
MSTEP-3
Triple Stepper Motor Controller Board

User Guide

User Guide

for the

MSTEP-3

Triple Stepper Motor

Controller Board

%
vision B - April 1992

Copyright Keithley Data Acquistion. 1991
Part Number: 24421

KEITHLElY DATA ACQUISITION - KEXTHLEY METRAIWIWASYST

440 MYLES STANDISH BLVD., Taunton, MA 02780

TEL. 508/880-3000, FAX 508/880-0179

. . .
- 111 -

Warranty information

All products manufactured by Keithley MetraHyte are warranted against defective

materials and worksmanship for a period of one year horn the date of delivery to

the original purchaser. Any product that is found to be defective within the

warranty period will, at the option of Keithkey MetraHyte. be repaired or replaced.

This warranty does not apply to products damaged by improper use.

Warning

Keithley MetraByte assumes no liability for damages consequent to the

use of this product. This product is not designed with components of a

level of reliability suitable for use in life support or critical applications.

Disclaimer

Information furnished by Keithley Mett-aByte is believed to be accurate and

reliable. However, the Keithley MetraByte Corporation assumes no responsibility

for the use of such information nor for any iniiingements of patents or other rights

of third parties that may result from its use. No license is granted by implication

or otherwise under any patent rights of Keithley Me&Byte Corporation.

Note:

Keithley MetraBytc’” is a trademark of Keithley Data Acquisition.

Basic”’ is a trademark of Dartmouth College.

IBM@ is a registered trademark of International Business Machines Corporation.

PC, XT, AT, PS/2, and Mho Channel ArchitecturG are trademarks of Intema-

tional Business Machines Corporation.

Microsoft@ is a registered trademark of Microsoft Corporation.

Turbo C@ is a registered trademark of Borland International.

- iv -

Contents

CHAPTER 1: INTRODUCTION

1.1
1.2
1.3
1.4
1.5

Description l-l
General Areas Of Application l-3
Utility Software l-4
Technical Support. l-4
Accessories l-4

CHAPTER 2: INSTALLATION

2.1
2.2
2.3
2.4

Backing Up The Disk2-l
Unpacking & Inspecting2-l
Switch & Jumper Settings2-l
Hardware Installation2-3

CHAPTER 3: PROGRAMMING

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

General .. .3-l
Register Locations & Functions3-2
PPMC-103A Stepper Controller Internal Registers3-4
Loading The Machine-Language Call Routine MSTEP.BIN3-5
Structure Of The Call Statement3-6
Error Codes3-8
Stepper Motor Fundamentals3-9
CALL Modes3-10

CHAPTER 4: MODE CALLS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

MODE 0: Emergency Stop4-l
MODE 1: Decelerating Stop4-2
MODE2:JogOrSingleStep.4-2
MODE 3: Step With Acceleration/Deceleration4-4
MODE 4: Step At Constant Speed4-5
MODE 5: Move To Outer Limit At Constant Speed4-7
MODE6:MoveToLimitAtHighSpeed.4-9
MODE 7: Move To Base Point At Constant Speed 4-l 0
MODE 8: Read Motor Status. 4-l 1
MODE 9: Load Divider 4-15
MODE 10: Read All Ports 4-15
MODE 11: Write All Ports 4-16
MODE 12: Write Data To One Port 4-17
MODE 13: Toggle Auxiliary Bit. 4-18
MODE 14: Enable/Disable Interrupt 4-18
MODE 15: Initialization 4-20
Interpreted BASIC (GW, Compaq, IBM, Etc. 4-26
QuickBASIC.4-27
Muttiple MSTEP-3s In One System 4-29

CHAPTER 5: USING THE ACCESSORIES

5.1 MS-Drive Description5-i
5.2 Connecting The M3-Drive5-l

-v-

Contents

5.3
5.4
5.5

Power Supply Selection 5-2
Connecting A Motor To The M3-Drive 5-2
Direct Connections To The MSTEP-3 5-3

CHAPTER 6: STEPPER MOTORS 81 TRANSLATORS

6.1
6.2
6.3
6.4
6.5
6.6

How A Stepper Motor Works 6-1
Torque Versus Speed 6-3
Resonance. 6-3
Full- & Half-Step Operation 6-4
Translators & Indexers. 6-5
Mechanical Design. 6-5

CHAPTER 7: TESTING & MAINTENANCE

CHAPTER 8: FACTORY RETURNS

APPENDICES

Appendix A: PPMC-103A Specifications & Programming

Appendix B: Sources For Stepper Motors & Assemblies

Appendix C: STEP-MOT1 Specifications

Appendix D: MSTEP-3 & M3-Drive Specifications

- vi -

CHAPTER 1

INTRODUCTION

1 .I DESCRIPTION

Keithley MetraByte’s MSTEP-3 is a plug-in, 3-axis, stepper-motor, motion-control board for the IBM
PC/XT/AT and compatibles. The Board is 12 inches long and requires a full-length expansion slot.
All connections necessary for operation with Keithley MetraByte’s accessories are made through the
rear plate using a standard 50-pin insulation-displacement (mass-termination) connector. Keithley
MetraByte offers as options a stepper-motor driver (M3-DRIVE), a compatible power supply (M3-
PWR-241, a popular type of stepper motor (STEP-MOTl), as well and a screw-terminal adapter (STA-
50) that allows the MSTEP-3 to be connected to drivers other than the M3-DRIVE. Figure l-1 is a block
diagram of the MSTEP-3.

Each independent stepper channel consists of a Sil-Walker PPMC-103C intelligent controller chip
capable of executing a variety of motion control commands. The F’PMC-103C is one of the more
popular Japanese robotics chips, providing essential features with simplicity of use. Keithley
MetraByte’s driver software further enhances the ease of stepper-motor control by personal computer.

Once a command is loaded into the PPMC-103C controller chip, the host computer is no longer
burdened by the execution of the particular motion but may monitor its status as needed. The
associated stepper motor may be moved any number of steps up to 24 bits of resolution (+16,777,216
steps) either with a controlled acceleration/deceleration profile or constant stepping rate. Associated
with each motor are 5 limit switch inputs as well as a motor-enable input. The limit switches provide
normal and emergency stop limits at both ends of travel, plus a home or reference point at any
intermediate point. A normal stop is defined as a normal deceleration to rest without loss of the step
count due to inertial effects, an emergency stop is a sudden stop that may lead to run on of the motor
and hence loss of location from the step count and would normally require recalibration by return to
the reference or home point. The emergency stop amounts to an immediate cessation of step pulses
regardless of what the motor is doing at the time. In addition to controlling the number of steps
travelled by the motor (normal motion), the PPMC-103C controller executes the following commands
described below:

Initialization

Move Normal

Controls number of phases driven (3,4 or 5), logic levels of phase
excitation, (normal, inverted), internal/external step clock select and
switching excitation on/off at standstill. In addition this command sets
the start up, acceleration/deceleration and high speed run rates. The
components of this command that relate to the motor configuration
cannot be altered by a further initialization command without resetting
the PPMC-103C controller.

Moves the motor the desired number of steps with a controlled rate
and acceleration/deceleration.

Rotates motor at constant speed for a specified number of steps.

Rotates motor to an outer limit switch.

Move Constant

Find Limit

l-l

MSTEP-3 USER GUIDE

a--
=-7 ADDRESS

---7
DECODE,

BUS BUFFER,

::

%
?

d

3

8

EXT. CLOCK INPUT

PuLARm
TO P2 SWITCHES

I I _

OUT 12.345
--.- PULL UP - L,MlT ,

cLoc% PHASE OUTPUTS
_ RESISTORS _ L,M,T 2
- BUFFERS - LIMIl 3

IN -drMOR _
PPMC- 1 WA

LIMIT t
- GATES -

STEPPER MOTOR
HOME

CONTROLLER
MOTOR ON
STEP BUS

I
DIRECTION
HOLO

A AXIS AUX BIT

TO P2

- 1

CLOCK PHASE OUTPUTS

IN
PPMC-103A

STEPPER MOTOR
CONTROLLER

LIMIT 1
UMrr 2
LIMIT ,
LIMIT 4
HOME
MOTOR ON
FTEP -_ BUS DIRECTION
HOLD

B AXIS AUX BIT

TO P2

4i M”X DMDER

OUT

CLOCK

IN
PPMC-1OJA

STEPPER MOTOR
CONTROLLER

LIMIT 1
LIMIT 2
LIMIT J
UMIT 4
HOME
MOTOR ON
STEP

c AXIS A”X BIT

a ;; OCTAL LATCH
II-H

OCTAL FLIP-FLOP

OCTbL LATCH

-_ PULL UP

-- RESISTORS

I I/O PORT B

BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0

BIT 7
BIT 6
BIT 5
BIT 4
SIT 3
BIT 2
BIT 1
EIT 0

Figure: Block diagram of the MSTEP-3.

Find High-Speed Limit

Find Base Point

Read status

Decelerating Stop

Emergency Stop

Rotates motor to a high-speed or inner-limit switch.

Rotates motor to home or reference-limit switch.

Read PPMC-103C controller status.

Stops motor normally.

Instantly stops motor by removing drive pulses (may lead to loss of true
location from step count).

Single Step Single step or “jog” command.

Each stepper channel provides two different types of outputs. One is a counter-clockwise/clockwise
(CCW/CW) signal plus a pulse-train output corresponding to the number of steps to be moved. This
is suitable for driving the MS-DRV as well as a wide variety of standard stepper-motor translators

1-2

CHAPTER 1: INTRODUCTION

available from most stepper-motor manufacturers. The other set of signals consists of 5-phase outputs
used to drive power transistors to switch the stepper motor windings directly. The number of outputs
enabled and the stepping sequence are controlled by the initialization command and can be matched
to 3-, 4-, or S-phase motors.

The M3-DRIVE sets up quickly to drive most small to medium size (i.e. 1-2 Amps /phase) stepper
motors directly. This is a bipolar-chopper type of driver which provides better efficiency and often
better torque at high speeds than R/L drives. Since this type of driver is superior for most
applications, it is the only one sold by MetraByte for the MSTEP-3. However, if you desire to interface
with an R/L driver, the necessary signals are accessible on the MSTEP-3 either through connector Jl at
the rear of the card or connector P2 on the top edge of the card.

The step rate is controlled by the clock frequency. The PPMC-103A chip has an internal clock of 25
KHz. This clock has a programmable divider that can divide it by any number in the range of 13-255
(20-255 if not in turbo mode) giving corresponding step rates from 98 to 1923 pps (pulses per second).
This range is often adequate, but you also have the option of selecting an external clock. There are two
possible sources for this external clock. One is an on-board 800 KHz crystal controlled clock, and the
other is a user supplied clock. Whichever source is selected is, in turn, passed through an 8254 clock
divider before being fed to the PPMC-103A. Software determines which external clock is being used
and the division ratio of the 8254. The division ratio must be selected so that with the chosen clock
source, the input to the PPMC-103A is less than 267 KHz. This allows step rates as high as 19,000 pps.
With the on-board 800 KHz clock, the lower limit is less than one pulse every 20 seconds (of course
with the user supplied clock, there is no lower limit on the pulse rate).

All communications with the MSTEP-3 is via I/O ports (no memory address space is used); 16
contiguous addresses are used in I/O space. The Base Address is selected on a DIP switch and can be
anywhere in the range 0 - 3F8 hex; lOO-3F8 or 200-3F8 is the usual usable range in an IBM PC/AT/XT.
More than one MSTEP-3 may be installed in a PC for multiple-axis control. The number is limited
only by available expansion slots.

The PPMC-103C stepper controller chips can also generate interrupts on completion of commands and
certain other conditions. This is supported in the MSTEP-3 hardware, interrupts may be jumper
selected to any of the IBM PC Interrupt Levels 2-7 and in conjunction with the PPMC-103C Status
Registers makes interrupt handshaking a simple procedure and allows the programmer to perform
background control.

1.2 GENERAL AREAS OF APPLICATION

Many manufacturers produce stepper motors, stepper motor assemblies such as X-Y tables, etc. A
short summary of sources appears in Appendix B. Keithley MetraByte can provide from stock a
standard 5V, lA, 200-step/revolution motor (STEP-MOTl); see Appendix C for specifications. These
devices are representative only of typical hardware that can be used with the MSTEP-3.

Generally, stepper motors are suited to applications requiring variable torque, low speeds (not
exceeding 500 rpm) and maximum position retention. They also offer the simplicity of open-loop
position control simply by counting the number of steps. If your needs dictate higher speeds, fast
acceleration and deceleration, and the ability to return to a set position regardless of load
perturbations, a closed-loop DC servo drive may be more suitable. This type of drive is generally
more complex and costly than a stepper drive but has characteristics that may be essential in certain
applications.

The MSTEP-3 may be combined with other Keithley MetraByte measurement and control boards to

1-3

MSTEP-3 USER GUIDE

implement complex “move and measure” type of instrumentation. It has obvious applications in
robotics, optics and lasers, mechanical assemblies, remote control, etc.

1.3 UTILITY SOFTWARE
It is possible to program the MSTEP-3 directly using normal I/O port commands (INP and OUT etc.).
This is explained in Section 3 and Appendix A, but for the programmer who wants fast results, our
accompanying utility software (MSTEP.BIN) will simplify the use of the MSTEP-3 and save a lot of
programming time. The utility software is provided on a single-sided PC-DOS 1.10 format 5-l/4”
floppy disk (upward compatible with DOS 2.0 and higher revisions):

1. A Microsoft Basic callable driver (MSTEP.BIN) is provided for control of the basic stepper and
encoder functions. The fully commented assembly source for this driver (MSTEPASM) is also
provided. The object module, MSTEP.OBJ, is also on the disk for linking when using compiled
BASICS (for example, IBM BASIC Compiler, Microsoft QuickBASIC, etc.).

2. Examples and demonstration programs. A comprehensive demonstration program (DEMO.BAS,
DEMO.EXE) is provided. This is excellent both as a programming example and a way of getting
the “feel” of the PPMC motion commands and driver software features. It will also be useful in
your system setup and test. For further details see Chapters 3 and 7.

3. Instructions for ASSEMBLY LANGUAGE, C, Pascal and Fortran programmers are included in
Appendix E.

1.4 TECHNICAL SUPPORT
If you have a problem or need information or advice, please call us at 508/880-3000 and ask for
Applications Engineering . We will do our best to assist you. If for any reason you are dissatisfied with
any Keithley MetraByte product or find it is unsuited to your requirements, you are welcome to return
it within the first 30 days of purchase for a full refund. Please call us first for an RMA (Return
Material Authorization) number before sending back any hardware. The MSTEP-3 and accessories are
warranted against defects in manufacture and material for one year from the date of original
purchase.

1.5 ACCESSORIES

Several optional accessories to facilitate the use of the MSTEP-3 are available from Keithley MetraByte.
These include:

M3-DRIVE This is a driver which, with the addition of a power supply like the M3-PWR-24, allows
the MSTEP-3 to control a stepper motor requiring from 1 to 2 Amps per phase. Screw
terminals allow easy connections to M3-PWR-24, the motor, and limit or home switches,
as well as one of the two general purpose I/O pork of the MSTEP-3. Up to three M3-
DRIVE’s can be connected to each MSTEP-3. They are connected in “daisy chain” (the
MSTEP-3 is connected to the axis A M3-DRIVE, the Axis A unit is connected to the Axis B
unit, and the Axis B unit to the Axis C).

M3-PWR-24 This is a power supply capable of supplying the power needed by one M3-DRIVE.

1-4

CHAPTER 1: INTRODUCTION

CDAS-2000 This is the cable to connect the Axis A M3-DRIVE to the MSTEP-3, or the Axis B M3-
DRIVE to the Axis A output, or the Axis C M3-DRIVE to the Axis B output.

STA50 This is a screw terminal adapter which would be used by customers not using M3-
DRIVE’s to drive their motors.

STEP-MOT1 This is a stepper motor compatible with the MSTEP-3 and the M3-DRIVE.

A complete 3 axis system can be built with one MSTEP-3, three STEP-MOTls, three M3-DRIVES, three
M3-PWR-24s, and three CDAS2000s. n

1-5

MSTEP3 USER GUIDE

cl

1-6

CHAPTER 2

INSTALLATION

2.1 BACKING UP THE DISK
The back-up software supplied with MSTEP-3 is in DOS 1.10 format and is compatible with DOS 2.0
and higher revisions. You are urged to use this utility to back up your MSTEP-3 Distribution Software
at the earliest opportunity. For a direct backup, use the DOS DISKCOPY utility or alternatively COPY
. to a preformatted disk. For a hard disk, simply use COPY *.* to transfer your Distribution Software
to a directory of your choice (the Distribution Software is not copy protected). If for any reason you
should misplace or destroy your MSTEP-3 Distribution Software, please contact Keithley MetraByte
for a replacement copy.

2.2 UNPACKING AND INSPECTING
After you remove the wrapped board from its outer shipping carton, proceed as follows:

1. Place one hand firmly on a metal portion of the computer chassis (the computer must be turned
Off and grounded) to discharge static electricity from the package and your body, thereby
preventing damage to board components.

2. Carefully unwrap the board from its antistatic wrapping material.

3. Inspect the board for signs of damage. If any damage is apparent, return the board to the factory.

4. Check the contents of your package against its packing list to be sure the order is complete.
Report any missing items to MetraByte immediately.

You may find it advisable to retain the packing material in case the board must be returned to the
factory.

2.3 SWITCH & JUMPER SETTINGS

Base Address Switch

MSTEP-3 requires 16 consecutive address locations in I/O space. Some I/O addresses will already be
in use by internal I/O and your other peripheral devices. Avoid setting the MSTEP-3 to the same
address as any other device already installed in your machine. A conflict of addresses will not cause
physical damage but may cause malfunction of the MSTEP-3 and the conflicting adapter and, in some
circumstances, the Power On Self Test (POST) diagnostic messages. To avoid conflict with these
devices, you may change the MSTEP3’s preset I/O address by resetting the Base Address DIP switch;
any new setting should be on an 16-bit boundary anywhere in the PC’s available I/O space.

The PC-XT I/O address space extends from decimal 512-1023 (Hex 200-3FF) and the PC-AT I/O
address space extends from decimal 256 to 1023 (Hex 100-3FF). In either case, the available space is
never likely to be fully occupied and is more than enough to accommodate more than one MSTEP-3 in
a single computer.

For your convenience, the reserved I/O addresses for standard IBM devices are detailed in the

2-1

MSTEP3 USER GUIDE

following table.

HEX RANGE USAGE HEX RANGE USAGE

OOOtolFF Internal System
200 to 20F Game
210 to 217 Expansion unit
220 to 24F Reserved
278 to 27F Reserved
2F0 to 2F7 LPT2:
2F8 to 2FF COM2:
300 to 31F Prototype card
320 to 32F Hard disk

37F to 387 LPTl:
380 to 38C SDLC comm.
380 to 389 Binary comm. 2
3A0 to 3A9 Binary comm. 1
3B0 to 3BF Mono dsp/LPTl :
3co to 3CF Reserved
3D0 to 3DF Color graphics
3E0 to 3E7 Reserved
3F0 to 3F7 Floppy disk
3F8 to 3FF COMl:

This list covers the standard IBM I/O options (most compatibles are identical), but if you have other
I/O peripherals (special hard disk drives, special graphics boards, prototype cards, etc.), they may be
making use of I/O addresses not listed in the table.

Usually, a good starting choice of Base Address is 300h or 310h (768 or 784 Decimal). (Note if you are
using an IBM prototype board, it uses the 300-31F (Hex) address space and would conflict; 330h or
340h would be a good alternative in this case).

An aid to setting the Base Address DIP switch is the graphical program DIPS W.EXE , in your
Distribution Software. This program may be run from the DOS prompt by typing DIPSW .

When you get the Desired base address? prompt, type in your choice in decimal or IBM
&H-- format and press < Enter > . The program rounds your address to the nearest 8-bit boundary,
checks for conflicts with standard I/O devices (and warns you if so), and displays the correct positions
of the seven toggles on the Base Address DIP switch. For additional details on Base Address switch
settings, see the following diagram.

BASE ADDRESS SWITCH INTERRUPT LEVEL

ADDRESS ADDRESS LINE VALUES:

LINE DECIMAL HEX

1 2 3 4 5 6

SELECTION

IRO LEVEL (X = INACTIVE)
2 3 4 5 6 7 x

JUMPER IS IN THE X POSITION

Base Address switch and Interrupt Level selection.

Interrupt Level Selection

Referring to the diagram, the choice of Interrupt Level depends on the placement of a jumper. Very
likely, you will not initially make use of the interrupt capabilities of the MSTEP-3 and can place the
IRQ LEVEL jumper in the X position. If your programming will use interrupts from the MSTEP3,

2-2

CHAPTER 2: INSTALLATION

then select the Interrupt Level (2 thru 7) you intend to use. Take care to avoid selecting a level in use
by another adapter card (for example, Level 6 is always used by the floppy disk controller, Level 4 by
COMI:, Level 3 by COM2: etc.). For more information on interrupt programming, see MODE 11 in
Chapter 3.

HOME/LIMIT Polarity Switch.

DIP Switch Sl controls polarity of the Home and Limit switch inputs. For example, if any axis of your
system does not need limit switches you may want to set the Limit Switch for that axis to On (Up
position), as this will allow the motor to move with no limit-switch inputs. You may also use this
position if you use normally open limit switches.

If, however, fail-safe operation is important, you may want to set the appropriate switch to Off (Down
position). Under these conditions, normally closed limit switches must be used to insure that if any
wire from a switch to the MSTEP-3 should open up, the MSTEP-3 will cause the motor for that axis to
stop.

Similarly, the Home Switches are set for the polarity of the Home Switch used in each axis. Setting a
Home Switch On will cause the MSTEP-3 to be looking for a low input when searching for Home,
while the Off position will cause the board to look for a high level.

It should be noted that all Limit and Home Switch inputs have a pull-up resistor to +5 Volts and are
then buffered through a Schmitt trigger IC in the “Ls” family.

