
MSTEP-5
User Guide

User Guide

for the

MSTEP-5

Dual Stepper Motor

Controller Board

Ft6visipn B - April 1991
Copyright Kelthley MetraByte Corp. 1987

Part Number: 24892

KEITHLEY METRABYTE CORPORATION

440 MYLES STANDISH BLVD., Taunton, MA 02780

TEL 508/88&8000, FAX !508/880-0179

..,
- Ill -

Warranty Information

All products manufactured by Keithley MetraByte are warranted against defective materials
and worksmanship for a period of one year from the date of delivery to the original
purchaser. Any product that is found to be defective within the warranty period will, at the
option of Keithley MetraByte, be repaired or replaced. This warranty does not apply to
products damaged by improper use.

Warning

Keithley MetraByte assumes no liability for damages
consequent to the use of this product. This product is not
designed with components of a level of reliability suitable

for use in life support or critical applications.

Disclaimer

Information furnished by Keithley MetraByte is believed to be accurate and reliable.
However, the Keithley MetraByte Corporation assumes no responsibility for the use of such
information nor for any infringements of patents or other rights of third parties that may
result from its use. No license is granted by implication or otherwise under any patent
rights of Keithley MetraByte Corporation.

Notes

MetraBytem is a trademark of Keithley MetraByte Corporation.

BasiclM is a trademark of Dartmouth College.

IBM@ is a registered trademark of International Business Machines Corporation.

PC, XT, AT, PS/2, and Micro Channel Architecture@ are trademarks of
International Business Machines Corporation.

Microsoft@ is a registered trademark of Microsoft Corporation.

Turbo C* is a registered trademark of Borland International.

- iv -

CHAPTER 1: INTRODUCTION

1.1 Description1-l
1.2 General Areas Of Application l-2
1.3 Utility Software l-3
1.4 Technical Support.

..
: : : : : : : : : : 1 l-4

1.5 Options ... l-4

CHAPTER 2: INSTALLATION

2.1 Backing Up The Disk , .2-l
2.2 Hardware Installation .2-l

CHAPTER 3: PROGRAMMING

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

General
Register Locations & Functions
PPMC-101 C Stepper Controller Internal Registers
Loading The Machine-Language Call Routine MSTEP.BIN
Structure of The Call Statement : : : : : : :
Error Codes
Stepper Motor Fundamentals
CALLModes..

. 3-l

. 3-2

. 3-5

. 3-6

. 3-8

. 3-9

. . . . 3-11

. . . . 3-12

CHAPTER 4: MODE CALLS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

MODE 0: Emergency Stop
: :

.... .4-l
MODE 1: Decelerating Stop : : : : .4-2
MODE2:JogOrSingleStep.4-2
MODE 3: Step With Acceleration/Deceleration
MODE 4: Step At Constant Speed. : : : : : : : : : : : :

.. .4-4
.4-5

MODE 5: Move To Outer Limit At Constant Speed4-7
MODE 6: Move To Limit At High Speed4-9
MODE 7: Move To Base Point At Constant Speed4-9
MODE 8: Read Motor Status 4-l 1
MODE 9: Read Encoder 4-14
MODE 10: Load Divider 4-16
MODE 11: Enable/Disable Interrupt 4-l 7
MODE 12: Initialization 4-l 9
Programmer’s Short Summary 4-24
Interpreted BASIC (GW, Compaq, IBM, Etc.) 4-25
QuickBASIC. 4-26
Multiple MSTEP-5s In One System 4-28

CHAPTER 5 ENCODER CHANNELS

5.1
5.2
5.3
5.4

Optical Incremental Shaft Encoder.5-l
MSTEP-5 Encoder Interface : : : : : : : : : : .5-2
Reading & Resetting The Encoder Counters

.....................
.5-3

Connecting Up A Shaft Encoder .. : : : : : : : : : : : : .5-4

Contents

-v-

CHAPTER 6

6.1
6.2
6.3
6.4
6.5
6.6

USING THE SAT-STEP

STA-STEP Description 6-1
Power Drive Circuit 6-1
STA-STEP Connections To Stepper Motors 6-2
STA-STEP Connections To Encoders 6-2
Connection To External Translator 6-5
Other Signals On The STA-STEP. 6-5

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
7.6

STEPPER MOTORS & TRANSLATORS

How A Stepper Motor Works 7-l
Torque Versus Speed 7-3
Resonance. 7-4
Full- & Half-Step Operation 7-4
Translators & Indexers. 7-5
Mechanical Design. 7-5

CHAPTER 8 TESTING & MAINTENANCE

CHAPTER 9 INSTRUCTIONS FOR PRODUCT RETURN

APPENDIX A PPMC-101 C SPECIFICATIONS & PROGRAMMING

APPENDIX B SOURCES FOR STEPPER MOTORS & ASSEMBLIES

APPENDIX C STEP-MOT1 & STEP-ENCl SPECIFICATIONS

APPENDIX D MSTEP-5 & STA-STEP SPECIFICATIONS

* * * * *

- vi -

CHAPTER 1

INTRODUCTION

1 .l DESCRIPTION
MetraByte’s MSTEP-5 is a plug-in 2-axis stepper motor and incremental shaft-encoder motion-control
board for the IBM PC/XT/AT and compatible computers. The board is 12 inches long and requires a
full-length expansion slot. All connections are made through the rear plate using a standard 50-pin
insulation-displacement (mass-termination) connector. MetraByte also offers (as options) a screw
connector, a stepper-motor-driver accessory (STA-STEP), a popular type of stepper motor (STEP-
MOTl), and an incremental shaft encoder (STEP-ENCl; see Section 1.5). Figure l-l is a block diagram
of the MSTEP-5.

Each independent stepper channel consists of a Sil-Walker PPMC-1OlC intelligent controller chip that
can execute a variety of motion control commands. The PPMC-101C is one of the most popular
Japanese robotics chips and has been designed to provide essential features with simplicity of use.
MetraByte’s driver software further enhances the ease of stepper motor control by personal computer.

Once a command has been loaded into the PPMC-1OlC controller chip, the host computer is no longer
burdened by the execution of the particular motion, but may monitor its status as needed. The
associated stepper motor may be moved any number of steps up to 24 bits of resolution (+/-16777,216
steps) either with a controlled acceleration/deceleration profile or constant stepping rate. Associated
with each motor are 5 limit switch inputs as well as a motor enabled input. The limit switches provide
normal and emergency stop limits at both ends of travel, plus a home or reference point at any
intermediate point. A normal stop is defined as a normal deceleration to rest without loss of the step
count due to inertial effects, an emergency stop is a sudden stop that may lead to run on of the motor
and hence loss of location from the step count and would normally require recalibration by return to
the reference or home point. The emergency stop amounts to an immediate cessation of step pulses
regardIess of what the motor is doing at the time. In addition to controlling the number of steps
travelled by the motor (normal motion), the PPMC-1OlC controller executes the following commands
described below:

Initialization

Move Normal

Move Constant

Find Limit

Find High-Speed Limit

Controls number of phases driven (3,4 or 51, logic levels of
phase excitation, (normal, inverted), internal/external step clock select
and switching excitation on/off at standstill. In addition this command
sets the start up, acceleration/deceleration and high speed run rates.
The components of this comman d that relate to the motor configuration
cannot be altered by a further initialization command without resetting
the PPMC-1OlC controller.

Moves the motor the desired number of steps with a controlled
rate and acceleration/deceleration.

Rotates motor at constant speed for a specified number of steps.

Rotates motor to an outer limit switch.

Rotates motor to a high-speed or inner-limit switch.

1-l

MSTEP-5 USER GUIDE

Find Base Point Rotates motor to home or reference-limit switch.

Read status Read PPMC-1OlC controller status.

Decelerating Stop Stops motor normally.

Emergency Stop Instantly stops motor by removing drive pulses (may lead to loss of true
location from step count).

Single Step Single step or “jog” command.

Each stepper channel provides two different types of outputs. One is a counter-clockwise/clockwise
(CCW/CW) signal plus a pulsetrain output corresponding to the number of steps to be moved. This
is suitable for driving a wide variety of standard stepper-motor translators available from most
stepper-motor manufacturers. The other set of signals consists of 5-phase outputs used to drive power
transistors to switch the stepper motor windings directly. The number of outputs enabled and the
stepping sequence is controlled by the initialization command and can be matched to 3,4-, or 5-phase
motors. MetraByte’s STA-STEP accessory is an L/R type of driver including power mosfets driven by
the phase outputs and can drive small motors directly. When the motor is at standstill and the
winding excitation current is at a maximum causing the greatest heating, you can select a mode in the
initialization that switches the phase outputs at 2.2KHz and about 30% duty cycle. This action takes
place automatically about 100 milliseconds after standstill and reduces motor heating without much
affecting holding torque. Also the logic polarity of all the phase drive outputs can be selected true or
inverted.

The step rate is controlled by the clock frequency. The PPMC-1OlC chip has an internal clock of
12.5KHz plus a programma ble divider that can divide by any number in the range 20-255 giving
corresponding step rates between 49 to 625pps (pulses per second). This is usually adequate, but you
also have the option of selecting an external clock. There are two external clock sources on the
MSTEP-5, a 1OOKHz crystal, on-board clock with an 8-bit programmable divider, or an external user
input. The additional 8-bit divider works in conjunction with the PPMC-1OlC internal divider to give
step rates ranging from 1.54 to 5,OOOpps and further allows you to vary the step rate during operation
or execution of a co mmand. This lets you produce variable speeds with any motion command that is
not directly possible with the internal PPMC-1OlC clock. The user input can provide even more
flexibility. Selection of the clock source is software controlled.

In addition to the stepper-motor channels, there are two independent incremental shaft encoder
channels. These may be ignored in open-loop stepper-motor control or used for closed-loop control or
setting manual reference positions. The encoder channels are not in any way linked to the stepper-
motor channels, so it is up to the host computer to intervene in any type of control utilizing the
encoder inputs. Each encoder channel is TI’L-compatible and consists of a 24-bit up/down counter for
counting single edges with Channel A/Channel B quadratureoutput type incremental encoders. The
encoder counters may be cleared and read by the computer. The MSTEP-5 encoder inputs include a 2-
stage shift-register digital filter to reject transient noise, this limits the encoder input pulse rate to
25KHz (about 1500 rpm with a 1000 line/rev. encoder). Cascade outputs are provided from the
encoder counters to allow use of additional external counters if needed.

All communications with the MSTEP-5 is via I/O ports (no memory address space is used); eight
contiguous addresses are used in I/O space. The Base Address is selected on a DIP switch and can be
anywhere in the range 0 - 3F8 hex; lOO-3F8 or 200-3F’S is the usual usable range in an IBM PC/AT/XT.
More than one MSTEP-5 may be installed in a PC for multiple-axis control. The number is limited

l-2

CHAPTER 1: INTRODUCTION

only by available expansion slots.

The PPMC-1OlC stepper controller chips can also generate interrupts on completion of commands and
certain other conditions. This is supported in the MSTEP-5 hardware, interrupts may be jumper
selected to any of the IBM PC Interrupt Levels 2-7 and in conjunction with the PPMC-1OlC Status
Registers makes interrupt handshaking a simple procedure and allows the programmer to perform
background control.

1.2 GENERAL AREAS OF APPLICATION
Many manufacturers produce stepper motors, stepper motor assemblies such as X-Y tables, shaft
encoders, etc. A short summary of sources appears in Appendix B. MetraByte can provide from stock
a standard 5V, lA, 2OO&ep/revolution motor (STEP-MOT11 and l,OOO-line/revolution optical shaft
encoder (STEP-ENCl), see Appendix C for specifications. These devices are representative only of
typical hardware that can be used with the MSTEP-5.

Generally, stepper motors are suited to applications requiring variable torque, low speeds (not
exceeding 500 rpm) and maximum position retention. They also offer the simplicity of open-loop
position control simply by counting the number of steps. If your needs dictate higher speeds, fast
acceleration and deceleration, and the ability to return to a set position regardless of load
perturbations, a closed-loop DC servo drive may be more suitable. MetraByte also offers this type of
motion control board for the IBM PC (see our Model MSERVO-2 and accessories). This type of drive
is generally more complex and costly than a stepper drive but has characteristics that may be essential
in certain applications.

The MSTEP-5 may be combined with other MetraByte measurement and control boards to implement
complex “move and measure” type of instrumentation. It has obvious applications in robotics, optics
and lasers, mechanical assemblies, remote control, etc.

1.3 UTILITY SOFTWARE
It is possible to program the MSTEP-5 directly using normal I/O port commands (IN’ and OUT etc.).
This is explained in Section 3 and Appendix A, but for the programmer who wants fast results, our
accompanying utility software (MSTEP.BIN) will simplify the use of the MSTEP-5 and save a lot of
programming time. The utility software is provided on a single-sided PC-DOS 1.10 format 5-l/4”
floppy disk (upward compatible with DOS 2.0 and higher revisions):

1. A Microsoft Basic callable driver (MSTEP.BIN) is provided for control of the basic stepper and
encoder functions. The fully commented assembly source for this driver (MSTEPASM) is also
provided. The object module, MSTEP.OBJ, is also on the disk for linking when using compiled
BASICs (for example, IBM BASIC Compiler, Microsoft QuickBASIC, etc.).

2. Examples and demonstration programs. A comprehensive demonstration program (DEMO.BAS,
DEMO.EXE) is provided. This is excellent both as a programming example and a way of getting
the “feel” of the PPMC motion commands and driver software features. It will also be useful in
your system setup and test. For further details see Chapters 3 and 7.

3. Instructions for ASSEMBLY LANGUAGE, C, Pascal and Fortran programmers are included in
Appendix E.

1-3

MSTEP-5 USER GUIDE

1.4 TECHNICAL SUPPORT
If you have a problem, need information or advice, give us a call [617-880-30001 and ask for
applications engineering. We will do our best to assist you because our philosophy of doing business
is to provide a solution to your problem, not just sell a piece of hardware. If for any reason you are
dissatisfied with any MetraByte product or find it is unsuited to your requirements, you are welcome
to ietum it within the first 30 days of purchase for a full refund. Please call us first for an R.M.A.
(Return Material Authorization) number before sending back any hardware. The MSTEP-5 and
accessories are warranted against defects in manufacture and material for 1 year from the date of
original purchase.

1.5 OPTIONS
Several optional accessories to facilitate the use of the MSTEP-5 are available from MetraByte. These
include:

1. STA-STEP: As an an aid to using the MSTEP-5, this combination screw terminal and
power driver board accessory can be connected directly to the 50-pin
rear connector of the MSTEPS using MetraByte’s CACC-2ooO cable.
The STA-STEP accessory board performs two functions. All of the input
and output co~ections of the MSTEP-5 (with the exception of the motor-
phase drives) are brought out to miniature screw terminal connectors.
The phase drives are optically isolated and drive ten Motorola MTPN-08
6Ov 2SA 0.08 ohm power mosfet transistors (5 transistors for each of the
2 axes). Inductive clamping circuitry and provision for current limiting
resistors are also provided on the board. For 3,4 or 5 phase stepper
motors up to about 24V 5A rating, all that is required is an external DC
power source of appropriate voltage for the motors. Because of the opt*
isolation, all of the motor power drive circuitry is isolated from the
computer ground and MSTEP-5 outputs. This provides additional
safety and convenience in application. See Chapter 5 for more details.

2. STEP-MOTl: MetraByte can provide (as a stock item) a Superior Electric stepper
motor, type MO61-LS02 (or other manufacturer’s equivalent). This has
200 steps per revolution (1.8 deg. step angle), 5v 1A excitation and 35
oz-in torque with an output shaft diameter of 0.25 inch. Specifications of
this motor are provided in Appendix C . Other motor types should
should be ordered direct from the manufacturer, a partial list of sources
is in Appendix B.

3. STEP-ENCl: MetraByte can provide (as a stock item) an optical shaft encoder. This is
5v powered and outputs 1000 pulses/revolution. Additional
specifications are provided in Appendix C.

If you wish to use a stepper motor translator card manufactured by another company, the MSTEP-5
pulse and CCW/CW outputs can be used to drive the translator. In this case, you can either make up
your own cable, avoiding the use of the STA-STEP, or use the STA-STEP and simply pick up the
desired co~ections on the miniature screw terminal connectors.

l-4

CHAPTER 1: INTRODUCTION

m

a
W
t
i

c m

l-5

MSTEP-5 USER GUIDE

* * * * *

l-6

CHAPTER 2

INSTALLATION

2.1 BACKING UP THE DISK
The Disk back-up utility software supplied with MSTEP-5 is in DOS 1.10 format and is compatible
with DOS 2.0 and higher revisions. You are urged to make a back-up copy before using the software.
For a direct back up, use the DOS DISKCOPY utility or alternatively COPY *.* to a pre-formatted disk.
For a hard disk, simply use COPY *.* to transfer to a directory of your choice, the MSTEP-5 software is
not copy protected. If for any reason you should misplace or destroy your MSTEP-5 utility software
disk, please contact MetraByte for a free replacement.

2.2 HARDWARE INSTALLATION
MSTEP-5 utilizes 8 consecutive address locations in I/O space. Some I/O addresses will already be
used by internal I/O and your other peripheral cards. To avoid conflict with these devices, MSTEP-5’s
I/O address can be set by the BASE ADDRESS DIP Switch to be on an 8-bit boundary anywhere in the
IBM PC decoded I/O space. The IBM PC-XT I/O address space extends from decimal 512-1023 (Hex
200-3FF) and the IBM PC-AT I/O address space extends from decimal 256 to 1023 (Hex 100-3FF). In
either case this is much larger than is ever likely to be fully occupied. Such a large space also allows
use of more than one MSTEP-5 in a single computer. For your convenience, the reserved I/O
addresses for standard IBM devices are detailed on the next page. You must avoid setting the MSTEP-
5 to the same address as any other peripheral adapter card, but only if that other adapter card is
already installed in your machine. A conflict of addresses will not cause physical damage but may
cause malfunction of the MSTEP-5 and the conflicting adapter and in some circumstances, power on
self test (POST) diagnostic messages. If you experience any of these problems, remove the MSTEP-5
and set it to another base address.

HEX RANGE USAGE HEX RANGE USAGE

OootolFF
200 to 20F
210 to 217
220 to 24F
278 to 27F
2F0 to 2F7
2F8to2FF
300 to 31F
320 to 32F

Internal System
Game
Expansion unit
ReSelWd
Re&XWXl
LPT2
COM2:
Prototype card
Hard disk .

387 to 37F
380 to 38C
380 to 389
3A0 to 3A9
3B0 to 3BF
3co to 3CF
3D0 to 3DF
3E0 to 3E7
3F0 to 3F7
3F8 to 3FF

LpTl:
SDLC comm.
Binary comm. 2
Binary comm. 1
Mono dsp/LPTl:
Reserved
Color graphics
Reserved
Floppy disk
COMl:

The above list covers the standard IBM I/O options (most compatibles are identical), but if you have
other I/O peripherals (special hard disk drives, special graphics boards, prototype cards etc.), they
may be making use of I/O addresses not listed in the table above. Memory addressing is separate
from I/O addressing so there is no possible conflict with any add-on memory that may be in your
computer.

Usually, a good choices is to put the MS’IEP-5 at Base Address Hex &H300 or &I-I310 (Decimal 768 or
784). (Note if you are using an IBM prototype board, it uses the Hex 30031F address space and would

2-l

MSTEP-5 USER GUIDE

conflict, &I-I330 or &H340 would be a good alternative in this case). As an aid to setting the base
address DIP switch, a graphical switch position display program INSTALL.EXE can be from the

prompt. To the installation program, type A > INSTALL

When you the Desired base prompt, type your choice decimal or
&H- format press < > . program will your address the nearest
boundary, check possible conflicts standard IBM devices (and you if and draw

picture of correct positions the seven on the Address DIP For additional
on Base switch settings, Figure 2.0.

next step to remove MSTEP-5 board its protective packaging and the
Base switch, located to the left of gold edge It is good precaution

discharge any charge you have accumulated touching the frame of
computer before the board the computer.

only other setting is choice of Level. Most you will initially be
use of interrupt capabilities the MSTEP-5 can park “IRQ LEVEL”

level) selector block in “X” inactive If your will use from
the MSTEP-5, then select the Hardware Interrupt Level 2 thru 7 that you intend to use. Take care to
avoid selecting a level that is used by another adapter card (for example, Level 6 is always used by the
floppy disk controller, Level 4 by COMl:, Level 3 by COM2: etc.). For more information on interrupt
programming, see MODE 11, Section 3.8.12

To install the board, TURN OFF THE POWER on your computer and remove the case (See the IBM
“Guide to Operations” manual if you are not already expert at this maneuver). Remove a vacant back
plate by undoing the screw at the top and plug the MSTEP-5 in and secure the backplate. MSTEP-5
will fit in any of the regular full depth slots of the IBM PC-XT or Portable computer. On the PC-AT, it
can be plugged into any socket but it will not make use of the extended AT bus interface connector.
Due to the length of the 50-pin rear connector, it is advisable to set the retainer latches on this
connector out straight, pass the connector through the rear slot and pivot the board down into the
edge connector. The board is 1 inch shorter than the slot length to allow for this maneuver.
Installation is now complete. You may plug any of the MSTEP-5 accessories or your own cable into
the 50-pin connector on the rear.

Remember, TURN OFF THE POWER whenever installing or removing any peripheral board
including the MSTEP-5. Never try to install or remove any peripheral board with the power on as it
can cause costly damage to the electronics of your computer and/or the MSTEP-5 board.

If for any reason you later remove the MSTEP-5 board, MetraByte recommends that you retain the
special electrostaticalIy shielded packaging and use it for storage.

EASE ADDRESS INTERRUPT

IRO LEUEL

E:ASE ADDRESS S”(GLIN LEVEL . - 2 3 4 5 6 7 :<
,_________-_-_-----_________(

hASE : i ;
+

ADOFESS : ;r3 9
: :_____.__....... A.q 16 PLACE ;lJMPER BLOCK ON DESIRED LEVEL i
: .._..........._...._........... As 3’

,.,.. A6 6-1
“x” IS INACTIVE PARKING POSITION

SEE SECTIOti 3.8.12 FOR CHOICES . A7 128
fj8 256

. A4 51.2

St.1 I TCHE5 HA’JE ‘.‘kLIJE 5 A3 ABOVE I PI THE “OFF” “OS I T I Grl

IN THE “Ghl” PGSITION. DECI?IAL UALUE IS -/ERG

Figure 2.0. Base Address Switch & Interrupt Settings.

