places i con

١

MODEL MICRO-MI

INSTRUCTION MANUAL MODEL 414, 414C MICRO-MICROAMMETER

WARRANTY

We warrant each of our products to be free from defects in material and workmanship. Our obligation under this warranty is to repair or replace any instrument or part thereof, except tubes, transistors, fuses, and batteries, which, within a year after shipment to the original buyer, proves defective on examination.

DAMAGE IN SHIPMENT

Be sure to include the instrument model number and serial number in all communications.

If the instrument is damaged when received, or fails to operate properly, a claim should be filed with the carrier. Upon receipt of the claim agent's report, we will inform you regarding repair or replacement.

REPAIRS

When returning an instrument for repair or recalibration, it should be securely packed against shipping damage and sent to the factory, freight prepaid. A brief letter describing the difficulty should accompany the instrument.

CONTENTS

		SECTION
INTRODUCT	TION	I
SPECIFICA	TIONS	II
	Ranges Accuracy Input Drop Grid Current Zero Drift Response Speed Zero Check Tube Complement Power Requirements Accessories Supplied Output Noise Connectors Accessories Available Cabinet	
OPERATION		III
	Operating Controls Operation	
CIRCUIT D	ESCRIPTION	IV
	Basic Theory Circuit Description	
MAINTENAN	CE	V
	Factory Adjustments Trouble Shooting Voltage Resistance Diagram Circuit Schematic Diagram Model 414 Circuit Schematic Diagram Model 414C Replaceable Parts List	

Model 414

The Keithley Model 414 Micro-microammeter is a line operated vacuum tube electrometer for measuring currents in the range of 2 micro-microamperes to 10 milliamperes. Features include a response speed of greater than 0.5 seconds on all ranges, an input drop of less than 5 millivolts at full scale, a zero drift of less than 2% per day on any range, good accuracy and calibration stability, negligible noise, and simplicity of operation. For recording, an output signal of five volts at 1 milliampere is available.

Model 414C

This model is identical to the 414 except that a meter-relay replaces the panel meter. An adjustable contact pointer is built into the meter-relay. When the indicating pointer rises to the value set with the adjustable contact, the contacts lock and actuate an internal relay. The relay's SPDT 5-ampere contacts are brought out through an AN connector at the back of the chassis.

A manual reset button is supplied on the front panel. Reset connections are also brought out through the AN connector for remote resetting of the locked-up meter-relay.

- Ranges: 17 ranges in overlapping 1 and 3 sequence, from 10 milliamperes to 0.1 milli-microamperes full scale.
- Accuracy: Within 3% of full scale on all ranges from 10 milliamperes to 10 milli-microamperes, and within 1% of full scale from 3 milli-microamperes to 0.1 millimicroamperes.
- Input Drop: Less than five millivolts for full scale on any range.
- Grid Current: Negligible.
- Zero Drift: Less than 2% in any eight hour period after a five minute warm-up if the source voltage is not less than one volt.
- Response Greater than 0.2 second for 67% of full scale on Speed: any range with up to 5000 micro-microfarads of input capacity.
- Zero Check: Zero check switch allows zeroing of the instrument without disturbing the test circuit.

Tube 1 5886, 1 6BR8, 1 6CM6, 1 OB2.

Complement:

Power 100-130 or 200 to 260 volts 50-60 cps, 33 watts. Requirements:

Accessories Mating connectors, two wire adapter for power cord. Supplied:

- Output: Five volts at up to one milliampere is developed for full scale deflection.
- Noise: Noise at output and on indicating meter is less than 1% of full scale peak to peak on any range if the source voltage is not less than one volt.
- Connectors: Input: teflon insulated UHF (Amphenol 83-798) Output: binding posts on front panel, Amphenol 80PC2F at rear.

Accessories Model 6031 end frames for bench mounting.

- Available:
- Cabinet: Dimensions 19" x $5\frac{1}{4}$ " high by 10" deep. Net weight 16 pounds.

- A. OPERATING CONTROLS
 - 1. Zero Check: This is a push-button located at the extreme left of the panel. Its function is to allow the zero of the instrument to be checked while the current source is attached. To use, depress and set the zero with ZERO CONTROL. It is a feature of the instrument that the external circuit is not disturbed during the test.
 - 2. Range Switch: The RANGE SWITCH is the dial next to and to the right of the ZERO CHECK button. The range in use is always at the top of the dial for convenient operation.
 - 3. Power, Meter Reverse Switch: The knob to the right of the RANGE SWITCH is the power and meter polarity switch. This control permits positive or negative meter readings. The output voltage at the recorder terminals is not reversed by this switch.
 - 4. Zero: This knob, next to the meter, is used in conjunction with the ZERO CHECK switch as described above to set the instrument zero.

B. OPERATION:

- 1. Precautions: If the instrument is to be used at its extreme sensitivity it is necessary to shield all input leads. The lead-in cable should be polyethylene or teflon insulated coaxial cable; and a low noise, graphitecoated, dielectric cable such as Amphenol 21-537 is recommended. At low sensitivities some of these precautions may be disregarded.
- 2. Operation: (a) Connect to a power line of proper voltage. The instrument is shipped for 117 volt 50-60 cps operation. For 230 volt operation see circuit diagram at the rear of the manual.

(b) Turn the RANGE SWITCH to 10 milliamperes.

(c) Turn on power. After 30 seconds the instrument is ready to operate.

(d) Depress ZERO CHECK button and set meter to zero. CAUTION: Do not use control to set meter to any other point than zero.

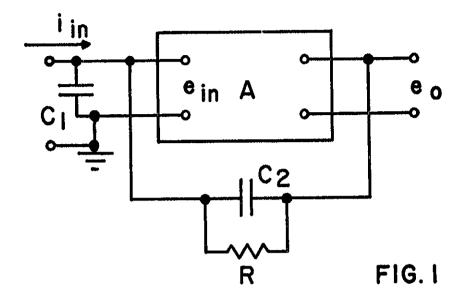
(e) Instrument is now ready to operate. Attach current source and turn RANGE SWITCH to proper range.

3. Special Instructions for Contact Meter Models:

(a) The operation of the instrument is identical to the noncontact meter models with the exception that, on turn-on, the meter pointer will strike the meter contact and lock. Therefore, after the instrument is on for about one minute press RESET button to release pointer and zero the meter. At this point proceed as in Sections 1 and 2.

(b) Special Output Connection: The output connector at the rear of the contact models is an AN connector which contains the output terminals, the control relay contacts and the resetting circuit. It is necessary that contacts A and B in the resetting circuit be shorted if the panel reset button is to be operative. If remote resetting is desired terminals A and B may be connected through a remote normally closed switch. The wiring of this connector is shown in detail in DR12849C AT THE REAR of the manual.

(c) The SPDT relay contacts are rated at 5 amperes at 110 volts AC or 2h volts DC.


4. Recording:

The Model 41h is provided with binding posts at the front of the instrument and a connector at the rear for connection to a recorder. A mating plug is provided for the rear connector. The wiring of the connector is shown in the schematics at the rear of the manual and is different for the 414 and the 414C.

The output is five volts and 1 milliampere for full scale meter deflection. The terminals may be connected directly to high impedance recording devices. A series resistor is necessary when driving a milliampere recorder or a mirror galvanometer. The exact value of resistance varies from recorder to recorder. For a one milliampere recorder, approximately 3.8 kilohms is required. The exact sensitivity may be set by means of a potentiometer in series with the output if desired.

5. Speed of Response:

The speed of response of the instrument is specified as not slower than 0.2 seconds for 67% of full scale with 5000 micro-microfarads of input capacity. Capacities greater than 5000 micro-microfarads may cause instability on some ranges. However, the above specifications allows up to 500 feet of 10 mmf per foot coaxial cable.

A. BASIC THEORY:

Figure 1 shows the basic circuit. The input current i flows into the input terminal. If we neglect C_1 and C_2 for the moment, the current i flows through R the feedback resistor. Since A is an amplifier of gain k and the feedback is negative.

$$e_{in} = e_0/k$$
 (1)

and since all the current must flow through R,

$$i = \frac{-e_0 + e_0/k}{R}$$
(2)

now if <u>k</u>, the loop gain is large, the current flowing through the input is e_0/R and may be read from a properly calibrated meter at the output. e_{in} is the input drop of the ammeter.

The input resistance R_{in} is given by e_{in}/i and is,

$$R_{in} = \frac{R}{k+l} \qquad (3)$$

Since in the Model 414, the amplifier gain k is about 1000, the input drop, e_{in} will be about 5 millivolts for a five volt output and the effective input resistance R_{in} will be about 1/1000 of the range resistor being used.

If the capacities C_1 and C_2 are considered, the time constant of the circuit is given by,

$$\Gamma = RC_1/k + RC_2$$

Thus the input time constant is reduced by a factor equal to the loop gain. Capacitor C_2 is placed across R to damp the response and prevent ringing.

B. CIRCUIT DESCRIPTION: Refer to DR127580 at the rear of the manual:

The input circuit consists of VI, a type 5886 electrometer tube, followed by a 6BH8 and a 6CM6 cathode-follower. This arrangement provides a loop gain of about 1000. A high degree of zero stability is assured by regulation of the filament supply of VI and B+ supply by V4 the OA2 voltage regulator. The negative bias supply is regulated to the necessary degree by an NE81 neon lamp. The amplifier is a simple single ended directcoupled amplifier. V1 and V2 are directly coupled and the coupling between V2 and V3 is by means of a NE81 neon lamp. R124, the zero control, operates by varying the screen potential of V1.

The current sensitivity is changed by either changing the feedback resistor (R100 through R113) or by changing the feedback voltage by means of resistors R116 and R117. From 10 milliampers to 10 millimicroamperes a feedback voltage of five volts is used and one resistor is used per range. From 3 millimicroamperes to 0.1 millimicroamperes one resistor is used per decade and the feedback voltage is either one or three volts depending on whether a 3x or 10x range is being used.

The power supply consists of a conventional rectifier-filter circuit for the positive and negative supplies.

SECTION V - MAINTENANCE

Except for occasional tube replacement very little maintenance is required for the model 414. Components are operated well below rating, and high quality components have been used throughout.

1. FACTORY ADJUSTMENTS

Only one factory adjustment is made. This is R132, the meter calibration potentiometer. This adjustment is only necessary if the panel meter is changed. To calibrate set the instrument on the 1 or 10 milliampere range and set the meter to the correct reading with a calibration current sufficient to deflect the panel meter to at least 75% of full scale.

2. TROUBLE SHOOTING

Refer to DR12758-C and the voltage-resistance diagram at therear of the manual.

Follow this general procedure in trouble shooting if the fault is not apparent from the tabulated list below:

- 1. Check the B⁺ and B⁻ potentials: The B⁺ potential can be measured between the rectifier string and R2O1 and should be about 320 volts. The ripple should not exceed 3 volts rms. The B- potential may be measured between the negative rectifier string (RF4,5) and R2O5 and should be about 240 volts. The ripple again should not exceed 3 volts RMS. If either potential is not correct the trouble is probably due to a defective rectifier or filter component although in some cases the transformer may be defective. Refer to the schematic diagram to locate the defective component.
- 2. SPECIFIC FAULTS

Instrument will not balance: If no defect has been a. found after the inspection suggested in 1., check the voltage at pin 1 or 5 of VL. This should be 150 volts. If the voltage is not 150v, check R203, 202, and 201 for continuity and check VL. If the voltage is correct, check the voltage at pin 3 of V1 (The red dot is next to lead 1) the reading should be 3.2 volts. If the voltage at this point has risen to 150 volts, the filament of Vl is open and this tube should be replaced. If this voltage checks correctly, the following procedure should be started: Short circuit the input to ground with the range switch on 1 microampere full scale. This removes the negative feedback and allows the operating points of the individual tubes to be checked. It will usually be found that the amplifier will become very sensitive and difficult to balance, however it is only necessary that the voltage swing through the correct operating value to confirm that the circuit is operating correctly. Then with the input

shorted, measure the plate potential of VI with a high impedance VTVM (100 megs or better). This voltage should be setable by means of the ZERO control to 8 volts. If it is not, either the electrometer tube is defective or the potential on the filament or screen is incorrect. We have already measured the potential on lead 3 of Vl and found it correct. Now measure the potential on lead 4. This should be 2.2 volts. If it is not check the value of R122, R123, R124, R208 and R204. Any of these could cause an incorrect voltage. The screen voltage on lead 2 is derived from R124 in the above resistor string. It should be possible to vary the screen voltage from approximately 5.4 to 10 volts. If this cannot be done, but the voltages are correct, R124 is defective or there is a short circuit to some other part of the printed board or harness. Finally remove V2 from its socket. If it is now possible to obtain the correct potential on the plate of V1, V2 is defective.

If it was possible to adjust the electrometer plate to 8 volts, V1 and its associated components are not at fault and it is necessary to proceed to V2, the 6BH8. Check the voltage at pin 2 of V2. This should be the same electrical point as lead 1 of V1 and by moving the zero control it should be possible to vary the potential at V2 precisely as on lead 1 of V1. If this is not possible, check for an open tape on the printed circuit board from V1 to V2. If everything checks to this point, measure the voltage on pin 9 of V2. The voltage should pass through 38 volts by varying the ZERO control. If this does not occur, check the other potentials on V2; if these are not correct look for a defective resistor or an open connection on the board. Finally check for a defective V2.

If no fault has shown up so far, proceed as follows: Check the potential at pin 3, V3, this should be setable with ZERO to about -8.3v. If this is not the case, check to see that GL1, the NE 81 is lit. Then remove V3 from the socket and check to see if now the correct potential can be obtained at pin 3, V3 or the lamp lights. If the potential can now be obtained with the zero control and the lamp lights, V3 may be defective or there may be a short to ground or B- from the cathode of V3. If the lamp does not now light, check R129 and if found good replace GL 1 with a new NE 81. If NE 81's are not available, most NE 2's will work in the circuit.

If the circuit did operate to this point, check V3 as suggested above. Then, if necessary, check for continuity of R130 the cathod load resistor and check to see that the potential at the bottom end of R129 is about -50 volts. Finally, check the potentials on the other electrodes of V3. If now it is possible to swing the output signal through zero volts with the ZERO control, the instrument should operate properly with the short to the input removed. If now this still is not possible either the feedback connection is open or the circuit is oscillating. To check the feedback connection, check to see that lead 2 indicated on the circuit schematic is connected from the output cathode as shown. If the circuit works properly on some ranges but not on others, check to see if R117 and R116 are defective.

Oscillation in the circuit with the input connector capped (do not confuse with stray pickup) will be caused by a wrong or changed value of ClOl or R126. Occasionally if a tube is replaced and the replacement has an unusually high gm, oscillation may occur. If this happens, try another tube or pad ClOl so as to double its value.

b. Oscillation: If oscillation occurs, see the paragraph immediately above.

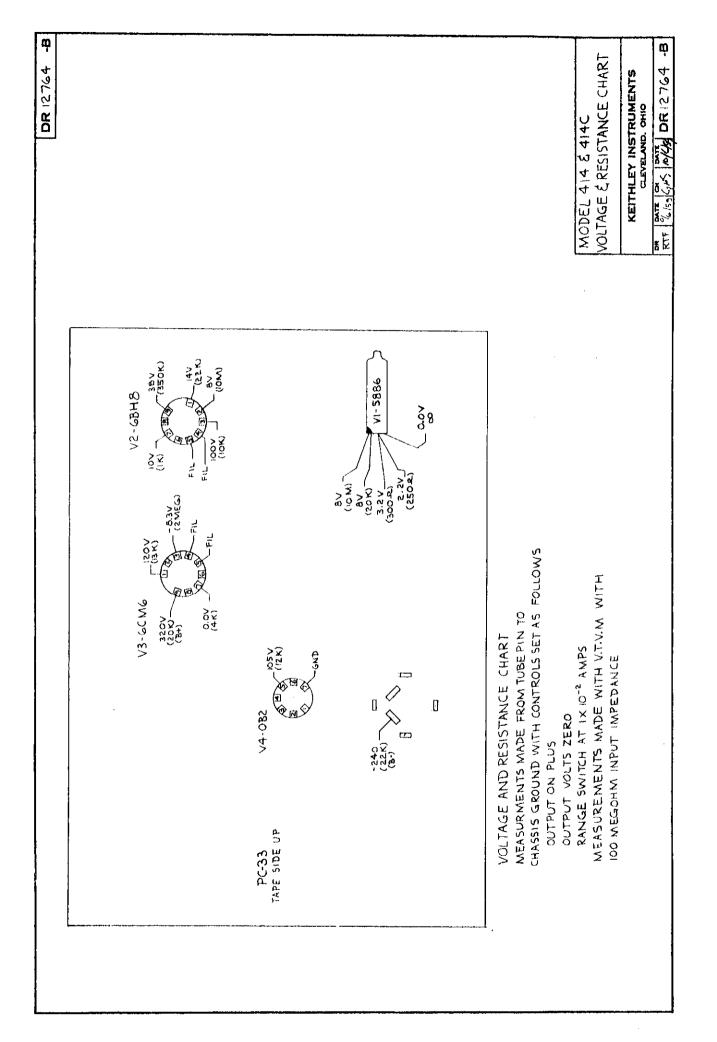
c. Inaccurate reading: For calibration procedure, see Section V 1 on FACTORY ADJUSTMENTS. If this adjustment is insufficient, be sure shielding of input is satisfactory before proceeding. The only other causes of inaccuracy are either insufficient loop gain or inaccurate feedback resistors. If the feedback resistor is at fault, the inaccuracy will be evident only on the range on which the resistor is being used. (CAUTION: when calibrating, using a resistor and a voltage source, the voltage should not be less than 0.1 volts.) The inaccuracy would then involve one of the resistors R100 to R113 or R116 and R117.

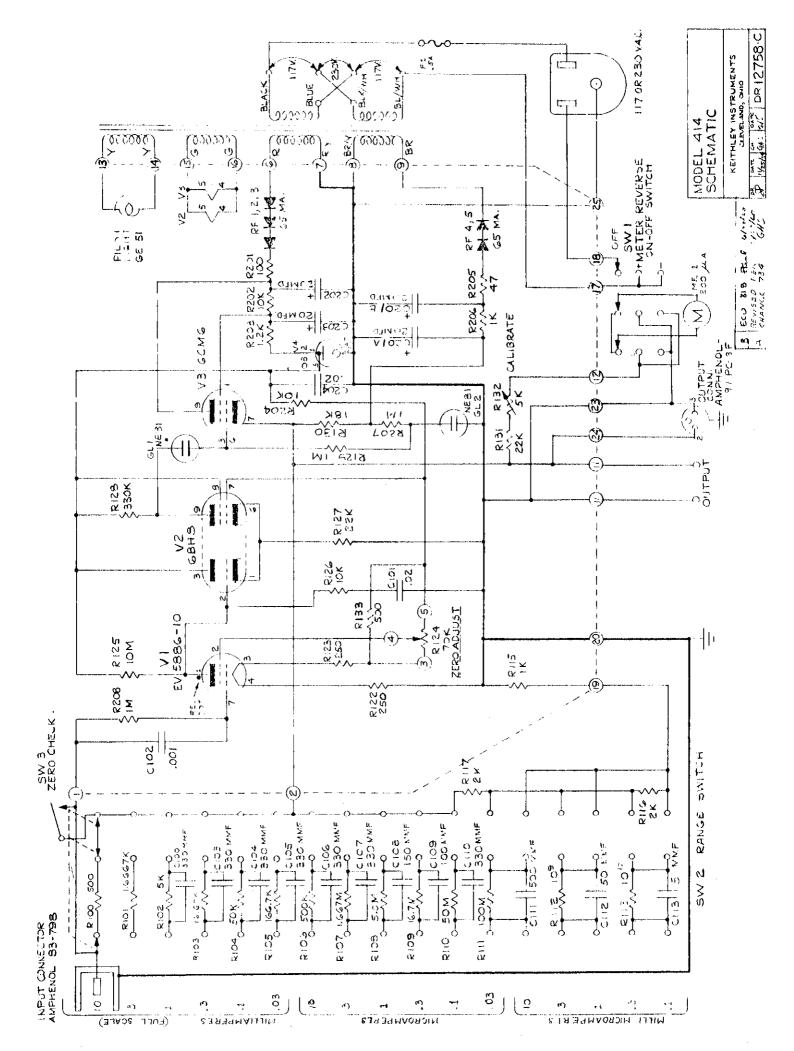
To check for low loop gain do the following: Turn the range switch to the 1 millimicroampere scale and connect a voltage source to the input whose impedance is not greater than 10K. The output will become relatively unstable, but with some care it should be possible to determine the DC voltage necessary at the input to cause a full scale meter deflection. If it requires more than about 5 millivolts to achieve full scale deflection, the loop gain is low. If no other symptons of malfunction occur, this can be remedied by replacing tubes.

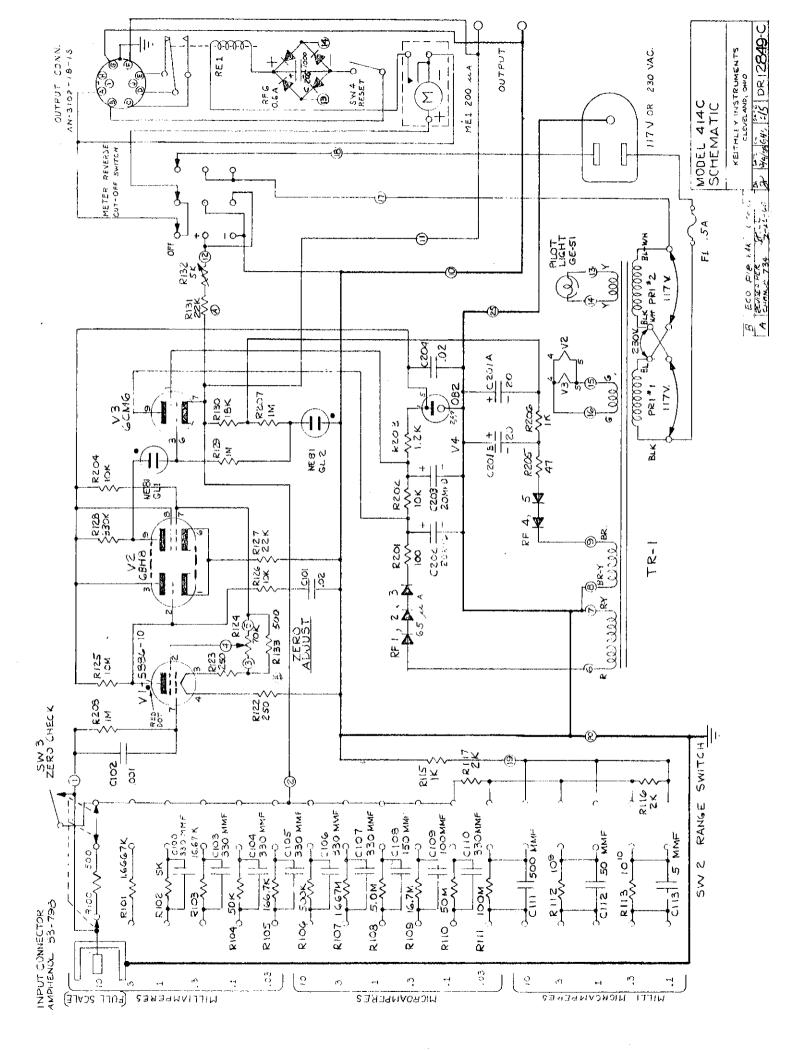
Circuit	·····································	
Desig	Description	Part No.
		T GI U 1909
C100	Canacitor, disc ceramic, 330 muf, 600 WV, 10%	C22-330
C101	Canacitor disc ceramic02 mf, 600 WV, 10%	C2202
20 יט	Capaciotr disc. ceramic, .001 mf, 600 WV, 10%	C22001
C103	Same as ClOO	
C10/4	Same as ClOO	
C105	Same as C100	
C106	Same as C100	
C107	Same as C100	
C108	Capacitor disc ceramic, 150 mmf, 600 WV, 10%	C21-150
C109	Canacitor, disc ceramic, 100 mmf, 600 WV, 10%	C22-100
chió	Same as C100	-
CILL	Capacitor, polystyrene, 500 mmf, 100 WV 25%	C31-500
0112	Capacitor. polystyrene, 50 mmf, 100 WV, 25%	C31-50
0113	Capacitor. polystyrene, 5 mmf, 100 WV, 25%	C31-5
0110		
CS01 V	Capacitor, electrolytic, 20 x 450 WV	C52-20
C201B	Capacitor electrolytic, 20 x 450 WV	c52-2
C505	Capacitor, electrolytic, 20 x 600 WV	035-20
C203	Capacitor, electrolytic, 20 x 450 WV	08-20L
C204	Capacitor, ceramic, .002 mf, 600 WV 10%	02202
R100	Resistor.dep. carbon, 500, 1%, 1w	R12-500
R101	Resistor, dep. carbon, 1.67K, 1%, 2w	R12-1.67K
R102	Resistor, dep. carbon, 5K. 1%, 3w	R12-5K
R103	Resistor dep. carbon, 16.7K, 1%, 2w	R12-16.7K
RIO4	Resistor, dec. carbon, 50K, 1%, 2W	R12-50K
R105	Resistor, dep. carbon, $167K$, 1% , $\frac{1}{2}W$	R12-167K
R106	Resistor, dep. carbon, 500K, 1% , $\frac{1}{2}\%$	R12-500K
R107	Resistor, dep. carbon, 1.67M, 1% , $\frac{1}{2}W$	R12-1.67M
R108	Resistor, dep. carbon, 1.0 M, 1% , $\frac{1}{2}\%$	R12-5.0M
R109	Resistor dep. carbon, 16.7M, 1% lw	R13-16.7M
R110	Resistor, dep. carbon. 50.0M. 1% , $2w$	R14-50.0M
	Resistor dep. carbon. 100M 1%. 2w	R14-100M
R'11		
R112	Resistor, High meg., 109 ohms 3% Resistor, High meg. 10 ¹⁰ ohms, 3%	R20-10 ⁹ R20-1010
R113	Resistor, High meg. 10° onnis, 3%	R20 LOL C
R115	Resistor dep. carbon 1K 1% ½w	R12-1K
R116	Resistor de carbon, $2K - 1\%$	R12-2K
R117	Resistor dep. carbon $2K = 1\%$, $\frac{1}{2W}$	R12-2K
	100110004 (C) (001 1011 10) 21	
R122	Resistor dep. carbon 250 ohms, 1%, ½w	R12-250
R123	Resistor dep. carbon, 250 ohms, 1%. 2w	R12-250
R124	Potentiometer W.W. 70K 4 watt	RP1-70K
R125	Resistor dep. carbon 10M $1\% \frac{1}{2}$ w	R13-10M
R126	Resistor comp. carbon, 1K, 10%, Sw	R1-1K
R127	Resistor, comp. carbon, 22K 10%, 2w	R1-22K
R128	Resistor comp. carbon, 330K 10% 2w	R1-330K
R129	Resistor, comp. carbon, $M = 10\%$, $\frac{1}{2}W$	R1-1M
R130	Resistor, wirewound, 18K, 10% 10w	R5-1.8K
R131	Resistor den carbon, 22K 1%, $\frac{1}{2}$ W	R12-22K
-	Potentioneter $W.W.$, 5K 4 watt	RP3-5K
R132	Same as R100	
8133		

REPLACEABLE PARTS LIST - MODEL 414 or 414C

REPLACEABLE PARTS LIST - MODEL 414 or 4140


•


Circuit Desig.	Description	Part No.
R201 R202 R203 R204 R205 R206 R207 R208	Resistor, comp. carbon, 100 ohm, 10%, 2w Resistor, wirewound, 10K, 10%, 10w Resistor, comp. carbon, 1.2K, 10%, 2w Resistor, wirewound, 10K, 10%, 5w Resistor, comp. carbon, 147 ohm, 10%, $\frac{1}{2}$ w Resistor, comp. carbon, 1K, 10%, 1w Resistor, comp. carbon, 1M, 10%, $\frac{1}{2}$ w Same as R207.	R3-100 R5-10K R3-1.2K R4-10K R1-47 R2-1K R1-1M
RF1 RF2 RF3 RF4 RF5	Selenium rectifier, 65 ma, 130 volt input Same as RF1. Same as RF1. Same as RF1. Same as RF1.	rf18
SW1 SW2	Meter reversing switch Range switch, ceramic insulated	SW70 SW18
TRL	Transformer Primary #1 115v, 50/60 cy Primary #2 115v, 50/60 cy Secondary #1 325v, $@$ 40 ma Secondary #2 220v, $@$ 20 mas Secondary #3 6.3v@ 2 a Secondary #3 6.3v @ .6 a	TR23
V1 V2 V3 V4	Electrometer tube, Raytheon CK5886-10 Vacuum tube, Type 6BH8 Vacuum tube, Type 6CM6 Vacuum tube, Type 0B2	EV5886-10 EV6BH8 EV6CM6 EV0B2
FUL.	Fuse 1.5 amp, Type 3AG	FU-8
MEL	Meter 0 - 200 Microamperes	ME-19
	Connectors On Chassis	
Input Connect.	Connector teflon insulated	CS-12
Output Termin.	Nylon (Two)	BP-13
Output Connect.	Microphone Type	cs-58
	Mating Plugs Furnished With Instruments	
Input Plug	Plug, teflon insulated	CS-49
Output Plug	Microphone Type	CS-33


REPLACEABLE PARTS LIST - MODEL 414C ONLY

Circuit Desig.	Description	Part No.
Output Connect.	Type AN3102A-18-15	CS-23
C2O5 REl	Capacitor, electrolytic, 1000 x 15 WV SPDT 6 Volt AC Relay	C11-1000 RL7 or RL8
MEI.	0-200 ma Model 461-26, Assembly Products	ME-20
rf6	Selenium Rectifier	RF-7
SW3	Pushbutton reset switch	SW-35
Output Plug	Type AN3102A-18-15	CS-22

t

CHANGE NOTICE

May 22, 1969

MODEL 414A PICOAMMETER

Page 19. Change to the following:

Circuit Desig.	Description					Keithley Part No.	Fig. Ref.
218 50B	MOS	MOS FET Input Plug-in Card		801	64	23734A	6
Page 20.	Change to	the following:					
Circuit Desig.	Value	Rating	Туре	Mfg. Code	Mfg. Part No.	Keithley Part No.	Fig. Ref.
R123	2 kΩ	20%, 0.2 W	CompV	71450	70	RP31-2K	1,7

•

CHANGE NOTICE

May 22, 1969MODEL 414S PICOANMETERPage 31.Change to the following:

Circuit Desig.	Description			-		Keithley Part No.	Fig. Ref.	
218 50B	MOS	S FET Input Plug-in Card		80164		23734A	7	
Page 33.	Change to	the following:			·			
Circuit Desig.	Value	Rating	Туре	Mfg. Code	Mfg. Part No.	Keithley Part No.	Fig. Ref.	
R131	$2 k\Omega$	20%, 0.2 W	CompV	71450	70	RP31-2K	2.8	

November23, 1966

MODEL 414 MICRO-MICROAMMETER

Page 5-2.	Change to the	following:			
Circuit Dosig.	Value	Rating	Type	Mfg。 Code	Keithley Part No.
C204 C307	0.1 gef 0.1 gef	400 v 400 v	My My	14655 14655	C1 14 →0 , 1M C1 14 →0 , 1M

CHANGE NOTICE

July 13, 1966

MODELS 414, 414C MICRO-MICRO AMMETER

<u>Page 6-2</u> .	Change to	the follow:	ing:						
Circuit Desig.	Value	Rating	Type	Mfg. Code	Mfg. Part No.	Keithley Part No.	Loc.		
203	20 µf	450 v	ETB	56289	TVA1709	C8-20M	PC		
<u>Page 6-3</u> .	Change to	the follow:	ing:						
Circuit Desig.	:	Description			Mfg. Code	Keithley Part No.	Loc.		
	Transf	ormer (Mfg.	No. K1-22	26)	80164	TR-57	C		
Page 6-5. Change to the following:									
Circuit Desig.	Nu	mber	Mfg. Code		Keithley Part No.	Loc.			

V 1	5886	80164	BV-5886-5 X	PC

CHANGS NOTICE

February 2	21, 1966			ICROADISTER	5		
Page 6-2.	Change to th	e folioving.					
D101	Stlicon	1N3255	02735	rf-17 A	PC		
D102	Silicon	1N3255	02735	RF-17A	RC		
Page 6-4.	Change to th	e following:					
R125	10Ma	1%, 1/2 w	DCP	79727	CFR-15	B12-10M	P C

MODEL 414-26 MICRO-MICRO AMMETER

Etar setos mernidates

MODIFICATION NOTICE

The Models 414, 414C Instruction Manual applies to the Model 414-26 with the following Modifications:

- 1. Instrument low is removed from chaosis ground for floating operation of the instrument.
- 2. Connection of voltages higher than 1200 volts d.c. between chassis ground and instrument low fires a series of Type 9001 regulator tubes triggering the overload protection circuit in the Keithley Model 240 Power Supply. This method protects other monitoring devices connected to the output of the Keithley Model 414.
- 3. An additional deck switch is added to the range switch SW-2 and 18 wires brought to a connector (Amphenol 165-25) mounted on the rear panel. This circuit is for external use to indicate range switch position.
- 4. The input connector is changed to an HN Amphenol Type 82-805.
- 5. Schematic Diegram 194458 at the end of this manual shows these modifications.

Customer - Kanco Inc. Order No. - 27897 0166

SPECIAL

CHANGE NOTICE

March 15	, 196 5				MODELS 414,	4146 MICRO-MIC	ROAMMETERS
Page 6-2	. Change to	the fol	lowing:				
C111 C112	510 pf 47 pf	500 v 500 v	Poly Poly	71590 71590	CPR-510J CPR-47J	C138~510P C138-47P	RS RS
D101 D102	Silicon Silicon		13255 13255	02735 02735	RF~ 1.7 RF~ 1.7	PC PC	
71590 is	Centralab.						

Schematic Diagrams 12758C and 12849C.

Change the values of C111 and C112 to 510P and 47P respectively.

December 14, 1964

MODELS 414, 414C MICRO-MICROAMMETERS

Page 5-5.

Change to the following:

RF1	Silicon	rectifier,	1N3255	Keithley	Part	RF-17A
rf2	Silicon	rectifier,	1 N32 55	Keithley	Part	RF-17A
RF4	Silicon	rectifier,	1N3256	Keithley	Part	RF-22

Remove RF3 and RF5.

Schematic Diagrams 12758C and 12849C.

Remove RF3 and RF5.

REPAIR	AND	CALIBR	ATION	FORM

Cur:	R- Do not write in this space. Do not write in this space. Ext. Ext. State Zip Serial No. ration Report Desired eport of Calibration Certified raceable to N.B.S. alibration Report ertificate of Compliance one ls, see reverse side of this form) problem:
dress ty del No. 2. <u>Calibn</u> Ref Th Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	Ext. <u>State Zip</u> <u>Serial No.</u> <u>ration Report Desired</u> eport of Calibration Certified raceable to N.B.S. alibration Report ertificate of Compliance one ls, see reverse side of this form) problem: Intermittant) Line voltage
dress ty del No. 2. <u>Calibn</u> Ref Th Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	State Zip Serial No. ration Report Desired eport of Calibration Certified raceable to N.B.S. alibration Report ertificate of Compliance one ls, see reverse side of this form) problem: Intermittant Line voltage
dress ty del No. 2. <u>Calibn</u> Ref Th Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	State Zip Serial No. ration Report Desired eport of Calibration Certified raceable to N.B.S. alibration Report ertificate of Compliance one ls, see reverse side of this form) problem: Intermittant
ty del No. 2. <u>Calibn</u> Re Th Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	State Zip
del No. 2. <u>Calibn</u> Re Th Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	Serial No. <u>ration Report Desired</u> eport of Calibration Certified raceable to N.B.S. alibration Report ertificate of Compliance one ls, see reverse side of this form) problem: Intermittant) Line voltage
2. <u>Calibi</u> Re Tr Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	ration Report Desired eport of Calibration Certified raceable to N.B.S. alibration Report ertificate of Compliance one ls, see reverse side of this form) problem: Intermittant) Line voltage
Cur:	eport of Calibration Certified raceable to N.B.S. alibration Report ertificate of Compliance one ls, see reverse side of this form) problem; Intermittant) Line voltage
Cur:	eport of Calibration Certified raceable to N.B.S. alibration Report ertificate of Compliance one ls, see reverse side of this form) problem; Intermittant) Line voltage
Th Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	raceable to N.B.S. alibration Report ertificate of Compliance one ls, see reverse side of this form) problem: _ Intermittant) Line voltage
Ca Ca Ca (for detail scribe the cur: cur:	alibration Report ertificate of Compliance one ls, see reverse side of this form) problem:
(for detail scribe the cur:	ertificate of Compliance one ls, see reverse side of this form) problem: Intermittant Line voltage
(for detail scribe the cur:	one ls, see reverse side of this form) problem: Intermittant Line voltage
(for detail scribe the cur:	ls, see reverse side of this form) problem: Intermittant Line voltage
ecribe the	problem: Intermittant
cur: (e)] Intermittant) Line voltage
cur: (e)] Intermittant) Line voltage
e)) Line voltage
e)) Line voltage
o <u>F</u>	line variations, etc.)
Include cha	Keithley. List any other perti- arts or other data if available.
Source Impe	edance
Readout Dev	/ice:
r i	Recorder
Ē	Oscilloscope
	Other
engths & T	ypes of Connecting Cables
	yper of connecting and ter
de on this	instrument which are not on file
	Include cha Signal Sour Source Impa Readout Dev E Lengths & J

Signature

Title

CALIBRATIONS AVAILABLE AT KEITHLEY INSTRUMENTS.

Listed and defined below are the four types of calibrations and their associated report formats which are presently available at Keithley Instruments. They fall into the following categories:

- 1. Report of Calibration Certified Traceable to the National Bureau of Standards
- 2. Calibration Report
- Certificate of Compliance 3.
- 4. Recalibration

All calibration and certification performed by Keithley Instruments is in accord with MIL-C-45662A.

Prices shown below are in addition to repair charges for any work necessary to place a customer's unit into first class condition prior to the calibration.

1. <u>Report of Calibration Cartified Traceable to the National Bureau of Standards.</u> This is a completely documented report, including all basic errors or deviations from nominal. settings on appropriate ranges, terminals, dials, etc. Work is performed using the primary standards of the company with secondary transfers kept to a minimum. The NBS test numbers for the latest recalibration of the primary standards are furnished.

By definition, the above is performed in our Standards Laboratory so that random operator induced error is minimized and maximum protection to the equipment used is maintained.

This type of calibration is not recommended for instruments with a basic inaccuracy of 1% or greater. The precision involved in this report makes it uneconomical for such instruments. The Calibration Report listed below (No. 2) would be better suited in this case.

As of 12/1/67 the Report of Calibration Certified Traceable to the National Bureau of Standards is available on the following instruments at the prices listed:

	Model	140			·	•	÷.	\$325	1.			5155 (Comp					
-	Model	260					• •	\$220				5155-10 ^B					
÷	Model	261			•			\$280	н н. ,			5155-10 ⁹					
1	Model	515		• •		•		\$520				5155-1010					
÷	Model	630	44	÷.		. .	• •	\$250		÷ 1,	Model	5155-1011			si i	ş 55	_
. '	Mode1	6607	1.4		÷.,		• •	\$200	1. J. 1	1	Model	5155-1012	, i i i i i	$\pi_{n}^{(1)} = \frac{1}{2}$		\$ 55	¢.,
	Model	662				•	•	\$250	49 - 1	1	Model	5155-10 ¹³	•		• •	\$ 75	ų -

2. Calibration Report.

This report shows only the cardinal range, terminal, dial, etc. errors as determined by production calibration equipment and personnel. The production equipment is maintained traceable by transfer techniques against the primary standards maintained by the company. We attest to this fact and list basic deviations from nominal but the conditions of calibration are not as precisely controlled as the previous report nor are NBS test numbers supplied.

This report is available for any instrument in our line. As of December 1, 1967, only the following price has been established for this report:

Model 261 . . . \$50 Prices for other units can be estimated upon request.

3. Certificate of Compliance.

This is merely a restatement of the basic guarantee that the instrument was calibrated on equipment that is maintained by our standards personnel against primary standards. No report is issued.

This Certificate of Compliance is available at no charge for any instrument with the exception of the Model 261.

A newly purchased Model 261 or one returned for repair or recalibration is automatically supplied with a Calibration Report (as described in (2) above). The nature of this instrument makes it necessary to complete this report to ascertain specified accuracy. This Calibration Report is forwarded to the customer with the instrument. The \$50 charge is incorporated as part of the normal calibration charge of the Model 261.

4. Recalibration

This is a recalibration of the instrument according to our factory calibration procedures. The prices for this as of December 1, 1967 are as follows:

(No report supplied. A Certificate of Compliance can be had at no charge if requested).

(Calibration Report as described in (2) above is supplied. Model 261 \$50 See (3) for explanation).

All other instruments are on a time and material basis for the particular unit involved.