2.4 HARDWARE INSTALLATION
WARNING: ANY ATTEMPT TO INSERT OR REMOVE A BOARD WITH THE COMPUTER

POWER ON COULD DAMAGE YOUR COMPUTER!

1. Turn Off power to the PC and all attached equipment.

2. Remove the cover of the PC as follows: First remove the cover-mounting screws from the rear
panel of the computer. Then, slide the cover of the computer about 3/4 of the way forward.
Finally, tilt the cover upwards and remove.

3. Choose any available option slot. Loosen and remove the screw at the top of the blank adapter
plate. Then slide the plate up and out to remove.

4. Hold the Board in one hand placing your other hand on any metallic part of the PC/AT chassis
(but not on any components). This will safely discharge any static electricity from your body.

5. Make sure the board switches have been properly set (refer to the preceding section).

6. Because of the length of the 50-pin rear connector, you are advised to set its retainer latches out
straight (an elastic band will hold them in position), and then to pass it through the rear slot and
pivot the Board down into the edge connector. The Board is shaped to allow for this maneuver.

7. Gently press the board downward into the socket. Secure the Board in place by inserting the rear-
panel adapter-plate screw.

8. Replace the computer’s cover. Tilt the cover up and slide it onto the system’s base, making sure
the front of the cover is under the rail along the front of the frame. Replace the mounting screws.

9. Plug in all cords and cables. Turn the power to the computer back on.

2-3

MSTEP3 USER GUIDE

Remember, TURN OFF THB POWER whenever installing or removing any peripheral board, as it
can cause costly damage to the electronics of your computer and/or the MSTEP-3 board.

If for any reason you later remove the MSTEP-3 board, Keithley MetraByte recommends that you
retain the special electrostatically shielded packaging and use it for storage. n

2-4

CHAPTER 3

PROGRAMMING

3.1 GENERAL

At the lowest level, the Stepper Motor Controller is programmed using I/O input and output
instructions. In BASIC, these are the N’(X) and OUT X,Y functions. In Assembly Language, they are
IN AL,DX & OUT DX,AL. Most other high level languages have equivalent instructions. Use of these
functions usually involves formatting data and dealing with absolute I/O addresses. Although not
demanding, this can require many lines of code and necessitates an understanding of the devices, data
format, and architecture of the MSTEP-3. To simplify program generation, a special I/O driver
routine “MSTEP.BIN” is included in the MSTEP-3 software package. This may be accessed from
BASIC by a single line CALL statement. The CALL MSTEP will perform frequently used sequences of
instructions. An example is Mode 1 which performs a normal stop. A routine to perform this
operation in BASIC using INP’s and OUT’s would require many lines of code and would be rather
slow and very tedious to program.

A sequence of BASIC INP’s and OUT’s to write the Stop Command to PPMC channel A would be as
follows:

x10 BASADR% = CH300 'Set BASE ADDRESS.
x20 cmR% = INP (BASADR%t4) 'Read current data select req.
x30 OUT (BASADRtQ),&Hl 'Set AORSEL = 1 to read status req.
x40 STAT% = INP (BASADR%tl) 'Read Axis A status Req.
x50 'Motor stopped?
x60 IF (STAT% AND 6H4) = 0 GOT0 140 'Yes, restore data select req; exit.
x70 'Input buffer full?
x80 IF (STAT% AND &H2) <> 0 GOT0 40 'Yes, try again !
x90 CONFB = INP (BASADR%) 'Read and save configuration Req.
xl00 CONF% =CONF% AND &HFB
xl10 OUT BASADR%t4,CONF% 'Disable Axis A Interrupt.
x120 OUT BASADR%+4,&Hl 'Set AORSEL = 1 to write status req.
x130 OUT BASADR%tl,&H40 'Stop motor.
x140 OUT BASADR%tl, CNR% 'Restore data select req. value.
x150 STOP

All this code can be circumvented by using the driver:

x10 MD%=1
x20 D%(0) = 0
x30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

'command - decelerating stop
'select channel A

Obviously, the MSTEP.BIN driver greatly reduces programming time and effort. Both methods of
programming are described (see Appendix A for programming the PPMC-103A directly) and you are
free to choose either. Usually the BASIC programmer will find the CALL routine method very much
simpler to implement. The MSTBP.BIN driver also provides an example interrupt service routine. It
is not possible to program interrupt routines directly in BASIC and the driver is the only way of
utilizing interrupts from the MSTEP-3 hardware.

3-1

MSTEP-3 USER GUIDE

3.2 REGISTER LOCATIONS & FUNCTIONS

The following tables describe the locations and functions of the registers within the MSTEP-3 hoard.

Base Address +0
Configuration Select Register

BIT: 7 6 5 4 3 2 1 0

READ/WRITE: xcc CXB XCA EINTC EINTB EINTA OEPB OEPA

XCA, XCB, XCC: These bits determine the source of the clock frequency input into the
8254 divider for each respective axis. Setting any bit low results in the internal
8OOKHz clock being used, while setting it high results in the user-supplied clock of Pin
51-25 being used. The output of each respective frequency divider is used by the
PPMC-103A whenever an external clock is specified.

EINTA, EINTB, EINTC: Setting any of these bits high enables the respective axis to
generate an interrupt when the motor stops moving. Note that the jumper on the card
must be set to the appropriate Interrupt Level, or the PC will not receive the interrupt.

OEPA, OEPB: These bits control the Output Enable function of Ports A and B,
respectively. Setting the Enable Bit of a port high sets the entire port for Output. Both
ports can be read whether they are configured for Output or Input.

Base Address + 1

A Axis PPMC-103A: this is the address to read or write to the A Axis PPMC-103A. Refer to the Sil-
Walker data sheet for more information.

Base Address +2

B Axis PPMC-103A: This is the address to read or write to the B Axis PPMC-103A. Refer to the Sil-
Walker data sheet for more information.

Base Address +3

C Axis PPMC-103A: This is the address to read or write to the C Axis PPMC-103A. Refer to the Sil-
Walker data sheet for more information.

3-2

CHAPTER 3: PROGRAMMING

Base Address +4
Data Select Register

BIT: 7 6 5 4 3 2 1 0

READ/WRITE: X X X X X X X AORSEL

READ: X X X X \INTB -

Does matter.

Controls A0 both the
Use = to a or the
Use = to or data.

WB, These are low the stops; remain
until by the STATUS.

Address

I/O A: is general-purpose, I/O It be to read any but
data to will output on appropriate of Jl Port is for
by OEPA Base +0

Base +6

Port This a B-bit port. can written or at time, the
written it be only the pins Connector if A set Output

setting at Address high.

Address Through Address I

addresses not in current design.

Address 12

Counter (A This corresponds Counter of 8254, controls
division that 8254 to 800KHz or user-supplied for A For

information using divider, to 8254 sheet.

Address

8254 1 Axis): address to 1 the which the
ratio the applies the clock the clock the Axis.

more on this refer an data

3-3

MSTEP-3 USER GUIDE

Base Address +14

8254 Counter 2 (C Axis): This address corresponds to Counter 0 of the 8254, which controls the
division ratio that the 8254 applies to the 8OOKHz clock or the user-supplied clock for the C Axis. For
more information on using this divider, refer to an 8254 data sheet.

Base Address + 15

This address corresponds to the Control Word of the 8254. For more information on using this
divider, refer to an 8254 data sheet.

3.3 PPMW03A STEPPER CONTROLLER INTERNAL REGISTERS
Each PPMC-103A Stepper Controller is a specialized microprocessor that controls the stepper motor
for one axis. The I/O address (Base Address +l, +2, or +3,) selects which axis is being addressed.
When addressing a PPMC-103A, the AORSEL bit (Bit 0 of Base Address +4) determines which register
within the device is being addressed.

AORSEL READ WRITE

0 DATA DATA

1 STATUS COMMAND

Motion commands are issued to the PPMC controller by writing a command code to the Command
Register (with AORSEL = 1). Since the PPMC may be busy executing a command, you must always
read the STATUS register to determine whether the PPMC is ready to receive the command. After a
command is issued, it may require or produce a variable number of data bytes (depending on the
command) which are written or read from the Data Registers (with AORSEL = 0). Apart from
controlling access to the Command Register, the Status register also provides additional information
on the operation of the PPMC controller.

There are eight motion-control commands as well as the INITIALIZATION command that set the
operating conditions of the controller. The functions of the Command and Status Registers are as
follows:

INITIALIZATION Selects the motor type, method of excitation acceleration/deceleration
rate, internal/ external step clock, phase output logic type and start up
and high speed pulse rate. Once the initialization command has been
sent, it may not be overwritten by a further initialization command. The
PPMC controller must be reset either by turning the computer power off
and on or more conveniently by issuing a hardware clear command (see
Sections 3.2.4 and 3.8.13 - mode 12).

OPERATION

STATUS

This is the user interface mode in which COMMAND selects any of eight
motion-control commands. The length of the data to follow depends on
the specific command.

Before/after the completion of an operation command, the status register
provides data on the limit switches, motor in motion or at standstill and
input/output data buffer full or valid. It also enables you to read the
number of steps remaining to be travelled etc.

3-4

CHAPTER 3: PROGRAMMING

Direct programming of the PPMC-103A controllers and their full specification is more fully covered in
Appendix A.

3.4 LOADING THE MACHINE-LANGUAGE CALL ROUTINE MSTEP.BIN

In order to make use of the CALL routine MSTEP.BIN, it must first be loaded into memory. You must
avoid loading it over any part of memory that is being used by the main body of your program, DOS,
or programs such as RAM disks that use high memory. If you do collide with another program, your
computer will usually hang up although sometimes the results can be more peculiar. Often you will
need to turn the power off and restore it to re-boot the machine, the usual Ctrl-Alt-Delete reset may
fail to restore DOS. This may sound ominous, but apart from the frustration, no damage will ever
result!

MSTEP.BIN uses about 3 Kbytes of memory and is best loaded outside BASIC’s workspace. A typical
loading sequence is as follows:

xx100 DEF SEG = &Ii3000 'segment of memory to load link
(choose an empty area e.g. @@ 192K)

xx110 BLOAD "MSTEP.BIN",O 'load driver . . Continue program

The above initializing steps will be the same for any interpreted BASIC program. A more
comprehensive example is provided on the disk in DEMO.BAS. Note that the DEF SEG = &H3000
statement in line 100 specifies the load location for the MSTEP.BIN driver. All subsequent CALL’s will
occur to the last DEF SEG address, so if you add other DEF SEG’s in your program, remember to
precede your CALL’s to MSTEP-3 with the same DEF SEG = &H3000 that you used to load the link
(see CALL and DEF SEG in your BASIC reference manual).

Finding a place to load MSTEP.BIN is seldom much of a problem now that most PC’s are equipped
with at least 256K of memory. The following explanation provides some insight into the process of
choosing a memory location for the driver and what to do if memory is in short supply.

DOS occupies the bottom of memory, the amount of memory required being dependent on the
version (it grows as each new revision adds extra features!). The simplified memory map below shows
what happens after booting up BASICA.

DOS 1.1 DOS 2.1 DOS 3.0

Bottom: OK ------- OK ------- OK --_-__
DOS

19K ---_---
DOS

DOS
47K -------

BASIC 63K -_----
BASIC

BASIC
98K ____---

Free
126K _-_____

Free
memory

140K ----__

Free
memory

3-5

MSTEP-3 USER GUIDE

MSTEP.BIN should be loaded somewhere in the free memory area so that it does not interfere with
either BASIC or DO!% This would be above 98K (&H1880) for DOS l.l,126K (&HlF80) for DOS 2.1 or
140K (&H2300) for DOS 3.0. If you have 256K (&H4000) or more of memory, then loading the link at
DEF SEG = &H2800 or &H3000 is a good solution for all versions of DO!? One further small detail is
that if you are using a PC compatible that does not have BASIC in ROM (like the IBM PC), then BASIC
(for example, GWBASIC) is usually loaded as an .EXE file from the top of memory down. This is
likely to fill up to 64K of the top segment of memory. Some virtual disks or print spoolers will do the
same. Also if you are accustomed to using DOS resident programs such as Borland’s Sidekick, etc., be
aware that these will push the loading floor of BASIC up and require a compensating increase in the
location of MSTEP.BIN.

If you are memory limited, or you have so much resident material that there is no longer 64K left for
BASIC to load in, then BASIC will attempt to make the most of what it can find. Instead of getting the
message when BASIC has loaded:

The IBM Personal Computer Basic

Version A2.0 Copyright IBM Corp. 1981, 1982, 1983

60865 Bytes free

OK

You may get only 49345 bytes free (or something less than 60000 bytes) for example. In this case make
a note of what space BASIC has found. You can then contract this space further using the CLEAR
function and load the link at the end of BASIC. This is more complicated, but just as effective.

Let’s suppose you get the message 52000 bytes free. MSTEP.BIN will use 3K bytes, so to be on the safe
side let’s force BASIC to use 48K. The initializing code would now be:

xx100 CLEAR, 48000 'contracts BASIC workspace

Next, you must find out where BASIC has loaded in memory, add 48000 to it and load MSTEP.BlN
just after the end of BASIC workspace. Memory locations &H510 and &H511 always contain BASIC’s
load segment:

xx110 DEF SEG = 0 'set up to read &H510 and &H511
x120 LS = 256*PEEK(CH5ll)+PEEK(&H510) 'load segment
x130 SG = LS + 48000/16 'remember segment addresses are on

'16-byte (paragraph) boundaries
x140 DEF SEG = SG 'set up to load link
x150 BLOAD "MSTEP.BIN",O 'load link

Proceed with your program as before. Note that this procedure does not work with GW BASIC.

3.5 STRUCTURE OF THE CALL STATEMENT
If you are unfamiliar with CALL statements, this explanation may assist you in understanding how
the CALL transfers execution to the machine language (binary) driver routine (also see CALL in your
Basic Reference Manual). Prior to entering the CALL, the DEF SEG = SG statement sets the segment
address at which the CALL subroutine is located. The CALL statement for the MSTEP.BlN driver
must be of the form

xxxx CALL MSTEP (MD%, D%(O), STP#, FLAG%)

3-6

CHAPTER 3: PROGRAMMING

Let us examine the parameters after CALL one by one:

MSTEI’

MD%

D%(9)

STr#

FLAG%

In interpreted BASIC this is a variable that specifies the offset of the start of our routine
from the segment defined in the last DEF SEG statement. In our case its value is always
set to zero (MSTEP = 0). In compiled BASIC (and most other compiled languages)
MSTEP has a different significance - it is the name of the external routine that the linker
will look for. Note: We would have liked to use the name STEP instead - it’s a better
mnemonic than MSTEP, but be warned that STEP is a reserved word (as in FOR I=0 TO 6
STEP 2) and CALL STEP would produce a syntax error.

This is an integer variable that specifies the operation that we wish the driver to perform
e.g. MD%=0 performs an emergency stop, MD% = 12 initializes a channel etc. In the
case of this driver, valid mode numbers range from 0 to 12.

This is a lo-element integer array that passes data to and from the driver. The
signifigance of particular data items varies according to the mode (MD%) selected. Not
all elements of D%(*) are used in all modes.

This is a double precision variable that specifies the direction and number of steps to
travel or returns optical shaft encoder counts. The sign indicates the direction, +
clockwise, - counter-clockwise. Not all modes utilize the STP# data , however it must
always be included in the call parameter list.

Returns an error code if any of the specifying D%(*) or MD% are out of range or if the
motor is busy or at standstill in certain commands. In the case of no error, FLAG% is
returned zero.

The four variables within brackets are known as the CALL parameters. On executing the CALL, the
addresses of the variables (pointers) are passed in the sequence written to BASIC’s stack. The CALL
routine unloads these pointers from the stack and uses them to locate the variables in BASIC’s data
space so data can be exchanged with them. Three important format requirements must be met, as
follows:

1. The CALL parameters are positional. The subroutine knows nothing of the names of the
variables, just their locations from the order of their pointers on the stack. If you write:

xxxxx CALL MSTEP (D%(O), FLAG%, MD%, STP#)

you will mix up the CALL routine, since it will interpret D%(O) as the mode data, and FLAG% as
the D%(O) data variable etc. The parameters must always be written in the correct order, as
follows: mode #, data, step count, errors

2. The CALL routine expects its parameters to be of correct type and will write and read to the
variables on this assumption: integer, integer array, double precision, integer

If you slip up and use the wrong variable types in the CALL parameters, the routine will not
function correctly and may hang up the program.

3. You cannot perform any arithmetic functions within the parameter list brackets of the CALL
statement. There can only be a list of variables. Also you are not allowed to replace variables by
constants.

Apart from these restrictions, you can name the variables what you want, the names in the examples
are just convenient mnemonics. You should always declare the variables before executing the CALL
so that BASIC has reserved memory locations for them before entering the CALL. In the case of the
integer array, the first element D%(O) should be specified in the CALL parameter list as the data
variable so that the CALL routine can locate all of the other remaining data items in the array
correctly.

3-7

MSTEP3 USER GUIDE

3.6 ERROR CODES

Some value checking is performed on entry data and any errors discovered are returned in FLAG%.
This is primarily to prevent you setting up the CALL with obviously incorrect data such as interrupt
level 9, mode number -6, base address 2000, byte output data 299 etc. and is intended to help avoid a
bad setup of the hardware which could hang the computer. Also certain commands, such as an
emergency or decelerating stop are redundant if the motor is already at standstill (FLAG% = 7) and
the PPMC controller may not be receptive to further commands if it is already busy executing a
command (FLAG% = 1). If a non-zero error code is returned in any mode, execution of that mode will
have been abandoned without action since error checking precedes any I/O to the hardware.

ERROR CODE # PROBLEM

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

No error, OK.
Motor busy.
Driver not initialized on Channel A.
Driver not initialized on Channel B.
Driver not initialized on Channel C.
Mode number CO or >15.
Hardware error.
Step count out of range +/-16,777,215.
Motor already at standstill.
Motor switching time at standstill; does not set..
Error in range of D%(O).
Error in range of D%(1).
Error in range of D%(2).
Error in range of D%(3).
Error in range of D%(4).
Error in range of D%(5).
Error in range of D%(6).
Error in range of D%(7).
Error in range of D%(8).
Error in range of D%(9).
Error in range of D%(10).
Error in range of D%(11).
Error in range of D%(12).
Error in range of D%(13).
Error in range of D%(14).

Checking for errors is easily performed after each CALL and is recommended if not as a permanent
feature then at least while debugging your program:

xxx00 CALL MSTEP (MD%, D%(O), STP#, FLAG%)
xx10 IF FLAG%<>0 THEN PRINT "Error number ";FLAG%:STOP

Certain error codes are useful in performing chained motion commands, as follows:

xxx00 MD% = 3 ‘accelerate/decelerate command
xxx10 STP# = 1000
xxx20 D%(O) = 1

‘steps & direction to move
'select channel B

xxx30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)
xxx40 IF FLAG%<>0 THEN PRINT "Error number ";FLAG%:STOP
xxx50 STP# = -99 'now do 99 steps in opposite

direction
xxx60 CALL MSTEP (MD%, D%(O), STP#, FLAG%)
xxx70 IF FLAG% = 1 THEN GOT0 xxx60 'loop while motor busy

3-8

CHAPTER 3: PROGRAMMING

xxx40 IF FLAG%<>0 THEN PRINT "Error number ";FLAG%:STOP

Note that after issuing a motion command in line xxx30 the controller and motor will still be busy
executing this command when the program reaches the next motion command in line xxx60. In this
case, FLAG% will return 1 and we can keep trying to execute line xxx60 until the previous command
of line xxx30 has finished. In this way we can execute a whole series of commands as fast as the
hardware will allow.]

3.7 STEPPER MOTOR FUNDAMENTALS
In order to program a stepper motor channel, it is necessary to understand a little bit about the
physical setup and characteristics of a stepper motor. The motor itself consists of a permanent magnet
rotor rotating within a multipole stator. As the current is switched in the windings of the stator, the
magnetic field advances from one pole to the next and pulls the rotor along with it (see Section 6 for
more information). The rotor can be turned a precise amount simply by controlling the number of
energization/de-energization cycles of the windings (steps).

On turning on the power, the position of the motor is usually unknown, so it is necessary to move it to
some known reference position called the home, base or reference point. When the mechanical system
is in this position it can operate a switch (microswitch, hall effect or optical interrupter) and this
provides the BP (base point) limit switch input. Once at the base point, all further commands can
move relative to this known location, and as long as there is no loss of power or emergency stops the
subsequent position can always be determined from the step count.

In practical systems, there is usually some physical limit on how far the motor can turn e.g. a lead
screw gets wound to an end. To stop the motor, there is provision for 4 sets of limit switches, Ll - L4.
L3 and L4 provide inner or deceleration limits where it is desirable to stop a fast moving motor even
though it has not reached the absolute physical limit of travel. Ll and L2 are end of travel limits (or
emergency stop limits) where it is essential to stop the motor immediately. A typical physical
representation of a system is shown in Figure 3-1.

c(-w +---------
I
--_-_-_ --+ cw

SCREW

-L -L -I- -L
L2 L4 BP L3 Ll

Figure 3-1. Typical mechanical arrangement.

Note that a mechanical system can be simplified and does not have to have 5 limit points, although the
PPMC-103A controller can handle it. For example, L2 & L4 & CNP may be one physical limit switch,
and Ll & L3 another for a 2 limit switch system. If you do this, you may lose some performance
features of the PPMC, but gain in mechanical simplicity. Simply common up the limit switch inputs
as required.

A mechanical system has significant inertia and it is not usually possible to start or stop the motor
abruptly. The PPMC-103A controllers look after this problem by starting up the motor at a slow rate,
ramping it up to full speed over a prescribed number of steps, and slowing it back down again before
reaching the final step count (see Figure 3-2). All these parameters are set in the initialization
command (mode 12). The inner limit switches (if used) allow you to perform a controlled stop

3-9

MSTEP-3 USER GUIDE

without loss of positional count before hitting the outside or emergency stop limits. Whenever the
motor hits an emergency limit switch, Ll or L2, during a motion command, it will stop. Which limit
switch it hit and how many pulses remain to be executed in the last command and what was the last
motion command can all be determined from a status read (mode 8). In this way the controller
prevents overtravel and damage to the mechanical system and the programmer can provide
appropriate corrective action depending on which of the limit switches were activated.

RATE

HIGH SPEED

SET BY D%(Z)

START RATE

. /

VELOCITY PROFILE

SET BY D%(l) ----

/
D%(3)

+ STEPS 4 L-
D%(3) +
STEPS

- STP* STEPS W

Figure 3-2. Acceleration/deceleration profile (MODE 3).

3.8 CALL MODES

STEPS

The MSTEP.BIN driver supports sixteen different modes (numbered 0 thru 15). For simplicity,
MODES 0 thru 7 correspond identically to the command numbers in the PPMC-103A data sheet (see
Appendix A). Each mode performs a specific operation, as described below:

MD% =o Emergency stop.
= 1 Decelerating stop.
=2 Single step or “jog.”
= 3 Step with acceleration/deceleration.
=4 Step at constant speed,
=5 Move to a outer limit at constant speed.
=6 Move to limit at high speed.
=7 Move to base point at constant speed.
=8 Read motor status.
=9 Load external clock divider.
= 10 Read data from all ports.
= 11 Write data to all ports.
= 12 Write data to one port.
= 13 Toggle auxiliary bit.
= 14 Enable/disable an interrupt.
= 15 Initialization.

The use of each mode is described in the following subsections. It is essential to perform a channel
initialization (MODE 15) separately on each channel before selecting any other MODE (0 - 141. w

3-10

CHAPTER 4

MODE CALLS

4.1 MODE 0: EMERGENCY STOP
MODE 0 performs an emergency stop or immediate cessation of driving pulses to a motor that is busy
executing a motion command. On receipt of the command, inertia may cause a rotating motor to run
on, so the step count may no longer be an accurate guide to the motor position. An emergency stop
would usually be followed by a recalibration or return to home position.

Entry Data:

MD%=0

D%(O)

D%(l) thru (14)

STr#

FLAG%

Exit Data:

D%(O) thru (14)

Srn#

FLAG%

Emergency stop command

Selects Axis A (O), Axis B (11, or Axis C (2)

Value irrelevant

Value irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK
2 if driver not initialized on Axis A
3 if driver not initialized on Axis B
4 if driver not initialized on Axis C
5 if MD% ~0 or ~15
6 if hardware error
8 if motor already at standstill (command redundant)
11 if D%(O) not 0, 1, or 2

A typical program entry preceding MODE 0 might read as follows:

xxx10 MD% = 0 ‘select MODE number
xxx20 D%(O) = 1 'select Axis B
xxx30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

'emergency stop
xxx40 IF (FLAG%<>0 AND FLAG%<>8) THEN PRINT qqError";FLAG%;" in MODE 0":STOP
xxx50 'continue program

One detail concerning the preceding example: If FLAG% = 8 is returned, it is just a reminder that you
told the controller to do an emergency stop when in fact the motor was already stopped. In this case
the driver aborts the command and lets you know why through FLAG%.

4-1

MSTEPS USER GUIDE

4.2 MODE 1: DECELERATING STOP

MODE 1 performs a decelerating stop or gradual cessation of driving pulses on a motor that is busy
executing a motion command. The deceleration parameters correspond to those set in initialization
MODE 12. This type of stop should lead to no loss of positional accuracy of the motor. The number of
pulses which the motor would have continued to step if it had not received a decelerating stop
command can be determined by a status read (MODE 8). The exact position of the motor can then be
determined and a recovery routine initiated if required.

Entry Data:

MD%=1

D%(O)

thru (14)

FLAG%

Exit

D%(O) thru

STr#

FLAG%

stop command

Axis A Axis B or Axis (2)

Value

Value irrelevant

irrelevant

Unchanged

0 if OK
2 driver not on Axis
3 if not initialized Axis B

if driver initialized on C
5 if MD% ,0 or >15
6 if hardware error
8 if motor already at standstill (command redundant)
11 if D%(O) not O,l, or 2

A typical program entry preceding MODE 1 might read as follows:

10 MD% =l 'select MODE number
20 D%(0) = 0 'select Axis A
30 CALL MSTEP (MD%, D%(0), STP#, FLAG%) ‘decelerating stop
40 IF (FLAG%<>0 AND FLAG%<>7) THEN PRINT "Error";FLAG%;" in MODE 1":STOP
50 'continue program

One detail concerning the preceding example: If FLAG% = 8 is returned, it is just a reminder that
you told the controller to do a decelerating stop when in fact the motor was already stopped. In this
case the driver aborts the command and lets you know why through FLAG%.

4.3 MODE 2: SINGLE STEP OR “JOG”
MODE 2 performs a single step or “jog” of the stepper motor useful in getting a system into final
position or for manual control. The direction is set by the sign of the STP# data although the value

4-2

CHAPTER 4: MODE CALLS

does not matter. In this respect STP# = 0,1,99 or 16,123,678 would all produce a 1 step clockwise
motion, whereas STP# = -1, -234, or -13,456,987 would all produce a l-step counterclockwise motion.

Entry Data:

MD%=2

D%(O)

D%(l) thni (14)

STr#

FLAG%

Exit Data:

D%(O) thru (14)

STlv

FLAG%

Single step (jog) command

Selects Axis A (O), Axis B (l), or Axis C (2)

Value irrelevant

Sign sets direction, magnitude irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK
1 if motor already busy executing last command
2 if driver not initialized on Axis A
3 if driver not initialized on Axis B5 if MD% ,0 or ~15
4 if driver not initialized on Axis C
6 if hardware error
11 if D%(O) not 0, 1, or 2

A typical program entry preceding MODE 2 might read as follows:

x%x10 MD% = 2 'select MODE number
xxx20 = 0 Axis A

CALL MSTEP D%(O), STP#,
'jog command

IF FLAG%<>0 PRINT “Error MODE 2, ";FLAG%:STOP
xxx50 program

Here’s programming tip. routine uses cursor keys jog clockwise counterclockwise
until key is

100 MD% 2 'select
110 D%(O) 1 'select B
120 = IEEEY$:IF GOT0 120 for keypress

IF LEN(A$)=l GOT0 210 on any key code
IF ASC(EIGHT$(A$,1))=75 STP#=-l:GOTO 170

left
150 ASC(EIGHT$(A$,l))=77 THEE 170

'cursor
160 GOT0 'exit on other double code
170 MSTEP (MD%,D%(O),STP#,FLAG%) jog
180 FLAG%=1 THEE 170 'repeat if still
190 IF THEE ?"Error jog command":STOP

GOT0 120 keyboard again
‘continue your here

4-3

MSTEP3 USER GUIDE

4.4 MODE 3: STEP WITH ACCELERATION/DECELERATION
MODE 3 is the basic all purpose trapezoidal motion command that causes the motor to move the
number of steps specified by STl’# with acceleration, deceleration, start up and high speed run rates
set by the initialization parameters of MODE 15. The direction of rotation is controlled by the sign of
STP#, positive is clockwise and negative is counter-clockwise. Up to 16,777,215 steps may be
performed with one command corresponding to the 24 bit integer data limits of the PPMC-103A
controllers.

MODE 3 corresponds to motion command 3 of the PPMC-103A with a few “user friendly” differences
introduced by the driver. The PPMC will in fact move 1 step more than the number input, the driver
corrects this characteristic by subtracting 1 from the step count before inputting it to the PPMC, so that
S’ll’# corresponds exactly with the number of steps moved. Also the PPMC behaves in strange ways
with step counts of -1,0 and +l. Again the driver intercepts these singular values, does nothing with a
STP#=O (aborts command with no error) and automatically reverts to a jog command if STP# = +l or -
1 (see Appendix A for further details). This is all transparent to the user, so you can compute values
of STP# without worrying about the controller’s peculiarities. In fact, you can ignore MODE 2 and do
jogs with STP# = +l or -1 if this rationalization makes sense for you.

If the the total number of steps is less than twice the acceleration/deceleration step count, the velocity
profile will be triangular instead of trapezoidal i.e. the motor will never reach its high speed run rate.
The PPMC controller will look after this automatically.

Entry Data:

MD%=3

D%(O)

D%(l)

D%(2) thru (14)

STr#

F’LAG%

Exit Data:

D%(O) thru (14)

STr#

FLAG%

Accelerate/decelerate command

Selects Axis A (O), Axis B (11, or Axis C (2)

0 = non-Turbo Mode, 1 = Turbo Mode

Value irrelevant

Value and sign set number of steps and direction

Value irrelevant

Unchanged

Unchanged

0 if executed OK
1 if motor already busy executing last command
2 if driver not initialized on Axis A
3 if driver not initialized on Axis B
4 if driver not initialized on Axis C
5 if MD% ,0 or >15
6 if hardware error
7 if STP# c-16,777,215 or >+16,777,215
11 if D%(O) not 0, 1, or 2

A typical program entry preceding MODE 3 might read as follows:

4-4

CHAPTER 4: MODE CALLS

xxJclOMD% = 3 'select MODE number
xxx20 D%(O) = 1 'select Axis B
xxx30 D%(I) = 1 ;select non-Turbo Mode
xxx40 STP# = -5632 ‘move counter-clockwise 5,632 steps
xxx40 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

'acel/decel command
xxx50 IF FLAG%<>0 THEN PRINT “Error in MODE 3, # ";FLAG%:STOP
xxx60 'continue program

Here’s a programming tip. The time this command takes to complete depends on the stepping rate
and number of steps, for a lot of steps it can take a long time. If the command is reissued while a
previous motion is taking place the FLAG% will be returned = 1, indicating that you have to wait
before sending the next motion command (unless it's a stop command). Let’s say we would like the
motor to move 1,237 steps clockwise, 67 steps counter-clockwise, 12,678 steps clockwise etc. This is
how to program this trajectory:

100 MD% = 3
110 D%(O) = 1
120 D%(l) = 0
130 STP# = 1237
140 CALL NSTEP (ND%, D%(o), STP#, FLAG%)

'select MODE
'select Axis B
'select non-Turbo acceleration
‘1st step count

‘1st motion
'keep trying if motor busy

150 IF FLAG%=1 THEN GOT0 140
160 IF FLAG%<>0 THEN "Error # ";FLAG%:STOP

'major disaster!
'2nd step count

170 STP# = -67
180 CALL MSTEP (ND%, D%(O), STP#, FLAG%)

190 IF FLAG%=1 THEN GOT0 180

'2nd motion
'keep trying until 1st motion
'1st motion finished

200 IF FLAG%<>0 THEN “Error # “;FLAG%:STOP ‘major disaster!
'3rd step count

210 STP# = 12678
220 CALL MSTEP (ND%, D% (0) , STP#, FLAG%) ‘3rd motion

'keep trying until 2nd motion

230 IF FLAG%=1 THEN GOT0 220
'finished

240 IF FLAG%<>0 THEN “Error # “;FLAG%: STOP ‘xna jor disaster!
250 ‘etc.

Obviously a good programmer would use a few GOSUBs to minimize the code above. Also note that
the program is paced by the rate at which the motor will execute commands. Maybe you would like
to go off and do something else if you find FLAG%=l, the option is yours. Also if you ever need to
find whether the motor is busy without doing anything before inputting a motion command, use read
status, MODE 8 - see MODE 8 for further details.

4.5 MODE 4: STEP AT CONSTANT SPEED
MODE4is similar to MODE3 exceptthatthe motorwillmovethenumberofstepsspecifiedby STP#
with constant velocity specified by D%(l). The stepping rate depends on the clock source. For the
PPMC internal clock source (D%(7) = 0 in initializing MODE 15),

4-5

MSTEP-3 GUIDE

= / 1)

For the external user input clock source (D%(7) = 2 in initializing MODE 151,

Rate = Ext. Freq. / D%(l) steps/second

For the on board 8OOKHz clock + divider (D%(7)=1 in initializing MODE 151,

Rate = 800,000 / (D%(i) l (X+1)) steps/second

where X = divider ratio set in MODE 10

The valid range for D%(l) is 20 (fastest) to 255 (slowest). The direction of rotation is set by the sign of
STP#, positive is clockwise and negative is counter-clockwise. Up to 16,777,215 steps may be
performed with one command corresponding to the 24 bit integer data limits of the PPMC-103A
controllers.

Since the motor has to start up and run at a constant rate, this rate must be within the start up
capabilities of the motor. Also, the rate set in this MODE by D%(l) does not overwrite the rate
specified for acceleration/deceleration in initializing MODE 15 (it is specific to this command only).

If you are operating from the on-board 8OOKHz clock and on-board divider, it is possible to change the
external divider ratio while the motor is in motion and in this way modulate the speed. This is a
MODE of operation that is not obtainable with the PPMC controller alone, at least not with one
continuous command.

MODE 4 corresponds to motion command 4 of the PPMC-103A with a few “user friendly” differences
introduced by the driver. The PPMC will in fact move 1 step more than the number input, the driver
corrects this characteristic by subtracting 1 from the step count before inputting it to the PPMC, so that
STP# corresponds exactly with the number of steps moved. Also the PPMC behaves in strange ways
with step counts of -1,0 and +l. Again the driver intercepts these singular values, does nothing with a
STP#=O (aborts command with no error) and automatically reverts to a jog command if STP# = +l or -
1 (see Appendix A for further details). This is all transparent to the user, so you can compute values
of STP# without worrying about the controller’s peculiarities. In fact, you can ignore MODE 2 and do
jogs with STP# = +l or -1 if this rationalization makes sense for you.

Entry Data:

MD%=4

D%(O)

D%(l)

D%(2) thru (14)

STr#

FLAG%

Move at constant speed command

Selects Axis A (O), Axis B (l), or Axis C (2)

Sets speed, valid range 20 _ 255

Value irrelevant

Value and sign set number of steps and direction

Value irrelevant

4-6

CHAPTER 4: MODE CALLS

Exit

D%(O) thru (14)

STm

FLAG%

Unchanged

Unchanged

0 if executed OK
1 if motor already busy executing last command
2 if driver not initialized on Axis A
3 if driver not initialized on Axis B
4 if driver not initialized on Axis C
5 if MD% ,0 or >15
6 if hardware error
7 if STF# -z-16,777,215 or >+16,777,215
10 if D%(O) not 0, 1, or 2
11 if D%(l) c20 or >255

A typical program entry preceding MODE 4 might read as follows:

xxx10 MO% = 4 'select MODE number
xxx20 D%(O) = 1 'select Axis B
xxx30 D%(l) = 180 'speed, about 7Opps with

internal clock
xxx40 STP# = 2000 ‘move clockwise 2,000 steps
xxx50 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

‘constant speed command
xxx60 IF FLAG%<>0 THEN PRINT “Error in MODE 4, # “;FLAG%:STOP
x%x70 ‘continue program

As with MODE 3, you can chain motion commands using FLAG%=1 to signal the readiness of the
controller to receive the next command (see MODE 3 for programming example).

4.6 MODE 5: MOVE TO OUTER LIMIT AT CONSTANT SPEED
MODE 5 lets you run the motor into either of the outer overtravel limit switches Ll or L2. The motor
will move in the direction specified by the sign of STP# with constant velocity specified by D%(l)
until it encounters the appropriate limit switch input (Ll for clockwise, L2 for counter-clockwise). The
stepping rate depends on the clock source. For the PPMC internal clock source (D%(7) = 0 in
initializing MODE 151,

Rate = 25,500 / D%(l) steps/second

For the external user input clock source (D%(7) = 2 in initializing MODE 151,

Rate = Ext. Freq. / D%(l) steps/second

4-7

MSTEPB USER GUIDE

For the on board 800KHz clock + divider, (D%(7)=1 in initializing MODE 15),

Rate = 800,000 / (D%(l) l (X+1)) steps/second

where X = divider ratio set in MODE 10.

The valid range for D%(l) is 20 (fastest) to 255 (slowest). Since the motor has to start up and run at a
constant rate, this rate must be within the start up capabilities of the motor. Also, the rate set in this
MODE by D%(l) does not overwrite the rate specified for acceleration/deceleration in initializing
MODE 15 (it is specific to this command only).

If you are operating from the on-board 8OOKHz clock and external divider, it is possible to change the
external divider ratio while the motor is in motion and in this way modulate the speed.

Entry Data:

MD%=5

D%(O)

D%(l)

D%(2) thru (14)

STr#

FLAG%

Exit Data:

D%(O) thru (14)

STFY

FLAG%

Move at constant speed to outer limit Ll or L2.

Selects Axis A (O), Axis B (l), or Axis C (2)

Sets speed, valid range 20 - 255

Value irrelevant

Sign sets direction, magnitude irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK, otherwise:-
1 if motor already busy executing last command
2 if driver not initialized on Axis A
3 if driver not initialized on Axis B
4 if driver not initialized on Axis C
5 if MD% ,0 or ~15
6 if hardware error
7 if STP# c-16,777,215 or >+16,777,215
10 if D%(O) not O,l, or 2
11 if D%(l) ~20 or ~255

A typical program entry preceding MODE 5 might read as follows:

xxx10 MD% = 5 ‘select MODE number
xxx20 D%(O) = 0 ‘select Axis A
xxx30 D%(l) = 250 ‘speed, about 5Opps with

internal clock
xxx40 STP# = -99 ‘move counter-clockwise to L2
xxx50 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

‘move to limit Ll or L2

4-8

CHAPTER 4: MODE CALLS

xxx60 IF FLAG%<>0 THEN PRINT "Error in MODE 5, # ";FIAG%:STOP
xxx70 ‘continue program

After you have reached the limit, you can confirm that you are there by performing a MODE 8, read
status command. In general, the constant speed should be selected slow enough so that there is no
danger of overshooting the limit. It is then possible to use either Ll or L2 as homing reference points
as an alternative to the BP (base point) or CNP input.

4.7 MODE 6: MOVE TO LIMIT AT HIGH SPEED
MODE 6 lets you run the motor with controlled acceleration and deceleration to and slightly beyond
either of the inner high speed limit switches L3 or L4. The motor will move in the direction specified
by the sign of STP# with a trapezoidal velocity profile specified by the initialization parameters of
MODE 12. On hitting the appropriate inner or high speed limit switch (L3 clockwise or L4 counter-
clockwise) a controlled deceleration will take place, and hopefully (if you have your system set up
right!) will stop before reaching an outer limit switch Ll or L2. At this point you can inch it into an
outer limit using MODE 5 to perform a calibration, or do whatever else is appropriate in the
circumstances. This provides a fast way of getting to the end of travel if it is something you need to
do frequently.

Entry Data:

MD%=6

D%(O)

D%(l) thru (14)

STr#

FLAG%

Exit Data:

D%(O) thru (14)

s-l-l%

FLAG%

Move at constant speed to inner limit L3 or L4.

Selects Axis A (01, Axis B (11, or Axis C (21

Value irrelevant

Sign sets direction, magnitude irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK
1 if motor already busy executing last command
2 if driver not initialized on Axis A
3 if driver not initialized on Axis B
4 if driver not initialized on Axis C
5 if MD% ,0 or ~15
6 if hardware error
7 if STF’# c-16,777,215 or >+16,777,215
10 if D%(O) not 0, 1, or 2

4-9

MSTEP3 USER GUIDE

A typical program entry preceding MODE 6 might read as follows:

xxxlOMD% = 6 'select MODE number
xxx20 D%(O) = 0 'select Axis A
xxx30 STP# = -8 ‘move counter-clockwise to L4
xxx40 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

'move to limit L3 or L4
xxx50 IF FLAG%<>0 TKEN PRINT "Error in MODE 6, # ";FLAG%:STOP
xxx60 ‘continue program

4.8 MODE 7: MOVE TO BASE POINT AT CONSTANT SPEED
MODE 7 lets you run the motor into the BASE point limit switch (this is called CNP on the PPMC data
sheet) at constant speed set by D%(l) and direction set by the sign of STlV. The magnitude of STP# is
irrelevant.

Not all systems will use a base point reference switch, often one of the outer limits Ll or L2 will do
just as well to calibrate the motor position. If however you do provide a base point reference, say in
the middle of travel, how do you know which way to go to find it? The answer is that you don’t, if you
have gone the wrong way you may just as likely stop at one of the outer limit switches. The PPMC is
not intelligent enough to reverse direction on hitting an end limit, so you had better be prepared to
provide some software to do the hunting! A status read, MODE 8, after MODE 7 will tell you what
limit you hit, BP or an outer limit, Ll or L2. If you hit an outer limit, you can engage MODE 7 again in
the reverse direction and you are bound to find the BP this time - see MODE 8 for details.

The stepping rate in MODE 7 depends on the clock source. For the PPMC internal clock source
(D%(7) = 0 in initializing MODE 15),

Rate = 25,000 / D%(l) steps/second

For the external user input clock source (D%(7) = 2 in initializing MODE 15),

Rate = Ext. Freq. / D%(l) steps/second

For the on board 8OOKHz clock + divider, (D%(71=1 in initializing MODE 15),

Rate = 800,000 / (D%(l) * (X+1)) steps/second

where X = divider ratio set in MODE 9

The valid range for D%(l) is 20 (fastest) to 255 (slowest). Since the motor has to start up and run at a
constant rate, this rate must be within the start up capabilities of the motor. Also, the rate set in this
MODE by D%(l) does not overwrite the rate specified for acceleration/deceleration in initializing
MODE 12 i.e. it is specific to this command only.

If you are operating from the on-board 100KHz clock and external divider, it is possible to change the
external divider ratio while the motor is in motion and in this way modulate the speed.

4-10

CHAPTER 4: MODE CALLS

Entry Data:

MD%=7

D%(O)

D%(l)

D%(2) thru (141

STFV

FLAG%

Exit Data:

D%(O) thru (14)

STr#

FLAG%

Move at constant speed to base point BP or CNP

Selects Axis A (O), Axis B (11, or Axis C (2)

Sets speed, valid range 20 - 255

Value irrelevant

Sign sets direction, magnitude irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK
1 if motor already busy executing last command
2 if driver not initialized on Axis A
3 if driver not initialized on Axis B
4 if driver not initialized on Axis C
5 if MD% ,0 or ~15
6 if hardware error
7 if STP# c-16,777,215 or >+16,777,215
10 if D%(O) not 0, 1, or 2
11 if D%(l) ~20 or >255

A typical program entry preceding MODE 7 might read as follows:

xxx10Mo% = 7 'select MODE number
xxx20 D%(O) = 0 'select Aris A
xxx30 D%(l) = 200 'speed, about 62pps with

‘internal clock
xxx40 STP# = 10 ‘move clockwise to BP
xxx50 CALL MSTEP (MD%, D%(O), STP#, FLAG%) 'move to BP
xxx60 IF FLAG%<>0 TBEN PRINT "Error in MODE 7, # ";FLAG%:STOP
xxx70 'continue program

4.9 MODE 8: READ MOTOR STATUS
MODE 8 provides useful information about what the motor is doing or has done. The PPMC-103A
controller can only provide full status information if the motor is at rest. If the motor is busy, FLAG%
will be returned = 1 and the status data variables D%(2) thru D%(4) will be returned unchanged. This
at least tells you that the motor is busy and unable to respond to a motion command other than an
emergency or decelerating stop. At this point you can decide whether to let the motor complete
whatever its doing and continue looping status reads until FLAG%=0 indicating its finished, or you
can intervene and abort whatever it’s doing with a stop command.

If FLAG% is returned = 0 then D%(2) thru D%(4) and STP# will contain status data as follows:

D%(2) contains the FINISH STATUS consisting of a byte of data:

4- 11

MSTEP-3 USER GUIDE

B7 B6 B5 B4 B3 B2 Bl BO

Last command code O-7

Decelerating stop on L3 or L4

Stop on limit Ll or L2

Motor on (MC) check flag

Stopped by a motor stop command

inish flag or interrupt flag

Bits BO thru B2 provide the code or MODE number of the last command. Bits B3 thru B7 tell you
what happened as follows:

B3 goes to logic “1” after L3 or L4 limit switch inputs have forced a stop.
Otherwise it is “0”.

B4 goes to logic “1” after Ll or L2 limit switch inputs have forced a stop.
Otherwise it is “0”.

B5 Is the motor ON signal (inverse of MC input). If the motor loses power, B5 is
“1” otherwise it is “0” assuming MC is connected to suitable power sensing
circuitry. If MC is left open circuit, then B5 will always be “0”. The PPMC-
103A will not execute any commands if MC is at logic “0”.

B6

B7

Is logic “1” if a motion command was aborted by an emergency stop or
decelerating stop command, otherwise it is “0”.

Corresponds to the interrupt flag. Whether interrupts are enabled or not,
whether a command was aborted or not, B7 is set to “1” at the completion of
the command. It is cleared by a second read of the finish status. In multiple
PPMC-103A systems sharing a common interrupt, the finish flags of each
controller can be polled to see which one generated the interrupt and the
interrupt service routine can clear the flag ready for the next command after
servicing the interrupt. This is the arrangement on the MSTEP-3 - see the
MSTEP.ASM listing & MODE 11.

If all the bits B3-B6 are zero, it indicates that the last command executed to completion and the step
count input was actually moved. You can implement various recovery routines on conditions that
might arise e.g.:

xxx10 IF (D%(2) AND &HO8)=&HO8 THEN GOSUB aaaa
'recover from stop at inner h.s. limit

xxx20 IF (D% (2) AND &HlO)=&HlO THEN GOSUB bbbb
'recover from stop at outer limit

xxx30 IF (D%(2) AND &H2O)=&H20 THEN GOSUB cccc
‘notify user there is no motor power

xxx40 IF (D%(2) AND &H4O)=&H40 THEN GOSUB dddd

xxx50
'recover from an emergency or decelerating stop
'continue program . . .

Obviously this can get quite complicated, but at least all the information you need to make a recovery
including the remaining step count (STP#) is returned by the MODE 8 status read.

4-12

CHAPTER 4: MODE CALLS

D%(3) contains the INPUT STATUS consisting of a byte of data:

B7 E

MC

16
t v B

Not Used

At
or on (MC)

B2 Bl BO

I
At L4

At L3

At'L2

Ll

point, BP or CNP

All these bits, with the exception of B4 & B5 which are indeterminate, will be high unless the motor is
at the limit switch position. Note that this is an instantaneous read of the limit switch states, if you
have overshot a limit, it will not store that information, the input status simply tells you the current
state of the limit switch inputs.

The main use of the input status is in determining whether the motor is at a limit, what limit it is and
hence performing recoveries or m-calibrations (homing to a reference) through appropriate software
routines. The individual limit switch inputs can be separated out with ANDing operations as in the
previous example.

D%(4) contains the OUTPUT STATUS consisting of a byte of data:

B7 B6 B5 B4 B3 B2 Bl BO

I I I I I I
Sl s2 s3 54 s5 Not used

Direction

I
Hold signal

The output status provides information on the PPMC-103A output state. Bits B7 thru B3 simply reflect
the current state of the phase drive outputs Sl-S5. B2 is the “HOLD” signal corresponding to HCK on
the connector. This goes high 3 milliseconds after the motor comes to a standstill but @B[onIy ifl you
have selected switching at standstill on in initialization MODE 12 (D%(8)=1 in initialization). The
intent of the external hold output is most likely to let you turn on some sort of electromechanical
holding brake as the holding torque with switching on is fairly low.

Bit Bl reflects the last rotation direction, “0” = clockwise, “l”= counterclockwise. Bit BO is not used and
is indeterminate.

STP# contains the remaining step count after a command has aborted. If the command completed
STP# will be zero. The sign of STP# is always positive regardless of whether you were going
clockwise or counter-clockwise at the time i.e. it is a true remaining step count.

Between FLAG%, D%(2) - D%(4) and STP#, the MODE 8 read status command provides a wealth of
information. Note that the byte formats of D%(2)- D%(4) are identical to those described in the PPMC-
103A data sheet (Appendix A) under finish status, input status and output status respectively. You

4- 13

MSTEP3 USER GUIDE

may find the data sheet useful in further understanding the various status conditions. MODE 8
actually does 4 consecutive read register operations and returns every conceivable status condition in
one operation, this is simply a convenience, you can use what you want and ignore the rest.

Entry Data:

MD%=8

D%(O)

D%(l) thru (14)

STr#

FLAG%

Exit Data:

D%(O) thru (1)

D%(2)

D%(3)

D%(4)

D%(5) thru (14)

STIJ#

FLAG%

Read status

Selects Axis A CO), Axis B (l), or Axis C (2)

Value irrelevant

Value irrelevant

Value irrelevant

Unchanged

Finish status

Input status

Output status

Unchanged

Remaining pulses (0 - 16,777,215)

0 if executed OK
1 if motor busy
2 if driver not initialized on Axis A
3 if driver not initialized on Axis B
4 if driver not initialized on Axis C
5 if MD% ,0 or ~15
6 if hardware error
1Oif D%(O) not 0, 1, or 2

Note that if FLAG%=1 then D%(2) thru D%(4) and STP# will be retuned unchanged as the PPMC-
103A is unable to execute a status command unless the motor is at standstill.

A typical program entry preceding MODE 8 might read as follows:

xxx10 MD% = 8 'select MODE number
xxx20 D%(O) = 0 'select Axis A
xxx30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

’ read status
2~x40 IF FLAG%=1 THEN GOT0
xxx30 'keep trying until motor stops
xxx50 IF FLAG%<>0 THEN PRINT "Error in MODE 8, # ";FIAG%:STOP
xxx60 ‘continue program, process

D%(2)-D%(4), STP#
etc.

NOTE: The loop in line xxx40 may not always be action you might want on finding the motor
busy. Change it to suit.

4-14

CHAPTER 4: MODE CALLS

4.10 MODE 9: LOAD EXTERNAL CLOCK DIVIDER

MODE 9 sets the division ratio of the external stepper clock divider. It applies only if you have
selected operation from the external 800 KHz on-board clock, D%(7)=1 in initializing MODE 12, or
user-supplied clock. Note that the frequency of the selected clock divided by the specified divider
ratio must be less than 267KHz for the PPMC-103A to work properly.

Entry Data:

D%(O)

D%(l)

thru (9)

FLAG%

Load divider

Selects A CO), B (11, Axis C

Sets divider 2-255

Value

Value irrelevant

irrelevant

Exit

D%(O) thru

STP#

FXAG%

Unchanged

0 executed OK
if driver initialized on A

3 driver not on Axis
4 if not initialized Axis C

if MD% or >14
if D%(O) 0 or

11 if <l or

A typical entry preceding 9 might as follows:

xxx10 MD% 10 MODE
xxx20 = 'select A

D%(l) 100 ratio 100
CALL (MD%, FLAG%)

divider
IF THEN "Error MODE #

xxx60 'continue program . . .

4.11 MODE 10: READ DATA FROM ALL PORTS

Mode 10 reads all ports and returns data regardless of whether the ports have been configured as
inputs or outputs.

Data:

MD% 10

D%(O)

data from ports

Selects A (0) B (1)

MSTEP-3 USER GUIDE

D%(l) thru (14)

STP#

EFLAG%

Value Irrelevant

Value Irrelevant

Value Irrelevant

Exit Data:

D%(O)

D%(l)

D%(2)

D%(l) thru (14)

STP#

EFLAG%

Unchanged

Port A data (range O-255)

Port B data (range O-255)

Unchanged

Unchanged

0 = Execute OK

A typical program entry preceeding Mode 10 might read as follows:

xx10 MD% = 10 'Select Mode

4.12 MODE 11: WRITE DATA TO ALL PORTS
Mode 11 writes data to all ports. No data is written to any port unless all output data is within range,
as detailed under Mode 10. Data may be written to ports that are configured as inputs; this will have
no effect on the input data.

Entry Data:

MD% = 11

D%(O)

D%(l)

D%(2)

D%(3) thru (14)

STP#

EFLAG%

Exit Data:

D%(O) thru (14)

STl?#

Write data to all ports

Selects Port A (0) or B (1)

Port A data (range O-255)

Port B data (range O-255)

Value Irrelevant

Value Irrelevant

Value Irrelevant

Unchanged

Unchanged

4-16

CHAPTER 4: MODE CALLS

EFLAG% 0 = Execute OK
11 = Dl <O or ~255
12 = D2 ~0 or ~-255

A typical program entry preceeding Mode 11 might read as follows:

xx10 MD% = 11 'Select Mode number
xx20 D%(O) = 0 'Select Port A
xx30D%(l) = 255 'Write 255 to Port A

4.13 MODE 12: WRITE DATA TO ONE PORT

Mode 12 writes data to a single port rather than to all ports, as Mode 11 does. DO selects the axis, Dl
selects the port, and D2 provides the data. Note that data should be in the range O-255 for the PA and
PB ports. If a port is in the input mode, the data is still written but will have no effect. If port number
or data is out of range, the Mode 12 operation is abandoned, no data is written, and an error code is
returned.

Entry Data:

MD% = 12

D%(O)

D%(l)

D%(2)

D%(3) thru (14)

STIW

EFLAG%

Exit Data:

D%(O) thru (14)

STP#

EFLAG%

Write data to one port

Selects Axis A (O), B (l), or C (2)

Selects Port A (0) or B (1)

Data (range O-255)

Value Irrelevant

Value Irrelevant

Value Irrelevant

Unchanged

Unchanged

0 = Execute OK
ll=DlnotOorl
12 = D2 CO or >255

A typical program entry preceeding Mode 12 might read as follows:

xx10 MD% = 12 'Select mode number
xx20 D%(O) = 0 'Select Axis A
xx30 D%(l) = 0 'Select Port A
xx40 D%(2) = 255 'Write 255 to Port A
xx50 CALL MSTEP (MD%, D%(O), STP#, FLAG%)
~~60 IF FLAG% -2 0 THEN PRINT "ERROR IN MODE 12, #";FIAG%:ST~P
xx70 'Continue program

4-17

MSTEP-3 USER GUIDE

4.14 MODE 13: TOGGLE AUXILIARY BIT

Mode 13 toggles the auxiliary bit of the PPMC-103A dependent on the selected axis.

Entry Data:

MD% = 13

D%(O)

D%(l) thru (14)

STr#

EFLAG%

Toggle auxiliary bit

Selects Axis A (O), B (l), or C (2)

Value Irrelevant

Value Irrelevant

Value Irrelevant

Exit Data;

D%(O) thru (14)

STr#

EFLAG%

Unchanged

Unchanged

0 = Execute OK
11 =DOnotOorl
12 = D2 <O or >255

A typical program entry preceeding Mode 13 might read as follows:

xx10 MD% = 13 'Select nude number
xx20 D%(O) = 0 'Select Axis A
xx30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)
xx40 IF FLAG <> 0 THEN PRINT "ERROR IN MODE 13, #";FLAG:STOP
xx50 ‘Continue program

4.15 MODE 14: ENABLE/DISABLE AN INTERRUPT

Either or both PPMC stepper motor controllers are capable of generating an interrupt to signify
completion of certain motion control commands. BASIC cannot be used to program interrupt service
routines as there is no ON INTERRUPT construct. If you wish to make use of the MSTEP3 interrupt
capabilities, you will have to resort to some assembly language programming and modification of the
driver. MODE 14 does a lot of the groundwork for you in installing an example routine and
enabling/disabling it. While it is impossible to predict your requirements in terms of what you might
want the interrupt service routine to do, as an example, this MODE installs a sample interrupt service
routine (label INTH: in the MSTEP.ASM source) which simply sounds a beep on generation of an
interrupt. The MSTEPASM source can be modified to change the INTH: service routine to your needs
and m-assembled.

MODE 14 performs the following:

1. Disables interrupts on the selected level (2-7).

2. Installs interrupt vectors to INTH: for that level.

3. Either enables or disables hardware interrupts on the selected level according to D%(2).

4-18

CHAPTER 4: MODE CALLS

WARNING It is your responsibility to avoid conflict with other peripherals when using
interrupts - see below.

It is important to note that MODE 14 does not save and restore vectors to any previous interrupt
service routine that may have been serviced on the selected level. If you need this capability for
sharing devices on the same level, you need to expand and modify the driver code. The assumption
has been made that if you are going to use interrupts at all, you will dedicate one of the hardware
interrupt levels 2 thru 7 to the MSTEP-3. If interrupts are disabled (default power up & initializing
conditions) then the MSTEP-3 interrupt output is tri-stated and will not interfere with any device on
the level. The operating level is selected by the jumper block labelled “IRQ LEVEL” on the MSTEP-3
board.

If interrupts are enabled while the selected motor is busy, they will not take effect until execution of
the following command. Only certain motion control commands are able to generate an interrupt on
completion. These are:

MODE 2: Single step or jog.
MODE 3: Accelerate/decelerate forSTP# pulses.
MODE 4: Constant speed forSTP# pulses.
MODE 5: Constant speed to outer limit switch.
MODE 6: High speed to inner limit switch.
MODE 7: Move to base or reference point.

Because the interrupts from Axes A, B, and C are OR’d together by the MSTEP-3 hardware, if all are
enabled you will need to poll the status of both controllers to determine which one generated the
interrupt. This requires a read finish status register command which in turn will clear the interrupt
signal from the requesting controller. This may be part of your Interrupt Service Routine (as in the
example handler) or provided by your foreground program by a call to MODE 8 as dictated by your
needs.

The following list provides the normal IBM reserved functions for Hardware Interrupts 2 thru 7.

LEVEL FUNCTION

2 Usually free PC & PC/XT, cascade input on PC/AT
3 COM2: (if installed)
4 COMl: (if installed)
5 LPT2: (if installed)
6 Floppy disk (always used)
7 LPTl: (if installed)

If you do not have the particular hardware item installed, it is safe to use that level. Generally, Levels
2 or 5 work out well on PCs and PC/XTs, and Level 5 on PC/ATs. Never use Level 6 as you will mess
up the floppy disk operation. Levels 3,4, and 7 may be available depending on what equipment you
have installed and whether you are using it you can often share with a peripheral that your program
will not be using as long as the peripheral’s interrupt hardware is disabled.

Entry Data:

MD% = 14

D%(O)

Enables/disables interrupt

Selects Axis A (O), Axis B (l), or Axis C (2)

4-19

MSTEP3 USER GUIDE
D%(l)

D%(2)

D%(3)

D%(4) thru (9)

STP#

FLAG%

Exit Data:

D%(O) thru (14)

STP#

FLAG%

Value irrelevant

Enables (1) or disables (0) interrupt

Interrupt level (2 - 7); if D%(2) = 0 (disable), value of D%(3) is irrelevant.

Value irrelevant

Value irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK
2 if driver not initialized on Axis A
3 if driver not initialized on Axis B
4 if driver not initialized on Axis C
5 if MD% ~0 or >15
10 if D%(O) not O,l, or 2
12 if D%(2) not 0 or 1
13 if D%(2)=1 and D%(3) <2 or ~7

A typical program entry preceding MODE 11 might read as follows:

xxx10
xxx20
xxx30
xxx40
Xxx50
~~2~60
xxx70
YYYl 0
YYY20
YYY30
YYY40
YYY50
YYY60
YYY70

MD% =ll 'select MODE number
D%(o) = 0 'select Axis A
D%(2) = 1 ’ enable interrupt
D%(3) = 5 ‘on level 5
CALL MSTEP (MD%, D%(O),STP#, FLAG%) ’ enable interrupt
IF FLAG%<>0 THF.N PRINT "Error in MODE 11, # ";FLAG%:STOP

'continue program . . .

i li
and ii you want to disable interrupts at any point

qo, = 0
'select MODE number
'select Axis A

D%(2) = 0 'disable interrupt
CALL MSTEP (MD%, D%(O),STP#, FLAG%) 'disable interrupt
IF FLAG%<>0 THEN PRINT “Error in MODE 11, # I'; FLAG%: STOP

‘continue program . . .

4.16 MODE 15: INITIALIZATION

MODE 15 initializes the driver and MSTEP-3 hardware and must be executed before using any of
the other MODES . Initializing must be done separately for each Axis (A, B, and C). This mode
performs the following operations:

1. Disables hardware interrupts.

2. Checks and stores the MSTEP-3’s Base I/O Address.

3. Checks for presence of MSTEP-3 board at this address.

4. Checks the validity (range) of all initialization data.

5. Resets the PPMC-103A controller.

6. Loads the controller with initialization data.

4-20

CHAPTER 4: MODE CALLS
7. Sets initialization flags to enable selection of other MODES.

The Base I/O Address is checked to be in the legal range of 256-1016 (Hex 100 - 3F8) for the PC. If not,
Error Exit #19 will occur. If OK, the Base I/O Address is stored for use by other MODES on m-entry
to the CALL.

A short read/write test is made to the MSTEP-3 control register which is sufficient to detect the
presence or absence of the board at the specified I/O address. If no board is detected (absent board,
wrong base I/O address), Error #6, hardware error is returned. Error #6 may also be returned by this
MODE or any other MODE if the PPMC-103A controller fails to perform correct handshakes on inputs
and outputs of commands and data (see Appendix A). In this case, Error #6 may be indicative of a
failure of the PPMC-103A controller especially if one axis works and the other does not.

All the initialization data is checked to be within valid limits. Any of the initializing data variables
D%(N) that is outside acceptable limits will return error code lO+N (this is true for all MODES). Also
in the interests of consistency D%(O) always specifies the axis selected (0 = A, 1 = B, 2 = C) and D%(l)
the constant speed rate in all MODES. Initialization MODE 15 makes use of all 10 elements of Da(*)
and is the only MODE to require so much input data.

If initialization is successful, any other MODE may be selected on subsequent CALLS. Trying to
select any other MODE before performing initializing MODE 0 will give rise to Error # 2,3, or 4
depending on whether Axis A, B, or C is uninitialized.

Entry Data:

MD% = 15

D%(O)

D%(l)

D%(2)

D%(3)

D%(4)

D%(5)

D%(6)

D%(7)

D%(8)

D%(9)

D%(lO)

D%(ll)

D%(12)

D%(13)

D%(14)

STP#

FLAG%

(Value Irrelevant)

Axis selector: A = 0, B = 1, C = 2

Start up rate divider, RA, range 20-255

High speed run rate divider, range 20-255

Acceleration/deceleration pulses, 4-11,220

Motor type, valid codes 1,2 or 3 (see below)

Full step (0) or half step (1) MODE (see below)

Logic polarity of Sl-5,l = positive, 0 = inverted

Clock source, 0 = internal, 1 = on board external, 2 = external user input

Power switching at standstill, 0 = off, 1 = on

“On” time for power-switching frequency

“Off” time for power-switching frequency

Port A direction: 1 = output, 0 = input

Port B direction: 1 = output, 0 = input

Auxiliary bit: 0 = low, 1 = high

Base I/O address, valid range lOO-3F8 hex

Value irrelevant

Value irrelevant

4-21

MSTEP-3 USER GUIDE

Exit Data:

D%(O) thru (14)

STP#

FLAG%

Unchanged

Unchanged

0 if initialization OK
5 if MD% <O or >15
6 if hardware error, no board, incorrect I/O address lO+N if D%(N) not
in valid range

A typical start of program initializing sequence would be as follows:

100 DEF SEG = &I-I6000
110 BLOAD "MSTEP.BIN"
120 MSTEP = 0
130 DIM D%(14)
140
150 MD% = 15
160 FLAG% = 0
170 STP# = 0

'segment to load driver
'load it at zero offset
'call offset
‘declare data array
'declare other CALL variables
'mode number
'call error flag variable
'step count (must be double-
'precision)

180 '
190 D%(O) = 0 '0 =Axis A
200 D%(l) = 125 'Start Bate Divider (125 =

'slowest)
210 D%(2) = 20 'high-speed run rate divider

'(20 = medium)
220 D%(3) = 200 'acceleration/deceleration

'steps
230 D%(4) = 2 'motor code (2 = 4-phase)
240 D%(S) = 0 "excitation (0 = full step)
250 D%(6) = 1 'logic polarity (1 =inverted)
260 D%(7) = 0 'clock source (0 = internal)
270 D%(8) = 1 'switching at standstill (1 =

'On)
280 D%(9) = 16 'On time for power switch

'frequency (16 = time on)
290 D%(lO) = 32 'Off time for power switch

'frequency (32 = time off)
300 D%(ll) = 1
310 D%(12) = 1

'Port A direction (1 = output)

320 D%(13) = 0
'Port B direction (1 = output)

330 D%(14) = &ii300
'Auxiliary Bit (0 = low)
'Base Address = &H300

340 'initialize
350 GALL MSTEP (MD%, D%(O),STP#, FLAG%)
360 IF FLAG%<>0 TBEN PRINT "Error in initializing # vr;FLAG%:STOP
370 'continue program

Much data must be provided at initialization, but it is required only once! Let’s examine the
initializing parameters in more detail:

D%(O) Determines which axis is selected. If D%(O) = 0, the CALL operates on Axis A
motor and encoder; if D%(O) = 1 then the CALL operates on Axis B motor and
encoder. Note that each each axis must be initialized individually and may
have different initializing parameters, motor types etc.; and if D%(O) = 2, then
CALL operates on C axis.

4-22

CHAPTER 4: MODE CALLS

3-PHASE MOTOR

FULL STEP HALF STEP

4-

MD% = 12, D%(4) = 1, MD% = 12, D%(4) = 1,

D%(5) = 0 D%(5) = 1

.PHASE MOTOR

FULL STEP

MD% = 12, D%(4) = 2,

D%(5) = 0

HALF STEP

MD% = 12, D%(4)

D%(5) =I

= 2,

5-PHASE MOTOR

FULL STEP HALF STEP

MD% = 12, D%(4) = 3,

D%(5) = 0

MD% = 12, D%(4) = 3,

D%(5) = 1

DENOTES WINDING

ENERGIZED

Figure 4-1. Stepping sequence patterns for 3-, 4-, and B-phase full/half step
motors. Note: when using STA-STEP, set D%(6) = 0.

D%(l) Controls the start up rate of the motor in MODES 3 and 6 which involve
acceleration and deceleration. (D%(l) corresponds to RA in the PPMC data
sheet). The start up rate with internal clock (D%(7)=0):

Rate = 25,000 / D%(l) steps per sec.

With external user clock input (D%(7)=2):
Rate = Ext. freq. / D%(l) steps per sec.

4 - 23

MSTEP-3 USER GUIDE
With onboard 8OOKHz external clock (D%(7)=1):

Rate = 800,000 / (D%(l)*(X+l)l steps per sec.
where X = external divider ratio set in MODE 10.

The start up rate should be chosen slow enough so that the motor does not skip
pulses on getting moving. If in doubt, set D%(l) = 255 (slowest).

D%(2) Controls the high speed run rate of the motor in MODES 3 and 6 which involve
acceleration and deceleration. For internal clock (D%(7)=0):

Rate = 25,000 / D%(2) steps per sec.

With external user input clock (D%(7)=2):
Rate = Ext. freq. / D%(2) steps per sec.

With onboard 800KHz external clock (D%(7)=1):
Rate = 800,000 / (D%(2)*(X+l)) steps per sec.

where X = external divider ratio set in MODE 10 The high speed run rate
should be chosen so that the motor does not skip pulses at high speed. This
usually requires some judicious experimentation. If you start off with
D%(21=150 and then reduce it until the motor shows signs of distress and then
back off a a little, it will generally work out OK.

D%(3) Controls the number of steps that the motor will accelerate from the start rate to
the high speed run rate and vice versa decelerate. The trapezoidal velocity
profile and the controlling parameters are shown below in Fig.3.4. The
acceleration/deceleration step count D%(3) may be anywhere from 4 to 11,220.

RATE
t

HIGH SPEED - - - - - - - - - SET By D%(2)

/

t /

VELOCITY PROFILE

START RATE ----
SET BY D%(l)

/

+ D%(3)
L-

D%(3)
STEPS STEPS -+

- STP* STEPS -

STEkS

Figure 4-2. Velocity profile controlling parameters.

D%(4) Sets the motor code (1 - 3) depending on the winding arrangement. 3-phase
motors are Code 1,4-phase motors are Code 2, and 5phase motors are Code 3.
Another way to determine the motor code is to determine the required
switching sequence as shown in Figure 4-l. Note that 3-phase motors use only
phase outputs Sl-S3,4-phase use Sl-S4 and 5-phase use all SlS5. The motors
additionally may be operated in full-step or half-step as set by D%(5). If you
are not using the PPMC-103A phase outputs (e.g. in conjunction with an STA-
STEP) then the motor code is irrelevant. D%(4) corresponds to the motor code
parameter on the PPMC-103A data sheet.

D%(5) Selects the stepping MODE, full-step (0) or half-step (1). It corresponds to the
excitation parameter of the PPMC-103A data sheet (see Appendix A). A

4-24

CHAPTER 4: MODE CALLS
standard 200 step/revolution motor (e.g. STEP-MOTl) will step 1.8 degree
increments in full-step MODE or 0.9 degree increments (400 steps/revolution)
in half-step. The half-step MODE offers finer resolution and smoother stepping
but at the cost of reduced torque and maximum operating speed compared to
full-step.

D%(6) Controls the logic polarity of the Sl-S5 phase drive outputs. D%(6)=1 selects
positive true logic and D%(6)=0 selects active low negative logic. The choice
here depends on the driving hardware. For the STA-STEP set D%(6)=0. If you
are not using the phase outputs Sl-S5, the choice is irrelevant.

D%(7) Selects the clock source: D%(7) = 0 : Selects internal PPMC 12.5KHz source = 1 :
Selects on board 1OOKHz + divider = 2 : Selects external user input For most
purposes the internal clock source will be adequate. If you need step rates
above 625 pps or synchronized stepping of both axes, use one of the external
options.

D%(8) Controls switching at standstill, D%(8) = 0 turns switching off, D%(8) = 1 turns
it on. At standstill the motor will normally have maximum current flowing in
the windings which causes the greatest ohmic heating and temperature rise of
the motor. One way of reducing this heating is to chop the phase drive outputs
when the motor has reached standstill. With switching on, chopping
commences 100 milliseconds after the motor reaches standstill at a frequency of
about 2.2KHz and a duty cycle of 30%. As soon as the motor is commanded to
move, chopping ceases and will automatically resume on standstill. Chopping
tends to reduce the holding torque, raise the driver transistor switching losses,
reduce heating of the motor and may produce audio noise from the motor.
There are thus advantages and disadvantages associated with this feature.

D%(9) Set the ON time for the switching frequency of the chopping of the phase
outputs, Sl - S5, when the motor is at standstill. The Excitation Signal
Switching Bit must be set during Initialization to activate the phase chopping.

D%(lO) Set the OFF time for the switching frequency of the chopping of the phase
outputs, Sl - S5, when the motor is at standstill. The Excitation Signal
Switching bit must be set during Initialization to activate phase chopping.

D%(ll)

D%(12)

D%(13)

D%(14)

Set the I/O direction for Port A. For D%(ll) = 0, Port A is input; for 1, Port A is
output.

Set the I/O direction for Port B. For D%(12) = 0, Port B is input; for 1, Port B is
output.

Select the logic level on Pin 36 of PPMC-103A as default. For D%(13) = 0, logic
is low; for 1, logic is high.

Selects the base I/O address which must correspond to the dipswitch setting on
the board. IBM PCs and XTs decode addresses from hex 200 - 3FF. IBM ATs
decode addresses from hex 100 - 3FF. The driver checks for a valid address in
the range lOO-3F8 hex although the hardware can physically be set from
address 0 - 3F8 hex.

In our examples of programming all the different MODES, we have consistently used D%(*) as the
data array. You may prefer to keep your initialization parameters in another array e.g. IX%(*) and not
overwrite its values when subsequently selecting other MODES. This is easy to implement:

xxx00 DIM IX%(g), D%(9)
xxx10 MD% = 12
xxx20 IX%(O) = 1 : IX%(l) = 200 : 1X%(2) = 50 etc.

4 - 25

MSTEPS USER GUIDE

then:

xx100 CALL MSTEP (MD%, IX%(O),STP#, FLAG%) initialize

after this use Da(*) for other MODES:

xx200 MD% = 3
xx210 D%(O) = 0
xx220 STP# = 999
xx230 CALL MSTEP (MD%, D%(O),STP#, FLAG%)

'accel/decel
. . _ etc.

4.17 INTERPRETED BASIC (GW, COMPAQ, IBM, ETC.)

Example

BASIC Call:

BASIC Declaration:

CALL mstep(MD%, D, STP#%, FLAG%)

NONE NECESSARY IN BASIC SOURCE CODE. However, a
“BLOAD” (Binary load of .BlN file) of the binary file containing the
external subroutine must be done prior to calling that subroutine.

Example Program Illustrating a BASIC CALL:

1***

;; I* *

30 '* MSTEP-3 Demonstration program *

40 '* Keithley MetraByte Corporation *
50 r***

60 '
70 SCREEN O,O,O:WIDTIi 8O:KEY 0FF:CLS
80 LOCATE l,l,O 'turn off cursor
90 LOCATE 25,l:PEINT"Metrabyte MSTEP-3 Demo program Loading

MSTEP.BIN driver"; :LOCATE 1,l
100 '
110 I--- Load MSTEP.BIN driver --

120 CLEAR, 48000! 'set workspace to 48000 bytes

130 DEF SEG = 0
(for example)

'set zero prior to PEEK's to

140 LS = 256 * PEEK(&H511) + PEEK(tH510)
zero segment

150 SG = LS + 48000!/16
160 DEF SEG = SG

'Basic's data segment
'end of Basic’s data segment
'this is where to load

MSTEP.BIN driver
170 BLOAD "MSTEP.BIN",O 'load driver with zero offset
180 '

330 I--- Declare other CALL variables -------------------------------------

340 MD% = 15 'mode number
350 MSTEP = 0 'call offset
360 FLAG% = 0
370 STP# = 0

'call error flag variable
'step count (must be double

380 ' precision)

4-26

CHAPTER 4: MODE CALLS

390 I--- Display menu _______--

2590 I--- MODE 15: Initialize ---

2600 CLS
2610 LOCATE 25,l:PRINTWetrabyte MSTEP-3 Demr, program

Initialize - mode 15”; : LOCATE 1,l
2620 GOSUB 3250 'display axis selected

2830 CALL MSTEP (MD%,D%(O) ,STP#,FLAG%)
2840 IF FLAG%<>0 THEN GOSUB 3300:IF E%=O THEN GOT0 2600
2850 FUWURN

3460 ’
3470 END

NOTE Lines 120 through 160 will not work in GW BASIC.

4.18 QUICKBASIC

Example

BASIC Call:

BASIC Declaration:

CALL QBPIOINT(MD%, VARl’TR(D%(O)) STl’#%, FLAG%)

DECLARE SUB QBPIOINT (MD%,BYVAL DUMMY%, FLAG%)
The Declaration tells QuickBASIC that the subroutine expects
three arguments and that the middle argument is to be passed
by value. Remember that BASIC normally passes all arguments
by reference (address). This is the only method for passing an
array to a subroutine in BASIC: passing the value of the address of
the array in effect passes the array by reference. To make use of
the callable assembly routine, a “.QLB” (Quick Library) file is
created out of the original .ASM source file. Although the format
of the subroutine is identical to those used by interpreted BASIC
packages, both the Quick BASIC integrated development
environment (QB.EXE) and the command line complier (BC.EXE)
expect the subroutine to be in a specially formatted .QLB library
file. Unlike interpreted BASIC packages, Quick BASIC actually
links to the assembly .QLB library file so it is not necessary to
include the “jmp QBPIOINT” instruction at location 0 (of the
source file) as in interpreted BASIC.

4 - 27

MSTEPS USER GUIDE

Example Program illustrating a QuickSASIC CALL:
r**
I* *
I* MSTEP-3 Demonstration program *
I* for Quick Basic *
I* Keithley MetraByte Corporation *
I* *
I**
8

DIM LS(l7), PS(l4), U$(14), D%(l4), U(l4), W(3)
COMMON SHARED D%()
DECLARE SUB QBMSTEP (MD%, BYVAL DUMMY%, STP&, FLAG%)
SCREEN 0, 0, 8: WIDTH 80: KEY OFF: CLS
LOCATE 1, 1, 8 'turn off cursor
LOCATE 25, 1: PRINT "MSTEP-3 Demo program loading MSTEP.BIN driver";
LOCATE 1, 1
t

I--- Declare arrays --
1

'Default parameters for initializing controllers
P$ (1) = *I- Start rate divider:
P$(P) = W High speed run rate divider:
PS(3) = II Acceleration/deceleration steps:
P$(4) = (I Motor type:
PS(5) = II Excitation:
P$(6) = (1
P$(7) = W

Logic polarity:
Clock source:

P$(8) = 11 Switching at standstill:
PS(9) = " ON time for power switch freq:
P$(lO) = It OFF time for power switch freq:
P$(ll) = 11 Port A direction, O=in, l=out:

w; = " Port B direction, O=in, l=out:
= 11 Auxiliary bit, l=high, O=low:

P$(14) = Vl Base I/O address:
I

": U(1) = 125 'slowest
Ir: U(2) = 20 'medium
rr: U(3) = 200 '200 steps
rr: U(4) = 2 '4 phase
Ir: U(5) = 0 'full step
": u(6) = 1 'inverted
w: U(7) = 0 'internal
": U(8) = 1 'on
": U(9) = 16 'time on
": u(l0) = 32 'time OFF
11: U(11) = 1 'output
m: U(12) = 1 'output
11: U(13) = 0 'low
'I: U(9) = &H300

I--- Declare other CALL variables -------_----------------------------

MD% =15 'mode number
FLAG% = 0 'call error flag variable
STP& = 0 'step count (must be double precision)
I--- Display menu ---

3310 I--- MODE 15: Initialize ---

3320 CLS
LOCATE 25, 1: PRINT Wetrabyte MSTEP-3 Demo program

Initialize - mode 15"; : LOCATE 1, 1

FOR 1% = 1 TO 14
IF U(I%) > 65535! OR U(I%) < -32768! THEN D%(I%) = -1: GOT0 3550
IF U(I%) > 32767! THEN D%(I%) = U(I%) - 65536! ELSE D%(I%) = ~(1%)

3550 NEXT 1%

CALL &STEP(ED%, VARPTR(D%(O)) STP&, FLAG%)
IF FLAG% <> 0 THEN GOSUB 4120: ;F E% = 0 THEN GOT0 3320
RETURN

I

END

4-28

CHAPTER 4: MODE CALLS

4.19 MULTIPLE MSTEP-3s IN ONE SYSTEM

What if you wish to operate more than one MSTEP3 in a system? To avoid conflicts, each MSTEP-3
must have a different base I/O address. For simultaneous operation using interrupts select a different
interrupt level for each board. It is possible to share an interrupt level if the operations can be
sequential instead of simultaneous. Each board must also be assigned its own CALL routine. To do
this start by loading the MSTEP.BIN routine at different locations in memory:

xxx10 SGl = &H3000
xxx20 SG2 = &H4000
xxx30 DEF SEG = SGl
xxx40 BLOAD "MSTEP.BIN",O
xxx50 DEF SEG = SG2
xxx60 BLOAD "MSTEP.BIN",O

Now the CALL appropriate to each board can be entered as required. Note that each CALL is
preceded by a DEF SEG appropriate to that board:

yyyl0 DEF SEG = SGl
yyy20 CALL MSTEP (MDl%, Dl%(O), STPl#, FLAGl%)
yyy30 DEF SEG = SG2
yyy40 CALL MSTEP (MD2%, 02%(O), STP2#, FLAG2%)

‘etc.

If your system requires several MSTEP-3s and a compiled language, consult the manufacturer’s
technical support group for information.

4 - 29

MSTEP3 USER

4-30

CHAPTER 5

USING THE ACCESSORIES

5.1 M3-DRIVE DESCRIPTION
The M3-Drive is built upon the Superior Electric 230-TH stepper motor drive module. The 230-TH is a
stepper driver capable of driving a four-phase stepper motor with winding currents ranging from 1 to
2 amps per phase. It accepts the pulse and direction inputs from the MSTEP-3 to produce either full
(200 steps per revolution) or half (400 steps per revolution) step motion from the motor. Half-step
operation is often the preferred method since it produces smoother motion with less overshoot for
each step. The M3-Drive accepts the AUX bit from the MSTEP-3 and uses it to set up the driver
according to the following table:

AUX BIT MODE STEPS/REV.

0 Half Step 400
1 Full Step 200

The board portion of the Drive contains a jumper pad that allows easy selection of the winding current
from the following values:

1 .OO Amps per phase

1.25 Amps per phase

1.50 Amps per phase

1.75 Amps per phase

2.00 Amps per phase

Winding current is factory-preset for l.OOA. However, you may change the setting according to the
requirements of your motor. Note that if no jumper is installed the current defaults to 2.0 Amps per
phase.

The M3-Drive comes with an attached heat sink. Operation without the supplied heat sink or some
equivalent is not recommended, since it could cause the driver to overheat.

5.2 CONNECTING THE M3-DRIVE

All connections between MSTEP-3 and the M3-Drives use mass-terminated cables (such as
MetraByte’s CDAS-2000). All connections to the motors, limit/home switches, and I/O ports use
terminal blocks that allow simple screw-driver connections.

Up to three M3-Drives and their power supplies connect to a single MSTEP-3 for 3-axis motion
control. Figure 5-l shows how the MSTEP-3 is connected to the three M3-Drives and the three motors
in a “daisy-chain” arrangement. Note that the M3-Drive closest to the MSTEP-3 always controls the A-
axis motor, the next one the B-axis, and the last one the C-axis. This order of control is automatic; it
requires no setting of jumpers or switches.

5-l

MSTEP-3 USER GUIDE

Figure 5-l. MSTEP-3 daisy chained to three W-Drives.

Access to the I/O ports follows a similar method. The A Axis M3-Drive allows access to I/O Port A,
while the B Axis M3-Drive allows access to I/O Port B access. Note that the I/O port terminals on the
C-axis M3Drive are unconnected. Likewise, since there is only one external clock input for the three
axes, it is brought out on the A-axis driver. Connecting a clock source to the external clock terminals
of the B and/or C axes will have no effect.

5.3 POWER SUPPLY SELECTION

The M3-PWR-24 supply is capable of powering one M3-Drive connected to a l-to-2 Amp-per-phase
motor. To use it, simply connect the wires to the proper power supply terminals on the M3-Drive (the
M3-Drive board is marked showing the color of the wires from the M3-PWR-24.).

Other power supplies are also usable. Note that when a phase is turned off, the 230-TH dumps the
energy from the motor’s collapsing magnetic field back into the power supply. The power supply
should therefore have a sufficiently large output capacitor to absorb this charge and prevent
damaging voltage spikes. The M3-Drive includes a 4700 f, 50V capacitor to meet this requirement
(this is important when powering the unit from a regulated power supply, since regulated supplies
often have very little output capacitance).

If you have a need to power several motors from one power supply, the instructions for the 230-TH
call for isolation diodes in series with each unit. The M3-PWR-24 supplies the necessary diode (a
power Schottky diode to reduce voltage drop and heat) so that no additional diode is required. This
diode also protects the unit in the event that the power supply leads are inadvertently connecter in
reversed order. If that should happen, there will be no power to the 230-TH and thus no power to the
motor.

5.4 CONNECTING A MOTOR TO THE M3-DRIVE
For your convenience, Keithley MetraByte sells a stepper motor in a popular size (Size 23). This motor
is rated for 1A per phase; if you plan to use it, set the current jumper accordingly.

In general, stepper motor manufacturers rate their motors for a unipolar driver. This type of driver
provides current to only one-half the winding of each phase at any given time. Typically, the center
tap is tied to a positive voltage, and one end of the winding is grounded at any given time. The
magnetic field is reversed by grounding the opposite end of the winding.

The M3-Drive is a bipolar driver: only two leads from each winding are used, and the driver causes
the direction of the current to be reversed within the winding. A user’s first instinct is to connect the
full winding across the driver, which produces the following three effects:

5-2

CHAPTER 5: USING THE ACCESSORIES

1. The heat produced by the ohmic power dissipation within the coil doubles, because the same
current is now passed through twice the resistance. This effect may be countered by reducing the
current to 0.707 times the rated current, producing the same power loss as the full current through
a half winding but producing 1.414 times the Ampere-turns within the winding.

2. This increase in the Ampere-turns results in only a slight increase in torque at low step rates,
because most motors are designed to be near magnetic saturation at their rated current.

3. Doubling the number of turns actually increases the inductance of the winding by a factor of 4.
Since the voltage across the inductor is the same, the rate at which the current increases is reduced
by this same factor. This means that at high step rates, the current will not have time to slew to
the full rated current.

Thus, it is generally best to only use one-half of a center tapped winding of a motor when connecting
it to a bipolar drive such as the M3-Drive. Table 5-l shows this method of connecting MetraByte’s
STEP-MOT1 to the M3-Drive.

If you connect a STEP-MOT1 to an M3-Drive according to Table 5-1, you get counter-clockwise
rotation (viewed from the shaft-end of the motor) when you specify a positive direction. With other
types of motors, you will have to experiment to determine the motor direction. Should you get
movement opposite to the direction you need, you may either modify your software to change
direction, or swap the leads of any one phase of the motor (swapping the leads to both phases will
produce a double reversal back to the original directions). Since Keithley MetraByte obtains STEP-
MOTl’s from two different sources, the color coding of the wires is shown for either VEXTA or SLO-
SYN motors.

Table 5-l. STEP-MOT1 to M3-Drive connections for SUPERIOR ELECTRIC and
VEXTA motors.

M3-DRIVE
TERMINAL

AMERICAN SUPERIOR
PRECISION INDUSTRY ELECTRIC

COLOR COLOR
VEXTA
COLOR

A-HIGH WHITE/GREEN WHlTE/GREEN BLACK
A-LOW WHITE WHITE YELLOW
B-HIGH WHITE/RED WHITE/RED RED
B-LOW BLACK BLACK WHITE
NO CONN. RED RED BLUE
NO CONN. GREEN GREEN GREEN

The pin labeled /AWO on the M3-Drive is the All Windings Off pin. With this pin open, the M3-Drive
operates normally, but connecting it to a pin marked RET (for Return) causes current to all windings
of that motor to be turned off. This allows the motor to be manually moved to the desired position.

5.5 DIRECT CONNECTIONS TO THE MSTEP-3
If you desire to connect some driver other than the M3-Drive to an MSTEP-3, you may do so either
directly from the connector at the rear of the MSTEP-3 or by using an STA-50. Since the connector
used at the rear of the MSTEP-3 does not follow the convention of odd-numbered pins on one side and
even-numbered pins on the other (while the one at the end of the CDAS-2000 cable does), the signals
appear on different numbered pins depending on which connector you are looking at. For this reason,
Table 5-2 shows the pin numbers at both ends of the cable. If you are using an STA-50 to make
connections, use the numbers shown for the connector at the MS-Drive end of the cable.

5-3

MSTEP-3 USER GUIDE

Should you wish to use a driver that controls the transistors of a unipolar drive directly, the signals for
this are brought out via the Connector P2 of the MSTEP-3. You will need to route this cable out of
your computer. Table 5-3 shows the connections to P2. Please note that the “TURBO” mode can NOT
be used if you are using a drive connected to the P2 connector.

Table 5-2. Connections to the MSTEP-3 via a CDAS-2000 Cable.

A-AXIS I B-AXIS I C-AXIS

FUNCTION
MSTEP.3 1 M3-DRIVE MSTEP-3 M3-DRIVE MSTEP-3 M3-DRIVJZ

END END END END END END

LIMIT 1 27 4 6 11 20 39
LIMIT 2 28 6 32 14 45 40
LIMIT 3 26 2 7 13 21 41
LIMIT 4 1 1 33 16 46 42

MON 2 3 8 15 22 43
HOME 3 5 34 18 47 44
STEP 5 9 36 22 24 47
DIRECTION 4 7 10 19 49 48
HOLD 29 8 9 17 48 46
AUX. BIT 30 10 35 20 23 45
GROUND 31 12 37 24 50 50

FUNCTION

I/O PORT A l/O PORT B

MSTEP-3 It&DRIVE MSTEP3 M3-DRIVE

END END END END

BIT 0 14 27 43 36

BIT 1 39 28 18 35
BIT 2 15 29 19 37
BIT 3 40 30 44 38
BIT 4 13 25 42 34
BIT 5 38 26 17 33
BIT 6 12 23 41 32
BIT 7 11 21 16 31

EXTERNAL 25 49
CLOCK

Table 5-3. Connections to Connector P2.

SIGNAL A-AXIS PIN B-AXIS PIN C-AXIS PIN

PHASE 1 7 6 1
PHASE 2 8 5 2
PHASE 3 9 14 3
PHASE 4 10 4 18
PHASE 5 11 15 17
GROUND 12 13 16

5-4

CHAPTER 6

STEPPER MOTORS
&

TRANSLATORS

6.1 HOW A STEPPER MOTOR WORKS

The diagrams in Figure 7-l will assist you in understanding how a stepper motor operates. In a real
stepper motor there are are more poles on the stator and rotor, but the operation is similar. The rotor
of the simplified version consists of a cylindrical magnet sandwiched between two discs each with 3
poles on them. The discs are rigidly clamped together and a half pole pitch out of step with each other
(in this case 60 degrees out of alignment). Since the poles stick out (salient poles) on both the stator
and the rotor, there are positions where the magnetic circuit or reluctance is at a minimum and the
rotor will tend to align in these preferred positions even when the power is off. As soon as power is
applied to the windings, this “locking” effect becomes even more pronounced, the external torque
required to move the rotor to the next preferred position is known as the holding torque. The holding
torque with power applied is usually about 10 times the holding torque with the stator de-energized.

By turning the stator windings on in sequence, it is possible to pull the rotor around in either direction
according to the sequence. The diagrams show 4 steps of the motor, note how the windings are
alternately energized and the current reversed to accomplish the stepping (remember like poles repel
and unlike poles attract!). In this example each switching of the windings results in the rotor moving
30 degrees, so this motor would have a 30 degree step angle and take 12 steps to complete a
revolution.

Most commercially available stepping motors have finer step angles of 1.8,7.5 and 15 degrees with the
1.8 degree (or 200 step/rev) motor being one of the most popular. Smaller steps require more poles on
the rotor and stator, in fact for 200 step/rev. motors, the rotor resembles two 50 tooth gearwheels
although the stator uses some tricks by grooving the poles to reduce the number of windings and
hence complexity. The permanent magnet of the rotor is magnetized to the maximum extent by the
manufacturer within a magnetic circuit similar to the stator and cleverly assembled without removing
the magnetic circuit. If the rotor is removed from the stator, the loss of the magnetic circuit will tend
to self demagnetize the magnet. This leads to a loss of torque on i-e-assembly as the magnet is no
longer as powerful. If you want to see what a real stepper motor looks like inside, bear this in mind
before you tear a good motor apart. Some stepper motors do not use a permanently magnetized rotor,
but operate similarly to those that do, except that they have zero holding torque when de-energized.
Some stepper motor drives use a technique known as microstepping which leads to very small step
angles of a few tenths of a degree. Instead of switching the windings completely on or off, the
windings are energized partially so that the resultant magnetic field vector is moved in much smaller
increments than the pole angles. This requires a much more complex drive circuit and a slightly
different type of design of stepping motor. The MSTEP-3 cannot microstep motors directly, although
it can provide the pulse and direction outputs for a microstepping translator.

6-l

MSTEP-3 USER GUIDE

FRONT SIDE VIEW
VIEW Kmn SO”7”

noTOR porn.

START
/----7x

3FF
w

4

1 4 ON

ROTOR

ASSEMBLY

N N

OFF OFF

i + OFF

Figure 6-l. Stepper motor operation.

6.2 TORQUE VERSUS SPEED
As the stepping rate or speed of rotation of a stepping motor rises, the torque that the motor can
provide tends to fall. A typical torque/speed curve is shown in Figure 6-2.

, TORQUE

SPEED
b

Figure 7-2. Typical torque/speed curve of a stepping motor.

6-2

CHAPTER 6: STEPPER MOTORS & TRANSLATORS

As the speed rises, the winding currents tend to reduce due mainly to two effects. In turn the reduced
winding current leads to reduced torque. The two effects that cause this are as follows:

Back EMF As the magnetized rotor turns within the stator, it induces a voltage in the
windings which opposes the driving voltage. This in turn reduces the winding
current. The induced EMF is proportional to speed, rising as the speed
increases. The solution to this is to increase the driving voltage as the speed
rises, but this greatly increases the complexity of the drive electronics.

Inductance The winding inductance and resistance control the rate of rise of current in
accordance with the well known relation

I = (1 - E-Rt/l) * V/R

The quantity L/R is known as the time constant, the smaller it is, the faster the
current will rise on switching the winding on. Plainly we need the smallest
inductance and largest resistance to reduce the time constant although this
would lead to a very lossy and inefficient winding. In practice we can add a bit
of external resistance and improve the performance, although the resistor
wastes power. This forms the basis of the simple L/R translator as embodied
in the design of the M3-Drive.

6.3 RESONANCE

Each time the rotor is stepped, it tends to overshoot the desired position slightly and performs a small
damped oscillation. The damping is mainly electrical due to induced voltage in the windings. The
frequency of the damped oscillation depends on the total inertia of the system. It is possible that at
certain speed the stepping rate will become a harmonic of the natural oscillation frequency, and under
these conditions the oscillation builds up to a point that the motor misses steps. This condition is
known as resonance.

Resonance problems can be avoided by

1. Not operating in or close to a resonance region.

2. Accelerating the motor through the resonant point as fast as possible.

3. Providing additional damping in the form of mechanical or viscous damping (Lanchester
dampers) and/or altering the moment of inertia.

If the motor is operated at low stepping rates, resonance is not usually likely to be a problem.

6.4 FULL- AND HALF-STEP OPERATION
There are two common switching sequences used for stepper motors. In the full-step sequence, two
windings are always energized. This applies whether the motor has three, four, or five phase
windings. For example, for a Cphase motor

6-3

MSTEP-3 USER GUIDE

FULL STEP:

WINDING 1 WINDING 2 WINDING 3 WINDING 4

Step 1
Step 2
Step 3
Step 4
etc...

on on off off
off on on off
off Off on on
on off Off on

Full step gives the greatest torque and the rated step angle of the motor e.g. 200 steps/rev.

In half step sequence, switching alternates between having 2 windings on and 1 winding on. It takes
twice as many steps to travel the same distance, thus a 200 step/rev. motor with 1.8 degree stepping
angle in full step sequence will produce 400 steps/rev. and 0.9 degree step angles in half step
sequence.

HALF STEP:

WINDING 1 WINDING 2 WINDING 3 WINDING 4

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
etc...

on
on
off
off
off
off
off
on

off
on
on
on
off
off
off
off

off
off
off
on
on
on
off
off

off
off
off
off
off
on
On

on

Half step sequence offers a finer positioning resolution and somewhat smoother stepping, but since
fewer windings are excited on average, the torque and maximum speed capabilities can be lower than
full-step. The M3-Drive can drive in either half- or full-step mode (see Section 5.1). When using the
outputs of P2 to control the phasing, use the Initialization mode (Mode 15) to set up for full- or half-
step mode. When using the M3-Drive, half- or full-step operation can be selected by setting the AUX
bit (see Section 5.1).

6.5 TRANSLATORS & INDEXERS
If you are new to stepper motors, you will start reading catalogs and find all sorts of equipment with
strange names. This little explanation may assist you in understanding some of the terminology and
its relevance to the MSTEP3.

A TRANSLATOR is a device that takes a step pulse and direction input and drives the stepper motor
windings - it is essentially the power drive and pulse pattern determining stage, but it does not keep
count of the pulses or position. An INDEXER goes further and will take an input from switches or a
keyboard and move the motor the number of steps input at the keyboard, it also keeps track of the
motor position.

6-4

CHAPTER 6: STEPPER MOTORS & TRANSLATORS

In this sense, the M3-Drive is a TRANSLATOR whereas an IBM PC, MSTEP-3, MS-Drive, and a
suitable program can perform functions equivalent to an INDEXER.

The MSTEP-3 does not have to be used with the M3-Drive. It can just as easily be connected to a
commercial TRANSLATOR using the direction and pulse outputs of each channel. Commercial
INDEXERS are usually complete self-contained positioning systems and cannot be connected to the
MSTEP-3.

6.6 MECHANICAL DESIGN
Simple systems can often be assembled with very little involvement in optimizing the mechanical
design. They can almost be put together on a “try it and see” basis, this is one of the advantages of the
simplicity of stepper motors. On the other hand, if you want to obtain maximum performance
especially with larger drives, you should carefully analyze your mechanical requirements and match
the motor and translator to your needs. Torque and power of stepper motors depend on the motor
frame size and rating and range from 35 oz/in and fractional HP. to 5000 oz/in and ratings of 3-4
HP.

The major problem in mechanical design is sizing the stepper motor to the application. The first
determination to make is the maximum torque required. This depends on the static load e.g. friction
and the dynamic load set by inertia and acceleration and possibly viscous drag. Also the available
torque will decline as the speed rises due to the characteristics of the motor and its translator. Taking
these factors into account is a fairly complex exercise and is best described in the design literature
provided by stepper motor manufacturers (see Appendix B). One excellent source is the “The Art and
Practice of Step Motor Control” by Bert Leenhouts, available @ $84 from Intertec Communications Inc.,
2472 Eastman Ave., #33-34, Ventura, CA. 930035774, Phone (8051-658-0933.

Other considerations are holding torque, motor size and design - shafts are available on one end or
both ends etc. If you need leadscrews, X-Y tables etc. many vendors provide this type of accessory
equipment, a short list is provided in Appendix B. w

6-5

MSTEP-3 USER GUIDE

cl

6-6

CHAPTER 7

TESTING

MAINTENANCE

No periodic calibration or maintenance is required for the MSTEP-3 or M3-Drive, there are no user
adjustments.

The best method of testing a system is to run the DEMO program and exercise the motor or shaft
encoder using this program. If you receive error code 5 while running the demo program, there are a
number of possible conditions to check before assuming that the MSTEP-3 board is faulty, as follows:

1. If you receive Error #6 on initialization of both channels, it means that the driver software is not
locating the MSTEP3 at the I/O address specified in the initializing parameters. This may be
caused by the BASE I/O ADDRESS dipswitch being set to an address other than that specified, a
conflict with the address of another peripheral or a truly faulty MSTEP-3. The driver software
performs a quick write/read test to the MSTEP-3 control register on initialization, and if it detects
any discrepancies will return Error #6.

2. If you consistently receive Error #6 on initializing one of the three channels, or receive it in the
motion commands, it points to a faulty PPMC-103A controller. These are plug in chips and can be
replaced. A PPMC-103A which is not correctly handshaking with the driver when it is ready to
receive or provide data will give this hardware fault.

Other errors that are possible are open limit switch wiring, faulty limit switches etc. These can be
checked by running the READ STATUS option of the DEMO program and exercising the limit
switches.

If you wire the stepper motor up incorrectly with its windings in the wrong sequence, it can lead to
bumpy or rough operation or dithering and similar effects. Check the stepper motor wiring and make
sure that the windings are switching on and off using a voltmeter and the JOG command.

The DEMO program will expose 99% of the likely problems that you can have and also provides a
baseline for comparison if you suspect you have a programming problem. The remaining 1% of
hardware problems, stuck bits, open lines etc. can be determined by writing and reading the I/O
ports. This tends to be tedious work and a program such as DEBUG which makes I/O operations
short and simple is the best choice for this chore.

If you have problems with your MSTEP-3, please call MetraByte applications engineering at (508)-880-
3000. If you need to return any hardware, we will issue you an R.M.A. (return material
authorization) number to mark on your package. Please do not send us material without an R.M.A.
number as it greatly complicates tracing its origins and faults. It is also useful to our test technicians if
you can include a brief description of the problem and in what circumstances it occurs. H

7-1

MSTEP-3 USER GUIDE

7-2

CHAPTER 8

FACTORY RETURNS

before returning any equipment for repair, please call 508/880-3000 to notify MetraByte’s technical
service personnel. If possible, a technical representative will diagnose and resolve your problem by
telephone. If a telephone resolution is not possible, the technical representative will issue you a
Return Material Authorization (Rh4A) number and ask you to return the equipment. Please reference
the RMA number in any documentation regarding the equipment and on the outside of the shipping
container .

Note that if you are submitting your equipment for repair under warranty, you must furnish the
invoice number and date of purchase.

When returning equipment for repair, please include the following information:

1. Your name, address, and telephone number.

2. The invoice number and date of equipment purchase.

3. A description of the problem or its symptoms.

Repackage the equipment. Handle it with ground protection; use its original anti-static wrapping, if
possible.

Ship the equipment to

Repair Department
Keithley MetraByte Corporation
440 Myles Standish Boulevard
Taunton, Massachusetts 02780

Telephone 508/880-3000
Telex 503989

FAX 508/880-0179

Be sure to reference the RMA number on the outside of the package! I

8-1

MSTEP-3 USER GUIDE

cl

8-2

APPENDIX A

PPMW03A
SPECIFICATIONS & PROGRAMMING

The data sheet of the stepper motor controller chip used in the MSTEP-3 is reproduced in its entirety
here by permission of Sil-Walker America [Sil-Walker America Inc., 653 Las Casas Avenue, Pacific
Palisades, CA. 90272 Phone:(213)44-47721. If you intend programming the stepper channels directly,
want to understand how the MSTEP.BIN driver works, write your own routines, or know more about
the limit switch operation or fine details of the controllers, these data pages will provide most of the
answers.

Due to the mapping of the PPMC-103A registers into the I/O map of the MSTEP-3 the following
correspondences apply:

AORSEL of the MSTEP-3 Data Select Register = A0 of all PPMC-103As

RESET of a PPMC-103A is accomplished on the MSTEP-3 by the active RESET line of the IBM PC bus
(on power-up). Software RESET is also available.

The PPMC-103A has a couple of minor programming quirks to watch. The motion commands
accelerate/decelerate or move at constant speed will always step one pulse more than the number
input. The MSTEP.BIN driver corrects for this characteristic in these two commands by subtracting
one from the data before sending it along to the PPMC-103A’s. Also the singular data values 0 and 1
are caught in the driver - see MSTEP.ASM. If zero data is applied, the PPMC-103A will step 1 pulse,
whereas if 1 is supplied it will step 2 pulses. The MSTBP.BIN driver grabs these two conditions and
does nothing if zero is applied or aborts to a jog command if 1 is applied. In this way the MSTEP.BlN
driver always does what you would expect - the PPMC-103A has somewhat different although
consistent rules.

A complete English language edition of the PPMC103-A data manual is not presently available. Until
such an edition becomes available, Keithley MetraByte will offer a sheet outlining the differences
between the PPMC-103A and the PPMC-1OlC along with the complete PPMC-1OlC data sheet.
Meanwhile, keep in contact with Keithley MetraByte to learn when more complete information will
become available.

A-l

MSTEP-3 USER GUIDE

SIP

Sil- Walker

PPMC-103A New for 1990

The PPMC-103 is an improved, CMOS version of the PPMC-101/102 motor
control IC. The use of CMOS over conventional NMOS reduces the power
consumption from 625 mW (PPMC-101) to 150 mW for the PPMC-103. The command
set is downward compatible with the PPMC-101/102 and adds three new functions.
The PPMC-103 also increases the maximum pulse rate to 19K pps and increases the
smoothness of the acceleration/deceleration operation and increases the number of
acceleration/deceleration steps to 11,220 max. (The PPMC-101/102 had a max of
8,160 accel/decel steps).

The major improvements are;

1 - Increase pulse rate to 19K pps maximum (P-out mode)
2 - Increase pulse rate to 12K pps maximum (phase outputs)
3 - CMOS technology. Decrease power consumption to 150 mW.
4 - Increase smoothness of acceleration/deceleration.
5 - Increase number of acceleration/deceleration steps to 11,220 max.
6 - Add a “SOFTWARE RESET COMMAND”.
7 - Add an “AUXILIARY OUTPUT COMMAND” which controls the logic level
8 -Add a “SWITCHING RATE CONTROL COMMAND”. This allows the duty

cycle and the frequency of “EXCITATION SIGNAL SWITCHING” to be
controlled by the user. This function is used to reduce power
consumption of the motor at standstill by chopping the phase
outputs, Sl -s5.

The PPMC-103A is pin-compatible with the 101/102 versions, except that a
previously unused pin (pin 36) is now used as an output. If this pin was left open or
pulled up to 5V through a 3.3kR resistor (as per the manual) on designs using the
101/l 02, then the 103A can be substituted directly. Of course, the crystal must be
upgraded to 12MHz for the 103A to give its’ top performance.

When using the PPMClO3A, substitute the following page 2 for the original page 2 appearing in the PPMClO l/l 02
manual. All other pages should be treated as an addendum and inserted at the back of the manual.

653 Las Casas Ave., Pacific Palisades, CA 90272 (213) 454-4772 FAX: (273) 459-6243

A-2

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

PPMC-103A COMMANDS

SOFTWARE RESET COMMAND

This is a NEW command, available on the PPMC-103A. This command causes a “RESET” of the PPMC with the
same effect as a “hardware reset” Iie, the removal of power). After this command, the PPMC m be re-

INITIALIZED. Any parameter in the “INITIALIZATION COMMAND” can be changed at this time. The “SOFTWARE

RESET” will also cause all phase outputs, Sl -55, to turn off.

“SOFTWARE RESET” cannot be sent while the motor is in motion. The flowchart below must be followed.

76543210

1 1 0 0 0 0 0 0 } Software Reset Command (7)

Software Reset Command
WRITE

AUX IL I ARY OUTPUT COMMAND

This command controls the logic level on pin 36. (On the PPMC-101 /102, pin 36 is unused). This command can
be sent at any time, even while the motor is running. Pin 36 assumes the appropriate logic level about 29 psec
after the command is sent. I12 MHz operation)

76543210

1 1000001 I>
AUXILIARY OUTPUT “OFF” (pin 36 = 0)

76543210

1 1 0 0 0 0 1 0 > AUXILIARY OUTPUT “ON” (pin36 = 1)

A-3

MSTEP3 USER GUIDE

SW ITCHING TIME SETTING COMMAND

This new command allows programmable control over the frequency and duty cycle of the chopping of the
“phase outputs”, Sl -S5, when the motor is at standstill. The “EXCITATION SIGNAL SWITCHING” bit must be set
during “INITIALIZATION” to activate the phase chopping.

76543210

100001 0 0 } Switching Time Set Command

51 } “ON” Time (Pan)

d] } “OFF” Time (Poff)

Ton = (Pan x 2.5) + 2.5 @seconds)

Toff = (Poff x 2.5) + 28.75 (pseconds)

Switching Frequency =
1

(Ton + Toff >
(Hz)

I Switching Time Set I

I Yes

Switching Time Set

WRITE

I Yes

--+I Toff I+-

1 “OFF;If; Data]

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

HIGH SPEED MODE COMMAND [P-out only, Accel/Decel only)

This is a NEW command, to allow the P-OUT pulse rate to reach 19kpps. In this mode the “phase outputs”, Sl-
S5 are disabled. The maximum pulse rate can only be achieved if the “external clock input”, pin 39, is driven

from the “SYNC” output, pin 11. With a 12 MHz crystal driving the PPMC-103A, the “SYNC” output = 800kHz.
The maximum pulse rate is obtained when the external CLOCK input, pin 39, is driven at 266.67 kHz and

RH = 13. The SYNC output must be divided by 3 to obtain 266.67kHz.

76543210

1 1 0 0 1 1 I> High Speed Mode Command

o=cw
1 = ccw

0 = Interrupt Mask Enable

1 = interrupt Mask Disable

The flowchart for this command is identical to that of the Accel/Decel Command.

The output pulse rate (speed of motor) is calculated from the following formula;

Speed =
106

IRH + 1) x (TcloOk) + (7.5psec.j
= pulses-per-second for RH113

There are several ways to divide the SYNC output to levels useable by the PPMC-103A. The most versatile
way is to use a programmable divider such as the INTEL CORP. 8254, which contains three 16 bit counter-
timers. Programming the 8254 to divide by 3 gives (800kHz + 3) = 266.67 kHz from SYNC output. Applying
this to the CLOCK input at pin 39 will allow the maximum pulse rate of 19kHz. The beauty of using a software
programmable divider is the wide range of speeds then available to the PPMC-103A. For example, using the
8254 (or any 16-bit divider), we can divide the SYNC clock by up to 65,536. This translates to a range of

pulses-per-minute to 19k pulses-per-second.

Address /‘Data
Lines

8254

Alternatively, a fixed divide-by-three circuit may

+5v
I 1

I I

be used where only the highest range of speeds is desired;

800kHz , , Fppnc-103
Clk 2 < ’ ‘. SYNC

Qb l3
\ 39
/

266.67kHz

74LS 169
(93) 1

13567810 g

A-5

MSTEP3 USER GUIDE

PPMC103A

Number of steps : 16,777,216 max

AccelerationlDeceleration pulse number : 4 - 11,220

Maximum pulse rate : 19k pps [P-out mode, ext clock = 250KHz, RA = 13)

: 12k pps (Phase outputs Sl -S5, ext clock = 250KHz, RA = 20)

Power Supply : 5 volts !I 10% 30 ma max with 12MHz x’tal [CMOS)

2. TERM I NAL ASS I GNMENT IL-‘-

NC1 c/i---- 40bVcc

* * AUXOUT, pin 36, was previously

designated as unconnected in the
PPMC-101 JlO2.

SIGNAL PIN # I/O DESCRIPTION

X1,X2 2,3 I Crystal inputs (12MHz max.>

RESET 4 I RESET input, active low

cs 6 I Chip Select input, active low

Fib 8 I Read strobe, active low

A0 9 I Address 0

WR 10 I Write strobe, active low

SYNC 11 0 Timing output

DO - 07 12-l 9 I/O Data Bus, S-bits

i4 21 I Reverse high-speed limit input

B 22, I Forward high-speed limit input

E 23 I Reverse absolute limit input

it 24 I Forward absolute limit input

P-out 27 0 Pulse output

m/CCW 28 0 Direction output (forward/reverse)

HOLD 29 0 Motor status output

ss 30 0 Motor 5th phase output

s4 31 0 Motor 4th phase output

s3 32 0 Motor 3rd phase output

s2 33 0 Motor 2nd phase output

Sl 34 0 Motor 1 st phase output

iin 35 0 Interrupt output

AUX OUT 36 0 Auxiliary output (software controlled:

MON 37 I External control of motor power

‘1 ’ = Motor ON

‘0’ = Motor OFF

CNP 38 I Base point limit input

CLOCK 39 I External clock input (250 KHz max>

VCC 40 I +5v DC power supply

GND 7,20 I ‘Ground (0 volts)

NC1 1,5,26 I Pull up to Vcc with 3.3K resistor

NC2 25 0 Leave this pin open (not connected)

A-6

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

INTRODUCTION

PPMClOlC/102A is a unique one-chip LSI specially designed to interface
a stepper motor to an 8-bit micro computer with no additional hardware.
PPMClOlC/102A provides 8 kinds of different operations by the command
of master CPU including acceleration/deceleration and constant speed-
operation.

Operating frequency and number of phase for stepper motor are program-
mable. Distribution signal to excitation driving circuit can also be
programmble for selection of 2-phase or l-2 phase excitation (2-3 phase
excitation for 5-phase motor) for 3, 4 and 5 phase motor.

In addition, PPMClOlC/102A provides five kinds of “limit” switch input.
Complete function necessary to control stepper motor is included in
one chip LSI. The PPMClOlC/lOZA can be easily interfaced with a micro-
computer system.

1. PPMClOlC/l02A SPECIFICATIONS

Operation Command

Emergency Stop

Decelerating Stop

Single Step

Acceleration &

Constant Speed

To move to the

Deceleration

Operation

"Limit"

(1) To move to the high speed limit
(2) To move to the base point

Excitation Method

Motor Excitation

3-phase 2 phase

l-2 phase

4-phase 2 phase

l-2 phase

S-phase 2 phase

2-3 phase

A-7

MSTEP3 USER GUIDE

Number of steps : 16,777,216 max

Number of pulse for
acceleration/deceleration : 4 - 8,160

Maximum pulse rate f PPMClOlC .'.. 5K pps (RA=20, fo=lOOKHz)

PPMCl02A .-- 10K pps (RA=20, fo=2OOKHz)

Power supply : 5v f 5% 125mA max

2. TERMINAL ASSIGNMENT AND FUNCTIONS

NClr
XlC
x2c

RESETI
NClt
csc
GNDC
RDt
AoC
WRC

L
Dot
DlE
D2C
D3C
D4C
D5E
D6C
D7C
GND[:

v
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(Top View)

40 pin Dual-In-Line

;ignal Pin# I/O Description

:1,X2 2,3 I X-tal

?ESET 4 I RESET input

cs 6 I Chip Select
Rl5 8 I READ strobe
Ao 9 I Address 0
m 10 I WRITE strobe
SYNC 11 0 Timing output
1 - 07 12-19 I/O Data Bus 8-bit
iz 21 I Reverse high speed limit input
I3 22 I Forward ,# #t t# II

E? 23 I Reverse limit input
zi 24 I Forward " "

'-GUT 27 0 Pulse output
:CW/cW 28 0 Forward/Reverse status

'0' = Forward
'1' = Reverse

HOLD 29 0 Motor HOLD output
s5 30 0 Motor 5th phase output
s4 31 0 " 4th " "
s3 32 0 " 3rd " "
s2 33 0 " 2nd " "
Sl 34 0 " 1st " "
INT 35 0 Interrupt signal
MON 37 I External control

'0' = Motor ON
'1' = Motor OFF

CNP 38 I Base point signal input
:u)CK 39 I External clock input
vcc 26,40 I i5v DC
GND 7,20 I 0 v
NC1 1,5,36 I pull up to Vcc with 3.3K ohm

or open
NC2 25 0 OPEN

A-8

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

PIN DESCRlPTION

2-1 Xl, x2

Inputs for a crystal. PPMClOlC is normally operated with a 6 MHz
crystal and PPMClOZA with a 11 MHz crystal. You may also drive
the clock inputs with an LC turned circuit or an external clock
source (2 phases) as shown in Fig 2-l. 1 to 6 MHz for PPMClOlC and
1 to 11 MHz for PPMClO2A can also be used for driving frequency,
but the operating speed slows down in accordance with the clock
frequency.

r t

2oPFL

2,X1

6oF+--

PPMC- 1OLC

0 PPMZO2A

llMH2 2OPFL 3. x2

;5;

X-tal Clock Driver

PPMC- 101 C
L

PPMZO2A

LC Turned Circuit Clock Driver

PPMC- 101 C

l- 6 MHZ Input Frequency
External Clock Driver Circuit

Fig 2-l

PPMC- 101 C PPMC- 102A

L=UOpH 3 MHz L=l2OpH 3.2 MHz

L= 40pH 5MHz L= 45,uH 5.2MHz

A-9

MSTEP3 USER GUIDE

2-2 RESET

Input used to reset status flip-flops and to set the program
counter to zero. This pin should be connected to the RESET signal
of a user's system. 5Omsec after the RESET signal rising edge
the PPMClOlC/102A is operative for initialization and operation
command. The pulse width of the RESET signal must be no less than
2.5 psec.

2-3 cs
Input for chip select. To input the decorded signal from upper bits

of ADDRESS. PPMClOlC/102A is accessible at a low level '0' on CS.

2-4 RD

I/O read input which enables the master CPU to write data and
status mrds from the PPMClOlC/102A. The OUTPUT DATA BUS BUFFER

or status register can be READ at a low level '0' on E and %.

2-5 WR

I/O write input which enables the master CPU to write data and
commands words to the PPMClOlC/102A. Data on INPUT DATA BUS BUFFER
can be written at a low level '0' on E and RD.

2-6

Address input used by the master processor to indicate whether the
byte transfer is data or command as shown in the following table

‘2-7 SYNC

Output signal which occurs once per execution of internal command
in the PPMClOlC/102A. It is also used to synchronize the single
step operation. It is to be normally OPEN and used to check IC
operation.

2-a DO-07

Ao RD iz

0 Data Resister Data Resister

1 Status Resister Command Resister

Table 1

,

Tri-state, bidirectional DATA BUS BUFFER lines used to interface
the PPMClOlC/102A to an 8-bit master system data bus.

A-10

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

2-9 IT-L4, CNP

Inputs for external 'Limit' switches. Each signal is activated
at a low level '0'. Fig 2-2 shows the idea of 'Limit" switches.

L2 iz m L3 iii

1 1,
Stepper motor Carrier

Fig 2-2

Ll, L2 :

These switches are set at a maximum limit position where the carrier
does not move further in CCW or CW. The motor will stop immediately
when the carrier moves to these points regardless of the operation
command. The carrier will no longer move further in the same direc-
tion even when it receives a command to move in the same direction.
The carrier will start to move in the opposite direction only when
it receives the command to move in reverse.

L3, L4 :

These switches must be positioned between Ll and L2, at a minimum
distance corresponding to the number of deceleration steps. The
stepper motor begins to decelerate at these positions (L3 or L4)
in order to stop inside of Ll or L2.

CNi’ :

Signal from z is used to establish a convenient reference point
(Base point) with which the PPMC can monitor the position of the
carrier. It does this by counting the number of steps in the data
register. For example, in figure 2-2, in order to establish a con-
venient base point the command "'move to base point" is used (see
section 3-3-8). The motor will move the carrier to the position
marked FP and stop. Work can then proceed from this point.

A- 11

MSTEP3 USER GUIDE

2-10 P-OUT, ccwmi

P-OUT is used for pulse output for other stepper motor driving
modules without using PPMC phase output. It is useful for bipolar
drive, switching drive and other special type of excitation method.
It is recommended to use a decoder for CW or CCW pulse generation
in combination with one-shot TIMER as shown in Fig 2-3 because
driving module sometimes require 10 to 20 psec pulse width. The
signal from pulse output is a 5 psec negative pulse and signal for
direction is indicated by its level. In addition, these signals
can be used for monitoring direction or number of pulses for rotation.

CCW/FW can be activated only when P-OUT is active.

t

ccw/cw

PPhc-101c

PPI&O2!

P-OUT

AJ7- Fig 2-3

P-OUT is always available as well, in use of any type of phase

output. (see page 13. motor code 01, 10, 11)

2-11 HOLD

HOLD output is high 3 msec after motor stops, but it is active only
when bit 5 of the initialization command is set. (see page 13)

‘2-12 Sl -s5

Provides signal for motor excitation drive.

Motor Control

3 phase by Sl - S3

4 - e4 Sl - s4

5 ” “ Sl - s5

Fig 2-4 shows the form of output.

The logic can be interchanged, positive to negative logic, and
visa versa. Typical circuit is shown in Fig 2-5.

A-12

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

EXCITATION PULSE OUTPUT

2-phase excitation

(3-phase motor)

(4-phase motor)

s2

s3

s4

s5

it-
54s Example - 3 phase motor, 2-phase excitation

positive logic

(5-phase motor)

l-2 phase excitation

Fig 2-4

2-3 phase excitation

(3-phase motor)

(I-phase motor)

(S-phase motor)

A-13

MSTEP-3 USER GUIDE

as shown in Fig. 2-5.
Output logic level can be switched by using positive or negative logic

output
Positive logic convention

PPh4GlOlC/102A

Sl--ss

output
Negative logic convention

Fig. 2-5

A-14

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

2-13 IN-I-

Interrupt request is assertive '0' when motor stops. INT can be
cleared by reading the finish STATUS. This figure is not an open
collector and OPEN COLLECTOR BUFFER is required as shown in Fig 2-6,
when a multiple INTERUPT is expected.

2-14 MON

+sv

PPMC-101cYmA OPEN
t ClSLDXOR

INT p 9 CPU

Fig 2-6

When motor on input is 'O', PPMC does not output driving pulse.
An example of an application is indicated in Fig 2-7, in which a
thermal relay on the motor is used to protect overheating. MON

input is ignored during operation of PPMC, and should be checked
only before motor operation.

+5v VMT

Thermal relay

2-15 CLOCK-external clock

Driving circuit

Basic signal to control speed of the stepper motor. The speed can
be controlled between 4OOpps and SK pps by the 1OOKHz clock input
to PPMClOlC and between SOOpps and 10K pps by 2OOKHz clock input to
PPMCIOZA. The clock frequency must be below l/45 of Xl, X2 clock.
For example, when 6MHz X-tal is applied for Xl and X2, external
clock input must be less than 133Kffz (in case llMffz is applied,
external clock must be less than 244KHz). High level of the clock
pulse must be more than 500 nsec. (250 nsec for ~LMHZ)

A-15

MSTEP-3 USER GUIDE

3. COMMUNICATION BETWEEN PPMC AND MASTER CPU

The communication between PPMC and master CPU consists Of following
3 types of modes. :

(1) Initialization

It designates type of motor, method of excitation, data for
acceleration/deceleration and other parameters (see-page 13 for
details). After power 'ON', initialization is needed before opera-
tion command. Note : Some parameters cannot be changed once it
is set. Re-initialization is not possible during operation.

(2) Operation Command

8 kinds of operation commands are available for stepper motor.
The length of data to follow depends on the command.

(3) Register for PPMC

After completion of (21, master CPU reads the cause of operation

finish, status of input/output terminal, and the number of remain-
ing pulse.

3-l Register for PPMC

2 read only registers, and 2 write only registers are accessible
to the uses.

Table 3-l

3-l-l Status Register

76543210

I I I I 1 I I I I
'0' - Read ‘NO’

OBF' al, _ I, 'YES'

'0' - Write 'YES'
IBF ,1, ,, A ‘NO’

'0' - Motor standstill
BUSY '1' a, - operation

A-16

COMMAND TABLE

-I- -
1
2

3

4

5

1

-

1

-

1

-

1

2

3

4
-

1

2

3

4

5
-

1

2
-

1

-

1

2
-

1
-

1

T

-

1
-

T tONMAN DATA FUNCTION

0 0

Self-starting pulse rate

High speed pulse rate

Accelerating/Decelerating
pulse rate

01 0 0 0

01 0 01

01 01 0

01 011

Number of operating step

01 10 0

Constant speed pulse rate

Number of operating step

01 101

Constant speed pulse rate

01 11 0

01 111

Contant speed pulse rate

10000000

10000001

10000010

10000011

Emergency Stop

Oecelerating Stop

Single Step

lp,L A -------

Acceleration/
Deceleration

Constant speed operation

To move until the limit
at constant speed

,-l/L1 or L2
I

[-FL3 or L4
To move until high speed
limit

To move to the base polnt

Finish Data To read data for reason of FINISH. etc. . ..(.,...... 1 byte

Input signal To read data for limit switch, etc.,........I 1 byte

To read data for motor phase output and direction .,, 1 byte Output signal

To read remaining number of steps 3 byte
I

Remaining step numbers

MSTEP-3 USER GUIDE

3-l-l-l OBF (Output Buffer Full)

This bit checks the status in order to read the.data from PPMC.
'0' indicates that there is no data in the buffer. -It can only
read the data when OBF is '1'.

3-l-l-2 IBF (Input Buffer Full)

This bit checks the status in order to write commands or input
data to PPMC. '1' indicates that the data is full in the buffer
and therefore, it is not possible to write new data. IBF must
be '0' when you write data or give commands. If you were to
write data at IBF '1' the former data would be erased.

3-l-l-3 BUSY (Motor Busy)

This flag outputs '1' during motor operation. It is only possi-
ble to input emergency stop and decelerating stop commands at
that time. The IBF and BUSY bits must be checked before you
input a command. This is '0' 2.5 psec after INT output.

3-l-2 Read Register Data

Register data can be read out after checking OBF and input of
READ REGISTER COMMAND.

3-l-3 Write Command

Before inputting initialization, operation command or read
register command, check IBF and BUSY bit in the Stat&S register.

3-l-4 Write Data

Check IBF before writing data for pulse rate or number of steps.
The order of input data must follow as indicated in command table

(page 14). PPMClOlC will start operating in accordance with
the command 400 psec and PPMClQ2A does 200 psec after the data
is written.

A- 18

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

3-2 Initialization

Initialization Command

76543210

I 0 1 . . . 3 phase motor

1 Motor Code 1 0 . . . 4 " "

1 1 . . . 5 " "

Excitation Method

0 . . . 2 phase excitation

1 . - . l-2 phase excitation
(2-3 phase excitation for 5 phase motor)

Excitation output logic level (Sl, S2, S3, S4, SS)

0 . . . Negative logic convention

1 Positive " I, . . .

clock 0 Internal clock
(12.SKHz . . . at 6MHz Xl, X2)

. . .
(22.gKHz . . . at 1lMHz Xl, X2)

L
1 . . . External clock (Clock signal at pin#39)

Excitation signal switching output at motor standstill

0 .f. Switching 'NO'

1 ,I ..- 'YES'

Initialization Data

i , , , , , , , self-starting pulse rate __...__ HA max

3 I,,,,,, high speed pulse rate _...... HA min

4 ,,,,,,I Act/Deceleration pulse rate lower byte

5 ,,,,,I, 4, ,, ,a _ . . _ upper byte

Initialization command to be input in the above order (1, 2, 3. 4, 5)
after power 'ON'.

It can be shown in the following flow chart.

A-19

MSTEP3 USER GUIDE

High Sped Pulse Rate

Data W R I T &

I I
Acceleration/aecelerarion

Pulse Race (lower byc’e)

bat.3 WRITE

cceleration/Deceleration
Pulse RdCf (upper byte)

WRITE

A - 20

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

3-2-l Initialization Command

1 I Motor code

The type of motor code used must match the spec of the motor.

2) Excitation method

The excitaion method used must match the spec of the motor.

3) Logic level of excitation output (Sl, S2, 53, S4, S5)

In positive logic convention, the current will be flowing through
the coil of the motor when output of PPMC is high. In negative .
logic convention, the current will be flowing through the coil
of the motor when output of PPMC is low.

Fig 3-l shows the circuits of logic level of excitation output.

s1-ss

Positive logic output

PPMC-101cm2A

1 M&Or Coil

s1-ss -

Negative logic output Fig 3-l

Motor coil

4) Clock

This is to select an internal or external basic clock for the
motor. The internal clock will use frequency generated inside
the PPMC. In the external clock mode the cloak is provided by
the input on pin#39.

It is possible for PPMClOlC to control speed from SOpps to 6OOpps
with the internal clock 12.5KHz and for PPMClOZA to control speed
from 1OOpps to 1,200pps: To control speed from 4OOpps to SKpps a
1OOKHz external clock'should.hs .used for PPMClOlC. The external
clock mu'st be loher .than .$33KHz. In case of PPMCl02A, speed can
he controlled from 8OOpps to'1OKpps with 2OOKHz external clock
which must be loher.than 244KHz;

A-21

MSTEP-3 USER GUIDE

5) ExGitation Signal Switching Output

Usually the current into the stepper motor remains at maximum
current during stanstill. This maximum current which holds the
motor can cause overheating. Bit 5 is used to prevent this type
of problem by switching '1' or'0'. PPMC can switch the exci-

tation output to minimize the excitation current. Switching

frequency is about 2.2KHz for PPMClOlC with a duty cycle of 30%
and 4KHz for PPMClO2A with a duty cycle of 35%.

About 100 msec after the output of a phase excitation signal,
the motor will start operating from a standstill when "switch-
ing" is selected.

Type of motor code, excitation method and logic level of exci-
tation pulse output cannot be changed once they are set after
RESET, while clock, excitation pulse switching output and initiali-
zation data can be changed.

3-2-2 Initialization Data

3-2-2-l Pulse Rate

PPMC applies the idea of pulse rate (RA) to decide speed of the
stepper motor. The relationship between pps and RA is expressed
in the following equations :

pps = -$

fo : Basic clock frequency

RA : Pulse Rate

PPS : Motor pulse per second

Basic clock is either a 12.5KHz for PPMClOlC (22.9KHz for
PPMCIOZA) clock generated inside PPMC or external clock applied
to pin#39. Bit 4 (clock command bit) in initialization command
is used to select either the internal/external clock.

PPS Table 3-l shows various logical figure of RA and practical use.

Logical
(2 - 255, >

12.5KHz 49Hz - 6.25KHz
Internal
clock 22.9KHz 89Hz-11.4 KHz

loo KHZ 392Hz - !5OKHz
External
clock 2alKHz 784Hz -100 KHz

Practical

784Hz- 1oKHz

A - 22

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

The appropriate number of pulse for acceleration/deceleration
should be decided by the customer's experience, because it
depends primarily on type of motor,, inertia moment of load, etc.

In case of large inertia moment of load, a large number of pulse
for acceleration/deceleration should be selected for slow opera-
tion. PPMC can be adapted quite hell to the majority of the load.
With 2 byte to store the number of pulse needed for acceleration/
deceleration, 4 - 8,160 steps can be set.

Some motors have a sympathetic point where there is no torque
at certain frequency as shown in Fig 3-2. In such cases, the
motor has to be started with a speed lower than the sympathetic
point in order to fly into a higher speed area. To minimize the
time to stay on the sympathetic point, higher speed for accelera-
tion/deceleration must be applied. It is recommended that a damper
should be used to increase the inertia moment if the motor goes
into the sympathetic point with a small load.

torque

I

T
sympathetic point

speed

Fig 3-2

Initialization nata

Stepper motor has two types of operation as follows :

(A) Constant speed operation at lower speed of self-starting

frequency.

(B) Ramp up/down operation.

speed (pps)

Fig 3-3

A - 23

MSTEP-3 USER GUIDE

Self-starting frequency, parameters for high speed operation
and acceleration/deceleration depend on the type of motor,
excitation method, inertia or nature of load, etc. Relation

among those are'indicated below :

255 2 CRA 2 RA max > RA min 2 20

Pulse Rate Symbol

At constant speed operation ._... CRA

At self-starting -..e. RA max

At high speed operation _____ RA min

CRA and RA max are to be set as large as possible within the
above limit. The hardware limits the external clock rate to
a maximum of 133KHz for PPMClOlC (244KHz for PPMClO2A). For

example with 1OOKHz external clock for PPMClOlC and 2OOKHz
for PPMClOZA the above relation can be converted into pps
(pulse per second) as following.

PPMClOlC 392Hz <_ CPPS< PPS min < PPS max 2 5KHz
PPMClOZA 784 HZ < CPPS < PPS min < PPS max < 1OKHz

In conclusing, with a 1OOKHz external clock for PPMClOlC or
2OOKHz for PPMClOZA, the stepper motor can be controlled from
4OOpps to SKpps for PPMClOlC or 800~~s to 1 OKpps for PPMClO2A.
For lower speed operation, external clock frequency should bs
slowed down accordingly.

3-2-2-3 Aberration of motor speed

There are tm major sources that cause the motor speed to deviate
from the theoretical value (see Fig 3-4). The first source of
error derives from the execution time of routine that outputs
the excitation. A 50 psec overhead time is needed in addition
to the delay timing for the pulse output. Therefore for slow
speed operations, the 50)~sec error is insignificant. The %
error of the output speed will increase with an increase in motor
speed.

The second source of error is the non-synchronization of the
basic clock and the internal timer. A randam error correspond-
ing to _+I basic clock pulse in the timer counter is possible.
Note the percentage error will 'be larger at a slower clock rate.
For example at a clock rate of ZOHz, the randam error is +5%,
which may be acceptable in practical application.

A - 24

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

Following is the curve &hat shows the differnce between theoretical
value and practical speed at a basic clock frequency of 1OOKHz
(PPMClOlC) and 2OOKHz (PPMCI OZA). The graph shows that at RA=15,
the motor speed is SKpps for PPMClOlC and 1OKHz for PPMClOZA.

10 15 a0 30 50 loo

pulse rate (R?i)

1 PPK-102A

c PFMC-1OlC

Xtal llh4Hz
fo 2alKHz

Xtal 6MHz
fo 100KHz

Fig 3-4

A - 25

MSTEP3 USER GUIDE

3-3 Operation Command

76543210

I I Operation command code

0 0 0 .-.*. nnergency stop
0 0 1 Decelerating stop
0 1 0 Single step
0 1 1 Acceleration/Deceleration
1 0 0 Constant speed operation
1 0 1 To move until the limit -
1 1 0 To move until the high speed limit
1 1 1 To move until the base point

l- Direction for rotation of motor

.*... cw
1 ccw

Interupt mask for FINISH signal

0 Enable
1 Disable

3-3-l Emergency Stop

To stop rotation of motor instantaneously by inhibiting excita-
tion output during any type of operation, whether it be accelera-
tion/deceleration or constant speed operation. In high speed .
operation, the phase output stops instantaneously, but the motor
will run off with inertia. Therefore, position data is no longer
valid. It is necessary to reestablish the base point. During
constant speed operation at self-starting frequency, motor can
stop instantaneously and restarting is possible from that point
by reading the number of operating pulse with the READ REGISTER
COMMAND. Emergency stop requires only 1 byte operation command,
and no data is necessary. Check whether the condition IBF=O,
and BUSY=1 is satified before writing the emergency stop command
as shown below.

76543210

A-26

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

3-3-2 Decelerating Stop

When the decelerating stop command is input during acceleration/
deceleration, the motor will decelerate to stop. The motor will

stop instantaneously during constant speed operation at self-
starting frequency, the remaining number of pulse can be read, by
the READ REGISTER COMMAND and the motor can be re-started from
where it stopped. The bits for direction of motor rotation and
FINISH INTERRUPT become assertive when the motor stops. Refer to

the following flow chart for proper sequence of operation.

76543210

3-3-3 Single Step

This is the command to move the stepper motor at a single step.
It is useable when the master CPU needs to find out its position
by itself. When this command is released continuously, timing
must be controlled by the master CPU. All command modes are
effective, this command consists of a single byte. No other data
is necessary. Refer to the following flow chart for proper sequence
of operation.

76543210

0 1 0 1 0

A - 27

MSTEP3 USER GUIDE

3-3-4 Acceferation/Deceleration

This command for acceleration/deceleration in accordance with the
data at the time of initialization. In addition to the command
itself this operation requires 3 bytesof data, which store t-he
total number of pulses to be output. For triangle operation,
total number of pulse must be smaller than two times the accelera-
tion/deceleration pulse number. The limiting switch input L3, L4
can be used to trigger the deceleration (see Fig 2-2) and Ll and
L2 can be used to stop the motor. Note that irrelevant signals
from Ll-L4 will be ignored. For example in Fig 2-2, if the carrier
is moving CW, the signals from L2 and L4 will be ignored.

speed Remaining number

I-

of pulse 1
\ Remaining number of pulsk

Decelerating stop L Emergency stop

High speed limit Limit

The number of pulse (step number requested for operation - 1) can
be got with 3 bytes.
FFFFFF (Hexa decimal) input moves 16,777,216 steps which is the
maximum number of steps to move at a time.

- Example -

To move 1,000 steps, 1,000 - 1 = 999 should be converted into

Hexa decimal (0003E7) for input. Data must be input from the
lower byte.

A - 28

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

76543210

0 1 0 1 1

Operating

76543210 number of pulse

Operating number of pulse

(upper byte)

A - 29

MSTEP-3 USER GUIDE

3-3-S Constant Speed Operation

This command requires one byte of data for constant speed pulse
rate as well as 3 bytes of data for the total number of pulse.
The proper sequence of execution is shown in the following flow
chart. The command causes the motor to rotate at a constant
speed up to the designated distance. The speed is set by the
pulse rate data, which has to be within the self-starting frequency
of the motor. Ll-L4 limit switch input can be used to decelerate
and stop the motor. The READ REGISTER COMMAND can be used to
readout the remaining number of pulse and the cause for stopping.

4 Limit Emergency stop
Decelerating stop

Refer to the following flow chart for proper sequence of operation.

Operating
number of pulse

(lower byte)

(middle byte)

(upper byte)'

76543210

01 1 0 0
WRIT& .

constant speed
pulse rate

A - 30

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

3-3-6 To Move At Constant Speed Until Limit Switch

This mode of operation is similar to the previous one except that
the data indicating the number of pulse is omitted. The motor
will keep on moving until a signal from a limit switch (IS' or L2)
is received. The signal from irrelevant Ll or L4 is ignored.
Limit input in the same operating direction means as. follows :

Operation Input

cw Ll limit input

ccw L2 ,I ,#

During a CW operation, ~2 input will be ignored.

4 Limit Emergency stop
Decelerating stop

This command is normally used right after ROWER ON or to re-start
after motor run off.

76543210

0 1 1 0 1

76543210

I : : : : : : : 1

constant speed pulse rate

A- 31

MSTEP3 USER GUIDE

3-3-i' Move High Until Speed Limit

This is the command to accelerate for high speed operation in
accordance with the data at the time of initialization. Under
this command the motor will rotate at high speed until a limiting
signal -is received. Then it will decelerate to stop according
to the number of decelerating pulse. Once deceleration begins,
it continues to decelerate even if limit input turns out 'I'.
Limit switch Ll for CW and L2 for CCW rotation can force the motor
to stop, but inertia may cause the motor to overrun the desired
stopping point.

High speed limit
4

Limit
Decelerating stop Emergency stop

This command is also used right after ROWER ON or to re-start
motor after run-off. The decision whether to use this command
or the command 'to move at constant speed until limit switch'
(3-3-6) depends on the distance, time, accuracy of position, etc.

76543210

01 110

I

To move until high speed

limit at high speed
WRITE

A - 32

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

3-3-8 To Move To Base Point

In this mode of operation, the motor rotates at constant speed
until a WP signal is detected. The motor can also be stopped by
the relevant limit insjut Ll-L4, emergency stop or decelerating stop.

76543210

0 1 1 1 1

76543210

I : : : : : : : I

constant speed pulse rate

Base point
Limit
Emergency stop
Decelerating stop

I
7
5 To move until base

0 point WRITE

J

Constant speed

pulse rat.2

A - 33

MSTEP3 USER GUIDE

3-4 READ REGISTER

READ REGISTER COMMAND is used to read three kinds of status and
a 3 byte data during standstill df motor. The proper format of

the command is indicated below :

76543210

100000 I

Register code

0 0 ..I.. FINISH status

0 1 *.-.. Input signal status

10 Output signal status

1 1 . ..-. Remaining number of pulse

3-4-l READ FINISH STATUS

The proper sequence to read the various status is shown in the
following flow chart.

SCatus Register
READ

A - 34

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

3-4-l-l FINISH STATUS

The finish status register contains the following information :

76543210
, I 1 , I

1

command code

Decelerating stop when detecting high speed limit

To stop when detecting limit

Motor 'ON' signal (MON) check flag

To stop by motor stop command

The lower 3 bytes contain the operation command code.

Bit 3 or 4 ps up to '1' after high speed limit (z, z) or
limit (L1, L2) is input for motor stop. Bit 5 shows '1' when
motor cannot operate with ‘motor on signal' (MON) = 0.

A '1' in bit 6 indicates either an emergency stop or decelerating
stop. When all number of pulses for acceleration/deceleration
and constant speed operation are completely consumed to stop,
all bits from 3 to 6 turns to '0'.

In the absence of finish interrupt mask, INT becomes assertive
at the end of the operation, INT signal can be cleared to '1'
by reading finish status and released.

3-4-l-2 INPUT signal

The input signal register reflects the state of various inputs
shown below at the point where the motor stops.

76543210 I : cuxl : : : I
High speed limit in reverse (G)

High speed limit in forward (z)

Limit in reverse (Lz)

Limit in forward (z)

LA- Motor ON signal (MON)

Base point (G)

A - 35

MSTEP3 USER GUIDE

3-4-l-3 OUTPUT Signal

76543210

I : : : : I 1 xl
I I

SI s2 ss s4 ss
I Direction for rotation of motor

-rL

‘0’ . . . c w,

HOLD signal '1' . . . ccw

Stepper motor phase output

Phase outputs for stepper motor can be checked by bit 3 to 7'

3-4-Z Remaining number of pulse

Nhen the motor is stopped by limit switch or stop command during
acceleration/deceleration or constant speed operation, the remain-
ing number of pulse can be read by using this mode. If it is decided
to finish the operation after the stop command, the original command
and the remaining number of pulse can be input again to restart
the mode.

Speed

Distance

f Stop-Reset-Re-start
Decelerating
Stop Command

The data becomes '0' when the operation has been successfully
terminated.

The following flow chart shows the proper sequence of programming
in order to read the data from PPMC.

A - 36

APPENDIX A: PPMC-103A SPECIFICATIONS & PROGRAMMING

/

/ Read remaining number

WRITE

Remaining number of

pulse ~lowsr byte)

1

Remaining number of
pulse (upper byte)

76543210
1 1 1 u 1 Q

10000011 Command
, I s I 1

Remaining number of pulse

76543210

A - 37

MSTEPS USER GUIDE

A - 38

APPENDIX B

SOURCES FOR
STEPPER MOTORS & ASSEMBLIES

B.l GENERAL INFORMATION
Keithley MetraByte stocks a standard stepper motor (Model STEP-MOTl). Specifications are
provided in Appendix C. Although these have been selected from very popular types, they may not
be suitable for your application. This Appendix details vendors who specialize in stepper motors and
associated mechanical components.

In the course of assembling a stepper motor system, you may need to procure stepper motors, lead
screws, X-Y tables, shaft encoders etc. Many vendors provide this type of equipment and the
following list has been compiled to assist you in locating components. Inclusion of a vendor in this list
does not imply that MetraByte Corporation endorses the vendor or is in any way responsible for the
performance of its equipment. Likewise the list is not complete, and omission of any vendor is purely
coincidental. This list is provided purely for your convenience and is not exhaustive.

B.2 STEPPER MOTORS
1. Superior Electric Company

383 Middle Street
Bristol CT 06010 Phone: 203-582-9561

2. B & B Motor & Control Corp.
Apple Hill Commons
Burlington CT. 06013 Phone: 203-673-7151

3. Bodine Electric Company
2500 W. Bradley Place
Chicago IL. 60618 Phone: 312-478-3515

4. Litton Clifton Precision
P.O. Box 160
Murphy N.C. 28906-0160 Phone: 704-837-5115

5. Oriental Motor U.S.A. Corp.
2701 Plaza Del Amo Suite 702
Torrance, CA 90503 Phone: 213-515-2264

8.3 X-Y TABLES, SLIDES, LEADSCREWS ETC.
1. Daedal Inc.

P.O. Box G
Sandy Hill Road
Harrison City PA. 15636 Phone: l-800-245-6903

(in PA) 412-744-4451

2. New England Affiliated Technologies Inc.
620 Essex Street
Lawrence MA. 01841 Phone: 6176854900

B-l

MSTEP-3 USER GUIDE

3. B & B Motor & Control Corp.
Apple Hill Commons
Burlington CT. 06013 Phone: 203-673-7151

4. Klinger Scientific Corporation
110-120 Jamaica Avenue
Richmond Hill NY. 11418 Phone: 718-846-3700

B.4 TRANSLATORS, STEPPER DRIVERS

1. Superior Electric Company
383 Middle Street
Bristol CT. 06010 Phone: 203-582-9561

2. Bodine Electric Company
2500 W. Bradley Place
Chicago IL. 60618 Phone: 312-478-3515

3. Oriental Motor U.S.A. Corp.
369 Passaic Avenue
Fairfield N. J. 07006 Phone: 201-882-0480

B.5 TOOTHED BELTS, GEARS, DRIVE COMPONENTS ETC.

1. Precision Industrial Components Corporation
P.O. Box 1004
Benson Road
Middlebury CT. 06762 Phone: l-800-243-6125

in CT: 203-758-8272

B.6 OTHER SOURCES
If you are on a tight budget, Herbach & Rademan usually carry a range of new and used stepper
motors and other mechanical odds and ends. Ask for their catalog, their address is

Herbach & Rademan Corporation
401 E. Erie Avenue
Philadelphia PA. 19134 Phone: 215-426-1708

n DD

B-2

APPENDIX C

STEP-MOT1
SPECIFICATIONS

Electrical Specifications

Nominal DC Volts

Winding Resistance

Rated Current

Winding Inductance

Winding Type

Time for Single Step

Mechanical Specifications

Step angle

Angle Accuracy

Holding Torque

Residual Torque

Rotor Inertia

Torque/Inertia Ratio

Shaft Diameter

Radial Load

Axial Load

Weight 20 oz.

5.0 volts

5.0 ohms at 25 deg. C.

1 .O amps per winding

10.4 millihenries

4-phase, Mead unipolar

2.5ms with 24VDC drive

1.8 degrees full step.

5%

53 oz.-in. min. (2 windings energized)

1.25 ox--in. min.

0.04 lb.-in2

32,000 typ.

0.25 inch

15 Ibs. max.

25 lbs. max.

n n n

C-l

MSTEP-3 USER GUIDE

cl

c-2

APPENDIX D

MSTEP-3 & M3-DRIVE
SPECIFICATIONS

D.1 POWER CONSUMPTION
+5v supply

+ 12v supply
- 12v supply

-5v supply

D.2 MSTEP-5 SPECIFICATIONS

Stepper channels

Maximum step count

Maximum step rate

Acceleration/deceleration ramping

Limit switch inputs
(active low, open
collector, TTL or

mechanical switch
to ground)

Translator Drive

Phase (winding) drives

Phase drive logic polarity

Phase drive sequence

Power chopping at standstill

385mA typ; 500mA max.
not used
not used
not used

3 (individually programmable)

+/-16,777,215

15,000 p.p.s.

automatic trapezoidal
programmable start, run
& ramping rates.

5 per channel
(end of travel,
highspeed&
base point)

CCW/CW and positive
going pulse.

TT’L compatible signals
for 3,4 or 5 phase
motor windings.

programmable

programmable full
or half step.

programmable
(reduces motor heating)

D-l

MSTEP-3 USER GUIDE

D.3 M3-DRIVE SPECIFICATIONS
Maximum motor voltage 36V.

winding current

Driver type chopping.

Maximum rate 10,000 per second, on motor
load.

Driver on resistance

LOGIC OUTPUTS
outputs ‘ITL

0.4~ max low voltage
min output voltage

PULSE, pulse width
DIR sink

68 ns
24mA at

PULSE, DIR current -24mA 2.4V

All outputs:
Sink

Source current
at 0.3V
at 2.4V

LOGIC INPUTS
inputs l-IL/CMOS

0.8~ mart low voltage
min input voltage

Pullups inputs have
10K pullups +5v.

D.6 OUTPUTS
IBM buss supplies

D-2

APPENDIX D: MSTEP-3 & MS-DRIVE SPECIFICATIONS

D.7 PHYSICAL & ENVIRONMENTAL SPECIFICATIONS
Operating temperature range 0 to 50 deg.C.

Storage temperature range -20 to 70 deg.C.

Humidity

Weight

95% non-condensing

802. (230 g-n.)

D.8 CONNECTOR PINOUT

A AXIS LIMIT 4 (0
A AXIS MOTOR ON (MON) (0

A AXIS HOME (BASE) (1)
A AXIS DIRECTION (I)

A AXIS STEP PULSE (0)
B AXIS LIMIT 1 0)
B AXIS LIMIT 3 (1)

B AXIS MOTOR ON (MON) (1)
B AXIS HOLD (0)

B AXIS DIRECTION (0)
PORT A BIT 7 (i/O)

PORT A BIT 6 (l/O)

PORT A BIT 4 (l/O)

PORT A BIT 0 (l/O)

PORT A BIT 2 (l/O)

PORT B BIT 7 (l/O)

PORT B BIT 5 (l/O)

PORT B BIT 1 (l/O)

PORT B BIT 2 (l/O)

C AXIS LIMIT 1

C AXIS LIMIT 3 ii;

C AXIS MOTOR ON (MON) (1)
C AXIS AUX. BIT (0)

C AXIS STEP PULSE

EXTERNAL CLOCK INPUT

I

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

46

49

50

0) A AXIS LIMIT 3

(9 A AXIS LIMIT 1

0) A AXIS LIMIT 2

(0) A AXIS HOLD

(0) A AXIS AUX. BIT

GROUND

(0 B AXIS LIMIT 2

(0 B AXIS LIMIT 4

(0 B Axis HOME (BASE)

I:;

B AXIS AUX. BIT

B AXIS STEP PULSE

GROUND

(l/O) PORT A BIT 5

(l/O) PORT A BIT 1

(i/O) PORT A BIT 3

(l/O) PORT B BIT 6

(l/O) PORT B BIT 4

(l/O) PORT B BIT 0

(l/O) PORT B BIT 3

(0 C AXIS LIMIT 2

(0 C AXIS LIMIT 4

0) c AXIS HOME (BASE)

I:;

C AXIS HOLD

C AXIS DIRECTION

GROUND

Rear view of 50-pin connector, Jl ; (I) = input, (0) = output, (l/O) = input/output.

Keying blocks are present between pins 3 & 5 and 47 & 49. Connector attached to board is 3M
(Scotchflex) # 3433-5303. Mating half for ribbon (insulation displacement cable) is 3M # 3425-6050

NO CONNECTION
NO CONNECTION
c AXIS 54
c AXIS s5
GROUND

c AXIS s, 1 20
c AXIS s2 2 19
c AXIS s3 3 16
9 AXIS 54 4 17
B AXIS 52 5 16
9 AXIS Sl 6 15 B AXIS ss
A AXIS Sl 7 14 B AXIS s3
A AXIS S2 8 13 GROUND
A AXIS SJ 9 12 GROUND
A AXIS S4 L 10 11 A AXIS S5

Top view of the P2 Connector (at top of Board).

D-3

MSTEP-3 USER GUIDE

D.8 SIGNAL DESCRIPTIONS

Phase outputs SlS5

ccw/cw

PULSE OUT

HOLD ACK.

Ll & L2 limit inputs

L3 & L4 limit inputs

Base point, CNP input

Motor control input

‘ITL outputs that provide signals for motor winding excitation. Logic
polarity and step sequence (full/half) are programmable.

Direction signal output 0 = clockwise 1 = counterclockwise.

Pulse output corresponding to steps. 5 microsecond negative going .
pulses. CCW/CW and PULSE can be used to drive a translator.

If switching at standstill is enabled, HOLD ACK. goes high 3
milliseconds after motor stops otherwise it is always low.

Active low overtravel limit inputs. Motor will stop immediately on
encountering either of these limits. Ll - clockwise limit L2 -
counterclockwise limit

Active low high speed limit inputs. Motor will perform a decelerating
stop at either of these limits if executing an accelerate or proceed to high
speed limit command. L3 - clockwise limit L4 - counterclockwise limit

Active low home or reference point limit switch input. Motor will stop
at base point if executing a proceed to base point command.

Motor control input must be high for controller to execute commands. It
can be used to monitor power on the stepper motor.

D-4

	ToC:

