name

hostName Fully qualified DNS host name that can be used to connect to the instrument

Details

A fully qualified domain name (FQDN), sometimes referred to as an absolute domain name, is a domain name
that specifies its exact location in the tree hierarchy of the Domain Name System (DNS).
A FQDN is the complete domain name for a specific computer or host on the LAN. The FQDN consists of two
parts: the host name and the domain name.
If the DNS host name for an instrument is not found, this attribute stores the IP address in dotted decimal
notation.

Example

print(lan.status.dns.name) Outputs the dynamic DNS host name.

Also see

lan.config.dns.address[N] (on page 8-267)
lan.config.dns.hostname (on page 8-269)

lan.status.duplex
This attribute contains the duplex mode presently in use by the LAN interface.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

duplex = lan.status.duplex

duplex LAN duplex setting can be one of the following values:
0 or lan.HALF: half-duplex operation
1 or lan.FULL: full-duplex operation

Example

print(lan.status.duplex) Outputs the present LAN duplex mode, such as:
1.00000e+00

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-277

Also see

None

lan.status.gateway
This attribute contains the gateway address presently in use by the LAN interface.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

gatewayAddress = lan.status.gateway

gatewayAddress LAN gateway address presently being used

Details

The value of gatewayAddress is a string that indicates the IP address of the gateway in dotted decimal
notation.

Example

print(lan.status.gateway) Outputs the gateway address, such as:
192.168.0.1

Also see

lan.config.gateway (on page 8-271)

lan.status.ipaddress
This attribute contains the LAN IP address presently in use by the LAN interface.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

ipAddress = lan.status.ipaddress

ipAddress LAN IP address specified in dotted decimal notation

Details

The IP address is a character string that represents the IP address assigned to the instrument.

Example

print(lan.status.ipaddress) Outputs the LAN IP address currently in use, such
as:
192.168.0.2

Also see

lan.config.ipaddress (on page 8-271)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-278 3700AS-901-01 Rev. B/May 2013

lan.status.macaddress
This attribute contains the LAN MAC address.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

macAddress = lan.status.macaddress

macAddress The instrument MAC address

Details

The MAC address is a character string representing the instrument's MAC address in hexadecimal notation. The
string includes colons that separate the address octets (see Example).

Example

print(lan.status.macaddress) Outputs the MAC address of the instrument, for
example:
00:60:1A:00:00:57

Also see

None

lan.status.port.dst
This attribute contains the LAN dead socket termination port number.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

port = lan.status.port.dst

port Dead socket termination socket port number

Details

This attribute holds the TCP port number used to reset all other LAN socket connections.
To reset all LAN connections, open a connection to the DST port number.

Example

print(lan.status.port.dst) Outputs the LAN dead socket termination port
number, such as:
5.03000e+03

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-279

lan.status.port.rawsocket
This attribute contains the LAN raw socket connection port number.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

port = lan.status.port.rawsocket

port Raw socket port number

Details

Stores the TCP port number used to connect the instrument and to control the instrument over a raw socket
communication interface.

Example

print(lan.status.port.rawsocket) Outputs the LAN raw socket port number, such as:
5.02500e+03

Also see

None

lan.status.port.telnet
This attribute contains the LAN Telnet connection port number.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

port = lan.status.port.telnet

port Telnet port number

Details

This attribute holds the TCP port number used to connect to the instrument to control it over a Telnet interface.

Example

print(lan.status.port.telnet) Get the LAN Telnet connection port number.
Output:
2.30000e+01

Also see

None

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-280 3700AS-901-01 Rev. B/May 2013

lan.status.port.vxi11
This attribute contains the LAN VXI-11 connection port number.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

port = lan.status.port.vxi11

port LAN VXI-11 port number

Details

This attribute stores the TCP port number used to connect to the instrument over a VXI-11 interface.

Example

print(lan.status.port.vxi11) Outputs the VXI-11 number, such as:
1.02400e+03

Also see

None

lan.status.speed
This attribute contains the LAN speed.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

speed = lan.status.speed

speed LAN speed in Mbps, either 10 or 100

Details

This attribute indicates the transmission speed currently in use by the LAN interface.

Example

print(lan.status.speed) Outputs the instrument's transmission speed
presently in use, such as:
1.00000e+02

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-281

lan.status.subnetmask
This attribute contains the LAN subnet mask that is presently in use by the LAN interface.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

mask = lan.status.subnetmask

mask A string specifying the subnet mask in dotted decimal notation

Details

Use this attribute to determine the present operating state of the LAN. This attribute will return the present LAN
subnet mask value if the LAN is manually configured, or when DLLA or DHCP is used.

Example

print(lan.status.subnetmask) Outputs the subnet mask of the instrument that is
presently in use, such as:
255.255.255.0

Also see

lan.config.subnetmask (on page 8-272)

lan.trigger[N].assert()
This function simulates the occurrence of the trigger and generates the corresponding event ID.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

lan.trigger[N].assert()

N The LAN event number (1 to 8)

Details

Generates and sends a LAN trigger packet for the LAN event number specified.
Sets the pseudo line state to the appropriate state.
The following indexes provide the listed LXI events:

• 1:LAN0
• 2:LAN1
• 3:LAN2
• …
• 8:LAN7

Example

lan.trigger[5].assert() Creates a trigger with LAN packet 5.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-282 3700AS-901-01 Rev. B/May 2013

Also see

lan.lxidomain (on page 8-273)
lan.trigger[N].clear() (on page 8-282)
lan.trigger[N].mode (on page 8-286)
lan.trigger[N].overrun (on page 8-287)
lan.trigger[N].stimulus (on page 8-288)
lan.trigger[N].wait() (on page 8-291)
Understanding hardware value and pseudo line state

lan.trigger[N].clear()
This function clears the event detector for a trigger.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

lan.trigger[N].clear()

N The LAN event number to clear (1 to 8)

Details

The trigger event detector enters the detected state when an event is detected. This function clears a trigger
event detector and discards the previous history of the trigger packet.
This function clears all overruns associated with this LAN trigger.

Example

lan.trigger[5].clear() Clears the event detector with LAN packet 5.

Also see

lan.trigger[N].assert() (on page 8-281)
lan.trigger[N].overrun (on page 8-287)
lan.trigger[N].stimulus (on page 8-288)
lan.trigger[N].wait() (on page 8-291)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-283

lan.trigger[N].connect()
This function prepares the event generator for outgoing trigger events.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

lan.trigger[N].connect()

N The LAN event number (1 to 8)

Details

Prepares the event generator to send event messages. For TCP connections, this opens the TCP connection.
The event generator automatically disconnects when either the lan.trigger[N].protocol or
lan.trigger[N].ipaddress attributes for this event are changed.

Example

lan.trigger[1].protocol = lan.MULTICAST
lan.trigger[1].connect()
lan.trigger[1].assert()

Set the protocol for LAN trigger 1 to be
multicast when sending LAN triggers.
Then, after connecting the LAN trigger,
send a message on LAN trigger 1 by
asserting it.

Also see

lan.trigger[N].assert() (on page 8-281)
lan.trigger[N].ipaddress (on page 8-285)
lan.trigger[N].overrun (on page 8-287)
lan.trigger[N].protocol (on page 8-287)
lan.trigger[N].stimulus (on page 8-288)
lan.trigger[N].wait() (on page 8-291)

lan.trigger[N].connected
This attribute stores the LAN event connection state.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

connected = lan.trigger[N].connected

connected The LAN event connection state:
• true: Connected
• false: Not connected

N The LAN event number (1 to 8)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-284 3700AS-901-01 Rev. B/May 2013

Details

This read-only attribute is set to true when the LAN trigger is connected and ready to send trigger events
following a successful lan.trigger[N].connect() command; if the LAN trigger is not ready to send trigger
events, this value is false.
This attribute is also false when either lan.trigger[N].protocol or lan.trigger[N].ipaddress
attributes are changed or the remote connection closes the connection.

Example

lan.trigger[1].protocol = lan.MULTICAST
print(lan.trigger[1].connected)

Outputs true if connected, or false if not
connected.
Example output:
false

Also see

lan.trigger[N].connect() (on page 8-283)
lan.trigger[N].ipaddress (on page 8-285)
lan.trigger[N].protocol (on page 8-287)

lan.trigger[N].disconnect()
This function disconnects the LAN trigger.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

lan.trigger[N].disconnect()

N The LAN event number (1 to 8)

Details

For TCP connections, this closes the TCP connection.
The LAN trigger automatically disconnects when either the lan.trigger[N].protocol or
lan.trigger[N].ipaddress attributes for this event are changed.

Also see

lan.trigger[N].ipaddress (on page 8-285)
lan.trigger[N].protocol (on page 8-287)

lan.trigger[N].EVENT_ID
This constant is the event identifier used to route the LAN trigger to other subsystems (using stimulus properties).

Type TSP-Link accessible Affected by Where saved Default value
Constant Yes

Usage

lan.trigger[N].EVENT_ID

N The LAN event number (1 to 8)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-285

Details

Set the stimulus of any trigger event detector to the value of this constant to have it respond to incoming LAN
trigger packets.

Example

digio.trigger[14].stimulus =
lan.trigger[1].EVENT_ID

Route occurrences of triggers
on LAN trigger 1 to digital I/O
trigger 14.

Also see

None

lan.trigger[N].ipaddress
This attribute specifies the address (in dotted-decimal format) of UDP or TCP listeners.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
LAN trigger N reset
Recall setup

Create configuration script
Save setup

"0.0.0.0"

Usage

ipAddress = lan.trigger[N].ipaddress
lan.trigger[N].ipaddress = ipAddress

ipAddress The LAN address for this attribute as a string in dotted decimal notation

N A number specifying the LAN event number (1 to 8)

Details

Sets the IP address for outgoing trigger events.
Set to "0.0.0.0" for multicast.
After changing this setting, the lan.trigger[N].connect() command must be called before outgoing
messages can be sent.

Example

lan.trigger[3].protocol = lan.TCP
lan.trigger[3].ipaddress = "192.168.1.100"
lan.trigger[3].connect()

Set the protocol for LAN trigger 3 to be
lan.TCP when sending LAN triggers.
Use IP address "192.168.1.100" to
connect the LAN trigger.

Also see

lan.trigger[N].connect() (on page 8-283)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-286 3700AS-901-01 Rev. B/May 2013

lan.trigger[N].mode
This attribute sets the trigger operation and detection mode of the specified LAN event.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
LAN trigger N reset
Recall setup

Create configuration script
Save setup

0 (lan.TRIG_EITHER)

Usage

mode = lan.trigger[N].mode
lan.trigger[N].mode = mode

mode A number representing the trigger mode (0 to 7); see the Details section for
more information

N A number representing the LAN event number (1 to 8)

Details

This attribute controls the mode in which the trigger event detector and the output trigger generator operate on
the given trigger. These settings are intended to provide behavior similar to the digital I/O triggers.

LAN trigger mode values

Mode Number Trigger packets detected as
input

LAN trigger packet
generated for output
with a…

lan.TRIG_EITHER 0 Rising or falling edge (positive
or negative state)

negative state

lan.TRIG_FALLING 1 Falling edge (negative state) negative state
lan.TRIG_RISING 2 Rising edge (positive state) positive state
lan.TRIG_RISINGA 3 Rising edge (positive state) positive state
lan.TRIG_RISINGM 4 Rising edge (positive state) positive state
lan.TRIG_SYNCHRONOUS 5 Falling edge (negative state) positive state
lan.TRIG_SYNCHRONOUSA 6 Falling edge (negative state) positive state
lan.TRIG_SYNCHRONOUSM 7 Rising edge (positive state) negative state

lan.TRIG_RISING and lan.TRIG_RISINGA are the same.
lan.TRIG_RISING and lan.TRIG_RISINGM are the same.
Use of either lan.TRIG_SYNCHRONOUSA or lan.TRIG_SYNCHRONOUSM over lan.TRIG_SYNCHRONOUS is
preferred, as lan.TRIG_SYNCHRONOUS is provided for compatibility with other Keithley Instruments products.

Example

print(lan.trigger[1].mode) Outputs the present LAN trigger mode of LAN
event 1.

Also see

Digital I/O (on page 3-43)
TSP-Link system expansion interface (on page 7-45)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-287

lan.trigger[N].overrun
This attribute contains the event detector's overrun status.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes LAN trigger N clear
LAN trigger N reset
Instrument reset
Recall setup

Not applicable Not applicable

Usage

overrun = lan.trigger[N].overrun

overrun The trigger overrun state for the specified LAN packet (true or false)
N A number representing the LAN event number (1 to 8)

Details

This attribute indicates whether an event has been ignored because the event detector was already in the
detected state when the event occurred.
This is an indication of the state of the event detector built into the synchronization line itself. It does not indicate
if an overrun occurred in any other part of the trigger model, or in any other construct that is monitoring the event.
It also is not an indication of an output trigger overrun.

Example

overrun = lan.trigger[5].overrun
print(overrun)

Checks the overrun status of a trigger on LAN5 and
outputs the value, such as:
false

Also see

lan.trigger[N].assert() (on page 8-281)
lan.trigger[N].clear() (on page 8-282)
lan.trigger[N].stimulus (on page 8-288)
lan.trigger[N].wait() (on page 8-291)

lan.trigger[N].protocol
This attribute sets the LAN protocol to use for sending trigger messages.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
LAN trigger N reset
Recall setup

Create configuration script
Save setup

0 (lan.TCP)

Usage

protocol = lan.trigger[N].protocol
lan.trigger[N].protocol = protocol

protocol The protocol to use for the trigger's messages:
• 0 or lan.TCP
• 1 or lan.UDP
• 2 or lan.MULTICAST

N A number representing the LAN event number (1 to 8)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-288 3700AS-901-01 Rev. B/May 2013

Details

The LAN trigger listens for trigger messages on all supported protocols, but uses the designated protocol for
sending outgoing messages. After changing this setting, lan.trigger[N].connect() must be called before
outgoing event messages can be sent.
When the lan.MULTICAST protocol is selected, the lan.trigger[N].ipaddress attribute is ignored and
event messages are sent to the multicast address 224.0.23.159.

Example

print(lan.trigger[1].protocol) Get LAN protocol to use for sending trigger
messages for LAN event 1.

Also see

lan.trigger[N].connect() (on page 8-283)
lan.trigger[N].ipaddress (on page 8-285)

lan.trigger[N].pseudostate
This attribute sets the simulated line state for the LAN trigger.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
LAN trigger N reset
Recall setup

Create configuration script
Save setup

1

Usage

pseudostate = lan.trigger[N].pseudostate
lan.trigger[N].pseudostate = pseudostate

pseudostate The simulated line state (0 or 1)

N A number representing the LAN event number (1 to 8)

Details

This attribute can be set to initialize the pseudo line state to a known value.
Setting this attribute does not cause the LAN trigger to generate any events or output packets.

Example

print(lan.trigger[1].pseudostate) Get the present simulated line state for the LAN
event 1.

Also see

None

lan.trigger[N].stimulus
This attribute specifies events that cause this trigger to assert.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
LAN trigger N reset
Recall setup

Create configuration script
Recall setup

0

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-289

Usage

triggerStimulus = lan.trigger[N].stimulus
lan.trigger[N].stimulus = triggerStimulus

triggerStimulus The LAN event identifier used to trigger the event
N A number specifying the trigger packet over the LAN for which to set or query

the trigger source (1 to 8)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-290 3700AS-901-01 Rev. B/May 2013

Details

This attribute specifies which event causes a LAN trigger packet to be sent for this trigger. Set
triggerStimulus to one of the existing trigger event IDs shown in the following table.

Trigger event IDs

Trigger event ID Description

channel.trigger[N].EVENT_ID or 41
to 48

The trigger event generated by the channel trigger N.

digio.trigger[N].EVENT_ID or 1 to
14

An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

display.trigger.EVENT_ID or 39 The trigger key (TRIG) on the front panel is pressed.
dmm.trigger.EVENT_LIMIT1_HIGH or

53
A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 1.

dmm.trigger.EVENT_LIMIT1_LOW or
52

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 1.

dmm.trigger.EVENT_LIMIT2_HIGH or
55

A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 2.

dmm.trigger.EVENT_LIMIT2_LOW or
54

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 2.

trigger.EVENT_ID or 40 A *trg message on the active command interface. If
GPIB is the active command interface, a GET
message also generates this event.

trigger.blender[N].EVENT_ID or 58
to 59

A combination of events has occurred.

trigger.timer[N].EVENT_ID or 20
to 23

A delay expired.

tsplink.trigger[N].EVENT_ID or 17
to 19

An edge (either rising, falling, or either based on the
configuration of the line) on the TSP-Link trigger line.

lan.trigger[N].EVENT_ID or 29 to
36

A LAN trigger event has occurred.

scan.trigger.EVENT_SCAN_READY or
24

Scan ready event.

scan.trigger.EVENT_SCAN_START or
25

Scan start event.

scan.trigger.EVENT_CHANNEL_READY
or 28

Channel ready event.

scan.trigger.EVENT_MEASURE_COMP
or 56

Measure complete event.

scan.trigger.EVENT_SEQUENCE_COMP
or 50

Sequence complete event.

scan.trigger.EVENT_SCAN_COMP or
26

Scan complete event.

scan.trigger.EVENT_IDLE or 27 Idle event.

schedule.alarm[N].EVENT_ID or 37
to 38

Trigger event generated by the alarm N.

Use one of the text trigger event IDs (for example, digio.trigger[N].EVENT_ID) to set the
stimulus value rather than the numeric value. Doing this will make the code compatible for future
upgrades.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-291

Setting this attribute to zero disables automatic trigger generation.
If any events are detected prior to calling lan.trigger[N].connect(), the event is ignored and the action
overrun is set.

Example

lan.trigger[5].stimulus = trigger.timer[1].EVENT_ID Use timer 1 trigger event as
the source for LAN packet 5
trigger stimulus.

Also see

lan.trigger[N].assert() (on page 8-281)
lan.trigger[N].clear() (on page 8-282)
lan.trigger[N].connect() (on page 8-283)
lan.trigger[N].overrun (on page 8-287)
lan.trigger[N].wait() (on page 8-291)

lan.trigger[N].wait()
This function waits for an input trigger.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

triggered = lan.trigger[N].wait(timeout)

triggered Trigger detection indication
N The trigger packet over LAN to wait for (1 to 8)
timeout Maximum amount of time in seconds to wait for the trigger event

Details

If one or more trigger events have been detected since the last time lan.trigger[N].wait() or
lan.trigger[N].clear() was called, this function returns immediately.
After waiting for a LAN trigger event with this function, the event detector is automatically reset and rearmed
regardless of the number of events detected.

Example

triggered = lan.trigger[5].wait(3) Wait for a trigger with LAN packet 5 with a timeout of
3 seconds.

Also see

lan.trigger[N].assert() (on page 8-281)
lan.trigger[N].clear() (on page 8-282)
lan.trigger[N].overrun (on page 8-287)
lan.trigger[N].stimulus (on page 8-288)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-292 3700AS-901-01 Rev. B/May 2013

localnode.define.*
These constants indicate the number of available features (of each feature type) for each local node instrument.

Type TSP-Link accessible Affected by Where saved Default value
CONSTANT (R) - -

.MAX_TIMERS Yes

.MAX_DIO_LINES Yes

.MAX_TSPLINK_TRIGS Yes

.MAX_BLENDERS Yes

.MAX_BLENDER_INPUTS Yes

.MAX_LAN_TRIGS Yes

Usage

maxNumber = localnode.define.MAX_TIMERS
maxNumber = localnode.define.MAX_DIO_LINES
maxNumber = localnode.define.MAX_TSPLINK_TRIGS
maxNumber = localnode.define.MAX_BLENDERS
maxNumber = localnode.define.MAX_BLENDER_INPUTS
maxNumber = localnode.define.MAX_LAN_TRIGS
maxNumber = localnode.define.MAX_CHANNEL_TRIGS

maxNumber A variable assigned the value of the constant.; the constant equals the local node
instrument's maximum number available for the specified feature

Details

These read-only constants indicate the following types of features: timers, digital input/output lines, triggers, and
blenders. They provide the number of features available (which is the maximum) for the specified local node
feature.
When using this command from a remote node, localnode should be replaced with the node reference, for
example node[5].define.MAX_TIMERS.

Example 1

maxNumber = localnode.define.MAX_TIMERS Reads the maximum number of timers
that are available for the presently active
instrument.

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-293

localnode.description
This attribute stores a user-defined description and mDNS service name of the instrument.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile memory Instrument specific (see Details)

Usage

localnode.description = description
description = localnode.description

description User-defined description and mDNS service name of the instrument; use a string of
63 characters or less

Details

This attribute stores a string that contains a description of the instrument. This value appears on instrument's LXI
welcome page. The value of this attribute is also used as the instrument's mDNS service name.
This attribute's default value contains Keithley ModelNumber #SSSSSSSS, where: ModelNumber is the
instrument's model number, and #SSSSSSSS is the instrument's eight-digit serial number. You can change it to a
value that makes sense for your system. Setting this attribute to an empty string (in other words, setting this
attribute to a string of length zero, or one consisting entirely of whitespace characters) will revert the description
to the factory default value.
When using this command from a remote node, localnode should be replaced with the node reference, for
example node[5].description.

Example

description = "System in Lab 05"
localnode.description = description

Set description to "System in Lab 05".

Also see

None

localnode.emulation
This attribute sets the instrument to report the model number as 3706 instead of 3706A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) No Not applicable Nonvolatile memory localnode.OFF

Usage

value = localnode.emulation
localnode.emulation = value

value 0 or localnode.OFF: No emulation (model number is reported as 3706A).
1 or localnode.EMULATION_3706: Reports the model number as 3706.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-294 3700AS-901-01 Rev. B/May 2013

Details

This command needs to be set if you replace a Model 3706 with a Model 3706A in a system where computer
drivers may be querying the model. This can occur if you replace a Model 3706 with a Model 3706A in an
existing system, or if you duplicate a system but use a Model 3706A instead of a Model 3706.
When this command is set to localnode.EMULATION_3706, the model number is reported as a 3706 when
you send a request with a command such as localnode.model or *idn?. This allows drivers that query the
model number to continue to operate normally.

All other Model 3706A behavior is the same. Emulation mode does not affect the changes to the
IEEE-1588 features or the response times that occurred with the update from the Model 3706 to the
Model 3706A.

This setting is preserved through a power cycle and instrument reset.

Example

localnode.emulation = localnode.EMULATION_3706 Sets the Model 3706A for Model 3706
emulation.

Also see

localnode.model (on page 8-295)

localnode.linefreq
This attribute contains the power line frequency setting used for NPLC calculations.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable 60

Usage

frequency = localnode.linefreq

frequency An integer representing the instrument's detected line frequency

Details

When using this command from a remote node, localnode should be replaced with the node reference, for
example node[5].linefreq.

Example

frequency = localnode.linefreq Reads line frequency setting.

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-295

localnode.model
This attribute stores the model number.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

model = localnode.model

model The model number of the instrument

Details

When using this command from a remote node, replace localnode with the node reference, for example,
node[5].model.

Example

print(localnode.model) Outputs the model number of the local node. For example:

Also see

localnode.serialno (on page 8-299)

localnode.password
This attribute stores the remote access password.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (W) Yes LAN reset Nonvolatile memory "admin"

Usage

localnode.password = "password"

passWord A string that contains the remote interface password

Details

This write-only attribute stores the password that is set for any remote interface. When password usage is
enabled (localnode.passwordmode), you must supply a password to change the configuration or to control
an instrument from a web page or other remote command interface.

The instrument continues to use the old password for all interactions until the command to change it executes.
When changing the password, give the instrument time to execute the command before attempting to use the
new password.
You can retrieve the password from the front panel through MENU > LAN > STATUS > PASSWORD.

The password can be reset by resetting the LAN from the front panel or by using the lan.reset() command.
When using this command from a remote node, localnode should be replaced with the node reference, for
example, node[5].password.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-296 3700AS-901-01 Rev. B/May 2013

Example

localnode.password = "N3wpa55w0rd" Changes the remote interface password to
N3wpa55w0rd.

Also see

lan.reset() (on page 8-274)
localnode.passwordmode (on page 8-296)

localnode.passwordmode
This attribute stores the remote access password enable mode.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile memory 1 (localnode.PASSWORD_WEB)

Usage

mode = localnode.passwordmode
localnode.passwordmode = mode

mode The remote password enable mode

Details

This attribute controls if and where remote access passwords are required. Set this attribute to one of the values
below to enable password checking:
localnode.PASSWORD_NONE or 0: Disable passwords everywhere
localnode.PASSWORD_WEB or 1: Use passwords on the web interface only
localnode.PASSWORD_LAN or 2: Use passwords on the web interface and all LAN interfaces
localnode.PASSWORD_ALL or 3: Use passwords on the web interface and all remote command interfaces
When using this command from a remote node, localnode should be replaced with the node reference, for
example node[5].passwordmode.

Example

mode = localnode.PASSWORD_WEB
localnode.passwordmode = mode

Sets value of mode to PASSWORD_WEB.
Allows use of passwords on the web interface only.

Also see

localnode.password (on page 8-295)

localnode.prompts
This attribute sets and reads the local node prompting state (enabled or disabled).

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Power cycle Not saved 0 (disabled)

Usage

prompting = localnode.prompts
localnode.prompts = prompting

prompting Prompting state (0 to disable or 1 to enable)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-297

Details

The command messages do not generate prompts. The instrument generates prompts in response to command
messages.
When the prompting mode is enabled (set to 1), the instrument generates prompts in response to command
messages. There are three prompts that might be generated:

• TSP> is the standard prompt. This prompt indicates that everything is normal and the command is done
processing.

• TSP? is issued if there are entries in the error queue when the prompt is issued. Like the TSP> prompt,
it indicates the command is done processing. It does not mean the previous command generated an
error, only that there are still errors in the queue when the command was done processing.

• >>>> is the continuation prompt. This prompt is used when downloading scripts. When downloading
scripts, many command messages must be sent as a group. The continuation prompt indicates that the
instrument is expecting more messages as part of the current command.

When using this command from a remote node, localnode should be replaced with the node reference, for
example, node[5].prompts.

Do not disable prompting when using Test Script Builder. Test Script Builder requires prompts and
sets the prompting mode behind the scenes. If you disable prompting, using Test Script Builder
causes the instrument to stop responding because it is waiting for the prompt that lets it know that
the command is done executing.

Example

localnode.prompts = 1 Enable prompting.

Also see

localnode.prompts4882 (on page 8-297)
localnode.showerrors (on page 8-300)
tsplink.reset() <CTS2600B_only_start>tsplink.reset() <CTS2600B_only_end>

localnode.prompts4882
This attribute enables and disables the generation of prompts for IEEE Std 488.2 common commands.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Power cycle Not saved 1 (enabled)

Usage

prompting = localnode.prompts4882
localnode.prompts4882 = prompting

prompting IEEE Std 488.2 prompting mode

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-298 3700AS-901-01 Rev. B/May 2013

Details

When set to 1, the IEEE Std 488.2 common commands generate prompts if prompting is enabled with the
localnode.prompts attribute. If set to 1, limit the number of *trg commands sent to a running script to 50
regardless of the setting of the localnode.prompts attribute.
When set to 0, IEEE Std 488.2 common commands will not generate prompts. When using the *trg command
with a script that executes trigger.wait() repeatedly, set localnode.prompts4882 to 0 to avoid
problems associated with the command interface input queue filling.
This attribute resets to the default value each time the instrument power is cycled.
When using this command from a remote node, localnode should be replaced with the node reference, for
example node[5].prompts4882.

Example

localnode.prompts4882 = 0 Disables IEEE Std 488.2 common command prompting.

Also see

localnode.prompts (on page 8-296)

localnode.reset()
This function resets the local node instrument.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

localnode.reset()

Details

If you want to reset a specific instrument or a subordinate node, use the node[X].reset() command.
A local node reset includes a channel.reset("allslots"), dmm.reset("all") and a scan.reset().
In addition:

• Other settings are restored back to factory default settings
• Existing channel patterns and DMM configurations are deleted
• All channels and backplane relays are opened
• The dmm function is "dcvolts"
• User-created reading buffers are deleted

A localnode.reset() is different than a reset() because reset() resets the entire system.
When using this command from a remote node, localnode should be replaced with the node reference, for
example node[5].reset().

Example

localnode.reset() Resets the local node.

Also see

channel.reset() (on page 8-87)
dmm.reset() (on page 8-228)
reset() (on page 8-317)
scan.reset() (on page 8-334)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-299

localnode.revision
This attribute stores the firmware revision level.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

revision = localnode.revision

revision Firmware revision level

Details

This attribute indicates the revision number of the firmware that is presently running in the instrument.
When using this command from a remote node, localnode should be replaced with the node reference. For
example, node[5].revision.

Example

print(localnode.revision) Outputs the present revision level.
Sample output:
01.50b

Also see

localnode.description (on page 8-293)
localnode.model (on page 8-295)
localnode.serialno (on page 8-299)

localnode.serialno
This attribute stores the instrument's serial number.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

serialno = localnode.serialno

serialno The serial number of the instrument

Details

This indicates the instrument serial number.
When using this command from a remote node, localnode should be replaced with the node reference, for
example, node[5].serialno.

Example

display.clear()
display.settext(localnode.serialno)

Clears the instrument's display.
Places the instrument's serial number on the top line of its
display.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-300 3700AS-901-01 Rev. B/May 2013

Also see

localnode.description (on page 8-293)
localnode.model (on page 8-295)
localnode.revision (on page 8-299)

localnode.showerrors
This attribute sets whether or not the instrument automatically sends generated errors.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Power cycle Not saved 0 (disabled)

Usage

errorMode = localnode.showerrors
localnode.showerrors = errorMode

errorMode Enables (1) or disables (0) the show errors state

Details

If this attribute is set to 1, the instrument automatically sends any generated errors stored in the error queue, and
then clears the queue. Errors are processed after executing a command message (just before issuing a prompt,
if prompts are enabled).
If this attribute is set to 0, errors are left in the error queue and must be explicitly read or cleared.
When using this command from a remote node, localnode should be replaced with the node reference, for
example, node[5].showerrors.

Example

localnode.showerrors = 1 Enables sending of generated errors.

Also see

localnode.prompts (on page 8-296)

makegetter()
This function creates a function to get the value of an attribute.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

getter = makegetter(table, attributeName)

getter The return value
table Read-only table where the attribute is located
attributeName A string representing the name of the attribute

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-301

Details

This function is useful for aliasing attributes to improve execution speed. Calling the function created with
makegetter() executes faster than accessing the attribute directly.
Creating a getter function is only useful if it is going to be called several times. Otherwise, the overhead of
creating the getter function outweighs the overhead of accessing the attribute directly.

Example

getrange = makegetter(dmm, "range")
-- (intervening code)
r = getrange()

Create a getter function called
getrange.
When getrange() is called, it
returns the value of dmm.range
and assigns it to the variable r.

Also see

makesetter() (on page 8-301)

makesetter()
This function creates a function that, when called, sets the value of an attribute.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

setter = makesetter(table, attributeName)

setter Function that sets the value of the attribute
table Read-only table where the attribute is located
attributeName The string name of the attribute

Details

This function is useful for aliasing attributes to improve execution speed. Calling the setter function will execute
faster than accessing the attribute directly.
Creating a setter function is only useful if it is going to be called several times. If you are not calling the
setter function several times, it is more efficient to access the attribute directly.

Example

setrange = makesetter(dmm, "range")
setrange(5)

Use setrange with a value of 5
to set dmm.range for the
currently selected function.

Also see

makegetter() (on page 8-300)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-302 3700AS-901-01 Rev. B/May 2013

memory.available()
This function reads and returns the amount of memory that is available in the instrument overall for storing user
scripts and channel patterns and for user-defined DMM configurations.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

memoryAvailable = memory.available()

memoryAvailable Comma-delimited string with percentages for available memory; the format is
systemMemory, scriptMemory, patternMemory,
configurationMemory, where:
• systemMemory: The percentage of memory available in the instrument
• scriptMemory: The percentage of memory available in the instrument to store

user scripts
• patternMemory: The percentage of memory available in the instrument to store

channel patterns
• configurationMemory: The percentage of memory available to store DMM

configurations

Details

Use this function to view the available memory in the overall instrument as well as the memory available for
storing user scripts, channel patterns, and user DMM configurations.
The response to this function is a single string that returns the overall instrument memory available, script
memory available,channel pattern memory available, and DMM configuration memory available as comma-
delimited percentages.

Example: Available memory

memoryAvailable = memory.available()
print(memoryAvailable)

Reads and returns the amount of memory available
in the instrument.
Output:
51.56, 92.84, 100.00, 100.00

You can also use:
print(memory.available())

Example: After recalling a setup

setup.recall(1)
print(memory.available())

Reads and returns the amount of memory available
in the instrument after a setup is recalled.
Output:
11.13, 92.84, 0.16, 97.03

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-303

Example: Used and available memory

print("Memory used:", memory.used())
print("Memory available: ",

memory.available())

Reads and returns the amount memory used and
memory available percentages.
Output:
Memory used: 69.14, 0.16, 12.74, 1.04
Memory available: 30.86, 99.84, 87.26,

98.96

Also see

memory.used() (on page 8-303)

memory.used()
This function reports the amount of memory used in the instrument overall and for user scripts, storing channel
patterns, and storing user DMM configurations.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

memoryUsed = memory.used()

memoryUsed A comma-delimited string with percentages for used memory; the format is
systemMemory, scriptMemory, patternMemory,
configurationMemory, where:
• systemMemory: The percentage of memory used in the instrument
• scriptMemory: The percentage of memory used in the instrument to store user

scripts
• patternMemory: The percentage of memory used in the instrument to store

channel patterns
• configurationMemory: The percentage of memory used to store DMM

configurations

Details

Use this function to view the used memory in the overall instrument, as well as the memory used for storing user
scripts, channel patterns, and user DMM configurations.
The response to this function is a single string that shows the overall instrument memory used, as well as the
script memory used, channel pattern memory used, and DMM configuration memory used as comma-delimited
percentages.

Example

MemUsed = memory.used()
print(MemUsed)

Reads the memory used in the instrument and
returns out the percentages.
Output:
69.14, 0.16, 12.74, 1.04

Also see

memory.available() (on page 8-302)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-304 3700AS-901-01 Rev. B/May 2013

node[N].execute()
This function starts test scripts on a remote TSP-Link node. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes (see Details)

Usage

node[N].execute(scriptCode)

N The node number of this instrument (1 to 64)
scriptCode A string containing the source code

Details

This command is only applicable to TSP-Link systems. You can use this command to use the remote master
node to run a script on the specified node. This function does not run test scripts on the master node; only on the
subordinate node when initiated by the master node.
This function may only be called when the group number of the node is different than the node of the master.
This function does not wait for the script to finish execution.

Example 1

node[2].execute(sourcecode) Runs script code on node 2. The code is in a string variable
called sourcecode.

Example 2

node[3].execute("x = 5") Runs script code in string constant ("x = 5") to set x
equal to 5 on node 3.

Example 3

node[32].execute(TestDut.source) Runs the test script stored in the variable TestDut
(previously stored on the master node) on node 32.

Also see

Introduction to TSP advanced features
tsplink.group (on page 8-436)

node[N].getglobal()
This function returns the value of a global variable. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

value = node[N].getglobal(name)

value The value of the variable
N The node number of this instrument (1 to 64)
name The global variable name

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-305

Details

This function retrieves the value of a global variable from the run-time environment of this node.
Do not use this command to retrieve the value of a global variable from the local node. Instead, access the global
variable directly. This command should only be used from a remote master when controlling this instrument over
a TSP-Link® network.

Example

print(node[5].getglobal("test_val")) Retrieves and outputs the value of the global variable
named test_val from node 5.

Also see

node[N].setglobal() (on page 8-305)
Introduction to TSP advanced features

node[N].setglobal()
This function sets the value of a global variable. This function is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

node[N].setglobal(name, value)

N The node number of this instrument (1 to 64)
name The global variable name to set
value The value to assign to the variable

Details

From a remote node, use this function to assign the given value to a global variable.
Do not use this command to create or set the value of a global variable from the local node (set the global
variable directly instead). This command should only be used from a remote master when controlling this
instrument over a TSP-Link®.

Example

node[3].setglobal("x", 5) Sets the global variable x on node 3 to the value of 5.

Also see

node[N].getglobal() (on page 8-304)
Using TSP to run test scripts simultaneously

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-306 3700AS-901-01 Rev. B/May 2013

opc()
This function sets the operation complete status bit when all overlapped commands are completed.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

opc()

Details

This function causes the operation complete bit in the Standard Event Status Register to be set when all
previously started local overlapped commands are complete.
Note that each node independently sets its operation complete bits in its own status model. Any nodes that are
not actively performing overlapped commands set their bits immediately. All remaining nodes set their own bits
as they complete their own overlapped commands.

Also see

Status model (on page 6-18, on page D-1, "Status Byte Register overview" on page D-4)
waitcomplete() (on page 8-466)

print()
This function generates a response message.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

print(value1)
print(value1, value2)
print(value1, ..., valueN)

value1 The first argument to output

value2 The second argument to output
valueN The last argument to output
... One or more values separated with commas

Details

TSP-enabled instruments do not have inherent query commands. Like any other scripting environment, the
print() command and other related print() commands generate output. The print() command creates
one response message.
The output from multiple arguments are separated with a tab character.
Numbers are printed using the format.asciiprecision attribute. If you want use Lua formatting, print the
return value from the tostring() function.

Example 1

x = 10
print(x)

Example of an output response message:
1.00000e+01

Note that your output might be different if you set
your ASCII precision setting to a different value.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-307

Example 2

x = 10
print(tostring(x))

Example of an output response message:
10

Also see

format.asciiprecision (on page 8-255)

printbuffer()
This function prints data from tables or reading buffer subtables.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

printbuffer(startIndex, endIndex, bufferVar)
printbuffer(startIndex, endIndex, bufferVar, bufferVar2)
printbuffer(startIndex, endIndex, bufferVar, ..., bufferVarN)

startIndex Beginning index of the buffer to print
endIndex Ending index of the buffer to print
bufferVar Name of first table or reading buffer subtable to print; may be a

default buffer (defbuffer1 or defbuffer2) or a user-defined
buffer

bufferVar2 Second table or reading buffer subtable to print; may be a default
buffer (defbuffer1 or defbuffer2) or a user-defined buffer

bufferVarN The last table or reading buffer subtable to print; may be a default
buffer (defbuffer1 or defbuffer2) or a user-defined buffer

... One or more tables or reading buffer subtables separated with
commas

Details

The correct usage of this function for a buffer containing n elements is:
1 ≤ startIndex ≤ endIndex ≤ n

Where n refers to the index of the last entry in the tables to be printed.
If endIndex < startIndex or n < startIndex, no data is printed. If startIndex ≤ 1, 1 is used as
startIndex. If n < endIndex, n is used as endIndex.
When any given reading buffers are used in overlapped commands that have not yet completed (at least to the
desired index), this function outputs data as it becomes available.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-308 3700AS-901-01 Rev. B/May 2013

When there are outstanding overlapped commands to acquire data, n refers to the index that the last entry in the
table will have after all the readings have completed.
If you pass a reading buffer instead of a reading buffer subtable, the default subtable for that reading buffer will
be used.
This command generates a single response message that contains all data. The response message is stored in
the output queue.
The format.data attribute controls the format of the response message.
The following bufferVar attributes can be used with the print buffer command.
bufferVar.dates, bufferVar.fillmode, bufferVar.formattedreadings, bufferVar.fractionalseonds, bufferVar.logstate,

bufferVar.seconds, buffer.units, bufferVar.relativetimestamps, bufferVar.seconds, bufferVar.sourcestatuses,
bufferVar, sourceunits, bufferVar.sourcevalues, bufferVar.statuses, bufferVar.times, bufferVar.timestamps,
bufferVar.units

If you are using the printbuffer() command to print multiple readings from multiple buffers, the readings must be
paired: buffer 1 readings, buffer 2 readings, next buffer 1 readings, next buffer 2 readings and so on. For
example, when you are storing voltage readings in one buffer and current readings in another buffer, keep them
paired in the response. Or, when you are just storing different readings in multiple buffer keep then paired in
response.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-309

Example 1

reset()
testData = buffer.make(200)
smu.measure.count = 6
smu.measure.read(testData)
smu.measure.read(defbuffer1)
format.data = format.ASCII
format.asciiprecision = 6
printbuffer(1, testData.n, testData.readings, testData.units,

testData.relativetimestamps)
for x = 1, testData.n do
printbuffer(x,x,testData, testData.units, testData.relativetimestamps)
end

This assumes that testData is a valid reading buffer in the run-time environment. The use of testData.n
(bufferVar.n) indicates that the instrument should output all readings in the reading buffer. In this example,
testBuffer.n equals 6.
Example of output data
1.37000e-11, 4.84914e-11, 4.84921e-11, 4.84888e-11, 4.84859e-11, 2.76175e-11

Example 2

printbuffer(1, testData.n, testData.readings, testData.units,
testData.relativetimestamps)

for x = 1, testData.n do
printbuffer(x,x,testData, testData.units, testData.relativetimestamps)
end

This example output data includes readings, units and relative timestamps.
1.37000e-11, Current, 0.00000e+00, 4.84914e-11, Current, 5.28490e-02, 4.84921e-

11, Current, 1.05692e-01, 4.84888e-11, Current, 1.58533e-01, 4.84859e-11,
Current, 2.11381e-01, 2.76175e-11, Current, 2.64231e-01

Example 3

for x = 1, testData.n do
printbuffer(x,x,testData, testData.units, testData.relativetimestamps)
end

Example output data showing readings, units and relative timestamps in printed in rows.
1.37000e-11, Current, 0.00000e+00
4.84914e-11, Current, 5.28490e-02
4.84921e-11, Current, 1.05692e-01
4.84888e-11, Current, 1.58533e-01
4.84859e-11, Current, 2.11381e-01
2.76175e-11, Current, 2.64231e-01

Also see

bufferVar.n
bufferVar.readings
format.asciiprecision
format.byteorder
format.data
printnumber() (on page 8-310)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-310 3700AS-901-01 Rev. B/May 2013

printnumber()
This function prints numbers using the configured format.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

printnumber(value1)
printnumber(value1, value2)
printnumber(value1, ..., valueN)

value1 First value to print in the configured format
value2 Second value to print in the configured format
valueN Last value to print in the configured format
... One or more values separated with commas

Details

There are multiple ways to use this function, depending on how many numbers are to be printed.
This function prints the given numbers using the data format specified by format.data and
format.asciiprecision.

Example

format.asciiprecision = 10
x = 2.54
printnumber(x)
format.asciiprecision = 3
printnumber(x, 2.54321, 3.1)

Configure the ASCII precision to 10 and set x to
2.54.
Read the value of x based on these settings.
Change the ASCII precision to 3.
View how the change affects the output of x and
some numbers.
Output:
2.540000000e+00
2.54e+00, 2.54e+00, 3.10e+00

Also see

format.asciiprecision (on page 8-255)
format.byteorder (on page 8-256)
format.data (on page 8-257)
print() (on page 8-306)
printbuffer() (on page 8-307)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-311

ptp.domain
This attribute describes the IEEE Std 1588-2008 precision time protocol (PTP) domain.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Never Nonvolatile
memory

0

Usage

value = ptp.domain
ptp.domain = value

value 0 = default domain
1 = alternate domain 1
2 = alternate domain 2
3 = alternate domain 3
4 – 127 = user-defined domains
128 – 255 = Reserved

Details

Only instruments in the same domain will interact with each other in the IEEE-1588 PTP.

Example

ptp.domain=1
print(ptp.domain)

Sets the ptp domain to 1 (alternate domain
1) and prints the result.
Output:
1

Also see

Not applicable

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-312 3700AS-901-01 Rev. B/May 2013

ptp.ds.info()
This function is a read-only string that returns the settings of the different data sets (DS) associated with the
IEEE-1588 2008 specification.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

ptp.ds.info()

Details

The following data sets are returned:

• Current
• Default
• Parent
• Time properties
• Port
• Foreign master

For more detailed information regarding field information, refer to the IEEE-1588 2008 specification.
Example

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-313

print(ptp.ds.info()) Output:
Current DS
 Steps removed: 0
 Offset from Master: 0.000000000
 Mean Path Delay: 0.000000000

Default DS
 Number of Ports: 1
 Two Step Clock: T
 Priority 1: 128
 Priority 2: 128
 Domain: 0
 Clock Identity: 12 34 56 FF FE 65 43 21
 Clock Qual - Class: 248
 Clock Qual - Accuracy: 254
 Clock Qual - Variance: 0
 Slave Only: F

Parent DS
 Parent Stats: F
 Parent Clock Identify: 12 34 56 FF FE 65 43 21
 Parent Port Identify: 0
 Parent Offset Var: 65535
Parent Phase Chnge Rate: 2147483647
 GM Priority 1: 128
 GM Priority 2: 128
 GM Clck Qual - Class: 248
GM Clck Qual - Accuracy: 254
GM Clck Qual - Variance: 0
 GM Clock Identify: 12 34 56 FF FE 65 43 21

Time Properties DS
 Current UTC Offset: 0
 Leap 59: F
 Leap 61: F
Current UTC Offset Vald: T
 PTP Timescale: T
 Time Traceable: F
 Frequency Traceable: F
 Time Source: Internal Oscillator

Port DS
 Clock Identify: 12 34 56 FF FE 65 43 21
 Port Identify: 1
 Port State: 6
 Log Mn Delay Req Intrvl: 4
 Peer mean Path Delay: 0
 Log Announce Interval: 1
 Announc Receipt Timeout: 3
 Log Sync Interval: 0
 Delay Mechanism: E2E
Log Mn PDelay Rq Intrvl: 0
 Version Number: 2

Foreign Master DS 1
 Announce Messages: 2
 Frgn Mstr Clock Idntfy: 00 60 1A FF FE 01 54 29
 Frgn Mstr Port Idntfy: 1

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-314 3700AS-901-01 Rev. B/May 2013

Also see

Not applicable

ptp.enable
This attribute enables or disables the precision time protocol (PTP) described in IEEE-1588 on the Series 3700A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile memory 0 (ptp.OFF)

Usage

state = ptp.enable
ptp.enable = state

state Disable the ptp protocol: ptp.OFF or 0
Enable the ptp protocol: ptp.ON or 1

Details

From the factory, this attribute is disabled (ptp.OFF). After setting this attribute, it is saved in nonvolatile
memory, and that setting value is recalled the next time the instrument is powered on.

Example

ptp.enable=1
print(ptp.enable)

Output:
1.000000000e+00

Also see

Not applicable

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-315

ptp.portstate
This attribute is a read-only value that indicates the state of the IEEE-1588 precision time protocol (PTP).

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Never Not applicable Not applicable

Usage

state = ptp.portstate

state ptp.INITIALIZING (0)
ptp.FAULTY (1)
ptp.DISABLE (2)
ptp.LISTENING (3)
ptp.PRE_MASTER (4)
ptp.MASTER (5)
ptp.PASSIVE (6)
ptp.UNCALIBRATED (7)
ptp.SLAVE (8)
ptp.UNKNOWN (9)

print(ptp.portstate) Output (this output indicates that PTP is
disabled):
2.000000000e+00

Also see

ptp.enable (on page 8-314)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-316 3700AS-901-01 Rev. B/May 2013

ptp.slavepreferred
This attribute describes whether you prefer to have the instrument be a subordinate clock or not.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Never Nonvolatile memory false (disabled)

Usage

value = ptp.slavepreferred
ptp.slavepreferred = value

value true: Disabled.
false: Enabled.

Details

From the factory, this attribute is false. After you set this attribute, it is saved in nonvolatile memory. That setting
is recalled the next time the instrument is powered up.

Example

ptp.slavepreferred = TRUE
print(ptp.slavepreferred)

Set the instrument to be a subordinate clock.
Check to see if the instrument is a
subordinate clock.
Output:
true

Also see

Not applicable

ptp.time()
This function is a read-only string that returns the PTP time in seconds and fractionalseconds.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

ptp.time()

Example

sec,fraction=ptp.time()
print(sec+fraction)

Output:
1.306440045e+09

Also see

Not applicable

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-317

ptp.utcoffset
This attribute describes the offset, in seconds, between UTC and PTP.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes See Details Nonvolatile memory See Details

Usage

value = ptp.utcoffset
ptp.utcoffset = value

value The offset in seconds

Details

If the instrument is a subordinate, the ptp.utcoffset value is from the master. If the value is from the master,
the setting is overwritten on the next synchronization. The Series 3700A does not keep track of this value
through a power cycle (that is, it defaults to 0 if the 3700 is the master). The ptp.utcoffset is only non-zero if
the Series 3700A communicates to a master clock that is aware of the difference between PTP and UTC time.
You can only write to this command if the Series 3700A is the master. If the Series 3700A is not the master , an
error is generated when you try to write to the Series 3700A.
The Series 3700A is not time-zone aware, so UTC time is presented as the local time.
UTC Time = PTP Time – UTC Offset

Example

ptp.utcoffset=33
print(ptp.utcoffset)

Sets the UTC offset to 33 seconds.
Output:
3.300000000e+01

Also see

Not applicable

reset()
This function resets commands to their default settings.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

reset()
reset(system)

system true: If the node is the master, the entire system is reset
false: Only the local group is reset

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-318 3700AS-901-01 Rev. B/May 2013

Details

The reset() command in its simplest form resets the entire TSP-enabled system, including the controlling node
and all subordinate nodes.
If you want to reset a specific instrument, use either the localnode.reset() or node[X].reset()
command. Use the localnode.reset() command for the local instrument. Use the node[X].reset()
command to reset an instrument on a subordinate node.
When no value is specified for system, the default value is true.
You can only reset the entire system using reset(true) if the node is the master. If the node is not the master
node, executing this command generates an error.

Example

reset(true) If the node is the master node, the entire system is
reset; if the node is not the master node, an error is
generated.

Also see

localnode.reset() (on page 8-298)

scan.abort()
This function aborts a running background scan.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.abort()

Details

If no scan is running, the call to this function is ignored.

When a scan is aborted, the channels remain in the opened or closed states that they were in when
the scan was aborted.

Example

scan.background()
scan.abort()

Starts background scan, and then aborts the
scan.

Also see

scan.background() (on page 8-323)
Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-319

scan.add()
This function adds a scan step to the scan list.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

scan.add(channelList)
scan.add(<channelList>, <dmmConfig>)
scan.add(<channelList>, <width>)

channelList String specifying channels to add using normal channel list syntax

dmmConfig String listing the DMM configuration to use with items in channelList
width Value that specifies the width of the channel read to use with items in

channelList

Details

Use this function to add channels and channel patterns to the present scan list. If the scan list does not exist, it
also creates a scan list. See scan.create() for information about creating a scan list.
Channels and channel patterns added using the scan.add() function are added to the end of the present list
(appended) in the same order as specified in channelList. In addition, the added channels are scanned in the
order specified in channelList. Specifying multiple channels in channelList adds multiple steps to the
scan.
Each channel's or channel pattern's configuration, associated with dmm.setconfig() and dmm.getconfig(),
is used unless the optional dmmConfig parameter is specified. Specifying the dmmConfig parameter
temporarily overrides the channel's (or channel pattern's) associated configuration. Specifying dmmConfig does
not modify the assigned configuration of a channel or channel pattern.

The scan list of channels (or channel patterns) is not updated if an error occurs during processing of the function.
However, because each channel is added as a separate step when you add multiple channels to channelList,
steps that were already added to the scan list update, even if an error is detected.
For digital I/O or totalizer channels, each created scan step instructs the scan to read the selected channel and
then save the value into the specified reading buffer. If you do not specify a reading buffer, the channel is read
but the value is not saved.
The width parameter is valid for digital I/O type channels. Widths of 1, 2, 3, or 4 are supported. If specified, the
scan can read up to four consecutive channels simultaneously, and then saves the resulting value into the
specified reading buffer.
DAC channels are not supported.
Measurement time stamps may vary from channel read time stamps because of the way different channel types
generate reading buffer time stamps.

Example 1

scan.create("3001:3010", "DCV") For this example, assume "DCV" is a
previously defined user configuration for DC
volts. Clears the old scan list and creates a
new scan list with each channel (1 to 10 on
slot 3) using DCV as the overriding DMM
configuration.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-320 3700AS-901-01 Rev. B/May 2013

Example 2

scan.add("3001:3010", "2wire") For this example, assume "2wire" is a
previously defined user configuration for 2-
wire ohms. Uses 2wire for all 10 channels
and adds them to the end of the existing scan
list.

Example 3

scan.create("") Clears the old scan list and creates a new
empty scan list.

Example 4

for chan = 3001, 3010 do

 scan.add("" .. chan, "DCV")

 scan.add("" .. chan, "2wire")

end

For this example, assume "DCV" is a
previously defined user DC volts
configuration, and "2wire" is a previously
defined user 2-wire ohms configuration.

Adds channels 3001 through 3010 to the end
of the existing scan list. This loops through
the channels twice, adding channels to the
scan list twice. The first time, it adds "DCV"
for a channel. The second time, it adds
"2wire" for that channel. The first
parameter ("" .. chan) converts the chan
number to a string.

Also see

scan.create() (on page 8-325)
dmm.getconfig() (on page 8-189)
dmm.setconfig() (on page 8-237)
Reading buffers (on page 3-55, on page 3-49)
Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-321

scan.addimagestep()
This function allows you to include multiple channels in a single scan step.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.addimagestep(channelList)
scan.addimagestep(channelList, dmmConfig)

channelList String specifying a list of channels
dmmConfig String specifying a DMM configuration

Details

This function adds a list of channels to be closed simultaneously in a single step of a scan. An optional DMM
configuration can be added to force the scan to take a measurement during the same step.
This function is an advanced command; the channelList parameter must specify appropriate relays to support
the requested DMM configuration, or an invalid measurement will result.
Unlike scan.add(), the paired channels and backplanes necessary for measurement are not automatically
added to the step. Use the channel.setpole() command to indicate if the paired channel should be added or
not. Backplanes assigned to channels by the channel.setbackplane() command are not added to the
image step automatically. For example, if a measurement is taken on a 4-wire ohms configuration without
designating 4-pole with the channel.setpole() command, the corresponding paired channels and
backplanes will not be added, and the specified dmmConfig will not cause additional relay closures as it
normally would.
If you have changed the pole setting on any of the channels in the list (using channel.setpole()), an
additional paired channel is added or removed, as appropriate. For example, to ensure that the proper channels
close to enable a 4-wire measurement, set the pole setting in addition to using the 4-wire ohms DMM
configuration.
When a DMM configuration (other than "nofunction") is specified, the instrument will take the appropriate
measurement based on the function set in the configuration; if no DMM configuration is specified with the
command, no measurement will be taken.

Example

scan.addimagestep("1001", "dcvolts") Adds a single step that closes Channel
1001 and takes a DC voltage
measurement. Note that the voltage
measurement will be inaccurate if this is
the only step in the scan (because the
backplane channels are not closed).

scan.addimagestep("1001, 1911", "dcvolts") Adds a single step that closes Channels
1001 and 1911, and then takes a DC
voltage measurement.

channel.setpole("1001", 4)
scan.addimagestep("1001, 1911", "dcvolts")

Set Channel 1001 to 4-pole operation.
Adds a single step that closes Channels
1001, 1031, and 1911, and then takes a
DC voltage measurement.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-322 3700AS-901-01 Rev. B/May 2013

scan.addimagestep("1101, 2202, 1911", "dcvolts")
scan.addimagestep("1102, 2202, 1911", "dcvolts")
scan.addimagestep ("1103, 2202, 1911","dcvolts")

Adds three steps with the following
actions:
• Closes Channels 1101, 2202, and

1911, and then takes a DC voltage
measurement.

• Opens Channel 1101, closes Channel
1102 and maintains Channel 1911 and
2202 closed, and then takes a DC
voltage measurement.

• Opens Channel 1102, closes Channel
1103 and maintains Channel 1911 and
2202 closed, and then takes a DC
voltage measurement.

Also see

channel.setbackplane() (on page 8-90)
channel.setpole() (on page 8-101)
scan.add() (on page 8-319)
Scanning and triggering (on page 3-1)

scan.addwrite()
This function writes a specified value to a channel at the added step in the scan.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.addwrite(channelList, writeValue)
scan.addwrite(channelList, writeValue, width)

channelList String specifying channels to add using normal channel list syntax
writeValue The value to write to the channel for this scan step
width Specifies the width of the channel write to use with items in channelList

Details

This function is similar to issuing channel.write() at the scan step. Specifying multiple channels in
channelList causes multiple steps to be added to the scan.
For digital I/O channels, only a width of 1, 2, 3, or 4 is supported. Any information (bits) greater than the specified
width are ignored. Values written to inputs are ignored. If no specified channel is set for output, an error is
generated. If a width crosses channels, only the channels set to output are affected.
For backplane and switch channels, there is no valid behavior. Calling on a specific channel generates an error.
For DAC channels, if the channel mode is changed after the scan is created, the scan is rebuilt. If the write value
is no longer compatible with the new mode, an error is generated and the scan becomes invalid.

Example

scan.addwrite("6001, 6003, 6005", 21845, 2) Assume a Model 3750 in slot 6.
Add to existing scan list channels 1, 3 and
5 on slot 6 to write a 16-bit hex value of
hexadecimal 5555 (decimal 21845).

Also see

Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-323

scan.background()
This function starts a scan and runs the scan in the background.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

state, scanCount, stepCount, reading = scan.background()
state, scanCount, stepCount, reading = scan.background(bufferVar)
state, scanC ount, s tepC ount, readi ng = scan.backgr ound(bufferVar)

state The result of scanning:

scan.EMPTY or 0
scan.BUILDING or 1
scan.RUNNING or 2
scan.ABORTED or 3
scan.FAILED or 4
scan.FAILED_INIT or 5
scan.SUCCESS or 6

scanCount This is current number scans completed
stepCount This is current number steps completed
reading If measurements are taken during the scan, this parameter contains the last

scan reading completed
bufferVar A reading buffer used during scanning to store the readings. If a buffer is not

specified, no readings are stored during the scan

Details

You can also use this function to specify the scanning reading buffer. This reading buffer, if specified, stores the
readings and accompanying attributes as specified for the scan. An error is generated if the reading buffer does
not exist or the parameter is not a reading buffer.
Before using this command, use scan.create() and scan.add()or scan.addimagestep() to set up a
scan list.
When the scan is run in the background, you must use the scan.state() function to check the status of the
scan.

Example

scan.background(rbbuff1) Runs a scan in the background and stores
readings in a buffer named rbbuff1.

Also see

scan.add() (on page 8-319)
scan.create() (on page 8-325)
scan.execute() (on page 8-327)
scan.list() (on page 8-328)
scan.state() (on page 8-336)
Scanning and triggering (on page 3-1)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-324 3700AS-901-01 Rev. B/May 2013

scan.bypass
This attribute indicates whether the first channel of the scan waits for the channel stimulus event to be satisfied
before closing.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Scan reset
Recall setup

Create configuration script
Save setup

1 (scan.ON)

Usage

bypass = scan.bypass
scan.bypass = bypass

bypass The state of the bypass. Set to one of the following values:
scan.OFF or 0: Disabled
scan.ON or 1: Enabled

Details

When bypass is ON and the scan.trigger.arm.stimulus is set to a non-zero value, the first channel of the
scan closes (the scan.trigger.channel.stimulus setting is ignored).
For other channels (other than the first), the channel stimulus must be satisfied before the channel action takes
place.
When bypass is OFF, every channel (including the first) must satisfy the
scan.trigger.channel.stimulus setting before the channel action occurs for that step.

Example

scan.bypass = scan.OFF
print(scan.bypass)

Disables the bypass option for scanning and
displays the present bypass state.
Output:
0.000000000e+000

Also see

scan.trigger.arm.stimulus (on page 8-338)
scan.trigger.channel.stimulus (on page 8-341)
Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-325

scan.create()
This function deletes the existing scan list and creates a new list of channels and channel patterns to scan.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.create(channelList)
scan.create(channelList, dmmConfig)

channelList String specifying channels to add

dmmConfig The DMM configuration to use with items in the channelList

Details

The existing scan list is lost after calling this function.
The items in channelList are scanned in the order listed.
Each channel's (or channel pattern's) configuration is used unless the optional dmmConfig parameter is specified
(see dmm.setconfig() and dmm.getconfig()). Specifying the dmmConfig parameter temporarily overrides
the channel's or channel pattern's associated configuration. Specifying dmmConfig does not modify the
assigned configuration of a channel or channel pattern.
If a forbidden channel is included in a range of channels or slot parameter (such as slot 1), the forbidden channel
is ignored and no error is generated. If a forbidden channel is individually specified in the channel list, an error is
generated.
You cannot specify an analog backplane relay as part of the channel list.
If an error occurs, the scan list of channels or channel patterns is cleared, even though no new scan list is
created.
The function scan.reset() clears the list. To clear the scan list without performing a scan reset, send an
empty string for the channelList parameter.

Example 1

scan.create("1001:1010") Replaces the active scan list with an empty
scan list.
Adds channels 1 through 10 on slot 1. Uses
the existing DMM configuration
(dmm.setconfig()).

Example 2

scan.create()

for chan = 1001, 1010 do
 scan.add("" .. chan)

end

Replaces the active scan list with an empty
scan list.
Loops through channels 1001 to 1010, and
then adds 10 channels to the scan list. The
parameter ("" .. chan) converts the
channel number to a string.
The scan list now has, in order, channels 1
through 10 on slot 1.
Uses the existing DMM configuration
(dmm.setconfig()).

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-326 3700AS-901-01 Rev. B/May 2013

Example 3

scan.create("3001:3010", "testDCV") For this example, assume testDCV is
a previously defined user DC volts
configuration.
Clears the old scan list and creates a
new scan list with each channel (1 to
10 on slot 3).
Each channel uses the DMM
configuration associated with
testDCV.

Example 4

scan.create("")

for chan = 3001, 3010 do

 scan.add("" .. chan, "testDCV")

 scan.add("" .. chan, "test2wire")

end

For this example, assume testDCV is a
previously defined user DC volts
configuration, and test2wire is a
previously defined user 2-wire ohm
configuration.
This loops through the channels, adding
channels to the scan list. The first time, it
adds "testDCV" for a channel. The second
time, it adds "test2wire" for that channel.
The first parameter ("" .. chan)
converts the chan number to a string.
Clears the old scan list and creates a new
scan list.
Loops through channels 3001 to 3010.
Adds channels 3001 through 3010 to the
end of the existing scan list.

Also see

dmm.getconfig() (on page 8-189)
dmm.setconfig() (on page 8-237)
scan.add() (on page 8-319)
scan.reset() (on page 8-334)
Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-327

scan.execute()
This function starts the scan immediately in the foreground with a configured scan list.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

state, scanCount, stepCount, reading = scan.execute()
state, scanCount, stepCount, reading = scan.execute(bufferVar)

state The result of scanning:
scan.EMPTY or 0
scan.BUILDING or 1
scan.RUNNING or 2
scan.ABORTED or 3
scan.FAILED or 4
scan.FAILED_INIT or 5
scan.SUCCESS or 6

scanCount The present number of scans completed
stepCount The present number of steps completed
reading If measurements are taken during the scan, this parameter contains the last scan

reading completed
bufferVar A reading buffer used during scanning to store the readings. If a buffer is not

specified, no readings are stored during the scan

Details

In addition to starting and running the scan in immediate mode (not in the background), you can use this function
to specify the scanning reading buffer. This reading buffer stores the readings and accompanying attributes as
specified for the scan. An error is generated if the reading buffer does not exist or if the parameter is not a
reading buffer.
Before using this command, use scan.create() and scan.add() or scan.addimagestep() to set up a
scan list.
Execution runs until the scan is complete or until the abort command is sent.
Because this function waits for the scan to complete, the scan.state() function cannot be used to see the
current status of scanning.

Example

scan.execute(rbBuff1) Runs a scan immediately and stores the
readings in a reading buffer named rbbuff1.

Also see

scan.add() (on page 8-319)
scan.background() (on page 8-323)
scan.create() (on page 8-325)
scan.list() (on page 8-328)
scan.state() (on page 8-336)
Scanning and triggering (on page 3-1)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-328 3700AS-901-01 Rev. B/May 2013

scan.list()
This function queries the active scan list.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes Instrument reset
Channel reset
Scan reset
Recall setup
Change of channel or scan setting

Create configuration script
Save setup

Empty list

Usage

scanList = scan.list()

scanList A string that lists the existing scan step information

Details

This function lists the existing scan list.
When you change a channel or scan attribute for an existing scan list item, the scan list is recreated based on
this change. If the scan list cannot be rebuilt, an error is generated and the scan list is lost.
To avoid unintentional changes to an existing scan list, configure channel and scan settings before using the
commands scan.add(), scan.addimagestep(), and scan.create()) to build a scan list.

If the scan list is empty, the string "Empty Scan" is returned. Otherwise, the string lists each step in
the scan along with its information for step, open, measure configuration, count, and close (see the
example below).

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-329

Example

reset()
dmm.setconfig("2020, 2021", "dcvolts")
dmm.nplc = 0.5
dmm.range = 10
dmm.configure.set("DCVSlot2")
dmm.setconfig("2016,2017", "DCVSlot2")
scan.create("2007,2008,2020,2021,2016,2017")
print(scan.list())

Assume a Model 3721 in slot 2.
Configure channels 20 and 21 for DC volts on
slot 2.
Change the DMM settings for NPLC and
range and save those DC volt settings as
"DCVSlot2".
Configure channels 16 and 17 for
"DCVSlot2" on slot 2.
Populate the scan list with the function
scan.create("2007,2008,2020,2021,2016
,2017"), then initiate the scan list to be
output.
Outputs the existing scan list. For example,
an existing scan list may appear as follows:
Init) OPEN...
1) STEP: 2007
CLOSE: 2007
MEASURE: nofunction COUNT: 1
2) STEP: 2008
OPEN: 2007
CLOSE: 2008
MEASURE: nofunction COUNT: 1
3) STEP: 2020
OPEN: 2008
CLOSE: 2020 2911
MEASURE: dcvolts COUNT: 1
4) STEP: 2021
OPEN: 2020 2911
CLOSE: 2021 2921
MEASURE: dcvolts COUNT: 1

 5) STEP: 2016
OPEN: 2021 2921
CLOSE: 2016 2911
MEASURE: DCVSlot2 COUNT: 1
6) STEP: 2017
OPEN: 2016
CLOSE: 2017
MEASURE: DCVSlot2 COUNT: 1

Also see

scan.create() (on page 8-325)
Scanning and triggering (on page 3-1)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-330 3700AS-901-01 Rev. B/May 2013

scan.measurecount
This attribute sets the number of iterations performed when a scanning measurement is requested.

Type TSP-LinkTM accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Scan reset
Recall setup

Create configuration script
Save setup

1

Usage

count = scan.measurecount
scan.measurecount = count

count The count value being used or read; valid range is 1 to 450000

Details

Use this attribute to indicate how many measurements to make on a step when measurements are needed. This
sets the measurement count in the trigger model. During a scan, the Model 3706A iterates through the sequence
event detector and measurement action of the trigger model count times. After performing count iterations, the
Model 3706A returns to check the scan count.
This must be set before the scan is started. Once set, it applies to all scan steps in the list, including scan steps
that exist in the list and any that are added before the scan is started.
All steps take the same number of measurements. When taking multiple measurements, the measurements may
be taken as quickly as possible based on the configuration (scan.trigger.measure.stimulus = 0) or
they may be paced by a trigger (scan.trigger.measure.stimulus is nonzero).

Example

scan.measurecount = 5 Sets the measurement count to 5.

Also see

scan.create() (on page 8-325)
Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-331

scan.mode
This attribute controls the scan mode setting.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Scan reset
Recall setup

Create configuration script
Save setup

0 (scan.MODE_OPEN_ALL)

Usage

scanModeSetting = scan.mode
scan.mode = scanModeSetting

scanModeSetting The present scan mode setting. Set to one of the following values:
• scan.MODE_OPEN_ALL or 0
• scan.MODE_OPEN_SELECTIVE or 1: See Details
• scan.MODE_FIXED_ABR or 2: See Details

Details

When this attribute is set to scan.MODE_OPEN_ALL, all channels on all slots are opened before a scan starts.
When this attribute is set to scan.MODE_OPEN_SELECTIVE, an intelligent open is performed. Assuming all
steps being scanned have a function value of "nofunction" with their DMM configuration then:

• All channels and analog backplane relays involved in scanning are opened
• Closed channels and backplane relays not involved in scanning remain closed during the scan
If any step has a DMM configuration with a function set to any other value than "nofunction":

• Analog backplane relays 1 and 2 are opened on all slots
• Any commonside ohms backplane relays are opened on all slots
• Any amp channels are opened on all slots
• All channels and backplane relays involved in scanning are opened
• If a closed channel or backplane relay is not involved in scanning, it remains closed during the

scan
• All channels are opened on any bank that contains backplane relays that are involved in scanning
When this attribute is set to scan.MODE_FIXED_ABR, it is equivalent to setting MODE_OPEN_SELECTIVE ,
except:

• All required backplane relays are closed before the start of the scan
• These backplane relays are not opened or closed during the scan
• These backplane relays do not open at the end of scan

Example

scan.mode = scan.MODE_OPEN_SELECTIVE Sets the scan mode setting to open
selective.

Also see

scan.reset() (on page 8-334)
Scanning and triggering (on page 3-1)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-332 3700AS-901-01 Rev. B/May 2013

scan.nobufferbackground()
This function starts a scan in background mode and specifies that no reading buffer is used during scanning.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

state, scancount, stepcount = scan.nobufferbackground()

state The result of scanning:
• scan.EMPTY or 0
• scan.BUILDING or 1
• scan.RUNNING or 2
• scan.ABORTED or 3
• scan.FAILED or 4
• scan.FAILED_INIT or 5
• scan.SUCCESS or 6

scancount The present number of scans completed
stepcount The present number of steps completed

Details

Before using this command, use scan.create(), scan.add() and scan.addimagestep() to set up scan
elements. If a reading buffer is specified, an error is generated.
To view the scan status, use scan.state().
To run a scan in the background with a reading buffer, see scan.background() (on page 8-323).

Example

scan.nobufferbackground() Run the scan in the background with no reading
buffer.

Also see

scan.add() (on page 8-319)
scan.background() (on page 8-323)
scan.create() (on page 8-325)
scan.execute() (on page 8-327)
scan.list() (on page 8-328)
scan.nobufferexecute() (on page 8-333)
scan.state() (on page 8-336)
Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-333

scan.nobufferexecute()
This function starts a scan immediately and specifies that no reading buffer is used during scanning.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

state, scanCount, stepCount = scan.nobufferbackground()

state The result of scanning:
• scan.EMPTY or 0
• scan.BUILDING or 1
• scan.RUNNING or 2
• scan.ABORTED or 3
• scan.FAILED or 4
• scan.FAILED_INIT or 5
• scan.SUCCESS or 6

scanCount The present number of scans that have completed
stepCount The present number of steps have completed

Details

Before using this command, use scan.create(), scan.add(), and scan.addimagestep() to set up scan
elements. If a reading buffer is specified, an error is generated.
The command continues execution until scanning completes or is aborted by the user.
To run a scan immediately with a reading buffer, see scan.execute() (on page 8-327).

Example

scan.nobufferexecute() Runs the scan immediately with no reading
buffer.

Also see

scan.add() (on page 8-319)
scan.background() (on page 8-323)
scan.create() (on page 8-325)
scan.execute() (on page 8-327)
scan.list() (on page 8-328)
scan.nobufferbackground() (on page 8-332)
scan.state() (on page 8-336)
Scanning and triggering (on page 3-1)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-334 3700AS-901-01 Rev. B/May 2013

scan.reset()
This function resets the trigger model and scan list settings to their factory default settings.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.reset()

Details

When scan.reset() is sent, the trigger model and scan settings that are reset to the factory defaults are:
• scan.bypass
• scan.measurecount
• scan.mode
• scan.scancount
• scan.trigger.arm.stimulus
• scan.trigger.channel.stimulus
• scan.trigger.measure.stimulus
• scan.trigger.sequence.stimulus

In addition, the scan list is cleared.

Sending this function only affects the trigger model and scan list settings. To reset all instrument
settings to factory default settings, use the reset() command.

Example

scan.reset() Performs a reset on the trigger model and scan
settings.

Also see

channel.reset() (on page 8-87)
dmm.reset() (on page 8-228)
reset() (on page 8-317)
scan.bypass (on page 8-324)
scan.measurecount (on page 8-330)
scan.mode (on page 8-331)
scan.scancount (on page 8-335)
scan.trigger.arm.stimulus (on page 8-338)
scan.trigger.channel.stimulus (on page 8-341)
scan.trigger.measure.stimulus (on page 8-345)
scan.trigger.sequence.stimulus (on page 8-348)
Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-335

scan.scancount
This attribute sets the scan count in the trigger model.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Scan reset
Recall setup

Create configuration script
Save setup

1

Usage

scanCount = scan.scancount
scan.scancount = scanCount

scanCount The present scan count value (1 to 2,000,000,000)

Details

The scan count attribute setting indicates how many times the scan list is iterated through before the scan
completes.
During a scan, the instrument iterates through the arm layer of the trigger model the specified number of times.
After performing the specified number of iterations, the instrument returns to an idle state.

Example

scan.scancount = 5 Sets the scan count to 5.

Also see

Trigger model (on page 3-2)
Scanning and triggering (on page 3-1)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-336 3700AS-901-01 Rev. B/May 2013

scan.state()
This function provides the present state of a running background scan.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scanState, scanCount, stepCount, reading = scan.state()
scanState The present state of the scan running in the background. Possible states include:

scan.EMPTY or 0
scan.BUILDING or 1
scan.RUNNING or 2
scan.ABORTED or 3
scan.FAILED or 4
scan.FAILED_INIT or 5
scan.SUCCESS or 6

scanCount The current number of scans that have completed
stepCount The current number of steps that have completed
reading If measurements are taken during the scan, this parameter contains the last scan

reading completed

Details

scanCount is the number of the current iteration through the scan portion of the trigger model. This number
does not increment until the scan begins. Therefore, if the instrument is waiting for an input to trigger a scan
start, the scan count represents the previous number of scan iterations. If no scan has begun, the scan count is
zero (0).
stepCount is the number of times the scan has completed a pass through the channel action portion of the
trigger model. This number does not increment until after the action completes. Therefore, if the instrument is
waiting for an input to trigger a channel action, the step count represents the previous step. If no step has yet
completed, the step count is zero. If the step count has yet to complete the first step in a subsequent pass
through a scan, the scan count represents the last step in the previous scan pass.

Example

scan.background()
scanState, scanCount, stepCount = scan.state()
print(scanState)

Runs a scan in the background.
Check the present scan state.
View value of scanState.
Output shows that scan is running:
2.00000e+00

Also see

scan.background() (on page 8-323)
scan.mode (on page 8-331)
Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-337

scan.stepcount
This attribute contains the number of steps in the present scan.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

scanStepCount = scan.stepcount

scanStepCount The present step count value

Details

This is set by the number of steps in the active scan list. The value of this attribute is initially determined when
the scan is created. Adding steps with the scan.create(), scan.addimagestep(), and scan.add()
functions updates this attribute's value.

Example

print(scan.stepcount) Responds with the present step count.
Output assuming there are five steps in the
scan list:
5.00000e+00

Also see

scan.add() (on page 8-319)
scan.addimagestep() (on page 8-321)
scan.create() (on page 8-325)
Scanning and triggering (on page 3-1)

scan.trigger.arm.clear()
This function clears the arm event detector.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.trigger.arm.clear()

Details

This function sets the trigger model's arm event detector to the undetected state.

Example

scan.trigger.arm.clear() Clears the arm event detector.

Also see

scan.trigger.arm.set() (on page 8-338)
scan.trigger.arm.stimulus (on page 8-338)
Trigger model (on page 3-2)
Scanning and triggering (on page 3-1)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-338 3700AS-901-01 Rev. B/May 2013

scan.trigger.arm.set()
This function sets the arm event detector to the detected state.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.trigger.arm.set()

Details

This function sets the arm event detector of the trigger model to the detected state.

Example

scan.trigger.arm.set() Sets the arm event detector to the detected
state.

Also see

scan.trigger.arm.clear() (on page 8-337)
scan.trigger.arm.stimulus (on page 8-338)
Trigger model (on page 3-2)
Scanning and triggering (on page 3-1)

scan.trigger.arm.stimulus
This attribute determines which event starts the scan.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup
Scan reset

Create configuration script
Save setup

0

Usage

eventID = scan.trigger.arm.stimulus
scan.trigger.arm.stimulus = eventID

eventID Trigger stimulus used for the channel action (arm layer); see Details

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-339

Details

This attribute selects which events cause the arm event detector to enter the detected state.
Set this attribute to 0 to start the scan without waiting for an event.
eventID may be one of the following trigger event IDs.

Trigger event IDs

Trigger event ID Description

channel.trigger[N].EVENT_ID or 41
to 48

The trigger event generated by the channel trigger N.

digio.trigger[N].EVENT_ID or 1 to
14

An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

display.trigger.EVENT_ID or 39 The trigger key (TRIG) on the front panel is pressed.
dmm.trigger.EVENT_LIMIT1_HIGH or

53
A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 1.

dmm.trigger.EVENT_LIMIT1_LOW or
52

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 1.

dmm.trigger.EVENT_LIMIT2_HIGH or
55

A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 2.

dmm.trigger.EVENT_LIMIT2_LOW or
54

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 2.

trigger.EVENT_ID or 40 A *trg message on the active command interface. If
GPIB is the active command interface, a GET
message also generates this event.

trigger.blender[N].EVENT_ID or 58
to 59

A combination of events has occurred.

trigger.timer[N].EVENT_ID or 20
to 23

A delay expired.

tsplink.trigger[N].EVENT_ID or 17
to 19

An edge (either rising, falling, or either based on the
configuration of the line) on the TSP-Link trigger line.

lan.trigger[N].EVENT_ID or 29 to
36

A LAN trigger event has occurred.

scan.trigger.EVENT_SCAN_READY or
24

Scan ready event.

scan.trigger.EVENT_SCAN_START or
25

Scan start event.

scan.trigger.EVENT_CHANNEL_READY
or 28

Channel ready event.

scan.trigger.EVENT_MEASURE_COMP
or 56

Measure complete event.

scan.trigger.EVENT_SEQUENCE_COMP
or 50

Sequence complete event.

scan.trigger.EVENT_SCAN_COMP or
26

Scan complete event.

scan.trigger.EVENT_IDLE or 27 Idle event.

schedule.alarm[N].EVENT_ID or 37
to 38

Trigger event generated by the alarm N.

Use one of the text trigger event IDs (for example, digio.trigger[N].EVENT_ID) to set the
stimulus value rather than the numeric value. Doing this will make the code compatible for future
upgrades.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-340 3700AS-901-01 Rev. B/May 2013

Example 1

scan.trigger.arm.stimulus =
scan.trigger.EVENT_SCAN_READY

Sets trigger stimulus of the arm
event detector to scan ready
event.

Example 2

scan.trigger.arm.stimulus = 0 The scan begins immediately.

Example 3

scan.trigger.arm.stimulus = digio.trigger[3].EVENT_ID The scan begins when the
instrument receives a signal
from digital I/O line 3.

Also see

scan.trigger.arm.clear() (on page 8-337)
scan.trigger.arm.set() (on page 8-338)
Trigger model (on page 3-2)
Scanning and triggering (on page 3-1)

scan.trigger.channel.clear()
This function clears the channel event detector.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.trigger.channel.clear()

Details

This function clears the channel event detector of the trigger model (sets it to the undetected state).

Example

scan.trigger.channel.clear() Clears the channel event detector.

Also see

scan.trigger.channel.set() (on page 8-341)
scan.trigger.channel.stimulus (on page 8-341)
Trigger model (on page 3-2)
Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-341

scan.trigger.channel.set()
This function sets the channel event detector to the detected state.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.trigger.channel.set()

Details

This function sets the channel event detector of the trigger model to the detected state.

Example

scan.trigger.channel.set() Sets the channel event detector of the trigger
model to the detected state.

Also see

scan.trigger.channel.clear() (on page 8-340)
scan.trigger.channel.stimulus (on page 8-341)
Trigger model (on page 3-2)
Scanning and triggering (on page 3-1)

scan.trigger.channel.stimulus
This attribute determines which trigger events cause the channel actions to occur.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup
Scan reset

Create
configuration script
Save setup

50
(scan.trigger.EVENT_SEQUENCE_COMP
)

Usage

eventID = scan.trigger.channel.stimulus
scan.trigger.channel.stimulus = eventID

eventID Trigger stimulus used for the channel action; see Details for possible trigger
event IDs

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-342 3700AS-901-01 Rev. B/May 2013

Details

This attribute selects which events cause the channel event detector to enter the detected state. Set this attribute
to 0 to start the channel action immediately at the default setting.
Set eventID to one of the existing trigger event IDs shown in the following table.

Trigger event IDs

Trigger event ID Description

channel.trigger[N].EVENT_ID or 41
to 48

The trigger event generated by the channel trigger N.

digio.trigger[N].EVENT_ID or 1 to
14

An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

display.trigger.EVENT_ID or 39 The trigger key (TRIG) on the front panel is pressed.
dmm.trigger.EVENT_LIMIT1_HIGH or

53
A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 1.

dmm.trigger.EVENT_LIMIT1_LOW or
52

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 1.

dmm.trigger.EVENT_LIMIT2_HIGH or
55

A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 2.

dmm.trigger.EVENT_LIMIT2_LOW or
54

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 2.

trigger.EVENT_ID or 40 A *trg message on the active command interface. If
GPIB is the active command interface, a GET
message also generates this event.

trigger.blender[N].EVENT_ID or 58
to 59

A combination of events has occurred.

trigger.timer[N].EVENT_ID or 20
to 23

A delay expired.

tsplink.trigger[N].EVENT_ID or 17
to 19

An edge (either rising, falling, or either based on the
configuration of the line) on the TSP-Link trigger line.

lan.trigger[N].EVENT_ID or 29 to
36

A LAN trigger event has occurred.

scan.trigger.EVENT_SCAN_READY or
24

Scan ready event.

scan.trigger.EVENT_SCAN_START or
25

Scan start event.

scan.trigger.EVENT_CHANNEL_READY
or 28

Channel ready event.

scan.trigger.EVENT_MEASURE_COMP
or 56

Measure complete event.

scan.trigger.EVENT_SEQUENCE_COMP
or 50

Sequence complete event.

scan.trigger.EVENT_SCAN_COMP or
26

Scan complete event.

scan.trigger.EVENT_IDLE or 27 Idle event.

schedule.alarm[N].EVENT_ID or 37
to 38

Trigger event generated by the alarm N.

Use one of the text trigger event IDs (for example, digio.trigger[N].EVENT_ID) to set the
stimulus value rather than the numeric value. Doing this will make the code compatible for future
upgrades.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-343

Example 1

scan.trigger.channel.stimulus =
scan.trigger.EVENT_SCAN_START

Sets the trigger stimulus of
the channel event detector
to scan start event.

Example 2

scan.trigger.channel.stimulus = 0
print(scan.trigger.channel.stimulus)

Starts the channel action
immediately after the Scan
Start Event. This also
resets the stimulus to the
default.
Output:
5.000000000e+01

Also see

scan.trigger.channel.clear() (on page 8-340)
scan.trigger.channel.set() (on page 8-341)
Trigger model (on page 3-2)
Scanning and triggering (on page 3-1)

scan.trigger.clear()
This function clears the trigger model.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.trigger.clear()

Details

This function sets the arm, channel, measurement, and sequence event detectors of the trigger model to the
undetected state.

Example

scan.trigger.clear() Clears the trigger model.

Also see

scan.trigger.channel.set() (on page 8-341)
scan.trigger.channel.stimulus (on page 8-341)
Scanning and triggering (on page 3-1)
Trigger model (on page 3-2)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-344 3700AS-901-01 Rev. B/May 2013

scan.trigger.measure.clear()
This function clears the measure event detector.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.trigger.measure.clear()

Details

This function sets the measurement event detector of the trigger model to the undetected state.

Example

scan.trigger.measure.clear() Clears the measurement event detector.

Also see

Scanning and triggering (on page 3-1)

scan.trigger.measure.set()
This function sets the measurement event detector to the detected state.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.trigger.measure.set()

Details

This function sets the measurement event detector of the trigger model to the detected state.

Example

scan.trigger.measure.set() Sets the measurement event detector to the
detected state.

Also see

Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-345

scan.trigger.measure.stimulus
This attribute selects the trigger stimulus of the event detector trigger.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup
Scan reset

Create
configuration script
Save setup

0

Usage

eventID = scan.trigger.measure.stimulus
scan.trigger.measure.stimulus = eventID

eventID The trigger stimulus that is used for the measurement event

Details

This attribute selects the events that cause the measurement event detector to enter the detected state. You can
use this to pace each one of the measurement count readings with an event.
To pace all readings by a single event, use scan.trigger.sequence.stimulus.
To bypass waiting for an event, set this to 0.
eventID can be set to one of the existing trigger event IDs, shown in the following table.

Trigger event IDs

Trigger event ID Description

channel.trigger[N].EVENT_ID or 41
to 48

The trigger event generated by the channel trigger N.

digio.trigger[N].EVENT_ID or 1 to
14

An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

display.trigger.EVENT_ID or 39 The trigger key (TRIG) on the front panel is pressed.
dmm.trigger.EVENT_LIMIT1_HIGH or

53
A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 1.

dmm.trigger.EVENT_LIMIT1_LOW or
52

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 1.

dmm.trigger.EVENT_LIMIT2_HIGH or
55

A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 2.

dmm.trigger.EVENT_LIMIT2_LOW or
54

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 2.

trigger.EVENT_ID or 40 A *trg message on the active command interface. If
GPIB is the active command interface, a GET
message also generates this event.

trigger.blender[N].EVENT_ID or 58
to 59

A combination of events has occurred.

trigger.timer[N].EVENT_ID or 20
to 23

A delay expired.

tsplink.trigger[N].EVENT_ID or 17
to 19

An edge (either rising, falling, or either based on the
configuration of the line) on the TSP-Link trigger line.

lan.trigger[N].EVENT_ID or 29 to
36

A LAN trigger event has occurred.

scan.trigger.EVENT_SCAN_READY or
24

Scan ready event.

scan.trigger.EVENT_SCAN_START or
25

Scan start event.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-346 3700AS-901-01 Rev. B/May 2013

scan.trigger.EVENT_CHANNEL_READY
or 28

Channel ready event.

scan.trigger.EVENT_MEASURE_COMP
or 56

Measure complete event.

scan.trigger.EVENT_SEQUENCE_COMP
or 50

Sequence complete event.

scan.trigger.EVENT_SCAN_COMP or
26

Scan complete event.

scan.trigger.EVENT_IDLE or 27 Idle event.

schedule.alarm[N].EVENT_ID or 37
to 38

Trigger event generated by the alarm N.

Use one of the text trigger event IDs (for example, digio.trigger[N].EVENT_ID) to set the
stimulus value rather than the numeric value. Doing this will make the code compatible for future
upgrades.

Example

scan.trigger.measure.stimulus = scan.trigger.EVENT_CHANNEL_READY

Sets the trigger stimulus of the measurement event detector to the channel ready event.

Also see

scan.trigger.sequence.stimulus (on page 8-348)
Scanning and triggering (on page 3-1)

scan.trigger.sequence.clear()
This function clears the sequence event detector.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.trigger.sequence.clear()

Details

This function sets the sequence event detector to the undetected state.

Example

scan.trigger.sequence.clear() Clears the sequence event detector.

Also see

Scanning and triggering (on page 3-1)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-347

scan.trigger.sequence.set()
This function sets the sequence even detector to the detected state.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

scan.trigger.sequence.set()

Details

This function sets the sequence event detector to the detected state.

Example

scan.trigger.sequence.set() Sets the sequence event detector to the detected
state.

Also see

scan.trigger.sequence.clear() (on page 8-346)
Scanning and triggering (on page 3-1)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-348 3700AS-901-01 Rev. B/May 2013

scan.trigger.sequence.stimulus
This attribute selects the trigger stimulus for the sequence event detector.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument
reset
Recall setup
Scan reset

Create configuration script
Save setup

28
(scan.trigger.EVENT_CHANNEL_READY)

Usage

eventID = scan.trigger.sequence.stimulus
scan.trigger.sequence.stimulus = eventID

eventID The trigger stimulus that is used for the sequence event

Details

This attribute selects the events that cause the sequence event detector to enter the detected state.
Use this to start a set of measurement count readings that are triggered by a single event.
To pace each reading by an event, use scan.trigger.measure.stimulus.
To bypass pacing the readings, set this to 0.
Set eventID to one of the existing trigger event IDs shown in the following table.

Trigger event IDs

Trigger event ID Description

channel.trigger[N].EVENT_ID or 41
to 48

The trigger event generated by the channel trigger N.

digio.trigger[N].EVENT_ID or 1 to
14

An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

display.trigger.EVENT_ID or 39 The trigger key (TRIG) on the front panel is pressed.
dmm.trigger.EVENT_LIMIT1_HIGH or

53
A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 1.

dmm.trigger.EVENT_LIMIT1_LOW or
52

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 1.

dmm.trigger.EVENT_LIMIT2_HIGH or
55

A DMM trigger event that indicates a measurement
has exceed the high limit value on limit 2.

dmm.trigger.EVENT_LIMIT2_LOW or
54

A DMM trigger event that indicates a measurement
has exceed the low limit value on limit 2.

trigger.EVENT_ID or 40 A *trg message on the active command interface. If
GPIB is the active command interface, a GET
message also generates this event.

trigger.blender[N].EVENT_ID or 58
to 59

A combination of events has occurred.

trigger.timer[N].EVENT_ID or 20
to 23

A delay expired.

tsplink.trigger[N].EVENT_ID or 17
to 19

An edge (either rising, falling, or either based on the
configuration of the line) on the TSP-Link trigger line.

lan.trigger[N].EVENT_ID or 29 to
36

A LAN trigger event has occurred.

scan.trigger.EVENT_SCAN_READY or
24

Scan ready event.

scan.trigger.EVENT_SCAN_START or
25

Scan start event.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-349

scan.trigger.EVENT_CHANNEL_READY
or 28

Channel ready event.

scan.trigger.EVENT_MEASURE_COMP
or 56

Measure complete event.

scan.trigger.EVENT_SEQUENCE_COMP
or 50

Sequence complete event.

scan.trigger.EVENT_SCAN_COMP or
26

Scan complete event.

scan.trigger.EVENT_IDLE or 27 Idle event.

schedule.alarm[N].EVENT_ID or 37
to 38

Trigger event generated by the alarm N.

Use one of the text trigger event IDs (for example, digio.trigger[N].EVENT_ID) to set the
stimulus value rather than the numeric value. Doing this will make the code compatible for future
upgrades.

Example

scan.trigger.sequence.stimulus = scan.trigger.EVENT_CHANNEL_READY

Sets the trigger stimulus of the sequence event detector to the channel ready event.

Also see

scan.trigger.measure.stimulus (on page 8-345)
Scanning and triggering (on page 3-1)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-350 3700AS-901-01 Rev. B/May 2013

schedule.alarm[N].enable
This attribute enables or disables an alarm.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Recall setup

NOt saved 0 (schedule.OFF)

Usage

state = schedule.alarm[N].enable
schedule.alarm[N].enable = state

state Disable the alarm(schedule.OFF or 0)
Enable the alarm (schedule.ON or 1)

N Alarm number (1 or 2)

Details

If you enable an alarm that has a start time that is in the past, the alarm executes immediately.
If an alarm time in the past is used to start a scan, the alarm time may be missed by the scan start. This can
occur because the scan clears any pending triggers before it begins, so it will miss any trigger generated from
the alarm enable. To prevent a missed alarm, start the scan in the background, then enable the alarm.

Example

schedule.alarm[1].enable = 1 Enables alarm 1.

Also see

schedule.alarm[N].EVENT_ID (on page 8-351)
schedule.alarm[N].fractionalseconds (on page 8-352)
schedule.alarm[N].period (on page 8-353)
schedule.alarm[N].ptpseconds (on page 8-353)
schedule.alarm[N].repetition (on page 8-354)
schedule.alarm[N].seconds (on page 8-355)
schedule.disable() (on page 8-355)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-351

schedule.alarm[N].EVENT_ID
This constant describes the trigger event generated by the alarm N.

Type TSP-Link accessible Affected by Where saved Default value
Constant Yes

Usage

eventID = schedule.alarm[N].EVENT_ID

eventID The trigger event number
N Alarm number (1 or 2)

Details

To have another trigger object respond to trigger events generated by the schedule alarm, set the other object's
stimulus attribute to the value of this constant.

Example

scan.trigger.arm.stimulus =
schedule.alarm[1].EVENT_ID

Uses a trigger event on alarm 1 to
be the stimulus for the trigger arm.

Also see

None

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-352 3700AS-901-01 Rev. B/May 2013

schedule.alarm[N].fractionalseconds
This attribute describes the fractional seconds portion of the alarm time.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset Not saved 0

Usage

schedule.alarm[N].fractionalseconds = fraction
fraction = schedule.alarm[N].fractionalseconds

N Alarm number (1 or 2)
fraction The fractional seconds portion of the alarm time

Details

1588 has too much resolution to represent in a single floating point value so the alarm times are split into two
values (seconds and fractional seconds).

Example

-- get current time and store in variable sec
sec = os.time()
-- set alarm 1 seconds to be 1 minute after current time
schedule.alarm[1].seconds = sec + 60
-- set alarm 1 fractional seconds to be 0.5
schedule.alarm[1].fractionalseconds = 0.5
print("value of sec is ", sec)
print("value of alarm 1 seconds is ", schedule.alarm[1].seconds)
print("value of alarm 1 fractional seconds is ",

schedule.alarm[1].fractionalseconds)

Create an alarm to occur 60.5 seconds from current time in UTC seconds.
Output:
value of sec is 1.306405866e+009
value of alarm 1 seconds is 1.306405926e+009
value of alarm 1 fractional seconds is 5.000000000e-001

Also see

schedule.alarm[N].seconds (on page 8-355)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-353

schedule.alarm[N].period
This attribute describes the time, in seconds, between adjacent firings of the alarm.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Recall setup

Create configuration script
Save setup

0

Usage

value = schedule.alarm[N].period
schedule.alarm[N].period = value

N Alarm number (1 or 2)
value The time in seconds

Example

schedule.alarm[1].period = 0.5 Set a period of 0.5 seconds between firings
of alarms after the initial alarm.

Also see

None

schedule.alarm[N].ptpseconds
The seconds portion of the alarm time in PTP seconds.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset Not saved 0

Usage

schedule.alarm[N].ptpseconds = seconds
seconds = schedule.alarm[N].ptpseconds

N Alarm (1 or 2)
seconds The seconds portion of the alarm time in PTP seconds

Details

1588 has too much resolution to represent in a single floating point value, so the alarm times are split into two
values (seconds and fractional seconds).

Example

sec,ns = ptp.time()
schedule.alarm[1].ptpseconds = sec + 30

Create an alarm to occur 30 seconds from
current time in PTP seconds.

Also see

ptp.utcoffset (on page 8-317)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-354 3700AS-901-01 Rev. B/May 2013

schedule.alarm[N].repetition
This attribute describes the number of times an alarm repeats after the first alarm firing.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Recall setup

Save setup 0

Usage

count = schedule.alarm[N].repetition
schedule.alarm[N].repetition = count

count The number of repetitions
N Alarm 1 or 2

Details

The alarm will fire a total of count+1 times. If 0 and period is non-zero, the alarm fires forever.
Once an alarm begins, the repetition counts down for each trigger generated. It ends at zero (0). You must set
this repetition back to some value if you intend to reissue the alarm. Otherwise, the alarm will either not fire (if the
period is zero) or fire forever (if period is non-zero).

Example

schedule.alarm[1].repetition = 10 Set the alarm to fire 10 times.

Also see

schedule.alarm[N].enable (on page 8-350)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-355

schedule.alarm[N].seconds
The seconds portion of the alarm time in UTC seconds.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset Not saved 0

Usage

value = schedule.alarm[N].seconds
schedule.alarm[N].seconds = value

value Seconds portion of the alarm time in UTC seconds
N Alarm number (1 or 2)

Details

1588 has too much resolution to represent in a single floating point value, so the alarm times are split into two
values (seconds and fractional seconds).

Example

local l_myTime
l_myTime = os.time{year = 2008, month = 3, day = 15, hour = 10}
schedule.alarm[1].seconds = l_myTime

Create an alarm to occur on March 15, 2008 at 10 am in UTC seconds.

Also see

ptp.utcoffset (on page 8-317)

schedule.disable()
This function disables all alarms.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

schedule.disable()

Details

This command sets the schedule.alarm[N].enable attribute to 0 (schedule.OFF) for each schedule alarm
N.

Also see

schedule.alarm[N].enable (on page 8-350)

script.anonymous
This is a reference to the anonymous script.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) No See Details See Details Not applicable

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-356 3700AS-901-01 Rev. B/May 2013

Usage

scriptVar = script.anonymous

scriptVar The name of the variable that references the script

Details

You can use the script.anonymous script like any other script. Also, you can save the anonymous script as a
user script by giving it a name.
This script is replaced by loading a script with the loadscript or loadandrunscript commands when they
are used without a name.

Example 1

script.anonymous.list() Displays the content of the anonymous
script.

Example 2

print(script.anonymous.source) Retrieves the source of the anonymous
script.

Also see

Anonymous scripts (on page 7-3)
scriptVar.autorun (on page 8-361)
scriptVar.list() (on page 8-362)
scriptVar.name (on page 8-363)
scriptVar.run() (on page 8-364)
scriptVar.save() (on page 8-365)
scriptVar.source (on page 8-365)

script.delete()
This function deletes a script from nonvolatile memory.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

script.delete(scriptName)

scriptName The string that represents the name of the script

Example

script.delete("test8") Deletes a user script named "test8" from
nonvolatile memory.

Also see

Delete user scripts (on page 7-10)
Delete user scripts from the instrument (on page 7-43)
scriptVar.save() (on page 8-365)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-357

script.load()
This function creates a script from a specified file.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

scriptVar = script.load(file)
scriptVar = script.load(file, name)

scriptVar The created script; this is nil if an error is encountered
file The path and file name of the script file to load
name The name of the script to be created

Details

The file path may be absolute or relative to the current working directory. The root folder of the USB flash drive
has the absolute path "/usb1/". Both the forward slash (/) and backslash (\) are supported as directory
separators.
The file to be loaded must start with the loadscript or loadandrunscript keywords, contain the body of the
script, and end with the endscript keyword.

Script naming:
• If the name parameter is an empty string, or name is absent (or nil) and the script name cannot be

extracted from the file, scriptVar is the only handle to the created script.
• If name is given (and not nil), any script name embedded in the file is ignored.
• If name conflicts with the name of an existing script in the script.user.scripts table, the existing

script’s name attribute is set to an empty string before it is replaced in the script.user.scripts
table by the new script.

• If name is absent or nil, the command attempts to extract the name of the script from the file. Any
conflict between the extracted name and that of an existing script in the scripts table generates an error.
If the script name cannot be extracted, the created script's name attribute is initialized to the empty
string, and must be set to a valid nonempty string before saving the script to nonvolatile memory.

Example

myTest8 =
 script.load("/usb1/filename.tsp",
 "myTest8")

Loads the script myTest8 from the USB flash
drive.

Also see

script.new() (on page 8-358)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-358 3700AS-901-01 Rev. B/May 2013

script.new()
This function creates a script.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

scriptVar = script.new(code)
scriptVar = script.new(code, name)

scriptVar The name of the variable that will reference the script
code A string containing the body of the script
name The name of the script

Details

The name parameter is the name that is added to the script.user.scripts table. If name is not given, an
empty string will be used, and the script will be unnamed. If the name already exists in script.user.scripts,
the existing script's name attribute is set to an empty string before it is replaced by the new script.

Note that name is the value that is used for the instrument front panel display. If this value is not defined, the
script will not be available from the instrument front panel.
You must save the new script into nonvolatile memory to keep it when the instrument is turned off.

Example 1

myTest8 = script.new(
 "display.clear() display.settext('Hello from myTest8')", "myTest8")
myTest8()

Creates a new script referenced by the variable myTest8 with the name "myTest8".
Runs the script. The instrument displays "Hello from myTest8".

Example 2

autoexec = script.new(
 "display.clear() display.settext('Hello from autoexec')", 'autoexec')

Creates a new autoexec script that clears the display when the instrument is turned on and displays
"Hello from autoexec".

Also see

Create a script using the script.new() command (on page 7-38)
Global variables and the script.user.scripts table (on page 7-36)
Named scripts (on page 7-4)
scriptVar.save() (on page 8-365)
script.newautorun() (on page 8-359)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-359

script.newautorun()
This function is identical to the script.new() function, but it creates a script with the autorun attribute set to
"yes".

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

scriptVar = script.newautorun(code)
scriptVar = script.newautorun(code, name)

scriptVar The name of the variable that will reference the script
code A string containing the body of the script
name The name of the script

Details

The script.newautorun() function is identical to the script.new()function, except that the autorun
attribute of the script is set to yes. The script is also automatically run immediately after it is created.

Example

NewAuto = script.newautorun("print('Hello from new auto run command')",
'NewAuto')

print(NewAuto.autorun)
print(NewAuto.name)

Creates a new script called NewAuto that automatically has the autorun attribute set to yes after it is
created. The name attribute's value is set to "NewAuto".
Output:
Hello from new auto run command
yes
NewAuto

Also see

Create a script using the script.new() command (on page 7-38)
Global variables and the script.user.scripts table (on page 7-36)
Named scripts (on page 7-4)
script.new() (on page 8-358)
scriptVar.save() (on page 8-365)

script.restore()
This function restores a script that was removed from the run-time environment.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

script.restore(name)

name The name of the script to be restored

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-360 3700AS-901-01 Rev. B/May 2013

Details

This command copies the script from nonvolatile memory into the run-time environment. It also creates a global
variable with the same name as the name of the script.

Example

script.restore("test9") Restores a script named "test9" from nonvolatile
memory.

Also see

script.delete() (on page 8-356)

script.run()
This function runs the anonymous script.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

script.run()
run()

Details

Each time the script.run() command is given, the anonymous script is executed. This script can be run
using this command many times without having to re-send it.

Example

run() Runs the anonymous script.

Also see

script.anonymous (on page 8-355)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-361

script.user.catalog()
This function returns an iterator that can be used in a for loop to iterate over all the scripts stored in nonvolatile
memory.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

for name in script.user.catalog() do body end

name String representing the name of the script
body Code that implements the body of the for loop to process the names in the catalog

Details

Accessing the catalog of scripts stored in nonvolatile memory allows you to process all scripts in nonvolatile
memory. The entries will be enumerated in no particular order.
Each time the body of the function executes, name takes on the name of one of the scripts stored in nonvolatile
memory. The for loop repeats until all scripts have been iterated.

Example

for name in script.user.catalog() do
 print(name)
end

Retrieve the catalog listing for user scripts.

Also see

None

scriptVar.autorun
This attribute controls the autorun state of a script.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) No Not applicable See Details See Details

Usage

scriptVar.autorun = state
state = scriptVar.autorun

scriptVar The name of the variable that references the script
state Whether or not the script runs automatically when powered on:

• "yes" (script runs automatically)
• "no" (script does not run automatically)

Details

Autorun scripts run automatically when the instrument is turned on. You can set any number of scripts to
autorun.
The run order for autorun scripts is arbitrary, so make sure the run order is not important.
The default value for scriptVar.autorun depends on how the script was loaded. The default is "no" if the
script was loaded with loadscript or script.new(). It is "yes" for scripts loaded with loadandrunscript
or script.newautorun().

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-362 3700AS-901-01 Rev. B/May 2013

Make sure to save the script in nonvolatile memory after setting the autorun attribute so that the
instrument will retain the setting.

Example

test5.autorun = "yes"
test5.save()

Assume a script named "test5" is in the run-time
environment.
The next time the instrument is turned on, "test5"
script automatically loads and runs.

Also see

None

scriptVar.list()
This function generates a script listing.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

scriptVar.list()

scriptVar The name of variable that references the script

Details

This function generates output in the form of a sequence of response messages (one message for each line of
the script). It also generates output of the script control messages (loadscript or loadandrunscript and
endscript).

Example

test7 = script.new("display.clear() display.settext('Hello from my test')",
"test7")

test7()
test7.save()
test7.list()

The above example code creates a script named "test7" that displays text on the front panel and lists the
script with the following output:
loadscript test7
display.clear() display.settext("Hello from my test")
endscript

Also see

Load a script by sending commands over the remote interface (on page 7-4)
Retrieve source code one line at a time (on page 7-8)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-363

scriptVar.name
This attribute contains the name of a script in the run-time environment.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) No Not applicable Not applicable Not applicable

Usage

scriptVar.name = scriptName
scriptName = scriptVar.name

scriptVar Name of the variable that references the script
scriptName A string that represents the name of the script

Details

When setting the script name, this attribute renames the script that the variable scriptVar references.
This attribute must be either a valid Lua identifier or the empty string. Changing the name of a script changes the
index that is used to access the script in the script.user.scripts table. Setting the attribute to an empty
string removes the script from the table completely, and the script becomes an unnamed script.

As long as there are variables referencing an unnamed script, the script can be accessed through those
variables. When all variables that reference an unnamed script are removed, the script will be removed from the
run-time environment.
If the new name is the same as a name that is already used for another script, the name of the other script is set
to an empty string, and that script becomes unnamed.

Changing the name of a script does not change the name of any variables that reference that script.
The variables will still reference the script, but the names of the script and variables may not match.

Example

test7 = script.new("display.clear() display.settext('Hello from my test')", "")
test7()
print(test7.name)

test7.name = "test7"
print(test7.name)

test7.save()

This example calls the script.new() function to create a script with no name, runs the script, names the
script "test7", and then saves the script in nonvolatile memory.

Also see

Rename a script (on page 7-41)
script.new() (on page 8-358)
scriptVar.save() (on page 8-365)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-364 3700AS-901-01 Rev. B/May 2013

scriptVar.run()
This function runs a script.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

scriptVar.run()
scriptVar()

scriptVar The name of the variable that references the script

Details

The scriptVar.run() function runs the script referenced by scriptVar. You can also run the script by using
scriptVar().

Example

test8.run() Runs the script referenced by the variable
test8.

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-365

scriptVar.save()
This function saves the script to nonvolatile memory or to a USB flash drive.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

scriptVar.save()
scriptVar.save(filename)

scriptVar The name of variable that references the script

filename The file name to use when saving the script to a USB flash drive

Details

The scriptVar.save() function saves a script to nonvolatile memory or a USB flash drive. The root folder of
the USB flash drive has the absolute path /usb1/.
If no filename is specified (the filename parameter is an empty string), the script is saved to internal nonvolatile
memory. Only a script with filename defined can be saved to internal nonvolatile memory. If a filename is
given, the script is saved to the USB flash drive.
If no filename is specified (the filename parameter is an empty string), the script is saved to internal nonvolatile
memory. Only a script with filename defined can be saved to internal nonvolatile memory. If a filename is
given, the script is saved to the USB flash drive.
You can add the file extension, but it is not required. The only allowed extension is .tsp (see Example 2).

Example 1

test8.save() Saves the script referenced by the variable
test8 to nonvolatile memory.

Example 2

test8.save("/usb1/myScript.tsp") Saves the script referenced by the variable
test8 to a file named myScript.tsp on your
flash drive.

Also see

Save a user script (on page 7-10)

scriptVar.source
This attribute contains the source code of a script.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW)
(see Details)

No Not applicable Not saved Not applicable

Usage

code = scriptVar.source
scriptVar.source = nil

scriptVar The name of the variable that references the script that contains the source code
code The body of the script

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-366 3700AS-901-01 Rev. B/May 2013

Details

The loadscript or loadandrunscript and endscript keywords are not included in the source code.
The body of the script is a single string with lines separated by the new line character.
The instrument automatically stores the source for all scripts that are loaded on the instrument. To free up
memory or to obfuscate the code, assign nil to the source attribute of the script. Although this attribute is
writable, it can only be set to the nil value.

Example

test7 = script.new("display.clear() display.settext('Hello from my test')", "")
print(test7.source)

This example creates a script called "test7" that displays a message on the front panel and retrieves the
source code.
Output:
display.clear() display.settext('Hello from my test')

Also see

scriptVar.list() (on page 8-362)

settime()
This function sets the real-time clock (sets present time of the system).

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

settime(time)

time The time in seconds since January 1, 1970 UTC

Details

This function sets the date and time of the instrument based on the time parameter (specified in UTC time).
UTC time is specified as the number of seconds since Jan 1, 1970, UTC. You can use UTC time from a local
time specification, or you can use UTC time from another source (for example, your computer).

Example

systemTime = os.time({year = 2010,
 month = 3,
 day = 31,
 hour = 14,
 min = 25})
settime(systemTime)

Sets the date and time to Mar 31, 2010 at
2:25 pm.

Also see

gettimezone() (on page 8-261)
os.time()
settimezone() (on page 8-367)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-367

settimezone()
This function sets the local time zone.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

settimezone(offset)
settimezone(offset, dstOffset, dstStart, dstEnd)

offset String representing offset from UTC
dstOffset String representing the daylight savings offset from UTC
dstStart String representing when daylight savings time starts
dstEnd String representing when daylight savings time ends

Details

You only need to set the time zone if you use the os.time() and os.date() functions.
If only one parameter is given, the same time offset is used throughout the year. If four parameters are given,
time is adjusted twice during the year for daylight savings time.
offset and dstOffset are strings of the form "[+|-]hh[:mm[:ss]]" that indicate how much time must be
added to the local time to get UTC time:

• hh is a number between 0 and 23 that represents hours
• mm is a number between 0 and 59 that represents minutes
• ss is a number between 0 and 59 that represents seconds

The minute, second, +, and − fields are optional.

For example, to set the UTC-5 time zone, you specify the string "5", because UTC-5 is 5 hours behind UTC and
you must add 5 hours to the local time to determine UTC time. To specify the time zone UTC4, you specify "-
4", because UTC4 is 4 hours ahead of UTC and 4 hours must be subtracted from the local time to determine
UTC.
dstStart and dstEnd are strings of the form "MM.w.dw/hh[:mm[:ss]]" that indicate when daylight savings
time begins and ends respectively:

• MM is a number between 1 and 12 that represents the month
• w is a number between 1 and 5 that represents the week in the month
• dw is a number between 0 and 6 that represents the day of the week (where 0 is Sunday)

The rest of the fields represent the time of day that the change takes effect:
• hh represents hours
• mm represents minutes
• ss represents seconds

The minutes and seconds fields are optional.
The week of the month and day of the week fields are not specific dates.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-368 3700AS-901-01 Rev. B/May 2013

Example

settimezone("8", "1", "3.3.0/02", "11.2.0/02")

settimezone(offset)

Sets offset to equal +8 hours, +1
hour for DST, starts on Mar 14 at 2:00
a.m, ends on Nov 7 at 2:00 a.m.
Sets local time zone to offset.

Also see

gettimezone() (on page 8-261)
os.time()
settime() (on page 8-366)

setup.cards()
This function returns the card model numbers that are defined for each slot in a saved setup.

Type TSP-Link accessible Affected by Where saved Default value

Function Yes

Usage

CardModels = setup.cards()
CardModels = setup.cards("/path/filename.set")

CardModels A comma-delimited string listing the card model numbers for each slot

path/filename The path and name of the file on the flash drive; the path may be absolute or
relative to the current working directory; the .set extension must be on the
filename

Details

This function returns a comma-delimited string that lists the card model for each slot in the instrument (from 1 to
6) for the desired saved setup. If no card was installed in the slot when the setup was saved, a 0 is returned as
the card model number.
Use CardModels = setup.cards() to return cards associated with the internally saved setup.
Use CardModels = setup.cards("/path/filename.set") to return cards associated with the setup
saved on the USB flash drive.

Example 1

CardModels = setup.cards()
print(CardModels)

Query the cards associated with the internal saved
setup.
Output, assuming a Model 3722 card in slot 1:
3722,0,0,0,0,0

print(setup.card("/usb1/mysetup.set"
))

Query the cards associated with mysetup.set on
the root directory on the flash drive.
Output, assuming a Model 3723 on slot 2, Model
3722 on slot 3, and Model 3720 on slot 4:
0,3723,3722,3720,0,0

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-369

Example 2

print(setup.card("/usb1/mysetup.set"
))

Query the cards associated with setup saved as
JulySetup.set on the thumb drive.
The following example of output shows that slots 1,
5, and 6 are empty, slot 2 has a Model 3723
installed, slot 3 has a Model 3722 installed and slot
4 has a model 3720 installed:
0,3723,3722,3720,0,0

Also see

setup.recall() (on page 8-370)
setup.save() (on page 8-370)

setup.poweron
This attribute specifies which saved setup to recall when the instrument is turned on.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile memory 0

Usage

id = setup.poweron
setup.poweron = id

id An integer that specifies the setup to recall when the instrument power is
turned on (0 or 1)

Details

When id = 0, the instrument uses the factory default setup when it is turned on. When id is set to 1, it uses the
setup saved with setup.save().
Only setups stored in nonvolatile memory are available.
To save a script that is used when the instrument is powered on, you can create a configuration script and name
it autoexec.

Example

setup.poweron = 0 Set the instrument to use the factory default setup
when power is turned on.

Also see

createconfigscript() (on page 8-115)
Save the present configuration (on page 2-100)
setup.save() (on page 8-370)
Start-up (power-on) configuration (on page 2-35)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-370 3700AS-901-01 Rev. B/May 2013

setup.recall()
This function recalls settings from a saved setup.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

setup.recall(id)

id An integer or string that specifies the location of the setup to recall:
• Factory default setup (0)
• User-saved setup in nonvolatile memory (1)
• User-saved setup on a USB flash drive ("/path/filename")

Details

If the id parameter is 1, the internal setup that was saved with setup.save() is recalled. If the id parameter is
0, the instrument recalls the factory default setup.
When the id parameter is a string, it is interpreted as the path and file name of the setup to restore from a file on
a USB flash drive. The path may be absolute or relative to the current working directory.
Before a setup is recalled, an instrument reset is performed.

Example 1

setup.recall(1) Recall the user-saved setup.

Example 2

setup.recall("/usb1/KEITHLEY_30730.set") Recall a user-saved setup stored in a file
named KEITHLEY_30730 on a USB flash
drive.

Also see

Saved setups (on page 2-33)
setup.save() (on page 8-370)

setup.save()
This function saves the present setup as a user-saved setup.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

setup.save()
setup.save(id)

id A string that specifies the path and file name to which to save the user setup
on a USB flash drive ("/path/filename")

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-371

Details

When the id parameter is a string, it is interpreted as the path and file name of the location to save the present
setup on a USB flash drive. The path may be absolute or relative to the current working directory.
If you do not specify the id parameter, the setup is saved to the instrument's nonvolatile memory. If a previous
setup exists, it is overwritten.
You can also create configuration scripts to save setups. See Save the present configuration (on page 2-100).

Example

setup.save() Saves the present setup to the internal memory of
the instrument.

Also see

createconfigscript() (on page 8-115)
Saved setups (on page 2-33)
setup.recall() (on page 8-370)

slot[X].banks.matrix
This attribute describes the number of banks in the matrix for a card.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Never Not applicable Not applicable

Usage

value = slot[X].banks.matrix

value The number of banks in the matrix
X The slot number

Details

Returns the number of banks in the matrix on the card in slot X. If no matrix or no card exists, it returns nil.

Example

print(slot[1].banks.matrix) Returns the number of banks in the matrix on the card in
slot 1 (4 banks).
Output:
4.000000000e+000

Also see

slot[X].columns.matrix (on page 8-372)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-372 3700AS-901-01 Rev. B/May 2013

slot[X].columns.matrix
This attribute returns the number of columns in the matrix for the card in slot X.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

value = slot[X].columns.matrix

value The number of columns in the matrix
X The slot number

Details

This attribute is only available for a slot if a card is installed and if the installed card supports matrix channels. If
matrix channels are not available, the return value is nil.

Example

print(slot[4].columns.matrix) Returns the number of columns in the matrix
on the card in slot 4 (28).
Example output:
2.800000000e+01

Also see

slot[X].banks.matrix (on page 8-371)
slot[X].rows.matrix (on page 8-386)

slot[X].commonsideohms
This attribute indicates whether a card in slot X supports commonside 4-wire ohm channels.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

commonside = slot[X].commonsideohms

commonside Indication of whether or not commonside 4-wire ohm channels are supported
X Slot number (1 to 6)

Details

This attribute is only available for a slot if a card is installed and if the installed card supports commonside 4-wire
ohm channels. If the attribute is not available, the return value is nil.
If commonside 4-wire ohms channels are supported, the returned value is 1.

Example

print(slot[1].commonsideohms) Query if slot 1 supports commonside 4-wire
ohms channels.

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-373

slot[X].digio
Indicates whether or not a card in slot X supports digital I/O channels.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile
memory

0

Usage

value = slot[X].digio

value Indicator for whether or not the card in the slot supports digital I/O channels

X Slot number (1 to 6)

Details

This attribute is only available for a slot if a card is installed and if the installed card supports digital I/O channels.
If the attribute is not available, the return value is nil.
If digital I/O channels are supported, the returned value is 1.

Example

print(slot[1].digio) Query if slot 1 supports digital I/O
channels.

Also see

slot functions and attributes

slot[X].endchannel.*
These attributes indicates whether or not the channel in slot X supports a feature and if so, which channels
support the feature.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

value = slot[X].endchannel.amps (channel supports amperage measurements)
value = slot[X].endchannel.analogoutput (channel supports a digital analog output

(DAC))
value = slot[X].endchannel.digitalio (channel supports digital inputs and outputs)
value = slot[X].endchannel.isolated (channel supports isolated channels)
value = slot[X].endchannel.totalizer (channel supports totalizer channels)
value = slot[X].endchannel.voltage (channel supports voltage or two-wire

measurements)

value The channel number of the ending channel of the group of channels that supports
the feature

X Slot number (1 to 6.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-374 3700AS-901-01 Rev. B/May 2013

Details

This attribute is only available for a slot if a card is installed and if the installed card supports the selected
feature. If the attribute is not available, the return value is nil.
Channels are grouped by feature sets, so you can use the start and ending channel numbers to identify a group
of channels that supports a particular feature. If the card supports the feature, the returned value is the number
of the ending channel.
If only one channel in the card supports the feature, the ending channel will match the starting channel number.

Example

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-375

CardChannels = function(SlotNumber)
 if slot[SlotNumber].idn == "Empty Slot" then
 print(" Slot is Empty")
 else
 if (slot[SlotNumber].startchannel.voltage == nil) and

 (slot[SlotNumber].endchannel.voltage == nil) then
 print(" no voltage channels")
 else
 print(" Start voltage channel is " .. slot[SlotNumber].startchannel.voltage)
 print(" End voltage channel is " .. slot[SlotNumber].endchannel.voltage)
 end

 if (slot[SlotNumber].startchannel.amps == nil) and

 (slot[SlotNumber].endchannel.amps == nil) then
 print(" no amp channels")
 else
 print(" Start amp channel is " .. slot[SlotNumber].startchannel.amps)
 print(" End amp channel is " .. slot[SlotNumber].endchannel.amps)
 end

 if (slot[SlotNumber].digio == 1) then
 print(" Start digital i/o channel is " ..

 slot[SlotNumber].startchannel.digitalio)
 print(" End digital i/o channel is " .. slot[SlotNumber].endchannel.digitalio)
 else
 print(" no digio channels")
 end

 if (slot[SlotNumber].totalizer == 1) then
 print(" Start totalizer channel is " ..

slot[SlotNumber].startchannel.totalizer)
 print(" End totalizer channel is " .. slot[SlotNumber].endchannel.totalizer)
 else
 print(" no totalizer channels")
 end

 if (slot[SlotNumber].startchannel.analogoutput == nil) and

 (slot[SlotNumber].endchannel.analogoutput == nil) then
 print(" no analog output channels")
 else
 print(" Start analog output channel is " ..

 slot[SlotNumber].startchannel.analogoutput)
 print(" End analog output channel is " ..

 slot[SlotNumber].endchannel.analogoutput)
 end

 if (slot[SlotNumber].matrix == 1) then
 print(" Channels on card are matrix type")
 end
 end
end

for x = 1,6 do
 print("Checking card channels in slot " .. x)
 CardChannels(x)
end

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-376 3700AS-901-01 Rev. B/May 2013

If the Series 3700A contains the following cards:
• Slot 1: 3732
• Slot 2: 3720
• Slot 3: 3750
• Slot 4: Empty
• Slot 5: 3721
• Slot 6: Empty

The output of this example is similar to:
Checking card channels in slot 1
 no voltage channels
 no amp channels
 no digio channels
 no totalizer channels
 no analog output channels
 Channels on card are matrix type
Checking card channels in slot 2
 Start voltage channel is 1
 End voltage channel is 60
 no amp channels
 no digio channels
 no totalizer channels
 no analog output channels
Checking card channels in slot 3
 no voltage channels
 no amp channels
 Start digital i/o channel is 1
 End digital i/o channel is 5
 Start totalizer channel is 6
 End totalizer channel is 9
 Start analog output channel is 10
 End analog output channel is 11
Checking card channels in slot 4
 Slot is Empty
Checking card channels in slot 5
 Start voltage channel is 1
 End voltage channel is 40
 Start amp channel is 41
 End amp channel is 42
 no digio channels
 no totalizer channels
 no analog output channels
Checking card channels in slot 6
 Slot is Empty

Also see

slot functions and attributes
slot[X].startchannel.* (on page 8-386)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-377

slot[X].idn
This attribute returns a string that contains information about the card in slot X.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

idnString = slot[X].idn

idnString The return string
X Slot number (1 to 6)

Details

The information that is returned depends on whether the card in the slot is an actual card or pseudocard.
For actual cards, this returns a comma-separated string that contains the model number, description, firmware
revision, and serial number of the card installed in slot X.
For pseudocards, the response is Pseudo, followed by the model number, description, firmware revision, and
??? for the serial number.

Example

print(slot[3].idn) If a Model 3723 is installed in slot 3, the response is:
3723,Dual 1x30 Reed Multiplexer,01.40e,1243657

Also see

slot[X] attributes (see "Slot" on page 6-18)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-378 3700AS-901-01 Rev. B/May 2013

slot[X].interlock.override
This attribute suppresses or permits interlock errors to be generated.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Recall setup

Create configuration script
Save setup

0

Usage

value = slot[X].interlock.override
slot[X].interlock.override = value

value Indicates the desired state of the interlock override; valid values are slot.ON (1) or
slot.OFF (0, the default)

X The slot containing the card to which the interlock state is applied

Details

This command suppresses errors that would otherwise be generated when the interlock is not closed. If the
interlock is not physically connected, channels will still not close.
This attribute exists only for installed cards that support detecting an interlock break. Otherwise, the return value
is nil. If the card supports detecting an interlock break, set this attribute to the desired response.
To enable interlock override on the card, set to slot.ON. If an override performed on card is not desired, set to
slot.OFF. This setting applies to all interlocks on the card.

Example

slot[3].interlock.override = slot.ON Suppresses interlock errors.

Also see

slot[X].interlock.state (on page 8-379)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-379

slot[X].interlock.state
This attribute indicates the interlock state of a card.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Nonvolatile
memory

1

Usage

value = slot[X].interlock.state

value Indicates whether the interlocks are engaged or not; see table below for possible
return values

Details

This attribute will not exist for a slot if a card is not installed or the card installed does not support detecting an
interlock break. In these cases, the return value will be nil.

Return values for slot[X].interlock.state

Return value Description

nil No card is installed or the installed card does not support interlocks
0 Interlocks 1 and 2 are disengaged on the card
1 Interlock 1 is engaged, interlock 2 (if it exists) is disengaged
2 Interlock 2 in engaged, interlock 1 is disengaged
3 Both interlock 1 and 2 are engaged

Use this attribute to query the interlock state for cards that support detecting interlock break.

Also see

slot[X].interlock.override (on page 8-378)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-380 3700AS-901-01 Rev. B/May 2013

slot[X].isolated
This attribute indicates if the card in slot X supports isolated channels.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

value = slot[X].isolated

value 1 if isolated channels are supported
X Slot number (1 to 6)

Details

This attribute is only available for a slot if a card is installed and if the installed card supports the isolated
channels. If isolated channels are not available, the return value is nil.

Example

IsolatedChan1 = slot[1].isolated
print(IsolatedChan1)

Query if slot 1 supports isolated channels. If
it does support isolated channels, the output
is:
1.000000000e+00

Also see

slot[X].idn (on page 8-377)

slot[X].matrix
This attribute indicates if the card in slot X supports matrix channels.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

value = slot[X].matrix

value 1 if matrix channels are supported
X Slot number (1 to 6)

Details

This attribute is only available for a slot if a card is installed and if the installed card supports matrix channels. If
matrix channels are not available, the return value is nil.

Example

Matrix1 = slot[1].matrix
print(Matrix1)

Query if slot 1 supports matrix channels. If it
does support matrix channels, the output is:
1.000000000e+00

Also see

slot[X].idn (on page 8-377)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-381

slot[X].maxvoltage
This attribute returns the maximum voltage of all channels on a card in slot X.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

maximumVolts = slot[X].maxvoltage

maximumVolts The maximum voltage
X Slot number (1 to 6)

Details

This attribute is only available for a slot if a card is installed and if the installed card supports voltage settings. If
voltage settings are not available, the return value is nil.

Example

maxVolts2 = slot[2].maxvoltage
print(maxVolts2)

Query the maximum voltage on slot 2. The
output will be similar to:
3.0000000000e+02

Also see

slot[X].idn (on page 8-377)

slot[X].multiplexer
This attribute indicates if the card in slot X supports multiplexer channels.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

value = slot[X].multiplexer

value 1 if multiplexer channels are supported
X Slot number (1 to 6)

Details

This attribute is only available for a slot if a card is installed and if the installed card supports multiplexer
channels. If multiplexer channels are not available, the return value is nil.

Example

MuxChan1 = slot[1].multiplexer
print(MuxChan1)

Query if slot 1 supports multiplexer
channels. If it does support multiplexer
channels, the output is:
1.000000000e+00

Also see

slot[X].idn (on page 8-377)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-382 3700AS-901-01 Rev. B/May 2013

slot[X].poles.four
This attribute indicates if a four-pole setting is supported for the channels on the card.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

fourPole = slot[X].poles.four

fourPole The return value
X Slot number (1 to 6)

Details

This attribute only exists if a card is installed and if the card supports four-pole settings for the channels on the
card. If not, the value is nil. If supported, the value is 1.

Example

fourPole3 = slot[3].poles.four
print(fourPole3)

Queries if Slot 3 supports four-pole settings
for the channels on the card.
Output if card supports four pole:
1.000000000e+00

Output if card does not support four pole:
nil

Also see

slot[X].poles.one (on page 8-383)
slot[X].poles.two (on page 8-384)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-383

slot[X].poles.one
This attribute indicates if a one-pole setting is supported for the channels on the card.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

onePole = slot[X].poles.one

onePole The return value
X Slot number (1 to 6)

Details

This attribute only exists if a card is installed and if the card supports one-pole settings for the channels on the
card. If not, the value is nil. If supported, the value is 1.

Example

print(slot[3].poles.one) Query to see if Slot 3 supports one-pole
settings for the channels on the card.
Output if card supports one pole:
1.000000000e+00

Output if card does not support one pole:
nil

Also see

slot[X].poles.four (on page 8-382)
slot[X].poles.two (on page 8-384)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-384 3700AS-901-01 Rev. B/May 2013

slot[X].poles.two
This attribute indicates if a two-pole setting is supported for the channels on the card.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

twoPole = slot[X].poles.two

twoPole The return value
X Slot number (1 to 6)

Details

This attribute only exists is a card is installed and if the card supports a two-pole setting for the channels on the
card.
If not, the value is nil. If supported, the value is 1.

Example

twoPole3 = slot[3].poles.two
print(twoPole3)

Query to see if Slot 3 supports two-pole
settings for the channels on the card.
Output if card supports two pole:
1.000000000e+00

Output if card does not support two pole:
nil

Also see

slot[X].poles.one (on page 8-383)
slot[X].poles.four (on page 8-382)

slot[X].pseudocard
This attribute specifies the corresponding pseudocard to implement for the designated slot.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Not applicable See Details

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-385

Usage

pseudoCard = slot[X].pseudocard
slot[X].pseudocard = pseudoCard

pseudoCard • Set pseudocard to one of the following values:
• slot.PSEUDO_NONE or 0 for no pseudocard selection
• 3720 for Model 3720 Dual 1x30 Multiplexer card simulation
• 3721 for Model 3721 Dual 1x20 Multiplex card simulation
• 3722 for Model 3722 Dual 1x48 Multiplexer card simulation
• 3723 for Model 3723 Dual 1x30 Reed Multiplexer card simulation
• 3724 for Model 3724 Dual 1x30 FET Multiplexer card simulation
• 3730 for Model 3730 6 x 16 High Density Matrix card simulation
• 3731 for Model 3731 6x16 High Speed Reed Relay Matrix card simulation
• 3732 or 37320 for Model 3732 Quad 4 x 28 Ultra-High Density Reed Relay Matrix

card simulation
• 37321 for Model 3732 Dual 4 x 56 Ultra-High Density Reed Relay Matrix card

simulation
• 37322 for Model 3732 Single 4 x 112 Ultra-High Density Reed Relay Matrix card

simulation
• 37323 for Model 3732 Dual 8 x 28 Ultra-High Density Reed Relay Matrix card

simulation
• 37324 for Model 3732 Single 16 x 28 Ultra-High Density Reed Relay Matrix card

simulation
• 3740 for Model 3740 32-Channel Isolated Switch card simulation
• 3750 for Model 3750 Multifunction I/O card

X Slot number (1 to 6)

Details

This attribute only exists for a slot if that slot has no card installed in it. If a card is installed, the response is nil
when queried. If no card installed and the slot is empty, the response is 0.
After assigning a pseudocard, the valid commands and attributes based on that pseudocard exist for that slot.
For example, the slot[X].idn attribute is valid.
Changing the pseudocard card assignment from a card to slot.PSEUDO_NONE invalidates existing scan lists
that include that slot.

Example

slot[6].pseudocard = 3720 Sets the pseudocard of slot 6 for Model 3720 card
simulation.

Also see

slot[X] attributes (see "Slot" on page 6-18)
slot[X].idn (on page 8-377)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-386 3700AS-901-01 Rev. B/May 2013

slot[X].rows.matrix
This attribute returns the number of rows in the matrix on the card in slot X.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

value = slot[X].rows.matrix

value Number of rows in the matrix card of the selected slot
X Slot number (1 to 6)

Details

This attribute is only available for a slot if a card is installed and if the installed card supports matrix channels. If
matrix channels are not available, the return value is nil.

Example

print(slot[4].rows.matrix) Returns the number of rows in the matrix on
the card in slot 4 (12 rows).
Example output:
1.2000000000e+01

Also see

slot[X].columns.matrix (on page 8-372)
slot[X].idn (on page 8-377)
slot[X].matrix (on page 8-380)

slot[X].startchannel.*
These attributes indicates whether or not the channel in slot X supports a feature and if so, which channels
support the feature.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

value = slot[X].startchannel.amps (channel supports amperage measurements)
value = slot[X].startchannel.analogoutput (channel supports a digital analog output (DAC))
value = slot[X].startchannel.digitalio (channel supports digital inputs and outputs)
value = slot[X].startchannel.isolated (channel supports isolated channels)
value = slot[X].startchannel.totalizer (channel supports totalizer channels)
value = slot[X].startchannel.voltage (channel supports voltage or two-wire measurements)

value The channel number of the starting channel of the group of channels that
supports the feature

X Slot number (1 to 6)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-387

Details

This attribute is only available for a slot if a card is installed and if the installed card supports the selected
feature. If the attribute is not available, the return value is nil.
Channels are grouped on the cards by feature sets, so you can use the start and ending channel numbers to
identify a group of channels that supports a particular feature. If the card supports the feature, the returned value
is the number of the starting channel.
If only one channel in the card supports the feature, the starting channel will match the ending channel number.

Example

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-388 3700AS-901-01 Rev. B/May 2013

CardChannels = function(SlotNumber)
 if slot[SlotNumber].idn == "Empty Slot" then
 print(" Slot is Empty")
 else
 if (slot[SlotNumber].startchannel.voltage == nil) and

 (slot[SlotNumber].endchannel.voltage == nil) then
 print(" no voltage channels")
 else
 print(" Start voltage channel is " .. slot[SlotNumber].startchannel.voltage)
 print(" End voltage channel is " .. slot[SlotNumber].endchannel.voltage)
 end

 if (slot[SlotNumber].startchannel.amps == nil) and

 (slot[SlotNumber].endchannel.amps == nil) then
 print(" no amp channels")
 else
 print(" Start amp channel is " .. slot[SlotNumber].startchannel.amps)
 print(" End amp channel is " .. slot[SlotNumber].endchannel.amps)
 end

 if (slot[SlotNumber].digio == 1) then
 print(" Start digital i/o channel is " ..

 slot[SlotNumber].startchannel.digitalio)
 print(" End digital i/o channel is " .. slot[SlotNumber].endchannel.digitalio)
 else
 print(" no digio channels")
 end

 if (slot[SlotNumber].totalizer == 1) then
 print(" Start totalizer channel is " ..

slot[SlotNumber].startchannel.totalizer)
 print(" End totalizer channel is " .. slot[SlotNumber].endchannel.totalizer)
 else
 print(" no totalizer channels")
 end

 if (slot[SlotNumber].startchannel.analogoutput == nil) and

 (slot[SlotNumber].endchannel.analogoutput == nil) then
 print(" no analog output channels")
 else
 print(" Start analog output channel is " ..

 slot[SlotNumber].startchannel.analogoutput)
 print(" End analog output channel is " ..

 slot[SlotNumber].endchannel.analogoutput)
 end

 if (slot[SlotNumber].matrix == 1) then
 print(" Channels on card are matrix type")
 end
 end
end

for x = 1,6 do
 print("Checking card channels in slot " .. x)
 CardChannels(x)
end

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-389

If the Series 3700A contains the following cards:
• Slot 1: 3732
• Slot 2: 3720
• Slot 3: 3750
• Slot 4: Empty
• Slot 5: 3721
• Slot 6: Empty

The output of this example is similar to:
Checking card channels in slot 1
 no voltage channels
 no amp channels
 no digio channels
 no totalizer channels
 no analog output channels
 Channels on card are matrix type
Checking card channels in slot 2
 Start voltage channel is 1
 End voltage channel is 60
 no amp channels
 no digio channels
 no totalizer channels
 no analog output channels
Checking card channels in slot 3
 no voltage channels
 no amp channels
 Start digital i/o channel is 1
 End digital i/o channel is 5
 Start totalizer channel is 6
 End totalizer channel is 9
 Start analog output channel is 10
 End analog output channel is 11
Checking card channels in slot 4
 Slot is Empty
Checking card channels in slot 5
 Start voltage channel is 1
 End voltage channel is 40
 Start amp channel is 41
 End amp channel is 42
 no digio channels
 no totalizer channels
 no analog output channels
Checking card channels in slot 6
 Slot is Empty

Also see

slot functions and attributes
slot[X].endchannel.* (on page 8-373)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-390 3700AS-901-01 Rev. B/May 2013

slot[X].tempsensor
This attribute indicates if the card in slot X supports temperature sensor channels.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

value = slot[X].tempsensor

value 1 if temperature sensor channels are supported
X Slot number (1 to 6)

Details

This attribute is only available for a slot if a card is installed and if the installed card supports temperature sensor
channels. If temperature sensor channels are not available, the return value is nil.

Example

TempSensor = slot[1].tempsensor
print(TempSensor)

Query to determine if slot 1 supports
temperature sensor channels. If it does
support temperature sensor channels, the
output is:
1.000000000e+00

Also see

slot[X].idn (on page 8-377)

slot[X].thermal.state
This attribute indicates the thermal state of the card in the specified slot.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

value = slot[X].thermal.state

value 0 if thermal conditions will not affect specifications
1 if thermal conditions are getting warm enough to affect specifications

X Slot number (1 to 6)

Details

This attribute is only available for a slot if a card is installed and if the installed card supports thermal state
detection. If thermal state detection is not available, the return value is nil.

Example

print(slot[3].thermal.state) Query the thermal state on slot 3. If spec
might be affected by the thermal state, the
output is:
1.000000000e+00

Also see

slot[X].idn (on page 8-377)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-391

status.condition
This attribute stores the status byte condition register.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not saved Not applicable

Usage

statusByte = status.condition

statusByte The status byte; a zero (0) indicates no bits set; other values indicate various bit
settings

Details

This attribute is used to read the status byte, which is returned as a numeric value. The binary equivalent of the
value of this attribute indicates which register bits are set. In the binary equivalent, the least significant bit is bit
B0, and the most significant bit is bit B7. For example, if a value of 1.29000e+02 (which is 129) is read as the
value of this register, the binary equivalent is 1000 0001. This value indicates that bit B0 and bit B7 are set.

B7 B6 B5 B4 B3 B2 B1 B0

** > > > > > > *
1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

The returned value can indicate one or more status events occurred. When an enabled status event occurs, a
summary bit is set in this register to indicate the event occurrence.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-392 3700AS-901-01 Rev. B/May 2013

 The individual bits of this register have the following meanings:

Bit Value Description

B0 status.MEASUREMENT_SUMMARY_BIT
status.MSB

Set summary bit indicates that an enabled measurement
event has occurred.
Bit B0 decimal value: 1

B1 status.SYSTEM_SUMMARY_BIT
status.SSB

Set summary bit indicates that an enabled system event
has occurred.
Bit B1 decimal value: 2

B2 status.ERROR_AVAILABLE
status.EAV

Set summary bit indicates that an error or status
message is present in the Error Queue.
Bit B2 decimal value: 4

B3 status.QUESTIONABLE_SUMMARY_BIT
status.QSB

Set summary bit indicates that an enabled questionable
event has occurred.
Bit B3 decimal value: 8

B4 status.MESSAGE_AVAILABLE
status.MAV

Set summary bit indicates that a response message is
present in the Output Queue.
Bit B4 decimal value: 16

B5 status.EVENT_SUMMARY_BIT
status.ESB

Set summary bit indicates that an enabled standard
event has occurred.
Bit B5 decimal value: 32

B6 status.MASTER_SUMMARY_STATUS
status.MSS

Request Service (RQS)/Master Summary Status (MSS).
Depending on how it is used, bit B6 of the status byte
register is either the Request for Service (RQS) bit or
the Master Summary Status (MSS) bit:
• When using the GPIB, USB, or VXI-11 serial poll

sequence of the Model 3706A to obtain the
status byte (serial poll byte), B6 is the RQS bit.
The set bit indicates that the Request Service
(RQS) bit of the status byte (serial poll byte) is
set and a serial poll (SRQ) has occurred.

• When using the status.condition register
command or the *STB? common command to
read the status byte, B6 is the MSS bit. Set bit
indicates that an enabled summary bit of the
status byte register is set.

Bit B6 decimal value: 64
B7 status.OPERATION_SUMMARY_BIT

status.OSB
Set summary bit indicates that an enabled operation
event has occurred.
Bit B7 decimal value: 128

In addition to the above constants, when more than one bit of the register is set, statusByte equals the sum of
their decimal weights. For example, if 129 is returned, bits B0 and B7 are set (1 + 128).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Example

statusByte = status.condition
print(statusByte)

Returns statusByte.
Sample output:
1.29000e+02

Converting this output (129) to its binary equivalent
yields 1000 0001
Therefore, this output indicates that the set bits of
the status byte condition register are presently B0
(MSS) and B7 (OSB).

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-393

Also see

Status byte and service request (SRQ) (on page D-17)

status.measurement.*
This attribute contains the measurement event register set.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (R) Yes Not applicable Not saved Not applicable
.enable (RW) Yes Status reset Not saved 0
.event (R) Yes Status reset Not saved 0

.ntr (RW) Yes Status reset Not saved 0

.ptr (RW) Yes Status reset Not saved 399 (All bits set)

Usage

measurementRegister = status.measurement.condition
measurementRegister = status.measurement.enable
measurementRegister = status.measurement.event
measurementRegister = status.measurement.ntr
measurementRegister = status.measurement.ptr
status.measurement.enable = measurementRegister
status.measurement.ntr = measurementRegister
status.measurement.ptr = measurementRegister

measurementRegister The status of the measurement event register; a zero (0) indicates no bits
set (also send 0 to clear all bits);the only valid value other than 0 is 8

Details

These attributes read or write the measurement event registers.
Reading a status register returns a value. The binary equivalent of the returned value indicates which register
bits are set. The least significant bit of the binary number is bit B0, and the most significant bit is bit B15.
For example, assume value 384 is returned for the enable register. The binary equivalent is
0000 0001 1000 0000. This value indicates that bit B7 (ROF) and bit B8 (BAV) are set.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-394 3700AS-901-01 Rev. B/May 2013

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

* Least significant bit
** Most significant bit
For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description
B0 status.measurement.LOWER_LIMIT1

status.measurement.LLMT1
Set bit indicates that a reading has exceeded the
lower limit 1 value.
Bit B0 decimal value: 1

B1 status.measurement.UPPER_LIMIT1
status.measurement.ULMT1

Set bit indicates that a reading has exceeded the
upper limit 1 value.
Bit B1 decimal value: 2

B2 status.measurement.LOWER_LIMIT2
status.measurement.LLMT2

Set bit indicates that a reading has exceeded the
lower limit 2 value.
Bit B2 decimal value: 4

B3 status.measurement.UPPER_LIMIT2
status.measurement.ULMT2

Set bit indicates that a reading has exceeded the
upper limit 2 value.
Bit B3 decimal value: 8

B4-B6 Not used Not applicable
B7 status.measurement.READING_OVERFLOW

status.measurement.ROF
Set bit indicates that a reading has resulted in an
overflow measurement value.
Bit B7 decimal value: 128

B8 status.measurement.BUFFER_AVAILABLE
status.measurement.BAV

Set bit indicates that a reading buffer is storing
measurement values.
Bit B8 decimal value: 256
Binary value: 0001 0000 0000

B9-B15 Not used Not applicable

For example, assume value 257 is returned for the enable register. The binary equivalent is
0000 0001 0000 0001. This value indicates that bit B0 (VLMT) and bit B8 (BAV) are set.

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit
For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents and
Enable and transition registers. The individual bits of this register are defined in the following table.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-395

Bit Value Description

B0 status.measurement.VOLTAGE_LIMIT
status.measurement.VLMT

Set bit is a summary of the
status.measurement.voltage_limit register.
Bit B0 decimal value: 1

B1 status.measurement.CURRENT_LIMIT
status.measurement.ILMT

Set bit is a summary of the
status.measurement.current_limit register.
Bit B1 decimal value: 2

B2-B6 Not used Not applicable
B7 status.measurement.READING_OVERFLOW

status.measurement.ROF
Set bit is a summary of the
status.measurement.reading_overflow
register.
Bit B7 decimal value: 128

B8 status.measurement.BUFFER_AVAILABLE
status.measurement.BAV

Set bit is a summary of the
status.measurement.buffer_available
register.
Bit B8 decimal value: 256

B9-B10 Not used Not applicable
B11 status.measurement.OUTPUT_ENABLE

status.measurement.OE
Model 2601A/2602A/2604A: output enable line. Set
bit indicates that output enable has been asserted.
Bit B11 decimal value: 2,048

 status.measurement.INTERLOCK
status.measurement.INT

Model 2611A/2612A/2614A/2635A/2636A: interlock
line. Set bit indicates that interlock has been asserted.
Bit B11 decimal value: 2,048

B12 Not used Not applicable

B13 status.measurement.INSTRUMENT_SUMMARY
status.measurement.INST

Set bit indicates that a bit in the measurement
instrument summary register is set.
Bit B13 decimal value: 8,192

B14-B15 Not used Not applicable

As an example, to set bit B8 of the measurement event enable register, set status.measurement.enable =
status.measurement.BAV.
In addition to the above constants, measurementRegister can be set to the decimal equivalent of the bit to
set. To set more than one bit of the register, set measurementRegister to the sum of their decimal weights.
For example, to set bits B1 and B8, set measurementRegister to 258 (which is the sum of 2 + 256).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1

Weights (27) (26) (25) (24) (23) (22) (21) (20)

Bit B15 B14 B13 B12 B11 B10 B9 B8
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256
Weights (215) (214) (213) (212) (211) (210) (29) (28)

Example

status.measurement.enable = status.measurement.BAV Sets the BAV bit of the
measurement event enable register.

Also see

Measurement event registers

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-396 3700AS-901-01 Rev. B/May 2013

status.node_enable
This attribute stores the system node enable register. This attribute is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Status reset Not saved 0

Usage

nodeEnableRegister = status.node_enable
status.node_enable = nodeEnableRegister

nodeEnableRegister The status of the system node enable register; a zero (0) indicates no bits set (also
send 0 to clear all bits); other values indicate various bit settings

Details

This attribute is used to read or write to the system node enable register. Reading the system node enable
register returns a value. The binary equivalent of the value indicates which register bits are set. In the binary
equivalent, the least significant bit is bit B0, and the most significant bit is bit B7. For example, assume the value
of 1.29000e+02 (which is 129) is returned for the system node enable register, the binary equivalent is
1000 0001. This value indicates that bit B0 and bit B7 are set.

B7 B6 B5 B4 B3 B2 B1 B0

** > > > > > > *
1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

Assigning a value to this attribute enables one or more status events. When an enabled status event occurs, a
summary bit is set in the appropriate system summary register. The register and bit that is set depends on the
TSP-Link node number assigned to this instrument.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-397

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description

B0 status.MEASUREMENT_SUMMARY_BIT
status.MSB

Set summary bit indicates that an enabled measurement
event has occurred.
Bit B0 decimal value: 1

B1 Not used Not applicable.
B2 status.ERROR_AVAILABLE

status.EAV
Set summary bit indicates that an error or status
message is present in the Error Queue.
Bit B2 decimal value: 4

B3 status.QUESTIONABLE_SUMMARY_BIT
status.QSB

Set summary bit indicates that an enabled questionable
event has occurred.
Bit B3 decimal value: 8

B4 status.MESSAGE_AVAILABLE
status.MAV

Set summary bit indicates that a response message is
present in the Output Queue.
Bit B4 decimal value: 16

B5 status.EVENT_SUMMARY_BIT
status.ESB

Set summary bit indicates that an enabled standard
event has occurred.
Bit B5 decimal value: 32

B6 status.MASTER_SUMMARY_STATUS
status.MSS

Set bit indicates that an enabled Master Summary
Status (MSS) bit of the Status Byte Register is set.
Bit B6 decimal value: 64

B7 status.OPERATION_SUMMARY_BIT
status.OSB

Set summary bit indicates that an enabled operation
event has occurred.
Bit B7 decimal value: 128

As an example, to set the B0 bit of the system node enable register, set status.node_enable =
status.MSB.
In addition to the above values, nodeEnableRegister can be set to the numeric equivalent of the bit to set. To
set more than one bit of the register, set nodeEnableRegister to the sum of their decimal weights. For
example, to set bits B0 and B7, set nodeEnableRegister to 129 (1 + 128).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Example 1

nodeEnableRegister = status.MSB + status.OSB
status.node_enable = nodeEnableRegister

Sets the MSB and OSB bits of the
system node enable register using
constants.

Example 2

-- decimal 129 = binary 10000001
nodeEnableRegister = 129
status.node_enable = nodeEnableRegister

Sets the MSB and OSB bits of the
system node enable register using a
decimal value.

Also see

status.condition (on page 8-391)
status.system.* (on page 8-411)
Status byte and service request (SRQ) (on page D-17)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-398 3700AS-901-01 Rev. B/May 2013

status.node_event
This attribute stores the status node event register.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not saved 0

Usage

nodeEventRegister = status.node_event

nodeEventRegister The status of the node event register; a zero (0) indicates no bits set; other values
indicate various bit settings

Details

This attribute is used to read the status node event register, which is returned as a numeric value (reading this
register returns a value). The binary equivalent of the value of this attribute indicates which register bits are set.
In the binary equivalent, the least significant bit is bit B0, and the most significant bit is bit B7. For example, if a
value of 1.29000e+02 (which is 129) is read as the value of this register, the binary equivalent is 1000 0001.
This value indicates that bit B0 and bit B7 are set.

B7 B6 B5 B4 B3 B2 B1 B0

** > > > > > > *
1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

The returned value can indicate one or more status events occurred.

Bit Value Description
B0 status.MEASUREMENT_SUMMARY_BIT

status.MSB
Set summary bit indicates that an enabled measurement
event has occurred.
Bit B0 decimal value: 1

B1 Not used Not applicable
B2 status.ERROR_AVAILABLE

status.EAV
Set summary bit indicates that an error or status message
is present in the Error Queue.
Bit B2 decimal value: 4

B3 status.QUESTIONABLE_SUMMARY_BIT
status.QSB

Set summary bit indicates that an enabled questionable
event has occurred.
Bit B3 decimal value: 8

B4 status.MESSAGE_AVAILABLE
status.MAV

Set summary bit indicates that a response message is
present in the Output Queue.
Bit B4 decimal value: 16

B5 status.EVENT_SUMMARY_BIT
status.ESB

Set summary bit indicates that an enabled standard event
has occurred.
Bit B5 decimal value: 32

B6 status.MASTER_SUMMARY_STATUS
status.MSS

Set bit indicates that an enabled Master Summary Status
(MSS) bit of the Status Byte register is set.
Bit B6 decimal value: 64

B7 status.OPERATION_SUMMARY_BIT
status.OSB

Set summary bit indicates that an enabled operation event
has occurred.
Bit B7 decimal value: 128

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-399

In addition to the above constants, nodeEventRegister can be set to the decimal equivalent of the bits set.
When more than one bit of the register is set, nodeEventRegister contains the sum of their decimal weights.
For example, if 129 is returned, bits B0 and B7 are set (1 + 128).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Example

nodeEventRegister = status.node_event
print(nodeEventRegister)

Reads the status node event register.
Sample output:
1.29000e+02

Converting this output (129) to its binary
equivalent yields 1000 0001
Therefore, this output indicates that the set bits
of the status byte condition register are presently
B0 (MSB) and B7 (OSB).

Also see

Status byte and service request (SRQ) (on page D-17)
status.condition (on page 8-391)
status.system.* (on page 8-411)

status.operation.*
These attributes manage the operation status register set of the status model.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (R) Yes Not applicable Not saved Not applicable
.enable (RW) Yes Status reset Not saved 0

.event (R) Yes Status reset Not saved 0

.ntr (RW) Yes Status reset Not saved 0

.ptr (RW) Yes Status reset Not saved 22545

Usage

operationRegister = status.operation.condition
operationRegister = status.operation.enable
operationRegister = status.operation.event
operationRegister = status.operation.ntr
operationRegister = status.operation.ptr
status.operation.enable = operationRegister
status.operation.ntr = operationRegister
status.operation.ptr = operationRegister

operationRegister The status of the operation status register; a zero (0) indicates no bits set (also send
0 to clear all bits); other values indicate various bit settings

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-400 3700AS-901-01 Rev. B/May 2013

Details

These attributes read or write the operation status registers.
Reading a status register returns a value. The binary equivalent of the returned value indicates which register
bits are set. The least significant bit of the binary number is bit B0, and the most significant bit is bit B15. For
example, if a value of 2.04800e+04 (which is 20,480) is read as the value of the condition register, the binary
equivalent is 0101 0000 0000 0000. This value indicates that bit B14 (PROGRAM_RUNNING) and bit B12 (USER)
are set.

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

* Least significant bit
** Most significant bit
For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description
B0 status.operation.CALIBRATING

status.operation.CAL
Set bit indicates that the DMM is calibrating.
Bit B0 decimal value: 1

B1-B3 Not used Not applicable

B4 status.operation.MEASURING
status.operation.MEAS

Set bit indicates that DMM is measuring.
Bit B4 decimal value: 16

B5-B9 Not used Not applicable

B11 status.operation.PROMPTS
status.operation.PRMPTS

Set bit indicates that the command prompts are
enabled.
Bit B11 decimal value: 2,048

B12 status.operation.USER Set bit indicates that the summary bit from the
status.operation.user register is set.
Bit B12 decimal value: 4,096

B14 status.operation.PROGRAM_RUNNING
status.operation.PROG

Set bit indicates that a command or program is
running.
Bit B14 decimal value: 16,384

B15 Not used Not applicable

As an example, to set bit B12 of the operation status enable register, set status.operation.enable =
status.operation.USER.
In addition to the above constants, operationRegister can be set to the numeric equivalent of the bit to set.
To set more than one bit of the register, set operationRegister to the sum of their decimal weights. For
example, to set bits B12 and B14, set operationRegister to 20,480 (which is the sum of 4,096 + 16,384).

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-401

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Bit B15 B14 B13 B12 B11 B10 B9 B8
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256
Weights (215) (214) (213) (212) (211) (210) (29) (28)

The used bits of the operation event registers are:

• Bit B0, CAL - Set bit indicates that the instrument is calibrating.
• Bit B4, MEAS - Bit is set when taking a measurement.
• Bit B11, PRMPTS - Set bit indicates that command prompts are enabled.
• Bit B12, USER - Set bit indicates that an enabled bit in the operation status user register is set.
• Bit B14, PROG - Set bit indicates that a program is running.

Example 1

operationRegister = status.operation.USER +
 status.operation.PROG
status.operation.enable = operationRegister

Sets the USER and PROG bits of the
operation status enable register using
constants.

Example 2

-- decimal 20480 = binary 0101 0000 0000 0000
operationRegister = 20480
status.operation.enable = operationRegister

Sets the USER and PROG bits of the
operation status enable register using a
decimal value.

Also see

Operation Status Registers

status.operation.user.*
These attributes manage the operation status user register set of the status model.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (RW) Yes Status reset Not saved 0
.enable (RW) Yes Status reset Not saved 0
.event (R) Yes Status reset Not saved 0
.ntr (RW) Yes Status reset Not saved 0
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-402 3700AS-901-01 Rev. B/May 2013

Usage

operationRegister = status.operation.user.condition
operationRegister = status.operation.user.enable
operationRegister = status.operation.user.event
operationRegister = status.operation.user.ntr
operationRegister = status.operation.user.ptr
status.operation.user.condition = operationRegister
status.operation.user.enable = operationRegister
status.operation.user.ntr = operationRegister
status.operation.user.ptr = operationRegister

operationRegister The status of the operation status user register; a zero (0) indicates no bits set
(also send 0 to clear all bits); other values indicate various bit settings

Details

These attributes are used to read or write to the operation status user registers. Reading a status register returns
a value. The binary equivalent of the value indicates which register bits are set. In the binary equivalent, the least
significant bit is bit B0, and the most significant bit is bit B15. For example, if a value of 1.29000e+02 (which is
129) is read as the value of the condition register, the binary equivalent is 0000 0000 1000 0001. This value
indicates that bits B0 and B7 are set.

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description
B0 status.operation.user.BIT0 Bit B0 decimal value: 1
B1 status.operation.user.BIT1 Bit B1 decimal value: 2
B2 status.operation.user.BIT2 Bit B2 decimal value: 4
B3 status.operation.user.BIT3 Bit B3 decimal value: 8
B4 status.operation.user.BIT4 Bit B4 decimal value: 16
B5 status.operation.user.BIT5 Bit B5 decimal value: 32
B6 status.operation.user.BIT6 Bit B6 decimal value: 64

B7 status.operation.user.BIT7 Bit B7 decimal value: 128
B8 status.operation.user.BIT8 Bit B8 decimal value: 256
B9 status.operation.user.BIT9 Bit B9 decimal value: 512
B10 status.operation.user.BIT10 Bit B10 decimal value: 1,024
B11 status.operation.user.BIT11 Bit B11 decimal value: 2,048
B12 status.operation.user.BIT12 Bit B12 decimal value: 4,096

B13 status.operation.user.BIT13 Bit B13 decimal value: 8,192
B14 status.operation.user.BIT14 Bit B14 decimal value: 16,384
B15 Not used Not applicable

As an example, to set bit B0 of the operation status user enable register, set
status.operation.user.enable = status.operation.user.BIT0.
In addition to the above constants, operationRegister can be set to the numeric equivalent of the bit to set.
To set more than one bit of the register, set operationRegister to the sum of their decimal weights. For
example, to set bits B11 and B14, set operationRegister to 18,432 (which is the sum of 2,048 + 16,384).

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-403

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Bit B15 B14 B13 B12 B11 B10 B9 B8
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256
Weights (215) (214) (213) (212) (211) (210) (29) (28)

Example 1

operationRegister = status.operation.user.BIT11 +
 status.operation.user.BIT14
status.operation.user.enable = operationRegister

Uses constants to set bits B11 and B14
of the operation status user enable
register.

Example 2

-- 18432 = binary 0100 1000 0000 0000
operationRegister = 18432
status.operation.enable = operationRegister

Uses a decimal value to set bits B11 and
B14 of the operation status user enable
register.

Also see

Operation Status Register
status.operation.* (on page 8-399)

status.questionable.*
These attributes manage the status model's questionable status register set.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (R) Yes Not applicable Not saved Not applicable
.enable (RW) Yes Status reset Not saved 0
.event (R) Yes Status reset Not saved 0
.ntr (RW) Yes Status reset Not saved 0
.ptr (RW) Yes Status reset Not saved 32,256 (All bits set)

Usage

questionableRegister = status.questionable.condition
questionableRegister = status.questionable.enable
questionableRegister = status.questionable.event
questionableRegister = status.questionable.ntr
questionableRegister = status.questionable.ptr
status.questionable.enable = questionableRegister
status.questionable.ntr = questionableRegister
status.questionable.ptr = questionableRegister

questionableRegister The status of the questionable status register; a zero (0) indicates no bits set
(also send 0 to clear all bits); other values indicate various bit settings

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-404 3700AS-901-01 Rev. B/May 2013

Details

These attributes are used to read or write to the questionable status registers. Reading a status register returns a
value. In the binary equivalent, the least significant bit is bit B0, and the most significant bit is bit B15. For
example, if a value of 1.22880e+04 (which is 12,288) is read as the value of the condition register, the binary
equivalent is 0011 0000 0000 0000. This value indicates that bits B12 and B13 are set.

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

* Least significant bit
** Most significant bit

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description
B0 Not used Not available
B1 status.questionable.SLOT1_INTERLOCK

status.questionable.S1INL
Sets the interlock connection of the card in slot 1.
Bit B1 decimal value: 2

B2 status.questionable.SLOT2_INTERLOCK
status.questionable.S2INL

Sets the interlock connection of the card in slot 2.
Bit B2 decimal value: 4

B3 status.questionable.SLOT3_INTERLOCK
status.questionable.S3INL

Sets the interlock connection of the card in slot 3.
Bit B3 decimal value: 8

B4 status.questionable.SLOT4_INTERLOCK
status.questionable.S4INL

Sets the interlock connection of the card in slot 4.
Bit B4 decimal value: 16

B5 status.questionable.SLOT5_INTERLOCK
status.questionable.S5INL

Sets the interlock connection of the card in slot 5.
Bit B5 decimal value: 32

B6 status.questionable.SLOT6_INTERLOCK
status.questionable.S6INL

Sets the interlock connection of the card in slot 6.
Bit B6 decimal value: 64

B7 status.questionable.DMM_CONNECTION
status.questionable.DMMCONN

Indicates that the DMM connection in in question
for a measurement taken.
Bit B7 decimal value: 128

B8 status.questionable.CALIBRATION
status.questionable.CAL

Indicates that the calibration of the instrument is in
question.
Bit B8 decimal value: 256

B9 status.questionable.S1THR
status.questionable.SLOT1_THERMAL

Indicates that the thermal functions of the card in
slot 1 are questionable.
Bit B9 decimal value: 512

B10 status.questionable.S2THR
status.questionable.SLOT2_THERMAL

Indicates that the thermal functions of the card in
slot 2 are questionable.
Bit B10 decimal value: 1,024

B11 status.questionable.S3THR
status.questionable.SLOT3_THERMAL

Indicates that the thermal functions of the card in
slot 3 are questionable.
Bit B11 decimal value: 2,048

B12 status.questionable.S4THR
status.questionable.SLOT4_THERMAL

Indicates that the thermal functions of the card in
slot 4 are questionable.
Bit B12 decimal value: 4,096

B13 status.questionable.S5THR
status.questionable.SLOT5_THERMAL

Indicates that the thermal functions of the card in
slot 5 are questionable.
Bit B13 decimal value: 8,192

B14 status.questionable.S6THR
status.questionable.SLOT6_THERMAL

Indicates that the thermal functions of the card in
slot 6 are questionable.
Bit B14 decimal value: 16,384

B15 Not used Not available

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-405

As an example, to set bit B9 of the questionable status enable register, set status.questionable.enable =
status.questionable.SLOT1_THERMAL.
In addition to the above constants, questionableRegister can be set to the numeric equivalent of the bit to
set. To set more than one bit of the register, set questionableRegister to the sum of their decimal weights.
For example, to set bits B12 and B13, set questionableRegister to 12,288 (which is the sum of 4,096 +
8,192).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Bit B15 B14 B13 B12 B11 B10 B9 B8
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256
Weights (215) (214) (213) (212) (211) (210) (29) (28)

Example 1

questionableRegister = status.questionable.S1INL
+

 status.questionable.S6INL
status.questionable.enable = questionableRegister

Uses constants to set bits B1 and B6 of
the status questionable enable register.

Example 2

-- decimal 66 = binary 0100 0010
questionableRegister = 66
status.questionable.enable = questionableRegister

Uses a decimal value to set bits B1 and
B6 of the status questionable enable
register.

Also see

Questionable Status Registers

status.request_enable
This attribute stores the service request (SRQ) enable register.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Status reset Not saved 0

Usage

requestSRQEnableRegister = status.request_enable
status.request_enable = requestSRQEnableRegister

requestSRQEnableRegister The status of the service request (SRQ) enable register; a zero (0)
indicates no bits set (also send 0 to clear all bits); other values indicate
various bit settings

Details

This attribute is used to read or write to the service request enable register. Reading the service request enable
register returns a value. The binary equivalent of the value of this attribute indicates which register bits are set. In
the binary equivalent, the least significant bit is bit B0, and the most significant bit is bit B7. For example, if a
value of 1.29000e+02 (which is 129) is read as the value of this register, the binary equivalent is 1000 0001.
This value indicates that bit B0 and bit B7 are set.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-406 3700AS-901-01 Rev. B/May 2013

B7 B6 B5 B4 B3 B2 B1 B0

** > > > > > > *
1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description
B0 status.MEASUREMENT_SUMMARY_BIT

status.MSB
Set summary bit indicates that an enabled event in the
Measurement Event Register has occurred.
Bit B0 decimal value: 1

B1 status.SYSTEM_SUMMARY_BIT
status.SSB

This bit is only available on Models
2601A/2602A/2611A/2612A/2635A/2636A. Set summary
bit indicates that an enabled event in the System Summary
Register has occurred.
Bit B1 decimal value: 2

B2 status.ERROR_AVAILABLE
status.EAV

Set summary bit indicates that an error or status message
is present in the Error Queue.
Bit B2 decimal value: 4

B3 status.QUESTIONABLE_SUMMARY_BIT
status.QSB

Set summary bit indicates that an enabled event in the
Questionable Status Register has occurred.
Bit B3 decimal value: 8

B4 status.MESSAGE_AVAILABLE
status.MAV

Set summary bit indicates that a response message is
present in the Output Queue.
Bit B4 decimal value: 16

B5 status.EVENT_SUMMARY_BIT
status.ESB

Set summary bit indicates that an enabled event in the
Standard Event Status Register has occurred.
Bit B5 decimal value: 32

B6 Not used Not applicable
B7 status.OPERATION_SUMMARY_BIT

status.OSB
Set summary bit indicates that an enabled event in the
Operation Status Register has occurred.
Bit B7 decimal value: 128

As an example, to set bit B0 of the service request enable register, set status.request_enable =
status.MSB.
In addition to the above values, requestSRQEnableRegister can be set to the numeric equivalent of the bit
to set. To set more than one bit of the register, set requestSRQEnableRegister to the sum of their decimal
weights. For example, to set bits B0 and B7, set requestSRQEnableRegister to 129 (1 + 128).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Example 1

requestSRQEnableRegister = status.MSB +
 status.OSB

status.request_enable = requestSRQEnableRegister

Uses constants to set the MSB and OSB
bits of the service request (SRQ) enable
register.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-407

Example 2

-- decimal 129 = binary 10000001
requestSRQEnableRegister = 129
status.request_enable = requestSRQEnableRegister

Uses a decimal value to set the MSB and
OSB bits of the service request (SRQ)
enable register.

Also see

Status byte and service request (SRQ) (on page D-17)
status.condition (on page 8-391)
status.system.* (on page 8-411)

status.request_event
This attribute stores the service request (SRQ) event register.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not saved 0

Usage

requestSRQEventRegister = status.request_event

requestSRQEventRegister The status of the request event register; a zero (0) indicates no bits set;
other values indicate various bit settings

Details

This attribute is used to read the service request event register, which is returned as a numeric value. Reading
this register returns a value. The binary equivalent of the value of this attribute indicates which register bits are
set. In the binary equivalent, the least significant bit is bit B0, and the most significant bit is bit B7. For example, if
a value of 1.29000e+02 (which is 129) is read as the value of this register, the binary equivalent is 1000 0001.
This value indicates that bit B0 and bit B7 are set.

B7 B6 B5 B4 B3 B2 B1 B0

** > > > > > > *
1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

The returned value can indicate one or more status events occurred.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-408 3700AS-901-01 Rev. B/May 2013

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description
B0 status.MEASUREMENT_SUMMARY_BIT

status.MSB
Set summary bit indicates that an enabled event in the
Measurement Event Register has occurred.
Bit B0 decimal value: 1

B1 status.SYSTEM_SUMMARY_BIT
status.SSB

This bit is only available on Models
2601A/2602A/2611A/2612A/2635A/2636A. Set summary
bit indicates that an enabled event in the System Summary
Register has occurred.
Bit B1 decimal value: 2

B2 status.ERROR_AVAILABLE
status.EAV

Set summary bit indicates that an error or status message
is present in the Error Queue.
Bit B2 decimal value: 4

B3 status.QUESTIONABLE_SUMMARY_BIT
status.QSB

Set summary bit indicates that an enabled event in the
Questionable Status Register has occurred.
Bit B3 decimal value: 8

B4 status.MESSAGE_AVAILABLE
status.MAV

Set summary bit indicates that a response message is
present in the Output Queue.
Bit B4 decimal value: 16

B5 status.EVENT_SUMMARY_BIT
status.ESB

Set summary bit indicates that an enabled event in the
Standard Event Status Register has occurred.
Bit B5 decimal value: 32

B6 Not used Not applicable
B7 status.OPERATION_SUMMARY_BIT

status.OSB
Set summary bit indicates that an enabled event in the
Operation Status Register has occurred.
Bit B7 decimal value: 128

In addition to the above constants, requestEventRegister can be set to the decimal equivalent of the bits
set. When more than one bit of the register is set, requestEventRegister contains the sum of their decimal
weights. For example, if 129 is returned, bits B0 and B7 are set (1 + 128).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Example

requestEventRegister = status.request_event
print(requestEventRegister)

Reads the status request event register.
Sample output:
1.29000e+02
Converting this output (129) to its binary
equivalent yields 1000 0001.
Therefore, this output indicates that the set bits
of the status request event register are presently
B0 (MSB) and B7 (OSB).

Also see

status.condition (on page 8-391)
status.system.* (on page 8-411)
Status byte and service request (SRQ) (on page D-17)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-409

status.reset()
This function resets all bits in the status model.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

status.reset()

Details

This function clears all status data structure registers (enable, event, NTR, and PTR) to their default values. For
information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on page
D-2) and Enable and transition registers (on page D-21).

Example

status.reset() Resets the instrument status model.

Also see

Status model (on page 6-18, on page D-1, "Status Byte Register overview" on page D-4)

status.standard.*
These attributes manage the standard event status register set of the status model.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (R) Yes Not applicable Not saved Not applicable
.enable (RW) Yes Status reset Not saved 0
.event (R) Yes Status reset Not saved 0
.ntr (RW) Yes Status reset Not saved 0
.ptr (RW) Yes Status reset Not saved 253 (All bits set)

Usage

standardRegister = status.standard.condition
standardRegister = status.standard.enable
standardRegister = status.standard.event
standardRegister = status.standard.ntr
standardRegister = status.standard.ptr
status.standard.enable = standardRegister
status.standard.ntr = standardRegister
status.standard.ptr = standardRegister

standardRegister The status of the standard event status register; a zero (0) indicates no bits set (also
send 0 to clear all bits); other values indicate various bit settings

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-410 3700AS-901-01 Rev. B/May 2013

Details

These attributes are used to read or write to the standard event status registers. Reading a status register
returns a value. The binary equivalent of the returned value indicates which register bits are set. The least
significant bit of the binary number is bit B0, and the most significant bit is bit B15. For example, if a value of
1.29000e+02 (which is 129) is read as the value of the condition register, the binary equivalent is
0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are set.

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description
B0 status.standard.OPERATION_COMPLETE

status.standard.OPC
Set bit indicates that all pending selected
instrument operations are completed and the
instrument is ready to accept new commands.
The bit is set in response to an *OPC
command. The opc() function can be used in
place of the *OPC command.
Bit B0 decimal value: 1

B1 Not used Not applicable
B2 status.standard.QUERY_ERROR

status.standard.QYE
Set bit indicates that you attempted to read
data from an empty Output Queue.
Bit B2 decimal value: 4

B3 status.standard.DEVICE_DEPENDENT_ERROR
status.standard.DDE

Set bit indicates that an instrument operation
did not execute properly due to some internal
condition.
Bit B3 decimal value: 8

B4 status.standard.EXECUTION_ERROR
status.standard.EXE

Set bit indicates that the instrument detected
an error while trying to execute a command.
Bit B4 decimal value: 16

B5 status.standard.COMMAND_ERROR
status.standard.CME

Set bit indicates that a command error has
occurred. Command errors include:
IEEE Std 488.2 syntax error: Instrument
received a message that does not follow the
defined syntax of the IEEE Std 488.2
standard.
Semantic error: Instrument received a
command that was misspelled or received an
optional IEEE Std 488.2 command that is not
implemented.
GET error: The instrument received a Group
Execute Trigger (GET) inside a program
message.
Bit B5 decimal value: 32

B6 status.standard.USER_REQUEST
status.standard.URQ

Set bit indicates that the LOCAL key on the
instrument front panel was pressed.
Bit B6 decimal value: 64

B7 status.standard.POWER_ON
status.standard.PON

Set bit indicates that the instrument has been
turned off and turned back on since the last
time this register has been read.
Bit B7 decimal value: 128

B8-B15 Not used Not applicable

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-411

As an example, to set bit B0 of the standard event status enable register, set status.standard.enable =
status.standard.OPC.
In addition to the above constants, standardRegister can be set to the numeric equivalent of the bit to set. To
set more than one bit of the register, set standardRegister to the sum of their decimal weights. For example,
to set bits B0 and B4, set standardRegister to 17 (which is the sum of 1 + 16).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Example 1

standardRegister = status.standard.OPC
 + status.standard.EXE
status.standard.enable = standardRegister

Uses constants to set the OPC and EXE
bits of the standard event status enable
register.

Example 2

-- decimal 17 = binary 0001 0001
standardRegister = 17
status.standard.enable = standardRegister

Uses a decimal value to set the OPC and
EXE bits of the standard event status
enable register.

Also see

Event summary bit (ESB register) (on page D-11)

status.system.*
These attributes manage the TSP-Link® system summary register of the status model for nodes 1 through 14.
These attributes are not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (R) Yes Not applicable Not saved Not applicable
.enable (RW) Yes Status reset Not saved 0
.event (R) Yes Status reset Not saved 0
.ntr (RW) Yes Status reset Not saved 0
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set)

Usage

enableRegister = status.system.condition
enableRegister = status.system.enable
enableRegister = status.system.event
enableRegister = status.system.ntr
enableRegister = status.system.ptr
status.system.enable = enableRegister
status.system.ntr = enableRegister
status.system.ptr = enableRegister

enableRegister The status of the system summary register; a zero (0) indicates no bits set; other
values indicate various bit settings

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-412 3700AS-901-01 Rev. B/May 2013

Details

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary registers.
They are set using a constant or a numeric value, but are returned as a numeric value. The binary equivalent of
the value indicates which register bits are set. In the binary equivalent, the least significant bit is bit B0, and the
most significant bit is bit B15. For example, if a value of 1.29000e+02 (which is 129) is read as the value of the
condition register, the binary equivalent is 0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are
set.

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description
B0 status.system.EXTENSION_BIT

status.system.EXT
Bit B0 decimal value: 1

B1 status.system.NODE1 Bit B1 decimal value: 2
B2 status.system.NODE2 Bit B2 decimal value: 4
B3 status.system.NODE3 Bit B3 decimal value: 8
B4 status.system.NODE4 Bit B4 decimal value: 16
B5 status.system.NODE5 Bit B5 decimal value: 32
B6 status.system.NODE6 Bit B6 decimal value: 64
B7 status.system.NODE7 Bit B7 decimal value: 128
B8 status.system.NODE8 Bit B8 decimal value: 256
B9 status.system.NODE9 Bit B9 decimal value: 512
B10 status.system.NODE10 Bit B10 decimal value: 1,024

B11 status.system.NODE11 Bit B11 decimal value: 2,048
B12 status.system.NODE12 Bit B12 decimal value: 4,096
B13 status.system.NODE13 Bit B13 decimal value: 8,192

B14 status.system.NODE14 Bit B14 decimal value: 16,384
B15 Not used Not applicable

As an example, to set bit B0 of the system summary status enable register, set status.system.enable =
status.system.enable.EXT.
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit to set. To
set more than one bit of the register, set enableRegister to the sum of their decimal weights. For example, to
set bits B11 and B14, set enableRegister to 18,432 (which is the sum of 2,048 + 16,384).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Bit B15 B14 B13 B12 B11 B10 B9 B8
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256
Weights (215) (214) (213) (212) (211) (210) (29) (28)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-413

Example 1

enableRegister = status.system.NODE11 +
 status.system.NODE14
status.system.enable = enableRegister

Uses constants to set bits B11 and B14
of the system summary enable register.

Example 2

-- decimal 18432 = binary 0100 1000 0000 0000
enableRegister = 18432
status.system.enable = enableRegister

Uses a decimal value to set bits B11 and
B14 of the system summary enable
register.

Also see

status.system2.* (on page 8-413)
System summary and standard event registers (see "System summary bit (System register)" on page D-5)

status.system2.*
These attributes manage the TSP-Link® system summary register of the status model for nodes 15 through 28.
These attributes are not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (R) Yes Not applicable Not saved Not applicable
.enable (RW) Yes Status reset Not saved 0
.event (R) Yes Status reset Not saved 0
.ntr (RW) Yes Status reset Not saved 0
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set)

Usage

enableRegister = status.system2.condition
enableRegister = status.system2.enable
enableRegister = status.system2.event
enableRegister = status.system2.ntr
enableRegister = status.system2.ptr
status.system2.enable = enableRegister
status.system2.ntr = enableRegister
status.system2.ptr = enableRegister

enableRegister The status of the system summary 2 register; a zero (0) indicates no bits set; other
values indicate various bit settings

Details

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary registers.
They are set using a constant or a numeric value, but are returned as a numeric value. The binary equivalent of
the value indicates which register bits are set. In the binary equivalent, the least significant bit is bit B0, and the
most significant bit is bit B15. For example, if a value of 1.29000e+02 (which is 129) is read as the value of the
condition register, the binary equivalent is 0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are
set.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-414 3700AS-901-01 Rev. B/May 2013

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description

B0 status.system2.EXTENSION_BIT
status.system2.EXT

Bit B0 decimal value: 1

B1 status.system2.NODE15 Bit B1 decimal value: 2
B2 status.system2.NODE16 Bit B2 decimal value: 4
B3 status.system2.NODE17 Bit B3 decimal value: 8
B4 status.system2.NODE18 Bit B4 decimal value: 16
B5 status.system2.NODE19 Bit B5 decimal value: 32
B6 status.system2.NODE20 Bit B6 decimal value: 64
B7 status.system2.NODE21 Bit B7 decimal value: 128
B8 status.system2.NODE22 Bit B8 decimal value: 256
B9 status.system2.NODE23 Bit B9 decimal value: 512
B10 status.system2.NODE24 Bit B10 decimal value: 1,024
B11 status.system2.NODE25 Bit B11 decimal value: 2,048
B12 status.system2.NODE26 Bit B12 decimal value: 4,096
B13 status.system2.NODE27 Bit B13 decimal value: 8,192
B14 status.system2.NODE28 Bit B14 decimal value: 16,384
B15 Not used Not applicable

As an example, to set bit B0 of the system summary 2 enable register, set status.system2.enable =
status.system2.EXT.
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit to set. To
set more than one bit of the register, set enableRegister to the sum of their decimal weights. For example, to
set bits B11 and B14, set enableRegister to 18,432 (which is the sum of 2,048 + 16,384).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Bit B15 B14 B13 B12 B11 B10 B9 B8
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256
Weights (215) (214) (213) (212) (211) (210) (29) (28)

Example 1

enableRegister = status.system2.NODE25 +
 status.system2.NODE28
status.system2.enable = enableRegister

Uses constants to set bits B11 and B14
of the system summary 2 enable
register.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-415

Example 2

-- decimal 18432 = binary 0100 1000 0000 0000
enableRegister = 18432
status.system2.enable = enableRegister

Uses a decimal value to set bits B11 and
B14 of the system summary 2 enable
register.

Also see

status.system.* (on page 8-411)
status.system3.* (on page 8-415)
System summary and standard event registers (see "System summary bit (System register)" on page D-5)

status.system3.*
These attributes manage the TSP-Link® system summary register of the status model for nodes 29 through 42.
These attributes are not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (R) Yes Not applicable Not saved Not applicable
.enable (RW) Yes Status reset Not saved 0
.event (R) Yes Status reset Not saved 0
.ntr (RW) Yes Status reset Not saved 0
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set)

Usage

enableRegister = status.system3.condition
enableRegister = status.system3.enable
enableRegister = status.system3.event
enableRegister = status.system3.ntr
enableRegister = status.system3.ptr
status.system3.enable = enableRegister
status.system3.ntr = enableRegister
status.system3.ptr = enableRegister

enableRegister The status of the system summary 3 register; a zero (0) indicates no bits set; other
values indicate various bit settings

Details

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary registers.
They are set using a constant or a numeric value, but are returned as a numeric value. The binary equivalent of
the value indicates which register bits are set. In the binary equivalent, the least significant bit is bit B0, and the
most significant bit is bit B15. For example, if a value of 1.29000e+02 (which is 129) is read as the value of the
condition register, the binary equivalent is 0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are
set.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-416 3700AS-901-01 Rev. B/May 2013

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description
B0 status.system3.EXTENSION_BIT

status.system3.EXT
Bit B0 decimal value: 1

B1 status.system3.NODE29 Bit B1 decimal value: 2
B2 status.system3.NODE30 Bit B2 decimal value: 4
B3 status.system3.NODE31 Bit B3 decimal value: 8

B4 status.system3.NODE32 Bit B4 decimal value: 16
B5 status.system3.NODE33 Bit B5 decimal value: 32
B6 status.system3.NODE34 Bit B6 decimal value: 64
B7 status.system3.NODE35 Bit B7 decimal value: 128
B8 status.system3.NODE36 Bit B8 decimal value: 256
B9 status.system3.NODE37 Bit B9 decimal value: 512
B10 status.system3.NODE38 Bit B10 decimal value: 1,024
B11 status.system3.NODE39 Bit B11 decimal value: 2,048
B12 status.system3.NODE40 Bit B12 decimal value: 4,096
B13 status.system3.NODE41 Bit B13 decimal value: 8,192
B14 status.system3.NODE42 Bit B14 decimal value: 16,384
B15 Not used Not applicable

As an example, to set bit B0 of the system summary 3 enable register, set status.system3.enable =
status.system3.EXT.
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit to set. To
set more than one bit of the register, set enableRegister to the sum of their decimal weights. For example, to
set bits B11 and B14, set enableRegister to 18,432 (which is the sum of 2,048 + 16,384).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Bit B15 B14 B13 B12 B11 B10 B9 B8
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256
Weights (215) (214) (213) (212) (211) (210) (29) (28)

Example 1

enableRegister = status.system3.NODE39 +
 status.system3.NODE42
status.system3.enable = enableRegister

Uses constants to set bits B11 and B14
of the system summary 3 enable
register.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-417

Example 2

-- decimal 18432 = binary 0100 1000 0000 0000
enableRegister = 18432
status.system3.enable = enableRegister

Uses a decimal value to set bits B11 and
B14 of the system summary 3 enable
register.

Also see

status.system2.* (on page 8-413)
status.system4.* (on page 8-417)
System summary and standard event registers (see "System summary bit (System register)" on page D-5)

status.system4.*
These attributes manage the TSP-Link® system summary register of the status model for nodes 43 through 56.
These attributes are not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (R) Yes Not applicable Not saved Not applicable
.enable (RW) Yes Status reset Not saved 0
.event (R) Yes Status reset Not saved 0
.ntr (RW) Yes Status reset Not saved 0
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set)

Usage

enableRegister = status.system4.condition
enableRegister = status.system4.enable
enableRegister = status.system4.event
enableRegister = status.system4.ntr
enableRegister = status.system4.ptr
status.system4.enable = enableRegister
status.system4.ntr = enableRegister
status.system4.ptr = enableRegister

enableRegister The status of the system summary 4 register; a zero (0) indicates no bits set; other
values indicate various bit settings

Details

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary registers.
They are set using a constant or a numeric value, but are returned as a numeric value. The binary equivalent of
the value indicates which register bits are set. In the binary equivalent, the least significant bit is bit B0, and the
most significant bit is bit B15. For example, if a value of 1.29000e+02 (which is 129) is read as the value of the
condition register, the binary equivalent is 0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are
set.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-418 3700AS-901-01 Rev. B/May 2013

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

* Least significant bit
** Most significant bit

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description

B0 status.system4.EXTENSION_BIT
status.system4.EXT

Bit B0 decimal value: 1

B1 status.system4.NODE43 Bit B1 decimal value: 2
B2 status.system4.NODE44 Bit B2 decimal value: 4
B3 status.system4.NODE45 Bit B3 decimal value: 8
B4 status.system4.NODE46 Bit B4 decimal value: 16
B5 status.system4.NODE47 Bit B5 decimal value: 32
B6 status.system4.NODE48 Bit B6 decimal value: 64
B7 status.system4.NODE49 Bit B7 decimal value: 128
B8 status.system4.NODE50 Bit B8 decimal value: 256
B9 status.system4.NODE51 Bit B9 decimal value: 512
B10 status.system4.NODE52 Bit B10 decimal value: 1,024
B11 status.system4.NODE53 Bit B11 decimal value: 2,048
B12 status.system4.NODE54 Bit B12 decimal value: 4,096
B13 status.system4.NODE55 Bit B13 decimal value: 8,192
B14 status.system4.NODE56 Bit B14 decimal value: 16,384
B15 Not used Not applicable

As an example, to set bit B0 of the system summary 4 enable register, set status.system4.enable =
status.system4.enable.EXT.
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit to set. To
set more than one bit of the register, set enableRegister to the sum of their decimal weights. For example, to
set bits B11 and B14, set enableRegister to 18,432 (which is the sum of 2,048 + 16,384).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Bit B15 B14 B13 B12 B11 B10 B9 B8
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256
Weights (215) (214) (213) (212) (211) (210) (29) (28)

Example 1

enableRegister = status.system4.NODE53 +
 status.system4.NODE56
status.system2.enable = enableRegister

Uses constants to set bit B11 and bit B14
of the system summary 4 enable
register.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-419

Example 2

-- decimal 18432 = binary 0100 1000 0000 0000
enableRegister = 18432
status.system4.enable = enableRegister

Uses a decimal value to set bit B11 and
bit B14 of the system summary 4 enable
register.

Also see

status.system3.* (on page 8-415)
status.system5.* (on page 8-419)
System summary and standard event registers (see "System summary bit (System register)" on page D-5)

status.system5.*
These attributes manage the TSP-Link® system summary register of the status model for nodes 57 through 64.
These attributes are not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute - - - - - - - -
.condition (R) Yes Not applicable Not saved Not applicable
.enable (RW) Yes Status reset Not saved 0
.event (R) Yes Status reset Not saved 0
.ntr (RW) Yes Status reset Not saved 0
.ptr (RW) Yes Status reset Not saved 510 (All bits set)

Usage

enableRegister = status.system5.condition
enableRegister = status.system5.enable
enableRegister = status.system5.event
enableRegister = status.system5.ntr
enableRegister = status.system5.ptr
status.system5.enable = enableRegister
status.system5.ntr = enableRegister
status.system5.ptr = enableRegister

enableRegister The status of the system summary 5 register; a zero (0) indicates no bits set; other
values indicate various bit settings

Details

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary registers.
They are set using a constant or a numeric value, but are returned as a numeric value. The binary equivalent of
the value indicates which register bits are set. In the binary equivalent, the least significant bit is bit B0, and the
most significant bit is bit B15. For example, if a value of 1.30000e+02 (which is 130) is read as the value of the
condition register, the binary equivalent is 0000 0000 1000 0010. This value indicates that bit B1 and bit B7 are
set.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-420 3700AS-901-01 Rev. B/May 2013

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
** > > > > > > > > > > > > > > *
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

* Least significant bit
** Most significant bit

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set contents (on
page D-2) and Enable and transition registers (on page D-21). The individual bits of this register are defined in
the following table.

Bit Value Description

B0 Not used Not applicable
B1 status.system5.NODE57 Bit B1 decimal value: 2
B2 status.system5.NODE58 Bit B2 decimal value: 4
B3 status.system5.NODE59 Bit B3 decimal value: 8

B4 status.system5.NODE60 Bit B4 decimal value: 16
B5 status.system5.NODE61 Bit B5 decimal value: 32
B6 status.system5.NODE62 Bit B6 decimal value: 64
B7 status.system5.NODE63 Bit B7 decimal value: 128
B8 status.system5.NODE64 Bit B8 decimal value: 256
B9-B15 Not used Not applicable

As an example, to set bit B1 of the system summary 5 enable register, set status.system5.enable =
status.system5.NODE57.
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit to set. To
set more than one bit of the register, set enableRegister to the sum of their decimal weights. For example, to
set bits B1 and B4, set enableRegister to 18 (which is the sum of 2 + 16).

Bit B7 B6 B5 B4 B3 B2 B1 B0
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 128 64 32 16 8 4 2 1
Weights (27) (26) (25) (24) (23) (22) (21) (20)

Bit B15 B14 B13 B12 B11 B10 B9 B8
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256
Weights (215) (214) (213) (212) (211) (210) (29) (28)

Example 1

enableRegister = status.system5.NODE57 +
 status.system5.NODE60
status.system2.enable = enableRegister

Uses constants to set bits B1 and B4 of
the system summary 5 enable register.

Example 2

-- decimal 18 = binary 0000 0000 0001 0010
enableRegister = 18
status.system5.enable = enableRegister

Uses a decimal value to set bits B1 and
B4 of the system summary 5 enable
register.

Also see

status.system4.* (on page 8-417)
System summary and standard event registers (see "System summary bit (System register)" on page D-5)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-421

timer.measure.t()
This function measures the elapsed time since the timer was last reset.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

time = timer.measure.t()

time The elapsed time in seconds (1 µs resolution)

Example 1

timer.reset()
-- (intervening code)
time = timer.measure.t()
print(time)

Resets the timer and measures the time since the
reset.

Output:
1.469077e+01

The output will vary. The above output indicates that
timer.measure.t() was executed 14.69077
seconds after timer.reset().

Example 2

beeper.beep(0.5, 2400)
print("reset timer")
timer.reset()
delay(0.5)
dt = timer.measure.t()
print("timer after delay:", dt)
beeper.beep(0.5, 2400)

Sets the beeper, resets the timer, sets a delay, then
verifies the time of the delay before the next beeper.

Output:
reset timer
timer after delay: 5.00e-01

Also see

timer.reset() (on page 8-421)

timer.reset()
This function resets the timer to zero (0) seconds.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

timer.reset()

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-422 3700AS-901-01 Rev. B/May 2013

Example

timer.reset()
-- (intervening code)
time = timer.measure.t()
print(time)

Resets the timer and then measures the time since
the reset.
Output:
1.469077e+01

The above output indicates that
timer.measure.t() was executed 14.69077
seconds after timer.reset().

Also see

timer.measure.t() (on page 8-421)

trigger.blender[N].clear()
This function clears the blender event detector and resets blender N.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

trigger.blender[N].clear()

N The blender number (1 or 2)

Details

This command sets the blender event detector to the undetected state and resets the event detector's overrun
indicator.

Example

trigger.blender[2].clear() Clears the event detector for
blender 2.

Also see

None

trigger.blender[N].EVENT_ID
This constant contains the trigger blender event number.

Type TSP-Link accessible Affected by Where saved Default value
Constant Yes

Usage

eventID = trigger.blender[N].EVENT_ID

eventID Trigger event number
N The blender number (1 or 2)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-423

Details

Set the stimulus of any trigger object to the value of this constant to have the trigger object respond to trigger
events from this trigger blender.

Example

digio.trigger[1].stimulus = trigger.blender[2].EVENT_ID Set the trigger stimulus of
digital I/O trigger 1 to be
controlled by the trigger
blender 2 event.

Also see

None

trigger.blender[N].orenable
This attribute selects whether the blender operates in OR mode or AND mode.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Trigger blender N reset
Recall setup

Create configuration script
Save setup

false (AND mode)

Usage

orenable = trigger.blender[N].orenable
trigger.blender[N].orenable = orenable

orenable The orenable mode:
• true: OR mode
• false: AND mode

N The trigger blender (1 or 2)

Details

This command selects whether the blender waits for any one event (the “OR” mode) or waits for all selected
events (the “AND” mode) before signaling an output event.

Example

trigger.blender[1].orenable = true
trigger.blender[1].stimulus[1] = digio.trigger[3].EVENT_ID
trigger.blender[1].stimulus[2] = digio.trigger[5].EVENT_ID

Generate a trigger blender 1
event when a digital I/O
trigger happens on line 3 or
5.

Also see

trigger.blender[N].reset() (on page 8-424)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-424 3700AS-901-01 Rev. B/May 2013

trigger.blender[N].overrun
This attribute indicates whether or not an event was ignored because of the event detector state.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Instrument reset
Trigger blender N clear
Trigger blender N reset

Not applicable Not applicable

Usage

overrun = trigger.blender[N].overrun

overrun Trigger blender overrun state (true or false)
N The blender number (1 or 2)

Details

Indicates if an event was ignored because the event detector was already in the detected state when the event
occurred. This is an indication of the state of the event detector that is built into the event blender itself.
This command does not indicate if an overrun occurred in any other part of the trigger model or in any other
trigger object that is monitoring the event. It also is not an indication of an action overrun.

Example

print(trigger.blender[1].overrun) If an event was ignored, the output
is true.
If an event was not ignored, the
output is false.

Also see

trigger.blender[N].reset() (on page 8-424)

trigger.blender[N].reset()
This function resets some of the trigger blender settings to their factory defaults.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

trigger.blender[N].reset()

N The trigger event blender (1 or 2)

Details

The trigger.blender[N].reset() function resets the following attributes to their factory defaults:
• trigger.blender[N].orenable
• trigger.blender[N].stimulus[M]

It also clears trigger.blender[N].overrun.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-425

Example

trigger.blender[1].reset() Resets the trigger blender 1
settings to factory defaults.

Also see

trigger.blender[N].orenable (on page 8-423)
trigger.blender[N].overrun (on page 8-424)
trigger.blender[N].stimulus[M] (on page 8-425)

trigger.blender[N].stimulus[M]
This attribute specifies which events trigger the blender.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Recall setup
Trigger blender N reset

Create
configuration script
Save setup

0

Usage

eventID = trigger.blender[N].stimulus[M]
trigger.blender[N].stimulus[M] = eventID

eventID The event that triggers the blender action; see Details
N An integer representing the trigger event blender (1 or 2)
M An integer representing the stimulus index (1 to 4)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-426 3700AS-901-01 Rev. B/May 2013

Details

There are four acceptors that can each select a different event. The eventID parameter can be the event ID of
any trigger event.
The eventID parameter may be one of the existing trigger event IDs shown in the following table.

Trigger event IDs

Trigger event ID Description

channel.trigger[N].EVENT_ID A channel trigger event starts the scan.

digio.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

display.trigger.EVENT_ID The trigger key on the front panel is pressed.
dmm.trigger.EVENT_LIMIT1_HIGH A DMM trigger event that indicates a measurement has

exceed the high limit value on limit 1.
dmm.trigger.EVENT_LIMIT1_LOW A DMM trigger event that indicates a measurement has

exceed the low limit value on limit 1.

dmm.trigger.EVENT_LIMIT2_HIGH A DMM trigger event that indicates a measurement has
exceed the high limit value on limit 2.

dmm.trigger.EVENT_LIMIT2_LOW A DMM trigger event that indicates a measurement has
exceed the low limit value on limit 2.

trigger.EVENT_ID A *trg message on the active command interface. If GPIB is
the active command interface, a GET message also
generates this event.

trigger.blender[N].EVENT_ID A combination of events has occurred.
trigger.timer[N].EVENT_ID A delay expired.

tsplink.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the
configuration of the line) on the TSP-Link trigger line.

lan.trigger[N].EVENT_ID A LAN trigger event has occurred.
scan.trigger.EVENT_SCAN_READY Scan ready event.

scan.trigger.EVENT_SCAN_START Scan start event.
scan.trigger.EVENT_CHANNEL_READY Channel ready event.

scan.trigger.EVENT_MEASURE_COMP Measure complete event.
scan.trigger.EVENT_SEQUENCE_COMP Sequence complete event.
scan.trigger.EVENT_SCAN_COMP Scan complete event.
scan.trigger.EVENT_IDLE Idle event.
schedule.alarm[N].EVENT_ID A scan starts when alarm N fires.

Example

digio.trigger[3].mode = digio.TRIG_FALLING
digio.trigger[5].mode = digio.TRIG_FALLING
trigger.blender[1].orenable = true
trigger.blender[1].stimulus[1] = digio.trigger[3].EVENT_ID
trigger.blender[1].stimulus[2] = digio.trigger[5].EVENT_ID

Generate a trigger blender 1
event when a digital I/O
trigger happens on line 3 or
5.

Also see

trigger.blender[N].reset() (on page 8-424)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-427

trigger.blender[N].wait()
This function waits for a blender trigger event to occur.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

triggered = trigger.blender[N].wait(timeout)

triggered Trigger detection indication for blender
N The trigger blender (1 or 2) on which to wait
timeout Maximum amount of time in seconds to wait for the trigger blender event

Details

This function waits for an event blender trigger event. If one or more trigger events were detected since the last
time trigger.blender[N].wait() or trigger.blender[N].clear() was called, this function returns
immediately.
After detecting a trigger with this function, the event detector automatically resets and rearms. This is true
regardless of the number of events detected.

Example

digio.trigger[3].mode = digio.TRIG_FALLING
digio.trigger[5].mode = digio.TRIG_FALLING
trigger.blender[1].orenable = true
trigger.blender[1].stimulus[1] = digio.trigger[3].EVENT_ID
trigger.blender[1].stimulus[2] = digio.trigger[5].EVENT_ID

print(trigger.blender[1].wait(3))

Generate a trigger blender 1
event when a digital I/O
trigger happens either on
line 3 or 5.

Wait three seconds while
checking if trigger blender 1
event has occurred.

If the blender trigger event
has happened, then true is
output. If the trigger event
has not happened, then
false is output after the
timeout expires.

Also see

trigger.blender[N].clear() (on page 8-422)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-428 3700AS-901-01 Rev. B/May 2013

trigger.clear()
This function clears the command interface trigger event detector.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

trigger.clear()

Details

The trigger event detector indicates if a trigger event has been detected since the last trigger.wait() call.
trigger.clear() clears the trigger event detector and discards the history of command interface trigger
events.

Also see

trigger.wait() (on page 8-435)

trigger.EVENT_ID
This constant contains the command interface trigger event number.

Type TSP-Link accessible Affected by Where saved Default value
Constant Yes

Usage

eventID = trigger.EVENT_ID

eventID The event ID for the command interface triggers

Details

You can set the stimulus of any trigger object to the value of this constant to have the trigger object respond to
command interface trigger events.

Example

scan.trigger.channel.stimulus = trigger.EVENT_ID Sets the trigger stimulus of the channel
event detector to command an
interface trigger event.

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-429

trigger.timer[N].clear()
This function clears the timer event detector and overrun indicator for the specified trigger timer number.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

trigger.timer[N].clear()

N Trigger timer number to clear (1 to 4)

Details

This command sets the timer event detector to the undetected state and resets the overrun indicator.

Example

trigger.timer[1].clear() Clears trigger timer 1.

Also see

trigger.timer[N].count (on page 8-429)

trigger.timer[N].count
This attribute sets the number of events to generate each time the timer generates a trigger event.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup
Trigger timer N reset

Create configuration script
Save setup

1

Usage

count = trigger.timer[N].count
trigger.timer[N].count = count

count Number of times to repeat the trigger (0 to 1,048,575)
N A trigger timer number (1 to 4)

Details

If count is set to a number greater than 1, the timer automatically starts the next delay at expiration of the
previous delay.
Set count to zero (0) to cause the timer to generate trigger events indefinitely.

Example

print(trigger.timer[1].count) Read trigger count for timer number 1.

Also see

trigger.timer[N].clear() (on page 8-429)
trigger.timer[N].reset() (on page 8-433)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-430 3700AS-901-01 Rev. B/May 2013

trigger.timer[N].delay
This attribute sets and reads the timer delay.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup
Trigger timer N reset

Create configuration script
Save setup

10e-6 (10 µs)

Usage

interval = trigger.timer[N].delay
trigger.timer[N].delay = interval

interval Delay interval in seconds (1.00e-09 to 100,000)
N Trigger timer number (1 to 4)

Details

Each time the timer is triggered, it uses this delay period.
Assigning a value to this attribute is equivalent to:
trigger.timer[N].delaylist = {interval}
This creates a delay list of one value.
Reading this attribute returns the delay interval that will be used the next time the timer is triggered.

Example

trigger.timer[1].delay = 50e-6 Set the trigger timer 1 to delay for
50 µs.

Also see

trigger.timer[N].reset() (on page 8-433)

trigger.timer[N].delaylist
This attribute sets an array of timer intervals.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup
Trigger timer N reset

Create configuration script
Save setup

{10e-6}

Usage

intervals = trigger.timer[N].delaylist
trigger.timer[N].delaylist = intervals

intervals Table of delay intervals in seconds
N Trigger timer number (1 to 4)

Details

Each time the timer is triggered, it uses the next delay period from the array. The default value is an array with
one value of 10 µs.
After all elements in the array have been used, the delays restart at the beginning of the list.
If the array contains more than one element, the average of the delay intervals in the list must be ≥ 50 µs.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-431

Example

trigger.timer[3].delaylist = {50e-6, 100e-6, 150e-6}

DelayList = trigger.timer[3].delaylist
for x = 1, table.getn(DelayList) do
 print(DelayList[x])
end

Set a delay list on trigger timer 3
with three delays (50 µs, 100 µs,
and 150 µs).

Read the delay list on trigger
timer 3.

Output (assuming the delay list was
set to 50 µs, 100 µs, and 150 µs):
5.000000000e-05
1.000000000e-04
1.500000000e-04

Also see

trigger.timer[N].reset() (on page 8-433)

trigger.timer[N].EVENT_ID
This constant specifies the trigger timer event number.

Type TSP-Link accessible Affected by Where saved Default value

Constant Yes

Usage

eventID = trigger.timer[N].EVENT_ID

eventID The trigger event number
N Trigger timer number (1 to 4)

Details

This constant is an identification number that identifies events generated by this timer.
Set the stimulus of any trigger object to the value of this constant to have the trigger object respond to events
from this timer.

Example

scan.trigger.channel.stimulus = trigger.timer[2].EVENT_ID Sets the trigger stimulus of
the channel event detector
to trigger timer 2 event.

Also see

None

trigger.timer[N].overrun
This attribute indicates if an event was ignored because of the event detector state.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Instrument reset
Recall setup
Trigger timer N clear
Trigger timer N reset

Not applicable false

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-432 3700AS-901-01 Rev. B/May 2013

Usage

overrun = trigger.timer[N].overrun

overrun Trigger overrun state
N Trigger timer number (1 to 4)

Details

This attribute indicates if an event was ignored because the event detector was already in the detected state
when the event occurred.
This is an indication of the state of the event detector built into the timer itself. It does not indicate if an overrun
occurred in any other part of the trigger model or in any other construct that is monitoring the delay completion
event. It also is not an indication of a delay overrun.

Example

print(trigger.timer[1].overrun) If an event was ignored, the output
is true.
If the event was not ignored, the
output is false.

Also see

trigger.timer[N].reset() (on page 8-433)

trigger.timer[N].passthrough
This attribute enables or disables the timer trigger pass-through mode.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup
Trigger timer N reset

Create
configuration script
Save setup

false (disabled)

Usage

passthrough = trigger.timer[N].passthrough
trigger.timer[N].passthrough = passthrough

passthrough The state of pass-through mode; set to to one of the following values:
true: Enabled
false: Disabled

N Trigger timer number (1 to 4)

Details

When pass-through mode is enabled, triggers are passed through immediately and initiate the delay. When
disabled, a trigger only initiates a delay.

Example

trigger.timer[1].passthrough = true Enables pass-through mode on trigger timer 1.

Also see

trigger.timer[N].reset() (on page 8-433)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-433

trigger.timer[N].reset()
This function resets some of the trigger timer settings to their factory defaults.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

trigger.timer[N].reset()

N Trigger timer number (1 to 4)

Details

The trigger.timer[N].reset() function resets the following attributes to their factory defaults:
• trigger.timer[N].count
• trigger.timer[N].delay
• trigger.timer[N].delaylist
• trigger.timer[N].passthrough
• trigger.timer[N].stimulus

It also clears trigger.timer[N].overrun.

Example

trigger.timer[1].reset() Resets the attributes associated with timer 1 back
to factory default values.

Also see

trigger.timer[N].count (on page 8-429)
trigger.timer[N].delay (on page 8-430)
trigger.timer[N].delaylist (on page 8-430)
trigger.timer[N].overrun (on page 8-431)
trigger.timer[N].passthrough (on page 8-432)
trigger.timer[N].stimulus (on page 8-433)

trigger.timer[N].stimulus
This attribute specifies which event starts the timer.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Recall setup
Trigger timer N reset

Create configuration script
Save setup

0

Usage

eventID = trigger.timer[N].stimulus
trigger.timer[N].stimulus = eventID

eventID The event that triggers the timer delay
N Trigger timer number (1 to 4)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-434 3700AS-901-01 Rev. B/May 2013

Details

The eventID parameter may be one of the trigger event IDs shown in the following table.

Trigger event IDs

Trigger event ID Description

channel.trigger[N].EVENT_ID A channel trigger event starts the scan.

digio.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

display.trigger.EVENT_ID The trigger key on the front panel is pressed.
dmm.trigger.EVENT_LIMIT1_HIGH A DMM trigger event that indicates a measurement

has exceed the high limit value on limit 1.
dmm.trigger.EVENT_LIMIT1_LOW A DMM trigger event that indicates a measurement

has exceed the low limit value on limit 1.
dmm.trigger.EVENT_LIMIT2_HIGH A DMM trigger event that indicates a measurement

has exceed the high limit value on limit 2.
dmm.trigger.EVENT_LIMIT2_LOW A DMM trigger event that indicates a measurement

has exceed the low limit value on limit 2.
trigger.EVENT_ID A *trg message on the active command interface. If

GPIB is the active command interface, a GET
message also generates this event.

trigger.blender[N].EVENT_ID A combination of events has occurred.
trigger.timer[N].EVENT_ID A delay expired.

tsplink.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the
configuration of the line) on the TSP-Link trigger line.

lan.trigger[N].EVENT_ID A LAN trigger event has occurred.
scan.trigger.EVENT_SCAN_READY Scan ready event.

scan.trigger.EVENT_SCAN_START Scan start event.
scan.trigger.EVENT_CHANNEL_READY Channel ready event.

scan.trigger.EVENT_MEASURE_COMP Measure complete event.
scan.trigger.EVENT_SEQUENCE_COMP Sequence complete event.
scan.trigger.EVENT_SCAN_COMP Scan complete event.
scan.trigger.EVENT_IDLE Idle event.
schedule.alarm[N].EVENT_ID A scan starts when alarm N fires.

Set this attribute to the eventID of any trigger event to wait for that event.
Use zero (0) to disable event processing.

Example

print(trigger.timer[1].stimulus) Prints the event that will start a trigger 1
timer action.

Also see

trigger.timer[N].reset() (on page 8-433)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-435

trigger.timer[N].wait()
This function waits for a trigger.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

triggered = trigger.timer[N].wait(timeout)

triggered Trigger detection indication
N Trigger timer number (1 to 4)
timeout Maximum amount of time in seconds to wait for the trigger

Details

If one or more trigger events were detected since the last time trigger.timer[N].wait() or
trigger.timer[N].clear() was called, this function returns immediately.
After waiting for a trigger with this function, the event detector is automatically reset and rearmed. This is true
regardless of the number of events detected.

Example

triggered = trigger.timer[3].wait(10)
print(triggered)

Waits up to 10 seconds for a trigger on
timer 3.
If false is returned, no trigger was
detected during the 10-second timeout.
If true is returned, a trigger was detected.

Also see

trigger.timer[N].clear() (on page 8-429)

trigger.wait()
This function waits for a command interface trigger event.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

triggered = trigger.wait(timeout)

triggered true: A trigger was detected during the timeout period
false: No triggers were detected during the timeout period

timeout Maximum amount of time in seconds to wait for the trigger

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-436 3700AS-901-01 Rev. B/May 2013

Details

This function waits up to timeout seconds for a trigger on the active command interface. A command interface
trigger occurs when:

• A GPIB GET command is detected (GPIB only)
• A VXI-11 device_trigger method is invoked (VXI-11 only)
• A *TRG message is received

If one or more of these trigger events were previously detected, this function returns immediately.
After waiting for a trigger with this function, the event detector is automatically reset and rearmed. This is true
regardless of the number of events detected.

Example

triggered = trigger.wait(10)
print(triggered)

Waits up to 10 seconds for a trigger.
If false is returned, no trigger was detected
during the 10-second timeout.
If true is returned, a trigger was detected.

Also see

trigger.clear() (on page 8-428)

tsplink.group
This attribute contains the group number of a TSP-Link node. This attribute is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile memory 0

Usage

groupNumber = tsplink.group
tsplink.group = groupNumber

groupNumber The group number of the TSP-Link node (0 to 64)

Details

To remove the node from all groups, set the attribute value to 0.
When the node is turned off, the group number for that node changes to 0.
The master node can be assigned to any group. You can also include other nodes in the group that includes the
master. Note that any nodes that are set to 0 are automatically included in the group that contains the master
node, regardless of the group that is assigned to the master node.

Example

tsplink.group = 3 Assign the instrument to TSP-Link group number 3.

Also see

Using groups to manage nodes on TSP-Link network (on page 7-51)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-437

tsplink.master
This attribute reads the node number assigned to the master node. This attribute is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

masterNodeNumber = tsplink.master

masterNodeNumber The node number of the master node

Details

After doing a TSP-Link reset (tsplink.reset()), use this attribute to access the node number of the master in
a set of instruments connected over TSP-Link.

Example

LinkMaster = tsplink.master Store the TSP-Link master
node number in a variable
called LinkMaster.

Also see

tsplink.reset() (on page 8-439)

tsplink.node
This attribute defines the node number. This attribute is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Not applicable Nonvolatile
memory

2

Usage

nodeNumber = tsplink.node
tsplink.node = nodeNumber

nodeNumber The node number of the instrument or enclosure (1 to 64)

Details

This attribute sets the TSP-Link node number and saves the value in nonvolatile memory.
Changes to the node number do not take effect until tsplink.reset() from an earlier TSP-Link instrument is
executed on any node in the system.
Each node connected to the TSP-Link system must be assigned a different node number.

Example

tsplink.node = 3 Sets the TSP-Link node for this instrument to
number 3.

Also see

tsplink.reset() (on page 8-439) tsplink.reset() (on page 8-439)
tsplink.state (on page 8-440)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-438 3700AS-901-01 Rev. B/May 2013

tsplink.readbit()
This function reads the state of a TSP-Link synchronization line. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

data = tsplink.readbit(N)

data The state of the synchronization line
N The trigger line (1 to 3)

Details

Returns a value of zero (0) if the line is low and 1 if the line is high.

Example

data = tsplink.readbit(3)
print(data)

Assume line 3 is set high, and it is then read.
Output:
1.000000e+00

Also see

tsplink.readport() (on page 8-438)
tsplink.writebit() (on page 8-449)

tsplink.readport()
This function reads the TSP-Link synchronization lines as a digital I/O port. This function is not available on the
Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

data = tsplink.readport()

data Numeric value that indicates which lines are set

Details

The binary equivalent of the returned value indicates the input pattern on the I/O port. The least significant bit of
the binary number corresponds to line 1 and the value of bit 3 corresponds to line 3. For example, a returned
value of 2 has a binary equivalent of 010. This indicates that line 2 is high (1), and that the other two lines are low
(0).

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-439

Example

data = tsplink.readport()
print(data)

Reads state of all three TSP-Link lines.
Assuming line 2 is set high, the output is:
2.000000e+00

(binary 010)
The format of the output may vary depending on the
ASCII precision setting.

Also see

TSP-Link synchronization lines (on page 3-48)
tsplink.readbit() (on page 8-438)
tsplink.writebit() (on page 8-449) tsplink.readbit() (on page 8-438)
tsplink.writebit() (on page 8-449)
tsplink.writeport() (on page 8-449)

tsplink.reset()
This function initializes (resets) all nodes (instruments) in the TSP-Link system. This function is not available on
the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

nodesFound = tsplink.reset()
nodesFound = tsplink.reset(expectedNodes)

nodesFound The number of nodes actually found on the system
expectedNodes The number of nodes expected on the system (1 to 64)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-440 3700AS-901-01 Rev. B/May 2013

Details

This function erases all information regarding other nodes connected on the TSP-Link system and regenerates
the system configuration. This function must be called at least once before any remote nodes can be accessed.
If the node number for any instrument is changed, the TSP-Link must be reset again.
If expectedNodes is not given, this function generates an error if no other nodes are found on the TSP-Link
network.
If nodesFound is less than expectedNodes, an error is generated. Note that the node on which the command
is running is counted as a node. For example, giving an expected node count of 1 will not generate any errors,
even if there are no other nodes on the TSP-Link network.
Also returns the number of nodes found.

Example

nodesFound = tsplink.reset(2)
print("Nodes found = " .. nodesFound)

Perform a TSP-Link reset and indicate how
many nodes are found.
Sample output if two nodes are found:
Nodes found = 2
Sample output if fewer nodes are found and
if localnode.showerrors = 1:
1219, TSP-Link found fewer nodes
 than expected
Nodes found = 1

Also see

localnode.showerrors (on page 8-300)
tsplink.node (on page 8-437)
tsplink.state (on page 8-440)

tsplink.state
This attribute describes the TSP-Link online state. This attribute is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Not applicable Not applicable Not applicable

Usage

state = tsplink.state

state TSP-Link state (online or offline)

Details

When the instrument power is first turned on, the state is offline. After tsplink.reset() is successful, the
state is online.

Example

state = tsplink.state
print(state)

Read the state of the TSP-Link system. If it is online,
the output is:
online

Also see

tsplink.node (on page 8-437)
tsplink.reset() (on page 8-439) tsplink.reset() (on page 8-439)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-441

tsplink.trigger[N].assert()
This function simulates the occurrence of the trigger and generates the corresponding event ID. This function is
not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

tsplink.trigger[N].assert()

N The trigger line (1 to 3)

Details

The set pulse width determines how long the trigger is asserted.

Example

tsplink.trigger[2].assert() Asserts trigger on trigger line 2.

Also see

tsplink.trigger[N].clear() (on page 8-441)
tsplink.trigger[N].mode (on page 8-443)
tsplink.trigger[N].overrun (on page 8-444)
tsplink.trigger[N].pulsewidth (on page 8-445)
tsplink.trigger[N].release() (on page 8-445)
tsplink.trigger[N].stimulus (on page 8-447)
tsplink.trigger[N].wait() (on page 8-448)

tsplink.trigger[N].clear()
This function clears the event detector for a trigger. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

tsplink.trigger[N].clear()

N The trigger line (1 to 3)

Details

The trigger event detector enters the detected state when an event is detected.
tsplink.trigger[N].clear() clears a trigger event detector, discards the history of the trigger line, and
clears the tsplink.trigger[N].overrun attribute.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-442 3700AS-901-01 Rev. B/May 2013

Example

tsplink.trigger[2].clear() Clears trigger event on synchronization line 2.

Also see

tsplink.trigger[N].mode (on page 8-443)
tsplink.trigger[N].overrun (on page 8-444)
tsplink.trigger[N].release() (on page 8-445)
tsplink.trigger[N].stimulus (on page 8-447)
tsplink.trigger[N].wait() (on page 8-448)

tsplink.trigger[N].EVENT_ID
This constant identifies the number that is used for the trigger events. This constant is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Constant Yes

Usage

eventID = tsplink.trigger[N].EVENT_ID

eventID The trigger event number
N The trigger line (1 to 3)

Details

This number is used by the TSP-Link trigger line when it detects an input trigger.
Set the stimulus of any trigger object to the value of this constant to have the trigger object respond to trigger
events from this line.

Example

trigger.timer[1].stimulus = tsplink.trigger[2].EVENT_ID Sets the trigger stimulus
of trigger timer 1 to the
TSP-Link trigger 2 event.

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-443

tsplink.trigger[N].mode
This attribute defines the trigger operation and detection mode. This attribute is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup
TSP-Link trigger N reset

Create
configuration script
Save setup

0 (tsplink.TRIG_BYPASS)

Usage

mode = tsplink.trigger[N].mode
tsplink.trigger[N].mode = mode

mode The trigger mode
N The trigger line (1 to 3)

Details

This attribute controls the mode in which the trigger event detector and the output trigger generator operate on
the given trigger line.

The setting for mode can be one of the following values:

Mode Number
value

Description

tsplink.TRIG_BYPASS 0 Allows direct control of the line as a digital I/O line.

tsplink.TRIG_FALLING 1 Detects falling-edge triggers as input. Asserts a TTL-low pulse
for output.

tsplink.TRIG_RISING 2 If the programmed state of the line is high, the
tsplink.TRIG_RISING mode behaves similarly to
tsplink.TRIG_RISINGA.
If the programmed state of the line is low, the
tsplink.TRIG_RISING mode behaves similarly to
tsplink.TRIG_RISINGM.
Use tsplink.TRIG_RISINGA if the line is in the high output
state.
Use tsplink.TRIG_RISINGM if the line is in the low output
state.

tsplink.TRIG_EITHER 3 Detects rising- or falling-edge triggers as input. Asserts a
TTL-low pulse for output.

tsplink.TRIG_SYNCHRONOUSA 4 Detects the falling-edge input triggers and automatically
latches and drives the trigger line low.

tsplink.TRIG_SYNCHRONOUS 5 Detects the falling-edge input triggers and automatically
latches and drives the trigger line low. Asserts a TTL-low pulse
as an output trigger.

tsplink.TRIG_SYNCHRONOUSM 6 Detects rising-edge triggers as an input. Asserts a TTL-low
pulse for output.

tsplink.TRIG_RISINGA 7 Detects rising-edge triggers as input. Asserts a TTL-low pulse
for output.

tsplink.TRIG_RISINGM 8 Edge detection as an input is not available. Generates a
TTL-high pulse as an output trigger.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-444 3700AS-901-01 Rev. B/May 2013

When programmed to any mode except tsplink.TRIG_BYPASS, the output state of the I/O line is controlled by
the trigger logic, and the user-specified output state of the line is ignored.
When the trigger mode is set to tsplink.TRIG_RISING, the user-specified output state of the line is
examined. If the output state selected when the mode is changed is high, the actual mode used will be
tsplink.TRIG_RISINGA. If the output state selected when the mode is changed is low, the actual mode used
will be tsplink.TRIG_RISINGM.
mode stores the trigger mode as a numeric value when the attribute is read.
To control the line state, use the tsplink.TRIG_BYPASS mode with the tsplink.writebit() and the
tsplink.writeport() commands.

Example

tsplink.trigger[3].mode =
tsplink.TRIG_RISINGM

Sets the trigger mode for
synchronization line 3 to
tsplink.TRIG_RISINGM.

Also see

digio.writebit() (on page 8-129)
digio.writeport() (on page 8-130)
tsplink.trigger[N].assert() (on page 8-441)
tsplink.trigger[N].clear() (on page 8-441)
tsplink.trigger[N].overrun (on page 8-444)
tsplink.trigger[N].release() (on page 8-445)
tsplink.trigger[N].reset() (on page 8-446)
tsplink.trigger[N].stimulus (on page 8-447)
tsplink.trigger[N].wait() (on page 8-448)

tsplink.trigger[N].overrun
This attribute indicates if the event detector ignored an event while in the detected state. This attribute is not
available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (R) Yes Instrument reset
Recall setup
TSP-Link trigger N clear
TSP-Link trigger N reset

Not applicable Not applicable

Usage

overrun = tsplink.trigger[N].overrun

overrun Trigger overrun state
N The trigger line (1 to 3)

Details

Indicates that an event was ignored because the event detector was in the detected state when the event was
detected.
Indicates the overrun state of the event detector built into the line itself.
It does not indicate whether an overrun occurred in any other part of the trigger model or in any other detector
that is monitoring the event.
It does not indicate output trigger overrun.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-445

Example

print(tsplink.trigger[1].overrun) If an event was ignored, displays
true; if an event was not ignored,
displays false.

Also see

tsplink.trigger[N].assert() (on page 8-441)
tsplink.trigger[N].clear() (on page 8-441)
tsplink.trigger[N].mode (on page 8-443)
tsplink.trigger[N].release() (on page 8-445)
tsplink.trigger[N].reset() (on page 8-446)
tsplink.trigger[N].stimulus (on page 8-447)
tsplink.trigger[N].wait() (on page 8-448)

tsplink.trigger[N].pulsewidth
This attribute sets the length of time that the trigger line is asserted for output triggers. This attribute is not
available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Recall setup
TSP-Link trigger N reset

Create configuration script
Save setup

10e-6 (10 µs)

Usage

width = tsplink.trigger[N].pulsewidth
tsplink.trigger[N].pulsewidth = width

width The pulse width (in seconds)
N The trigger line (1 to 3)

Details

Setting the pulse width to 0 (seconds) asserts the trigger indefinitely.

Example

tsplink.trigger[3].pulsewidth = 20e-6 Sets pulse width for trigger line 3 to 20 μs.

Also see

tsplink.trigger[N].release() (on page 8-445)

tsplink.trigger[N].release()
This function releases a latched trigger on the given TSP-Link trigger line. This function is not available on the
Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

tsplink.trigger[N].release()

N The trigger line (1 to 3)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-446 3700AS-901-01 Rev. B/May 2013

Details

Releases a trigger that was asserted with an indefinite pulse width. It also releases a trigger that was latched in
response to receiving a synchronous mode trigger.

Example

tsplink.trigger[3].release() Releases trigger line 3.

Also see

tsplink.trigger[N].assert() (on page 8-441)
tsplink.trigger[N].clear() (on page 8-441)
tsplink.trigger[N].mode (on page 8-443)
tsplink.trigger[N].overrun (on page 8-444)
tsplink.trigger[N].pulsewidth (on page 8-445)
tsplink.trigger[N].stimulus (on page 8-447)
tsplink.trigger[N].wait() (on page 8-448)

tsplink.trigger[N].reset()
This function resets some of the TSP-Link trigger attributes to their factory defaults. This function is not available
on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

tsplink.trigger[N].reset()

N The trigger line (1 to 3)

Details

The tsplink.trigger[N].reset() function resets the following attributes to their factory defaults:
• tsplink.trigger[N].mode
• tsplink.trigger[N].stimulus
• tsplink.trigger[N].pulsewidth

This also clears tsplink.trigger[N].overrun.

Example

tsplink.trigger[3].reset() Resets TSP-Link trigger line 3
attributes back to factory default
values.

Also see

tsplink.trigger[N].mode (on page 8-443)
tsplink.trigger[N].overrun (on page 8-444)
tsplink.trigger[N].pulsewidth (on page 8-445)
tsplink.trigger[N].stimulus (on page 8-447)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-447

tsplink.trigger[N].stimulus
This attribute specifies the event that causes the synchronization line to assert a trigger.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Reset
Recall setup
TSP-Link trigger N reset

Create configuration script
Save setup

0

Usage

eventID = tsplink.trigger[N].stimulus
tsplink.trigger[N].stimulus = eventID

eventID The event identifier for the triggering event
N The trigger line (1 to 3)

Details

To disable automatic trigger assertion on the synchronization line, set this attribute to zero (0).
Do not use this attribute when triggering under script control. Use tsplink.trigger[N].assert() instead.
The eventID parameter may be one of the existing trigger event IDs shown in the following table.

Trigger event IDs

Trigger event ID Description

channel.trigger[N].EVENT_ID A channel trigger event starts the scan.

digio.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

display.trigger.EVENT_ID The trigger key on the front panel is pressed.
dmm.trigger.EVENT_LIMIT1_HIGH A DMM trigger event that indicates a measurement

has exceed the high limit value on limit 1.
dmm.trigger.EVENT_LIMIT1_LOW A DMM trigger event that indicates a measurement

has exceed the low limit value on limit 1.
dmm.trigger.EVENT_LIMIT2_HIGH A DMM trigger event that indicates a measurement

has exceed the high limit value on limit 2.
dmm.trigger.EVENT_LIMIT2_LOW A DMM trigger event that indicates a measurement

has exceed the low limit value on limit 2.
trigger.EVENT_ID A *trg message on the active command interface. If

GPIB is the active command interface, a GET
message also generates this event.

trigger.blender[N].EVENT_ID A combination of events has occurred.
trigger.timer[N].EVENT_ID A delay expired.

tsplink.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the
configuration of the line) on the TSP-Link trigger line.

lan.trigger[N].EVENT_ID A LAN trigger event has occurred.
scan.trigger.EVENT_SCAN_READY Scan ready event.

scan.trigger.EVENT_SCAN_START Scan start event.
scan.trigger.EVENT_CHANNEL_READY Channel ready event.

scan.trigger.EVENT_MEASURE_COMP Measure complete event.
scan.trigger.EVENT_SEQUENCE_COMP Sequence complete event.
scan.trigger.EVENT_SCAN_COMP Scan complete event.
scan.trigger.EVENT_IDLE Idle event.
schedule.alarm[N].EVENT_ID A scan starts when alarm N fires.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-448 3700AS-901-01 Rev. B/May 2013

Example

tsplink.trigger[3].stimulus = scan.trigger.EVENT_CHANNEL_READY

Sets the trigger stimulus of the TSP-Link trigger line 3 event detector to scan the trigger
channel ready event.

Also see

tsplink.trigger[N].assert() (on page 8-441)
tsplink.trigger[N].reset() (on page 8-446)

tsplink.trigger[N].wait()
This function waits for a trigger. This function is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

triggered = tsplink.trigger[N].wait(timeout)

triggered Trigger detection indication; set to one of the following values:
true: A trigger is detected during the timeout period
false: A trigger is not detected during the timeout period

N The trigger line (1 to 3)
timeout The timeout value in seconds

Details

This function waits up to the timeout value for an input trigger. If one or more trigger events were detected since
the last time tsplink.trigger[N].wait() or tsplink.trigger[N].clear() was called, this function
returns immediately.
After waiting for a trigger with this function, the event detector is automatically reset and rearmed. This is true
regardless of the number of events detected.

Example

triggered = tsplink.trigger[3].wait(10)
print(triggered)

Waits up to 10 seconds for a trigger
on TSP-Link® line 3.
If false is returned, no trigger was
detected during the 10-second
timeout.
If true is returned, a trigger was
detected.

Also see

tsplink.trigger[N].clear() (on page 8-441)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-449

tsplink.writebit()
This function sets a TSP-Link synchronization line high or low. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

tsplink.writebit(N, data)

N The trigger line (1 to 3)
data The value to write to the bit:

• Low: 0
• High: 1

Details

Use tsplink.writebit() and tsplink.writeport() to control the output state of the trigger line when
trigger operation is set to tsplink.TRIG_BYPASS.
If the output line is write-protected by the tsplink.writeprotect attribute, this command is ignored.
The reset function does not affect the present states of the TSP-Link trigger lines.

Example

tsplink.writebit(3, 0) Sets trigger line 3 low (0).

Also see

tsplink.readbit() (on page 8-438)
tsplink.readport() (on page 8-438)
tsplink.writeport() (on page 8-449)
tsplink.writeprotect (on page 8-450)

tsplink.writeport()
This function writes to all TSP-Link synchronization lines. This function is not available on the Models
2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

tsplink.writeport(data)

data Value to write to the port (0 to 7)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-450 3700AS-901-01 Rev. B/May 2013

Details

The binary representation of data indicates the output pattern that is written to the I/O port. For example, a data
value of 2 has a binary equivalent of 010. Line 2 is set high (1), and the other two lines are set low (0).
Write-protected lines are not changed.Write-protected lines are not changed.
The reset() function does not affect the present states of the trigger lines.
Use the tsplink.writebit() and tsplink.writeport() commands to control the output state of the
synchronization line when trigger operation is set to tsplink.TRIG_BYPASS.Use the tsplink.writebit()
and tsplink.writeport() commands to control the output state of the synchronization line when trigger
operation is set to tsplink.TRIG_BYPASS.

Example

tsplink.writeport(3) Sets the synchronization lines 1 and 2 high (binary 011).

Also see

tsplink.readbit() (on page 8-438) tsplink.readbit() (on page 8-438)
tsplink.readport() (on page 8-438)
tsplink.writebit() (on page 8-449)
tsplink.writeprotect (on page 8-450) tsplink.writebit() (on page 8-449)
tsplink.writeprotect (on page 8-450)

tsplink.writeprotect
This attribute contains the write-protect mask that protects bits from changes by the tsplink.writebit() and
tsplink.writeport() functions. This attribute is not available on the Models 2604A/2614A/2634A.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) Yes Instrument reset
Recall setup

Create configuration script
Saved setup

0

Usage

mask = tsplink.writeprotect
tsplink.writeprotect = mask

mask An integer that specifies the value of the bit pattern for write-protect; set bits to 1 to
write-protect the corresponding TSP-Link trigger line

Details

The binary equivalent of mask indicates the mask to be set for the TSP-Link trigger line. For example, a mask
value of 5 has a binary equivalent of 101. This mask write-protects TSP-Link trigger lines 1 and 3.

Example

tsplink.writeprotect = 5 Write-protects TSP-Link trigger lines 1 and 3.

Also see

tsplink.readbit() (on page 8-438)
tsplink.readport() (on page 8-438)
tsplink.writebit() (on page 8-449)
tsplink.writeport() (on page 8-449)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-451

tspnet.clear()
This function clears any pending output data from the instrument.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

tspnet.clear(connectionID)

connectionID The connection ID returned from tspnet.connect()

Details

This function clears any pending output data from the device. No data is returned to the caller and no data is
processed.

Example

tspnet.write(testdevice, "print([[hello]])")
print(tspnet.readavailable(testdevice))

tspnet.clear(testdevice)
print(tspnet.readavailable(testdevice))

Write data to a device, then print how much is
available.
Output:
6.00000e+00

Clear data and print how much data is
available again.
Output:
0.00000e+00

Also see

tspnet.connect() (on page 8-451)
tspnet.readavailable() (on page 8-456)
tspnet.write() (on page 8-461)

tspnet.connect()
This function establishes a network connection with another LAN instrument or device through the LAN interface.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

connectionID = tspnet.connect(ipAddress)
connectionID = tspnet.connect(ipAddress, portNumber, initString)

connectionID The connection ID to be used as a handle in all other tspnet function calls
ipAddress IP address to which to connect in a string
portNumber Port number (default 5025)
initString Initialization string to send to ipAddress

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-452 3700AS-901-01 Rev. B/May 2013

Details

This command connects a device to another device through the LAN interface. If the portNumber is 23, the
interface uses the Telnet protocol and sets appropriate termination characters to communicate with the device.
If a portNumber and initString are provided, it is assumed that the remote device is not TSP-enabled. The
Series 3700A does not perform any extra processing, prompt handling, error handling, or sending of commands.
In addition, the tspnet.tsp.* commands cannot be used on devices that are not TSP-enabled.

If neither a portNumber nor an initString is provided, the remote device is assumed to be a Keithley
Instruments TSP-enabled device. Depending on the state of the tspnet.tsp.abortonconnect attribute, the
Series 3700A sends an abort command to the remote device on connection.
The Series 3700A also enables TSP prompts on the remote device and error management. The Series 3700A
places remote errors from the TSP-enabled device in its own error queue and prefaces these errors with Remote
Error, followed by an error description.
Do not manually change either the prompt functionality (localnode.prompts) or show errors by changing
localnode.showerrors on the remote TSP-enabled device. If you do this, subsequent tspnet.tsp.*
commands using the connection may fail.
You can simultaneously connect to a maximum of 32 remote devices.

Example 1

instrumentID = tspnet.connect("192.0.2.1")
if instrumentID then
 -- Use instrumentID as needed here
 tspnet.disconnect(instrumentID)
end

Connect to a TSP-enabled
device.

Example 2

instrumentID = tspnet.connect("192.0.2.1", 1394,
"*rst\r\n")

if instrumentID then
 -- Use instrumentID as needed here
 tspnet.disconnect(instrumentID)
end

Connect to a device that is
not TSP-enabled.

Also see

localnode.prompts (on page 8-296)
localnode.showerrors (on page 8-300)
tspnet.tsp.abortonconnect (on page 8-459)
tspnet.disconnect() (on page 8-452)

tspnet.disconnect()
This function disconnects a specified TSP-Net session.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

tspnet.disconnect(connectionID)

connectionID The connection ID returned from tspnet.connect()

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-453

Details

This function disconnects the two devices by closing the connection. The connectionID is the session handle
returned by tspnet.connect().
For TSP-enabled devices, this aborts any remotely running commands or scripts.

Example

testID = tspnet.connect("192.0.2.0")
-- Use the connection
tspnet.disconnect(testID)

Create a TSP-Net session.

Close the session.

Also see

tspnet.connect() (on page 8-451)

tspnet.execute()
This function sends a command string to the remote device.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

tspnet.execute(connectionID, commandString)
value1 = tspnet.execute(connectionID, commandString, formatString)
value1, value2 = tspnet.execute(connectionID, commandString, formatString)
value1, ..., valuen = tspnet.execute(connectionID, commandString, formatString)

connectionID The connection ID returned from tspnet.connect()
commandString The command to send to the remote device
value1 The first value decoded from the response message
value2 The second value decoded from the response message
valuen The nth value decoded from the response message; there is one return value for

each format specifier in the format string
... One or more values separated with commas
formatString Format string for the output

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-454 3700AS-901-01 Rev. B/May 2013

Details

This command sends a command string to the remote instrument. A termination is added to the command string
when it is sent to the remote instrument (tspnet.termination()). You can also specify a format string, which
causes the command to wait for a response from the remote instrument. The Series 3700A decodes the
response message according to the format specified in the format string and returns the message as return
values from the function (see tspnet.read() for format specifiers).
When this command is sent to a TSP-enabled instrument, the Series 3700A suspends operation until a timeout
error is generated or until the instrument responds, even if no format string is specified. The TSP prompt from the
remote instrument is read and thrown away. The Series 3700A places any remotely generated errors into its
error queue. When the optional format string is not specified, this command is equivalent to tspnet.write(),
except that a termination is automatically added to the end of the command.

Example 1

tspnet.execute(instrumentID, "runScript()") Command the remote
device to run a script
named runScript.

Example 2

tspnet.termination(instrumentID, tspnet.TERM_CRLF)
tspnet.execute(instrumentID, "*idn?")
print("tspnet.execute returns:", tspnet.read(instrumentID))

Print the *idn? string from
the remote device.

Also see

tspnet.connect() (on page 8-451)
tspnet.read() (on page 8-455)
tspnet.termination() (on page 8-457)
tspnet.write() (on page 8-461)

tspnet.idn()
This function retrieves the response of the remote device to *IDN?.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

idnString = tspnet.idn(connectionID)

idnString The returned *IDN? string

connectionID The connection ID returned from tspnet.connect()

Details

This function retrieves the response of the remote device to *IDN?.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-455

Example

deviceID = tspnet.connect("192.0.2.1")
print(tspnet.idn(deviceID))
tspnet.disconnect(deviceID)

Assume the instrument is at IP address 192.0.2.1.
The output that is produced when you connect to the
instrument and read the IDN string may appear as:
KEITHLEY INSTRUMENTS INC.,MODEL
3706A,00000170,01.10h

Also see

tspnet.connect() (on page 8-451)

tspnet.read()
This function reads data from a remote device.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

value1 = tspnet.read(connectionID)
value1 = tspnet.read(connectionID, formatString)
value1, value2 = tspnet.read(connectionID, formatString)
value1, ..., valueN = tspnet.read(connectionID, formatString)

value1 The first value decoded from the response message
value2 The second value decoded from the response message
valueN The nth value decoded from the response message; there is one return value for

each format specifier in the format string
... One or more values separated with commas
connectionID The connection ID returned from tspnet.connect()
formatString Format string for the output, maximum of 10 specifiers

Details

This command reads available data from the remote instrument and returns responses for the specified number
of arguments.
The format string can contain the following specifiers:

%[width]s Read data until the specified length
%[max width]t Read data until the specified length or until punctuation is found, whichever comes first
%[max width]n Read data until a newline or carriage return
%d Read a number (delimited by punctuation)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-456 3700AS-901-01 Rev. B/May 2013

A maximum of 10 format specifiers can be used for a maximum of 10 return values.
If formatString is not provided, the command returns a string that contains the data until a new line is
reached. If no data is available, the Series 3700A pauses operation until the requested data is available or until a
timeout error is generated. Use tspnet.timeout to specify the timeout period.
When the Series 3700A reads from a TSP-enabled remote instrument, the Series 3700A removes Test Script
Processor (TSP®) prompts and places any errors it receives from the remote instrument into its own error queue.
The Series 3700A prefaces errors from the remote device with "Remote Error," followed by the error number
and error description.

Example

tspnet.write(deviceID, "*idn?\r\n")

print("write/read returns:", tspnet.read(deviceID))

Send the "*idn?\r\n" message to
the instrument connected as
deviceID.
Display the response that is read from
deviceID (based on the *idn?
message).

Also see

tspnet.connect() (on page 8-451)
tspnet.readavailable() (on page 8-456)
tspnet.timeout (on page 8-458)
tspnet.write() (on page 8-461)

tspnet.readavailable()
This function checks to see if data is available from the remote device.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

bytesAvailable = tspnet.readavailable(connectionID)

bytesAvailable The number of bytes available to be read from the connection
connectionID The connection ID returned from tspnet.connect()

Details

This command checks to see if any output data is available from the device. No data is read from the instrument.
This allows TSP scripts to continue to run without waiting on a remote command to finish.

Example

ID = tspnet.connect("192.0.2.1")
tspnet.write(ID, "*idn?\r\n")

repeat bytes = tspnet.readavailable(ID) until bytes > 0

print(tspnet.read(ID))
tspnet.disconnect(ID)

Send commands that will create
data.

Wait for data to be available.

Also see

tspnet.connect() (on page 8-451)
tspnet.read() (on page 8-455)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-457

tspnet.reset()
This function disconnects all TSP-Net sessions.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

tspnet.reset()

Details

This command disconnects all remote instruments connected through TSP-Net. For TSP-enabled devices, this
causes any commands or scripts running remotely to be terminated.

Also see

None

tspnet.termination()
This function sets the device line termination sequence.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

type = tspnet.termination(connectionID)
type = tspnet.termination(connectionID, termSequence)

type

An enumerated value indicating the termination type:
• 1 or tspnet.TERM_LF
• 4 or tspnet.TERM_CR
• 2 or tspnet.TERM_CRLF
• 3 or tspnet.TERM_LFCR

connectionID The connection ID returned from tspnet.connect()
termSequence The termination sequence

Details

This function sets and gets the termination character sequence that is used to indicate the end of a line for a
TSP-Net connection.
Using the termSequence parameter sets the termination sequence. The present termination sequence is
always returned.
For the termSequence parameter, use the same values listed in the table above for type. There are four
possible combinations, all of which are made up of line feeds (LF or 0x10) and carriage returns (CR or 0x13). For
TSP-enabled devices, the default is tspnet.TERM_LF. For devices that are not TSP-enabled, the default is
tspnet.TERM_CRLF.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-458 3700AS-901-01 Rev. B/May 2013

Example

deviceID = tspnet.connect("192.0.2.1")
if deviceID then
 tspnet.termination(deviceID,

tspnet.TERM_LF)
end

Sets termination type for IP address
192.0.2.1 to TERM_LF.

Also see

tspnet.connect() (on page 8-451)
tspnet.disconnect() (on page 8-452)

tspnet.timeout
This attribute sets the timeout value for the tspnet.connect(), tspnet.execute(), and tspnet.read()
commands.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) No Instrument reset
Recall setup

Create configuration script 20.0 (20 s)

Usage

value = tspnet.timeout
tspnet.timeout = value

value The timeout duration in seconds (0.001 to 30.000)

Details

This attribute sets the amount of time the tspnet.connect(), tspnet.execute(), and tspnet.read()
commands will wait for a response.
The time is specified in seconds. The timeout may be specified to millisecond resolution, but is only accurate to
the nearest 10 ms.

Example

tspnet.timeout = 2.0 Sets the timeout duration to two seconds.

Also see

tspnet.connect() (on page 8-451)
tspnet.execute() (on page 8-453)
tspnet.read() (on page 8-455)

tspnet.tsp.abort()
This function causes the TSP-enabled instrument to stop executing any of the commands that were sent to it.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

tspnet.tsp.abort(connectionID)

connectionID Integer value used as a handle for other tspnet commands

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-459

Details

This function is appropriate only for TSP-enabled instruments.
Sends an abort command to the remote instrument.

Example

tspnet.tsp.abort(testConnection) Stops remote instrument execution on testConnection.

Also see

None

tspnet.tsp.abortonconnect
This attribute contains the setting for abort on connect to a TSP-enabled instrument.

Type TSP-Link accessible Affected by Where saved Default value

Attribute (RW) No Instrument reset
Recall setup

Create configuration script
Save setup

1 (enable)

Usage

tspnet.tsp.abortonconnect = value
value = tspnet.tsp.abortonconnect

value 1 (enable) or 0 (disable)

Details

This setting determines if the instrument sends an abort message when it attempts to connect to a TSP-enabled
instrument using the tspnet.connect() function.
When you send the abort command on an interface, it causes any other active interface on that instrument to
close. If you do not send an abort command (or if tspnet.tsp.abortonconnect is set to 0) and another
interface is active, connecting to a TSP-enabled remote instrument results in a connection. However, the
instrument will not respond to subsequent reads or executes because control of the instrument is not obtained
until an abort command has been sent.

Example

tspnet.tsp.abortonconnect = 0 Configure the instrument so that it does not
send an abort command when connecting to
a TSP-enabled instrument.

Also see

tspnet.connect() (on page 8-451)

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-460 3700AS-901-01 Rev. B/May 2013

tspnet.tsp.rbtablecopy()
This function copies a reading buffer synchronous table from a remote instrument to a TSP-enabled instrument.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

table = tspnet.tsp.rbtablecopy(connectionID, name)
table = tspnet.tsp.rbtablecopy(connectionID, name, startIndex, endIndex)

table A copy of the synchronous table or a string
connectionID Integer value used as a handle for other tspnet commands
name The full name of the reading buffer name and synchronous table to copy
startIndex Integer start value
endIndex Integer end value

Details

This function is only appropriate for TSP-enabled instruments.
This function reads the data from a reading buffer on a remote instrument and returns an array of numbers or a
string representing the data. The startIndex and endIndex parameters specify the portion of the reading
buffer to read. If no index is specified, the entire buffer is copied.
The function returns a table if the table is an array of numbers; otherwise a comma-delimited string is returned.
This command is limited to transferring 50,000 readings at a time.

Example

times =
 tspnet.tsp.rbtablecopy(testTspdevice,

 "testRemotebuffername.timestamps", 1, 3)
print(times)

Copy the specified timestamps table for items
1 through 3, then display the table. Sample
output:
01/01/2011

10:10:10.0000013,01/01/2011
10:10:10.0000233,01/01/2011
10:10:10.0000576

Also see

None

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-461

tspnet.tsp.runscript()
This function loads and runs a script on a remote TSP-enabled instrument.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

tspnet.tsp.runscript(connectionID, script)
tspnet.tsp.runscript(connectionID, name, script)

connectionID Integer value used as an identifier for other tspnet commands
name The name that is assigned to the script
script The body of the script as a string

Details

This function is appropriate only for TSP-enabled instruments.
This function downloads a script to a remote instrument and runs it. It automatically adds the appropriate
loadscript and endscript commands around the script, captures any errors, and reads back any prompts.
No additional substitutions are done on the text.
The script is automatically loaded, compiled, and run.

Any output from previous commands is discarded.
This command does not wait for the script to complete.
If you do not want the script to do anything immediately, make sure the script only defines functions for later use.
Use the tspnet.execute() function to execute those functions at a later time.
If no name is specified, the script is loaded as the anonymous script.

Example

tspnet.tsp.runscript(myconnection, "mytest",
"print([[start]]) for d = 1, 10 do print([[work]]) end print([[end]])")

Load and run a script entitled mytest on the TSP-enabled instrument connected with myconnection.

Also see

tspnet.execute() (on page 8-453)

tspnet.write()
This function writes a string to the remote instrument.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

tspnet.write(connectionID, inputString)

connectionID The connection ID returned from tspnet.connect()

inputString The string to be written

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-462 3700AS-901-01 Rev. B/May 2013

Details

The tspnet.write() function sends inputString to the remote instrument. It does not wait for command
completion on the remote instrument.
The Series 3700A sends inputString to the remote instrument exactly as indicated. The inputString must
contain any necessary new lines, termination, or other syntax elements needed to complete properly.
Because tspnet.write() does not process output from the remote instrument, do not send commands that
generate too much output without processing the output. This command can stop executing if there is too much
unprocessed output from previous commands.

Example

tspnet.write(myID, "runscript()\r\n") Commands the remote instrument to execute
a command or script named "runscript()" on a
remote device identified in the system as
myID.

Also see

tspnet.connect() (on page 8-451)
tspnet.read() (on page 8-455)

upgrade.previous()
This function returns to a previous version of the Model 3706A firmware.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

upgrade.previous()

Details

This function allows you to revert to an earlier version of the firmware.
When you send this function, the instrument searches the flash drive that is inserted in the front-panel USB port
for an upgrade file. If the file is found, the instrument performs the upgrade. An error is returned if an upgrade
file is not found.

Also see

Upgrading the firmware (on page A-6)
upgrade.unit() (on page 8-463)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-463

upgrade.unit()
This function upgrades the Model 3706A firmware.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

upgrade.unit()

Details

When upgrade.unit() is used, the firmware is only loaded if the version of the firmware component is newer
than the existing version. If the version is older or at the same revision level, it is not upgraded.
When you send this function, the instrument searches the flash drive that is inserted in the front-panel USB port
for an upgrade file. If the file is found, the instrument verifies that the file is a newer version. If the version is
older or at the same revision level, it is not upgraded. If it is a newer version, the instrument performs the
upgrade. An error is returned if no upgrade file is found.

Also see

Upgrading the firmware (on page A-6)
upgrade.previous() (on page 8-462)

userstring.add()
This function adds a user-defined string to nonvolatile memory.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

userstring.add(name, value)

name The name of the string; the key of the key-value pair
value The string to associate with name; the value of the key-value pair

Details

This function associates the string value with the string name and stores this key-value pair in nonvolatile
memory.
Use the userstring.get() function to retrieve the value associated with the specified name.
You can use the userstring functions to store custom, instrument-specific information in the instrument, such
as department number, asset number, or manufacturing plant location.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-464 3700AS-901-01 Rev. B/May 2013

Example

userstring.add("assetnumber", "236")
userstring.add("product", "Widgets")
userstring.add("contact", "John Doe")
for name in userstring.catalog() do
 print(name .. " = " ..
 userstring.get(name))
end

Stores user-defined strings in nonvolatile
memory and recalls them from the
instrument using a for loop.

Also see

userstring.catalog() (on page 8-464)
userstring.delete() (on page 8-465)
userstring.get() (on page 8-465)

userstring.catalog()
This function creates an iterator for the user-defined string catalog.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

for name in userstring.catalog() do body end

name The name of the string; the key of the key-value pair
body Code to execute in the body of the for loop

Details

The catalog provides access for user-defined string pairs, allowing you to manipulate all the key-value pairs in
nonvolatile memory. The entries are enumerated in no particular order.

Example 1

for name in userstring.catalog() do
 userstring.delete(name)
end

Deletes all user-defined strings in nonvolatile
memory.

Example 2

for name in userstring.catalog() do
 print(name .. " = " ..
 userstring.get(name))
end

Prints all userstring key-value pairs.

Output:
product = Widgets
assetnumber = 236
contact = John Doe

The above output lists the user-defined strings
added in the example for the userstring.add()
function. Notice the key-value pairs are not listed in
the order they were added.

Also see

userstring.add() (on page 8-463)
userstring.delete() (on page 8-465)
userstring.get() (on page 8-465)

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-465

userstring.delete()
This function deletes a user-defined string from nonvolatile memory.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

userstring.delete(name)

name The name (key) of the key-value pair of the user-defined string to delete

Details

This function deletes the string that is associated with name from nonvolatile memory.

Example

userstring.delete("assetnumber")
userstring.delete("product")
userstring.delete("contact")

Deletes the user-defined strings associated with the
assetnumber, product, and contact names.

Also see

userstring.add() (on page 8-463)
userstring.catalog() (on page 8-464)
userstring.get() (on page 8-465)

userstring.get()
This function retrieves a user-defined string from nonvolatile memory.

Type TSP-Link accessible Affected by Where saved Default value
Function Yes

Usage

value = userstring.get(name)

value The value of the user-defined string key-value pair
name The name (key) of the user-defined string

Details

This function retrieves the string that is associated with name from nonvolatile memory.

Section 8: TSP command reference Series 3700A System Switch/Multimeter Reference Manual

8-466 3700AS-901-01 Rev. B/May 2013

Example

value = userstring.get("assetnumber")
print(value)

Read the value associated with a user-defined
string named "assetnumber".
Store it in a variable called value, then print the
variable value.
Output:
236

Also see

userstring.add() (on page 8-463)
userstring.catalog() (on page 8-464)
userstring.delete() (on page 8-465)

waitcomplete()
This function waits for all overlapped commands in a specified group to complete.

Type TSP-Link accessible Affected by Where saved Default value
Function No

Usage

waitcomplete()
waitcomplete(group)

group Specifies which TSP-Link group on which to wait

Details

This function will wait for all previously started overlapped commands to complete.
Currently, the Series 3700A has no overlapped commands implemented. However, other TSP-enabled products,
such as the Series 2600A System SourceMeter® Instruments, have overlapped commands. Therefore, when the
Series 3700A is a TSP master to a subordinate device with overlapped commands, use this function to wait until
all overlapped operations are completed.
A group number may only be specified when this node is the master node.
If no group is specified, the local group is used.
If zero (0) is specified for the group, this function waits for all nodes in the system.

Any nodes that are not assigned to a group (group number is 0) are part of the master node's group.

Example 1

waitcomplete() Waits for all nodes in the local group.

Example 2

waitcomplete(G) Waits for all nodes in group G.

Series 3700A System Switch/Multimeter Reference Manual Section 8: TSP command reference

3700AS-901-01 Rev. B/May 2013 8-467

Example 3

waitcomplete(0) Waits for all nodes on the TSP-Link network.

Also see

None

In this section:

Contacting support ... 9-1
USB troubleshooting .. 9-2
Troubleshooting GPIB interfaces ... 9-5
Troubleshooting LAN interfaces ... 9-5
Testing the display, keys, and channel matrix 9-9
Update drivers .. 9-10
Error and status messages .. 9-10

Contacting support
If you have any questions after reviewing this information, please contact your local Keithley
Instruments representative or call Keithley Instruments corporate headquarters (toll-free inside the
U.S. and Canada only) at 1-888-KEITHLEY (1-888-534-8453), or from outside the U.S. at +1-440-
248-0400. For worldwide contact numbers, visit the Keithley Instruments website
(http://www.keithley.com).

When contacting Keithley, please have ready:

• The serial number of the instrument.
• The firmware revision of the instrument.
• The model and firmware revision of all installed cards.

When you call, have the information available, and, if possible, be near the instrument.

Locating serial number or firmware revision

The serial number is on the rear panel of the instrument. You can also use the front panel MENU
option to display the serial number and firmware version.
To display serial number or firmware revision on the front panel:
1. If the Series 3700A is in remote mode, press the EXIT (LOCAL) key once to place the instrument

in local mode.
2. Press the MENU key.
3. Use the navigation wheel to scroll to the UNIT-INFO menu.
4. Press the ENTER key.

On the UNIT INFORMATION menu, scroll to the SERIAL# or FIRMWARE option and press the
ENTER key. The Series 3700A serial number is displayed.

Locating information on the installed cards
To identify installed switching cards from the front panel:

Press the SLOT key to scroll through the model numbers, descriptions, and firmware revisions of the
installed switching cards.

Section 9

Troubleshooting guide

http://www.keithley.com/

Section 9: Troubleshooting guide Series 3700A System Switch/Multimeter Reference Manual

9-2 3700AS-901-01 Rev. B/May 2013

To identify installed switching cards from the web interface:
1. Select the Unit page.
2. In the Report area, select the slots that you want information about.
3. Select Firmware Revision.
4. Click Generate Report. Information about the cards in the slots is displayed below the button.

To identify installed switching cards from the remote command interface:

Use print(slot[X].idn)to query and identify installed switching cards:
print(slot[X].idn)

Where: X = slot number (from 1 to 6)

Example

To get a list of all switching cards installed in the slots of a Series 3700A, send the following
command over the remote command interface:
for x=1,6 do print (slot[x].idn) end

The response will be similar to the following:
3722, Dual 1x48 Multiplexer, 01.00a, <Module Serial Number>
3721, Dual 1x20 Multiplexer, 01.02a, <Module Serial Number>
Empty Slot
Empty Slot
Empty Slot
Empty Slot

USB troubleshooting
This section provides information checks you can perform if the USB communication with the
instrument is not working.

Check driver for the USB Test and Measurement Device
1. Open the Device Manager.

From the Start menu, you can enter Devmgmt.msc in the Run box or the Windows 7 search box to
start Device Manager.

2. Under USB Test and Measurement Devices, look for USB Test and Measurement Device.

If the device is not there, either VISA is not installed or the instrument is not plugged in and
switched on.

Series 3700A System Switch/Multimeter Reference Manual Section 9: Troubleshooting guide

3700AS-901-01 Rev. B/May 2013 9-3

Figure 123: Device Manager dialog box showing USB Test and Measurement Device

3. Right-click the device.
4. Select Properties.
5. Select the Driver tab.
6. Click Driver Details.
7. Verify that the device driver is the winusb.sys. driver from Microsoft.

Section 9: Troubleshooting guide Series 3700A System Switch/Multimeter Reference Manual

9-4 3700AS-901-01 Rev. B/May 2013

Figure 124: Driver File Details dialog box

8. If the incorrect driver is installed, click OK.
9. On the Driver tab, click Update Driver.
10. Browse for the driver; select the C:\windows\inf folder and you should see the winusb.inf file.

Select this and make sure the driver is now in use.
11. If this does not work, uninstall VISA, unplug the instrument and follow the steps to reinstall VISA

in the section Modifying, repairing, or removing Keithley I/O Layer software (on page 2-72).

Series 3700A System Switch/Multimeter Reference Manual Section 9: Troubleshooting guide

3700AS-901-01 Rev. B/May 2013 9-5

Troubleshooting GPIB interfaces
If the hardware is not recognized by the computer:

1. Uninstall the software drivers.
2. Reboot the computer.
3. Check for newer drivers on the vendor’s website. Check that the drivers are valid for the

operating system you have and any updates that might be necessary. This information is typically
found in the readme file that comes with the drivers.

4. Install software drivers.
5. Reboot the computer.
6. Plug in the hardware.

If it is still not recognized, you can try a different computer using a different operating system to rule
out operating system issues.

If this does not resolve the issue, contact the vendor of the GPIB controller for assistance.

Timeout errors
If your GPIB controller is recognized by the operating system, but you get a timeout error when you
try to communicate with the instrument, check the following:

1. Confirm that the GPIB address you assigned to the instrument is unique and between the range
of 0 to 30. It should not be 0 or 21 because they are common controller addresses.

2. Check cabling connection. GPIB cables are heavy and can fall out of the connectors if they are
not screwed in securely.

3. Substitute cables to verify cable integrity. For example, if you can send and receive ASCII text,
but you cannot do a binary transfer, check your program and the decoding of the binary data. If
that does not resolve the problem, try another cable. ASCII text only uses seven data lines in the
cable; the binary transfer requires all eight lines.

Troubleshooting LAN interfaces
This section provides information on troubleshooting LAN interfaces.

For detailed information on setting up remote interfaces see Communications interfaces (see
"Remote communication interfaces" on page 2-53).

Section 9: Troubleshooting guide Series 3700A System Switch/Multimeter Reference Manual

9-6 3700AS-901-01 Rev. B/May 2013

Verify connections and settings
If you are unable to connect to the instrument's internal web page, check the following items:

• Verify that the crossover cable is in the correct LAN port on the instrument. Do not connect to one
of the TSP-Link ports.

• Verify that the crossover cable is in the correct port on the computer. The Ethernet port of a
laptop may be disabled while the computer is in a docking station.

• Verify that the correct Ethernet card configuration information was used during the setup
procedure.

• Verify that the computer's network card is enabled.
• Verify the instrument IP address is compatible with the IP address on the computer.
• Verify the instrument subnet mask address is the same as the computer's subnet mask address.
• Turn the instrument power off, and then on.
• Reboot the computer.

Use Ping to test the connection
Ping is a computer network administration utility that you can use to test whether a particular host can
be reached across an Internet Protocol (IP) network. It also measures the round-trip time for packets
sent from the local host to a destination computer, including the local host's own interfaces.

To run Ping:

1. From the Windows Start menu, type cmd in the Run box or Search box. The Command window is
displayed.

2. At the > prompt, type ping followed by the IP address. For example:
 ping 169.254.52.51

Beware that some network devices, especially LXI instruments, can disable the ping response to
prevent denial of service attacks. This prevents hackers from pinging your instrument indefinitely,
which causes the instrument to become so busy it cannot respond to a web browser or instrument
driver.

If you cannot ping an instrument from the computer, you will not be able to communicate with the
instrument. You will need to check the LAN settings from the front panel of the instrument to see if
they match the configuration of your network.

If you can ping your instrument, you should be able to bring up the web page in the instrument from a
browser by typing the IP address in the address (URL) field.

Series 3700A System Switch/Multimeter Reference Manual Section 9: Troubleshooting guide

3700AS-901-01 Rev. B/May 2013 9-7

Open ports on firewalls
A firewall is a part of a computer system or network that is designed to block unauthorized access
while permitting authorized communications. It is a device or set of devices that are configured to
permit or deny applications based on a set of rules and other criteria.

If you have a firewall in the network between your computer and the instrument, you need to make
sure the following ports are opened for UDP and TCP packets:

• Port 80: Web server. This is normally open.
• Port 1024: VXI-11 connection for sending and receiving commands from the instrument.
• Port 5025: Raw socket connection for sending and receiving commands from the instrument.

Web page problems
All LXI instruments have a web server. The LAN configuration information on these pages is
mandated by the LXI consortium. For Keithley’s LXI instruments, the standard LXI pages use
standard HTML.

The added value pages that Keithley has added to control the instruments use Java. If Java is not
installed when you select one of these instrument-specific web pages, the web page prompts you to
install it. To do this, your computer must have access to the Internet so it can access the web browser
plug-in Sun Java Runtime Environment Version 6 or higher. Installation files are available at the Java
download site (http://www.java.com/en/download/manual.jsp).

When you connect to the instrument web page for the first time, several things can happen:

• If the security settings are high, scripting might be disabled and the browser will prompt you to
enable ActiveX and scripting.

• If Java is not installed, the browser will prompt you to install it and provide a link to the download.
If you do not have an Internet connection, you must download it elsewhere and install it on the
computer that it connected to the instrument.

• When the Java applet from the instrument gets downloaded into the browser it will ask you if you
trust this active content from Keithley Instruments. Select Yes.

If you have resolved the problems, the instrument control pages should work and if you try to perform
an action, such as closing a relay, you are prompted for the password (the default is “admin”).

If you update the firmware for the instrument using the web page (not available for all instruments),
you need to flush the browser cache so that a fresh Java Applet gets downloaded the next time you
access the web page.

http://www.java.com/en/download/manual.jsp
http://www.java.com/en/download/manual.jsp

Section 9: Troubleshooting guide Series 3700A System Switch/Multimeter Reference Manual

9-8 3700AS-901-01 Rev. B/May 2013

LXI LAN status indicator
Most LAN network interface cards have two LEDs, one that indicates LAN traffic and one that
designates the LAN speed (10 MBits, 100 MBits, 1 GBits) through the color of the LED. LXI goes one
level higher than this and states that all LXI compliant devices need a LAN status indicator. This can
be an LED or an indicator on a display. It shows if the instrument has a valid IP address or is in a fault
state.

When diagnosing a LAN connection issue with an LXI instrument, see if the LAN status indicator is
signaling a valid or fault condition. If there is an error, you cannot communicate with the instrument
through the LAN connection. In this case, you need to check the LAN parameter settings from the
front panel of the instrument. Make sure if you change a LAN setting through the front panel that you
select the “Apply LAN Settings” for the changes to take affect.

Initialize the LAN configuration
The LXI specification mandates that all instruments that conform to LXI need a LAN reset
mechanism.This can be a recessed switch or a menu option on the front panel that will put all the
LAN settings back to known defaults. If you cannot communicate with your instrument, perform this
reset.

If you perform a reset, the instrument is returned to DHCP and Auto-IP enabled. If you set your
computer to match, you should be able to use a discovery tool to determine the IP address and
communicate with the instrument again. Also check the LAN status indicator to verify that there are
no faults.

Install LXI Discovery Browser software on your computer
You can use the LXI Discovery Browser to identify the IP addresses of LXI certified instruments.
Once identified, you can double-click the IP address in the LXI Discovery Browser to open the web
interface for the instrument.

The Keithley LXI Discovery Browser is available on the instrument CD. It is also available on the
Keithley Instruments website (http://www.keithley.com).

To locate the Keithley LXI Discovery Browser on the Keithley website:
1. Select the Support tab.
2. In the model number box, type 3706A.
3. From the list, select Software and click the search icon. A list of software applications for the

instrument is displayed.
4. See the readme file included with the application for more information.

For more information about the LXI Consortium, see the LXI Consortium website
(http://www.lxistandard.org/).

http://www.keithley.com/
http://www.lxistandard.org/

Series 3700A System Switch/Multimeter Reference Manual Section 9: Troubleshooting guide

3700AS-901-01 Rev. B/May 2013 9-9

Communicate using VISA communicator
There are several interactive communication utilities that you can use to communicate with LAN
instruments:

• The KIOL installs the Keithley Communicator.
• NI VISA (full version) installs the NI VISA Interactive Control utility, which can also be launched

from NI-MAX.
• Agilent has a similar utility called Interactive IO that gets installed with their IO Libraries Suite.

All these utilities require you to enter the VISA resource string for your instrument. See Communicate
with the instrument (on page 2-54) for more information on the VISA resource string formats.

HyperTerminal, which comes with Microsoft Windows, also allows you to connect to the raw socket
port of the instrument.

WireShark
WireShark is an open source LAN packet sniffer. You can run it to spy on all the packets going across
a network. It allows you to filter what you spy on so that you can narrow the content down to just what
you are interested in. For example, you could check just web page packets (http) or all packets being
sent by a device on a certain IP address.

See the WireShark documentation for information. WireShark can be downloaded from
www.wireshark.org (http://www.wireshark.org).

Testing the display, keys, and channel matrix
You can test operation of the keys, display, and channel matrix from the front panel of the instrument.

Verify front panel key operation
You can verify that the instrument is properly reading front panel key presses.
To verify key operation:
1. From the front panel, select MAIN MENU > DISPLAY > TEST > KEYS. The message "No keys

pressed" is displayed.
2. Press a key. The name of the key is displayed. For a list of key values, see display.sendkey() (on

page 8-144).
3. Press EXIT (LOCAL) twice to return to the menu.

Verify display operation
You can verify that all the pixels on the vacuum fluorescent display (VFD) are working.
To verify VFD operation:
1. From the front panel, select MAIN MENU > DISPLAY > TEST > DISPLAY-PATTERNS. A pattern

is displayed.
2. Press the navigation wheel to display the next pattern.
3. When you have viewed the patterns, press EXIT to return to the menu.

http://www.wireshark.org/

Section 9: Troubleshooting guide Series 3700A System Switch/Multimeter Reference Manual

9-10 3700AS-901-01 Rev. B/May 2013

Update drivers
For the latest drivers and additional support information, see the Keithley Instruments support
website.
To see what drivers are available for your instrument:
1. Go to the Keithley Instruments support website (http://www.keithley.com/support).
2. Enter the model number of your instrument.
3. Select Software Driver from the list.

For LabVIEWTM, you can also go to National Instrument's website and search their instrument driver
database.

Error and status messages

Introduction
This section includes information on error levels, how to read errors, and a complete listing of error
messages.

Error summary
Error and status messages are assigned a level of severity, as listed in the table below.

Severity level descriptions

Number Level Description

0 Informational Indicates that there are no entries in the queue
10 Informational Indicates a status message or minor error

20 Recoverable Indicates possible invalid user input; operation continues but action
should be taken to correct the error

30 Serious Indicates a serious error that may require technical assistance, such as
corrupted data

40 Fatal Instrument is not operational

Effects of errors on scripts
Most errors will not abort a running script. The only time a script is aborted is when a Lua runtime
error (error number –286) is detected.

Runtime errors are caused by actions such as trying to index into a variable that is not a table.

Syntax errors (error number -285) in a script or command will not abort the script, but will prevent the
script or command from being executed.

http://www.keithley.com/support

Series 3700A System Switch/Multimeter Reference Manual Section 9: Troubleshooting guide

3700AS-901-01 Rev. B/May 2013 9-11

Retrieving errors
When errors occur, the error messages are placed in the error queue. Use error queue commands to
request error message information. For example, the following commands request the next complete
error information from the error queue and return the code, message, severity, and node for that
error:
errorCode, message, severity, errorNode = errorqueue.next()
print(errorCode, message, severity, errorNode)

The following table lists the commands associated with the error queue.

Remote commands associated with the error queue

Command Description

errorqueue.clear() (on page 8-246) Clear error queue of all errors
errorqueue.count (on page 8-246) Number of messages in the error queue
errorqueue.next() (on page 8-246) Request next error message from

queue

Section 9: Troubleshooting guide Series 3700A System Switch/Multimeter Reference Manual

9-12 3700AS-901-01 Rev. B/May 2013

Error and status message list
Error and status messages

Error number Error level Error message
-430 RECOVERABLE Query deadlocked
-420 RECOVERABLE Query unterminated
-410 RECOVERABLE Query interrupted
-363 RECOVERABLE Input buffer over-run
-360 RECOVERABLE Communication error
-350 RECOVERABLE Queue overflow
-315 RECOVERABLE Configuration memory lost
-314 RECOVERABLE Save/recall memory lost
-292 RECOVERABLE Referenced name does not exist
-286 RECOVERABLE TSP runtime error
-285 RECOVERABLE Program syntax
-282 RECOVERABLE Illegal program name
-281 RECOVERABLE Cannot create program
-225 RECOVERABLE Out of memory or TSP memory allocation error
-224 RECOVERABLE Illegal parameter value
-223 RECOVERABLE Too much data
-222 RECOVERABLE Parameter data out of range
-221 RECOVERABLE Settings conflict
-220 RECOVERABLE Parameter
-203 RECOVERABLE Command protected
-200 RECOVERABLE Execution error
-154 RECOVERABLE String too long
-151 RECOVERABLE Invalid string data
-144 RECOVERABLE Character data too long
-141 RECOVERABLE Invalid character data
-140 RECOVERABLE Character data error
-121 RECOVERABLE Invalid character in number
-120 RECOVERABLE Numeric data
-109 RECOVERABLE Missing parameter
-108 RECOVERABLE Parameter not allowed
-105 RECOVERABLE Trigger not allowed
-104 RECOVERABLE Data type
-101 RECOVERABLE Invalid character
-100 RECOVERABLE Command error
0 NO_SEVERITY Queue is empty
603 RECOVERABLE Power on state lost
605 RECOVERABLE Calibration dates lost
820 RECOVERABLE Parsing value
900 FATAL Internal system
1100 RECOVERABLE Command unavailable
1101 RECOVERABLE Parameter too big
1102 RECOVERABLE Parameter too small
1103 RECOVERABLE Min greater than max
1104 RECOVERABLE Too many digits for param type

Series 3700A System Switch/Multimeter Reference Manual Section 9: Troubleshooting guide

3700AS-901-01 Rev. B/May 2013 9-13

Error and status messages

Error number Error level Error message
1107 RECOVERABLE Cannot modify factory menu
1108 RECOVERABLE Menu name does not exist
1109 RECOVERABLE Menu name already exists
1112 RECOVERABLE Password entered does not match current password
1114 RECOVERABLE Settings conflict with %s, where %s represents specifics on what

the conflict is
1115 RECOVERABLE Parameter error %s, where %s explains why parameter error
1116 RECOVERABLE Configuration error %s, where %s explains why configuration error
1200 RECOVERABLE TSP-Link initialization failed
1201 RECOVERABLE TSP-Link initialization failed
1202 RECOVERABLE TSP-Link initialization failed
1203 RECOVERABLE TSP-Link initialization failed (possible loop in node chain)
1204 RECOVERABLE TSP-Link initialization failed
1205 RECOVERABLE TSP-Link initialization failed (no remote nodes found)
1206 RECOVERABLE TSP-Link initialization failed
1207 RECOVERABLE TSP-Link initialization failed
1208 RECOVERABLE TSP-Link initialization failed
1209 RECOVERABLE TSP-Link initialization failed
1210 RECOVERABLE TSP-Link initialization failed (node ID conflict)
1211 RECOVERABLE Node %u is inaccessible, where %u represents a number
1212 RECOVERABLE Invalid node ID
1213 RECOVERABLE TSP-Link session expired
1214 RECOVERABLE TSP-Link unknown remote command encoding
1215 RECOVERABLE Code execution requested within the local group
1216 RECOVERABLE Remote execution requested on node in group with pending

overlapped operations
1217 RECOVERABLE Remote execution requested on node outside the local group

1400 RECOVERABLE Expected at least %d parameters, where %d represents a number
1401 RECOVERABLE Parameter %d is invalid, where %d represents a number
1402 RECOVERABLE User scripts lost
1403 RECOVERABLE Factory scripts lost
1404 RECOVERABLE Invalid byte order
1405 RECOVERABLE Invalid ASCII precision
1406 RECOVERABLE Invalid data format
1600 RECOVERABLE Maximum GPIB message length exceeded
1601 RECOVERABLE GPIB input queue overrun
1800 RECOVERABLE Invalid digital trigger mode
1801 RECOVERABLE Invalid digital I/O line
1802 RECOVERABLE Digital bit in parameter write protected
2100 FATAL Could not open socket
2101 FATAL Could not close socket
2102 RECOVERABLE LAN configuration already in progress
2103 RECOVERABLE LAN disabled
2104 RECOVERABLE Socket error
2105 RECOVERABLE Unreachable gateway

Section 9: Troubleshooting guide Series 3700A System Switch/Multimeter Reference Manual

9-14 3700AS-901-01 Rev. B/May 2013

Error and status messages

Error number Error level Error message
2106 RECOVERABLE Could not acquire ip address
2107 RECOVERABLE Duplicate IP address detected
2108 RECOVERABLE DHCP lease lost
2109 RECOVERABLE LAN cable disconnected
2110 RECOVERABLE Could not resolve hostname
2111 RECOVERABLE DNS name (FQDN) too long
2112 RECOVERABLE Connection not established
2200 RECOVERABLE File write error
2201 RECOVERABLE File read error
2202 RECOVERABLE Cannot close file
2203 RECOVERABLE Cannot open file
2204 RECOVERABLE Directory not found
2205 RECOVERABLE File not found
2206 RECOVERABLE Cannot read current working directory
2207 RECOVERABLE Cannot change directory
2208 RECOVERABLE Cannot create directory
2209 RECOVERABLE Cannot remove directory
2210 RECOVERABLE File is not a valid script format
2211 RECOVERABLE File system error
2212 RECOVERABLE File system command not supported
2213 RECOVERABLE Too many open files
2214 RECOVERABLE File access denied
2215 RECOVERABLE Invalid file handle
2216 RECOVERABLE Invalid drive
2217 RECOVERABLE File system busy
2218 RECOVERABLE Disk full
2219 RECOVERABLE File corrupt
2220 RECOVERABLE File already exists
2221 RECOVERABLE File seek error
2222 RECOVERABLE End-of-file error
2223 RECOVERABLE Directory not empty
2300 RECOVERABLE Upgrade found not upgradable
2301 RECOVERABLE Upgrade uncompress failed
2302 RECOVERABLE Upgrade device not ready
2303 RECOVERABLE Upgrade device type not acceptable
2304 RECOVERABLE Upgrade write to device checksum failure
2305 RECOVERABLE Upgrade write to device failed
2306 RECOVERABLE Upgrade timeout connect with device
2307 RECOVERABLE Upgrade failure
2400 RECOVERABLE Invalid specified connection
2401 RECOVERABLE Invalid timeout seconds (.001 to 30)
2402 RECOVERABLE TSPnet remote error: %s, where %s explains the remote error

2403 RECOVERABLE TSPnet failure
2404 RECOVERABLE TSPnet read failure
2405 RECOVERABLE TSPnet read failure, aborted

Series 3700A System Switch/Multimeter Reference Manual Section 9: Troubleshooting guide

3700AS-901-01 Rev. B/May 2013 9-15

Error and status messages

Error number Error level Error message
2406 RECOVERABLE TSPnet read failure, timeout
2407 RECOVERABLE TSPnet write failure
2408 RECOVERABLE TSPnet write failure, aborted
2409 RECOVERABLE TSPnet write failure, timeout
2410 RECOVERABLE TSPnet max connections reached
2411 RECOVERABLE TSPnet connection failed
2412 RECOVERABLE TSPnet invalid termination
2413 RECOVERABLE TSPnet invalid reading buffer table
2414 RECOVERABLE TSPnet invalid reading buffer index range
2415 RECOVERABLE TSPnet feature only supported on TSP connections
2416 RECOVERABLE TSPnet musty specify both port and init
2417 RECOVERABLE TSPnet disconnected by other side
4900 RECOVERABLE Reading buffer index %d is invalid, where %d represents a

number
4901 RECOVERABLE The maximum index for this buffer is %d, where %d represents a

number
4902 RECOVERABLE Reading buffers must be able to contain at least one element
4903 RECOVERABLE Reading buffer expired
4904 RECOVERABLE ICX parameter count mismatch, %s (Line #%d), where %s and

%d provide more information on error
4905 RECOVERABLE ICX parameter invalid value, %s (Line #%d), where %s and %d

provide more information on error
4906 RECOVERABLE ICX invalid function id, %s (Line #%d), where %s and %d provide

more information on error
4907 RECOVERABLE Cannot modify built-in reading buffers
4908 RECOVERABLE Cannot change this setting unless buffer is cleared
4909 RECOVERABLE Reading buffer not found within device
4910 RECOVERABLE No readings exist within buffer
4911 RECOVERABLE Table not found within buffer
4912 RECOVERABLE Attribute not found within buffer
4914 RECOVERABLE Index exceeds maximum readings stored in buffer
4915 RECOVERABLE Attempting to store past capacity of reading buffer
5500 RECOVERABLE Card unknown error
5501 RECOVERABLE Failed card NVMEM write
5502 RECOVERABLE Failed card NVMEM read
5503 RECOVERABLE Closure count lost
5504 RECOVERABLE Temperature sensor failure
5505 RECOVERABLE Error completing a card action in requested operation
5506 RECOVERABLE Communication error with a card in requested operation
5507 RECOVERABLE Card operation completed under low total power
5508 RECOVERABLE Card operation completed under low bank power
5509 RECOVERABLE Card operation completed under low slot power
5510 RECOVERABLE Not enough total power to hold requested card operation
5511 RECOVERABLE Not enough bank power to hold requested card operation
5512 RECOVERABLE Not enough slot power to hold requested card operation
5513 RECOVERABLE Not enough total power to complete requested card operation
5514 RECOVERABLE Not enough bank power to complete requested card operation

Section 9: Troubleshooting guide Series 3700A System Switch/Multimeter Reference Manual

9-16 3700AS-901-01 Rev. B/May 2013

Error and status messages

Error number Error level Error message
5515 RECOVERABLE Not enough slot power to complete requested card operation
5516 RECOVERABLE Slot empty, no configuration data exist
5517 RECOVERABLE Slot error, configuration data not found
5518 RECOVERABLE Slot error, communication error accessing configuration data
5519 RECOVERABLE Slot error, timeout error accessing configuration data
5520 RECOVERABLE Channel error, channel list contains a channel not in system
5521 RECOVERABLE Parameters adjusted, must recreate scan
5522 RECOVERABLE Scan running, must abort scan
5600 RECOVERABLE 10 vdc zero error
5601 RECOVERABLE 100 vdc zero error
5602 RECOVERABLE 10 vdc full scale error
5603 RECOVERABLE -10 vdc full scale error
5604 RECOVERABLE 100 vdc full scale error
5605 RECOVERABLE 100m vdc zero error
5606 RECOVERABLE 100 2-w zero error
5607 RECOVERABLE 10k 2-w zero error
5608 RECOVERABLE 100k 2-w zero error
5609 RECOVERABLE 10M 2-w zero error
5610 RECOVERABLE 10M 2-w full scale error
5611 RECOVERABLE 10M 2-w open error
5612 RECOVERABLE 100 4-w zero error
5613 RECOVERABLE 10k 4-w zero error
5614 RECOVERABLE 100k 4-w zero error
5615 RECOVERABLE 10M 4-w sense lo zero error
5616 RECOVERABLE 1k 4-w full scale error
5617 RECOVERABLE 10k 4-w full scale error
5618 RECOVERABLE 100k 4-w full scale error
5619 RECOVERABLE 1M 4-w full scale error
5620 RECOVERABLE 10M 4-w full scale error
5621 RECOVERABLE 10m adc zero error
5622 RECOVERABLE 100m adc zero error
5623 RECOVERABLE 10m adc full scale error
5624 RECOVERABLE 100m adc full scale error
5625 RECOVERABLE 1 adc full scale error
5626 RECOVERABLE 2k 4-w dckt Ioff zero error
5627 RECOVERABLE 2k 4-w dckt Ion zero error
5628 RECOVERABLE 1k 4-w dckt Ioff zero error
5629 RECOVERABLE 1k 4-w dckt Ion zero error
5630 RECOVERABLE 100 4-w dckt Ioff zero error
5631 RECOVERABLE 100 4-w dckt Ion zero error
5632 RECOVERABLE 10 4-w dckt Ioff zero error
5633 RECOVERABLE 10 4-w dckt Ion zero error
5634 RECOVERABLE 1 4-w dckt Ion zero error
5635 RECOVERABLE 10 2-w zero error
5636 RECOVERABLE 10 4-w full scale error
5637 RECOVERABLE 100 4-w full scale error

Series 3700A System Switch/Multimeter Reference Manual Section 9: Troubleshooting guide

3700AS-901-01 Rev. B/May 2013 9-17

Error and status messages

Error number Error level Error message
5638 RECOVERABLE 10u adc zero error
5639 RECOVERABLE 100u adc zero error
5640 RECOVERABLE 1m adc zero error
5641 RECOVERABLE 1 adc zero error
5642 RECOVERABLE 10u adc full scale error
5643 RECOVERABLE 100u adc full scale error
5644 RECOVERABLE 1m adc full scale error
5645 RECOVERABLE 1 vac fast noise error
5646 RECOVERABLE 1 vac fast full scale error
5647 RECOVERABLE 100m vac dac error
5648 RECOVERABLE 1 vac dac error
5649 RECOVERABLE 10 vac dac error
5650 RECOVERABLE 100 vac dac error
5651 RECOVERABLE 100m vac zero error
5652 RECOVERABLE 100m vac full scale error
5653 RECOVERABLE 1 vac zero error
5654 RECOVERABLE 1 vac full scale error
5655 RECOVERABLE 1 vac noise error
5656 RECOVERABLE 10 vac zero error
5657 RECOVERABLE 10 vac full scale error
5658 RECOVERABLE 10 vac noise error
5659 RECOVERABLE 100 vac zero error
5660 RECOVERABLE 100 vac full scale error
5661 RECOVERABLE 300 vac zero error
5662 RECOVERABLE 300 vac full scale error
5663 RECOVERABLE 300 vac noise error
5664 RECOVERABLE Post filter offset error
5665 RECOVERABLE 1 aac zero error
5666 RECOVERABLE 1 aac full scale error
5667 RECOVERABLE 3 aac zero error
5668 RECOVERABLE 3 aac full scale error
5669 RECOVERABLE 1V 10 Hz amplitude error
5670 RECOVERABLE Frequency gain error
5671 RECOVERABLE 100 Ohm Ioff Ocomp FS error
5672 RECOVERABLE 10k Ohm Ioff Ocomp FS error
5673 RECOVERABLE Temperature cold cal error
5674 RECOVERABLE Analog output zero error
5675 RECOVERABLE Analog output pos. gain error
5676 RECOVERABLE Analog output neg. gain error
5677 RECOVERABLE 100 4-w dckt Ioff full scale error
5678 RECOVERABLE 100 4-w dckt Ion full scale error
5679 RECOVERABLE 10 4-w dckt full scale error
5680 RECOVERABLE 1 4-w dckt Ion full scale error
5681 RECOVERABLE 10k 4-w ocomp Ioff full scale error
5682 RECOVERABLE 10k 4-w ocomp Ion full scale error
5683 RECOVERABLE 2k 4-w dckt Ioff full scale error

Section 9: Troubleshooting guide Series 3700A System Switch/Multimeter Reference Manual

9-18 3700AS-901-01 Rev. B/May 2013

Error and status messages

Error number Error level Error message
5684 RECOVERABLE 2k 4-w dckt Ion full scale error
5685 RECOVERABLE 1k 4-w dckt Ioff full scale error
5686 RECOVERABLE 1k 4-w dckt Ion full scale error
5687 RECOVERABLE 10 4-w zero error
5688 RECOVERABLE 10 4-w Ioff zero error
5689 RECOVERABLE 1m aac full scale error
5690 RECOVERABLE 1m aac zero error
5691 RECOVERABLE 10m aac full scale error
5692 RECOVERABLE 10m aac zero error
5693 RECOVERABLE 100m aac full scale error
5694 RECOVERABLE 100m aac zero error
5695 RECOVERABLE Offset calibration error
5696 RECOVERABLE 1V 10 Hz frequency error
5697 RECOVERABLE Calibration data invalid
5698 RECOVERABLE AC calibration data lost
5699 RECOVERABLE DC calibration data lost
5700 RECOVERABLE PreCal calibration data lost
5701 RECOVERABLE A/D timeout
5702 RECOVERABLE 1 4-w dckt Ioff zero error
5703 RECOVERABLE 100 4-w Ioff zero error
5704 RECOVERABLE 10k 4-w Ioff zero error
5705 RECOVERABLE 10 4-w dckt Ioff full scale error
5706 RECOVERABLE 1 4-w dckt Ioff full scale error
5707 RECOVERABLE 1k TRTD HI Ion zero error
5708 RECOVERABLE 1k TRTD HI Ioff zero error
5709 RECOVERABLE 1k TRTD SLO Ion zero error
5710 RECOVERABLE 1k TRTD SLO Ioff zero error
5711 RECOVERABLE 10k TRTD HI Ion zero error
5712 RECOVERABLE 10k TRTD HI Ioff zero error
5713 RECOVERABLE 10k TRTD SLO Ion zero error
5714 RECOVERABLE 10k TRTD SLO Ioff zero error
5715 RECOVERABLE 100k TRTD HI Ion zero error
5716 RECOVERABLE 100k TRTD SLO Ion zero error
5717 RECOVERABLE 1k TRTD HI Ion full scale error
5718 RECOVERABLE 1k TRTD HI Ioff full scale error
5719 RECOVERABLE 1k TRTD SLO Ion full scale error
5720 RECOVERABLE 1k TRTD SLO Ioff full scale error
5721 RECOVERABLE 10k TRTD HI Ion full scale error
5722 RECOVERABLE 10k TRTD HI Ioff full scale error
5723 RECOVERABLE 10k TRTD SLO Ion full scale error
5724 RECOVERABLE 10k TRTD SLO Ioff full scale error
5725 RECOVERABLE 100k TRTD HI Ion full scale error
5726 RECOVERABLE 100k TRTD SLO Ion full scale error
5727 RECOVERABLE 10 vdc full scale 6p4 error
5728 RECOVERABLE 10 vdc full scale p64 error
5729 RECOVERABLE 10 vdc zero 6p4 error

Series 3700A System Switch/Multimeter Reference Manual Section 9: Troubleshooting guide

3700AS-901-01 Rev. B/May 2013 9-19

Error and status messages

Error number Error level Error message
5730 RECOVERABLE 10 vdc zero p64 error
5731 RECOVERABLE 1k 4-w ocomp Ioff full scale error
5732 RECOVERABLE Questionable calibration
5733 RECOVERABLE Questionable temperature
5734 RECOVERABLE Internal DMM system error
5735 RECOVERABLE General unknown DMM error
5736 RECOVERABLE Untranslated DMM error
5737 RECOVERABLE Error completing DMM action in requested operation
5738 RECOVERABLE Communication error with DMM in requested operation
5739 RECOVERABLE DMM calibration error occurred during processing command

5740 RECOVERABLE DMM calibration error occurred setting adjustment date

5741 RECOVERABLE DMM calibration error occurred getting adjustment date
5742 RECOVERABLE DMM calibration error occurred setting verify date
5743 RECOVERABLE DMM calibration error occurred getting verify date
5744 RECOVERABLE DMM calibration error occurred setting password
5745 RECOVERABLE DMM calibration error occurred getting password
5746 RECOVERABLE DMM calibration error occurred setting count
5747 RECOVERABLE DMM calibration error occurred getting count

In this section:

How do I get my LAN or web connection to work? 10-1
Why can't I close a channel? .. 10-1
How do I know if an error has occurred on my instrument? ... 10-2
How do I find the serial number and firmware version of the instrument?
 ... 10-3

How do I get my LAN or web connection to work?
For troubleshooting suggestions, see Troubleshooting LAN interfaces (on page 9-5).

For more detailed information on remote interface connections, see Communications interfaces (see
"Remote communication interfaces" on page 2-53).

Why can't I close a channel?
The channel might be set to be forbidden to close.
To check the forbidden state of a channel from the front panel:
1. Display a channel (you might need to press DISPLAY).
2. Use the navigation wheel to select the channel you want to check.
3. Press CONFIG, then press CHAN.
4. Select FORBID.
5. Press ENTER.
6. Yes and No are displayed. The current selection blinks. To change the setting to allow the

channel to close, select No.

To check the forbidden state of a channel from the web interface:
1. From the list on the left, select the slot that contains the channel.
2. Right-click the channel. The Channel Configuration dialog box is displayed.

Section 10

Frequently asked questions (FAQs)

Section 10: Frequently asked questions (FAQs) Series 3700A System Switch/Multimeter Reference Manual

10-2 3700AS-901-01 Rev. B/May 2013

Figure 125: Channel configuration dialog box

3. If the forbidden box is selected, the channel is forbidden to close. To allow the channel to close,
clear the box.

4. Click OK to save the change.

To check the forbidden state of a channel from a remote interface:

You can also clear, check, and set the forbidden state of channels using the following commands:

• channel.clearforbidden() (on page 8-49)
• channel.getforbidden() (on page 8-66)
• channel.setforbidden() (on page 8-94)

How do I know if an error has occurred on my instrument?
If you are using TSB Embedded, error messages are displayed in the Instrument Output box when
they occur.

If you are using another remote interface, you might need to use commands to retrieve the error
messages. You can use the commands errorqueue.count (on page 8-246) and errorqueue.next() (on
page 8-246) to retrieve the number of messages and the text of the messages.

To set the instrument to automatically send generated errors, set localnode.showerrors (on page 8-
300) to 1 (enabled).

To set the instrument to automatically send prompts after each command message, set
localnode.prompts (on page 8-296) to 1 (enabled).

Series 3700A System Switch/Multimeter Reference Manual Section 10: Frequently asked questions (FAQs)

3700AS-901-01 Rev. B/May 2013 10-3

How do I find the serial number and firmware version of the
instrument?

The serial number is on the rear panel of the instrument. You can also use the front panel MENU
option to display the serial number and firmware version.
To display serial number or firmware revision on the front panel:
1. If the Series 3700A is in remote mode, press the EXIT (LOCAL) key once to place the instrument

in local mode.
2. Press the MENU key.
3. Use the navigation wheel to scroll to the UNIT-INFO menu.
4. Press the ENTER key.

On the UNIT INFORMATION menu, scroll to the SERIAL# or FIRMWARE option and press the
ENTER key. The Series 3700A serial number is displayed.

In this section:

Additional Series 3700A information 11-1

Additional Series 3700A information
For additional information about the Series 3700A, refer to:

• The Product Information CD-ROM (ships with the product): Contains software tools, drivers, and
product documentation, including documentation for switch cards that are compatible with the
Series 3700A

• The Keithley Instruments website (http://www.keithley.com): Contains the most up-to-date
information. From the website, you can access:
• The Knowledge Center, which contains the following handbooks:

• The Low Level Measurements Handbook: Precision DC Current, Voltage, and Resistance
Measurements

• Application notes
• Updated drivers
• Information about related products, including:

• The Model 4200-SCS Semiconductor Characterization System

• Your local Field Applications Engineer can help you with product selection, configuration, and
usage. Check the website for contact information.

Section 11

Next steps

http://www.keithley.com/

In this appendix:

Introduction ... A-1
Line fuse replacement .. A-1
Fuse replacement ... A-2
AMPS analog backplane fuse replacement A-3
Front panel tests ... A-3
Displaying the instrument's serial number A-6
Upgrading the firmware .. A-6

Introduction
This section provides maintenance information and procedures that can be performed by the
operator.

Line fuse replacement
A fuse located on the Series 3700A rear panel protects the power line input of the instrument.

Disconnect the line cord at the rear panel and remove all test leads connected to the
instrument before replacing the line fuse. Failure to do so could expose the operator to
hazardous voltages that could result in personal injury or death.

Figure 126: Fuse replacement

Appendix A

Maintenance

Appendix A: Maintenance Series 3700A System Switch/Multimeter Reference Manual

A-2 3700AS-901-01 Rev. B/May 2013

To prevent injury, death, or instrument damage, use only the correct fuse type (see table).

Perform the following steps to replace the line fuse:
1. Power off the instrument and remove the line cord.
2. The fuse drawer (item 1 in the figure) is located below the AC receptacle. A small tab is located

on the top of the fuse drawer (item 2). Using a thin-bladed knife or a screwdriver, pry this tab
away from the AC receptacle.

3. Slide the fuse drawer out to gain access to the fuse (the fuse drawer does not pull completely out
of the power module).

4. Snap the fuse out of the drawer and replace it with the same type (the fuse is specified in the
table below).

5. Push the fuse drawer back into the module.

If the power line fuse continues to blow, a circuit malfunction exists and must be corrected. Return the
instrument to Keithley Instruments for repair.

Fuse replacement
The analog backplane AMPS fuse (see item 1 in Fuse location figure) is accessible from the rear
panel, just below the analog backplane connector. The instrument fuse (see item 2 in Fuse location
figure) is accessible from the rear panel, below the GPIB Connector.

Disconnect all external power from the equipment and the line cord before performing any
maintenance on the Model 3706A.

 Failure to disconnect all power may expose you to hazardous voltages, that if contacted,
could cause personal injury or death. Use appropriate safety precautions when working
with hazardous voltages.

Figure 127: Fuse location

Series 3700A System Switch/Multimeter Reference Manual Appendix A: Maintenance

3700AS-901-01 Rev. B/May 2013 A-3

Fuse location Rating Keithley Instruments part
number

(1) Analog
backplane fuse

250V, 3A fast blow 5x20mm FU-99-1

(2) Instrument
fuse

250V / 1.25A slow blow
5x20mm

FU-106-1.25

To replace a fuse:

1. Using a flat-tip screwdriver, disengage the fuse holder by rotating it counter-clockwise.
2. Pull out the fuse holder and replace the fuse with the correct type (see table).
3. Reinstall the fuse holder.

If the fuse continues to blow, a circuit malfunction exists and must be corrected. Return the
instrument to Keithley Instruments for repair.

AMPS analog backplane fuse replacement

Make sure the instrument is disconnected from the power line and other equipment before
replacing the AMPS fuse.

Do not use a fuse with a higher current rating than specified or instrument damage may occur. If the
instrument repeatedly blows fuses, locate and correct the cause of the trouble before replacing the
fuse.

Model 3721 card supports both AC and DC current measurements. Refer to the Schematic (see
"Rear panel, backplane, and DMM connect relays schematic" on page 5-1) in the Series 3700A
Switching and Control Cards Reference Manual. The Model 3721 card has replaceable fuses. For
replacement information, refer to the "Model 3721: AMPS channels fuse replacement" section in the
Series 3700A Switching and Control Cards Reference Manual.

1. Turn off the power and disconnect the power line and connections.
2. From the rear panel, gently push in the AMPS fuse holder with a flat blade screwdriver and rotate

the fuse holder one-quarter turn counterclockwise.
3. Remove the fuse and replace it with the same type (3A, 250V, fast-blow, 5 × 20mm). The Keithley

Instruments part number is FU-99-1.
4. Install the new fuse by reversing the procedure above.

Front panel tests
You can test the functionality of the front panel keys and the display.

Appendix A: Maintenance Series 3700A System Switch/Multimeter Reference Manual

A-4 3700AS-901-01 Rev. B/May 2013

Test procedure
This procedure tests the functionality of each front panel key and the display.

To run the test:

1. If the Series 3700A is in remote mode, press the EXIT (LOCAL) key once to place the instrument
in local mode.

2. Display the MAIN MENU by pressing the MENU key.
3. Turn the navigation wheel to scroll to the DISPLAY menu item. Press the ENTER key to

select.
4. Press the ENTER key to select TEST.
5. Turn the navigation wheel until the KEYS menu item is highlighted.

6. To start the test, press the ENTER key.
7. Press a key. The label name for that key is displayed, which indicates that it is functioning

properly. When the key is released, the message “No keys pressed” is displayed.
8. When the test is complete, press the EXIT (LOCAL) key twice The FRONT PANEL TESTS menu

is displayed.
9. Select DISPLAY-PATTERNS. This test lets you verify that each pixel and indicator in the vacuum

fluorescent display is working properly.
10. To start the test, press the ENTER key.
11. The checkerboard pattern and the annunciators that are on during normal operation are

displayed. Verify that they are displayed correctly.
12. Press the ENTER key.
13. The checkerboard pattern (alternate pixels on) and all annunciators are displayed. Verify that they

are displayed correctly.
14. Press the ENTER key.
15. Each digit (and adjacent annunciator) is sequenced. All of the pixels of the selected digit are on.

Verify that they are displayed correctly.
16. Press the EXIT key to end the test.
17. Continue pressing the EXIT key to back out of the menu structure.

Series 3700A System Switch/Multimeter Reference Manual Appendix A: Maintenance

3700AS-901-01 Rev. B/May 2013 A-5

Keys test
This test lets you check the functionality of each front panel key.
Perform the following steps to run the KEYS test:
1. If the Series 3700A is in remote mode, press the EXIT (LOCAL) key once to place the instrument

in local mode.
2. Press the MENU key.
3. Navigate through the menus by turning the navigation wheel . Press the ENTER key to select

the menu items as follows: DISPLAY > TEST > DISPLAY-TESTS.
4. Turn the navigation wheel until the KEYS menu item is highlighted.
5. To start the test, press the ENTER key. While the test is active, when you press a key, the label

name for that key is displayed to indicate that it is functioning properly. When you release the key,
the message “No keys pressed” is displayed.

6. To test the EXIT (LOCAL) key, press the EXIT (LOCAL) key once.
7. To exit the test, press the EXIT (LOCAL) key twice consecutively. You will exit the test and the

instrument returns to the FRONT PANEL TESTS menu.
8. Press the EXIT (LOCAL) key multiple times to exit out of the menu structure.

Display patterns test
This test lets you verify that each pixel and indicator in the vacuum fluorescent display is working
properly.
Perform the following steps to run the display test:
1. If the Series 3700A is in remote mode, press the EXIT (LOCAL) key once to place the instrument

in local mode.
2. Press the MENU key.
3. Navigate through the menus by turning the navigation wheel , and then pressing the ENTER

key to select the items as follows: DISPLAY > TEST > DISPLAY-TESTS.
4. Turn the navigation wheel until the DISPLAY-PATTERNS menu item is highlighted.
5. To start the display test, press the ENTER key. There are three parts to the display test. Each

time the ENTER key or the navigation wheel is pressed, the next part of the test sequence is
selected. The three parts of the test sequence are as follows:
• Checkerboard pattern and the indicators that are on during normal operation
• Checkerboard pattern (alternate pixels on) and all the numeric indicators (which are not used) are

illuminated
• Each digit (and adjacent indicators) is sequenced; all of the pixels of the selected digit are on

1. When finished, abort the display test by pressing the EXIT (LOCAL) key. The instrument returns
to the FRONT PANEL TESTS menu. Continue pressing the EXIT (LOCAL) key to exit out of the
menu structure.

Appendix A: Maintenance Series 3700A System Switch/Multimeter Reference Manual

A-6 3700AS-901-01 Rev. B/May 2013

Displaying the instrument's serial number
The instrument serial number is on a label on the rear panel of the instrument. You can also access
the serial number from the front panel using the front-panel keys and menus.
To display the serial number on the front panel:
1. If the Series 3700A is in remote operation, press the EXIT (LOCAL) key once to place the

instrument in local operation.
2. Press the MENU key.
3. Use the navigation wheel to scroll to the UNIT-INFOSYSTEM-INFO menu item.
4. Press the ENTER key. The SYSTEM INFORMATION menu is displayed.
5. Scroll to the SERIAL# menu item.
6. Press the ENTER key. The Series 3700A serial number is displayed.

Upgrading the firmware
Use this procedure to upgrade the Model 3706A firmware directly from a USB flash drive using a file.
The upgrade process should take approximately five minutes, depending on the cards in the system
and if a digital multimeter (DMM) is installed.

The normal upgrade procedure only upgrades to a higher level software version. If any part of the
system is already at a higher software revision, that part of the system is skipped during the upgrade.
A separate operation is available to revert to an earlier revision firmware.

The upgrade process upgrades not only the mainframe, but also the DMM and any cards in the
system. Make sure all available cards are populated in the mainframe before beginning the upgrade
procedure.

You can upgrade the firmware using a USB flash drive on the front panel, through the web interface,
or using remote interface.

You can upgrade a single card at a later time by installing the card in the instrument and re-running
the upgrade procedure. The upgrade procedure will verify that the instrument firmware is at the latest
revision and will only upgrade the additional installed card.

Upgrade files are available on the Keithley Instruments website (http://www.keithley.com).

To locate the upgrade files on the Keithley website:
1. Select the Support tab.
2. Search for your model number's firmware:

a. In the model number box, type 3700A.
b. Select Firmware.
c. Click the search button.

3. A list of available firmware updates and any available documentation for the instrument is
displayed. Click the desired file to download.

http://www.keithley.com/

Series 3700A System Switch/Multimeter Reference Manual Appendix A: Maintenance

3700AS-901-01 Rev. B/May 2013 A-7

Disconnect the input and output terminals before you upgrade.

Do not remove power from the Series 3700A or remove the flash drive while an upgrade is in
progress. Wait until the instrument completes the upgrade procedure and the opening display is
shown.

Upgrade procedure using the remote interface
You can also upgrade or revert to a previous version of firmware using the remote interface command
upgrade.unit() (on page 8-463) or upgrade.previous() (on page 8-462).

For models without a front panel, the LAN Status and clock status LEDs blink in unison during the
upgrade process.

Firmware upgrade from a USB flash drive
Use this procedure to upgrade the Model 3706A firmware directly from a USB flash drive using a
*.cab file. The upgrade process should take approximately 5 minutes, depending on the cards in the
system and if a DMM is installed.

The normal upgrade procedure only upgrades to a higher level software version. If any part of the
system is already at a higher software revision, that part of the system is skipped during the upgrade.
A separate operation is available to upgrade to earlier revision firmware.

The upgrade process upgrades not only the mainframe, but also the digital multimeter (DMM) and
any cards in the system. Make sure all available cards are populated in the mainframe before
beginning the upgrade procedure.

Firmware upgrade procedure using the front panel USB port

You can upgrade a single card at a later time by installing the card in the instrument and re-running
the upgrade procedure. The upgrade procedure will verify that the instrument firmware is at the latest
revision and will only upgrade the additional installed card.

Appendix A: Maintenance Series 3700A System Switch/Multimeter Reference Manual

A-8 3700AS-901-01 Rev. B/May 2013

Do not turn off the instrument or remove the flash drive during the upgrade procedure. Wait until the
instrument completes the upgrade procedure and the opening display is shown.

If your model does not have a front panel, upgrade over the remote interface with the appropriate
command (upgrade.unit() (on page 8-463) or upgrade.previous() (on page 8-462)).

To upgrade the firmware using the front panel USB port:

1. Copy upgrade *.cab file to a blank USB flash drive. Ensure that the drive size is large enough for
the size of the upgrade file.

Verify that the USB flash drive is blank.

2. Power on the instrument
3. Install a USB flash drive in the front panel connector
4. On the front panel, press the MENU key
5. Turn the navigation wheel to scroll to UPGRADE and press the navigation wheel.
6. The question UPGRADE UNIT? is displayed. Select Previous to install a previous version or

select Yes to upgrade to a newer version and press the navigation wheel.
7. The upgrade status is displayed on the front panel, including the percentage complete. When the

file has been unpacked, the upgrade status will be displayed as it is upgraded (first cards installed
in the slots including the DMM if installed, and then the Main Series 3700).

For models without a front panel, the LAN Status and clock status LEDs blink in unison during the
upgrade process.

The instrument will reboot automatically when the upgrade is complete.

Series 3700A System Switch/Multimeter Reference Manual Appendix A: Maintenance

3700AS-901-01 Rev. B/May 2013 A-9

To upgrade the firmware from the web interface:
1. Access the instrument's web page (for additional information, see Step 5: Access the instrument's

web page (on page B-9)).
2. From the left navigation area, select Unit.
3. Log in if necessary.
4. From the Unit buttons, click Upgrade Firmware.A confirmation message is displayed.
5. A version message is displayed. Select the appropriate option.Select the file that contains the

appropriate version of firmware.
6. Click Open. A progress dialog box is displayed. When the upgrade begins, the front panel display

will also display the progress.
During the upgrade, you will see messages that indicate that the connection has been lost. This is
normal.

7. After the instrument automatically restarts, it will be ready for use.

In this appendix:

Overview .. B-1
Establishing a point-to-point connection B-1
Connecting to the LAN ... B-9
LAN speeds .. B-12
Duplex mode .. B-13
Viewing LAN status messages ... B-13
Viewing the network settings .. B-14
Selecting a LAN interface protocol ... B-15
Logging LAN trigger events in the event log B-18

Overview
The Keithley Instruments Series 3700A System Switch/Multimeter is LXI version 1.4 Core 2011
compliant. The Series 3700A is a scalable test system that can connect directly to a host computer or
interact with a DHCP or DNS server and other LXI-compliant instruments on a local area network
(LAN). The Model 3706A also supports Multicast DNS (mDNS) and DNS Service Discovery (DNS-
SD), which are useful on a LAN with no central administration.

The Series 3700A is compliant with the IEEE Std 802.3 and supports full connectivity on a 10 or
100 megabits-per-second network. The LAN interface is an alternative to GPIB that can be used to
build flexible test systems that include web access.

Please read this entire section before you connect the Series 3700A to the LAN.

Establishing a point-to-point connection
To enable access to the instrument web page and other web applications from a computer, use a
one-to-one LAN connection and set up a static IP address between the host computer and the
instrument.

The following instructions describe how to configure the instrument's IP address. The instrument's IP
address is based on the present IP address of the host computer. Each device on the LAN (corporate
or private) requires a unique IP address.

Appendix B

LAN concepts and settings

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-2 3700AS-901-01 Rev. B/May 2013

Contact your corporate information technology (IT) department for permission before you connect
the Series 3700A to a corporate network.

If you have problems, see LAN troubleshooting suggestions (see "Verify connections and settings" on
page 9-6).

Record all network configurations before modifying any existing network configuration information on
the network interface card. Once the network configuration settings are updated, the previous
information is lost. This may cause a problem reconnecting the host computer to a corporate
network, particularly if DHCP Enabled = NO (disabled).

Be sure to return all settings to their original configuration before reconnecting the host computer to a
corporate network. Failure to do this could result in loss of data. Contact your system administrator
for more information.

Step 1: Identify and record the existing IP configuration
To identify the existing IP configuration:
1. Open a command prompt window:

Microsoft® Windows® 2000 or Windows XP:
a. Click Start and select Run.
b. In the Open field, type cmd.
c. Click OK.

Microsoft Windows Vista® or Windows 7:
a. Click Start.
b. Select All Programs > Accessories > Command Prompt.

2. At the command prompt, type ipconfig/all and press the Enter key. A list of existing IP
configuration information for your computer is displayed.

Series 3700A System Switch/Multimeter Reference Manual Appendix B: LAN concepts and settings

3700AS-901-01 Rev. B/May 2013 B-3

Figure 128: Computer IP configuration using the command prompt

If the information for the ethernet adapter displays "Media Disconnected," close the command
prompt and go to Step 2: Disable DHCP to use the computer's existing IP address (on page B-4).

3. When the information is displayed, record the following information for the network card:
• DHCP mode: _______________________________
• IP address: ________________________________
• Subnet mask: ______________________________
• Default gateway: ____________________________
• DNS servers: _______________________________

The ipconfig/all command displays the configuration of every network card. Make sure that you
record the information for the proper network card.

1. If:
• DHCP Enabled = Yes: Go to Step 2: Disable DHCP to use the computer's existing IP address (on page

B-4)
• DHCP Enabled = No: Go to Step 3: Configure the instrument's LAN settings (on page B-8).

1. To exit the IP configuration screen, type exit at the command prompt and press Enter.

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-4 3700AS-901-01 Rev. B/May 2013

Step 2: Disable DHCP to use the computer's existing IP address

Do not change the IP address at any time without talking to your system administrator. Entering an
incorrect IP address can prevent your workstation from connecting to your corporate network.

See the appropriate instructions below for your operating system. These instructions show the
default options. Be aware that there may be differences in these steps if your Microsoft Windows
options are customized or if you do not have administrator status.

Windows 2000: To disable DHCP:
1. Click Start > Settings > Control Panel.
2. Open Network and Dial-up connections.
3. Right-click Local Area Connection and select Properties. The Local Area Connection

Properties dialog box is displayed.
4. Double-click Internet Protocol (TCP/IP) in the items list. The Internet Protocol (TCP/IP)

Properties dialog box is displayed, as shown here.

Figure 129: Internet Protocol (TCP/IP) Properties dialog box

Series 3700A System Switch/Multimeter Reference Manual Appendix B: LAN concepts and settings

3700AS-901-01 Rev. B/May 2013 B-5

5. Select Use the following IP address. The option for "Use the following DNS server addresses"
is automatically selected.

6. Set the IP address. If the IP address and subnet mask fields:
• Contain values: Record the IP address, subnet mask, default gateway, and DNS servers to use in Step

3: Configure the instrument's LAN settings (on page B-8).
• Are blank: In the IP address field, enter 192.168.1.100. In the subnet mask field, enter 255.255.255.0.

These will be used to configure the LAN settings of the instrument.
1. Click OK to close the Internet Protocol (TCP/IP) Properties dialog box.
2. Click OK to close the Local Area Connection Properties dialog box.
3. Close the Network Connections window.

Windows XP: To disable DHCP:
1. Click Start > Settings > Control Panel.
2. Open Network Connections.
3. Right-click Local Area Connection and select Properties. The Local Area Connection

Properties dialog box is displayed.
4. In the "This connection uses the following items" list, double-click Internet Protocol (TCP/IP).

The Internet Protocol (TCP/IP) Properties dialog box is displayed.

Figure 130: Internet Protocol (TCP/IP) Properties dialog box

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-6 3700AS-901-01 Rev. B/May 2013

5. Select Use the following IP address. The option for "Use the following DNS server addresses"
is automatically selected.

6. Set the IP address. If the IP address and subnet mask fields:
• Contain values: Record the IP address, subnet mask, default gateway, and DNS servers to use in Step

3: Configure the instrument's LAN settings (on page B-8).
• Are blank: In the IP address field, enter 192.168.1.100. In the subnet mask field, enter 255.255.255.0.

These will be used to configure the LAN settings of the instrument.
1. Click OK.
2. Click OK to close the Local Area Connection Properties dialog box.
3. Close the Network Connections window.

Windows Vista: To disable DHCP:
1. Click Start > Control Panel.
2. Click Network and Internet.
3. Open Network & Sharing Center.
4. In the list, click View Status for the applicable connection. The Local Area Connection Status

properties dialog box is displayed.
5. Click Properties. Windows displays a permissions message.
6. If you are logged in as administrator, click Continue. If you are not logged in as administrator,

enter the administrator's password to continue. The network connection properties dialog box is
displayed.

7. Double-click Internet Protocol Version 4 (TCP/IPv4) in the items list. The Internet Protocol
Version 4 (TCP/IPv4) Properties dialog box is displayed.

Figure 131: Internet Protocol (TCP/IP) Properties dialog box

Series 3700A System Switch/Multimeter Reference Manual Appendix B: LAN concepts and settings

3700AS-901-01 Rev. B/May 2013 B-7

8. Select Use the following IP address. The option for "Use the following DNS server addresses"
is automatically selected.

9. Set the IP address. If the IP address and subnet mask fields:
• Contain values: Record the IP address, subnet mask, default gateway, and DNS servers to use in Step

3: Configure the instrument's LAN settings (on page B-8).
• Are blank: In the IP address field, enter 192.168.1.100. In the subnet mask field, enter 255.255.255.0.

These will be used to configure the LAN settings of the instrument.
1. Click OK to close the Internet Protocol Version 4 (TCP/IPv4) Properties dialog box.
2. Click OK to close the Local Area Connection Properties dialog box.
3. Close the Network Connections window.

Windows 7: To disable DHCP:
1. Click Start > Control Panel.
2. Open Network and Sharing Center.
3. Click the Local Area Connection. The Local Area Connection Status dialog box is displayed.
4. In the items list, double-click Internet Protocol Version 4 (TCP/IPv4). The Internet Protocol

Version 4 (TCP/IPv4) Properties dialog box is displayed.

Figure 132: Internet Protocol (TCP/IP) Properties dialog box

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-8 3700AS-901-01 Rev. B/May 2013

5. Select Use the following IP address. The option for "Use the following DNS server addresses"
is automatically selected.

6. Set the IP address. If the IP address and subnet mask fields:
• Contain values: Record the IP address, subnet mask, default gateway, and DNS servers to use in Step

3: Configure the instrument's LAN settings (on page B-8).
• Are blank: In the IP address field, enter 192.168.1.100. In the subnet mask field, enter 255.255.255.0.

These will be used to configure the LAN settings of the instrument.
1. Click OK to close the Internet Protocol Version 4 (TCP/IPv4) Properties dialog box.
2. Click OK to close the Local Area Connection Properties dialog box.
3. Close the Network Connections window.

Step 3: Configure the instrument's LAN settings

These steps assume that you are making all the settings in the order shown here. If you only change
one or a few settings, be aware that you need to apply the settings before they will be in effect. To
apply the settings, from the LAN CONFIG menu, select APPLY_SETTINGS > YES, and then press
the ENTER key.

To configure the Series 3700A using the front panel:
1. Press the MENU key to display the MAIN MENU.
2. Use the navigation wheel to select LAN. The LAN CONFIG menu is displayed.
3. Change the IP address assignment method:

a. Select CONFIG > METHOD > MANUAL, and then press the ENTER key.
b. Press the EXIT (LOCAL) key once to return to the LAN CONFIG menu.

4. Enter the IP address using the LAN CONFIG menu:
a. Select CONFIG > IP-ADDRESS.
b. Refer to the recorded computer's IP address (Step 1: Identify and record the existing IP configuration

(on page B-2)). A portion of the computer's IP address is used as a base for the instrument's unique ID.
Only the last three numbers (after the last decimal point) of the IP address will differ between the
computer and the instrument. If the subnet mask is 255.255.255.0, the last three digits can be any value
from 1 to 255.

For example, the Internet Protocol (TCP/IP) Properties dialog box shows that the computer's IP address
is 192.168.1.100 (see the figure titled "Internet protocol (TCP/IP) Properties dialog box" in Step 2:
Disable DHCP to use the computer's existing IP address (on page B-4)). A unique IP address for the
instrument might be 192.168.001.101.

The instrument’s IP address can have leading zeros, but the computer’s IP address cannot.

c. Use the navigation wheel to select and enter an appropriate IP address for the instrument. Be sure
to record the instrument’s IP address to use in Step 5: Access the instrument's web page (on page B-9).

d. Press ENTER key or navigation wheel to confirm the changes.
e. Press the EXIT (LOCAL) key to return to the LAN CONFIG menu.

Series 3700A System Switch/Multimeter Reference Manual Appendix B: LAN concepts and settings

3700AS-901-01 Rev. B/May 2013 B-9

5. Change the subnet mask from the LAN CONFIG menu:
a. Select CONFIG > SUBNETMASK, and then press the ENTER key. The SUBNETMASK menu item is to

the right of GATEWAY. Use the navigation wheel to scroll through the options.
b. Modify the SUBNETMASK value to match the computer settings recorded earlier (or

255.255.255.000 if DHCP Enabled = YES).

c. Press the ENTER key or the navigation wheel when you are finished changing all the characters.
d. Press the EXIT (LOCAL) key to return to the LAN CONFIG menu.

6. From the LAN MENU, select APPLY > YES, and then press the ENTER key.

Step 4: Install the crossover cable
Connect the supplied crossover cable between the computer's NIC card and the LAN connector on
the instrument’s rear panel. There are multiple connectors on the Series 3700A rear panel. Be sure to
connect to the LAN connection port.

Connect the crossover cable into the same computer LAN port used during instrument configuration
to ensure that the system is using the correct network card.

Step 5: Access the instrument's web page
1. Open a web browser on the host computer.
2. Enter the IP address of the instrument in the web browser address box. For example, if the

instrument IP address is 192.168.1.101, enter 192.168.1.101 in the browser address box.
3. Press Enter on the computer keyboard to open the instrument web page.

If the web page does not open in the browser, see LAN troubleshooting suggestions (see "Verify
connections and settings" on page 9-6).

Connecting to the LAN
Each device on the LAN (corporate or private) requires a unique IP address. Contact your corporate
information technology (IT) department for details about obtaining an IP address before you deploy
the Series 3700A on a corporate or private network.

Contact your corporate IT department for permission before you connect the Series 3700A to a
corporate network.

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-10 3700AS-901-01 Rev. B/May 2013

Setting the LAN configuration method
There are two methods used to configure the LAN.

AUTO: Use the AUTO setting to allow the DHCP server to automatically set the LAN settings.

You do not need to set the LAN options manually. The DHCP server automatically configures the IP
address, subnet mask, and the default gateway. To use this option, a DHCP server must be available
on the LAN.

MANUAL: Use the MANUAL setting to manually configure the communication parameters.

The MANUAL setting requires you to configure the following:

• IP address
• Gateway
• Subnet mask

To select a LAN configuration method:
1. From the front panel, press the MENU key, and then select LAN > CONFIG > METHOD.
2. Select either AUTO or MANUAL.
3. Press the ENTER key.
4. Press the EXIT (LOCAL) key once to return to the LAN CONFIG menu.
5. Select APPLY > YES, and then press the ENTER key.

Setting the IP address

Contact your corporate information technology (IT) department to secure a valid IP address for the
instrument when placing the instrument on a corporate network.

To set the IP address (when LAN configuration method is set to MANUAL):
1. From the front panel, press the MENU key, and then select LAN > CONFIG > IP-ADDRESS.
2. Turn the navigation wheel to select and enter a valid IP address for the instrument.
3. Press the ENTER key to confirm the changes.
4. Press the EXIT (LOCAL) key to return to the LAN CONFIG menu.
5. Select APPLY > YES, and then press the ENTER key.

Series 3700A System Switch/Multimeter Reference Manual Appendix B: LAN concepts and settings

3700AS-901-01 Rev. B/May 2013 B-11

Setting the gateway

Contact your corporate information technology (IT) department to secure a valid gateway for the
instrument when placing the instrument on a corporate network.

To set the gateway (when LAN configuration method is set to MANUAL):
1. From the front panel, press the MENU key, and then select LAN > CONFIG > GATEWAY.
2. Turn the navigation wheel to select and enter a valid gateway address for the instrument.
3. Press the ENTER key to confirm the changes.
4. Press the EXIT (LOCAL) key to return to the LAN CONFIG menu.
5. Select APPLY > YES, and then press the ENTER key.

Setting the subnet mask

Contact your corporate information technology (IT) department to secure a valid subnet mask for the
instrument when placing the instrument on a corporate network.

To set the subnet mask (when LAN configuration method is set to MANUAL):
1. From the front panel, press the MENU key, and then select LAN > CONFIG > SUBNETMASK.
2. Turn the navigation wheel to select and enter a valid subnet mask for the instrument.
3. Press the ENTER key to confirm the changes.
4. Press the EXIT (LOCAL) key to return to the LAN CONFIG menu.
5. Select APPLY > YES, and then press the ENTER key.

Configuring the domain name system (DNS)
The domain name system (DNS) lets you type a domain name in the address bar to connect to the
instrument. If you use DNS, you can use a name instead of an IP address.

Example:
Model3700AS.XYZcompany.com

Contact your corporate information technology (IT) department to learn more about DNS. If a DNS
server is not part of the LAN infrastructure, this setting is not used.

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-12 3700AS-901-01 Rev. B/May 2013

To enable or disable DNS host name verification:
1. From the front panel, press the MENU key, and then select LAN > CONFIG > DNS > VERIFY.
2. Turn the navigation wheel to select either ENABLE or DISABLE. When enabled, the

instrument performs a DNS lookup to verify the DNS host name matches the value specified in
the lan.config.dns.hostname (on page 8-269) attribute.

3. Press the ENTER key.
4. Press the EXIT (LOCAL) key twice to return to the LAN CONFIG menu.
5. Select APPLY_SETTINGS > YES, and then press the ENTER key.

To enable or disable DNS registration:
1. From the front panel, press the MENU key and select LAN > CONFIG > DNS > DYNAMIC.
2. Turn the navigation wheel to select either ENABLE or DISABLE. DNS registration works with

the DHCP to register the host name specified in the lan.config.dns.hostname attribute with
the DNS server.

3. Press the ENTER key.
4. Press the EXIT (LOCAL) key twice to return to the LAN CONFIG menu.
5. Select APPLY_SETTINGS > YES, and then press the ENTER key.

To set the DNS server IP addresses:

1. From the front panel, press the MENU key and select LAN > CONFIG > DNS.

2. Turn the navigation wheel to select either DNS-ADDRESS1 or DNS-ADDRESS2.

3. Press the ENTER key.

4. Turn the navigation wheel to select and enter a valid IP address for the DNS server.

5. Press the ENTER key.

6. Press the EXIT (LOCAL) key twice to return to the LAN CONFIG menu.

7. Select APPLY_SETTINGS > YES, and then press the ENTER key.

LAN speeds
Another characteristic of the LAN is speed. The Series 3700A negotiates with the host computer and
other LXI-compliant devices on the LAN to transmit data at the highest speed possible. LAN speeds
must be configured to match the speed of the other instruments on the network.

To set the LAN speed:
1. From the front panel, press the MENU key and select LAN > CONFIG > SPEED.
2. Turn the navigation wheel to select either 10 Mbps or 100 Mbps.
3. Press the ENTER key.
4. Press the EXIT (LOCAL) key once to return to the previous menu.
5. Select APPLY > YES, and then press the ENTER key.

Series 3700A System Switch/Multimeter Reference Manual Appendix B: LAN concepts and settings

3700AS-901-01 Rev. B/May 2013 B-13

Duplex mode
The duplex mode is based on the LAN configuration. There are two settings:

• Half-duplex: Allows communications in both directions, but only one direction is active at a time
(not simultaneously).

• Full: Permits communications in both directions simultaneously.

To set the duplex mode:
1. From the front panel, press MENU key and select LAN > CONFIG > DUPLEX.
2. Turn the navigation wheel to select either HALF or FULL.

3. Press the ENTER key.
4. Press the EXIT (LOCAL) key once to return to the LAN CONFIG menu.
5. Select APPLY > YES, and then press the ENTER key.

Viewing LAN status messages
To view the LAN status messages:
1. From the front panel, press the MENU key and select LAN > STATUS > CONFIG/FAULT.
2. Press the ENTER key.

Figure 133: LAN CONFIG/FAULT

There are two types of LAN status messages:

• LAN fault messages: Communicate issues related to physical connectivity.
• LAN configuration messages: Communicate issues or events related to configuration.

The following table displays possible fault and configuration messages.

LAN CONFIG/FAULT messages

LAN message type Possible messages
LAN fault

Could not acquire IP address
Duplicate IP address detected
DHCP lease lost
Lan Cable Disconnected

LAN configuration

Starting DHCP Configuration
DHCP Server Not Found
DHCP configuration started on xxx.xxx.xxx.xxx
Searching for DNS server(s)
Starting DLLA Configuration
DLLA Failed
DLLA configuration started on xxx.xxx.xxx.xxx
Starting Manual Configuration
Manual configuration started on xxx.xxx.xxx.xxx
Closed

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-14 3700AS-901-01 Rev. B/May 2013

Viewing the network settings
To view the active network settings:
1. From the front panel, press the MENU key, and then select LAN > STATUS.
2. Use the navigation wheel to select one of the following network settings:

• IP-ADDRESS
• GATEWAY
• SUBNET-MASK
• METHOD
• DNS
• MAC-ADDRESS

1. Press the ENTER key to view the active setting.
2. Press the EXIT (LOCAL) key once to return to the STATUS menu.

Confirming the active speed and duplex negotiation
The Series 3700A automatically detects the speed and duplex negotiation active on the LAN. Once
the speed and duplex negotiation is detected, the instrument automatically adjusts its own settings to
match the LAN settings.

To confirm the active LAN speed and duplex mode:
1. From the front panel, press the MENU key.
2. Select LAN > STATUS.
3. Use the navigation wheel to select one of the following:

• SPEED
• DUPLEX

1. Press the ENTER key to view the active setting.
2. Press the EXIT (LOCAL) key once to return to the STATUS menu

Confirming port numbers
To view the port number assigned to each remote interface protocol:
1. From the front panel, press the MENU key, and then select LAN > STATUS > PORT.
2. Use the navigation wheel to select one of the following:

• RAW-SOCKET
• TELNET
• VXI-11
• DST

1. Press the ENTER key to view the port number.
2. Press the EXIT (LOCAL) key once to return to the PORT menu.

Series 3700A System Switch/Multimeter Reference Manual Appendix B: LAN concepts and settings

3700AS-901-01 Rev. B/May 2013 B-15

The following table displays the remote interface protocols supported by the Series 3700A and their
assigned port numbers.

Port number

Command interface Port number
Raw socket 5025
Telnet 23
VXI-11 1024
DST (dead socket termination) 5030

Selecting a LAN interface protocol
This section provides details about how to select a remote interface protocol to connect to the Series
3700A. The Series 3700A provides three LAN interfaces with three associated LAN protocols (each
interface uses a different protocol). Select the interface based on the protocol needed. The dead
socket termination interface (DST) is provided to solve connection problems; it is not a protocol
choice.

VXI-11 connection
This remote interface is similar to GPIB and supports message boundaries, serial poll, and service
requests (SRQs). A VXI-11 driver or NI-VISATM software is required. Test Script Builder (TSB) uses
NI-VISA and can be used with the VXI-11 interface. You can expect a slower connection with this
protocol.

Raw socket connection
All Keithley instruments that have LAN connections support raw socket communication. This means
that you can connect to the TCP/IP port on the instrument and send and receive commands. A
programmer can easily communicate with the instrument using the Winsock API on computers with
the Microsoft® Windows® operating system or using the Berkeley Sockets API on Linux® or Apple®
computers.

Dead socket connection
The dead socket termination (DST) port is used to terminate all existing ethernet connections. A dead
socket is a socket that is held open by the instrument because it has not been properly closed. This
most often happens when the host computer is turned off or restarted without first closing the socket.
This port cannot be used for command and control functions.

Use the dead socket termination port to manually disconnect a dead session on any open socket. All
existing ethernet connections will be terminated and closed when the connection to the dead socket
termination port is closed.

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-16 3700AS-901-01 Rev. B/May 2013

Telnet connection
The Telnet protocol is similar to raw socket, and can be used when you need to interact directly with
the instrument. Telnet is often used for debugging and troubleshooting. You will need a separate
Telnet program to use this protocol.

The Series 3700A supports the Telnet protocol, which you can use over a TCP/IP connection to send
commands to the instrument. You can use a Telnet connection to interact with scripts or send
real-time commands.

Configuring a Telnet connection

This procedure uses HyperTerminalTM, which is available with the Microsoft® Windows® XP operating
system. Consult the help system for your version of Microsoft Windows to identify a compatible tool.

To connect with the Series 3700A using HyperTerminal on a Windows XP system:
1. On the host computer, click Start > Accessories > Communications > HyperTerminal. The

Connection Description dialog box opens.

Figure 134: Connection description dialog box

2. Type a name to identify the connection (for example, My Instrument), and then click OK.
3. In the Connect To dialog box, click the Connect using list. Select TCP/IP (Winsock).

Series 3700A System Switch/Multimeter Reference Manual Appendix B: LAN concepts and settings

3700AS-901-01 Rev. B/May 2013 B-17

Figure 135: Connect To dialog box

4. In the Host address field, type the instrument's IP address (for example, 192.168.1.101) .
5. Type 23 in the Port number field, and then click OK. The HyperTerminal program window is

displayed.
6. From the HyperTerminal program window, click File > Properties.

7. In the Properties dialog box, click the Settings tab.

Figure 136: Properties dialog box

8. Click ASCII Setup. The ASCII Setup dialog box is displayed.

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-18 3700AS-901-01 Rev. B/May 2013

9. From the ASCII Setup dialog box, select the following options:
• Send line ends with line feeds
• Echo typed characters locally

Figure 137: ASCII Setup dialog box

1. Click OK in the ASCII Setup dialog box. The Properties dialog box is displayed.
2. Click OK in the Properties dialog box.

Use the HyperTerminal window to interact directly with the instrument.

Logging LAN trigger events in the event log
You can use the event log to record all LXI triggers generated and received by the Series 3700A, and
you can view the event log using any command interface or the embedded web interface. The
following figure shows the view of the LXI event log from the embedded web interface.

Figure 138: 3700A LXI event log

The timestamp, event identifier, IP address, and the domain name identify the incoming and outgoing
LXI trigger packets. The following table provides detailed descriptions for the columns in the
event log.

Series 3700A System Switch/Multimeter Reference Manual Appendix B: LAN concepts and settings

3700AS-901-01 Rev. B/May 2013 B-19

Event log descriptions

Column title Description Example
Received
Time

Displays the date and time that the LAN
trigger occurred in UTC, 24-hour time

06:56:28.000 8 May 2011

Event ID Identifies the lan.trigger[N] that
generates an event

LAN0 = lan.trigger[1]
LAN1 = lan.trigger[2]
LAN2 = lan.trigger[3]
LAN3 = lan.trigger[4]
LAN4 = lan.trigger[5]
LAN5 = lan.trigger[6]
LAN6 = lan.trigger[7]
LAN7 = lan.trigger[8]

From Displays the IP address for the device that
generates the LAN trigger

localhost
192.168.5.20

Timestamp A timestamp that identifies the time the event
occurred; the timestamp uses the following:
• PTP timestamp
• Seconds
• Fractional seconds

The Series 3700A does not support the
IEEE Std 1588 standard; the values in this
field are always 0 (zero)

HWDetect Identifies a valid LXI trigger packet LXI
Sequence Each instrument maintains independent

sequence counters:
• One for each combination of UDP multicast

network interface and UDP multicast
destination port

• One for each TCP connection

Domain Displays the LXI domain number; the default
value is 0 (zero)

0
1523

Flags Contain data about the LXI trigger packet;
values are:
• 1 - Error
• 2 - Retransmission
• 4 - Hardware
• 8 - Acknowledgments
• 16 - Stateless bit

Data The values for this are always 0 (zero)

Accessing the event log from the command interface
You can access the event log from any remote command interface. The event log must be enabled
before LXI trigger events can be viewed. To enable the event log, send:
eventlog.enable = 1

To view the event log from a remote interface, send:
print(eventlog.all())

Appendix B: LAN concepts and settings Series 3700A System Switch/Multimeter Reference Manual

B-20 3700AS-901-01 Rev. B/May 2013

This command outputs one or more strings similar to the following:

14:14:02.000 17 Jun 2008, LAN0, 10.80.64.191, LXI, 0, 1213712000, not
available, 0, 0x10,0x00

The string displays the same information as the web interface. Commas separate the fields. The
fields output in the following order:

• Received time (UTC time)
• Event ID
• From (Sender)
• HWDetect / version
• Domain
• Sequence number
• Timestamp (PTP time)
• Epoch (from 1588)
• Flags
• Data

See the table in Logging LAN trigger events in the event log (on page B-18) for detailed descriptions.

In this appendix:

Verification ... C-1
Calibration ... C-22

Verification
Use the procedures in this section to verify that the Keithley Instruments Model 3706A System
Switch/Multimeter's accuracy is within the limits stated in the instrument’s one-year accuracy
specifications. Verifying the accuracy of your Model 3706A is recommended:

• When you first receive the instrument to make sure that it was not damaged during shipment
• To verify that the unit meets factory specifications
• To determine if calibration is required
• Following calibration to make sure that calibration was performed properly

The information in this section is intended for qualified service personnel only. Do not
attempt these procedures unless you are qualified to do so.

Some of these procedures may expose you to hazardous voltages, that if contacted, could
cause personal injury or death. Use appropriate safety precautions when working with
hazardous voltages.

For the plug-in modules, the maximum common-mode voltage (voltage between any plug-in
module terminal and chassis ground) is 300V DC or 300V RMS. Exceeding this value may
cause a breakdown in insulation, creating a shock hazard.

If the instrument is still under warranty and its performance is outside specified limits, contact your
Keithley Instruments representative or the factory to determine the correct course of action.

Appendix C

Calibration

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-2 3700AS-901-01 Rev. B/May 2013

Verification test requirements
Be sure that you perform these verification tests:

• Under the proper environmental conditions
• After the specified warmup period
• Using the correct line voltage
• Using the proper test equipment
• Using the specified output signal and reading limits

Environmental conditions
Conduct the verification procedures in a location that has:

• An ambient temperature of 18 °C to 28 °C (65 °F to 82 °F)
• A relative humidity of less than 80%, unless otherwise noted

Warmup period

At the factory, instruments are calibrated without any switch cards installed and all slots are covered
with blank slot covers. The slot covers come installed on the instrument when it is shipped.

If it is more convenient to calibrate the instrument with switch cards installed, make sure all channels
are open and any empty slots are covered with blank slot covers.

Allow the System Switch/Multimeter to warm up for at least two hours before performing calibration.

If the instrument has been subjected to temperature extremes (those outside the ranges stated in
Environmental conditions (on page C-2)), allow extra time for the instrument’s internal temperature to
stabilize. Typically, you need to allow one extra hour to stabilize an instrument that is 10 °C (18 °F)
outside the specified temperature range.

Also, allow the test equipment to warm up for the minimum time specified by the manufacturer.

Line power
The Model 3706A requires a line voltage of 100 V to 240 V (±10%), and a line frequency of 50 Hz or
60 Hz.

The instrument automatically senses the line frequency at power-up.

Recommended test equipment
The following table summarizes recommended verification equipment. You can use alternate
equipment if that equipment has specifications equal to or greater than those listed in the table. Note,
however, that test equipment uncertainty will add to the uncertainty of each measurement. Generally,
test equipment uncertainty should be at least four times better (more accurate) than corresponding
Model 3706A specifications.

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-3

The Keithley Instruments Model 3706-190 backplane connector board is an accessory that can be
used to make connections to the calibrator. Additional boards, such as a 4-wire short or the discrete
resistors, would also be convenient to eliminate rewiring for different setups used in verification.

Manufacturer Model Description Used for: Uncertainty
Fluke 5700 Calibrator All DCV, ACV, DCI, ACI,

and resistance
See NOTE.

Fluke 5725 Amplifier High voltage, high current See NOTE.
HP 3458 DMM 10µA, 100µA DCI range See NOTE.
Agilent 33220A Function generator Frequency See NOTE.
N/A N/A 4-wire short DCV, resistance zeros N/A
N/A N/A 1 Ohm discrete

resistor
1 Ohm range +/- 20ppm

N/A N/A 10 Ohm discrete
resistor

10 Ohm range +/- 20ppm

Refer to the manufacturer's specifications to calculate the uncertainty, which will vary for each test
point.

Verification limits
The verification limits stated in this section have been calculated using only the Model 3706A one-
year accuracy specifications, and they do not include test equipment uncertainty. If a particular
measurement falls outside the allowable range, recalculate new limits based both on the Model
3706A specifications and corresponding test equipment specifications.

Example reading limit calculation

The following is an example of how reading limits have been calculated. Assume you are testing the
10V DC range using a 10V input value. Using the Model 3706A one-year accuracy specification for
10V DC of ± (25ppm of reading + 2ppm of range), the calculated limits are:

Reading limits = 10V ± [(10V × 25ppm) + (10V × 2ppm)]

Reading limits = 10V ± (0.00025 + 0.00002)

Reading limits = 10V ± 0.00027V

Reading limits = 9.99973V to 10.00027V

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-4 3700AS-901-01 Rev. B/May 2013

Calculating resistance reading limits

Resistance reading limits must be recalculated based on the actual calibration resistance values
supplied by the equipment manufacturer. Calculations are performed in the same manner as shown
in the preceding example, using the actual calibration resistance values instead of the nominal values
in the example when performing your calculations.

For example, assume that you are testing the 10 kΩ range using an actual 10.03 kΩ calibration
resistance value. Using Model 3706A one-year 10 kΩ range accuracy of ± (60 ppm of reading +
4 ppm of range), the calculated reading limits are:

• Reading limits = 10.03 kΩ ± [(10.03 kΩ x 60 ppm) + (10.03 kΩ x 6 ppm)]
• Reading limits = 10.03 kΩ ± [(0.000618) + (0.0000618)]
• Reading limits = 10.03 kΩ ± 0.0006798
• Reading limits = 10.0293202 kΩ to 10.0306798 kΩ

Restoring factory defaults
To restore the instrument to its factory front panel (bench) defaults before performing the
verification procedures:

1. Press the MENU key.
2. Turn the navigation wheel to highlight SETUP and then press the ENTER key.
3. Turn the navigation wheel to highlight RESET and then press the ENTER key.

Performing the verification test procedures
The following topics provide a summary of verification test procedures, as well as items to take into
consideration before performing any verification test.

Test summary
• Verifying DC voltage (on page C-5)
• Verifying AC voltage (on page C-7)
• Verifying DC current 10 µA to 100 µA ranges (on page C-9)
• Verifying DC current 1 mA to 3 A ranges (on page C-10)
• Verifying AC current 1 mA to 3 A ranges (on page C-12)
• Verifying frequency (on page C-14)

• Verifying 4-wire resistance (on page C-15)
• Verifying 2-wire resistance (on page C-16)
• Verifying dry circuit resistance (on page C-17)
• Verifying 1-ohm and 10-ohm resistance ranges (on page C-19)
• Verifying zeros using a 4-wire short (on page C-20)

If the Model 3706A is not within specifications and not under warranty, calibrate the unit.

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-5

Test considerations
When performing the verification procedures:

• Be sure to restore factory front panel defaults as outlined in Restoring factory defaults (on page
C-4).

• Make sure that the test equipment is properly warmed up and connected to the Model 3706A
terminals.

• Be sure the test equipment is set up for the proper function and range.
• Do not connect test equipment to the Model 3706A through a scanner, multiplexer, or other

switching equipment.

The input/output terminals of the digital multimeter (DMM) and switch cards are rated for
connection to circuits rated Installation Category I only, with transients rated less than
1500V peak. Do not connect the DMM or switch card terminals to CAT II, CAT III, or CAT IV
circuits.

Connections of the DMM or switch card terminals to circuits higher than CAT I can cause
damage to the equipment or expose the operator to hazardous voltages.

Model 3706A verification tests
Perform these tests to verify the accuracy of your Model 3706A at the analog backplane connector.

Verifying DC voltage
Check DC voltage accuracy by applying accurate voltages from the DC voltage calibrator to the
Model 3706A analog backplane connector and verifying that the displayed readings fall within
specified limits.

Do not exceed 300 V peak between INPUT HI and INPUT LO because instrument damage may
occur.

To verify DC voltage accuracy:

Use shielded, low-thermal connections when testing the 100 mV and 1 V ranges to avoid errors
caused by noise or thermal effects. Connect the shield to the calibrator’s output LO terminal.

1. Connect the Model 3706A HI and LO INPUT pins to the DC voltage calibrator as shown in the
"DC voltage verification" below.

2. Select the DC volts function.
3. Set the Model 3706A to the 100 mV range.

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-6 3700AS-901-01 Rev. B/May 2013

4. If relative offsetis needed, set the calibrator output to 0.00000 mVDC and allow the reading to
settle.

5. Enable the Model 3706A relative offset mode.
6. Source positive and negative full-scale and half-scale voltages for each of the ranges listed in the

table below. For each voltage setting, be sure that the reading is within stated limits.

Figure 139: DC voltage verification

DC voltage verification data

Use the following values to verify the performance of the Model 3706A. Actual values depend on the
published specifications (see Example reading limit calculation (on page C-3)).

Connect to the Fluke 5700A Calibrator

Description Range (V) Test point (V) Lower limit (V) Upper limit (V)
Rel Series 3700 1.00E-01 0.00E+00 N/A N/A
Verify DCV 100mV 1.00E-01 1.00E-01 9.999610E-02 1.000039E-01
Verify DCV 100mV 1.00E-01 5.00E-02 4.999760E-02 5.000240E-02
Verify DCV 100mV 1.00E-01 -5.00E-02 -5.000240E-02 -4.999760E-02
Verify DCV 100mV 1.00E-01 -1.00E-01 -1.000039E-01 -9.999610E-02

Rel Series 3700 1.00E+00 0.00E+00 N/A N/A
Verify DCV 1V 1.00E+00 1.00E+00 9.999680E-01 1.000032E+00
Verify DCV 1V 1.00E+00 5.00E-01 4.999830E-01 5.000170E-01
Verify DCV 1V 1.00E+00 -5.00E-01 -5.000170E-01 -4.999830E-01
Verify DCV 1V 1.00E+00 -1.00E+00 -1.000032E+00 -9.999680E-01

Verify DCV 10V 1.00E+01 1.00E+01 9.999730E+00 1.000027E+01
Verify DCV 10V 1.00E+01 5.00E+00 4.999855E+00 5.000145E+00
Verify DCV 10V 1.00E+01 0.00E+00 -2.000000E-05 2.000000E-05
Verify DCV 10V 1.00E+01 -5.00E+00 -5.000145E+00 -4.999855E+00
Verify DCV 10V 1.00E+01 -1.00E+01 -1.000027E+01 -9.999730E+00

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-7

Connect to the Fluke 5700A Calibrator

Description Range (V) Test point (V) Lower limit (V) Upper limit (V)
Verify DCV 100V 1.00E+02 1.00E+02 9.999540E+01 1.000046E+02
Verify DCV 100V 1.00E+02 5.00E+01 4.999740E+01 5.000260E+01
Verify DCV 100V 1.00E+02 0.00E+00 -6.000000E-04 6.000000E-04
Verify DCV 100V 1.00E+02 -5.00E+01 -5.000260E+01 -4.999740E+01
Verify DCV 100V 1.00E+02 -1.00E+02 -1.000046E+02 -9.999540E+01

Verify DCV 300V 3.00E+02 3.00E+02 2.999862E+02 3.000138E+02
Verify DCV 300V 3.00E+02 1.50E+02 1.499922E+02 1.500078E+02
Verify DCV 300V 3.00E+02 0.00E+00 -1.800000E-03 1.800000E-03
Verify DCV 300V 3.00E+02 -1.50E+02 -1.500078E+02 -1.499922E+02
Verify DCV 300V 3.00E+02 -3.00E+02 -3.000138E+02 -2.999862E+02

Verifying AC voltage
Check AC voltage accuracy by applying accurate voltages from the AC voltage calibrator to the
Model 3706A analog backplane connector and verifying that the displayed readings fall within
specified limits.

Do not exceed 300 V peak between INPUT HI and INPUT LO, or 8 × 107 VHz input, because
instrument damage may occur.

To verify AC voltage accuracy:

Use shielded, low-thermal connections when testing the 100 mV and 1 V ranges to avoid errors
caused by noise or thermal effects. Connect the shield to the calibrator’s output LO terminal.

1. Connect the Model 3706A HI and LO INPUT pins to the DC voltage calibrator as shown in "AC
voltage verification" below.

2. Select the AC volts function.
3. Set the Model 3706A to the 100 mV range. Make sure that relative offset is disabled.
4. Source AC voltages for each of the frequencies and ranges are summarized in the ACV

verification data (on page C-8) table. For each setting, be sure that the reading is within stated
limits.

5. Repeat steps 3 and 4 for each item in the table.

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-8 3700AS-901-01 Rev. B/May 2013

Figure 140: AC voltage verification

ACV verification data

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Example reading limit calculation (on page C-3)).

Connect to the Fluke 5700A calibrator

Description Range (V) Test point (V) Lower limit (V) Upper limit (V)
Verify ACV 100mV @ 20Hz 1.00E-01 1.00E-01 9.897000E-02 1.010300E-01

Verify ACV 100mV @ 1kHz 1.00E-01 1.00E-01 9.992000E-02 1.000800E-01
Verify ACV 100mV @ 50kHz 1.00E-01 1.00E-01 9.984000E-02 1.001600E-01
Verify ACV 100mV @ 100kHz 1.00E-01 1.00E-01 9.932000E-02 1.006800E-01

Verify ACV 1V @ 20Hz 1.00E+00 1.00E+00 9.992000E-01 1.000800E+00
Verify ACV 1V @ 1kHz 1.00E+00 1.00E+00 9.992000E-01 1.000800E+00
Verify ACV 1V @ 50kHz 1.00E+00 1.00E+00 9.984000E-01 1.001600E+00
Verify ACV 1V @ 100kHz 1.00E+00 1.00E+00 9.932000E-01 1.006800E+00

Verify ACV 10V @ 1kHz 1.00E+01 1.00E+01 9.992000E+00 1.000800E+01
Verify ACV 10V @ 50kHz 1.00E+01 1.00E+01 9.984000E+00 1.001600E+01
Verify ACV 10V @ 100kHz 1.00E+01 1.00E+01 9.932000E+00 1.006800E+01

Verify ACV 100V @ 1kHz 1.00E+02 1.00E+02 9.992000E+01 1.000800E+02
Verify ACV 100V @ 50kHz 1.00E+02 1.00E+02 9.984000E+01 1.001600E+02
Verify ACV 100V @ 100kHz 1.00E+02 1.00E+02 9.932000E+01 1.006800E+02

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-9

Connect to the Fluke 5700A calibrator

Description Range (V) Test point (V) Lower limit (V) Upper limit (V)
Verify ACV 300V @ 1kHz 3.00E+02 3.00E+02 2.997600E+02 3.002400E+02
Verify ACV 300V @ 50kHz 3.00E+02 3.00E+02 2.995200E+02 3.004800E+02

Connect to the Fluke 5725A amplifier

Description Range (V) Test point (V) Lower limit (V) Upper limit (V)
Verify ACV 300V @ 100kHz 3.00E+02 3.00E+02 2.979600E+02 3.020400E+02

Verifying DC current 10 µA to 100 µA ranges
Check DC current accuracy by applying accurate current from the DC current calibrator to the Model
3706A analog backplane connector and verifying that the displayed readings fall within specified
limits.

To verify DC current accuracy:

1. Set up the Model 3706A for DC current and the range being tested. Make sure relative offset is
disabled.

2. Verify the zero test point for each range without any connection to the equipment and verify that
the readings fall within specified limits.

3. Connect the Model 3706A AMPS and LO INPUT pins to the DC current calibrator as shown in the
"DC current verification 10 uA to 100 uA ranges diagram" below.

4. Set up the HP3458A to the DC current function and range.
5. Set the calibrator to source zero current and rel both the Model 3706A and the HP3458A.
6. Source DC current for each of the test points summarized in the DC voltage verification data (on

page C-6) table. For each setting, be sure that the reading is within stated limits.

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-10 3700AS-901-01 Rev. B/May 2013

Figure 141: DC current verification 10µA to 100µA ranges

DC current verification data 10 µA to 100 µA ranges

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Example reading limit calculation (on page C-3)).

Connect HP3458A in series with 5700 calibrator

Description Range (A) Test point(A) Lower limit (A) Upper limit (A)
Verify 10 µA Zero 1.00E-05 0.00E+00 -3.000000E-10 3.000000E-10
Verify DC Curr 10 µA 1.00E-05 1.00E-05 9.994700E-06 1.000530E-05
Verify DC Curr 10 µA 1.00E-05 -1.00E-05 -1.000530E-05 -9.994700E-06
Verify 100 µA Zero 1.00E-04 0.00E+00 -3.000000E-09 3.000000E-09
Verify DC Curr 100 µA 1.00E-04 1.00E-04 9.994910E-05 1.000509E-04
Verify DC Curr 100 µA 1.00E-04 -1.00E-04 -1.000509E-04 -9.994910E-05

Verifying DC current 1 mA to 3 A ranges
Check DC current accuracy by applying accurate current from the DC current calibrator to the Model
3706A analog backplane connector and verifying that the displayed readings fall within specified
limits.

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-11

The Fluke 5725A amplifier is only needed when verifying the 3 A range.

To verify DC current accuracy:

1. Connect the Model 3706A AMPS and LO INPUT pins to the DC current calibrator as shown in the
"DC current verification 1 mA to 3 A ranges diagram" below, using the Keithley Instruments Model
3706-751 fixture cable.

2. Select the DC current function.
3. Set the Model 3706A to the applicable ranges. Make sure that relative offset is disabled.
4. Source DC current for each of the test points summarized in the DC current verification data

table. For each setting, be sure that the reading is within stated limits.

Figure 142: DC current verification 1mA to 3A ranges

Figure 143: DC current verification 3A range diagram

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-12 3700AS-901-01 Rev. B/May 2013

DC current verification data 1 mA to 3 A ranges

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Example reading limit calculation (on page C-3)).

Remove HP3458A, only connect the 5700

Description Range (A) Test point (A) Lower limit (A) Upper limit (A)
Verify 1mA Zero 1.00E-03 0.00E+00 -9.000000E-09 9.000000E-09
Verify DC Curr 1mA 1.00E-03 1.00E-03 9.994910E-04 1.000509E-03
Verify DC Curr 1mA 1.00E-03 -1.00E-03 -1.000509E-03 -9.994910E-04
Verify 10mA Zero 1.00E-02 0.00E+00 -9.000000E-08 9.000000E-08
Verify DC Curr 10mA 1.00E-02 1.00E-02 9.994910E-03 1.000509E-02
Verify DC Curr 10mA 1.00E-02 -1.00E-02 -1.000509E-02 -9.994910E-03
Verify 100mA Zero 1.00E-01 0.00E+00 -9.000000E-07 9.000000E-07
Verify DC Curr 100mA 1.00E-01 1.00E-01 9.994910E-02 1.000509E-01
Verify DC Curr 100mA 1.00E-01 -1.00E-01 -1.000509E-01 -9.994910E-02
Verify DC Curr 1A 1.00E+00 1.00E+00 9.991900E-01 1.000810E+00
Verify DC Curr 1A 1.00E+00 -1.00E+00 -1.000810E+00 -9.991900E-01

Connect to the Fluke 5725A amplifier

Description Range (A) Test point (A) Lower limit (A) Upper limit (A)
Verify DC Curr 3A 3.00E+00 3.00E+00 2.996355E+00 3.003645E+00
Verify DC Curr 3A 3.00E+00 -3.00E+00 -3.003645E+00 -2.996355E+00

Verifying AC current 1 mA to 3 A ranges
Check AC current accuracy by applying accurate current from the AC current calibrator at specific
frequencies to the Model 3706A analog backplane connector and verifying that the displayed
readings fall within specified limits.

To verify AC current accuracy:

1. Set up the Model 3706A for AC current and the range being tested. Make sure relative offset is
disabled.

2. Source AC current for the 1 mA to 1 A range test points summarized in "AC current calibration
diagram" below. For each setting, be sure that the reading is within stated limits.

3. Install the Fluke 5725A amplifier.
4. Source AC current for the 3 A range test points summarized in the AC current verification data

1mA to 1A ranges (see "AC current verification data 1 mA to 1 A ranges" on page C-14) table. Be
sure that the 3 A readings are within stated limits.

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-13

Figure 144: AC current verification 1mA to 1A range

Figure 145: AC current verification 3A range

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-14 3700AS-901-01 Rev. B/May 2013

AC current verification data 1 mA to 1 A ranges

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Example reading limit calculation (on page C-3)).

Connect to the Fluke 5700A calibrator

Description Range (A) Test point (A) Lower limit (A) Upper limit (A)
Verify AC Curr 1mA @ 20Hz 1.00E-03 1.00E-03 9.989000E-04 1.001100E-03
Verify AC Curr 1mA @ 1kHz 1.00E-03 1.00E-03 9.989000E-04 1.001100E-03
Verify AC Curr 1mA @ 5kHz 1.00E-03 1.00E-03 9.989000E-04 1.001100E-03
Verify AC Curr 10mA @ 40Hz 1.00E-02 1.00E-02 9.989000E-03 1.001100E-02
Verify AC Curr 10mA @ 1kHz 1.00E-02 1.00E-02 9.989000E-03 1.001100E-02
Verify AC Curr 10mA @ 5kHz 1.00E-02 1.00E-02 9.989000E-03 1.001100E-02
Verify AC Curr 100mA @ 40Hz 1.00E-01 1.00E-01 9.989000E-02 1.001100E-01
Verify AC Curr 100mA @ 1kHz 1.00E-01 1.00E-01 9.989000E-02 1.001100E-01
Verify AC Curr 100mA @ 5kHz 1.00E-01 1.00E-01 9.989000E-02 1.001100E-01
Verify AC Curr 1A @ 40Hz 1.00E+00 1.00E+00 9.977000E-01 1.002300E+00
Verify AC Curr 1A @ 1kHz 1.00E+00 1.00E+00 9.977000E-01 1.002300E+00
Verify AC Curr 1A @ 5kHz 1.00E+00 1.00E+00 9.977000E-01 1.002300E+00

AC current verification data 3A range

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Example reading limit calculation (on page C-3)).

Connect to the Fluke 5725A amplifier

Description Range (A) Test point (A) Lower limit (A) Upper limit (A)
Verify AC Curr 3A @
40Hz

3.00E+00 3.00E+00 2.993100E+00 3.006900E+00

Verify AC Curr 3A @
1kHz

3.00E+00 3.00E+00 2.993100E+00 3.006900E+00

Verify AC Curr 3A @
5kHz

3.00E+00 3.00E+00 2.993100E+00 3.006900E+00

Verifying frequency
To verify the Model 3706A frequency function:

1. Connect the Agilent 33220A function generator to the Model 3706A INPUT pins.
2. Set the function generator to output a 1 kHz, 5 V RMS sine wave.
3. Select the Model 3706A frequency function by pressing the FREQ key.
4. Verify that each Model 3706A frequency reading is within the limits contained in the table

contained in Frequency verification data (on page C-15).

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-15

Figure 146: Frequency verification

Frequency verification data

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Example reading limit calculation (on page C-3)).

Connect the Agilent 33220A Generator

Description Range (V) Frequency (Hz) Lower limit (Hz) Upper limit (Hz)
Verify Frequency 1kHz 1.00E+01 1.00E+03 9.999167E+02 1.000083E+03
Verify Frequency 10kHz 1.00E+01 1.00E+04 9.999167E+03 1.000083E+04
Verify Frequency 100kHz 1.00E+01 1.00E+05 9.999167E+04 1.000083E+05
Verify Frequency 250kHz 1.00E+01 2.50E+05 2.499797E+05 2.500203E+05
Verify Frequency 500kHz 1.00E+01 5.00E+05 4.999597E+05 5.000403E+05

Verifying 4-wire resistance
Check the normal resistance function by connecting accurate resistance values to the Model 3706A
analog backplane connector and verifying that the displayed readings fall within specified limits.

Do not exceed 300 V peak between INPUT HI and INPUT LO because instrument damage may
occur.

To verify 4-wire resistance accuracy:

1. Using shielded, Teflon-insulated or equivalent cables in a 4-wire configuration, connect the Model
3706A INPUT and SENSE pins to the calibrator as shown for 100 Ω to 10 MΩ ranges.

2. Set the calibrator for 4-wire resistance with external sense on.
3. Select the Model 3706A 4-wire resistance function.
4. Select the SLOW integration rate with the RATE key.

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-16 3700AS-901-01 Rev. B/May 2013

5. Set the Model 3706A for the 100 Ω range, and make sure the FILTER is on. Enable OC+ (offset-
compensated ohms). Use OC+ for 100 Ω and 1 kΩ range verification only. See
Enabling/disabling offset-compensated ohms (on page 4-62) in the User's manual.

6. Recalculate reading limits based on actual calibrator resistance values.
7. Source the nominal full-scale resistance values for the 100 Ω to 10 MΩ ranges summarized in the

4-wire resistance verification data (on page C-16) table. Recalculate the limits based on the
actual value of the resistor and verify the reading is within the calculated limits.

Figure 147: Resistance verification

4-wire resistance verification data

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Calculating resistance reading limits (on page C-4)).

Connect to the Fluke 5700A calibrator

Description Range (Ohms) Test point (Ohms) Lower limit (Ohms) Upper limit
(Ohms)

Verify 4W Res 100 Ohm * 1.00E+02 1.00E+02 9.999310E+01 1.000069E+02
Verify 4W Res 1k Ohm 1.00E+03 1.00E+03 9.999360E+02 1.000064E+03
Verify 4W Res 10k Ohm 1.00E+04 1.00E+04 9.999360E+03 1.000064E+04
Verify 4W Res 100k Ohm 1.00E+05 1.00E+05 9.999360E+04 1.000064E+05
Verify 4W Res 1M Ohm 1.00E+06 1.00E+06 9.999560E+05 1.000044E+06
Verify 4W Res 10M Ohm 1.00E+07 1.00E+07 9.995900E+06 1.000410E+07

The asterisk (*) designates the ranges that offset compensation is being used.

Verifying 2-wire resistance
Check the normal resistance function by connecting accurate resistance values to the Model 3706A
analog backplane connector and verifying that the displayed readings fall within specified limits.

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-17

Do not exceed 300V peak between INPUT HI and INPUT LO because instrument damage may
occur.

To verify normal resistance accuracy:

1. Using shielded, Teflon-insulated or equivalent cables in a 2-wire configuration, connect the Model
3706A INPUT and SENSE pins to the calibrator as shown in the "2-wire resistance verification
diagram" below.

2. Disable the external sense on the calibrator.
3. Set the Series 3700A to the 2-wire resistance function, set to the proper range.
4. Source a nominal 100 kΩ to 100 MΩ resistance value. Recalculate the limits based on the actual

value of the resistor and verify that the reading is within the calculated limits.

Figure 148: 2-wire resistance verification

2-wire resistance verification data

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Calculating resistance reading limits (on page C-4)).

Description Range (Ohms) Test point (Ohms) Lower limit (Ohms) Upper limit
(Ohms)

Verify 2W Res 100k Ohm 1.00E+05 1.00E+05 9.999360E+04 1.000064E+05
Verify 2W Res 1M Ohm 1.00E+06 1.00E+06 9.999360E+05 1.000064E+06
Verify 2W Res 10M Ohm 1.00E+07 1.00E+07 9.995900E+06 1.000410E+07
Verify 2W Res 100M Ohm 1.00E+08 1.00E+08 9.979700E+07 1.002030E+08

Verifying dry circuit resistance
Check the dry circuit resistance function by connecting accurate resistance values to the Model
3706A analog backplane connector and verifying that the displayed readings fall within specified
limits.

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-18 3700AS-901-01 Rev. B/May 2013

Do not exceed 300V peak between INPUT HI and INPUT LO because instrument damage may
occur.

To verify dry circuit resistance accuracy:

1. Using shielded, Teflon-insulated or equivalent cables in a 4-wire configuration, connect the Model
3706A INPUT and SENSE pins to the calibrator as shown for 100 Ω to 10 MΩ ranges.

2. Set the calibrator for 4-wire resistance with external sense on.
3. Select the Model 3706A 4-wire resistance function.
4. Select the SLOW integration rate with the RATE key.

5. Enable dry circuit resistance function (see Enabling/disabling dry circuit ohms (see "Enable or
disable dry circuit ohms from the front panel" on page 4-60) in the User's manual).

6. Set the Model 3706A for the 100 Ω range, and make sure the FILTER is on. Enable OC+ (offset-
compensated ohms). Use OC+ for 100 Ω, and 1 kOhm range verification. See Enabling/disabling
offset-compensated ohms (on page 4-62) in the User's manual.

7. Recalculate reading limits based on actual calibrator resistance values.
8. Source the nominal full-scale resistance values for the 100 Ω to 2 kΩ ranges summarized in the

Dry circuit resistance verification data (on page C-18) table. Verify that the readings are within
calculated limits.

Figure 149: Resistance verification

Dry circuit resistance verification data

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Calculating resistance reading limits (on page C-4)).

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-19

Description Range (Ohms) Test point (Ohms) Lower limit (Ohms) Upper limit
(Ohms)

Verify Dry Circuit 100 Ohm
*

1.00E+02 1.00E+02 9.997800E+01 1.000220E+02

Verify Dry Circuit 1k Ohm 1.00E+03 1.00E+03 9.995200E+02 1.000480E+03
Verify Dry Circuit 2k Ohm 2.00E+03 1.90E+03 1.898320E+03 1.901680E+03

The asterisk (*) designates the ranges that offset compensation is being used.

Verifying 1-OHM and 10-OHM resistance ranges
Check the normal resistance function by connecting accurate resistance values to the Model 3706A
analog backplane connector and verifying that the displayed readings fall within specified limits.

Do not exceed 300 V peak between INPUT HI and INPUT LO because instrument damage may
occur.

To verify normal resistance accuracy:

1. Connect the 1 Ω discrete resistor to the Model 3706A input.
2. For the dry circuit test points, enable the dry circuit resistance attribute (DRY+).
3. Select the SLOW integration rate with the RATE key.
4. Set the Model 3706A for the 1 Ω range, and make sure the FILTER is on. Enable OC+ (offset-

compensated ohms). Use OC+ for 1 Ω and 10 Ω range verification.
5. Recalculate reading limits based on actual discrete resistor resistance values.
6. Repeat using the 10 Ω discrete resistor on the 10 Ω range.

Figure 150: Verifying discrete resistance

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-20 3700AS-901-01 Rev. B/May 2013

Discrete resistance verification data

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Calculating resistance reading limits (on page C-4)).

1 Ohm discrete resistor applied

Description Range (Ohms) Test point (Ohms) Lower limit (Ohms) Upper limit
(Ohms)

Verify Res 1 Ohm * 1.00E+00 1.00E+00 9.998600E-01 1.000140E+00
Verify Dry Circuit 1 Ohm * 1.00E+00 1.00E+00 9.998500E-01 1.000150E+00

10 Ohm discrete resistor applied

Description Range (Ohms) Test point (Ohms) Lower limit (Ohms) Upper limit
(Ohms)

Verify Res 10 Ohm * 1.00E+01 1.00E+01 9.999310E+00 1.000069E+01
Verify Dry Circuit 10 Ohm
*

1.00E+01 1.00E+01 9.998500E+00 1.000150E+01

The asterisk (*) designates the ranges that offset compensation is being used.

Verifying zeros using a 4-wire short
Check the zeros of various test points while the 4-wire is connected to the Model 3706A analog
backplane connector and verify that the displayed readings fall within specified limits.

Do not exceed 300 V peak between INPUT HI and INPUT LO because instrument damage may
occur.

To verify DC voltage and resistance zeros:

1. Select the DC volts function.
2. Set the Model 3706A to the 100 mV range.
3. Connect the 4-wire short to the Model 3706A analog backplane connector and allow to settle for 5

minutes (do not use relative offset).
4. Verify the 100 mV zero is within specification (see the 4-wire short applied verification data (on

page C-21) table).
5. Set the Model 3706A to the 1 V range.
6. Allow to settle for 30 seconds (do not use relative offset).
7. Verify the 1 V zero is within specification (see the 4-wire short applied verification data (on page

C-21) table).

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-21

To verify resistance using the 4-wire short:

1. With the 4-wire short still applied, select the Model 3706A 4-wire resistance function.
2. Select the SLOW integration rate with the RATE key.
3. Set the Model 3706A for the 1 Ω range, and make sure the FILTER is on. Enable OC+ (offset-

compensated ohms). Use OC+ for 1 Ω and 10 Ω range verification.
4. Verify the 1 Ω range zero is within specification (see the 4-wire short applied verification data (on

page C-21) table).
5. Set the Model 3706A for the 10 Ω range (make sure the FILTER is on and OC+ is still enabled).
6. Verify the 10 Ω range zero is within specification (see the 4-wire short applied verification data

(on page C-21) table).

Figure 151: 4-wire short diagram

4-wire short applied verification data

Use the following values to verify the performance of the Model 3706A. Actual values depend on
published specifications (see Calculating resistance reading limits (on page C-4)).

4-wire short applied

Description Range (V) Test point (V) Lower limit (V) Upper limit (V)
Verify Zeros 100 mVDC 1.00E-01 0.00E+00 -9.000000E-07 9.000000E-07
Verify Zeros 1 VDC 1.00E+00 0.00E+00 -2.000000E-06 2.000000E-06

Description Range (Ohms) Test point (Ohms) Lower limit (Ohms) Upper limit
(Ohms)

Verify Zeros 1 Ohm * 1.00E+00 0.00E+00 -8.000000E-05 8.000000E-05
Verify Zeros 10 Ohm * 1.00E+01 0.00E+00 -9.000000E-05 9.000000E-05

The asterisk (*) designates the ranges that offset compensation is being used.

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-22 3700AS-901-01 Rev. B/May 2013

This completes the verification procedure.

Calibration

Overview
Use the procedures in this section to calibrate the Keithley Instruments Model 3706A System
Switch/Multimeter.

The information in this section is intended for qualified service personnel only. Do not
attempt these procedures unless you are qualified to do so.

Some of these procedures may expose you to hazardous voltages, that if contacted, could
cause personal injury or death. Use appropriate safety precautions when working with
hazardous voltages.

For the plug-in modules, the maximum common-mode voltage (voltage between any plug-in
module terminal and chassis ground) is 300 VDC or 300 VRMS. Exceeding this value may
cause a breakdown in insulation, creating a shock hazard.

All procedures in this section require accurate equipment calibration to supply precise DC and AC
voltages, DC and AC currents, and resistance values. Calibration can be performed any time by an
operator using the remote commands sent either over the IEEE-488 bus or Ethernet. DC-only or AC-
only calibration may be performed individually, if desired.

Environmental conditions
Conduct the verification procedures in a location that has:

• An ambient temperature of 18 °C to 28 °C (65 °F to 82 °F)
• A relative humidity of less than 80%, unless otherwise noted

Warmup period

At the factory, instruments are calibrated without any switch cards installed and all slots are covered
with blank slot covers. The slot covers come installed on the instrument when it is shipped.

If it is more convenient to calibrate the instrument with switch cards installed, make sure all channels
are open and any empty slots are covered with blank slot covers.

Allow the System Switch/Multimeter to warm up for at least two hours before performing calibration.

If the instrument has been subjected to temperature extremes (those outside the ranges stated in
Environmental conditions (on page C-2)), allow extra time for the instrument’s internal temperature to
stabilize. Typically, you need to allow one extra hour to stabilize an instrument that is 10 °C (18 °F)
outside the specified temperature range.

Also, allow the test equipment to warm up for the minimum time specified by the manufacturer.

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-23

Line power
The Model 3706A requires a line voltage of 100 V to 240 V (±10%), and a line frequency of 50 Hz or
60 Hz.

The instrument automatically senses the line frequency at power-up.

Calibration considerations
When performing calibration procedures:

• Make sure that the equipment is properly warmed up and connected to the appropriate input
jacks.

• Make sure the calibrator is in OPERATE mode before you complete each calibration step.
• Always let the source signal settle before calibrating each point.
• If an error occurs during a calibration, the Model 3706A will generate an appropriate error

message. See Error summary (on page 9-10) for more information.

The input/output terminals of the digital multimeter (DMM) and switch cards are rated for
connection to circuits rated Installation Category I only, with transients rated less than
1500V peak. Do not connect the DMM or switch card terminals to CAT II, CAT III, or CAT IV
circuits.

Connections of the DMM or switch card terminals to circuits higher than CAT I can cause
damage to the equipment or expose the operator to hazardous voltages.

Calibration cycle
Perform calibration at least once a year, or every 90 days to ensure the unit meets the corresponding
specifications.

Recommended equipment
The following table lists the recommended equipment and settings you need for DC-only, and AC-
only calibration procedures. Alternate equipment may be used, such as a DC transfer standard and
characterized resistors, as long as the equipment has specifications at least as good as those listed
in the table. In general, equipment uncertainty should be at least four times better (more accurate)
than the corresponding Model 3706A specifications.

Manufacturer Model Description Used for: Uncertainty
Fluke 5700A Calibrator All DCV, ACV, DCI, ACI,

and Resistance
See NOTE.

N/A N/A 4-wire short DCV, resistance zeros N/A
Agilent 33220A Function generator For frequency factory

calibration only
See NOTE.

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-24 3700AS-901-01 Rev. B/May 2013

Refer to the manufacturer's specifications to calculate the uncertainty, which will vary for each test
point.

Calibration
Calibration must be performed by remote control using Ethernet, GPIB, or USB interfaces. No front
panel calibration is available. Refer to System connections for more information on communicating
with the instrument.

"Factory calibration" refers to additional calibration steps that are only performed once at the factory
or when a unit has been repaired by replacing PC boards or components of the boards. The
remaining calibration steps can be performed as needed.

The factory calibration steps are:

• DC Cal Step 0: A/D MUX Offset, which is performed at the beginning prior to other DC calibration
steps

• Frequency Cal step 17: 1 V @ 10 Hz and step 18: 1 V @ 1 kHz, which are performed at the end
of AC calibration

You can perform individual sections of calibration, but for the instrument to be calibrated properly, all
the steps of a section should be performed. For example, DC Cal Step 1: 4-wire short should be done
as well as Steps 2 through 5 to properly calibrate DC volts. Other sections are resistance, DC current,
AC volts, and AC current. The calibrations must be saved after you have completed all of the steps in
order for the adjustments to be permanent.

Before performing a calibration, check the system date of the Model 3706A. This can be done by
sending the following command:
print(os.date("%x"))

If the date is wrong, the date and time need to be reset using the following command:
settime(os.time{year = yyyy, month = mm, day = dd, hour =hh, min = mm, sec = ss})

Make sure to enter the correct date and time using the 24-hour clock. If the date is incorrect, it will not
save the proper date when the calibration is saved. For additional information about this command,
see localnode.settime() (see "settime()" on page 8-366).

Remote calibration procedure
To perform calibrations, use the following procedure:

1. Connect the Model 3706A to the IEEE-488 bus of the computer using a shielded IEEE-488 cable,
such as the Keithley Instruments Model 7007, over the ethernet, or directly to a computer through
the ethernet port using a cross-over cable.

2. Turn on the Model 3706A and allow it to warm up for at least two hours before performing
calibrations.

3. Make sure the primary address of the Model 3706A is the same as the address specified in the
program that you will be using to send commands (the GPIB default address is 16; the ethernet
default port number is 23).

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-25

4. Turn the TSP® prompt and errors off and unlock the calibration function by sending the following
commands:
SEND localnode.prompts=0
SEND localnode.showerrors=0
SEND dmm.reset()
SEND errorqueue.clear()
SEND dmm.calibration.unlock("KI003706")

When remotely changing the unlock code, send the dmm.calibration.unlock() (on page 8-165)
command twice, first with the present code, then with the new code.

5. Check for errors after sending each calibration command by using the following command:
 SEND print(errorqueue.count)

6. Send each calibration command with print ("done") appended to allow the program to know
when operation is complete. Some calibration steps may take up to five minutes to perform, so
the communication time-out setting should be adjusted, because otherwise time-out errors might
occur.

DC volts calibration
1. Install the 4-wire short on the analog backplane connector inputs of the Model 3706A.
2. Allow the instrument to settle for five minutes.
3. Perform the following calibration steps (DC Cal Step 0 through Step 5):

Figure 152: 4-wire short diagram

DC adjustment step 0: A/D MUX Offset (factory calibration only)

Send the commands:
SEND dmm.calibration.dc(0) print("done")
SEND print(errorqueue.count)

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-26 3700AS-901-01 Rev. B/May 2013

DC adjustment step 1: Input four-wire short circuit
1. Allow the instrument to settle for 30 seconds.
2. Send the commands:

SEND dmm.calibration.dc(1) print("done")
SEND print(errorqueue.count)

DC calibration step 2: Open circuit
1. Remove the four-wire short from the inputs.

Do not install cables to the inputs (cables will be installed in DC calibration step 3: +10 Volt (see
"DC adjustment step 3: +10 V" on page C-26)).

2. Send the commands:
SEND dmm.calibration.dc(2) print("done")
SEND print(errorqueue.count)

DC adjustment step 3: +10 V

Figure 153: DC voltage calibration

1. Connect a cable between the calibrator and the Model 3706A.
2. Allow the instrument to settle for 30 seconds.
3. Send the command:

SEND dmm.range = 10
4. Source +10 V.
5. Send the commands:

SEND dmm.calibration.dc(3,10) print("done")
SEND print(errorqueue.count)

DC adjustment step 4: -10 V
1. Source –10 V.
2. Send the commands:

SEND dmm.calibration.dc(4,-10) print("done")
SEND print(errorqueue.count)

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-27

DC adjustment 5: 100 V
1. Send the command:

SEND dmm.range = 100
2. Source 100 V.
3. Send the commands:

SEND dmm.calibration.dc(5,100) print("done")
SEND print(errorqueue.count)

Resistance calibration
Perform the following calibration steps (DC Cal Step 6 through Step 9):

Figure 154: Resistance calibration

DC adjustment step 6: 100 Ohm
1. Send the commands:

SEND dmm.func = dmm.FOUR_WIRE_OHMS
SEND dmm.range = 100

2. Source 100 Ohms.
3. Read the resistor value from the calibrator.
4. Send the command:

SEND dmm.calibration.dc(6,(resistor value)) print("done")

DC adjustment step 7: 10 kOhm
1. Send the command:

SEND dmm.range = 10e+3
2. Source 10 kOhm.
3. Read the resistor value from the calibrator.
4. Send the command:

SEND dmm.calibration.dc(7, (resistor value)) print("done")

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-28 3700AS-901-01 Rev. B/May 2013

DC adjustment step 8: 100 kOhm
1. Send the command:

SEND dmm.range = 100e+3
2. Source 100 kOhm.
3. Read the resistor value from the calibrator.
4. Send the command:

SEND dmm.calibration.dc(8, (resistor value)) print("done")

DC adjustment step 9: 1 MOhm
1. Send the command:

SEND dmm.range = 1e+6
2. Source 1 MOhm then read the resistor value from the calibrator.
3. Send the command:

SEND dmm.calibration.dc(9, (resistor value)) print("done")

DC current calibration
Make the connections as shown, then perform the following calibration steps (DC Cal Step 10
through Step 14):

Figure 155: DC current calibration

DC adjustment step 10: 100 µA
1. Send the commands:

SEND dmm.func = dmm.DC_CURRENT
SEND dmm.range = 100e-6

2. Source 100 µA.
3. Send the commands:

SEND dmm.calibration.dc(10,.0001) print("done")

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-29

DC adjustment step 11: 1 mA
1. Send the command:

SEND dmm.range = 1e-3
2. Source 1 mA.
3. Send the command:

SEND dmm.calibration.dc(11,.001) print("done")

DC adjustment step 12: 10 mA
1. Send the command:

SEND dmm.range = 10e-3
2. Source 10 mA.
3. Send the command:

SEND dmm.calibration.dc(12,.01) print("done")

DC adjustment step 13: 100 mA
1. Send the command:

SEND dmm.range = 100e-3
2. Source 100 mA.
3. Send the command:

SEND dmm.calibration.dc(13,.1) print("done")

DC adjustment step 14: 1 A
1. Send the command:

SEND dmm.range = 1
2. Source 1 A.
3. Send the command:

SEND dmm.calibration.dc(14,1) print("done")

AC volts calibration
Make the connections as shown below, then perform the following calibration steps (AC Cal Step 1
through Step 10):

Figure 156: AC voltage calibration

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-30 3700AS-901-01 Rev. B/May 2013

AC adjustment step 1: 10 mV at 1 kHz
1. Send the commands:

SEND dmm.func = dmm.AC_VOLTS
SEND dmm.range = 10e-3

2. Source 10 mV at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(1) print("done")

AC adjustment step 2: 100 mV at 1 kHz
1. Send the command:

SEND dmm.range = 100e-3
2. Source 100 mV at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(2) print("done")

AC adjustment step 3: 100 mV at 50 kHz
1. Source 100 mV at 50 kHz.
2. Send the command:

SEND dmm.calibration.ac(3) print("done")

AC adjustment step 4: 1 V at 1 kHz
1. Send the command:

SEND dmm.range = 1
2. Source 1 V at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(4) print("done")

AC adjustment step 5: 1 V at 50 kHz
1. Source 1 V at 50 kHz.
2. Send the command:

SEND dmm.calibration.ac(5) print("done")

AC adjustment step 6: 10 V at 1 kHz
1. Send the command:

SEND dmm.range = 10
2. Source 10 V at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(6) print("done")

AC adjustment step 7: 10 V at 50 kHz
1. Source 10 V at 50 kHz.
2. Send the command:

SEND dmm.calibration.ac(7) print("done")

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-31

AC adjustment step 8: 100 V at 1 kHz
1. Send the command:

SEND dmm.range = 100
2. Source 100 V at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(8) print("done")

AC adjustment step 9: 100 V at 50 kHz
1. Source 100 V at 50 kHz.
2. Send the command:

SEND dmm.calibration.ac(9) print("done")

AC adjustment step 10: 300 V at 1 kHz
1. Send the command:

SEND dmm.range = 300
2. Source 300 V at 1 kHz
3. Send the command:

SEND dmm.calibration.ac(10) print("done")

AC current calibration
Make the connections as shown, then perform the calibration steps (AC calibration step 11 through
step 16).

Figure 157: AC current calibration 1mA to 1A range

AC adjustment step 11: 100 µA at 1 kHz
1. Send the commands:

SEND dmm.func = dmm.AC_CURRENT
SEND dmm.range = 100e-6

2. Source 100 µA at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(11) print("done")

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-32 3700AS-901-01 Rev. B/May 2013

AC adjustment step 12: 1 mA at 1 kHz
1. Send the following command:

SEND dmm.range = 1e-3
2. Source 1 mA at 1 kHz.
3. Send the following command:

SEND dmm.calibration.ac(12) print("done")

AC adjustment step 13: 10 mA at 1 kHz
1. Send the command:

SEND dmm.range = 10e-3
2. Source 10 mA at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(13) print("done")

AC adjustment step 14: 100 mA at 1 kHz
1. Send the command:

SEND dmm.range = 100e-3
2. Source 100 mA at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(14) print("done")

AC adjustment step 15: 1 A at 1 kHz
1. Send the command:

SEND dmm.range = 1
2. Source 1 A at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(15) print("done")

AC adjustment step 16: 2 A at 1 kHz
1. Send the command:

SEND dmm.range = 2
2. Source 2 A at 1 kHz.
3. Send the command:

SEND dmm.calibration.ac(16) print("done")

Series 3700A System Switch/Multimeter Reference Manual Appendix C: Calibration

3700AS-901-01 Rev. B/May 2013 C-33

Frequency calibration
Make the connections as shown below, then perform the following calibration steps (AC Cal Step 17
and Step 18):

Figure 158: Low frequency calibration

AC adjustment step 17: 1 V at 10 Hz (factory calibration only)
1. Send the commands:

SEND dmm.func = dmm.AC_VOLTS
SEND dmm.range = 1

2. Source 1 V at 10 Hz.
3. Send the command:

SEND dmm.calibration.ac(17,1) print("done")

AC adjustment step 18: 1 V at 1 kHz (factory calibration only)

Figure 159: Frequency verification

1. Source 1 V at 1 kHz
2. Send the command:

SEND dmm.calibration.ac(18,1000) print("done")

Appendix C: Calibration Series 3700A System Switch/Multimeter Reference Manual

C-34 3700AS-901-01 Rev. B/May 2013

Save calibrations
Program today's date, calibration due date, and serial number, and save the calibration constants in
EEPROM (electrically erasable programmable read-only memory) by sending the following
commands:
dmm.adjustment.date=os.time()
dmm.calibration.save()
dmm.calibration.verifydate=dmm.adjustment.date
dmm.calibration.lock()
dmm.reset()

Calibrations are complete after they have been saved and locked.

In this appendix:

Overview ... D-1
Status model diagrams .. D-3
Status function summary ... D-14
Clearing registers .. D-14
Startup state .. D-15
Programming and reading registers D-15
Status byte and service request (SRQ) D-17
TSP-Link system status ... D-22

Overview
Each Keithley Instruments Series 3700A provides a number of status registers and queues that are
collectively referred to as the status model. Through manipulation and monitoring of these registers
and queues, you can view and control various instrument events. You can include commands in your
test program that can determine if a service request (SRQ) event has occurred and the cause of the
event.

The heart of the status model is the Status Byte Register. All status model registers and queues flow
into the Status Byte Register.

The entire status model is illustrated in the Status model diagrams.

Status Byte Register
The Status Byte Register receives summary bits from the other status register sets and queues, and
also from itself (which sets the Master Summary Status, or MSS, bit). For details, see Status Byte
Register (on page D-17).

Appendix D

Status model

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-2 3700AS-901-01 Rev. B/May 2013

Status register set contents
Typically, a status register set contains the following registers:

• Condition (.condition): A read-only register that is constantly updated to reflect the present
operating conditions of the instrument.

• Enable Register (.enable): A read-write register that allows a summary bit to be set when an
enabled event occurs.

• Event Register (.event): A read-only register that sets a bit to 1 when the applicable event
occurs. If the enable register bit for that event is also set, the summary bit of the register will set
to 1.

• Negative Transition Register (NTR) (.ntr): When a bit is set in this read-write register, it
enables a 1 to 0 change in the corresponding bit of the condition register to cause the
corresponding bit in the event register to be set.

• Positive Transition Register (PTR) (.ptr): When a bit is set in this read-write register, it
enables a 0 to 1 change in the corresponding bit of the condition register to cause the
corresponding bit in the event register to be set.

An event is represented by a condition register bit changing from a 1 to 0 or 0 to 1. When an event
occurs and the appropriate NTR or PTR bit is set, the corresponding event register bit is set to 1. The
event bit remains latched to 1 until the event register is read or the status model is reset. When an
event register bit is set and its corresponding enable bit is set, the summary bit of the register is set
to 1. This, in turn, sets a bit in a higher-level condition register, potentially cascading to the associated
summary bit of the Status Byte Register.

Summary bit
The summary bit of each register is either set (1) or clear (0). A set summary bit indicates that one (or
more) of the enabled events in that register has occurred.

Queues
The Model 3706A uses queues to store messages. The queues include:

• Output queue: Holds response messages.
• Error queue: Holds error and status messages.

When a queue contains data, it sets the condition bit for that queue in one of the registers. The
condition bits are:

• Command queue: CAV in the Operation Status Remote Summary Register
• Output queue: MAV in the Status Byte Register
• Error queue: EAV in the Status Byte Register

The CAV, MAV, and EAV bits in the registers are cleared when the queue is empty. Queues empty
when:

• Commands are executed
• Errors are read from the error queue
• Response messages are read from the instrument

All Model 3706A queues are first-in, first-out (FIFO).

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-3

The Status model diagrams shows how the queues are structured with the other registers.

Output queue

When the instrument is in the remote state, the output queue holds data that pertains to the normal
operation of the instrument. For example, when a print() command is sent, the response message
is placed in the output queue.

When data is placed in the output queue, the Message Available (MAV) bit in the status byte register
is set. A response message is cleared from the output queue when it is read. The output queue is
considered cleared when it is empty. An empty output queue clears the MAV bit in the status byte
register.

A message is read from the output queue by addressing the instrument to talk.

Status model diagrams
The register sets (and queues) monitor various instrument events. When an enabled event occurs in
one of the five registers, it sets the associated summary bit in the Status Byte register. When a
summary bit of the Status Byte is set and its corresponding enable bit is set (as programmed using
status.request_enable), the MSS bit will set to indicate that an SRQ has occurred. View the
master summary bit using status.condition attribute. In an expanded system (TSP-link), setting
the status.node_enable attribute allows the System registers to be shared by all nodes in the
TSP-Link system. The following figures and topics illustrate the relationships of the individual
registers and queues with the Status Byte register.

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-4 3700AS-901-01 Rev. B/May 2013

Status Byte Register overview

Figure 160: Status Byte register

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-5

Measurement summary bit (Measurement event register)
The summary bit of the measurement event register provides enabled summary information to Bit B0
(MSB) of the status byte.

Figure 161: Measurement event register

System summary bit (System register)
The summary bit of the system register provides enabled summary information to Bit B1 (SSB) of the
status byte.

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-6 3700AS-901-01 Rev. B/May 2013

Figure 162: System summary bit (System register)

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-7

As shown above, there are five register sets associated with System Event Status. These registers
summarize system status for various nodes connected to the TSP-Link. Note that all nodes on the
TSP-Link share a copy of the system summary registers once the TSP-Link has been initialized. This
feature allows all nodes to access the status models of other nodes, including SRQ.

In a TSP-Link system, the status model can be configured such that a status event in any node in the
system can set the RQS (Request for Service) bit of the Master Node Status Byte. See TSP-Link
system status (on page D-22) for details on using the status model in a TSP-Link system.

Attributes are summarized in status.system.* (on page 8-411), status.system2.* (on page 8-413),
status.system3.* (on page 8-415), status.system4.* (on page 8-417), and status.system5.* (on page
8-419).

For example, any of the following commands will set the EXT enable bit:
status.system.enable = status.system.EXT
status.system.enable = status.system.EXTENSION_BIT
status.system.enable = 1

When reading a register, a numeric value is returned. The binary equivalent of this value indicates
which bits in the register are set. For details, see Reading registers (on page D-16). For example, the
following command will read the system enable register:

print(status.system.enable)

The bits used in the system register sets are described as follows:

• Bit B0, Extension Bit (EXT): Set bit indicates that an extension bit from another system status
register is set.

• Bits B1-B14* NODEN: Indicates a bit on TSP-Link node n has been set (N = 1 to 64).
• Bits B15: Not used.

*status.system5 does not use bits B9 through B15.

Refer to the following table for available N values:

Command N value
status.system.* 1 to 14

status.system2.* 15 to 28

status.system3.* 29 to 42
status.system4.* 43 to 56
status.system5.* 57 to 64

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-8 3700AS-901-01 Rev. B/May 2013

Standard Event Register
The bits used in the Standard Event Register are described as follows:

• Bit B0, Operation Complete (OPC): Set bit indicates that all pending selected device operations
are completed and the Series 3700A instrument is ready to accept new commands. The bit is set
in response to an *OPC command. The opc() function can be used in place of the *OPC
command. See Common commands for details on the *OPC command.

• Bit B1: Not used.
• Bit B2, Query Error (QYE): Set bit indicates that you attempted to read data from an empty

output queue.
• Bit B3, Device-Dependent Error (DDE): Set bit indicates that an instrument operation did not

execute properly due to some internal condition.
• Bit B4, Execution Error (EXE): Set bit indicates that the Series 3700A instrument detected an

error while trying to execute a command.

• Bit B5, Command Error (CME): Set bit indicates that a command error has occurred. Command
errors include:
• IEEE Std 488.2 syntax error: The Series 3700A instrument received a message that does not follow the

defined syntax of IEEE Std 488.2.
• Semantic error: Series 3700A instrument received a command that was misspelled or received an

optional IEEE Std 488.2 command that is not implemented.
• The instrument received a Group Execute Trigger (GET) inside a program message.

• Bit B6, User Request (URQ): Set bit indicates that the LOCAL key on the Series 3700A
instrument front panel was pressed.

• Bit B7, Power ON (PON): Set bit indicates that the Series 3700A instrument has been turned off
and turned back on since the last time this register was read.

Commands to program and read the register are summarized below and also in the Status function
summary (on page D-14) table.

Standard event commands

Command Description
*ESR?
or
print(status.standard.event)

Read Standard Event Status Register.

*ESE <mask>
or
status.standard.enable = <mask>

Program the Event Status Enable Register:
 <mask> = 0 to 255
See Status register set contents (on page D-2).

*ESE?
or
print(status.standard.enable)

Read Event Status Enable Register.

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-9

Error available bit (Error or Event queue)
The summary bit of the Error or Event queue provides enabled summary information to Bit B2 (EAV)
of the status byte.

The Error Available Bit (EAV) is set when a message defining an error (or status) is placed in the
Error or Event queue. The Error or Event queue is one of the two System Switch/Multimeter queues
associated with the status model. The other queue sets the Message available bit (Output queue)).
Both queues are first-in, first-out (FIFO) queues. The Error queue holds error and status messages.
The status model shows how these queues are structured with regard to the other registers.

The following sequence outlines typical events associated with this queue:

1. When an error or status event occurs, a message defining the error (or status) is placed in the
Error queue.

2. The Error Available (EAV) bit in the Status Byte Register is set.
3. Through programming, the error (or status) message is read. This clears the error (or status) from

the Error Queue. The Error queue is considered cleared when it is empty.
4. An empty Error queue clears the EAV bit in the Status Byte Register.

The commands to control the Error queue are listed below. When you read a single message in the
Error queue, the oldest message is read and then removed from the queue. On power-up, the Error
queue is initially empty. If there are problems detected during power-on, entries will be placed in the
queue. If no problems are detected, the error number 0 and “No Error” will be returned.

Error queue command Description
errorqueue.clear() Clear error queue of all errors.
errorqueue.count Number of messages in the error/event

queue.
errorqueue.next() Request error message.

Messages in the Error queue include a code number, message text, severity, and TSP-Link node
number. For example, the following commands request the next complete error information from the
error queue and displays the code, message, severity and node of the next error:
errorcode, message, severity, errornode = errorqueue.next()
print(errorcode, message, severity, errornode)

The error messages, as well as error numbers, are listed in the Error summary list.

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-10 3700AS-901-01 Rev. B/May 2013

Questionable summary bit (Questionable event register)
The summary bit of the questionable event register provides enabled summary information to Bit B3
(QSB) of the status byte.

Figure 163: Questionable event register

As shown above, there is only one register set associated with the questionable status. Attributes are
summarized in status.questionable.* (on page 8-403). Keep in mind that bits can also be set by using
numeric parameter values. For details, see Programming enable and transition registers (on page D-
15).

For example, any of the following statements will set the thermal aspect enable bit of a card in slot 1:
status.questionable.enable = status.questionable.S1THR
status.questionable.enable = status.questionable.SLOT1_THERMAL
status.questionable.enable = 512

The following command will request the questionable enable register value in numeric form:
print(status.questionable.enable)

The bits used in this register set are described as follows:

• SxTHR: Set bit indicates the thermal aspect of the card in slot x is in question, where x = 1 to 6.

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-11

Message available bit (Output queue)
The summary bit of the output queue provides enabled summary information to Bit B4 (MAV) of the
status byte.

The Message Available Bit (MAV) is set when the Output queue holds data that pertains to the
normal operation of the instrument. The Output queue is one of the two System Switch/Multimeter
queues associated with the status model. The other queue sets the Error Available Bit (Error or Event
queue) (on page D-9). Both queues are first-in, first-out (FIFO) queues. The Status Byte Register
overview (on page D-4) shows how these queues are structured with regard to the other registers.

As an example, when a print command is sent, the response message is placed in the Output queue.
When data is placed in the Output queue, the Message Available (MAV) bit in the Status Byte
Register sets. A response message is cleared from the Output queue when it is read. The Output
queue is considered cleared when it is empty. An empty Output queue clears the MAV bit in the
Status Byte Register.

A message is read from the Output queue by addressing the System Switch/Multimeter to talk.

Event summary bit (ESB register)
The summary bit of the Standard event register provides enabled summary information to Bit B5
(OSB) of the status byte.

Figure 164: Event summary bit (Standard event register)

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-12 3700AS-901-01 Rev. B/May 2013

As shown above, there is only one register set associated with the event status register. Attributes
are summarized in status.standard.* (on page 8-409). Keep in mind that bits can also be set by using
numeric parameter values. For details, see Programming enable and transition registers (on page D-
15).

For example, any of the following statements will set the operation complete enable bit:
standardRegister = status.standard.OPC
status.questionable.enable = status.standard.OPERATION_COMPLETE
status.questionable.enable = 1

The bits used in this register set are described as follows:

• Bit B0, Operation Complete (OPC): Set bit indicates that all pending selected device operations
are completed and the instrument is ready to accept new commands. The bit is set in response to
an *OPC command. The remote command opc() can be used in place of the *OPC command.

• Bit B1: Not used.
• Bit B2, Query Error (QYE): Set bit indicates that you attempted to read data from an empty

Output queue.
• Bit B3, Device-Dependent Error (DDE): Set bit indicates that an instrument operation did not

execute properly due to some internal condition.
• Bit B4, Execution Error (EXE): Set bit indicates that the instrument detected an error while

trying to execute a command.
• Bit B5, Command Error (CME): Set bit indicates that a command error has occurred. Command

errors include:
• IEEE-488.2 syntax error: The instrument received a message that does not follow the defined syntax of

the IEEE-488.2 standard.
• Semantic error: instrument received a command that was misspelled or received an optional IEEE-

488.2 command that is not implemented.
• GET error: The instrument received a Group Execute Trigger (GET) inside a program message.

• Bit B6, User Request (URQ): Set bit indicates that the LOCAL key on the instrument front panel
was pressed.

• Bit B7, Power ON (PON): Set bit indicates that the instrument has been turned off and turned
back on since the last time this register has been read.

Master summary status bit (MSS bit register)
The master summary status bit provides summary information to Bit B6 (MSS) of the status byte.
Although this bit is always enabled for the status byte, it has to be enabled (using
status.node_enable) if needed in an expanded system (TSP-link).

The Master Summary Status Bit (MSS) is set when an enabled summary bit of the Status Byte
Register is set. This bit (B6) may also be interpreted as a Request Service (RQS) bit. Depending on
how it is used, Bit B6 of the Status Byte Register is either the Request for Service (RQS) bit or the
Master Summary Status (MSS) bit.

When using the GPIB serial poll sequence of the System Switch/Multimeter to obtain the status byte
(serial poll byte), B6 is the RQS bit. See Serial polling and SRQ (on page D-19) for details on using
the serial poll sequence. For common and script commands (Status Byte Register), B6 is the MSS
(Message Summary Status) bit. The serial poll, although automatically resetting the RQS bit, does not
clear MSS. The MSS remains set until all Status Byte summary bits are reset.

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-13

Operation summary bit (Operation event register)
The summary bit of the operation event register provides enabled summary information to Bit B7
(OSB) of the status byte.

Figure 165: Operation event registers

Operation user bit (Operation user register)
The summary bit of the operation user register provides the user bit (User) (Bit B12) to the operation
status register. In turn, the summary bit of the operation status register will provide the operation
summary bit (OSB) (Bit B7) to the status byte.

Figure 166: Operation user summary bit (Operation user register)

The bits used in this register set are described as follows:

• Bits B0-B14: status.operation.user.BIT0 through status.operation.user.BIT14
• Bits B15: Not used.

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-14 3700AS-901-01 Rev. B/May 2013

Status function summary
The following functions and attributes control and read the various registers. Additional information is
included in the command listings for the various register sets.

Status function summary

Type Function or attribute*

System summary status.condition (on page 8-391)
 status.node_event (on page 8-398)

 status.node_enable (on page 8-396)

 status.request_event (on page 8-407)

 status.request_enable (on page 8-405)

 status.reset() (on page 8-409)

Measurement event status.measurement.* (on page 8-393)
Operation event status.operation.* (on page 8-399)
 status.operation.user.* (on page 8-401)

Questionable event status.questionable.* (on page 8-403)
Standard event status.standard.* (on page 8-409)
System events status.system.* (on page 8-411)

 status.system2.* (on page 8-413)

 status.system3.* (on page 8-415)

 status.system4.* (on page 8-417)

 status.system5.* (on page 8-419)

* Note that the asterisk (*) at the end of a command represents one of the following: .ntr, .ptr, .enable, .event, or
.condition.

Clearing registers
Commands to reset the status registers are listed in the table below.

In addition to these commands, you can reset the enable registers and the NTR to 0. To do this, send
the individual command to program the register with a 0 as its parameter value. The PTR registers
can be reset to their defaults by programming them with all bits on. Note that the event registers are
not programmable but can be cleared by reading them.

Commands to reset registers

Command Description
To reset registers:
*CLS Reset bits of the event and NTR registers to 0 and

set all PTR register bits on. Also clears the output
queue.

status.reset() Reset bits of the event and NTR registers to 0 and
set all PTR register bits on.

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-15

Startup state
When the System Switch/Multimeter is turned on, various register status elements are set as follows:

• The power on (PON) bit in the status.operation.condition register is set.

• Other bits are set appropriately based on the instrument's power-on configuration.
• All enable registers (.enable) are set to 0.
• All negative transition registers (.ntr) are set to 0.
• All used positive transition registers (.ptr) bits are set to 1.
• The two queues are empty.

Programming and reading registers

Programming enable and transition registers
The only registers that you can program are the enable and transition registers. All other registers in
the status structure are read-only registers. The following explains how to determine the parameter
values for the various commands used to program enable registers. The actual commands are
summarized in Status function summary (on page D-14).

A command to program an event enable or transition register is sent with a parameter value that
determines the desired state (0 or 1) of each bit in the appropriate register. The bit positions of the
register (see the following figure) indicate the binary parameter value and decimal equivalent. To
program one of the registers, send the decimal value for the bits to be set. The registers are
discussed further in Enable and transition registers (on page D-21).

Figure 167: 16-bit status register

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-16 3700AS-901-01 Rev. B/May 2013

When using a numeric parameter, registers are programmed by including the appropriate <mask>
value. For example:
*ese 1169
status.standard.enable = 1169

To convert from decimal to binary, use the information shown in the above figure. For example, to set
bits B0, B4, B7, and B10, a decimal value of 1169 would be used for the mask parameter (1169 = 1 +
16 + 128 + 1024).

Reading registers
Any register in the status structure can be read either by sending the common command query
(where applicable), or by including the script command for that register in either the print() or
print(tostring()) command. The print() command outputs a numeric value; the
print(tostring()) command outputs the string equivalent. For example, any of the following
commands requests the Service Request Enable Register value:
*SRE?
print(tostring(status.request_enable))
print(status.request_enable)

The response message will be a decimal value that indicates which bits in the register are set. That
value can be converted to its binary equivalent using the information in Programming enable and
transition registers (on page D-15). For example, for a decimal value of 37 (binary value of 100101),
bits B5, B2, and B0 are set.

Register programming example
The command sequence below programs the instrument to generate a service request (SRQ) and set
the system summary bit in all TSP-Link nodes when the current limit on channel A is exceeded.
-- Clear all registers.
status.reset()

-- Enable SLOT1_THERMAL bit in questionable register.
status.questionable.enable = status.questionable.SLOT1_THERMAL

-- Set the system summary node QSB enable bit.
status.node_enable = status.QSB

-- Set the QSB bit of the service request enable register.
status.request_enable = status.QSB

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-17

Status byte and service request (SRQ)
Service requests (SRQs) allow an instrument to indicate that it needs attention or that some event
has occurred. When the controller receives an SRQ, it allows the controller to interrupt tasks to
perform other tasks in order to address the request for service.

For example, you might program your instrument to send an SRQ when:

• All instrument operations are complete
• An instrument error occurs
• A specific operation has occurred

Two 8-bit registers control service requests, the Status Byte Register and the Service Request
Enable Register. The Status Byte Register (on page D-17) topic describes the structure of these
registers.

Service requests affect GPIB, USB, and VXI-11 connections. On a GPIB connection, the SRQ line is
asserted. On a VXI-11 or USB connection, an SRQ event is generated.

Service Request Enable Register
The Service Request Enable Register controls the generation of a service request. This register is
programmed by the user and is used to enable or disable the setting of bit B6 (RQS/MSS) by the
Status Summary Message bits (B0, B1, B2, B3, B4, B5, and B7) of the Status Byte Register. As
shown in the Status Byte Register (on page D-17) topic, a logical AND operation is performed on the
summary bits (&) with the corresponding enable bits of the Service Request Enable Register. When a
logical AND operation is performed with a set summary bit (1) and with an enabled bit (1) of the
enable register, the logic “1” output is applied to the input of the logical OR gate and, therefore, sets
the MSS/RQS bit in the Status Byte Register.

The individual bits of the Service Request Enable Register can be set or cleared by using the *SRE
common command or status.request_enable. To read the Service Request Enable Register,
use the *SRE? query or print(status.request_enable). The Service Request Enable Register
clears when power is cycled or a parameter value of 0 is sent with a status request enable command
(for example, a *SRE 0 or status.request_enable = 0 is sent). The commands to program and
read the SRQ Enable Register are listed in Status byte and service request commands (on page D-
21).

Status Byte Register
The summary messages from the status registers and queues are used to set or clear the appropriate
bits (B0, B1, B2, B3, B4, B5, and B7) of the Status Byte Register. These summary bits do not latch,
and their states (0 or 1) are dependent upon the summary messages (0 or 1). For example, if the
Standard Event Register is read, its register will clear. As a result, its summary message will reset to
0, which will then reset the ESB bit in the Status Byte Register.

The Status Byte Register also receives summary bits from itself, which sets the Master Summary
Status, or MSS, bit.

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-18 3700AS-901-01 Rev. B/May 2013

Figure 168: Status byte and service request (SRQ)

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-19

The bits of the Status Byte Register are described as follows:

• Bit B0, Measurement Summary Bit (MSB): Set summary bit indicates that an enabled
measurement event has occurred.

• Bit B1, System Summary Bit (SSB): Set summary bit indicates that an enabled system event
has occurred.

• Bit B2, Error Available (EAV): Set bit indicates that an error or status message is present in the
error queue.

• Bit B3, Questionable Summary Bit (QSB): Set summary bit indicates that an enabled
questionable event has occurred.

• Bit B4, Message Available (MAV): Set bit indicates that a response message is present in the
output queue.

• Bit B5, Event Summary Bit (ESB): Set summary bit indicates that an enabled standard event
has occurred.

• Bit B6, Request Service (RQS)/Master Summary Status (MSS): Set bit indicates that an
enabled summary bit of the Status Byte Register is set. Depending on how it is used, bit B6 of the
Status Byte Register is either the Request for Service (RQS) bit or the Master Summary Status
(MSS) bit:
• When using the GPIB, USB, or VXI-11 serial poll sequence of the Series 3700A to obtain the status

byte (serial poll byte), B6 is the RQS bit. See Serial polling and SRQ (on page D-19) for details on using
the serial poll sequence.

• When using the *STB? common command or status.condition Status byte and service request
commands (on page D-21) to read the status byte, B6 is the MSS bit.

• Bit B7, Operation Summary (OSB): Set summary bit indicates that an enabled operation event
has occurred.

Serial polling and SRQ
Any enabled event summary bit that goes from 0 to 1 sets bit B6 and generates a service request
(SRQ).

In your test program, you can periodically read the Status Byte to check if an SRQ has occurred and
what caused it. If an SRQ occurs, the program can, for example, branch to an appropriate subroutine
that will service the request.

SRQs can be managed by the serial poll sequence of the instrument. If an SRQ does not occur, bit
B6 (RQS) of the Status Byte Register remains cleared, and the program proceeds normally after the
serial poll is performed. If an SRQ does occur, bit B6 of the Status Byte Register is set, and the
program can branch to a service subroutine when the SRQ is detected by the serial poll.

The serial poll automatically resets RQS of the Status Byte Register. This allows subsequent serial
polls to monitor bit B6 for an SRQ occurrence that is generated by other event types.

For common commands and TSP commands, B6 is the MSS (Message Summary Status) bit. The
serial poll does not clear the MSS bit. The MSS bit stays set until all Status Byte Register summary
bits are reset.

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-20 3700AS-901-01 Rev. B/May 2013

SPE, SPD (serial polling)
For the GPIB interface only, the SPE and SPD general bus commands are used to serial poll the
System Switch/Multimeter. Serial polling obtains the serial poll byte (status byte). Typically, serial
polling is used by the controller to determine which of several instruments has requested service with
the SRQ line.

Service requests
Service requests (SRQs) affect both the GPIB and the VXI-11 connections. On a GPIB connection,
the SRQ line is asserted. On a VXI-11 connection, an SRQ event is generated.

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-21

Status byte and service request commands
The commands to program and read the Status Byte Register and Service Request Enable Register
are listed in Status byte and service request commands (on page D-21). Note that the table includes
both common commands and their script command equivalents. For details on programming and
reading registers, see Programming enable and transition registers (on page D-15) and Reading
registers (on page D-16).

To reset the bits of the Service Request Enable Register to 0, use 0 as the parameter value for the
command (for example, *SRE 0 or status.request_enable = 0).

Status Byte and Service Request Enable Register commands

Command Description
*STB?
or
print(status.condition)

Read the Status Byte Register.

*SRE <mask>
or
status.request_enable = <mask>

Program the Service Request Enable Register where
<mask> = 0 to 255.

*SRE?
or
print(status.request_enable)

Read the Service Request Enable Register.

Enable and transition registers
In general, there are three types of user-writable registers that are used to configure which bits feed
the register summary bit and when it occurs. The registers are identified in each applicable command
(as listed in TSP commands (on page 8-10)) as follows:

• Enable register (identified as .enable in each attribute's command listing): Allows various
associated events to be included in the summary bit for the register.

• Negative-transition register (identified as .ntr in each attributes command listing): A particular
bit in the event register will be set when the corresponding bit in the NTR is set, and the
corresponding bit in the condition register transitions from 1 to 0.

• Positive-transition register (identified as .ptr in each attributes command listing): A particular
bit in the event register will be set when the corresponding bit in the PTR is set, and the
corresponding bit in the condition register transitions from 0 to 1.

Controlling node and SRQ enable registers
Attributes to control system node and service request (SRQ) enable bits and read associated
registers are summarized in the Status byte and service request enable registers (see "Status Byte
Register overview" on page D-4). For example, either of the following will set the system node QSB
enable bit:
status.node_enable = status.QSB
status.node_enable = 8

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-22 3700AS-901-01 Rev. B/May 2013

TSP-Link system status

TSP-Link® is not available on the Models 2604A/2614A/2634A.

The TSP-Link® expansion interface allows instruments to communicate with each other. The test
system can be expanded to include up to 32 TSP-enabled instruments. In a TSP-Link system, one
node (instrument) is the master and the other nodes are the subordinates. The master can control the
other nodes (subordinates) in the system. See TSP-Link system expansion interface (on page 7-45)
for details about the TSP-Link system.

The system summary registers, shown in the System summary and standard event registers (see
"System summary bit (System register)" on page D-5), are shared by all nodes in the TSP-Link
system. A status event that occurs at a subordinate node can generate an SRQ (service request) in
the master node. After detecting the service request, your program can then branch to an appropriate
subroutine that will service the request. See Status byte and service request (SRQ) (on page D-17)
for details.

Status model configuration example
The following example illustrates the status model configuration for a TSP-Link system. In this
example, a Node 15 thermal aspect event will set the RQS bit of the Status Byte of the master Node.

When the interlock event occurs on Node 15, the following sequence of events will occur:

1. On Node 15, with Bit B1 of the Questionable event register enabled, when the interlock event
occurs, Bit B1 bit sets (status.questionable.condition) which causes Bit B1 to be set in
status.questionable.event. This in turn causes the Questionable event summary bit
(QSB) to set.

2. With QSB set, and Bit B3 of the System node enabled (status.node_enable), Bit B3 of the
Status Byte register (Node 15) sets. This in turn causes the System node summary bit to set.

3. With the System node summary bit set, and Bit B1 of the System2 summary event register
enabled (which is Node 15), Bit B1 of the System2 register sets. This in turn causes the System2
event summary bit (EXT) to set.

4. With EXT set, and Bit B0 of the System summary event register enabled, Bit B0 of the System
register sets. This in turn causes the System event summary bit (SSB) to set.

5. With SSB set, and Bit B1 of the Service request enable register enabled, Bit B6 of the Status Byte
register sets. This in turn initiates a request for service (SRQ).

6. When your program performs the next serial poll of the Master Node, it will detect the interlock
event and can branch to a routine to service the request.

The System Summary Registers are shared by all nodes in the TSP-Link system. When a bit in a
system register of Node 15 sets, the same bit in the master node system register also sets.

Series 3700A System Switch/Multimeter Reference Manual Appendix D: Status model

3700AS-901-01 Rev. B/May 2013 D-23

The following commands (sent from the master node) enable the appropriate register bits for the
above example:

Node 15 status registers: The following commands enable the events for Node 15:
node[15].status.questionable.enable = status.questionable.S1INL
node[15].status.node_enable = status.QSB

The affected status registers for the above commands are indicated by labels (1) and (2) (see the
"TSP-Link status model configuration example" figure below).

System registers: The following commands enable the required system summary bits for Node 15:
status.system2.enable = status.system2.NODE15
status.system.enable = status.system.EXT

The affected system registers for the above commands are indicated by labels (3) and (4) (see the
"TSP-Link status model configuration example" figure below).

Master Node service request: The following command enables the service request for the
measurement event:
status.request_enable = status.SSB

The affected status register for the above command is indicated by labels (5) and (6) (see the "TSP-
Link status model configuration example" figure below).

Appendix D: Status model Series 3700A System Switch/Multimeter Reference Manual

D-24 3700AS-901-01 Rev. B/May 2013

TSP- Link status model configuration exampl e

Figure 169: TSP-Link status model configuration example

+
+5 output • 3-45

<
<ch_list> queries • 2-87

1
1 ohm resistance range, verify • C-19

2
2-wire

constant-current method • 5-9
resistance verification data • C-17
verifying • C-16

3
3-wire RTD connections • 4-31

4
4-wire

constant-current method • 5-9
dry-circuit open lead detection • 5-17
resistance verification data • C-16
RTD connections • 4-32
short applied verification data • C-21
short, verifying zeros • C-20
verifying • C-15

A
AC characteristics accuracy • 5-21
AC current

1 mA to 1 A ranges, verification data (AC current)
• C-14

1 mA to 3 A ranges, verifying (AC current) • C-12
3A range, verification data • C-14
and AC voltage • 4-54, 4-56
calibration • C-31

AC voltage
and AC current • 4-54, 4-56
measurements and crest factor • 5-5
verifying • C-7

AC volts calibration • C-29
access recall attributes example • 3-59
accuracy calculations • 5-21
ACI current measurements • 4-14

ACV
derating factors, additional • 5-22
factors, additional derating • 5-22
verification data • C-8

adjustcount • 8-41
adjustdate • 8-42
allslots notation • 8-4
AMPS

fuse replacement • A-3
measurement • 4-17

anonymous script • 7-6
appending readings • 3-53
arrays • 7-28
attribute • 6-2

assigning a value to • 6-2
reading • 6-2

auto
definition • 4-5

auto ranging • 4-50
over front panel • 4-50

autoexec script • 7-7
autorun scripts • 7-6
AUTOZERO • 4-3

B
background scan execution • 3-8
backplane relay notation • 2-79

analog backplane relay channel specifiers • 2-79
bandwidth • 4-53
base library functions • 7-29
basic front panel REL procedure • 4-41
basic reciprocal operation • 4-43
basic scan procedure • 3-5
beeper • 8-10
bit • 6-5
bit functions • 8-11, 8-12, 8-13, 8-14, 8-15, 8-16, 8-

17, 8-132
Break-Before-Make • 2-89
buffer • 3-6, 6-15

AC characteristics accuracy • 5-21
bufferVar.seconds • 8-34
collectchannels • 8-24
configuration (front panel) • 3-53
data store commands • 3-54
dates • 8-26
for...do loops • 3-61
formattedreadings • 8-27

Index

Index Series 3700A System Switch/Multimeter Reference Manual

2 3700AS-901-01 Rev. B/May 2013

fractionalseconds • 8-28
n (number of readings) • 8-29
overview • 3-49
programming examples • 3-56
ptpseconds • 8-30
reading attributes • 3-57
reading buffer • 3-55
read-only attributes • 3-56
recall attributes • 3-57
relativetimestamps • 8-32
remote operation • 3-54
status • 3-59
storage control attributes • 3-55
times • 8-36
units • 8-39

bus operation
scanning • 3-9

C
cable leakage • 4-21
calculated measurement open voltage • 5-15, 5-19
calculating

AC characteristics accuracy • 5-21
DC characteristics accuracy • 5-21
open voltage • 5-22
reading limits • C-4

calculations
accuracy • 5-21
math • 4-43

calibration • 8-41, 8-42, 8-44, 8-45, 8-46, 8-47, 8-48,
C-22, C-24
considerations • C-23
cycle • C-23
DC current • C-28
saving • 8-45, C-34

CD-ROM contents • 1-2
channel • 8-41, 8-42

break before make • 8-52
close/open operations and commands • 2-80, 8-

50, 8-52
commands, using • 8-4
connect rule • 2-89
designations • 2-78
display • 3-53
existing scan • 3-6
forbidden to close • 8-49, 8-94
list parameter • 2-87
make before break • 8-52
pattern attributes • 2-96
patterns • 2-96
range • 2-88, 4-50

channel commands
channel.clearforbidden() • 8-49
channel.close() • 8-50
channel.connectrule • 8-52

channel.connectsequential • 8-53
channel.createspecifier() • 8-54
channel.exclusiveclose() • 8-56
channel.exclusiveslotclose() • 8-57
channel.getclose() • 8-61
channel.getcount() • 8-63
channel.getdelay() • 8-64
channel.getforbidden() • 8-66
channel.getimage() • 8-67
channel.getlabel() • 8-68
channel.getstate() • 8-75
channel.gettype() • 8-78
channel.open() • 8-79
channel.pattern.catalog() • 8-80
channel.pattern.delete() • 8-81
channel.pattern.getimage() • 8-81
channel.pattern.setimage() • 8-82
channel.pattern.snapshot() • 8-84
channel.reset() • 8-87
channel.setdelay() • 8-93
channel.setforbidden() • 8-94
channel.setlabel() • 8-94

channel patterns • 2-96
clear • 8-131, 8-451
clearing

readings • 3-52
close

close channel operations • 2-80, 8-50, 8-56, 8-57,
8-61, 8-79

Comm attributes
comm • 8-110
comm.lan.rawsockets.enable • 8-110
comm.lan.telnet.enable • 8-112
comm.lan.vxi11.enable • 8-113
comm.lan.web.enable • 8-114

command
device control • 7-59
ICL commands • 3-9
programming notes • 8-1
queries • 6-2
reference • 8-1

conditional branching • 7-22
CONFIG CHAN key • 2-17
configuration

configuration • 4-48
configuration (front panel) • 3-53
createconfigscript() • 8-115
script • See createconfigscript()

connecting multiple instruments
TSP-Link • 7-45, 7-46, 7-47

connection
connect rule (channel) • 8-52
line power • C-2
methods • 2-89
warning • 2-32

Series 3700A System Switch/Multimeter Reference Manual Index

3700AS-901-01 Rev. B/May 2013 3

considerations
calibration • C-23
dry circuit ohms measurement • 4-59
low level • 4-57
performance • 4-2
test • C-5

constant-current source method • 5-9
contact information • 1-1
continuity testing

connections • 4-39
overview • 4-38
procedure • 4-39

count • 8-41
counts • 3-4
createconfigscript() • 8-115
current verification data

1 mA to 3 A ranges (DC current verification data)
• C-12

10 µA to 100 µA ranges (DC current verification
data) • C-10

cursor • 8-133
cycle, calibration • C-23

D
data store (buffer) commands • 3-54
dataqueue functions and attributes • 6-7
date • 8-42
date values • 3-59, 8-42
dB

characteristics accuracy • 5-22
configuration • 4-48
non-switch channels • 2-24
scanning • 4-48

DC
characteristics accuracy • 5-21
voltage verification data • C-6
volts calibration • C-25

DC current
1 mA to 3 A ranges, verification data (DC current)

• C-12
1 mA to 3 A ranges, verifying (DC current) • C-10
10 µA to 100 µA ranges, verification data (DC

current) • C-10
10 µA to 100 µA ranges, verifying (DC current) •

C-9
with DC voltage and resistance • 4-53, 4-56

DC voltage • 4-53, 4-56, C-5, C-6, C-25
DCI current measurements • 4-14
DCV

input divider • 4-57
default file extensions • 3-24
detection, open lead • 5-14
digital

filter types • 4-64
filter window • 4-66

digital I/O
port • 2-28

digital I/O port
bit weighting • 3-47
commands • 3-47
configuration • 3-43
controlling I/O lines • 3-46
pinout • 3-43
programming examples • 3-48
remote operation • 3-47, 3-48

digits ICL programming • 4-6
Discrete

discrete resistance verification data • C-20
display

adding menu entries • 3-40
character codes • 3-34
clearing • 3-33
deleting menu entries • 3-41
display • 3-53
functions and attributes • 3-32
indicators • 3-38
input prompting • 3-36
key-press codes • 3-42
local lockout • 3-39
menu • 3-36
messages • 3-32
patterns test • A-5
text messages • 3-34
triggering • 3-42

DMM
attributes, existing scan • 3-6
key • 2-16
key configuration • 2-20
measurement capabilities • 4-1

dry circuit ohms
DRY+ • 4-59
enabling • 4-60
measurement considerations • 4-59

dry circuit resistance • C-5
verification data • C-18
verifying • C-17

dry-clamp open lead detector • 5-18
dynamic buffer programming example • 3-61
dynamically-allocated buffers • 3-60

E
environmental conditions • C-2
equipment

recommended • C-23
recommended test • C-2

error messages
retrieving • 9-11

errors
and status message list • 8-4, 9-10
effects on scripts • 9-10

Index Series 3700A System Switch/Multimeter Reference Manual

4 3700AS-901-01 Rev. B/May 2013

summary • 9-10
event blenders • 3-20
examples

access recall attributes example • 3-59
digital I/O programming • 3-48
dynamic buffer programming example • 3-61
exceeding reading buffer capacity • 3-63
external reference junction • 5-14
reading limit calculation • C-3
script • 7-57
TSP-Link synchronization line • 3-49
using attributes • 6-2

exceeding reading buffer capacity example • 3-63
extended warranty • 1-1

F
factory defaults, restoring • C-4
FAQs • 10-1
file • 3-24

formats • 3-24
I/O • 3-25
system navigation • 3-25

FILTER
key configuration • 2-23

filter, digital • 4-64
characteristics • 4-64
overview • 4-64
repeating average • 4-65

firmware upgrade • A-6, A-7
foreground scan execution • 3-8
frequency

calibration • C-33
connections • 4-36
verification data • C-15
verifying • C-14

frequency measurements
and period measurements, ranges • 4-35
procedure • 4-37

front panel
gate time • 4-36
menu overview • 2-9
menu trees • 2-9
operation • 3-50
scanning • 3-8
tests • A-3

FUNC
key configuration • 2-24

functions
Lua • 7-18

fuse
line, replacement • A-1
replacement • A-2

G
GPIB

connector • 2-28
gpib attribute

gpib.address • 8-261
groups, TSP-Link

assigning • 7-52
coordinating overlapped operations • 7-53
manage nodes • 7-51

H
high-energy circuit safety precautions • 4-2
hot switching • 8-52

I
IEEE-1588

configuring • 3-22
enabling • 3-22
implementation in Series 3700A • 3-21
introduction • 3-20

indicators • 3-38
internal reference junction • 5-13
ISOUR open voltage • 5-15

K
Keithley website • 11-1
key configuration • 2-20
key-press codes • 3-42
keys • 2-5, 2-6, 2-16
keys test • A-5

L
LAN

address • B-10
connecting to • B-1, B-9
domain name system • B-11
duplex mode • B-13
event log • B-18
events • 3-19
IP address • B-10
MAC address • 8-278, B-14
method • B-10
network settings • B-14
overview • B-1
point-to-point connection • B-1
remote operation • B-1
status messages • B-13
subnet mask • B-11

libraries, standard • 7-29
LIMIT

key configuration • 2-23
line

fuse replacement • A-1

Series 3700A System Switch/Multimeter Reference Manual Index

3700AS-901-01 Rev. B/May 2013 5

line cycle synchronization • 5-2
line power • C-2
local group • 8-317
logical

logical AND operation • 8-11
logical OR operation • 8-11

loop control • 7-24
low ohm measurement • 4-58
Lua

reference • 7-15
LXI

event log • 3-23
LXI Class B triggering (IEEE-1588) • 3-20

M
MAC address • 8-278, B-14
maintenance

line fuse replacement • A-1
make-before-break • 2-89
manual range keys • 4-50
manuals • 1-2, 1-3, 11-1
master

and subordinates • 7-46
node reset • 8-317
node, TSP-Link • 7-52

math
calculations • 4-43
library functions • 7-32

matrix card notation • 2-79
measure

and switching capabilities • 1-5
capabilities • 1-5
contact resistance • 4-59
count • 4-5
resistance of voltage-sensitive devices • 4-59

measurement
accuracy • 4-54
basic resistance • 4-22
current • 4-14
maximum readings • 4-49
ranges • 4-49
temperature • 4-23
voltage • 4-17

memory
considerations • 4-7

memory functions
memory.available() • 8-302
memory.used() • 8-303

modules
cold junction • 5-13
connection warning • 2-32
hardware interlocks • 3-45
identify installed • 2-77

monitoring alarms • 3-23
moving average filter • 4-65

multiple instruments, connecting
TSP-Link • 7-45, 7-46, 7-47

MUX channel notation • 2-79
mX+b • 4-44
mX+b REL • 4-44

N
named scripts

overview • 7-4
running • 7-5, 7-6, 7-11

node
accessing • 7-49
assign number • 7-47
master overview • 7-52

nonvolatile memory
storage of scripts • 7-2

notation, channels • 8-4

O
offset-compensated ohms • 4-62
open

open channel operations • 2-80
open lead detection • 5-14
open thermocouple detection • 5-19
open voltage • 5-15, 5-16, 5-19

operation keys • 2-16
operations

mX+b • 4-44
mX+b REL • 4-44
reciprocal (1/X) • 4-47

operator precedence • 7-22
os.date() • 8-42, 8-48
os.time() • 8-42, 8-48
overlapped operations in remote groups,

coordinating • 7-53

P
p • 2-96
parallel test scripts • 7-52
password • 8-44
PATT

configuration • 2-20
percent • 4-45
performance considerations • 4-2
power

blinking • 8-133
power-on setup • 2-34, 2-35
precautions • 4-2
programming

interaction • 7-36
script model • 7-3

pseudocards • 2-99, 2-100
PTP

understanding • 5-22

Index Series 3700A System Switch/Multimeter Reference Manual

6 3700AS-901-01 Rev. B/May 2013

PTP to UTC, correlating • 3-21

Q
queries • 6-2
queues • D-2

error • D-2
event • D-2
output • D-2, D-3

R
range

and channel types • 4-49
manual keys • 4-50
selecting autorange • 4-50
selecting manual • 4-50

RATE key • 4-51
ratiometric method • 5-9
reading buffer • 3-55

capacity, exceeding • 3-63
creating • 3-50
deleting • 3-52
described • 3-55
designations • 3-55
removing stale values • 7-55
selecting • 3-51

reading limit calculation example • C-3
readings

RECall • 3-52
saving • 3-51
storing • 3-51

rear panel
connection details • 2-26
summary • 2-26

reciprocal (1/X) • 4-47
reference junctions • 5-13
registers

enable and transition • D-21
programming example • D-16
reading • D-16
serial polling and SRQ • D-19
service request enable (registers) • D-17
standard event • D-8

rel
buffer operation • 3-54
key configuration • 2-23
remote operation • 4-42

relay closure count • 2-92
remote

calibration procedure • C-24
remote buffer operation • 3-54
remote command interface

selecting • B-15
remote programming

command reference • 8-1

instrument programming • 7-1
remote commands • 6-1

repeating average filter • 4-65
requirements

verification tests • C-2
reset

digio trigger • 8-126
lan • 8-274
localnode • 8-298
reset • 8-317
scan • 8-334
status • 8-409
timer • 8-421

resistance
calibration • C-27
measurements • 4-17, 4-22, 5-9
reading limits • C-4
verifying • C-15, C-16, C-17

resistance measurements, standard • 4-23
resistance ranges (1-OHM and 10-OHM), verifying •

C-19
RTD • 4-31, 4-33
run-time environment

script, restoring • 7-41
storage of scripts • 7-2

S
SCAN

configuration • 2-20
scanning

counts • 3-4
DMM configuration • 4-51
execution, foreground and background • 3-8
math setup • 4-47
REL value • 4-43

schematics • 5-1
script editor • 7-36
scripts

autoexec • 7-7
autorun scripts • 7-6
deleting • 7-43
error effects • 9-10
examples • 3-27, 7-57
function, using • 7-20
interactive • 7-3
loading from front panel • 7-12
name attribute • 8-363
named • 7-4, 7-6
parallel test, running • 7-52
restoring in run-time environment • 7-41
running • 7-5, 7-6, 7-11, 7-52
saving • 7-13
script editor • 7-36
test scripts across the TSP-Link network • 7-54
unnamed • 7-6

Series 3700A System Switch/Multimeter Reference Manual Index

3700AS-901-01 Rev. B/May 2013 7

user • 7-3, 7-5, 7-8, 7-11
scripts, error effects • 9-10
serial number • 1-5
serial polling • D-19
setups

power-on • 2-34
user • 2-33

shielding • 4-21, 4-57
simulated reference junction • 5-13
slot[X] notation • 8-4
SRQ (service request) • D-17
standard

resistance measurements • 4-23
state • 7-55
status byte and service request (SRQ) • D-17

commands • D-21
status model • D-1

clearing registers and queues • D-14
programming registers and queues • D-14
queues • D-2
reading registers • D-16
status byte and SRQ • D-1, D-17
status register sets • D-2
TSP-Link system • D-22

status register sets • D-2
step counts • 3-4, 8-46
STORE

key configuration • 2-24
string library functions • 7-30
substring • 7-30
summary, test • C-4
switching capabilities • 1-5
synchronization

AC functions, not available • 5-2
Telnet

configuring • B-15
synchronous

triggering modes, understanding • 3-15

T
temperature

measurements • 4-23
range • 4-49

test
considerations • C-5
procedure • A-4
summary • C-4
verification requirements • C-2

Test Script Builder • 7-34
thermistors • 4-29, 4-30
thermocouple • 4-25, 4-26, 5-19
time • 8-366, 8-367

stamp • 3-53
values • 3-59, 8-42, 8-48

trigger mode

syntax rules • 8-2
Trigger model

components • 3-3
Described • 3-2

triggering
TSP-Link • 7-50

troubleshooting
FAQs • 10-1
web page • 2-36

TSB Embedded
installing software • 7-35

TSP-Link • 7-45, 7-46, 7-47
accessing nodes • 7-49
communicating between TSP-enabled

instruments • 7-59
connector • 2-27
groups • 7-51, 7-52, 7-53
initialization • 7-47
master • 7-46
node numbers • 7-47
nodes • 7-51
reset • 7-48
subordinates • 7-46
synchronization lines

connecting to • 3-48
digital I/O • 3-48
remote commands • 3-48

triggering • 7-50

U
unnamed scripts • 7-6
upgrade

firmware • A-7
procedure • A-7

upgrade functions • 8-462, 8-463
USB

connectors • 2-31
user scripts

creating • 7-3
modifying • 7-8
running • 7-5
running from front panel • 7-11
save • 7-10

user setups
recalling • 2-34
saving • 2-33

userstring functions • 7-51
add • 8-463
catalog • 8-464
delete • 8-465
get • 8-465

UTC • 8-42, 8-48, 8-366

V
values • 3-59, 8-42, 8-48

Index Series 3700A System Switch/Multimeter Reference Manual

8 3700AS-901-01 Rev. B/May 2013

variables • 7-16
verification • 8-48

limits • C-3
test procedures • C-4, C-5
test requirements • C-2

verify menu • B-1
voltage

autozero • 4-3
calculated measurement • 5-15
ISOUR open • 5-15

W
warm-up • 4-3, C-2
warranty • 1-1
web interface

Home page • 2-36

	Series 3700A System Switch/Multimeter Reference Manual
	Safety Precautions
	Table of Contents
	1 Introduction
	Welcome
	Extended warranty
	Contact information
	CD-ROM contents
	Organization of manual sections
	Capabilities and features
	Measuring capabilities

	General information
	Displaying the instrument's serial number

	2 General operation
	Turning your instrument on and off
	Procedure
	Line frequency configuration
	Fuse replacement
	Power-up sequence

	Front panel operation
	(1) The USB port
	(2) The display
	(3) The navigation wheel
	(4) The POWER key
	(5) The status lights
	(6) The setup and control keys
	Menu overview
	Menu navigation
	Selecting menu items
	Setting a value

	Menu trees
	Main menu
	Configuration menus

	Front-panel key menu options
	LOAD TEST menu options
	CHANNEL ACTION menu options
	PATTERN ACTION menu options
	SCAN ACTION menu options
	DMM ACTION menu options

	Configuration menu options
	CHAN key configuration
	PATT key configuration
	SCAN key configuration
	DMM key configuration
	LIMIT key configuration
	REL key configuration
	FILTER key configuration
	FUNC key configuration
	STORE key configuration

	Using the front panel with non-switch channels

	Rear panel summary
	Rear panel connection details
	Analog backplane AMPS fuse
	Slots
	TSP-Link connector
	Instrument fuse
	Power connector
	Digital I/O port
	GPIB connector
	Ethernet connection
	LAN status LEDs

	USB connectors
	Analog backplane connector
	Connection safety

	Saved setups
	Saving user setups
	Recalling a saved setup
	Start-up configuration
	Saving user setups from a remote interface
	Saving and recalling user setups
	Restoring the factory default setups
	Start-up (power-on) configuration

	Using the web interface
	Introduction
	Connect to the instrument web interface
	Web interface home page
	Identify the instrument
	Log in to the instrument

	Card pages
	Open and close slots from the card pages
	Configure channels from the web interface
	Set up channel patterns from the web interface
	Reset a slot from the web interface

	Scan Builder page
	Create a scan list
	Clear the scan list from the web interface
	Review the scan list
	Reset the scan list
	Run the scan
	Stop the scan
	Monitor the state of the scan
	Set up simple triggers
	Selecting triggers

	Advanced triggering
	Set the scan mode

	DMM web page
	TSB Embedded
	Create a script using TSB Embedded

	Admin page
	Change the password
	Change the instrument date and time

	Unit page
	LXI page
	IP Config
	Log page

	Remote communication interfaces
	Supported remote interfaces
	USB communications
	Communicate with the instrument
	Additional USB information
	Connecting multiple USB instruments to the computer

	GPIB setup
	GPIB standards
	Install the GPIB driver software
	Install the GPIB cards in your computer
	Set the GPIB address
	Enable GPIB
	Communicate with instruments
	Terminator
	Front-panel GPIB operation
	Error and status messages
	LOCAL key

	GPIB reference
	General bus commands
	REN
	IFC
	LLO
	GTL
	DCL
	SDC
	GET
	SPE, SPD

	Configure the GPIB controllers
	GPIB status indicators
	REM
	TALK
	LSTN
	SRQ

	LAN communications
	Overview of LAN instruments
	LAN cable connection

	Supplied software
	Instrument driver types
	VXIPnP drivers
	LabVIEW drivers
	Obtaining instrument drivers
	Instrument driver examples
	IVI shared components
	Interchangeable Virtual Instruments (IVI) style drivers
	NI CVI runtime engine
	NI IVI Compliance Package

	Keithley I/O layer
	NI-VISA Runtime
	Keithley Configuration Panel
	Keithley Communicator
	Computer requirements for the Keithley I/O Layer
	How to uninstall previous versions of the Keithley I/O Layer
	How to install the Keithley I/O Layer
	Special installation considerations
	Installation troubleshooting
	Modifying, repairing, or removing Keithley I/O Layer software

	Addressing instruments with VISA
	Addressing instruments through the LAN
	Addressing instruments using USB
	Addressing instruments through GPIB
	Sending raw commands to an instrument
	VISA-C sample code
	VISA-COM sample code

	Switch operation
	Identify installed switching cards
	Specifying a channel
	Channel types
	Matrix card channel specifiers
	Analog backplane relay channel specifiers
	Multiplexer, digital I/O, totalizer, and DAC channel specifiers

	Close and open channel operations and commands
	Selecting, closing, and opening channels
	Operating a channel from the front panel
	Open and close channels from the Channel Action Menu
	Selecting, closing, and opening a channel from the web interface
	Selecting, closing, and opening a channel using remote commands
	Channel list parameter for remote commands
	Queries that return a list of channels
	Return value
	Selecting a range of channels on the front panel

	Working with channels
	Connection methods for close operations
	Using sequential connect

	Determining the number of relay closures
	Viewing the close or open status of a channel
	Viewing status from the front panel
	Viewing status from the remote command interface
	Viewing status from the instrument web page

	Channel attributes
	Setting and querying channel attributes
	Set additional delay
	Forbid closing a channel
	Set up labels
	Pole settings

	Channel patterns
	Assigning channel pattern attributes
	Pole settings and channel patterns
	Create a channel pattern
	Performing close and open operations on channel patterns
	Channel pattern storage

	Reset a channel

	Pseudocards
	Pseudocards programming example

	Save the present configuration
	Create a configuration script
	Running the configuration script

	3 Functions and features
	Scanning and triggering
	Introduction to scanning and triggering
	Trigger model
	Trigger model components
	Trigger model events and associated commands

	Scan and step counts
	Basic scan procedure
	Buffer
	Changing attributes of an existing scan
	Front-panel scanning
	Foreground and background scan execution
	Include multiple channels in a single scan step

	Remote interface scanning
	Scan and trigger commands

	Hardware trigger modes
	Falling edge trigger mode
	Rising edge master trigger mode
	Rising edge acceptor trigger mode
	Either edge trigger mode

	Understanding synchronous triggering modes
	Synchronous master trigger mode (SynchronousM)
	Synchronous acceptor trigger mode (SynchronousA)
	Synchronous trigger mode

	Events
	Event blenders

	LXI Class B Triggering (IEEE-1588)
	Introduction to IEEE-1588 based triggering
	IEEE-1588 implementation in the Series 3700A
	Correlating PTP to Coordinated Universal Time (UTC)
	Configuring and enabling IEEE-1588
	Monitoring alarms with LAN triggers and LXI event log
	LXI event log

	Files
	File formats
	Default file extensions
	File system navigation
	File I/O
	Script examples

	Display operations
	Display functions and attributes
	Display messages
	Clearing the display
	Cursor position
	Displaying text messages
	Character codes
	Returning a text message

	Input prompting
	Menu
	Parameter value prompting
	Display trigger wait and clear

	Indicators
	Local lockout
	Load test menu
	User tests
	Adding USER TESTS menu entries
	Deleting USER TESTS menu entries

	LOAD TEST menu options

	Key-press codes
	Sending key codes
	Capturing key-press codes
	display.getlastkey()
	display.waitkey()

	Digital I/O
	Digital I/O port
	Port configuration
	Connecting cables
	Vext
	Hardware interlocks

	Digital I/O configuration
	Controlling digital I/O lines
	Digital I/O bit weighting
	Remote digital I/O commands
	Digital I/O programming example

	TSP-Link synchronization lines
	Connecting to the TSP-Link system
	Using TSP-Link synchronization lines for digital I/O
	Remote TSP-Link synchronization line commands
	Programming example

	Reading buffers
	Buffer overview
	Front-panel buffer operation
	Creating and selecting a reading buffer
	Selecting a reading buffer
	Storing readings
	Saving readings
	Clearing readings
	Deleting a reading buffer
	Recalling readings
	Timestamp
	Channel display
	Displaying other buffer readings and statistics

	Buffer configuration (front panel)
	Appending readings

	Remote buffer operation
	Data store (buffer) commands
	Reading buffers
	Reading buffer designations
	Buffer storage control attributes ****3700A***
	Buffer read-only attributes
	Buffer programming examples
	Buffer reading attributes
	Buffer recall attributes
	Example to access recall attributes

	Time and date values
	Buffer status
	Dynamically-allocated buffers
	Dynamic buffer programming example
	Buffer for . . . do loops
	Exceeding reading buffer capacity

	4 Basic DMM operation
	DMM measurement capabilities
	High-energy circuit safety precautions
	Performance considerations
	Warmup time
	Autozero
	Line cycle synchronization
	Autodelay
	Measure count
	Change the display resolution

	System considerations
	Relationship between DMM functions and attributes
	Relationship between front panel settings and remote commands
	Save DMM configurations
	Memory available for DMM configurations
	How to save a DMM configuration

	Open and close relay operation
	Example 1: Close channel and take measurement using the DMM operation method

	Voltage measurements (DC volts and AC volts)
	Settings available for voltage measurement
	Autodelay and auto range settings
	Voltage measurement connections
	Voltage measurement procedure front panel
	Voltage measurement procedure remote commands

	Current measurements (DC current and AC current)
	Settings available for current measurements
	Autodelay and auto range settings
	Current measurement connections
	Current measurement procedure from the front panel
	Current measurement procedure through remote commands

	Resistance measurements
	DMM resistance measurement methods
	Settings available for resistance measurements
	Autodelay and auto range settings
	Resistance measurement connections
	Analog backplane connector (rear panel)
	Switching module connections
	Cable leakage
	Shielding
	Commonside ohms

	Resistance measurements from the front panel
	Resistance measurements through remote interface

	Temperature measurements
	Settings available for temperature measurements
	Autodelay and auto range settings
	Thermocouples
	Thermocouple connections
	Thermocouple measurement from the front panel
	Thermocouple measurement through the remote interface

	Thermistors
	Thermistor connections
	Thermistor measurement from the front panel
	Thermistor measurement through the remote interface

	RTDs (Resistance Temperature Detector)
	3-wire RTD connections
	4-wire RTD connections
	RTD temperature measurement configuration
	RTD measurement from the front panel
	RTD measurement from the remote interface

	Frequency and period measurements
	Settings available for frequency and period measurements
	Autodelay and auto range settings
	Trigger level
	Gate time
	Frequency connections
	Frequency and period measurement procedure from front panel
	Frequency and period measurement procedure through remote interface

	Continuity testing
	Settings available for continuity testing
	Autodelay and auto range settings
	Continuity testing connections
	Continuity testing procedure

	Refining measurements
	Relative offset
	Set relative offset from the front panel
	Set relative offset through the remote interface
	Scanning

	Math calculations
	Basic math operation
	mX+b
	Set the relative offset using mX+b
	Set mX+b units from the front panel
	Set mX+b units through the remote interface

	Percent
	Set percent from the front panel
	Set percent through the remote interface

	Reciprocal (1/X)
	Scanning

	dB commands
	dB configuration
	dB scanning

	Range
	Measurement ranges and maximum readings
	Temperature
	Select a range from the front panel
	Select range through the remote interface
	Set up autoranging from the front panel
	Set up autorange through the remote interface
	Scanning

	Optimizing measurement speed
	Rate
	Setting Rate from the front panel
	Setting measurement speed from a remote interface
	Bandwidth

	DC voltage, DC current, and resistance measurement speed
	AC voltage and AC current optimize speed
	Temperature optimize measurement speed

	Optimizing measurement accuracy
	DC voltage, DC current, and resistance measurement accuracy
	AC voltage and AC current optimize accuracy
	Temperature optimize accuracy
	Voltage
	DC volts input divider
	Low level considerations
	Shielding
	Thermal EMFs
	AC voltage offset

	Resistance
	Optimizing low ohm measurement and speed
	Dry circuit ohms (DRY+)
	Measuring contact resistance (oxide film build-up)
	Measuring resistance of voltage-sensitive devices
	Dry circuit ohms measurement considerations
	Enable or disable dry circuit ohms from the front panel
	Enable or disable dry circuit ohms through the remote interface
	Performing dry circuit ohms measurements

	Offset-compensated ohms
	Enabling/disabling offset-compensated ohms
	Performing offset-compensated ohms measurements

	Filter
	Filter characteristics
	Digital filter types
	Moving average filter
	Repeating average filter

	Digital filter window

	5 Theory of operation
	DMM
	Rear panel, backplane, and DMM connect relays schematic
	Line cycle synchronization
	AC voltage measurements and crest factor
	DMM resistance measurement methods
	Constant-current source method
	Ratiometric method

	Reference junctions
	Simulated reference junction
	Internal reference junction
	External reference junction

	Open lead detection
	ISOUR open voltage
	VMEAS open voltage
	Calculated measurement open voltage
	dmm.opendetector open voltage
	4-wire dry-circuit open lead detection
	Dry-clamp open lead detector (dry-circuit)
	VMEAS open voltage (dry-circuit)
	Calculated measurement open voltage (dry-circuit)

	Open thermocouple detection
	Accuracy calculations
	Calculating DC characteristics accuracy
	Calculating AC characteristics accuracy
	Calculating dB characteristics accuracy
	Additional derating factors

	Understanding Precision Time Protocol (PTP)

	6 Introduction to TSP operation
	Introduction to TSP operation
	Controlling the instrument by sending individual command messages
	Functions
	Attributes

	Queries
	Data retrieval commands
	Information on scripting and programming

	About TSP commands
	Alarms
	Bit manipulation and logic operations
	Channel
	Data queue
	Digital I/O
	Display
	DMM
	Error queue
	Event log
	File I/O
	File system navigation
	GPIB
	Instrument identification
	LAN and LXI
	Local node
	PTP
	Reading buffer
	Reset
	Queries and response messages
	Saved setups
	Scan
	Scripting
	Status model
	Slot
	Time
	Top level instrument controls
	Triggering
	TSP-Link
	TSP-Net
	Userstrings

	7 Instrument programming
	Fundamentals of scripting for TSP
	What is a script?
	Run-time and nonvolatile memory storage of scripts
	What can be included in scripts?
	Commands that cannot be used in scripts
	Manage scripts
	Tools for managing scripts
	Create and load a script
	Anonymous scripts
	Named scripts
	Load a script by sending commands over the remote interface
	Create a script using TSB Embedded
	Create a script using the create configuration script feature

	Run scripts
	Run the anonymous script
	Run a named script

	Scripts that run automatically
	Autorun scripts
	Autoexec script

	Save the anonymous script as a named script
	Retrieve a user script
	Retrieve source code one line at a time
	Retrieve a script as a single string
	Script example: Retrieve the content of scripts

	Working with scripts in nonvolatile memory
	Save a user script
	Delete user scripts

	Run a user script from the instrument front panel
	Load a script from the instrument front panel
	Save a script from the instrument front panel
	Interactive script

	Fundamentals of programming for TSP
	Introduction
	What is Lua?
	Lua basics
	Comments
	Function and variable name restrictions
	Values and variable types
	Variable types
	Delete a global variable
	Functions
	Create functions using the function keyword
	Create functions using scripts
	Group commands using the function keyword

	Operators
	Logical operators
	String concatenation
	Operator precedence

	Conditional branching
	Loop control
	While loops
	Repeat until loops
	For loops
	Break

	Tables and arrays

	Standard libraries
	Base library functions
	Lua memory management

	String library functions
	Math library functions

	Programming example
	Programming example: Script with a for loop

	Using Test Script Builder (TSB)
	Installing the TSB software
	Project navigator
	Script editor
	Programming interaction

	Advanced scripting for TSP
	Global variables and the script.user.scripts table
	Create a script using the script.new() command
	Create an unnamed script using script.new()

	Restore a script to the run-time environment
	Rename a script
	Delete user scripts from the instrument
	Memory considerations for the run-time environment

	TSP-Link system expansion interface
	Overview
	Master and subordinates
	TSP-Link system
	TSP-Link nodes

	Connections
	Initialization
	Assigning node numbers

	Resetting the TSP-Link network
	Front panel operation
	Remote programming

	Using the expanded system
	Accessing nodes
	Using the reset() command
	Using the abort command
	Triggering with TSP-Link

	TSP advanced features
	Using groups to manage nodes on TSP-Link network
	Master node overview
	Group leader overview
	Assigning groups

	Running simultaneous test scripts
	Coordinating overlapped operations in remote groups

	Using the data queue for real-time communication
	Copying test scripts across the TSP-Link network
	Removing stale values from the reading buffer cache

	TSP-Net
	Overview
	TSP-Net capabilities
	Using TSP-Net with any Ethernet-enabled device
	Example script

	Using TSP-Net with any ethernet-enabled instrument
	Example script

	TSP-Net compared to TSP-Link to communicate with TSP-enabled devices
	TSP-Net instrument commands: General device control
	TSP-Net instrument commands: TSP-enabled device control
	Example: Using tspnet commands

	8 TSP command reference
	Command programming notes
	Placeholder text
	Syntax rules
	Logical instruments
	Using channel.*() commands
	Time and date values

	Using the TSP command reference
	Command name and standard parameters summary
	Command usage
	Command details
	Example section
	Related commands and information

	TSP commands
	beeper.beep()
	beeper.enable
	bit.bitand()
	bit.bitor()
	bit.bitxor()
	bit.clear()
	bit.get()
	bit.getfield()
	bit.set()
	bit.setfield()
	bit.test()
	bit.toggle()
	bufferVar.appendmode
	bufferVar.basetimefractional
	bufferVar.basetimeseconds
	bufferVar.cachemode
	bufferVar.capacity
	bufferVar.channels
	bufferVar.clear()
	bufferVar.clearcache()
	bufferVar.collectchannels
	bufferVar.collecttimestamps
	bufferVar.dates
	bufferVar.formattedreadings
	bufferVar.fractionalseconds
	bufferVar.n
	bufferVar.ptpseconds
	bufferVar.readings
	bufferVar.relativetimestamps
	bufferVar.seconds
	bufferVar.statuses
	bufferVar.times
	bufferVar.timestampresolution
	bufferVar.timestamps
	bufferVar.units
	channel.calibration.adjustcount()
	channel.calibration.adjustdate()
	channel.calibration.lock()
	channel.calibration.password()
	channel.calibration.save()
	channel.calibration.step()
	channel.calibration.unlock()
	channel.calibration.verifydate()
	channel.clearforbidden()
	channel.close()
	channel.connectrule
	channel.connectsequential
	channel.createspecifier()
	channel.exclusiveclose()
	channel.exclusiveslotclose()
	channel.getbackplane()
	channel.getclose()
	channel.getcount()
	channel.getdelay()
	channel.getforbidden()
	channel.getimage()
	channel.getlabel()
	channel.getmatch()
	channel.getmatchtype()
	channel.getmode()
	channel.getoutputenable()
	channel.getpole()
	channel.getpowerstate()
	channel.getstate()
	channel.getstatelatch()
	channel.gettype()
	channel.open()
	channel.pattern.catalog()
	channel.pattern.delete()
	channel.pattern.getimage()
	channel.pattern.setimage()
	channel.pattern.snapshot()
	channel.read()
	channel.reset()
	channel.resetstatelatch()
	channel.setbackplane()
	channel.setdelay()
	channel.setforbidden()
	channel.setlabel()
	channel.setmatch()
	channel.setmatchtype()
	channel.setmode()
	channel.setoutputenable()
	channel.setpole()
	channel.setpowerstate()
	channel.setstatelatch()
	channel.trigger[N].clear()
	channel.trigger[N].EVENT_ID
	channel.trigger[N].get()
	channel.trigger[N].set()
	channel.trigger[N].wait()
	channel.write()
	comm.gpib.enable
	comm.lan.enable
	comm.lan.rawsockets.enable
	comm.lan.telnet.enable
	comm.lan.vxi11.enable
	comm.lan.web.enable
	createconfigscript()
	dataqueue.add()
	dataqueue.CAPACITY
	dataqueue.clear()
	dataqueue.count
	dataqueue.next()
	delay()
	digio.readbit()
	digio.readport()
	digio.trigger[N].assert()
	digio.trigger[N].clear()
	digio.trigger[N].EVENT_ID
	digio.trigger[N].mode
	digio.trigger[N].overrun
	digio.trigger[N].pulsewidth
	digio.trigger[N].release()
	digio.trigger[N].reset()
	digio.trigger[N].stimulus
	digio.trigger[N].wait()
	digio.writebit()
	digio.writeport()
	digio.writeprotect
	display.clear()
	display.getannunciators()
	display.getcursor()
	display.getlastkey()
	display.gettext()
	display.inputvalue()
	display.loadmenu.add()
	display.loadmenu.catalog()
	display.loadmenu.delete()
	display.locallockout
	display.menu()
	display.prompt()
	display.screen
	display.sendkey()
	display.setcursor()
	display.settext()
	display.trigger.EVENT_ID
	display.waitkey()
	dmm.adjustment.count
	dmm.adjustment.date
	dmm.aperture
	dmm.appendbuffer()
	dmm.autodelay
	dmm.autorange
	dmm.autozero
	dmm.buffer.catalog()
	dmm.buffer.info()
	dmm.buffer.maxcapacity
	dmm.buffer.usedcapacity
	dmm.calibration.ac()
	dmm.calibration.dc()
	dmm.calibration.lock()
	dmm.calibration.password
	dmm.calibration.save()
	dmm.calibration.unlock()
	dmm.calibration.verifydate
	dmm.close()
	dmm.configure.catalog()
	dmm.configure.delete()
	dmm.configure.query()
	dmm.configure.recall()
	dmm.configure.set()
	dmm.connect
	dmm.dbreference
	dmm.detectorbandwidth
	dmm.displaydigits
	dmm.drycircuit
	dmm.filter.count
	dmm.filter.enable
	dmm.filter.type
	dmm.filter.window
	dmm.fourrtd
	dmm.func
	dmm.getconfig()
	dmm.inputdivider
	dmm.limit[Y].autoclear
	dmm.limit[Y].clear()
	dmm.limit[Y].enable
	dmm.limit[Y].high.fail
	dmm.limit[Y].high.value
	dmm.limit[Y].low.fail
	dmm.limit[Y].low.value
	dmm.linesync
	dmm.makebuffer()
	dmm.math.enable
	dmm.math.format
	dmm.math.mxb.bfactor
	dmm.math.mxb.mfactor
	dmm.math.mxb.units
	dmm.math.percent
	dmm.measure()
	dmm.measurecount
	dmm.measurewithtime()
	dmm.measurewithptp()
	dmm.nplc
	dmm.offsetcompensation
	dmm.open()
	dmm.opendetector
	dmm.range
	dmm.refjunction
	dmm.rel.acquire()
	dmm.rel.enable
	dmm.rel.level
	dmm.reset()
	dmm.rtdalpha
	dmm.rtdbeta
	dmm.rtddelta
	dmm.rtdzero
	dmm.savebuffer()
	dmm.setconfig()
	dmm.simreftemperature
	dmm.thermistor
	dmm.thermocouple
	dmm.threertd
	dmm.threshold
	dmm.transducer
	dmm.units
	errorqueue.clear()
	errorqueue.count
	errorqueue.next()
	eventlog.all()
	eventlog.clear()
	eventlog.count
	eventlog.enable
	eventlog.next()
	eventlog.overwritemethod
	exit()
	fileVar:close()
	fileVar:flush()
	fileVar:read()
	fileVar:seek()
	fileVar:write()
	format.asciiprecision
	format.byteorder
	format.data
	fs.chdir()
	fs.cwd()
	fs.is_dir()
	fs.is_file()
	fs.mkdir()
	fs.readdir()
	fs.rmdir()
	gettimezone()
	gpib.address
	io.close()
	io.flush()
	io.input()
	io.open()
	io.output()
	io.read()
	io.type()
	io.write()
	lan.applysettings()
	lan.config.dns.address[N]
	lan.config.dns.domain
	lan.config.dns.dynamic
	lan.config.dns.hostname
	lan.config.dns.verify
	lan.config.gateway
	lan.config.ipaddress
	lan.config.method
	lan.config.subnetmask
	lan.lxidomain
	lan.nagle
	lan.reset()
	lan.restoredefaults()
	lan.status.dns.address[N]
	lan.status.dns.name
	lan.status.duplex
	lan.status.gateway
	lan.status.ipaddress
	lan.status.macaddress
	lan.status.port.dst
	lan.status.port.rawsocket
	lan.status.port.telnet
	lan.status.port.vxi11
	lan.status.speed
	lan.status.subnetmask
	lan.trigger[N].assert()
	lan.trigger[N].clear()
	lan.trigger[N].connect()
	lan.trigger[N].connected
	lan.trigger[N].disconnect()
	lan.trigger[N].EVENT_ID
	lan.trigger[N].ipaddress
	lan.trigger[N].mode
	lan.trigger[N].overrun
	lan.trigger[N].protocol
	lan.trigger[N].pseudostate
	lan.trigger[N].stimulus
	lan.trigger[N].wait()
	localnode.define.*
	localnode.description
	localnode.emulation
	localnode.linefreq
	localnode.model
	localnode.password
	localnode.passwordmode
	localnode.prompts
	localnode.prompts4882
	localnode.reset()
	localnode.revision
	localnode.serialno
	localnode.showerrors
	makegetter()
	makesetter()
	memory.available()
	memory.used()
	node[N].execute()
	node[N].getglobal()
	node[N].setglobal()
	opc()
	print()
	printbuffer()
	printnumber()
	ptp.domain
	ptp.ds.info()
	ptp.enable
	ptp.portstate
	ptp.slavepreferred
	ptp.time()
	ptp.utcoffset
	reset()
	scan.abort()
	scan.add()
	scan.addimagestep()
	scan.addwrite()
	scan.background()
	scan.bypass
	scan.create()
	scan.execute()
	scan.list()
	scan.measurecount
	scan.mode
	scan.nobufferbackground()
	scan.nobufferexecute()
	scan.reset()
	scan.scancount
	scan.state()
	scan.stepcount
	scan.trigger.arm.clear()
	scan.trigger.arm.set()
	scan.trigger.arm.stimulus
	scan.trigger.channel.clear()
	scan.trigger.channel.set()
	scan.trigger.channel.stimulus
	scan.trigger.clear()
	scan.trigger.measure.clear()
	scan.trigger.measure.set()
	scan.trigger.measure.stimulus
	scan.trigger.sequence.clear()
	scan.trigger.sequence.set()
	scan.trigger.sequence.stimulus
	schedule.alarm[N].enable
	schedule.alarm[N].EVENT_ID
	schedule.alarm[N].fractionalseconds
	schedule.alarm[N].period
	schedule.alarm[N].ptpseconds
	schedule.alarm[N].repetition
	schedule.alarm[N].seconds
	schedule.disable()
	script.anonymous
	script.delete()
	script.load()
	script.new()
	script.newautorun()
	script.restore()
	script.run()
	script.user.catalog()
	scriptVar.autorun
	scriptVar.list()
	scriptVar.name
	scriptVar.run()
	scriptVar.save()
	scriptVar.source
	settime()
	settimezone()
	setup.cards()
	setup.poweron
	setup.recall()
	setup.save()
	slot[X].banks.matrix
	slot[X].columns.matrix
	slot[X].commonsideohms
	slot[X].digio
	slot[X].endchannel.*
	slot[X].idn
	slot[X].interlock.override
	slot[X].interlock.state
	slot[X].isolated
	slot[X].matrix
	slot[X].maxvoltage
	slot[X].multiplexer
	slot[X].poles.four
	slot[X].poles.one
	slot[X].poles.two
	slot[X].pseudocard
	slot[X].rows.matrix
	slot[X].startchannel.*
	slot[X].tempsensor
	slot[X].thermal.state
	status.condition
	status.measurement.*
	status.node_enable
	status.node_event
	status.operation.*
	status.operation.user.*
	status.questionable.*
	status.request_enable
	status.request_event
	status.reset()
	status.standard.*
	status.system.*
	status.system2.*
	status.system3.*
	status.system4.*
	status.system5.*
	timer.measure.t()
	timer.reset()
	trigger.blender[N].clear()
	trigger.blender[N].EVENT_ID
	trigger.blender[N].orenable
	trigger.blender[N].overrun
	trigger.blender[N].reset()
	trigger.blender[N].stimulus[M]
	trigger.blender[N].wait()
	trigger.clear()
	trigger.EVENT_ID
	trigger.timer[N].clear()
	trigger.timer[N].count
	trigger.timer[N].delay
	trigger.timer[N].delaylist
	trigger.timer[N].EVENT_ID
	trigger.timer[N].overrun
	trigger.timer[N].passthrough
	trigger.timer[N].reset()
	trigger.timer[N].stimulus
	trigger.timer[N].wait()
	trigger.wait()
	tsplink.group
	tsplink.master
	tsplink.node
	tsplink.readbit()
	tsplink.readport()
	tsplink.reset()
	tsplink.state
	tsplink.trigger[N].assert()
	tsplink.trigger[N].clear()
	tsplink.trigger[N].EVENT_ID
	tsplink.trigger[N].mode
	tsplink.trigger[N].overrun
	tsplink.trigger[N].pulsewidth
	tsplink.trigger[N].release()
	tsplink.trigger[N].reset()
	tsplink.trigger[N].stimulus
	tsplink.trigger[N].wait()
	tsplink.writebit()
	tsplink.writeport()
	tsplink.writeprotect
	tspnet.clear()
	tspnet.connect()
	tspnet.disconnect()
	tspnet.execute()
	tspnet.idn()
	tspnet.read()
	tspnet.readavailable()
	tspnet.reset()
	tspnet.termination()
	tspnet.timeout
	tspnet.tsp.abort()
	tspnet.tsp.abortonconnect
	tspnet.tsp.rbtablecopy()
	tspnet.tsp.runscript()
	tspnet.write()
	upgrade.previous()
	upgrade.unit()
	userstring.add()
	userstring.catalog()
	userstring.delete()
	userstring.get()
	waitcomplete()

	9 Troubleshooting guide
	Contacting support
	USB troubleshooting
	Check driver for the USB Test and Measurement Device

	Troubleshooting GPIB interfaces
	Timeout errors

	Troubleshooting LAN interfaces
	Verify connections and settings
	Use Ping to test the connection
	Open ports on firewalls
	Web page problems
	LXI LAN status indicator
	Initialize the LAN configuration
	Install LXI Discovery Browser software on your computer
	Communicate using VISA communicator
	WireShark

	Testing the display, keys, and channel matrix
	Verify front panel key operation
	Verify display operation

	Update drivers
	Error and status messages
	Introduction
	Error summary
	Effects of errors on scripts
	Retrieving errors
	Error and status message list

	10 Frequently asked questions (FAQs)
	How do I get my LAN or web connection to work?
	Why can't I close a channel?
	How do I know if an error has occurred on my instrument?
	How do I find the serial number and firmware version of the instrument?

	11 Next steps
	Additional Series 3700A information

	Appendix A Maintenance
	Introduction
	Line fuse replacement
	Fuse replacement
	AMPS analog backplane fuse replacement
	Front panel tests
	Test procedure
	Keys test
	Display patterns test

	Displaying the instrument's serial number
	Upgrading the firmware
	Upgrade procedure using the remote interface
	Firmware upgrade from a USB flash drive
	Firmware upgrade procedure using the front panel USB port

	Appendix B LAN concepts and settings
	Overview
	Establishing a point-to-point connection
	Step 1: Identify and record the existing IP configuration
	Step 2: Disable DHCP to use the computer's existing IP address
	Step 3: Configure the instrument's LAN settings
	Step 4: Install the crossover cable
	Step 5: Access the instrument's web page

	Connecting to the LAN
	Setting the LAN configuration method
	Setting the IP address
	Setting the gateway
	Setting the subnet mask
	Configuring the domain name system (DNS)

	LAN speeds
	Duplex mode
	Viewing LAN status messages
	Viewing the network settings
	Confirming the active speed and duplex negotiation
	Confirming port numbers

	Selecting a LAN interface protocol
	VXI-11 connection
	Raw socket connection
	Dead socket connection
	Telnet connection
	Configuring a Telnet connection

	Logging LAN trigger events in the event log
	Accessing the event log from the command interface

	Appendix C Calibration
	Verification
	Verification test requirements
	Environmental conditions
	Warmup period
	Line power
	Recommended test equipment
	Verification limits
	Example reading limit calculation
	Calculating resistance reading limits

	Restoring factory defaults

	Performing the verification test procedures
	Test summary
	Test considerations

	Model 3706A verification tests
	Verifying DC voltage
	DC voltage verification data

	Verifying AC voltage
	ACV verification data

	Verifying DC current 10 µA to 100 µA ranges
	DC current verification data 10 µA to 100 µA ranges

	Verifying DC current 1 mA to 3 A ranges
	DC current verification data 1 mA to 3 A ranges

	Verifying AC current 1 mA to 3 A ranges
	AC current verification data 1 mA to 1 A ranges
	AC current verification data 3A range

	Verifying frequency
	Frequency verification data

	Verifying 4-wire resistance
	4-wire resistance verification data

	Verifying 2-wire resistance
	2-wire resistance verification data

	Verifying dry circuit resistance
	Dry circuit resistance verification data

	Verifying 1-OHM and 10-OHM resistance ranges
	Discrete resistance verification data

	Verifying zeros using a 4-wire short
	4-wire short applied verification data

	Calibration
	Overview
	Environmental conditions
	Warmup period
	Line power

	Calibration considerations
	Calibration cycle
	Recommended equipment

	Calibration
	Remote calibration procedure
	DC volts calibration
	DC adjustment step 0: A/D MUX Offset (factory calibration only)
	DC adjustment step 1: Input four-wire short circuit
	DC calibration step 2: Open circuit
	DC adjustment step 3: +10 V
	DC adjustment step 4: -10 V
	DC adjustment 5: 100 V

	Resistance calibration
	DC adjustment step 6: 100 Ohm
	DC adjustment step 7: 10 kOhm
	DC adjustment step 8: 100 kOhm
	DC adjustment step 9: 1 MOhm

	DC current calibration
	DC adjustment step 10: 100 µA
	DC adjustment step 11: 1 mA
	DC adjustment step 12: 10 mA
	DC adjustment step 13: 100 mA
	DC adjustment step 14: 1 A

	AC volts calibration
	AC adjustment step 1: 10 mV at 1 kHz
	AC adjustment step 2: 100 mV at 1 kHz
	AC adjustment step 3: 100 mV at 50 kHz
	AC adjustment step 4: 1 V at 1 kHz
	AC adjustment step 5: 1 V at 50 kHz
	AC adjustment step 6: 10 V at 1 kHz
	AC adjustment step 7: 10 V at 50 kHz
	AC adjustment step 8: 100 V at 1 kHz
	AC adjustment step 9: 100 V at 50 kHz
	AC adjustment step 10: 300 V at 1 kHz

	AC current calibration
	AC adjustment step 11: 100 µA at 1 kHz
	AC adjustment step 12: 1 mA at 1 kHz
	AC adjustment step 13: 10 mA at 1 kHz
	AC adjustment step 14: 100 mA at 1 kHz
	AC adjustment step 15: 1 A at 1 kHz
	AC adjustment step 16: 2 A at 1 kHz

	Frequency calibration
	AC adjustment step 17: 1 V at 10 Hz (factory calibration only)
	AC adjustment step 18: 1 V at 1 kHz (factory calibration only)

	Save calibrations

	Appendix D Status model
	Overview
	Status Byte Register
	Status register set contents
	Summary bit
	Queues
	Output queue

	Status model diagrams
	Status Byte Register overview
	Measurement summary bit (Measurement event register)
	System summary bit (System register)
	Standard Event Register
	Error available bit (Error or Event queue)
	Questionable summary bit (Questionable event register)
	Message available bit (Output queue)
	Event summary bit (ESB register)
	Master summary status bit (MSS bit register)
	Operation summary bit (Operation event register)
	Operation user bit (Operation user register)

	Status function summary
	Clearing registers
	Startup state
	Programming and reading registers
	Programming enable and transition registers
	Reading registers
	Register programming example

	Status byte and service request (SRQ)
	Service Request Enable Register
	Status Byte Register
	Serial polling and SRQ
	SPE, SPD (serial polling)
	Service requests
	Status byte and service request commands
	Enable and transition registers
	Controlling node and SRQ enable registers

	TSP-Link system status
	Status model configuration example

	Index