2-2

CHAPTER 3

PROGRAMMING

3.1 GENERAL
At the lowest level, the Stepper Motor Controller is programmed using I/O input and output
instructions. In BASIC, these are the lNP(X) and OUT X,Y functions. In Assembly Language, they are
IN AL,DX & OUT DX,AL. Most other high level languages have equivalent instructions. Use of these
functions usually involves formatting data and dealing with absolute I/O addresses. Although not
demanding, this require many of code necessitates an of the data
format, architecture of MSTEP-5. To program generation, special I/O
routine “MSTEP.BlN” included in MSTEP-5 software This may accessed from

by a line CALL The CALL will perform used sequences
instructions. An is Mode which performs normal stop. routine to this
operation BASIC using and OUT’s require many of code would be
slow and tedious to

A sequence BASIC lNPs OUT’s to the Stop to PPMC A would as
follows:

xl0 cNR% = INP (BASADR% + 0) ‘read current control register

x20 cNR% = ((CNRB AND &HFC) OR hH05) 'select A, AORSEL=l

x30 OUTBASADR+O,CNR% ‘write control register

x40 STAT% = INP (BASADR% + 1) 'fetch PPMC status

x50 IF (STAT% AND hH04) = 0 THEN GOT0 xx150 'motor stopped?

x60 IF (STAT% AND &H02) 00 THEN GOT0 xx140 'input buffer full?

x70 cMD% = &HO1 + &HlO ‘stop Motor, disable interrupt

x80 CNR% = CNR% AND hHFE 'set AORSEL = 0

x90 OUT BASADR% + 0, CNR% ‘write control register

xl00 OUT BASADR% + 1, C24D% 'write PPMC command

xl10 CNR% = CNR% OR &HO1 'set AORSEL = 1

x120 OUT BASADRB + 0, CNR%

x130 STAT% = INP(BASADR% +l) 'fetch PPMC Status

x140 IF (STAT% AND &H04) <> 0 THEN GOT0 xxx130

x150 STOP 'finished

All this code can be circumvented by using the driver:

x10 MD%=1 'command - decelerating stop
~20 D%(O) = 1 'select channel A

x30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

Obviously, the MSTBP.BlN driver greatly reduces programming time and effort. Both methods of
programming are described (see Appendix A for programming the PPMC-1OlC directly) and you are
free to choose either. Usually the BASIC programmer will find the CALL routine method very much
simpler to implement. The MSTEP.BlN driver also provides an example interrupt service routine. It
is not possible to program interrupt routines directly in BASIC and the driver is the only way of
utilizing interrupts from the MSTEP-5 hardware.

3-1

MSTEP-5 USER GUIDE

3.2 REGISTER LOCATIONS & FUNCTIONS
The I/O address map of the MSTEP-5 is structured as follows:

ADDRESS READ WRITE

Base Address + 0 Control Register (read/write register)
+I PPMC Registers A/B (read/write registers)
+2 - Clear Encoder A
+3 Encoder Low Byte Clear SMC A
4 Encoder Middle Byte Clear SMC B
+5 Encoder High Byte Clear Encoder B
+6 Clock Divider A
+7 Clock Divider B]

Base Address +0: Control Register (Read/Write)

Access to each of the PPMC stepper controllers is through the I/O port at Base Address +l. The
Control Register, at Base Address +0, acts as an indirect address or pointer register for the other
devices on the board; it controls the following:

l Which of the PPMC stepper channels is accessed.

l Which of the internal registers (there are four in each controller) is selected.

l Which of the two encoder channels is read at Base Address +3, +4, or +5.

l Generation of interrupts.

l Choice of internal/external stepper-clock sources.

Bit functions in the control register are as follows:

II I I I I I I I 11
BIT: D7 D6 D5 D4 D3 D2 Dl DO

Ii
I I I I I ! I I
I I I I I I I 1

XCB XCA EINTB EINTA ECTRAB CSB CSA AORSEL
II I I I I I I I u

Bit functions:

XCB

XCA

EINTB

EINTA

Selects External Step Clock (XCB = 1) on Pin 42 or lOOKI& + Divider on-board clock
(XCB = 0) for stepper channel B. This applies only if the PPMC initialization command
has specified external clock otherwise the 12.5KHz PPMC internal clock will be used.

Selects external step clock (XCA = 1) on pin 41 or 1OOKI-I.z + divider on board clock (XCA
= 0) for stepper channel A. This only applies if the PPMC initialization command has
specified external clock otherwise the 12.5KHz PPMC internal clock will be used.

Enables hardware interrupt from PPMC Stepper Channel B (EINTB = 1). Interrupt is
disabled if EINTB = 0.

Enables hardware interrupt from PPMC Stepper Channel A (EINTA = 1). Interrupt is
disabled if EINTA = 0. If both ElNTB and ElNTB are enabled, interrupts from the 2
controllers are ORed together. In this case, the Interrupt Service Routine must poll each
controller to determine the source of the interrupt.

3-2

CHAPTER 3: PROGRAMMING
ECTRAB Selects which of the Encoder Counter channels can be read at Base Address +3, +4, +5.

ECTRAB = 0: Encoder Channel A

ECTRAB = 1: Encoder Channel B

CSB, CSA, AORSEL select PPMC registers as follows:

CSB CSA AORSEL READ(R) WRITE(W)

1 0 0 PPMC Channel A Data Register (R/W)
1 0 1 A Status Register A Command Register

0 1 0 PPMC Channel B Data Register (R/W)
0 1 1 B Status Register B Command Register

0 0 0 Illegal
0 0 1 ,,

Write both data registers
Write both command registers

1 1 X Unselected both channels

Programming of the PPMC-101C controllers is covered in Section 3.3 and Appendix A.

Base Address +3, +4, +5: Encoder Counter Registers (Read Only)

Each Encoder Counter consists of three &bit sections that are read only. Channel A or Channel B is
selected by the ECI’RAB bit in the Control Register. The 24-bit Encoder Counter data is then read
from Base Address +3, +4, and +5 as follows:

Base Address +3: Low byte (Read Only)
Base Address +4: Middle Byte (Read Only)
Base Address +5: High Byte (Read Only)

To clear Encoder Counter A, write to Base Address +2.

To clear Encoder Counter B, write to Base Address +5.

Note that the encoder data is not latched (the counter is read directly. To avoid erroneous data, the
encoder data is best read when the encoder is stationary. Reading the counter with the encoder
moving may give rise to errors in the data due to the delays between reading each byte, this depends
to some extent on the speed of rotation of the encoder bee MODE 9, Section 3.8.10, and Section 4.3).

A typical encoder-read sequence in BASIC might be as follows:

x10 cNR% = INP(BASADR%) 'Fetch current control register

x20 cNR% = ((CNR% AND LHF7) OR CH08) I= encoder A, &HOO=B

x30 OUT BASADR%, CNR% 'set ECTRAB bit

x40 RDcL% = INP (BASADR% + 3) 'read low byte

x50 FiDcM% = INP (BASADR% + 4) 'read middle byte

x60 RDCH% = INP (BASADR% + 5) 'read high byte

x70 POSN# = RDCL% + (256*RDCM%) + (65536*(RDCH% and &H7F))

x80 IF ((RDCH% AND CH80) <> 0) THEN POSN# = -POSN#
'Position is CCW of initial point

3-3

MSTEP-5 USER GUIDE

This example illustrates a few important details. First the encoder channel to be read is selected with
the ECTRAB bit in the Control Register. Since the data returned is 24-bit, it would ideally be suited to
reading into a long (double-word) integer. Many languages (C, Fortran, etc.) provide long integers,
but BASIC is an exception that forces you to use a floating point variable, instead. Note this needs to
be a double-precision variable in BASIC to provide 24-bit resolution. Use a single precision variable
and you lose counts at high values (to prove this, try X=17111113:PRINT USING “########“;X). If
we clear the encoder channel at the reference or “home” point of the system, the most significant bit of
the up/down encoder counter can be treated as a sign bit and will indicate the rotation direction from
the home point.

Base Address +2, +3, +4, +5: CLEAR Commands (Write Only)

Four Clear addresses have been provided. They are

1. A write to Base Address +2 clears Encoder Counter A.

2. A write to Base Address +5 clears Encoder Counter B.

3. A write to Base Address +3 resets PPMC A stepper controller.

4. A write to Base Address +4 resets PPMC B stepper controller.

A write to these registers at any time is similar to a hardware reset. The data written to these I/O
addresses is irrelevant and is lost; it is the act of writing to the port that provides the Clem function.
The PPMC-1OlC stepper controllers are specialized microprocessors that are automatically reset on
power-up of the computer. Afterwards, these controllers can also be hardware-reset by a write to
Base Address +3 or +4. After resetting a PPMC controller, allow at least 100 micro-seconds to elapse
before performing an initialize command. This lets the specialized processor perform its own
internal start-up initialization before responding to commands. In interpreted BASIC, allowing for
this delay is not a concern, but in other languages, be sure to wait. An example of clearing all four
registers in BASIC is as follows:

x10 OUT BASADR%+P, 0 'Clear Encoder A
x20 OUT BAsADR%+S, 0 'Clear Encoder B
x30 OUT BASADR%+3, 0 'Clear PPMC A
x40 OUT BASADR%+4, 0 'Clear PPMC B

Base Address +6, +7: Clock Dividers (Write Only)

There are three different stepperclock sources usable by the PPMC. PPMC internal 12.5KHz clock,
Stepper Motor Controller Board external 1OOKHz clock, or an external user-supplied clock source. To
use either of the clock sources external to the PPMC stepper controller chip(s), the PPMC initialization
command must specify external clock input. Alternatively, the initialization comman d can also
specify use of a 125KHz clock generated internal to the PPMC chip (internal clock), which is usually
adequate for most applications. If the external clock option is selected on initialization, you have the
further choice between external hardware inputs (Pins 41 and 42) or an on-board 1OOKHz crystal with
programmable divider source. The external clock selection is controlled by the XCA and XCB bits of
the Control Register.

If you elect to use the the Stepper Motor Controller Board external 1OOKHz Clock, you can select the
pulse rate by loading the appropriate clock divider register. This register is Read/Write and may be
programmed to select a pulse rate between 1.54 and 1,000 pulses per second (I%). In addition, this
register works in conjunction with the internal PPMC I&A register to give an effective divider range of

3-4

20 to 65535.
CHAPTER 3: PROGRAMMING

The pulse frequency may be calculated using the formula:

PPS = 100,000 / ((FD+l) ’ RA)

where

FD = Frequency Divider (1 - 255)
RA = PPMC Divider (20 - 255)

If the PPMC Internal Clock and RA Divider are selected at initialization time, the pulse rate may be
between 625 pps (RA = 20) and 49 pps (RA = 255). The formula to calcuIate this is

PPS=12.5/RA

where

RA = 20 - 255

If XCA or XCB = 1, a square-wave TTL-level clock may be provided on the external clock pins (Pins 41
and 42) as appropriate. To use this clock, the PPMC must be initialized for external clock. This clock
source is divided by the internal PPMC RA register which is also set up at initialization time. The
external input option allows user to synchronize the two stepper motor controllers with the same
clock or change its rate during motion commands.

The pulse rate may be determined by the following formula:

PPS = (External Clock Rate (Hz)) / RA

where

RA = 20 - 2551

The following BASIC code is an example of programming the MSTEP-5 board clock dividers (an
identical function is performed by MODE 10 of the driver):

xxx10 cNR% = INP(BASADR% + 0) 'read current control register

xxx20 cNR% = CNR% AND LH3F 'turn off XCA 6 XCB - select lOOKliz

xxx30 OUT BASADR%+O, CNR% ‘write control register

xxx40 OUT BAsADR%+C, DIVA% 'write Divider A

xxx50 OUT BASADR%+7, DIVB% 'write Divider B

3.3 PPMC-101C STEPPER CONTROLLER INTERNAL REGISTERS
Bach PPMC-1OlC Stepper Controller is a specialized microprocessor. The MSTEP-5 Control Register
selects the PPMC channel (A or B) through the CSA and CSB bits, and any of the four internal PPMC
registers by the AORSEL bit:

3-5

MSTEP-5 USER GUIDE

AORSEL READ WRITE

0 DATA DATA

1 STATUS COMMAND

Motion commands are issued to the PPMC controller by writing a command code to the Command
Register (with AORSEL = 1). Since the PPMC may be busy executing a command, you must always
read the STATUS register to determine whether the PPMC is ready to receive the command. After a
command is issued, it may require or produce a variable number of data bytes (depending on the
command) which are written or read from the Data Registers (with AORSEL = 0). Apart from
controlling access to the Command Register, the Status register also provides additional information
on the operation of the PPMC controller.

There are eight motion-control comman ds as well as the INITIALIZATION command that set the
operating conditions of the controller. The functions of the Command and Status Registers are as
follows:

INITIALIZATION Selects the motor type, method of excitation acceleration/deceleration
rate, internal/ external step clock, phase output logic type and start up
and high speed pulse rate. Once the initialization command has been
sent, it may not be overwritten by a further initialization command. The
PPMC controller must be reset either by turning the computer power off
and on or more conveniently by issuing a hardware clear command Gee
Sections 3.2.4 and 3.8.13 - mode 12).

OPERATION

STATUS

This is the user interface mode in which COMMAND selects any of eight
motioncontrol commands. The length of the data to follow depends on
the specific command.

Before/after the completion of an operation command, the status register
provides data on the limit switches, motor in motion or at standstill and
input/output data buffer full or valid. It also enables you to read the
number of steps remaining to be travelled etc.

Direct progr amming of the PPMC-101C controllers and their full specification is more fully covered in
Appendix A.

3.4 LOADING THE MACHINE-LANGUAGE CALL ROUTINE MSTEP.BIN
In order to make use of the CALL routine MSTEP.BIN, it must first be loaded into memory. You must
avoid loading it over any part of memory that is being used by the main body of your program, DOS,
or programs such as RAM disks that use high memory. If you do collide with another program, your
computer will usually hang up although sometimes the results can be more peculiar. Often you will
need to turn the power off and restore it to reboot the machine, the usual Ctrl-Ah-Delete reset may
fail to restore DOS. This may sound ominous, but apart from the frustration, no damage will ever
result!

MSTBP.BIN uses about 3 Kbytes of memory and is best loaded outside BASIC’s workspace. A typical
loading sequence is as follows:

3-6

CHAPTER 3: PROGRAMMING

xx100 DEE' SEG = &IX3000 'segment of memory to load link

(choose an empty area e.g. @@ 192K)

xx110 BLOAD "MSTEP.BIN",O 'load driver . . Continue program

The above initializing steps will be the same for any interpreted BASIC program. A more
comprehensive example is provided on the disk in DEMO.BAS. Note that the DEF SEG = &H3000
statement in line 100 specifies the load location for the MSTEP.BIN driver. All subsequent CALL’s will
occur to the last DEF SEG address, so if you add other DEF SEG’s in your program, remember to
precede your CALL’s to MSTEF-5 with the same DEF SEG = &H3000 that you used to load the link
(see CALL and DEF SEG in your BASIC reference manual).

Finding a place to load MSTEl’.BIN is seldom much of a problem now that most PC’s are equipped
with at least 256K of memory. The following explanation provides some insight into the process of
choosing a memory location for the driver and what to do if memory is in short supply.

DOS occupies the bottom of memory, the amount of memory required being dependent on the
version (it grows as each new revision adds extra features!). The simplified memory map below shows
what happens after booting up BASICA.

DOS 1.1 DOS 2.1 DOS 3.0

Bonom: OK --__-- OK ------- OK ------

DOS

19K --mm--

DOS

47K ---__-

BASIC

BASIC

98K ------

Free
memory 126K ------

Free
memory

DOS

63K _---_-

BASIC

140K --m-v

Free
memory

hdSTEP.BlN should be loaded somewhere in the free memory area so that it does not interfere with
either BASIC or DOS. This would be above 98K (&H1880) for DOS l.l,126K (&HlF80) for DOS 2.1 or
140K f&H23001 for DOS 3.0. If you have 256K &H4000) or more of memory, then loading the link at
DEF SEG = &I-I2800 or &H3000 is a good solution for all versions of DOS. One further small detail is
that if you are using a PC compatible which does not have BASIC in ROM like the IBM PC, then
BASIC (e.g. GWBASIC) is usually loaded as an .EXE file from the top of memory down. This is likely
to fill up to 64K of the top segment of memory. Some virtual disks or print spoolers will do the same.
Also if you are accustomed to using DOS resident programs such as Borland’s Sidekick etc. be aware
that these will push the loading floor of BASIC up and require a compensating increase in the location
of MSTEI’.BlN.

3-7

MSTEP-5 USER GUIDE

If you are memory limited, or you have so much resident stuff that there is no longer 64K left for
BASIC to load in, then BASIC will attempt to make the most of what it can find. Instead of getting the
message when BASIC has loaded:

The IBM Personal Computer Basic

Version A2.0 Copyright IBM Corp. 1981, 1982, 1983

60865 Bytes free

OK

You may get only 49345 bytes free (or something less than 60000 bytes) for example. In this case make
a note of what space BASIC has found. You can then contract this space further using the CLEAR
function and load the link at the end of BASIC. This is more complicated, but just as effective.

Let’s suppose we get the message 52ooO bytes free. MSTEP.BIN will use 3K bytes, so to be on the safe
side let’s force BASIC to use 48K. Our initializing code would now be:

xx100 CLEAR, 48000 'contracts BASIC workspace

Next we need to find out where BASIC has loaded in memory, add 48ooO to it and load MSTEP.BIN
just after the end of BASIC workspace. Memory locations &H510 and &H511 always contain BASIC’s
load segment:

xx110 DEE' SEG = 0 'set up to read &HSlO and &H511

x120 LS = 256*PEEK(&H5ll)+PEEK(&H510) 'load segment
x130 SG = LS + 48000/16 ‘rpmpmhpr segment addresses are on

16-byte (paragraph) boundaries

xl40 DEF SEG = SG 'set up to load link

x150 BLOAD "MSTEP.BIN",O 'load link

. .

Proceed with your program as before

3.5 STRUCTURE OF THE CALL STATEMENT
If you are new to using CALL statements, this explanation may assist you in understanding how the
CALL transfers execution to the machine language (binary) driver routine (also see CALL in your
Basic Reference Manual). Prior to entering the CALL, the DEF SEG = SG statement sets the segment
address at which the CALL subroutine is located. The CALL statement for the MSTEP.BIN driver
must be of the form

xxxx CALL MSTBP (MD%, D%(O), STP#, FL&G%)

Let us examine the parameters after CALL one by one:

MSTEP In interpreted BASIC this is a variable that specifies the offset of the start of our routine
from the segment defined in the last DEF SEG statement. In our case its value is always
set to zero (MSTEP = 0). In compiled BASIC (and most other compiled languages)
MST’EP has a different significance - it is the name of the external routine that the linker
will look for. Note: We would have liked to use the name STEP instead - it’s a better
mnemonic than MSTEB, but be warned that STEP is a reserved word (as in FOR I=0 TO 6
STEP 2) and CALL STEP would produce a syntax error.

3-8

MD%

D%(9)

STIW

FLAG%

CHAPTER 3: PROGRAMMING

This is an integer variable that specifies the operation that we wish the driver to perform
e.g. MD%=0 performs an emergency stop, MD% = 12 initializes a channel etc. In the
case of this driver, valid mode numbers range from 0 to 12.

This is a IO-element integer array that passes data to and from the driver. The
signifigance of particular data items varies according to the mode (MD%) selected. Not
all elements of D%(+) are used in all modes.

This is a double precision variable that specifies the direction and number of steps to
travel or returns optical shaft encoder counts. The sign indicates the direction, +
clockwise, - counter-clockwise. Not all modes utilize the STP# data , however it must
always be included in the call parameter list.

Returns an error code if any of the specifying D%P) or MD% are out of range or if the
motor is busy or at standstill in certain co mmands. In the case of no error, FLAG% is
returned zero.

The four variables within brackets are known as the CALL parameters. On executing the CALL, the
addresses of the variables (pointers) are passed in the sequence written to BASIC’s stack. The CALL
routine unloads these pointers from the stack and uses them to locate the variables in BASIC’s data
space so data can be exchanged with them. Three important format requirements must be met, as
follows:

1. The CALL parameters are positional. The subroutine knows nothing of the names of the
variables, just their locations from the order of their pointers on the stack. If you write:

- CALL MSTEP (D%(O), FLAG%, MD%, STP#)

you will mix up the CALL routine, since it will interpret D%(O) as the mode data, and FLAG% as
the D%(O) data variable etc. The parameters must always be written in the correct order, as
follows: mode #, data, step count, errors

2. The CALL routine expects ik parameters to be of correct type and will write and read to the
variables on this assumption: integer, integer array, double precision, integer

If you slip up and use the wrong variable types in the CALL parameters, the routine will not
function correctly and may hang up the program.

3. You cannot perform any arithmetic functions within the parameter list brackets of the CALL
statement. There can only be a list of variables. Also you are not allowed to replace variables by
constants.

Apart from these restrictions, you can name the variables what you want, the names in the examples
are just convenient mnemonics. You should always declare the variables before executing the CALL
so that BASIC has reserved memory locations for them before entering the CALL. In the case of the
integer array, the first element D%(O) should be specified in the CALL parameter list as the data
variable so that the CALL routine can locate all of the other remaining data items in the array
correctly.

3.6 ERROR CODES
Some value checking is performed on entry data and any errors discovered are returned in FLAG%.
This is primarily to prevent you setting up the CALL with obviously incorrect data such as interrupt
level 9, mode number -6, base address 2000, byte output data 299 etc. and is intended to help avoid a
bad setup of the hardware which could hang the computer. Also certain commands, such as an

3-9

MSTEP-5 USER GUIDE
emergency or decelerating stop are redundant if the motor is already at standstill (FLAG% = 7) and
the PPMC controller may not be receptive to further commands if it is already busy executing a
command @‘LAG% = 1). If a non-zero error code is returned in any mode, execution of that mode will
have been abandoned without action since error checking precedes any I/O to the hardware.

ERROR CODE # PROBLEM

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

No error, OK
Motor busy
Driver not initialized on Channel A
Driver not initialized on Channel B
Mode number CO or > 12
Hardware error
Step count out of range +/-16,777,215
Motor already at standstill
- (not used)

Error in range of D%(O)
Error in range of D%(1)
Error in range of D%(2)
Error in range of D%(3)
Error in range of D%(4)
Error in range of D%(5)
Error in range of D%(6)
Error in range of D%(7)
Error in range of D%(8)
Error in range of D%(9)

Checking for errors is easily performed after each CALL and is recommended if not as a permanent
feature then at least while debugging your program

xxx00 CALL &STEP (MD%, D%(O), STP#, FLAG%)

xx10 IF FLAG%<>0 THEN PRINT "Error number ";FLAG%:STOP

Certain error codes are useful in performing chained motion commands, as follows:

xxx00 MD% = 3 ‘accelerate/decelerate command
xxx10 STP# = 1000 'steps h direction to move

xxx20 D%(O) = 1 ‘select channel B

xxx30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

xxx40 IF FLAG%<>0 THEN PRINT "Error number ";FIAG%:STOP

xxx50 STP# = -99 ‘now do 99 steps in opposite
direction

xxx60 CALL &STEP (MD%, D%(O), STP#, FLAG%)

xxx70 IF FLAG%= lTHENGOTOxxx60 'loop while motor busy

xxx40 IF FLAG%<>0 THEN PRINT "Error number ";FLAG%:STOP

Note that after issuing a motion command in line xxx30 the controller and motor will still be busy
executing this command when the program reaches the next motion command in line xxx60. In this
case, FLAG% will return 1 and we can keep trying to execute line xxx60 until the previous command
of line xxx30 has finished. In this way we can execute a whole series of commands as fast as the
hardware will allow.]

3-10

CHAPTER 3: PROGRAMMING

3.7 STEPPER MOTOR FUNDAMENTALS
In order to program a stepper motor channel, it is necessary to understand a little bit about the
physical setup and characteristics of a stepper motor. The motor itself consists of a permanent magnet
rotor rotating within a multipole stator. As the current is switched in the windings of the stator, the
magnetic field advances from one pole to the next and pulls the rotor along with it (see Section 6 for
more information). The rotor can be turned a precise amount simply by controlling the number of
energization/de-energization cycles of the windings (steps).

On turning on the power, the position of the motor is usually unknown, so it is necessary to move it to
some known reference position called the home, base or reference point. When the mechanical system
is in this position it can operate a switch (microswitch, hall effect or optical interrupter) and this
provides the BP (base point) limit switch input. Once at the base point, all further commands can
move relative to this known location, and as long as there is no loss of power or emergency stops the
subsequent position can always be determined from the step count.

In practical systems, there is usually some physical limit on how far the motor can turn e.g. a lead
screw gets wound to an end. To stop the motor, there is provision for 4 sets of limit switches, Ll - LA.
I-3 and L4 provide inner or deceleration limits where it is desirable to stop a fast moving motor even
though it has not reached the absolute physical limit of travel. Ll and L2 are end of travel limits (or
emergency stop limits) where it is essential to stop the motor immediately. A typical physical
representation of a system is shown in Figure 3-1.

STEPPEf?
MOTCJI?

I

/////‘//ISCREW

T T
BP if3 r-i

LIMIT SWITCH LOCATIONS

Figure 3-l. Typical mechanical arrangement.

Note that a mechanical system can be simplified and does not have to have 5 limit points, although the
PPMC-1OlC controller can handle it. For example, L2 & LA & CNP may be one physical limit switch,
and Ll & L3 another for a 2 limit switch system. If you do this, you may lose some performance
features of the PPMC, but gain in mechanical simplicity. Simply common up the limit switch inputs
as required.

A mechanical system has significant inertia and it is not usually possible to start or stop the motor
abruptly. The PPMC-1OlC controllers look after this problem by starting up the motor at a slow rate,
ramping it up to full speed over a prescribed number of steps, and slowing it back down again before
reaching the final step count (see Figure 3-21. All these parameters are set in the initialization
command (mode 12). The inner limit switches (if used) allow you to perform a controlled stop
without loss of positional count before hitting the outside or emergency stop limits. Whenever the
motor hits an emergency limit switch, Ll or L2, during a motion command, it will stop. Which limit
switch it hit and how many pulses remain to be executed in the last command and what was the last
motion command can all be determined from a status read (mode 8). In this way the controller
prevents overtravel and damage to the mechanical system and the programmer can provide
appropriate corrective action depending on which of the limit switches were activated.

3-11

MSTEP-5 USER GUIDE

RATE T
HIGH SPEED

SET BY 05;(Z)
____________________,

/

\

‘\ I
i

UELQCITY FROF!LE \

/ “l
STf+RT RATE 1 _ - - - _ _ -

SET EY D”(lJ f.

I ,
+-~$!g;-t] 1 eg,g+ STEPS

l STP* STEPS t

Figure 3-2. Acceleration/deceleration profile (MODE 3).

3.8 CALL MODES
The MSTEP.BlN driver supports thirteen different modes (numbered 0 thru 12). For simplicity,
MODES 0 thru 7 correspond identically to the command numbers in the PPMC-1OlC data sheet (see
Appendix A). The additional MODES 8 thru 12 support other functions. Each mode performs a
specific operation as described below:

MD% =o
=l
=2
=3
=4
=5
=6
=7
=8
= 9
= 10
= 11
= 12

Emergency stop
Decelerating stop
Jog (single step)
Accelerate&celerate STlV steps
Travel STH steps at constant speed
Move to a normal limit at constant speed
Move to overtravel limit at high speed
Move to base point at constant speed
Read motor status
Read encoder position
Load external clock divider
Enable/disable interrnpts
Initialize, reset & clear encoders

The method of use of each mode and the significance of D%(*) is described fully in the following
subsections. It is essential to perform a channel initialization (MODE 121 separately on each
channel before other MODEs 0 - 11 may be selected.

* * * * *

3-12

CHAPTER

MODE CALLS

4.1 MODE 0: EMERGENCY STOP
MODE 0 performs an emergency stop or immediate cessation of driving pulses to a motor that is busy
executing a motion command. On receipt of the command, inertia may cause a rotating motor to run
on, so the step count may no longer be an accurate guide to the motor position. An emergency stop
would usually be followed by a recalibration or return to home position.

Entry Data:

MD%=0

D%(O)

D%(l) tluu (9)

STr#

FLAG%

Emergency stop command

Selects Channel A (01 or Channel B (1)

Value irrelevant

Value irrelevant

Value irrelevant

Exit Data:

D%(O) thru (9)

STlw

FLAG%

Unchanged

Unchanged

0 if executed OK
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% <O or ~12
5 if hardware error
7 if motor already at standstill (command redundant)
10 if D%(O) not 0 or 1

A typical program entry preceding MODE 0 might read as follows:

xxx10 MD* = 0 ‘select MODE nuder

x.m&!OD%(O) =1 'select Channel B

xxx30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

'emergency stop

xxx40 IF (FLAG%<>0 AND FIAG%<>7) THEN PRINT "Error";FLAG%;" in MODE 0":STOP

xxx50 ’ continue program

One detail concerning the preceding example: If FLAG% = 7 is returned, it is lust a reminder that you
told the controller to do an emergency stop when in fact the motor was already stopped. In this case
the driver aborts the command and lets you know why through FLAG%.

4-1

MSTEP5 USER GUIDE

4.2 MODE 1: DECELERATING STOP
MODE 1 performs a decelerating stop or gradual cessation of driving pulses on a motor that is busy
executing a motion command. The deceleration parameters correspond to those set in initialization
MODE 12. This type of stop should lead to no loss of positional accuracy of the motor. The number of
pulses which the motor would have continued to step if it had not received a decelerating stop
command can be determined by a status read (MODE 8). The exact position of the motor can then be
determined and a recovery routine initiated if required.

Entty Data:

MD%=1

D%(O)

D%(l) thru (9)

SIT%

FLAG%

Exit Data:

D%(O) thru (9)

STr#

FLAG%

Decelerating stop command

Selects Channel A (0) or Channel B (1)

Value irrelevant

Value irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% <O or >12
5 if hardware error
7 if motor already at standstill (command redundant)
10 if D%(O) not 0 or 1

A typical program entry preceding MODE 1 might read as follows:

10 MO% =l ‘select MODE number
20 D%(O) = 0 ‘select Channel A

30 CALL MSTEP (MD%, D% (0) , STP#, FLAG%) ‘decelerating stop
40 IF (FLAG%<>0 AND FLAG%<>7) THEN PRINT "Error";FLAG%;" in MODE 1":STOP
50 'continue program

One detail concerning the preceding example: If FLAG% = 7 is returned, it is just a reminder that
you told the controller to do a decelerating stop when in fact the motor was already stopped. In this
case the driver aborts the command and lets you know why through FLAG%.

4.3 MODE 2: JOG OR SINGLE STEP
MODE 2 performs a single step or “jog” of the stepper motor useful in getting a system into final
position or for manual control. The direction is set by the sign of the STP# data although the value
does not matter. In this respect STlW = 0,1,99 or 16,123,678 would all produce a 1 step clockwise

4-2

CHAPTER 4: .MODE CALLS
motion, whereas STP# = -1, -234, or -13,456,987 would all produce a l-step counterclockwise motion.

Entry Data:

MD%=2

D%(O)

D%(l) thru (9)

STIW

FLAG%

Exit Data:

D%(O) thru (9)

STlw

FLAG%

Single step (jog) command

Selects Channel A (0) or Channel B (1)

Value irrelevant

Sign sets direction, magnitude irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK
1 if motor already busy executing last command
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B4 if MD% CO or >12
5 if hardware error
10 if D%(O) not 0 or 1

A typical program entry preceding MODE 2 might read as follows:

xxxlOMD% = 2 'select MODE number

xxx20 D%(O) = 0 'select Channel A

xxx30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)
'jog command

xxx40 IF FLAG%<>0 TBEN PRINT "Error in MODE 2, # ";FLAG%:STOP

xxx50 'continue program

Here’s a programming tip. This routine uses the cursor keys to jog clockwise or counterclockwise
until another key is pressed:

100 MD% = 2 'select MODE

110 D%(O) = 1 'select Channel B

120 A$ = INKEY$:IF A$="" GOT0 120 'wait for keypress

130 IF LEN(A$)=l THEN GOT0 210 'exit on any single key code

140 IF ASC(EIGHT$(A$,1))=75 TBISN STP#=-1:GGTO 170

'cursor left

150 IF ASC(BIGHT$(A$,1))=77 THEN STP#=+l:GOTO 170
'cursor right

160 GOT0 210 'exit on any other double key code

170 CALL MSTEP (MD%,D%(O),STP#,FIAG%) 'jog
180 IF FLAG%=1 THEN GOT0 170 'repeat command if still busy

190 IF FLAG%<>0 TEEN ?"Error in jog coxmand":STOP

200 GOT0 120 'read keyboard again

210 'continue your program here

4-3

MSTEP-5 USER GUIDE

4.4 MODE 3: STEP WITH ACCELERATION/DECELERATION
MODE 3 is the basic all purpose trapezoidal motion command that causes the motor to move the
number of steps specified by STIW with acceleration, deceleration, start up and high speed run rates
set by the initialization parameters of MODE 12. The direction of rotation is controlled by the sign of
STP#, positive is clockwise and negative is counter-clockwise. Up to 16,777,215 steps may be
performed with one comman d corresponding to the 24 bit integer data limits of the PPMC-1OlC
controllers.

MODE 3 corresponds to motion command 3 of the PPMC-1OlC with a few “user friendly” differences
introduced by the driver. The PPMC will in fact move 1 step more than the number input, the driver
corrects this characteristic by subtracting 1 from the step count before inputting it to the PPMC, so that
STP# corresponds exactly with the number of steps moved. Also the PPMC behaves in strange ways
with step counts of -1,0 and +l. Again the driver intercepts these singular values, does nothing with a
STl?#=O (aborts command with no error) and automatically reverts to a jog command if STP# = +l or -
1 (see Appendix A for further details). This is all transparent to the user, so you can compute values
of STl?# without worrying about the controller’s peculiarities. In fact, you can ignore MODE 2 and do
jogs with STl?# = +l or -1 if this rationalization makes sense for you.

If the the total number of steps is less than twice the acceleration/deceleration step count, the velocity
profile will be triangular instead of trapezoidal i.e. the motor will never reach its high speed run rate.
The PPMC controller will look after this automatically.

Entry Data:

MD%=3

D%(O)

D%(l) thru (9)

STl?#

FLAG%

Exit Data:

D%(O) thru (9)

STr#

FLAG%

Accelerate/decelerate command

Selects Channel A (0) or Channel B (1)

Value irrelevant

Value and sign set number of steps and direction

Value irrelevant

Unchanged

Unchanged

0 if executed OK
1 if motor already busy executing last command
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% CO or >12
5 if hardware error
6 if STP# c-16,777,215 or >+16,777,215
10 if D%(O) not 0 or 1

A typical program entry preceding MODE 3 might read as follows:

xxx10 MD% = 3 ‘select MODE number

z=cdO D%(O) = 1 'select Channel B

xxx30 STp# = -5632 ‘move counter-clockwise 5,632 steps

4-4

CHAPTER 4: MODE CALLS
xxx30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

'acel/decel connnand
xxx40 IF FLAG%<>0 THEN PRINT “Error in MODE 3, # ";FIAG%: STOP
xxx50 'continue program

Here’s a programming tip. The time this command takes to complete depends on the stepping rate
and number of steps, for a lot of steps it can take a long time. If the command is reissued while a
previous motion is taking place the FLAG% will be returned = 1, indicating that you have to wait
before sending the next motion command (unless it’s a stop command). Let’s say we would like the
motor to move 1,237 steps clockwise, 67 steps counter-clockwise, 12,678 steps clockwise etc. This is
how to program this trajectory:

100 MD% = 3
110 D%(O) = 1

120 STP# = 1237

130 CZ4LL MSTEP (MD%, D%(O), STP#, FLAG%)

140 IF FLAG%=1 THEN GOT0 130

150 IF FLAG%<>0 THEN "Error # ";FLAG%:STOP

160 STP# = -67
170 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

'select MODE

'select Channel

'1st step count

‘1st motion
'keep trying if motor busy

B

'major disaster

'2nd step count

‘2nd motion
180 IF FLAG%=1 THEN GOT0 170 ‘keep trying until 1st motion

finished

190 IF FLAG%<>0 THEN "Error # ";FLAG%:STOP

'major disaster!

CALL MSTEP (MD%, D%(O), STP#, FLAG%)

'3rd motion

220 IF FLAG%=1 THEN GOT0 210 ‘keep trying until 2nd motion

finished
230 IF FLAG%<>0 THEN "Error # ";FLAG%:STOP ‘major disaster!
240 'etc.

Obviously a good programmer would use a few GO!XJBs to minimize the code above. Also note that
the program is paced by the rate at which the motor will execute commands. Maybe you would like
to go off and do something else if you find FL.AG%=l, the option is yours. Also if you ever need to
find whether the motor is busy without doing anything before inputting a motion co mmand, use read
status, MODE 8 - see MODE 8 for further details.

4.5 MODE 4: STEP AT CONSTANT SPEED
MODE 4 is similar to MODE 3 except that the motor will move the number of steps specified by STF#
with constant velocity specified by D%(l). The stepping rate depends on the clock source. For the
PPMC internal clock source (D%(7) = 0 in initializing MODE 121,

Rate = 12,500 / D%(1) steps/second

For the external user input clock source (D%(7) = 2 in initializing MODE 12),

4-5

MSTEP-5 USER GUIDE
Rate = Ext. Freq. / D%(l) steps/second

For the on board 1OOKHz clock + divider (D%(7)=1 in initializing MODE 121,

Rate = 100,000 / (D%(l) * (X+1)) steps/second

where X = divider ratio set in MODE 10

The valid range for D%(l) is 20 (fastest) to 255 (slowest). The direction of rotation is set by the sign of
STl?#, positive is clockwise and negative is counter-clockwise. Up to 16,777,215 steps may be
performed with one command corresponding to the 24 bit integer data limits of the PPMC-1OlC
controllers.

Since the motor has to start up and nm at a constant rate, this rate must be within the start up
capabilities of the motor. Also, the rate set in this MODE by D%(l) does not overwrite the rate
specified for acceleration/deceleration in initializing MODE 12 i.e. it is specific to this command only.

If you are operating from the on-board 1OOKHz clock and external divider, it is possible to change the
external divider ratio while the motor is in motion and in this way modulate the speed. This is a
MODE of operation that is not obtainable with the PPMC controller alone, at least not with one
continuous command.

MODE 4 corresponds to motion command 4 of the PPMC-1OlC with a few “user friendly” differences
introduced by the driver. The PPMC will in fact move 1 step more than the number input, the driver
corrects this characteristic by subtracting 1 from the step count before inputting it to the PPMC, so that
STl?# corresponds exactly with the number of steps moved. Also the PPMC behaves in strange ways
with step counts of -1,O and +l. Again the driver intercepts these singular values, does nothing with a
STl?#=O (aborts co mmand with no error) and automatically reverts to a jog command if STP# = +l or -
1 (see Appendix A for further details). This is all transparent to the user, so you can compute values
of STW without worrying about the controller’s peculiarities. In fact, you can ignore MODE 2 and do
jogs with STl?# = +l or -1 if this rationalization makes sense for you.

Em-y Data:

MD%=4

D%(O)

D%(l)

D%(2) thru (9)

STr#

FLAG%

Move at constant speed command

Selects Channel A (0) or Channel B (1)

Sets speed, valid range 20 - 255

Value irrelevant

Value and sign set number of steps and direction

Value irrelevant

Exit Data:

D%(O) thm (9)

STr#

Unchanged

Unchanged

4-6

FLAG% 0 if executed OK
CHAPTER 4: .MODE CALLS

1 if motor already busy executing last command
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% <O or >12
5 if hardware error
6 if STP# c-16777215 or >+16,777,215
10 if D%(O) not 0 or 1
11 if D%(l) c20 or >255

A typical program entry preceding MODE 4 might read as follows:

xxx10 MD%= 4 'select MODE number

xxx20 D%(O) = 1 'select Channel B

xxx30 D%(l) = 180 'speed, about 7Opps with

internal clock

xxx40 STP# = 2000 'move clockwise 2,000 steps

xxx50 C2LLL MSTEP (MD%, D%(O), STP#, FLAG%)

‘constant speed command

xxx60 IF FLAG%<>0 THEN PRINT "Error in MODE 4, # ";FLAG%:STOP

xxx70 ‘continue program

As with MODE 3, you can chain motion commands using FLAG%=1 to signal the readiness of the
controller to receive the next command (see MODE 3 for programming example).

4.6 MODE 5: MOVE TO OUTER LIMIT AT CONSTANT SPEED
MODE 5 lets you run the motor into either of the outer over-travel limit switches Ll or L2. The motor
will move in the direction specified by the sign of STlV with constant velocity specified by D%(l)
until it encounters the appropriate limit switch input (Ll for clockwise, I-2 for counter-clockwise). The
stepping rate depends on the clock source. For the PPMC internal clock source (D%(7) = 0 in
initializing MODE 121,

Rate = 12,500 / D%(l) steps/second

For the external user input clock source (D%(7) = 2 in initializing MODE 12),

Rate = Ext. Freq. / D%(l) steps/second

For the on board 1oOKHz clock + divider, (D%(7)=1 in initializing MODE 121,

Rate = 100,000 / (D%(l) l (X+1)) steps/second

where X = divider ratio set in MODE 10.

The valid range for D%(l) is 20 (fastest) to 255 (slowest). Since the motor has to start up and run at a
constant rate, this rate must be within the start up capabilities of the motor. Also, the rate set in this
MODE by D%(l) does not overwrite the rate specified for acceleration/deceleration in initializing
MODE 12 i.e. it is specific to this command only.

4-7

MSTEP-5 USER GUIDE

If you are operating from the on-board 1OOKHz clock and external divider, it is possible to change the
external divider ratio while the motor is in motion and in this way modulate thespeed.

Entry Data:

MD%=5

D%(O)

D%(l)

D%(2) thru (9)

STr#

FLAG%

Exit Data:

D%(O) thru (9)

STr#

FLAG%

Move at constant speed to outer limit Ll or L2.

Selects Channel A (0) or Channel B (1)

Sets speed, valid range 20 - 255

Value irrelevant

Sign sets direction, magnitude irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK, otherwise:-
1 if motor already busy executing last command
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% CO or ~12
5 if hardware error
6 if STP# c-16,777,215 or >+16,777,215
10 if D%(O) not 0 or 1
11 if D%(l) ~20 or ~255

A typical program entry preceding MODE 5 might read as follows:

xxx10 MD% = 5
xxx20 D%(O) = 0

xxx30 D%(l) = 250

‘select MODE number

'select Channel A

'speed, about 5Opps with

internal clock
xxx40 STP# = -99 ‘move counter-clockwise to L2

xxx50 CALL MSTEZ (MD%, D%(O), STP#, FLAG%)

'move to limit Ll or L2

xxx60 IF FLAG%<>0 THEN PRINT "Error in MODE 5, # ";FLAG%:STOP

xxx70 'continue program

After you have reached the limit, you can confirm that you are there by performing a MODE 8, read
status co mmand. In general, the constant speed should be selected slow enough so that there is no
danger of overshooting the limit. It is then possible to use either Ll or I.2 as homing reference points
as an alternative to the BP (base point) or CNB input.

4-8

CHAPTER 4: MODE CALLS

4.7 MODE 6: MOVE TO LIMIT AT HIGH SPEED
MODE 6 lets you run the motor with controlled acceleration and deceleration to and slightly beyond
either of the inner high speed limit switches L3 or LA. The motor will move in the direction specified
by the sign of STP# with a trapezoidal velocity profile specified by the initialization parameters of
MODE 12. On hitting the appropriate inner or high speed limit switch (L3 clockwise or L4 counter-
clockwise) a controlled deceleration will take place, and hopefully (if you have your system set up
right!) will stop before reaching an outer limit switch Ll or L2. At this point you can inch it into an
outer limit using MODE 5 to perform a calibration, or do whatever else is appropriate in the
circumstances. This provides a fast way of getting to the end of travel if it is something you need to
do frequently.

Entry Data:

MD%=6

D%(O)

D%(l) thru (9)

STr#

FLAG%

Move at constant speed to inner limit L3 or LA.

Selects Channel A (0) or Channel B (1)

Value irrelevant

Sign sets direction, magnitude irrelevant

Value irrelevant

Exit Data:

D%(O) thru (9)

STlY

FLAG%

Unchanged

Unchanged

0 if executed OK
1 if motor already busy executing last command
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% <O or ~12
5 if hardware error
6 if STP# c-16,777,215 or >+16,777,215
10 if D%(O) not 0 or 1

A typical program entry preceding MODE 6 might read as follows:

xxxlOMD% = 6 'select MODE number

xxx20 D%(O) = 0 'select Channel A

xxx30 STP# = -8 'move counter-clockwise to L4

xxx40 CALL MSTEP (MD%, D%(O), STP#, FLAG%)
'move to limit L3 or L4

xxx50 IF FLAG%<>0 TaEN PRINT "Error in MODE 6, # ";FIAG%:STOP

xxx60 'continue program

4.8 MODE 7: MOVE TO BASE POINT AT CONSTANT SPEED
MODE 71etsyou run themotorinto the BASE point limit switch(thisis called CNT'onthe PPMC data
sheet) at constant speed set by D%(l) and direction set by the sign of STP#. The magnitude of STP# is
irrelevant.

4-9

MSTEP-5 USER GUIDE

Not all systems will use a base point reference switch, often one of the outer limits Ll or L2 will do
just as well to calibrate the motor position. If however you do provide a base point reference, say in
the middle of travel, how do you know which way to go to find it? The answer is that you don’t, if you
have gone the wrong way you may just as likely stop at one of the outer limit switches. The PPMC is
not intelligent enough to reverse direction on hitting an end limit, so you had better be prepared to
provide some software to do the hunting! A status read, MODE 8, after MODE 7 will tell you what
limit you hit, BP or an outer limit, Ll or L.2. If you hit an outer limit, you can engage MODE 7 again in
the reverse direction and you are bound to find the BP this time - see MODE 8 for details.

The stepping rate in MODE 7 depends on the clock source. For the PPMC internal clock source
(D%(7) = 0 in initializing MODE 12),

Rate = 12,500 / D%(l) steps/second

For the external user input clock source (D%(7) = 2 in initializing MODE 12),

Rate = Ext. Freq. / D%(l) steps/second

For the on board 1OOKHz clock + divider, (D%(7)=1 in initializing MODE 121,

Rate = 100,000 / (D%(l) l (X+1)) steps/second

where X = divider ratio set in MODE 10

The valid range for D%(l) is 20 (fastest) to 255 (slowest). Since the motor has to start up and run at a
constant rate, this rate must be within the start up capabilities of the motor. Also, the rate set in this
MODE by D%(l) does not overwrite the rate specified for acceleration/deceleration in initializing
MODE 12 i.e. it is specific to this command only.

If you are operating from the on-board 1OOKHz clock and external divider, it is possible to change the
external divider ratio while the motor is in motion and in this way modulate the speed.

Entry Data:

MD%=7

D%(O)

D%(l)

D%(2) thru (9)

STl?#

FLAG%

Exit Data:

D%(O) thru (9)

ST.P#

Move at constant speed to base point BP or CNP

Selects Channel A (0) or Channel B (1)

Sets speed, valid range 20 - 255

Value irrelevant

Sign sets direction, magnitude irrelevant

Value irrelevant

Unchanged

Unchanged

4-10

FLAG% 0 if executed OK
CHAPTER 4: .MODE CALLS

1 if motor already busy executing last command
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% CO or ~12
5 if hardware error
6 if STP# c-16,777,215 or >+16,777,215
10 if D%(O) not 0 or 1
11 if D%(l) ~20 or >255

A typical program entry preceding MODE 7 might read as follows:

xxx10 MD%= 7

xzc&O D%(o) = 0

xxx30 D%(l) = 200

internal clock
xxx40 STP# =lO

xxx50 CALL MSTEP (MD%, D%(O), STP#,

xxx60 IF FLAG%<>0 THEN PRINT "Error

xxx70

'select MODE number

'select Channel A

'speed, about 62pps with

'move clockwise to BP

FLAG%)

'move to BP

in MODE 7, # ";FIAG%:STOP

‘continue program

4.9 MODE 8: READ MOTOR STATUS
MODE 8 provides useful information about what the motor is doing or has done. The PPMC-1OlC
controller can only provide full status information if the motor is at rest. If the motor is busy, FLAG%
will be returned = 1 and the status data variables D%(2) thru D%(4) will be returned unchanged. This
at least tells you that the motor is busy and unable to respond to a motion command other than an
emergency or decelerating stop. At this point you can decide whether to let the motor complete
whatever its doing and continue looping status reads until FLAG%=0 indicating its finished, or you
can intervene and abort whatever it’s doing with a stop command.

If FLAG% is returned = 0 then D%(2) thru D%(4) and STP# will contain status data as follows:

D%(2) contains the FINISH STATUS consisting of a byte of data:

B-7 B6 B5 B4 B3 B2 Bl BO
I I I I I I

I

MSTEP-5 USER GUIDE

B3 goes to logic “1” after L3 or L4 limit switch inputs have forced a stop.
Otherwiseitis "0".

EM goes to logic “1” after Ll or L2 limit switch inputs have forced a stop.
Otherwise it is “0”.

B5 Is the motor ON signal (inverse of MC input). If the motor loses power, B5 is
“1” otherwise it is “0” assuming MC is connected to suitable power sensing
circuitry. If MC is left open circuit, then B5 will always be “0”. The PPMC-
1OlC will not execute any commands if MC is at logic “0”.

B6

B7

Is logic “1” if a motion command was aborted by an emergency stop or
decelerating stop command, otherwise it is "0".

Corresponds to the interrupt flag. Whether interrupts are enabled or not,
whether a command was aborted or not, B7 is set to “1” at the completion of
the command. It is cleared by a second read of the finish status. In multiple
PPMC-1OlC systems sharing a common interrupt, the finish flags of each
controller can be polled to see which one generated the interrupt and the
interrupt service routine can clear the flag ready for the next command after
servicing the interrupt. This is the arrangement on the MSTEP-5 - see the
MSTEP.ASM listing & MODE 11.

If all the bits B3-B6 are zero, it indicates that the last command executed to completion and the step
count input was actually moved. You can implement various recovery routines on conditions that
might arise e.g.:

xxx10 IF (D% (2) AND &H08)=&H08 THEN GOSUB aaaa
'recover from stop at inner h.s. limit

xxx20 IF (D%(2) AND &HlO)=hH10 THEN GOSW bbbb
‘recover from stop at outer limit

xxx30 IF (D%(2) AND hH20)=&H20 THEN GOSW cccc
'notify user there is no motor power

xxx40 IF (D% (2) AND CH40)=hH40 THEN GOSUB dddd

'recover from an emergency or decelerating stop

XXX50 ‘continue program . . .

Obviously this can get quite complicated, but at least all the information you need to make a recovery
including the remainin g step count (STlW is returned by the MODE 8 status read.

D%(3) contains the INPUT STATUS consisting of a byte of data:

B7 B6 B5 B4 B3 B2 Bl BO
I I I I I I I

Not Used I
I I

At L4

I I At L3
I I I
I I I At L2

1
I I
I At Ll

I Motor on (MC)

At base point, BP or CNP

4-12

CHAPTER 4: .MODE CALLS

All these bits, with the exception of B4 & B5 which are indeterminate, will be high unless the motor is
at the limit switch position. Note that this is an instantaneous read of the limit switch states, if you
have overshot a limit, it will not store that information, the input status simply tells you the current
state of the limit switch inputs.

The main use of the input status is in determining whether the motor is at a limit, what limit it is and
hence performing recoveries or recalibrations (homing to a reference) through appropriate software
routines. The individual limit switch inputs can be separated out with ANDing operations as in the
previous example.

D%(4) contains the OUTPUT STATUS consisting of a byte of data:

B7 B6
I I

Sl s2

B5 B4 B3 B2 Bl BO
I I I I I I

s3 s4 s5 I Not used
I
Direction

I
Hold signal

The output status provides information on the PPMC-101C output state. Bits B7 thru B3 simply reflect
the current state of the phase drive outputs Sl-S5. B2 is the “HOLD” signal corresponding to HCK on
the connector. This goes high 3 milliseconds after the motor comes to a standstill but @B[only if] you
have selected switching at standstill on in initialization MODE 12 (D%@)=l in initialization). The
intent of the external hold output is most likely to let you turn on some sort of electromechanical
holding brake as the holding torque with switching on is fairly low.

Bit Bl reflects the last rotation direction, “0” = clockwise, “I”= counterclockwise. Bit BO is not used and
is indeterminate.

STP# contains the remaining step count after a command has aborted. If the co mmand completed
STW will be zero. The sign of STP# is always positive regardless of whether you were going
clockwise or counter-clockwise at the time i.e. it is a true remaining step count.

Between FLAG%, D%(2) - D%(4) and STP#, the MODE 8 read status command provides a wealth of
information. Note that the byte formats of D%(2)- D%(4) are identical to those described in the PPMC-
1OlC data sheet (Appendix A) under finish status, input status and output status respectively. You
may find the data sheet useful in further understanding the various status conditions. MODE 8
actually does 4 consecutive read register operations and returns every conceivable status condition in
one operation, this is simply a convenience, you can use what you want and ignore the rest.

Entry Data:

MD%=8

D%(O)

D%(l) thru (9)

STlv

FLAG%

Read status

Selects Channel A (0) or Channel B (1)

Value irrelevant

Value irrelevant

Value irrelevant

4-13

MSTEP5 USER GUIDE

Exit Data:

D%(O) thru (1)

D%(2)

D%(3)

D%(4)

D%(5) thru (9)

STr#

FLAG%

Unchanged

Finish status

Input status

Output status

Unchanged

Remaining pulses (0 - 16777,215)

0 if executed OK
1 if motor busy
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% CO or ~12
5 if hardware error
10 if D%(O) not 0 or 1

Note that if FLAG%=1 then D%(2) thru D%(4) and STP# will be returned unchanged as the PPMC-
1OlC is unable to execute a status command unless the motor is at standstill.

A typical program entry preceding MODE 8 might read as follows:

xxx10 MD% = 8 'select MODE number

xxx20 D%(O) = 0 ‘Select Channel A

xxx30 CALL MSTEP (MD%, D%(O), STP#, FLAG%)
‘read status

xxx40 IF FLAG%=1 THEN GOT0

xxx30 ‘keep trying until motor stops

xxx50 IF FLAG%<>0 THEN PRINT WError in MODE 8, # ";FLAG%:STOP

xxx60 *continue program, process
D%(2) -D%(4), STP#

etc.

NOTE: The loop in line xxx40 may not always be action you might want on finding the motor
busy. Change it to suit.

4.10 MODE 9: READ ENCODER
MODE 9 does a simple read of the 24-bit up/down encoder counter (either Channel A or B specified
by D%(O)), and returns the data in STl?#. The 24-bit counter data is treated as signed 2’s complement
and returned to STP# as a number in the range -8,388,608 to +8,388,607, positive corresponding to
clockwise and negative to counter-clockwise. A 1000 line/rev. encoder, such as Metrabyte’s STEP-
ENCl, will thus travel about 8,388 revolutions with a resolution of about a third of a degree without
overrunning the counter capacity. For more information on encoders, see Section 4.

Note that the counter is not latched, it is read directly, and since the three counter bytes are read
sequentially, you will most likely return erroneous data if you read the encoder while it is moving. It
is essential to read it only at standstill, but see the programming trick below.

4-14

CHAPTER 4: MODE CALLS

Resetting of the encoder counter is performed by initialization MODE 12. The assumption here is that
you will not need to reset the encoder after configuring the system, so in the interests of simplicity, the
driver has omitted this capability except through MODE 12. If you do need to clear the encoder
counters without m-initializing the stepper motor controller, it is very simple to do with a few OUT’s,
see the example in Section 4.3

Entry Data:

MD%=9

D%(O)

D%(l) thru (9)

STr#

FLAG%

Exit Data:

D%(O) thru (9)

STr#

FLAG%

Read encoder

Selects channel A (0) or channel B (1)

Value irrelevant

Value irrelevant

Value irrelevant

Unchanged

Encoder data (-8588,608 to +8,388,607)

0 if executed OK
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% <O or >12
10 if D%(O) not 0 or 1

A typical program entry preceding MODE 9 might read as follows:

xxx10 MD% = 9 'select MODE number

xxx20 D%(O) = 0 'select Channel A

xxx30 CALL MSTEP (MD%, D%(O),STP#, FLAG%)

'read encoder

xxx40 IF FLAG%<>0 THEN PRINT "Error in MODE 9, # ";FLAG%:STOP

xxx50 ‘continue program, readSTP#

etc.

NOTE: Since this read of the encoder is totally independent of the stepper controller hardware,
you may not know if the encoder is moving. Obviously if the encoder is mechanically
coupled to the stepper motor, you could use read status MODE 8 to find out if the
stepper motor had stopped and know with certainty that it is safe to read the associated
encoder. If the encoder is not connected to the stepper motor e.g. used as an operator
reference input, then reading it two or more times in a row is a good way to find out if it
is at rest. If the 2 values returned are equal, you can assume that the encoder is at rest or
moving so slowly that the data is valid anyway. Try something like this:

xxx10 MD%= 9 'select MODE number

xxx20 D%(O) = 1 'select Channel B

xxx30 RDGl# = 0 ‘declare reading 1 variable

xxx40 RDG2# = 0 'and reading 2 variable
xxx50 CALL MSTEP (MD%, D%(O), RDGl#, FLAG%)

‘read encoder 1st time

4-15

MSTEP5 USER GUIDE
xxx60 CALL MSTEP (MD%, D%(O), RDG2#, FLAG%)

'read encoder 2nd. time

xxx70 IF RDGl# <> RDG2# THEN GQTOxxx50

'keep trying till it stops

moving

XXX80 'Continue, process data from

RDGl# . . .

If you end up doing this maneuver a lot, you might want to consider modifying the driver and have it
do it for you instead e.g return FLAG%=1 if the encoder is moving.

4.11 MODE 10: LOAD DIVIDER
MODE 10 sets the division ratio of the external stepper clock divider. It applies only if you have
selected operation from the external 100 KHz on-board clock, D%(7)=1 in initializing MODE 12,
otherwise it will do nothing for you (see MODE 12 for the effective step rate). The actual divider ratio
will be one greater than this parameter. Thus for a D%(l) range of l-255, the divider ratio will be 2-
256.

Entry Data:

MD% = 10

D%(O)

D%(l)

D%(2) thru (9)

s-lm

FLAG%

Exit Data:

D%(O) thru (9)

STr#

FLAG%

Load external divider

Selects Channel A (0) or Channel B (1)

Sets divider ratio

Value irrelevant

Value irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4 if MD% CO or >12
10 if D%(O) not 0 or 1
11 if D%(l) cl or ~255

A typical program entry preceding MODE 10 might read as follows:

xxx10 MD% = 10 'select MODE number
xxx20 D%(O) = 0 'select Channel A

xxx30 D%(l) = 100 'divider ratio = 100
xxx40 CALL MSTEP (MD%, D%(O),STP#, FLAG%)

'load divider

xxx50 IF FLAG%<>0 THEN PRINT "Error in MODE 10, # ";FLAG%:STOP

4-16

CHAPTER 4: .MODE CALLS

4.12 MODE 11: ENABLE/DISABLE INTERRUPT
Either or both PPMC stepper motor controllers are capable of generating an interrupt to signify
completion of certain motion control commands. BASIC cannot be used to program interrupt service
routines as there is no ON INTERRUPT construct. If you wish to make use of the MSTEP-5 interrupt
capabilities, you will have to resort to some assembly language programming and modification of the
driver. MODE 11 does a lot of the groundwork for you in installing an example routine and
enabling/disabling it. While it is impossible to predict your requirements in terms of what you might
want the interrupt service routine to do, as an example, this MODE installs a sample interrupt service
routine (label INTH: in the MSTEP.ASM source) which simply sounds a beep on generation of an
interrupt. The MSTEP.ASM source can be modified to change the INTH: service routine to your needs
and m-assembled.

MODE 11 performs the following:

1. Disables interrupts on the selected level (2-7).

2. Installs interrupt vectors to INTH: for that level.

3. Either enables or disables hardware interrupts on the selected level according to D%(2).

WARNING It is your responsibility to avoid conflict with other peripherals when using
interrupts - see below.

It is important to note that MODE 11 does not save and restore vectors to any previous interrupt
service routine that may have been serviced on the selected level. If you need this capability for
sharing devices on the same level, you need to expand and modify the driver code. The assumption
has been made that if you are going to use interrupts at all, you will dedicate one of the hardware
interrupt levels 2 thru 7 to the MSTEP-5. If interrupts are disabled (default power up & initializing
conditions) then the MSTEP-5 interrupt output is tri-stated and will not interfere with any device on
the level. The operating level is selected by the jumper block labelled “IRQ LEVEL.” on the MSTEP-5
board.

If interrupts are enabled while the selected motor is busy, they will not take effect until execution of
the following command. Only certain motion control commands are able to generate an interrupt on
completion. These are:

MODE 2: Single step or jog.
MODE 3: Accelerate/decelerate forSTP# pulses.
MODE 4: Constant speed forSTP# pulses.
MODE 5: Constant speed to outer limit switch.
MODE 6: High speed to inner limit switch.
MODE 7: Move to base or reference point.

Because the interrupts from Channels A and B are OR’d together by the MSTEP-5 hardware, if both
are enabled you will need to poll the status of both controllers to determine which one generated the
interrupt. This requires a read finish status register command which in turn will clear the interrupt
signal from the requesting controller. This may be part of your Interrupt Service Routine (as in the
example handler) or provided by your foreground program by a call to MODE 8 as dictated by your
needs.

The following list provides the normal IBM reserved functions for Hardware Interrupts 2 thru 7.

4-17

MSTEP-5 USER GUIDE

LEVEL FUNCTION

2 Usually free PC & PC/XT, cascade input on PC/AT
3 COM2: (if installed)
4 COMI: (if installed)
5 I&P-n: (if installed)
6 Floppy disk (always used)
7 LPTl: (if installed)

If you do not have the particular hardware item installed, it is safe to use that level. Generally, Levels
2 or 5 work out well on PCs and PC/XTs, and Level 5 on PC/ATs. Never use Level 6 as you will mess
up the floppy disk operation. Levels 3,4, and 7 may be available depending on what equipment you
have installed and whether you are using it you can often share with a peripheral that your program
will not be using as long as the peripheral’s interrupt hardware is disabled.

Entry Data:

MD% = 11

D%(O)

D%(l)

D%(2)

D%(3)

D%(4) thru (9)

STP#

FLAG%

Exit Data:

D%(O) thru (9)

STP#

FLAG%

Enables/disables interrupt

Selects Channel A (0) or Channel B (1)

Value irrelevant

Enables (1) or disables (0) interrupt

Interrupt level (2 - 7); if D%(2) = 0 (disable), value of D%(3) is irrelevant.

Value irrelevant

Value irrelevant

Value irrelevant

Unchanged

Unchanged

0 if executed OK
2 if driver not initialized on Channel A
3 if driver not initialized on Channel B
4ifMD%cOor>12
10 if D%(O) not 0 or 1
12 if D%(2) not 0 or 1
13 if D%(2)=1 and D%(3) ~2 or ~7

A typical program entry preceding MODE 11 might read as follows:

xxx10 MD% = 11 'select MODE number

xxx20 D%(O) = 0 'select Channel A

xxx30 D%(2) = 1 'enable interrupt

xxx40 D%(3) = 5 'on level 5

xxx50 CALL MSTEP (MD%, D%(O),STP#, FLAG%)

'enable interrupt
xxx60 IF FLAG%<>0 THEN PRINT "Error in MODE 11, # ";FLAG%:STOP

4-18

xxx70

CHAPTER 4: MODE CALLS
'continue program . . _

yyyl0 . . . and if you want to disable interrupts at any point
yyy20 MD% = 11 'select MODE number

yyy30 D%(O) = 0 'select Channel A

yyy40 D%(2) = 0 'disable interrupt

yyy50 CALL MSTEP (MD%, D%(O),STP#, FLAG%)

'disable interrupt

yyy60 IF FLAG%<>0 THEN PRINT "Error in MODE 11, # ";FLAG%:STOP

YYY70 'continue program . . _

4.13 MODE 12: INITIALIZATION
MODE 12 initializes the driver and MSTEP-5 hardware and must be executed before using any of
the other M0DE.s . Initializing must be done separately for each Channel A and B and performs the
following operations:

1. Disables hardware interrupts.

2. Checks and stores the MSTEP-5’s base I/O address.

3. Checks for presence of MSTEP-5 board at this address.

4. Checks the validity (range) of all initialization data.

5. Resets the PPMC-IOIC controller.

6. Loads the controller with initialization data.

7. Clears the encoder counter.

8. Sets initialization flags to enable selection of other MODES.

The base I/O address is checked to be in the legal range of 256 1016 (Hex 100 - 3F81 for the IBM P.C. If
not an error, Exit #19 will occur. If OK, the base I/O address is stored for use by other MODES on re-
entry to the CALL.

A short read/write test is made to the MSTEP-5 control register which is sufficient to detect the
presence or absence of the board at the specified I/O address. If no board is detected (absent board,
wrong base I/O address), Error #5, hardware error is returned. Error #5 may also be returned by this
MODE or any other MODE if the PPMC-1OlC controller fails to perform correct handshakes on inputs
and outputs of commands and data (see Appendix A). In this case, Error #5 may be indicative of a
failure of the PPMC-1OlC controller especially if one channel works and the other does not.

All the initialization data is checked to be within valid limits. Any of the initializing data variables
D%(N) that is outside acceptable limits will return error code lO+N (this is true for all MODES). Also
in the interests of consistency D%(O) always specifies the channel selected (O=A, l=B) and D%(l) the
constant speed rate in all MODES. Initialization MODE 12 makes use of all 10 elements of D%(*) and
is the only MODE to require so much input data.

If initialization is successful, any other MODE may be selected on subsequent CALLS. Trying to
select any other MODE before performing initializing MODE 0 will give rise to error # 2 or 3
depending on whether Channel A or B is uninitialized.

4-19

MSTEP-5 USER GUIDE

Entry Data:

MD%=12

D%(O)

D%(l)

D%(2)

D%(3)

D%(4)

D%(5)

D%(6)

D%(7)

D%(8)

D%(9)

STr#

FLAG%

Exit Data:

D%(O) thru (9)

S-rr#

FLAG%

(Value Irrelevant)

Channel selector, A = 0, B = 1

Start up rate divider, RA, range 20-255

High speed run rate divider, range 20-255

Acceleration/deceleration pulses, 4-8,160

Motor type, valid codes 1,2 or 3 (see below)

Full step (0) or half step (1) MODE (see below)

Logic polarity of Sl-5,1 = positive, 0 = inverted

Clock source, 0 = internal, 1 = on board external, 2 = external user input

Power switching at standstill, 0 = off, 1 = on

Base I/O address, valid range lOO-3F8 hex

Value irrelevant

Value irrelevant

Unchanged

Unchanged

0 if initialization OK
4 if MD% ~0 or ~12
5 if hardware error, no board, incorrect I/O address lO+N if D%(N) not
in valid range

A typical start of program initializing sequence would be as follows:

100 DEF SEG = &H6000 ‘segment to load driver
110 BLOAD "MSTEP.BIN",O 'load it at zero offset

120 MSTEP = 0 ‘declare variables

130 MD% = 12 'select initialization

140 DIM (9) 'declare data array

lSOSTP# = 0 'step count variable

(double-precision)

160 FLAG% = 0 'declare error variable

170 D%(O) = 0 'select Channel A
180 D%(l) = 255 ‘start up rate, 49 pps

190 D%(2) = 80 ‘run rate, 156 pps

200 D%(3) = 1000 ‘acceleration/deceleration
pulse count

210 D%(4) = 2 'motor code 4 phase

220 D%(5) = 0 'full step

230 ~%(6) = 0 'inverted Sl-5 outputs

240 D%(7) = 0 ‘internal clock
250 D%(8) = 0 'switching off at standstill

260 (9) = hH300 'base I/O address (hex 300)

270 CALL MSTEP (MD%, D%(O),STP#, FLAG%)

'initialize

280 IF FLAG%<>0 THEN PRINT "Error in initializing # m;FIAG%:STOP
290 'continue program

4-20

CHAPTER 4: MODE CALLS

STEPPING SEQUENCE PATTERNS

(NOTE: WHEN USING STA-STEP. SET 0X(61-8>

3 PHASE MOTOR

FULL STEP HeLF STEP
MD%-12. 0%(4)-l,

DENOTES

D%(5j-a IlO%-12. 0%(4)-l. 0%

WINDING ENERGIZED

4 PHASE MC’TOR

FULL STEP

MD%-12. DZ(4j-2. G%(S)-8

01 02 03 04

5 PHfsE rIOTOR

FULL STEP

MGX-12. 0X(41-3. G%CSj-@

HALF STEP

MO%-12, G%(4)-2. O%(S)-1

01 02 03 04

MO%

HALF STEP

:-12. O%(4)-3. 0X(5)-1

01 02 03 04 05

Figure 4-l. Stepping sequences for 3-, 4-, and 5-phase full/half step.

4 - 21

MSTEPd USER GUIDE

There is quite a lot of data to be provided at initialization, but it is only required once! Let’s look at the
effect of the initializing parameters in more detail:

D%(O) Controls which channel is selected. If D%(O) = 0 then the CALL operates on
Channel A motor and encoder, if D%(O) = 1 then the CALL operates on channel
B motor and encoder. Note that each each channel must be initialized
individually and may have different initializing parameters, motor types etc.

D%(l)

D%(2)

D%(3)

Controls the start up rate of the motor in MODES 3 and 6 which involve
acceleration and deceleration. (D%(l) corresponds to lU in the PPMC data
sheet). The start up rate with internal clock (D%(7)=0):

Kate = 12,500 / D%(l) steps per sec.

With external user clock input (D%(7)=2):
Kate = Ext. freq. / D%(l) steps per sec.

With onboard 1OOKHz external clock (D%(7)=1):
Kate = 100,000 / (D%(lI*(X+l)) steps per sec.

where X = external divider ratio set in MODE 10.

The start up rate should be chosen slow enough so that the motor does not skip
pulses on getting moving. If in doubt, set D%(l) = 255 (slowest).

Controls the high speed run rate of the motor in MODES 3 and 6 which involve
acceleration and deceleration. For internal clock (D%(7)=0):

Rate = 12,500 / D%(2) steps per sec.

With external user input clock (D%(71=2):
Bate = Ext. freq. / D%(2) steps per sec.

With onboard 1OOKHz external clock (D%(7)=1):
Kate = 100,000 / (D%(2)*(X+l)) steps per sec.

where X = external divider ratio set in MODE 10 The high speed run rate
should be chosen so that the motor does not skip pulses at high speed. This
usually requires some judicious experimentation. If you start off with
D%(2)=150 and then reduce it until the motor shows signs of distress and then
back off a a little, it will generally work out OK.

Controls the number of steps that the motor will accelerate from the start rate to
the high speed run rate and vice versa decelerate. The trapezoidal veiocity
profile and the controlling parameters are shown below in Fig.3.4. The

RATE
T

acceleration/deceleration step count D%(3) may be anywhere from 4 to 8,160.

STfiRT RATE
+

--- ----.
SET BY D%(l) f

I
t$?$y+ 1 I+

D%(3)
STEPS+

ST&

4 STP* STEPS -

Figure 4-2. Velocity profile controlling parameters.

4 - 22

CHAPTER 4:. MODE CALLS

D%(4) Sets the motor code (1 - 3) depending on the winding arrangement. 3-phase
motors are Code 1,4-phase motors are Code 2, and 5phase motors are Code 3.
Another way to determine the motor code is to determine the required
switching sequence as shown in Figure 4-l. Note that 3-phase motors use only
phase outputs Sl-S3,4-phase use Sl-S4 and 5-phase use all Sl-S5. The motors
additionally may be operated in full-step or half-step as set by D%(5). If you
are not using the PPMC-1OlC phase outputs (e.g. in conjunction with an STA-
STEP) then the motor code is irrelevant. D%(4) corresponds to the motor code
parameter on the PPMC-1OlC data sheet.

D%(5) Selects the stepping MODE, full-step (0) or half-step (1). It corresponds to the
excitation parameter of the PPMC-1OlC data sheet (see Appendix A). A
standard 200 step/revolution motor (e.g. STEFMOTl) will step 1.8 degree
increments in full-step MODE or 0.9 degree increments (400 steps/revolution)
in half-step. The half-step MODE offers finer resolution and smoother stepping
but at the cost of reduced torque and maximum operating speed compared to
full-step.

D%(6) Controls the logic polarity of the Sl-S5 phase drive outputs. D%(6)=1 selects
positive true logic and D%(6)=0 selects active low negative logic. The choice
here depends on the driving hardware. For the STA-STEP set D%(6)=0. If you
are not using the phase outputs Sl-S5, the choice is irrelevant.

D%(7) Selects the clock source: D%(7) = 0 : Selects internal PPMC 12.5KHz source = 1 :
Selects on board 1OOKHz + divider = 2 : Selects external user input For most
purposes the internal clock source will be adequate. If you need step rates
above 625 pps or synchronized stepping of both axes, use one of the external
options.

D%(8) Controls switching at standstill, D%(8) = 0 turns switching off, D%(8) = 1 turns
it on. At standstill the motor will normally have maximum current flowing in
the windings which causes the greatest ohmic heating and temperature rise of
the motor. One way of reducing this heating is to chop the phase drive outputs
when the motor has reached standstill. With switching on, chopping
commences 100 milliseconds after the motor reaches standstill at a frequency of
about 22KHz and a duty cycle of 30%. As soon as the motor is commanded to
move, chopping ceases and will automatically resume on standstill. Chopping
tends to reduce the holding torque, raise the driver transistor switching losses,
reduce heating of the motor and may produce audio noise from the motor.
There are thus advantages and disadvantages associated with this feature.

D%(9) Selects the base I/O address which must correspond to the dipswitch setting on
the board. IBM PCs and XTs decode addresses from hex 200 - 3FF. IBM ATs
decode addresses from hex 100 - 3FF. The driver checks for a valid address in
the range 100-3F8 hex although the hardware can physically be set from
address 0 - 3F8 hex.

In our examples of programming all the different MODES, we have consistently used D%(*) as the
data array. You may prefer to keep your initialization parameters in another array e.g. IX%(*) and not
overwrite its values when subsequently selecting other MODES. This is easy to implement:

4 - 23

MSTEP-5 USER GUIDE

xxx00 DIM 1X%(9), (9)

xxx10 MD% = 12

XXX20 IX%(O) = 1 : IX%(l) = 200 : 1X%(2) = 50 etc.

then:

xx100 CALL MSTEP (MD%, IX%(O),STP#, FLAG%) initialize

after this use D%(*) for other MODES:

xx200 MD% = 3

xx210 D%(O) = 0

x2z220STP# = 999

xx230 CALL MSTEP (MD%, D%(O),STP#, FLAG%)
'accel/decel

. . . etc.

4.14 PROGRAMMER’S SHORT SUMMARY

PROGRAMMER’S QUICK REFERENCE

I

CALL MSTEP (MW. 07X 0 1. STPn . FLAGZ 1

ERROR FLAGx: 0 - NO ERROR. 0.K
1 - noTOR BUSY
2 - DRIVER NOT INiTIALt~ ON ML A
3 - ORIVER NOT INITIALI~O ON CHMnEL 8
4-nOOENUnBER(OOR)I2
5 - HAROVARE ERROR
6 - STEP COUNT OUT M-‘ RAMX (-16.777.215 OR 116.777.215
7 - nOTOR ALREADY AT STMdXTILL

10.N . ERROR IN VALUE OF OZIN I

4-24

CHAPTER 4: .MODE CALLS

4.15 INTERPRETED BASIC (GW, COMPAQ, IBM, ETC.)

Example

BASIC Call:

BASIC Declaration:

CALL mstep(MD%, D, STP#%, FLAG%)

NONE NECESSARY IN BASIC SOURCE CODE. However, a
“BLOAD” (Binary load of .BIN file) of the binary file containing the
external subroutine must be done prior to calling that subroutine.

Example Program llbfrafing a BASIC CALL:

10 r***

20 ‘* *

30 ‘* MSTEP-5 DBnstration program *

40 '* Keithley MetraByte Corporation *

50 r***

60 '

70 SCREEN O,O,O:WIDTH 8O:EEY 0FF:CLS

80 LOCATE l,l,O 'turn off cursor

90 LOCATE 25,l:PRINTWetrabyte MSTEP-5 Demo program Loading

MSTEP. BIN driver";:LOCATE 1,l

100 '

110 '--- Load MSTEP.BIN driver --

120 CLEAR, 48000! 'set workspace to 48000 bytes

(for exaqle)

130 DEF SEG = 0 'set zero prior to PEEK's to

zero segment
140 LS = 256 * PEEK(CH511) + PEEK(CH510)

'Basic's data segment

150 SG = LS + 48000!/16 'end of Basic's data segment

160 DEF SEG = SG 'this is where to load

MSTEP.BIN driver

170 BLOAD 'WSTEP -BIN",0 'load driver with zero offset

180 '

.

330 I--- Declare other CALL variables -------------------------------------

340 MD% = 12 'mode number

350 MSTEP = 0 'call offset

360 FLAG% = 0 'call error flag variable

370 STP# = 0 'step count (must be double

precision)

380 '

4-25

MSTEP-5 USER GUIDE
390 a --- Display menu ---

2590 I-,, MODE 12: Initialize ---

2600 CLS

2610 LOCATE 25,l:PRINTWetrabyte MSTEP-5 Demo program
Initialize - mode 12";:LOCATE 1,l

2620 GOSUB 3250 'display channel selected

2830 CALL MSTEP (MD%,D%(O),STP#,FL&G%)

2840 IF FLAG%<>0 THEN GOSUB 3300:IF E%=O THEN GOT0 2600
2850 RETURN

3460 ’

3470 END

4.16 QUICKBASIC

Example

BASIC Call:

BASIC Declaration:

CALL QBPIOINT(MD%, VARF’TR(D%(O)) STI’#%, FLAG%)

DECLARE SUB QBPIOINT (MD%,BYVAL DUMMY%, FLAG%)
The Declaration tells QuickBASIC that the subroutine expects
three arguments and that the middle argument is to be passed
by value. Remember that BASIC normally passes all arguments
by reference (address). This is the only method for passing an
array to a subroutine in BASIC: passing the value of the address of
the array in effect passes the array by reference. To make use of
the callable assembly routine, a “.QLB” (Quick Library) file is
created out of the original .ASM source file. Although the format
of the subroutine is identical to those used by interpreted BASIC
packages, both the Quick BASIC integrated development
environment (QB.EXE) and the command line complier (BCEXE)
ex-pect the subroutine to be in a specially formatted .QLB library
file. Unlike interpreted BASIC packages, Quick BASIC actually
links to the assembly .QLB library file so it is not necessary to
include the “jmp QBPIOINT’ instruction at location 0 (of the
source file) as in interpreted BASIC.

4-26

CHAPTER 4: .MODE CALLS

Example Program lllusfrafing a QuickBASIC CALL:

‘**

I* *

‘* MSTEP-5 Demonstration program *

'* for Quick Basic *

'* Keithley MetraByte Corporation *

'* *

r**
1

DIM L$(14), P$ (91, US (9) r D% (91, U(9)
COMMON SHARED D%()

DECLARE SUB QBMSTEP (MD%, BYVAL DUMMY%, STP&, FLAG%)
SCREEN 0, 0, 0: WIDTH 80: KEY OFF: CLS

LOCATE 1, 1, 0 'turn off cursor

LOCATEi 25, 1: PRINT Wetrabyte MSTEP-5 Demo program Loading MSTEP.BIN

LOCATE 1, 1
1

driver” ;

I--- Declare arrays --

1

'Default parameters for initializing controllers

P$(l) = 11 Start rate divider: ": U(1) = 255 'slowest

P$(P) = V High speed run rate divider: ": U(2) = 100 'medium

PS(3) = W Acceleration/deceleration steps: 'I: U(3) = 200 '200 steps

P$(4) = 'I Motor type: '1: U(4) = 2 '4 phase

PS(5) = 11 Excitation: rr: U(5) = 0 'full step

~$(6) = W Logic polarity: ": U(6) = 0 'inverted

P$(7) = V Clock source: ": U(7) = 0 'internal

P$(8) = u Switching at standstill: I': U(8) = 0 'off

PS(9) = " Base I/O address: I': U(9) = hH340
1

I--- Declare other CALL variables ---------------_-_------------------

MD% =12 'mode number

D%(O) = 0 'set channel A as default

FLAG% = 0 'call error flag variable

STPC = 0 'step count (must be double precision)

'--- Display menu ---

I--- MODE 12: Initialize ---

CLS

LOCATE 25, 1: PRINT "Metrabyte MSTEP-5 Demo program

Initialize - mode 12"; : LOCATE 1, 1

4 - 27

MSTEP-5 USER GUIDE

CALL QBMSTEP(MD%, VARPTR(D%(O)), STP&, FLAG%)

IF FLAG% <> 0 THEN GOSUB 3250: IF E% = 0 THEN GOT0 2550
RETURN

1

END

4.17 MULTIPLE MSTEP-5s IN ONE SYSTEM
What if you wish to operate more than one MSTEP-5 in a system? To avoid conflicts, each MSTEP-5
must have a different base I/O address. For simultaneous operation using interrupts select a different
interrupt level for each board. It is possible to share an interrupt level if the operations can be
sequential instead of simultaneous. Each board must also be assigned its own CALL routine. To do
this start by loading the MSTEP.BIN routine at different locations in memory:

xxx10 SGl = &H3000

xxx20 SG2 = &H4000
xxx30 DEF SEG = SGl

xxx40 BLOAD "MSTEP.BIN",O

xxx50 DEF SEG = SG2

xxx60 BLOAD "MSTEP.BIN",O

Now the CALL appropriate to each board can be entered as required. Note that each CALL is
preceded by a DEF SEG appropriate to that board:

y+ylO DEF SEG = SGl

yyy20 CALL MSTEP (MDl%, Dl%(O), STPl#, FLAGl%)

yyy30 DEF SEG = SG2

yyy40 CALL MSTEP (MD2%, D2%(0), STP2#, FLAGP%)

‘etc.

* * * * *

4-28

CHAPTER 5

ENCODER CHANNELS

5.1 OPTICAL INCREMENTAL SHAFT ENCODER
Shaft encoders fall into two categories, incremental and absolute. Absolute encoders use a Gray coded
disc and produce a specific code for the shaft position using multiple tracks and light
sources/detectors on the disc. Incremental encoders can only measure changes in position but are
simpler in construction and generally capable of finer resolution.
MSTEI’5.

This is the type that is used with the

An incremental encoder consists of a disc that has radial transparent and opaque sectors with 2 or 3
light sources and detectors. The disc may typically have anywhere from 90 to 1200 radial lines, giving
a corresponding number of output pulses per revolution. By using two detectors that are slightly
displaced from each other, two pulse trains are output that are 90 degrees displaced in phase from
each other. Encoders with this type of output are called quadrature encoders, the typical output
signal being shown below:

CLOCKHISE

-EL l!-u-ul T,K ..__. +

COUNTER-CLOCKWISE

CnCWNEL LJ-u-ul * ..-. _ .-..................... Trm

CnnMNEL 8

J I I

Figure 5-l. Quadrature encoder output signals.

Note that when the encoder is rotated in a clockwise direction, the positive transitions (O-1) of channel
A occur while the channel B signal is high, if the encoder is rotated counter-clockwise, the positive
transitions of channel A occur when the channel B signal is low. If the channel B signal was connected
to the up/down control input of an up/down counter, and the channel A signal connected to the
counter clock, the cumulative count would always reflect the displacement of the encoder from its
initial position.

It is common for an incremental encoder to include a third output which produces a pulse once every
revolution. This is known as an index pulse. The STEP-ENCI has an index pulse output, although the
MSTEP5 board makes no use of it. Usually the low level outputs from the photodetectors are signal
conditioned in the encoder to produce ‘lTL or CMOS compatible output signals, also complimentary
signals may be provided to help in minimizing the effects of external noise. Some encoder interface
circuits (such as MetraByte’s M5312) count all edges of the waveforms and so get 4 times the
resolution of a simple circuit that only counts 1 edge e.g. the positive edge. The MSTBP5 circuitry is

5-l

MSTEP-5 USER GUIDE

of the type makes for lower with noise and
hardware.

addition reduced this approach somewhat susceptible false
generated the is This be when encoder used

measure movement a motor. many systems an
damped when to stop, false due several changes
possible. this it important proper be into system reduce

prevent under-damped See references Paragraph for
information damping.

damping impractical, of MetraByte Board read encoder
recommended.

incremental encoders fairly and capable detecting small
The has 1000 output so produce output

about third a of The enemies optical are
shock,.electrical and temperatures may ice to on encoder
and with operation.

5.2 MSTEP5 ENCODER INTERFACE
One of the commonest problems with encoders is electrical noise. If the encoder is directly connected
to a high speed up/down counter, small noise spikes or noisy edges might induce false counts. A
simple, but effective method of eliminating this problem is to pass the encoder outputs through a
digital noise filter. The waveform below shows what a “real world” encoder signal might look like.
Short spikes and transients on the waveform are to be expected from motor switching currents etc.

NOISE
I

CHhNNEL A

CHhNNEL B
I -

I

Figure 5-2. Effects of noise on encoder output.

The MSTEP5 uses a sampling digital filter on each channel of the two encoder inputs. The filter is
implemented in a PAL device (programmable array logic) for each encoder and the equivalent circuit
for each encoder input is shown below:

FILTERED

8im’

CMNNEL
INPUT

Figure 5-3. Encoder digital filter.

5-2

CHAPTER 5: ENCODER CHANNELS

An internal 4OOKHz clock is used to sample the signal. The two D flops form a 2 stage shift register.
When all outputs of the register and the input signal are at the same state, one of the AND gates is
enabled and flips the output latch. The result is that the output signal follows the input signal, but is 2
clock pulses (5 microseconds) behind. Short transients, less than 2 clock periods or 5 microseconds
won’t make it through the shift register. The price paid for this filter is that it cannot handle pulse
rates from the encoder much faster than l/16 of the clock period - in this case 25KHz. This
corresponds to a rotational speed for a 1000 line/rev. encoder such as the STEP-ENCl, of 1500 r.p.m.
which at least as far as stepper motor speeds are concerned is not particularly restrictive.

The filtered signals are passed to 3 cascaded 8 bit up/down counters. The 24 bit data is converted by
the MSTEP.BIN driver to a corresponding 23 bits + sign double precision real. This means that you
have a range of -8388,608 to + 8,388,608 counts or. more simply about +/-8000 revolutions from the
initial position with a resolution of about one third of a degree using the 1000 pulse/rev. STEP-ENCl.

ENCODER I NPIJT

8 BIT UP/DN
COUNTER

CeRRY/BDRRDW

GND h

\
8 BIT DhTA BUS

Figure 5-4. MSTEPS Encoder counter interface (1 of 2 identical channels).

5.3 READING AND RESETTING THE ENCODER COUNTERS
The initialization mode 12 of the MSTEP.BIN driver hardware resets both encoder counter channels to
zero. Other than performing a re-initialization (which also affects the PPMC-1OlC stepper
controllers), the MSTEP.BlN driver software provides no other way of resetting the encoder counters.
The MSTEP5 hardware does have this capability, although it was omitted from the driver in the
interests of simplicity. Usually resetting the counters is unnecessary as it is easy to track relative
changes in software, however if you do need to perform a reset of an encoder channel after
initialization, this is how it is done:

For Channel A:

xxx00 BASE = &&I300 ‘base I/O address
xxx10 OUT BASE + 2, 0 ‘clears A counter

For Channel B:

xxx00 BASE = &H300

xxx10 OUT BASE + 5, 0

'base I/O address
‘clears B counter]

You can also read either counter with INPs and OUTS although this is not half as easy as using mode 9
of the driver to do the job:

xxx00 BASE = &a300

xxx10 CT% = INP(BASE)

‘base I/O address

‘read control register

5-3

MSTEPd USER GUIDE

To select Counter A:

xxx20 OUT (CT% AND LHF7)

Or to select Counter B:

xxx20 OUT BASE, (CT% OR hHO8)

'clear ECTRAB bit

'set ECTRAB bit

Then read selected counter:

xxx30 BL% = INP(BASE + 3) ‘low byte
xxx40 BM% = INP(BASE + 4) 'middle byte
xxx50 BH% = INP(BASE + 5) 'high byte

xxx60 CT# = BL% + BM%*256 + BB%*256"2'count

xxx70 OUT BASE, CT% ‘restore control if you want

The MSTEP5 board was designed mainly for move-stopmove-stop. applications. As a result, to
keep the hardware simple, the encoder counters were not latched and in most practical applications of
the MSTEP5 board, this should not be a problem. Since each counter byte is read in turn, the data may
change during the 3 byte read if the encoder is moving. There is a chance that you can return an
erroneous count under these circumstances. There are 2 ways of avoiding this problem with the
MSTEP.BIN driver:

1. If the encoder is mechanically coupled to an associated stepper motor, find out if the motor is at
standstill using a MODE 8 status read before reading the encoder using MODE 9 (encoder read):

xxxOObD% = 8 ‘status read
xxx10 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

xxx20 IF FLAG%=1 GOT0 xxx10 ‘wait till motor stops
xxx30 MD% = 9 'encoder read

xxx40 CALL MSTEP (MD%, D%(O), STP#, FLAG%)

xxx50 'STP# contains encoder data

2. If the encoder is not coupled to a stepper motor input e.g. a manual input or may be moving
slowly, read it twice in quick succession. If you get the same reading both times, it must be
correct:

xxx00 MD% = 9 ‘encoder read
xxx10 A# = 0 ‘declare 2 double precision
xxx2OB#=O ‘variables
xxx30 CALL MSTEP (MD%, D%(O), A#, FLAG%)
xxx40 CALL MSTEP (MD%, D%(O), B#, FLAG%)
xxx50 IF A#<%# THEN GOT0 xxx30 ‘try again
xxx60 'Either A# or B# holds correct data

This method will work fine as long as the encoder is moving slowly or is stopped. If the encoder is
moving fast, you run the risk of getting stuck in a loop, but it is easy to add a timeout count to avoid
this problem.

5-4

CHAPTER 5: ENCODER CHANNELS

5.4 CONNECTING UP A SHAFT ENCODER
If you are using the STA-STEP, follow the instructions in the next section. If you want to connect
directly to the MSTEP5, the encoder outputs A and B should be directly connected to the encoder A
and B inputs <pins 35 & 36 for channel A, or pins 38 & 39 for channel B). Also make sure that the
encoder common or ground is connected to one or more of the ground input pins of the MSTEP5 (pins
8,16,17,25,33,34,49 or 50).

The encoder will only draw a small current, usually less than 2OOmA which can be supplied from the
computer. If you wish to do this, connect the encoder +5v supply to either pin 47 or 48 of the MSTEP5
connector. @B[If there is any possibility of frequent external short circuits of the encoder power to
ground or high voltages, use a separate 5v power supply for the encoder]. It is better to destroy the
encoder rather than the computer as well if you cannot be sure of the safety of the external wiring.

5-5

MSTEP5 USER GUIDE

* * *

CHAPTER 6

USING
THE STA-STEP

6.1 STA-STEP DESCRIPTION
The STA-STEP is designed to provide in a convenient external box, a dual channel isolated L/R type
of stepper motor translator plus convenient screw connections for all the other MSTEP5 functions such
as encoder channels, limit switches etc.

Each stepper motor driver consists of five power mosfet transistors driven through optocouplers so
that the motor power circuit is totally isolated from the computer. Each of the power mosfets is driven
by one of the phase outputs Sl-S5 from the MSTEP5 board, and the corresponding power transistor
output appears on Wl-W5 (winding 1 thru Winding 5). Depending on the programming of the
PPMC-1OlC controllers in initialization (MODE 12) you can drive any of the following types of
motors:

3 Winding - use Wl, W2, and W3 (Motor Code Type 1)
4 Winding - use Wl, W2, W3, and W4 (Motor Code Type 2)
5 Winding - use Wl, W2, W3, W4, and W5 (Motor Code Type 3)

The power mosfets have ON resistances of 0.08 Ohm, 60V breakdown rating, and 25A continuous-
drain current. On the closely spaced heatsinks of the STA-STEP, it is recommended that you limit the
maximum current to 5A so that you can drive motors with ratings up to 24V and 5A per winding. The
STA-STEP also includes locations for mounting current limit resistors. These are optional and speed
up motor response (see next section and Section 6.2). If you use these resistors mounted on the STA-
STEP board, limit each resistor dissipation to 5W or less, if the dissipation is higher, mount them
external to the STA-STEP.

6.2 POWER DRIVE CIRCUIT
Each of the phase drives Sl-S5 has a corresponding power output stage as shown below. This
includes transient suppression (Dl and Rl) which are required for switching inductive loads. Note
that through the use of the optoisolator, all the motor power switching circuitry is totally isolated from
the computer power and ground. One slight disadvantage of the optoisolator is that they have rise
and fall times of several microseconds which imposes a limit on the maximum stepping rate. It is
recommended that the rate be kept below 2,000 steps/second.

Sl-55

Figure 6-l. STA-STEP Power Drive Circuit.

6-1

MSTEP-5 USER GUIDE

In the ON state, the transistor power dissipation is controlled by the motor current and ON resistance
of the power transistor. The on resistance of the power mosfet is about 0.08 Ohm, and it is
recommended that motor current should not exceed 5A. This corresponds to a transistor power
dissipation of 2W, which is comfortably handled by the heatsinks that the transistors are mounted on.
In normal operation, these heatsinks should be barely warm. Switching losses will also account for a
small amount of additional power loss. The drain voltage of the transistors is rated at 6OV, this should
be more than adequate for 99% of commercially available stepper motors. If you do need a higher
voltage, contact MetraByte.

Due to the logic inversion in the power driver, the output logic polarity of the PPMC-101C phase
drives should be set to inverted when using the STA-STEP. To do this, set D%(6)=0 in initialization
mode 12.

6.3 STA-STEP CONNECTIONS TO STEPPER MOTORS
The typical connections of an STA-STEP to a Superior Electric stepper motor are shown in Figure 6-2.
As explained in Section 6, use of additional resistance in series with the windings will reduce the
winding time constant and improve the performance of the motor at high speed. The disadvantage to
this arrangement is that you will waste power in the series resistors and require a higher motor supply
voltage for a given maximum winding current. The STA-STEP includes space for these additional
resistors at least for smaller stepper motors. It is recommended that the resistors which should be
power wirewound types, not be mounted on the board if the power dissipation in each resistor will
exceed 5 watts, mount them externally instead. If you are not going to use current limiting resistors,
then a jumper can be placed in the corresponding location (RusrA & RusrB for channel A, RusrC &
RusrD for channel B).

The motor power should be derived from an external power supply. A simple unregulated supply
will usually be adequate. It is not recommended to attempt to run the motor from the computer +5V
which is available on the STA-STEP, usually the load will be too great and the switching of the motors
will generate considerable power supply noise. Note that the -VM (common) motor power supply
sides of each channel are joined together on the STA-STEP, however, the +VM inputs are not common.
This means you can use motors of different voltage ratings on each channel with separate supplies, or
by externally jumpering the +VM inputs, you can use one supply to power two identical motors.

6.4 STA-STEP CONNECTIONS TO ENCODERS
The encoder output signals should be co~ected to ENA and ENB as shown in Figure 6-3. Also the
encoder common should be connected to system ground. Unlike the stepper motors, there is no
isolation between the encoder outputs and the computer ground and input signals. As the encoder is
by its nature an optically isolated component, this should not present too much of a problem. The
encoder may be powered from an external regulated 5v supply or as its power needs are low, it can
also be powered from the computer 5v supply available on the STA-STEP connector. If you use
computer power, take care not to abuse it with short-circuits to ground or other voltages - this can
damage your computer.

6-2

CHAPTER 6: USING THE STA-STEP

STA-STEP CONNECTOR

W -5~ Ll I2 L3 L4 BP K I-CK RS DIR 0-K ENAEbEI2Bv5 v4 in v2 VI -VA
r I I

000000000000 0000Q0

RED
I I

BLACK

WH I TE/RED

STEPPER

/‘lOTOR

WHITE/GREEN

I

-

-

-

MOTOR POWER

SUPPLY

-

-

k CT1 cm

cPTfmuL LB7
1mNJ.ED aazpFl

R.4 LINT RESISTOB

(ON P.C. KImI)

-

-

Figure 6-2. Connection of STA-STEP to STEP-MOT1 (or similar stepper motor).

6-3

MSTEP-5 USER GUIDE

STA-STEP CONNECTGR

t
w -5+ Ll u 13 L4 e K l-tx R.s DW LIX

1 I
EM OC3 08 W V4 V3 W2 VI -Vh *Vh CT1 CT2

1 ‘0000000000
I’;

ooooooooool

A

OUTPUT

I- /

B

OUTPUT

CONNECTlOW TO TERnINAL

PANEL r; ENCOOER

NOTE : ENCODER IS SHOWN

POWERED FROA COnPUTER

IF USING SEPARATE SUPPLY

CONNECT GROUND ONLY TO STA-STEP

Figure 6-3. Encoder connections to STA-STEP.

6-4

CHAPTER 6: USING THE STA-STEP

6.5 CONNECTION EXTERNAL
If you prefer to use a commercially available translator rather than the power drive circuits of the
STA-STEP, you can drive the translator from the DIR (CW/CCW) and PLS (pulse) output signals on
the screw connector. Your translator should also share a common ground with the GND terminal of
the STA-STEP, see Figure 5-4.

W .!% Ll L2 LS L4 W U Ho: Wi DfR CIJC Ewwusvs v4 v3 n VI -w -VA crl cc?

I I I 1
[~oooooooo~~o j ~ooooooooooO j

W .!% Ll L2 LS L4 W U Ho: Wi DfR CIJC Ewwusvs v4 v3 n VI -w -VA crl cc?

Q00000000 00 000000000000

1 ccu/cw c L ccwcw

PULSE PULSE TRANSLATOR TRANSLATOR

I GND GND

I J

Figure 6-4. Connecting an external translator to STA-STEP. Figure 6-4. Connecting an external translator to STA-STEP.

The DIR and PLS signals are buffered outputs from the PPMC-1OlC controller. DIR is logic high for
counter-clockwise direction and low for clockwise, PLS is a 5 microsecond negative going pulse for
each step. These signals correspond to CCW/CW and P-OUT which are more fully described in the
PPMC-IOIC data sheet in Appendix A.

An external translator, particularly of the chopper type, may offer some improvements in efficiency
and motor operating characteristics. If you are concerned about obtaining maximum performance
and efficiency, an external translator such as Superior Electric’s models 230T or 430T will be a better
choice than the inexpensive L/R driver of the STA-STEP.

6.6 OTHER SIGNALS ON THE STA-STEP
The STA-STEP also provides connections to the other remaining control signals of the MSTEP-5 board.
All unused inputs can safely be left open circuit. These connections include:

Ll, LZ, L3, L4, & BP

MC

Limit switch inputs. These include internal 1OK pullups to +5V and are
active low. A simple mechanical switch or open collector opto-
interrupter between the limit switch input and ground is all that is
needed, see Figure 6-5. An unused limit switch input can be left open
circuit.

Motor control. This input is the same as the MON (motor on) signal
detailed in the PPMC-1OlC data in Appendix A. It has an internal 10K
pullup to +5v. If taken low or connected to ground, it will suppress
output pulses from the PPMC-1OlC. As it can be read from the status
register, it can be used to monitor motor power if needed.

6-5

MSTEP5 USER GUIDE

HCK

CLK

C/B

Hold acknowledge output corresponds to HOLD of the PPMC-1OlC data
sheet in Appendix A. HCK is only active if you have selected switching
at standstill on in initialization. HCK goes high 3 milliseconds after the
motor stops, and will go low on receipt of the next motion command.

This is the external stepper clock source input (D%(7) = 2 in mode 12
initialization). Maximum input frequency should not exceed 133KHz for
reliable operation (see CLOCK in Appendix A).

This is the carry/borrow output from the 24 bit incremental encoder
counter. It can be used to extend the counter externally if needed.

GMJ 6.. LI LZ LS L4 P K KI(Rs OfR RK wee 0s v5 VI vs n VI -m .VAcrl CT2

1

000000000000

LiMIT SWITCHES CAN BE AECHANICAL

CONTACTS OR OPEN COLLECTOR OR

TTL DEVICES AS SHOWN.

Physical arrangement

LIMIT SWITCH INPUTS HAVE INTERNAL

5 KOHr\ PULLUPS TO +5v.

‘;ET;ER /‘,‘////,+CREW

L2L4 BP
t t

L3 ri
L I II I T SWITCH LOCFITIONS

All limit switch inputs are active low, they will have no effect if left

open circuit.

Ll and L2 are overtravel limits and must usually be connected.

L3 and L4 are deceleration limits, their use is optional.

BP (Base point or CNP) is a home reference input. It can be a separate input

or combined with Ll or L2 (connect BP to Ll or L2).

Figure 6-5. Limit Switch connections to STA-STEP.

6-6

CHAPTER 7

STEPPER MOTORS
&

TRANSLATORS

7.1 HOW A STEPPER MOTOR WORKS
The diagrams in Figure 7-1 will assist you in understanding how a stepper motor operates. In a real
stepper motor there are are more poles on the stator and rotor, but the operation is similar. The rotor
of the simplified version consists of a cylindrical magnet sandwiched between two discs each with 3
poles on them. The discs are rigidly clamped together and a half pole pitch out of step with each other
(in this case 60 degrees out of alignment). Since the poles stick out (salient poles) on both the stator
and the rotor, there are positions where the magnetic circuit or reluctance is at a minimum and the
rotor will tend to align in these preferred positions even when the power is off. As soon as power is
applied to the windings, this “locking” effect becomes even more pronounced, the external torque
required to move the rotor to the next preferred position is known as the holding torque. The holding
torque with power applied is usually about 10 times the holding torque with the stator de-energized.

By turning the windings on the stator on in sequence, it is possible to pull the rotor around in either
direction according to the sequence. The diagrams show 4 steps of the motor, note how the windings
are alternately energized and the current reversed to accomplish the stepping (remember like poles
repel and unlike poles attract!). In this example each switching of the windings results in the rotor
moving 30 degrees, so this motor would have a 30 degree step angle and take 12 steps to complete a
revolution.

Most commercially available stepping motors have finer step angles of 1.8,7.5 and 15 degrees with the
1.8 degree (or 200 step/rev) motor being one of the most popular. Smaller steps require more poles on
the rotor and stator, in fact for 200 step/rev. motors, the rotor resembles two 50 tooth gearwheels
although the stator uses some tricks by grooving the poles to reduce the number of windings and
hence complexity. The permanent magnet of the rotor is magnetized to the maximum extent by the
manufacturer within a magnetic circuit similar to the stator and cleverly assembled without removing
the magnetic circuit. If the rotor is removed from the stator, the loss of the magnetic circuit will tend
to self demagnetize the magnet. This leads to a loss of torque on re-assembly as the magnet is no
longer as powerful. If you want to see what a real stepper motor looks like inside, bear this in mind
before you tear a good motor apart. Some stepper motors do not use a permanently

7-l

MSTEP5 USER GUIDE

START CON I

STEP 2
I 04

ROTOR

ASSEtlElLY

MAGNET

STEP 1

A

STEP 3
I Of=F I

Figure 7-1. Stepper motor operation.

7-2

CHAPTER 7: STEPPER MOTORS & TRANSLATOR

magnetized rotor, but operate similarly to those that do, except that they have zero holding torque
when de-energized. Some stepper motor drives use a technique known as microstepping which leads
to very small step angles of a few tenths of a degree. Instead of switching the windings completely on
or off, the windings are energized partially so that the resultant magnetic field vector is moved in
much smaller increments than the pole angles. This requires a much more complex drive circuit and a
slightly different type of design of stepping motor. The MSTEP-5 cannot microstep motors directly,
although it can provide the pulse and direction outputs for a microstepping translator.

7.2 TORQUE VERSUS SPEED
As the stepping rate or speed of rotation of a stepping motor rises, the torque that the motor can
provide tends to fall. A typical torque/speed curve is shown in Figure 7-2.

SPEED

Figure 7-2. Typical torque/speed curve of a stepping motor.

As the speed rises, the winding currents tend to reduce due mainly to two effects. In turn the reduced
winding current leads to reduced torque. The two effects that cause this are as follows:

back EMF As the magnetized rotor turns within the stator, it induces a voltage in the
windings which opposes the driving voltage. This in turn reduces the winding
current. The induced EMF is proportional to speed, rising as the speed
increases. The solution to this is to increase the driving voltage as the speed
rises, but this greatly increases the complexity of the drive electronics.

Inductance The winding inductance and resistance control the rate of rise of current in
accordance with the well known relation

I = (1 - E-Rt/l) * V/R

The quantity L/R is known as the time constant, the smaller it is, the faster the
current will rise on switching the winding on. Plainly we need the smallest
inductance and largest resistance to reduce the time constant although this
would lead to a very lossy and inefficient winding. In practice we can add a bit
of external resistance and improve the performance, although the resistor
wastes power. This forms the basis of the simple L/R translator as embodied
in the design of the STA-STEP.

7-3

MSTEP-5 USER GUIDE

7.3 RESONANCE
Each time the rotor is stepped, it tends to overshoot the desired position slightly and performs a small
damped oscillation. The damping is mainly electrical due to induced voltage in the windings. The
frequency of the damped oscillation depends on the total inertia of the system. It is possible that at
certain speed the stepping rate will become a harmonic of the natural oscillation frequency, and under
these conditions the oscillation builds up to a point that the motor misses steps. This condition is
known as resonance.

Resonance problems can be avoided by

1. Not operating in or close to a resonance region.

2. Accelerating the motor through the resonant point as fast as possible.

3. Providing additional damping in the form of mechanical or viscous damping (Lanchester
dampers) and/or altering the moment of inertia.

If the motor is operated at low stepping rates, resonance is not usually likely to be a problem.

7.4 FULL- AND HALF-STEP OPERATION
There are two common switching sequences used for stepper motors. In the full-step sequence, two
windings are always energized. This applies whether the motor has three, four, or five phase
windings. For example, for a 4phase motor

FULL STEP:

WINDING 1 WINDING 2 WINDING 3 WINDING 4

Step 1
Step 2
Step 3
Step 4
etc...

on on off Off

off on on Off

off Off on on
on off Off on

Full step gives the greatest torque and the rated step angle of the motor e.g. 200 steps/rev.

In half step sequence, switching alternates between having 2 windings on and 1 winding on. It takes
twice as many steps to travel the same distance, thus a 200 step/rev. motor with 1.8 degree stepping
angle in full step sequence will produce 400 steps/rev. and 0.9 degree step angles in half step
sequence.

HALF STEP:

WINDING 1 WINDING 2 WITVDING 3 WINDING 4

Step 1
Step 2
Step 3
Step 4
Step 5

on off Off off
on on off off
off on Off off
off on on off
off Off on off

7-4

CHAPTER 7: STEPPER MOTORS &TRANSLATOR

HALF STEP:

WINDING 1 WINDING 2 WINDING 3 WINDING 4

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
etc...

on
on
off
off
off
off
off
on

off
on
on
on
Off

Off

Off

off

Off

off
Off

on
on
on
off
off

off
Off

off
off
off
on
on
on

Half step sequence offers a finer positioning resolution and somewhat smoother stepping, but since
fewer windings are excited on average, the torque and maximum speed capabilities can be lower than
full step. The PPMC-1OlC can operate in either sequence according to the initialization parameters in
mode 12.

7.5 TRANSLATORS & INDEXERS
If you are new to stepper motors, you will start reading catalogs and find all sorts of equipment with
strange names. This little explanation may assist you in understanding some of the terminology and
its relevance to the MSTEP-5.

A TRANSLATOR is a device that takes a step pulse and direction input and drives the stepper motor
windings - it is essentially the power drive and pulse pattern determining stage, but it does not keep
count of the pulses or position. An INDEXER goes further and will take an input from switches or a
keyboard and move the motor the number of steps input at the keyboard, it also keeps track of the
motor position.

In this sense, the PPMC-1OlC and STA-STEP form a TRANSLATOR, whereas an IBM PC, MSTEP-5
and STA-STEP and a suitable program can perform functions equivalent to an INDEXER.

The MSTEP-5 does not have to be used with the STA-STEP. It can just as easily be connected to a
commercial TRANSLATOR using the direction and pulse outputs of each channel. Commercial
INDEXERS are usually complete self-contained positioning systems and cannot be connected to the
MSTEP-5.

7.6 MECHANICAL DESIGN
Simple systems can often be assembled with very little involvement in optimizing the mechanical
design. They can almost be put together on a “try it and see” basis, this is one of the advantages of the
simplicity of stepper motors. On the other hand, if you want to obtain maximum performance
especially with larger drives, you should carefully analyze your mechanical requirements and match
the motor and translator to your needs. Torque and power of stepper motors depend on the motor
frame size and rating and range from 35 oz/in and fractional HP. to 5000 oz/in and ratings of 34
HP.

7-5

MSTEP-5 USER GUIDE

Other considerations are holding torque, motor size and design - shafts are available on one end or
both ends etc. If you need leadscrews, X-Y tables etc. many vendors provide this type of accessory
equipment, a short list is provided in Appendix B.

* * * * *

7-6

CHAPTER 8

TESTING
&

MAINTENANCE

No periodic calibration or maintenance is required for the MSTEP-5 or STA-STEP, there are no user
adjustments.

The best method of testing a system is to run the DEMO program and exercise the motor or shaft
encoder using this program. If you receive error code 5 while running the demo program, there are a
number of possible conditions to check before assuming that the MSTEP-5 board is faulty, as follows:

1. If you receive error #5 on initialization of both channels, it means that the driver software is not
locating the MSTEP-5 at the I/O address specified in the initializing parameters. This may be
caused by the BASE I/O ADDRESS dipswitch being set to an address other than that specified, a
conflict with the address of another peripheral or a truly faulty MSTEP-5. The driver software
performs a quick write/read test to the MSTEP-5 control register on initialization, and if it detects
any discrepancies will return error #5.

2. If you consistently receive error #5 on initializing one of the two channels, or receive it in the
motion commands, it points to a faulty PPMC-101C controller. These are plug in chips and can
be replaced. A PPMC-1OlC which is not correctly handshaking with the driver when it is ready
to receive or provide data will give this hardware fault.

Other errors that are possible are open limit switch wiring, faulty limit switches etc. These can be
checked by running the READ STATUS option of the DEMO program and exercising the limit
switches.

If you wire the stepper motor up incorrectly with its windings in the wrong sequence, it can lead to
bumpy or rough operation or dithering and similar effects. Check the stepper motor wiring and make
sure that the windings are switching on and off using a voltmeter and the JOG command.

The DEMO program will expose 99% of the likely problems that you can have and also provides a
baseline for comparison if you suspect you have a programming problem. The remaining 1% of
hardware problems, stuck bits, open lines etc. can be determined by writing and reading the I/O
ports. This tends to be tedious work and a program such as DEBUG which makes I/O operations
short and simple is the best choice for this chore.

If you have problems with your MSTEP-5, please call MetraByte applications engineering at (617)-880-
3000. If you need to return any hardware, we will issue you an R.M.A. (return material
authorization) number to mark on your package. Please do not send us material without an R.M.A.
number as it greatly complicates tracing its origins and faults. It is also useful to our test technicians if
you can include a brief description of the problem and in what circumstances it occurs.

8-l

MSTEP5 USER GUIDE

* * * * *

8-2

CHAPTER 9

INSTRUCTIONS
FOR

PRODUCT RETURN

Before returning any equipment for repair, please call 508/880-3000 to notify MetraByte’s technical
service personnel. If possible, a technical representative will diagnose and resolve your problem by
telephone. If a telephone resolution is not possible, the technical representative will issue you a
Return Material Authorization (RMA) number and ask you to return the equipment. Please reference
the RMA number in any documentation regarding the equipment and on the outside of the shipping
container.

Note that if you are submitting your equipment for repair under warranty, you must furnish the
invoice number and date of purchase.

When returning equipment for repair, please include the following information:

1. Your name, address, and telephone number.

2. The invoice number and date of equipment purchase.

3. A description of the problem or its symptoms.

Repackage the equipment. Handle it with ground protection; use its original anti-static wrapping, if
possible.

Ship the equipment to

Repair Department
Keithley MetraByte Corporation
440 Myles Standish Boulevard
Taunton, Massachusetts 02780

Telephone 508/8803000
Telex 503989

FAX 508/880-0179

Be sure to reference the RMA number on the outside of the package!

9-l

MSTEP-5 USER GUIDE

* * * * *

9-2

APPENDIX A

PPMC-101 C SPECIFICATIONS
&

PROGRAMMING

The data sheet of the stepper motor controller chip used in the MSTEP-5 is reproduced in its entirety
here by permission of Sil-Walker America [S&Walker America Inc., 653 Las Casas Avenue, Pacific
Palisades, CA. 90272 Phone:(213)-45447721. If you intend programming the stepper channels directly,
want to understand how the MSTEP.BIN driver works, write your own routines, or know more about
the limit switch operation or fine details of the controllers, these data pages will provide most of the
answers.

Due to the mapping of the PPMC-1OlC registers into the I/O map of the MSTEP-5 the following
correspondences apply:

AORSEL of the MSTBP-5 control register = A0 of both PPMC-1OlC
CSA of the MSTEP-5 control register = CS of channel A PPMC-1OlC
CSB of the MSTEP-5 control register = CS of channel B PPMC-1OlC

CSA and CSB should never be low together as the 2 controllers will interfere with each other.

BESET of either PPMC-1OlC is accomplished on the MSTEPS either by the active RESET line of the
IBM PC bus (on power up) or from a monostable triggered by a write to a I/O address BASE + 3 for
channel A, or BASE + 4 for channel B. In this way the programmer has control of hardware resetting
and m-initializing the controllers if needed.

The PPMC-1OlC has a couple of minor programming quirks to watch. The motion commands
accelerate/decelerate or move at constant speed will always step one pulse more than the number
input. The MSTEP.BIN driver corrects for this characteristic in these two commands by subtracting
one from the data before sending it along to the PPMC-1OlC’s. Also the singular data values 0 and 1
are caught in the driver - see MSTBP.ASM. If zero data is applied, the PPMC-1OlC will step 1 pulse,
whereas if 1 is supplied it will step 2 pulses. The MSTEP.BIN driver grabs these two conditions and
does nothing if zero is applied or aborts to a jog command if 1 is applied. In this way the MSTEP.BIN
driver always does what you would expect - the PPMC-1OlC has somewhat different although
consistent rules.

A-l

MSTEP-5 USER GUIDE

INTRODUCTION

PPMClOlC/102A is a unique one-chip LSI specially designed to interface
a stepper motor to an 8-bit micro computer with no additional hardware.
PPMClOlC/102A provides 8 kinds of different operations by the command
of master CPU including acceleration/deceleration and constant speed
operation.

Operating frequency and number of phase for stepper motor are program-
mable. Distribution signal to excitation driving circuit can also be
programmble for selection of 2-phase or l-2 phase excitation (2-3 phase
excitation for S-phase motor) for 3, 4 and 5 phase motor.

In addition, PPMClOlC/102A provides five kinds of “limit” switch input.
Complete function necessary to control stepper motor is included in
one chip LSI. The PPMClOlC/102A can be easily interfaced with a micro-
computer system.

1. PPMClOlC/102A SPECIFICATIONS

Operation Command

* Emergency Stop

* Decelerating Stop

* Single Step

* Acceleration & Deceleration

* Constant Speed Operation

* To move to the "Limit"

(1) To move to the high speed limit
(2) To move to the base point

Excitation Method

Motor Excitation

3-phase 2 phase

1-2 phase

4-phase 2 phase

1-2 phase

S-phase 2 phase

2-3 phase

A-2

APPENDIX A: PPMC-101 C SPECIFICATIONS & PROGRAMMING

Number of steps : 16,777,216 max

Number of pulse for
acceleration/deceleration : 4 - 8,160

Maximum pulse rate : PPMClOlC . . . 5K pps (RA=20, fo=lOoKHz)
PPMClOZA . . . 10K pps (RA=20, fo=2OOKHZ)

Power supply : 5v f 5% 125mA max

2. TERMINAL ASSIGNMENT AND FUNCTIONS

(Top View)

40 pin Dual-In-Line

Signal Pin# I/O Description

X1,X2 2,3 I X-tal
RESET 4 I RESET input

cs 6 I Chip Select
mls 8 I READ strobe
Ao 9 I Address 0
WR 10 I WRITE strobe

SYNC 11 0 Timing output
Do - 07 12-19 I/O Data Bus 8-bit

iz 21 I Reverse high speed limit input
23 22 I Forward ,, tt ,I I#

iz2 23 I Reverse limit input
zi 24 I Forward " "

P-OUT 27 0 Pulse output
CCW/cW 28 0 Forward/Reverse status

'0' = Forward
'1' = Reverse

HOLD 29 0 Motor HOLD output
s5 30 0 Motor 5th phase output
s4 31 0 " 4th " "
s3 32 0 ” 3rd " "
s2 33 0 ” 2nd " "
Sl 34 0 ” 1st " "

m 35 0 Interrupt signal
MON 37 I External control

'0' = Motor ON
'1' = Motor OFF

CNP 38 I Base point signal input
CLOCK 39 I External clock input
vcc 26.40 I +5V DC
GND 7,20 I 0 v
NC1 1.5.36 I pull up to Vcc with 3.3K ohm

or open
NC2 25 0 OPEN

A-3

MSTEP-5 USER GUIDE

PIN DESCRIPTION

2-l Xl, x2

Inputs for a crystal. PPMClOlC is normally operated with a 6 MHz
crystal and PPMClO2A with a 11 MHz crystal. You may also drive
the clock inputs with an LC turned circuit or an external clock
source (2 phases) as shown in Fig 2-l. 1 to 6 MHz for PPMClOlC and
1 to 11 MHz for PPMClOZA can also be used for driving frequency,
but the operating speed slows down in accordance with the clock
frequency.

6g-lp

d

‘ 1 ‘.I” &“.I
PPM&2h

llM.Hz
3 x2 I

X-tal Clock Driver l- 6 MHz Input Frequency
External Clock Driver Circuit

PPMC- 1OlC

PPM:: 102A

LC Turned Circuit Clock Driver

PPMC- 101 C PPMC- 102A

L=13O/zH 3 MHz L=l2O,uH 3.2MHz

L= 40pH 5MHz L= 45aH 5.2MHz

Fig 2-l

A-4

APPENDIX A: PPMC-1 OlC SPECIFICATIONS & PROGRAMMING

2-2 RESET

Input used to reset status flip-flops and to set the program
counter to zero. This pin should be connected to the RESET signal
of a user's system. 5Omsec after the RESET signal rising edge
the PPMClOlC/102A is operative for initialization and operation
command. The pulse width of the RESET signal must be no less than
2.5 psec.

2-3 cs
Input for chip select. To input the decorded signal from upper bits
of ADDRESS. PPMClOlC/102A is accessible at a low level '0' on CS.

2-4 RD

I/O read input which enables the master CPU to write data and
status mrds from the PPMClOlC/102A. The OUTPUT DATA BUS BUFFER
or status register can be READ at a low level '0' on E and G.

2-5 WR

I/O write input which enables the master CPU to write data and
commands words to the PPMClOlC/102A. Data on INPUT DATA BUS BUFFER
can be written at a low level '0' on cs and E.

2-6 A0

Address input used by the master processor to indicate whether the
byte transfer is data or command as shown in the following table

Ao RD i7E

0 Data Resister Data Resister

I I 1 Status Resister
I Command Resister

‘2-7 SYNC

Table 1

Output signal which occurs once per execution of internal command
in the PPMClOlC/102A. It is also used to synchronize the single
step operation. It is to be normally OPEN and used to check IC
operation.

2-8 DO-D7

Tri-state, bidirectional DATA BUS BUFFER lines used to interface
the PPMClOlC/102A to an 8-bit master system data bus.

A-5

MSTEP5 USER GUIDE

2-9 ix 47, GNP

Inputs for external 'Limit' switches. Each signal is activated
at a low level '0'. Fig 2-2 shows the idea of 'Limit" switches.

Lz 72 CNP L3 zi

-.l 1 1 1 l-
Stepper motor Carrier

ccwt i l cw

Fig 2-2

Ll, L2 I

These switches are set at a maximum limit position where the carrier
does not move further in CCW or CW. The motor will stop immediately
when the carrier moves to these points regardless of the operation
command. The carrier will no longer move further in the same direc-
tion even when it receives a command to move in the same direction.
The carrier will start to move in the opposite direction only when
it receives the command to move in reverse.

L3, L4 :

These switches must be positioned between Ll and L2, at a minimum
distance corresponding to the number of deceleration steps. The
stepper motor begins to decelerate at these positions (L3 or L4)
in order to stop inside of Ll or L2.

Signal from TP is used to establish a convenient reference point
(Base point) with which the PPMC can monitor the position of the
carrier. It does this by counting the number of steps in the data
register. For example, in figure 2-2, in order to establish a con-
venient base point the command "move to base point" is used (see
section 3-3-8). The motor will move the carrier to the position
marked chrp and stop. Work can then proceed from this point.

A-6

APPENDIX A: PPMC-1OlC SPECIFICATIONS 8 PROGRAMMING

2-10 P-OUT, CC&/m

P-OUT is used for pulse output for other stepper motor driving
modules without using PPMC phase output. It is useful for bipolar
drive, switching drive and other special type of excitation method.
It is recommended to use a decoder for CW or CCW pulse generation
in combination with one-shot TIMER as shown in Fig 2-3 because
driving module sometimes require 10 to 20 psec pulse width. The
signal from pulse output is a 5 psec negative pulse and signal for
direction is indicated by its level. In addition, these signals
can be used for monitoring direction or number of pulses for rotation.

CCW/cW can be activated only when P-OUT is active.

7

ccw/cw ’

PPMC-101c

PPzlO2A

P-OUT

A 20 cw

B 30 ccw
+5v

42

-c

-D

' 555

Fig 2-3

P-OUT is always available as well, in use of any type of phase

output. (see page 13. motor code 01, 10, 11)

2-11 HOLD

HOLD output is high 3 msec after motor stops, but it is active only
when bit 5 of the initialization command is set. (see page 13)

'2-12 Sl-s5

Provides signal for motor excitation drive.

Motor Control

3 phase by Sl - s3

4 'I " Sl - s4

5 " " Sl - s5

Fig 2-4 shows the form of output.

The logic can be interchanged, positive to negative logic, and
visa versa. Typical circuit is shown in Fig 2-5.

A-7

MSTEP-5 USER GUIDE

EXCITATION PULSE OUTPUT

2-phase excitation

(3-phase motor)

(4-phase motor)

Sl I 1 I 1 I I I 1

s2

s3

s4

s5

P-OUT LluLrLluuuLruuu

it-

5cr= Example - 3 phase motor, 2-phase excitation
positive logic

(S-phase motor)

l-2 phase excitation

Fig 2-4

2-3 phase excitation

(3-phase motor)

f4-phase motor)

(S-phase motor)

A-8

APPENDIX A: PPMC-1 OlC SPECIFICATIONS & f’?ROGRAMMING

Output logic level can be switched by using positive or negative logic
as shown in Fig. 2-5.

output
Positive logic convention

output
Negative logic convention

Fig. 2-5

A-9

MSTEP-5 USER GUIDE

2-13 INT

Interrupt request is assertive '0' when motor stops. INT can be
cleared by reading the finish STATUS. This figure is not an open
collector and OPEN COLLECTOR BUFFER is required as shown in Fig 2-6,
when a multiple INTERUPT is expected.

PPhc-101c/102A OPEN
, ClXLDXOR t

INT 35 ’ CPU

2-14 MON
Fig 2-6

men motor on input is '0', PPMC does not output driving pulse.
An example of an application is indicated in Fig 2-7, in which a
thermal relay on the motor is used to protect overheating. MON
input is ignored during operation of PPMC, and should be checked
only before motor operation.

Thermal relay

2-15

Fig 2-7 I I

Driving circuit

CLOCK-external clock

Basic signal to control speed of the stepper motor. The speed can
be controlled between 4OOpps and SK pps by the 1OOKHz clock input
to PPMClOlC and between 8OOpps and 10K pps by 2OOKHz clock input to
PPMCIOZA. The clock frequency must be below l/45 of Xl, X2 clock.
For example, when 6MHz X-tal is applied for Xl and X2, external
clock input must be less than 133KHz (in case 1lMHz is applied,
external clock must be less than 244KH.z). High level of the clock
pulse must be more than 500 nsec.(250 nsec for 1lMHz)

A-10

APPENDIX A: PPMC-1 OlC SPECIFICATIONS & PROGRAMMING

3. COMMUNICATION BETWEEN PFfvlC AND MASTER CPU

The communication between PPMC and master CPU consists of following
3 types of modes :

(1) Initialization

It designates type of motor, method of excitation, data for
acceleration/deceleration and other parameters (see page 13 for
details). After power 'ON', initialization is needed before opera-
tion command. Note : Some parameters cannot be changed once it
is set. Re-initialization is not possible during operation.

(2) Operation Command

8 kinds of operation commands are available for stepper motor.
The length of data to follow depends on the command.

(3) Register for PPMC

After completion of (2), master CPU reads the cause of operation
finish, status of input/output terminal, and the number of remain-
ing pulse.

3-l Register for PPMC

2 read only registers, and 2 write only registers are accessible
to the uses.

Table 3-l

3-l-l Status Register

76543210

1 IBF '0' - Write 'YES'
'1' - I# 'NO'

j Busy '0' - Motor standstill

'1' - ti operation

A-11

COMMAND TABLE

iOMAN DATA FUNCTION

1 0 0

2 Self-starting pulse rate

3 High speed pulse rate

4 Accelerating/Decelerating

5 pulse rate

Emergency Stop 1 0 I 0 0 0 E A

Decelerating Stop 1 0 1 OOlJ~< J--c

Single Step 1 01 01 0 ~-up 1 pulse

a

3c 1 0 0 1 1 1
=c

---- --- t Acceleration/ 2

I Oeceleration
3 Number of 0 operatlng step

ip\L A

u 4

u 1 01 1 0 0
L
- Constant speed operation

2 Constant speed pulse rate

b- 3
-c 4
cx Number of operating step

w 5
a.
0 To move until the limit I 01 101

at constant speed
2 Constant speed pulse rate

:R;;ve until high speed 1 0 I 110

To move to the base point
I 01 111

2 Contant speed pulse rate ICNP

Finish Data I 10000000
El

To read data for reason of FINISH. etc. . ..I........ 1 byte

sl
z Input signal 1 10000001 To read data for limit switch, etc. 1 byte

2 I 9 Output signal 10000010 To read data for motor and direction phase output ,., 1 byte

s
,

Remaining step numbers 1 10000011 To read remaining number of steps 3 byte

APPENDIX A: PPMC-1OlC SPECIFICATIONS & PROGRAMMING

3-l-l-l OBF (Output Buffer Full)

This bit checks the status in order to read the data from PPMC.
'0' indicates that there is no data in the buffer. It can only
read the data when OBF is '1'.

3-l-l-2 IBF (Input Buffer Full)

This bit checks the status in order to write commands or input
data to PPMC. '1' indicates that the data is full in the buffer
and therefore, it is not possible to write new data. IBF must
be '0' when you write data or give commands. If you were to
write data at IBF '1' the former data would be erased.

3-l-l-3 BUSY (Motor Busy)

This flag outputs '1' during motor operation. It is only possi-
ble to input emergency stop and decelerating stop commands at
that time. The IBF and BUSY bits must be checked before you
input a command. This is '0' 2.5 psec after INT output.

3-l-2 Read Register Data

Register data can be read out after checking OBF and input of
READ REGISTER COMMAND.

3-l-3 Write Command

Before inputting initialization, operation command or read
register command, check IBF and BUSY bit in the status register.

3-l-4 Write Data

Check IBF before writing data for pulse rate or number of steps.
The order of input data must follow as indicated in command table

(page 14). PPMClOlC will start operating in accordance with
the command 400 psec and PPMClOZA does 200 psec after the data
is written.

A-13

MSTEP-5 USER GUIDE

3-2 Initialization

Initialization Command

76543210

r0 1 _.. 3 phase motor

G Motor Code 1 0 4 U U .._

Excitation Method

0 . . . 2 phase excitation

1 . . . l-2 phase excitation
(2-3 phase excitation for 5 phase motor)

Excitation output logic level (Sl, S2, S3, S4, S5)

0 . . - Negative logic convention

1 Positive $1 ,I . _ .

- Clock 0 Internal clock (12.5KHz . . . at 6MHz Xl, X2) . . -
(22.9KHz . . . at 1lMHz Xl, X2)

1 . . . External clock (Clock signal at pin#39)

- Excitation signal switching output at motor standstill

0 - - . Switching 'NO'

1 II . . . 'YES'

Initialization Data

i ,,,,],, self-starting pulse rate_.. RA max

3 ,,,,,,, high speed pulse rate_.. PA min

4 ,,1,1(, Act/Deceleration pulse rate _.__ lower byte

5 ,,,,,((
I, ,a ,I

- . . . upper byte

Initialization command to be input in the above order (1, 2, 3, 4, 5)
after power 'ON'.

It can be shown in the following flow chart.

A-14

APPENDIX A: PPMC-1 OlC SPECIFICATIONS & f?ROGRAMMING

Inicidlizarion

Initialization Command

WRITE

Self-scarring Pulse Rate Self-scarring Pulse Rate

DaKa WR I T E DaKa WR I T E

Yes

F cceieration/Decelcration

Pulse Rate (upper byte)

oara WRITE

A-15

MSTEP-5 USER GUIDE

3-2-l Initialization Command

1) Motor code

The type of motor code used must match the spec of the motor.

2) Excitation method

The excitaion method used must match the spec of the motor.

3) Logic level of excitation output (Sl, S2, 53, S4, S5)

In positive logic convention, the current will be flowing through
the coil of the motor when output of PPMC is high. In negative *
logic convention, the current will be flowing through the coil
of the motor when output of PPMC is low.

Fig 3-1 shows the circuits of logic level of excitation output.

PPhK-1o1wlo2A

Motor coil

s1-ss

Positive logic output

PPMC-101c7io2A

Motor coil

Negative logic output Fig 3-l

41 Clock

This is to select an internal or external basic clock for the
motor. The internal clock will use frequency generated inside
the PPMC. In the external clock mode the clock is provided by
the input on pin#39.

It is possible for PPMClOlC to control speed from SOpps to 6OOpps

with the internal clock 12.5KHz and for PPMCl02A to control speed
from 1OOpps to 1,200pps: To control spegxl from 4OOpps to SKpps a
1 OOKHZ external clock'khould.be .used for PPMClOlC. The external
clock mu'st be loher .th& 133KHz. In case bf PPMCl02A, speed can
be controlled from 8OOpps'to‘lOKpps with 2OOKHz external clock
which must be lgher.than 244KH2;

A-16

APPENDIX A: PPMC-1 OlC SPECIFICATIONS & PROGRAMMING

5) Excitation Signal Switching Output

Usually the current into the stepper motor remains at maximum
current during stanstill. This maximum current which holds the
motor can cause overheating. Bit 5 is used to prevent this type
of problem by switching '1' or'0'. PPMC can switch the exci-
tation output to minimize the excitation current. Switching
frequency is about 2.2KHz for PPMClOlC with a duty cycle of 30%
and 4KHz for PPMCl02A with a duty cycle of 35%.

About 100 msec after the output of a phase excitation signal,
the motor will start operating from a standstill when "switch-
ing" is selected.

Type of motor code, excitation method and logic level of exci-
tation pulse output cannot be changed once they are set after
RESET, while clock, excitation pulse switching output and initiali-
zation data can he changed.

3-2-2 Initialization Data

3-2-2-l Pulse Rate

PPMC applies the idea of pulse rate (RA) to decide speed of the
stepper motor. The relationship between pps and RA is expressed
in the following equations :

pps = -$

fo : Basic clock frequency

RA : Pulse Rate

PPS - Motor pulse per second

Basic clock is either a 12.5KHz for PPMClOlC (22.9KHz for
PPMCIOZA) clock generated inside PPMC or external clock applied
to pin#39. Bit 4 (clock command bit) in initialization command
is used to select either the internal/external clock.

PPS Table 3-l shows various logical figure of RA and practical use.

Practical
(20-W)

12.5 KHZ 49Hz - 6.2SKHz 49Hz - 625Hz (PPMClolC)
Internal
clock 22.9KHz 89Hz -11.4 KHz 89Hz - 1,140Hz (PPMCIOZA)

loo KHZ 392Hz - 50 KHz 392Hz -
External

SK& (PPMCIOIC)

clock 2ooKHz 784 Hz-1oOKHz 784Hz- 1OKHz (PPMCl02AI

A- 17

MSTEP-5 USER GUIDE

The appropriate number of pulse for acceleration/deceleration
should be decided by the customer's experience, because it
depends primarily on type of motor, inertia moment of load, etc.
In case of large inertia moment of load, a large number of pulse
for acceleration/deceleration should be selected for slow opera-
tion. PPMC can be adapted quite well to the majority of the load.
With 2 byte to store the number of pulse needed for acceleration/
deceleration, 4 - 8,160 steps can be set.

Some motors have a sympathetic point where there is no torque
at certain frequency as shown in Fig 3-2. In such cases, the
motor has to be started with a speed lower than the sympathetic
point in order to fly into a higher speed area. To minimize the
time to stay on the sympathetic point, higher speed for accelera-
tion/deceleration must be applied. It is recommended that a damper
should be used to increase the inertia moment if the motor goes
into the sympathetic point with a small load.

torque

I

T
sympathetic point

speed

Fig 3-2

Initialization Data

Stepper motor has two types of operation as follows :

(A) Constant speed operation at lower speed of self-starting
frequency.

(B) Ramp up/down operation.

I speed (pps)

Fig 3-3

A-18

APPENDIX A: PPMC-1OlC SPECIFICATIONS & PROGRAMMING

Self-starting frequency, parameters for high speed operation
and acceleration/deceleration depend on the type of motor,

excitation method, inertia or nature of load, etc. Relation
among those are indicated below :

255 2 CRA 2 RA max > RA min ;: 20

Pulse Rate Symbol

At constant speed operation . .._. CRA

At self-starting RA max

At high speed operation ._... RA min

CRA and RA max are to be set as large as possible within the
above limit. The hardware limits the external clock rate to
a maximum of 133KHz for PPMClOlC (244KHz for PPMClO2A). For
example with 1OOKHz external clock for PPMClOlC and 2OOKHZ
for PPMCl02A the above relation can be converted into pps
(pulse per second) as following.

PPMClOlC 392Hz (CPPS< PPS min < PPS max 2 5KHz
PPMCl02A 784HZ < CPPS < PPS min < PPS max < 1OKHz

In conclusing, with a 1OOKHz external clock for PPMClOlC or
2OOKHz for PPMCl02A, the stepper motor can be controlled from
4OOpps to SKpps for PPMClOlC or 8OOpps to 1OKpps for PPMCIOZA.
For lower speed operation, external clock frequency should be
slowed down accordingly.

3-2-2-3 Aberration of motor speed

There are two major sources that cause the motor speed to deviate
from the theoretical value (see Fig 3-4). The first source of
error derives from the execution time of routine that outputs
the excitation. A 50 psec overhead time is needed in addition
to the delay timing for the pulse output. Therefore for slow
speed operations, the 50 psec error is insignificant. The %
error of the output speed will increase with an increase in motor
speed.

The second source of error is the non-synchronization of the
basic clock and the internal timer. A randam error correspond-
ing to fl basic clock pulse in the timer counter is possible.
Note the percentage error will be larger at a slower clock rate.
For example at a clock rate of 20H2, the randam error is +S%,
which may be acceptable in practical application.

A-19

MSTEP5 USER GUIDE

offset

random

offset et

random er

200k
PPS

1 OOk

Following is the curve that shows the differnce between theoretical
value and practical speed at a basic clock frequency of 1OOKHz
(PPMClOlC) and 2OOKHz (PPMCIOZA). The graph shows that at RA=15,
the motor speed is SKpps for PPMClOlC and 1OKHz for PPMCl02A.

5k

Ik

10 15 al 30 50 100 250

pulse rate (RA)

‘Xtal IlMHz
.fo mKH2

Fig 3-4

A-20

APPENDIX A: PPMC-I OlC SPECIFICATIONS & f?ROGRAMMlNG

3-3 Operatfon Command

76543210

1 I w I I I I I

O1 W-T-

I I Operation command code

0 0 0 . ..-_ Emergency stop

0 0 1 *.... Decelerating stop
0 1 0 Single step
0 1 1- Acceleration/Deceleration
1 0 0 ._... Constant speed operation
1 0 1 .-... To move until the limit .
1 1 0 -_.__ To move until the high speed limit

1 1 1 .-..- To move until the base point

IL Direction for rotation of motor

. . . - . cw
1 ccw

Interupt mask for FINISH signal

0 Enable
1 Disable

3-3-l Emergency Stop

To stop rotation of motor instantaneously by inhibiting excita-
tion output during any type of operation, whether it be accelera-
tion/deceleration or constant speed operation. In high speed *
operation, the phase output stops instantaneously, but the motor
will run off with inertia. Therefore, position data is no longer
valid. It is necessary to reestablish the base point. During
constant speed operation at self-starting frequency, motor can
stop instantaneously and restarting is possible from that point
by reading the number of operating pulse with the READ REGISTER
COMMAND. Emergency stop requires only 1 byte operation command,
and no data is necessary. Check whether the condition IBF=O,
and BUSY=1 is satified before writing the emergency stop command
as shown below.

76543210

0 1 0 0 0

I

A - 21

MSTEP-5 USER GUIDE

3-3-2 Decelerating Stop

When the decelerating stop command is input during acceleration/
deceleration, the motor will decelerate to stop. The motor will

stop instantaneously during constant speed operation at self-
starting frequency, the remaining number of pulse can be read, by
the READ REGISTER COMMAND and the motor can be re-started from

where it stopped. The bits for direction of motor rotation and
FINISH INTERRUPT become assertive when the motor stops. Refer to

the following flow chart for proper sequence of operation.

76543210

3-3-3 Single Step

This is the command to move the stepper motor at a single step.
It is useable when the master CPU needs to find out its position
by itself. h'hen this command is released continuously, timing
must be controlled by the master CPU. All command modes are
effective, this command consists of a single byte. No other data
is necessary. Refer to the following flow chart for proper sequence
of operation.

76543210

0 1 0 1 0

A - 22

APPENDIX A: PPMC-101C SPECIFICATIONS & PROGRAMMING

3-3-4 Acceleration/Deceleration

This command for acceleration/deceleration in accordance with the
data at the time of initialization. In addition to the command
itself this operation requires 3 bytes of data, which store the
total number of pulses to be output. For triangle operation,
total number of pulse must be smaller than two times the accelera-
tion/deceleration pulse number. The limiting switch input L3, L4
can be used to trigger the deceleration (see Fig 2-2) and Ll and
L2 can be used to stop the motor. Note that irrelevant signals
from Ll-L4 will be ignored. For example in Fig 2-2, if the carrier
is moving Cw, the signals from L2 and L4 will be ignored.

speed Remaining nUIi?ber

Remaining number of puls

Decelerating stop Emergency stop

High speed limit Limit

The number of pulse (step number requested for operation - 1) can
be got with 3 bytes.
FFFFFF (Hexa decimal) input moves 16,777,216 steps which is the
maximum number of steps to move at a time.

- Example -

To move 1,000 steps, 1,000 - 1 = 999 should be converted into

Hexa decimal (0003E7) for input. Data must be input from the

lower byte.

A - 23

MSTEP-5 USER GUIDE

76543210

0 1 0 1 1

Operating

76543210 number of

Operating number of pulse
ilover byte)

A-24

APPENDIX A: PPMC-1OlC SPECIFICATIONS & PROGRAMMING

3-3-5 Constant Speed Operation

This command requires one byte of data for constant speed pulse
rate as well as 3 bytes of data for the total number of pulse.
The proper sequence of execution is shown in the following flow
chart. The command causes the motor to rotate at a constant
speed up to the designated distance. The speed is set by the
pulse rate data, which has to be within the self-starting frequency
of the motor. Ll-L4 limit switch input can be used to decelerate
and stop the motor. The READ REGISTER COMMAND can be used to
readout the remaining number of pulse and the cause for stopping.

I 4 , I I ,

4

Limit
Emergency stop
Decelerating stop

Refer to the following flow chart for proper sequence of operation.

Operating
number of pulse

(lower byte)

(middle byte)

(upper byte)

76543210

76543210

I ' ' ' ' ' ' ' I

I
/ Constant speed operation

command WRITE .

constant speed
pulse rate

‘e

MSTEP5 USER GUIDE

3-3-6 To Move At Constant Speed Until Limit Switch

This mode of operation is similar to the previous one except that
the data indicating the number of pulse is omitted. The motor
will keep on moving until a signal from a limit switch (Ll or L2)
is received. The signal from irrelevant Ll or L4 is ignored.
Limit input in the same operating direction means as follows :

Operation Input

cw Ll limit input

ccw L2 ,, II

During a CW operation, L2 input will be ignored.

I

4
Limit
Emergency stop
Decelerating stop

This command is normally used right after POWER ON or to re-start
after motor run off.

76543210

0 1 1 0 1

76543210

constant speed pulse rate

I

Yes

ConsfdnL speed

pu1sc race

A-26

APPENDIX A: PPMC-101 C SPECIFICATIONS & PROGRAMMING

3-3-i' To Move At High Speed Until High Speed Operation Limit

This is the command to accelerate for high speed operation in
accordance with the data at the time of initialization. Under
this command the motor will rotate at high speed until a limiting
signal is received. Then it will decelerate to stop according
to the number of decelerating pulse. Once deceleration begins,
it continues to decelerate even if limit input turns out '1'.
Limit switch Ll for CW and L2 for CCW rotation can force the motor
to stop, but inertia may cause the motor to overrun the desired
stopping point.

High speed limit
4

Limit

Decelerating stop Emergency stop

This command is also used right after POWER ON or to re-start

motor after run-off. The decision whether to use this command
or the command 'to move at constant speed until limit switch'
(3-3-6) depends on the distance, time, accuracy of position, etc.

76543210

0 1 1 1 0 To move until high speed
limit dc high speed

A - 27

MSTEP-5 USER GUIDE

3-3-8 To Move To Base Point

In this mode of operation, the motor rotates at constant speed

until a m signal is detected. The motor can also be stopped by

the relevant limit input LI-~4, emergency stop or decelerating stop.

Base point
Limit
Emergency stop
Decelerating stop

(j-=+-)
P-----l

76543210

76543210

I:::::: :I

constant speed pulse rate
ConsCant Speed

pulse rate

A-28

APPENDIX A: PPMC-101 C SPECIFICATIONS & PROGRAMMING

3-4 READ REGISTER

READ REGISTER COMMAND is used to read three kinds of StatUS and
a 3 byte data during standstill of motor. The proper format of
the command is indicated below :

76543210

100000
I

T Register code

0 0 . .._. FINISH status

0 1 I.... Input signal status

1 0- Output signal status

1 1 Remaining number of pulse

3-4-l READ FINISH STATUS

The proper sequence to read the various status is show in the
following flow chart.

Read Register
Command Y R I T E

Status Register

A - 29

MSTEP-5 USER GUIDE

3-4-l-l FINISH STATUS

The finish status register contains the following information :

76543210

command code

Decelerating stop when detecting high speed limit

To stop when detecting limit

'ON' signal (MON) check flag

To stop by motor stop command

The lower 3 bytes contain the operation command code.

Bit 3 024 goes up to '1' after high speed limit (z, z) or
limit (Ll, L2) is input for motor stop. Bit 5 shows '1' when
motor cannot operate with 'motor on signal' (MON) = 0.

A '1' in bit 6 indicates either an emergency stop or decelerating
stop. Khen all number of pulses for acceleration/deceleration
and constant speed operation are completely consumed to stop,
all bits from 3 to 6 turns to '0'.

In the absence of finish interTt mask, INT becomes assertive
at the end of the operation, INT signal can be cleared to '1'
by reading finish status and released.

3-4-l-2 INPUT signal

The input signal register reflects the state of various inputs
shown below at the point where the motor stops.

76543210

High speed limit in reverse (z)

High speed limit in forward (z)

Limit in reverse (L2)

Limit in forward (E)

Motor ON signal (MON)

Base point (G)

A-30

APPENDIX A: PPMC-1OlC SPECIFICATIONS & PROGRAMMING

3-4-l-3 OUTPUT Signal

76543210

I : : : : I I pa

L SI s2 s3 SC ss
!-

Direction for rotation of motor

'7' HOLD signal '1"' 1:: z F w

Stepper motor phase output

Phase outputs for stepper motor can be checked by bit 3 to 7'

3-4-Z Remaining number of pulse

h%en the motor is stopped by limit switch or stop command during
acceleration/deceleration or constant speed operation, the remain-
ing number of pulse can be read by using this mode. If it is decided
to finish the operation after the stop command, the original command
and the remaining number of pulse can be input again to restart
the mode.

Speed

Distance

t Stop-Reset-Re-start
Decelerating
Stop Command

The data becomes '0' when the operation has been successfully
terminated.

The following flow chart shows the proper sequence of programming
in order to read the data from PPMC.

A- 31

MSTEP5 USER GUIDE

Remaining number of

pulse (lover byte)

Remaining number of

pulse (middle byte)

Remaining number of

pulse (upper bycc)

76543210

10000011 Command

Remaining number of pulse

76543210

A - 32

APPENDIX B

SOURCES FOR STEPPER MOTORS
&

ASSEMBLIES

B.1 GENERAL INFORMATION
MetraByte stocks a standard stepper motor and incremental shaft encoder (models STEP-MOT1 &
STEP-ENCI). Their specifications are provided in Appendix C. Although these have been selected
from very popular types, they may not be suitable for your application. This Appendix details
vendors who specialize in stepper motors and associated mechanical components.

In the course of assembling a stepper motor system, you may need to procure stepper motors, lead
saews, X-Y tables, shaft encoders etc. Many vendors provide this type of equipment and the
following list has been compiled to assist you in locating components. Inclusion of a vendor in this list
does not imply that MetraByte Corporation endorses the vendor or is in any way responsible for the
performance of its equipment. Likewise the list is not complete, and omission of any vendor is purely
coincidental. This list is provided purely for your convenience and is not exhaustive.

B.2 STEPPER MOTORS
1. Superior Electric Company

383 Middle Street
Bristol CT 06010 Phone: 203-582-9563

2. B & B Motor & Control Corp.
Apple Hill Commons
Burlington CT. 06013 Phone: 203-673-7151

3. Bodine Electric Company
2500 W. Bradley Place
Chicago IL. 60618 Phone: 312-478-3515

4. Litton Clifton Precision
P.O. Box 160
Murphy N.C. 289064160 Phone: 704-837-5115

5. Oriental Motor U.S.A. Corp.
2701 Plaza Del Amo Suite 702
Torrance, CA 90503 Phone: 213-515-2264

B.3 SHAFT ENCODERS
1. Motion Control Devices

80 Stedman Street
Lowell MA. 01851 Phone: 617443407

B-l

MSTEP-5 USER GUIDE

2. B.E.I. Motion Systems Company
Computer Products Division
1755-B La Costa Meadows Drive
San Marcos CA. 92069 Phone: 619471-2600

3. Datametrics
Dresser Industries Inc.
340 Fordham Road
Wilmington MA. 01887 Phone: 617-658-5410

4. Honeywell Disc Instruments Inc.
102 East Baker Street
Department TR
Costa Mesa CA. 92626 Phone: 714-979-5300

B.4 X-Y TABLES, SLIDES, LEADSCREWS ETC.
1. Daedal Inc.

P.O. Box G
Sandy Hill Road
Harrison City PA. 15636 Phone: l-800-245-6903

(in PA) 412-744-4451

2. New England Affiliated Technologies Inc.
620 Essex Street
Lawrence MA. 01841 Phone: 617-685-4900

3. B & B Motor & Control Corp.
Apple Hill Commons
Burlington CT. 06013 Phone: 203-673-7151

4. Klinger Scientific Corporation
110-120 Jamaica Avenue
Richmond Hill NY. 11418 Phone: 718-846-3700

8.5 TRANSLATORS, STEPPER DRIVERS
1. Superior Electric Company

383 Middle Street
Bristol CT. 06010 Phone: 203-582-9561

2. Bodine Electric Company
2500 W. Bradley Place
Chicago IL. 60618 Phone: 312-478-3515

3. Oriental Motor U.S.A. Corp.
369 Passaic Avenue
Fairfield N.J. 07006 Phone: 201-882-0480

B-2

APPENDIX B: SOURCES FOR STEPPER MOTORS &ASSEMBLIES

B.6 TOOTHED BELTS, GEARS, DRIVE COMPONENTS ETC.
1. Precision Industrial Components Corporation

P.O. Box 1004
Benson Road
Middlebury CT. 06762 Phone: l-800-243-6125

in CT: 203-758-8272

B.7 OTHER SOURCES
If you are on a tight budget, Herbach & Rademan usually carry a range of new and used stepper
motors and other mechanical odds and ends. Ask for their catalog, their address is

Herbach & Rademan Corporation
401 E. Erie Avenue
Philadelphia PA. 19134 Phone: 215-426-1708

B-3

MSTEP-5 USER GUIDE

,

* * * * *

B-4

APPENDIX C

STEP-MOT1 & STEP-ENCl
SPECIFICATIONS

C.1 STEP-MOT1 SPECIFICATION

Electrical Specifications

Nominal DC Volts

Winding Resistance

Rated Current

Winding Inductance

Winding Type

Time for Single Step

Mechanical Specifications

Step angle

Angle Accuracy

Holding Torque

Residual Torque

Rotor Inertia

Torque/Inertia Ratio

Shaft Diameter

Radial Load

Axial Load

Weight 20 oz.

5.0 volts

5.0 ohms at 25 deg. C.

1 .O amps per winding

10.4 millihenries

4-phase, 6-lead unipolar

2.5ms with 24VDC drive

1.8 degrees full step.

5%

53 oz.-in. min. (2 windings energized)

1.25 ox.-in. min.

0.04 lb.-in2

32,000typ.

0.25 inch

15 lbs. max.

25 lbs. max.

C-l

MSTEP-5 USER GUIDE

T-
1.856

I --

REAR

I I

I O-------- 2.24, I

2.24

SPECIFICATIONS

RATING: 5v I amp 5 ohm wjndjnp

STEPS: 200 per rev. [I.8 deQ. 1

TOROUE: 53 oz-In holding

WEIGHT: 20 oz.

INDUCTANCE: 10.4 mH

p,

3 - __

-

I I

-1
1 -pm--(,

a 1 .50- 215 ’
xi I

.a-i IL

.18 ,040 Jk

All dlmenslans in Inches

I-1 _ 856-i DIA. +2.00.-j/ .OeiO

CONNECTIONS
RED

1

BUCK
6 STEP-MOT1

REWVHITE

GfEEN
:

VHITE 2 SPECIFICATION
GfEENAHITE 4

c-2

APPENDIX C: STEP-MOT1 & STEP-ENCl SPECIFICATIONS

C.2 STEP-ENCI SPECIFICATION

Electrical Specifications

Output Channels Two count channels electrically phased 90 degrees +/GO
degrees. One zero reference (index pulse) signal
channel, half count per revolution.

Count Channel Accuracy Pulse to any other pulse, 1 minute of arc
Pulse to adjacent pulse, 30 seconds of arc

Count Channel Signal

Symmetry (Duty Cycle)

Frequency Response

Rise & Fall Time

Operating Temperature

Power Consumption

Terminal Connections

Square wave, TTL compatible. Logic 0,0.4v max. at
16mA sink current Logic 1,2.4v min. at 800uA source
current

180 degrees +/-lo degrees

0 to 5OKHz max.

Less than 200 nanoseconds

0 to 70 degrees C.

5v +/-5% @a 155mA

TERMINAL NUMBER FUNCTION
1 +5v
2 GND.
4 Channel A
5 Channel B
6 Index pulse

Mechanical Specifications

Shaft Speed

Shaft Loading

Starting Torque

Rotary Inertia

Maximum Acceleration

Materials

Bearings

Weight 4 oz.

3000 r.p.m. at max. shaft loading
5000 r.p.m. at lower loads

Radial, 31bs. max. at end of shaft
Axial, 31bs. max.

0.01 oz.-in.

0.0002 oz.-in.-sec@+[2]

50,000 rad /sec2

Shaft type 303 stainless steel
Mounting boss aluminum
Housing polycarbonate resin

Instrument class, shielded

c-3

\
4-40 SCREW
TERM I NALS

MSTEP5 USER GUIDE

*4-4NC-28 x 3/16 DP

2.‘25 DIA. I
- 1.6BB *I

All dimensions in inches

SPECIFICATIONS

RESOLUTION: 1000 LINES/REV

MAX. SPEED: 3000 RPM

STARTING TOROUE: 0-01 oz-in

INERTIA: 0.0002 oz-In-sec2

MAX. ACCELERATION: 50.000 RADiSEC2

SHAFT LOADING: RADIAL 3 Ibs mnx..

AXIAL 3 Ibs max.

POWER: +5w at 155mA

CHANNELS: A 8 B AND MARKER

CONNECTIONS
OUTPUTS: TTL LEVELS . 16mA SINK

1 - +5 u power

2 - COMMON I GND I

4 - A OUTPUT

5 - B OUTPUT

6 - AARKER OUTPUT

CHANNEL A m

CHANNEL B m

MARKER

STEP-ENCl

SPECIFICATION

c-4

APPENDIX D

MSTEP-5 & STA-STEP
SPECIFICATIONS

D.l POWER CONSUMPTION
+5v supply (MSTEP-5 only)

+5v supply (with STA-STEP)
+ 12v supply
-12v supply

-5v supply

D.2 MSTEP-5 SPECIFICATIONS

Stepper channels

Maximum step count

Maximum step rate

Acceleration/deceleration ramping

Limit switch inputs
(active low, open
collector, TTL or

mechanical switch
to ground)

Translator Drive

Phase (winding) drives

Phase drive logic polarity

Phase drive sequence

Power chopping at standstill

1.7A typ., 2A max.
1.8A typ., 2.1A max.
not used
not used
not used

2 (individually programmable)

+/-16,777,215

5000 p.p.s.

automatic trapezoidal
programmable start, run
& ramping rates.

5 per channel
(end of travel,
highspeed&
base point)

CCWJCW and negative
going 5 microsecond
pulse.

TTL compatible signals
for 3,4 or 5 phase
motor windings.

programmable

programmable full
or half step.

programmable, 2.2 KHz
30% duty cycle
(reduces motor heating)

D-l

MSTEP-5 USER GUIDE

Encoder channels 2

Type Incremental quadrature

Maximum encoder count +I-8,388,607

Input ‘ITLKMOS compatible
with 2 stage digital
noise filter.

Maximum encoder pulse rate 25 KHz.

D.3 STA-STEP SPECIFICATIONS
Maximum motor voltage 24VDC

Maximum winding current 5Nphase

Motor circuit isolation from
computer ground

350~ max.

Driver type L/R

Maximum step rate 2000 p.p.s.

Driver transistor on resistance 0.08 ohm

D.4 LOGIC OUTPUTS
All outputs ITL compatible

0.4~ max output low voltage
2.4~ min output high voltage

Phase drive, S l-S5,
PULSE, CW/CCW and

HOLD sink current.

24mA at 0.5~

Phase drive, S I-S5,
PULSE, CW/CCW and

HOLD source current

-3mA at 2.4~

Encoder carry/borrow
output sink current.

8mA at 0.5~

Encoder carry/borrow
output source current.

-0.4mA at 2.4~

D-2

APPENDIX D: MSTEP-5 & STA-STEP SPECIFICATIONS

D.5 LOGIC INPUTS

All inputs TTL/CMOS compatible
0.8~ max input low voltage
2.0~ min input high voltage

Pullups All inputs have internal
10K pullups to +5v.
(5K with STA-STEP attached)

D.6 POWER OUTPUTS
IBM P.C. buss supplies +5v,+12v&-12v

Loading Dependent on other
peripherals & computer
type, see Note.

NOTE: Due to connector and cable ratings, it is recommended that +5v power be limited to 2A,
and that +/-12~ power to the lesser of 1A or whatever is available. Excitation of the
stepper motor from the computer is not recommended.

D.7 PHYSICAL & ENVIRONMENTAL SPECIFICATIONS
Operating temperature range 0 to 50 deg.C.

Storage temperature range -20 to 70 deg.C.

Humidity 95% non-condensing

Weight 802. (230 gm.)

D-3

MSTEP-5 USER GUIDE

D.8 CONNECTOR PINOUT
Rear view of 50 pin connector
(0) = output, (I) = input

CH. A Limit 1, Ll
CH. A Limit 3, L3

CH. A Base point, CNP
CH. A direction CCW/CW
CH. A Sl phase output
CH. A S3, phase output
CH. A S5, phase output

CH. A HOLD ACK.

(1)
(1)
(1)
(0)
(0)
(0)
(0)
(0)

GND
i CH. B Limit 2, L2 (I

CH. B Limit 4, L4 (I
CH. B Motor control (I

GND
CH. B S2, phase output (0;
CH. B S4, phase output (0)

CH. B PULSE OUT (0)
GND.

CH. A Encoder A input (I)
CH. A counter out (0)

CH. B Encoder B input (I)
CH. A external clock (I)

+12v
Power from -12v
computer +5v

GND.

12
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50

CH. A Limit 2, L2 (I)
CH. A Limit 4, L4 (I)
CH. A Motor control (I)
GND.
CH. A S2, phase output (0)
CH. A S4, phase output (0)
CH. A PULSE OUT (0)
GND.
CH. B Limit 1, Ll (I)
CH. B Limit 3, L3 (I)
CH. B Base point, CNP (I)
CH. B Direction CCW/CW (0)
CH. B Sl, phase output
CH. B S3, phase output
CH. B S5, phase output
CH. B HOLD ACK. (0)
GND.
CH. A Encoder B input (I

0)
0)
0)

1
CH. B Encoder A input (I)
CH. B counter out (0)
CH. B external clock (I)
no connection
no connection
+5v
GND.

Keying blocks are present between pins 3 & 5 and 47 & 49. Connector attached to board is 3M
(Scotchflex) # 34335303. Mating half for ribbon (insulation displacement cable) is 3M # 3425-6050

D.8 SIGNAL DESCRIPTIONS
Phase outputs Sl-S5

ccw/cw

‘ITL outputs that provide signals for motor winding excitation. Logic
polarity and step sequence (full/half) are programmable.

Direction signal output 0 = clockwise 1 = counterclockwise.

PULSE OUT

HOLD ACK.

Ll & L2 limit inputs

Pulse output corresponding to steps. 5 microsecond negative going
pulses. CCW/CW and PULSE can be used to drive a translator.

If switching at standstill is enabled, HOLD ACK. goes high 3
milliseconds after motor stops otherwise it is always low.

Active low overtravel limit inputs. Motor will stop immediately on
encountering either of these limits. Ll - clockwise limit LZ -
counterclockwise limit

D-4

APPENDIX D: MSTEP-5 & STA-STEP SPECIFICATIONS

L3 & L4 limit inputs

Base point, CNT input

Motor control input

Encoder A & B inputs

Active low high speed limit inputs. Motor will perform a decelerating
stop at either of these limits if executing an accelerate or proceed to high
speed limit command. L3 - clockwise limit L4 - counterclockwise limit

Active low home or reference point limit switch input. Motor will stop
at base point if executing a proceed to base point command.

Motor control input must be high for controller to execute commands. It
can be used to monitor power on the stepper motor.

Correspond to the A & B quadrature outputs of the incremental shaft
encoder.

Counter out Carry/borrow overflow bit from the 24 bit internal encoder counter.

D-5

	ToC:

