
KM-4881DD

IEEE-488 Interface Board

Keifhley MetraByte Corporation

A Subsidiary of Keithle Instruments, Inc.
440 Myles Jandish Boulevard
Taunton, Massachusetts 02780

Part Number: 24407

First Printing: June 1991

Copyright 0 1991

Keithley MetraB te Corporation
440 Myles Stan CT Ish Boulevard
Taunton, Massachusetts 02780

WARNING
Keithley MetraByte Corporation assumes no liability for damages consequent to the use
of this product. This product is not designed with components of a level of reliability
suitable for use in life support or critical applications.

All rights reserved. No part of this
E

ublication may be reproduced, stored in a retrieval
system, or transmitted, in any form y any means, electronic, mechanical, hotoco
recording, or otherwise, without the express prior written permission of I?’ RYetra- elthley

ing,

Byte Corporation.

Information furnished by Keithley MetraByte Corporation is believed to be accurate and
reliable. However, no responsibility is assumed b

atents or other rights o Y
MetraByte Corporation for its use; nor

by
third parties which may result from its

implication or otherwise under any patent rights of Keithley

TM Keithley MetraByte is a trademark of Keithley MetraByte Corporation.

BASICM ts a trademark of Dartmouth College.

IBM@ is a registered trademark of International Business Machines Corporation.

PC, XT, and AT@ are trademarks of International Business Machines Corporation.

Microsoft@ is a registered trademark of Microsoft Corporation.

TURBO” is a trademark of Borland International, Inc.

MOTE: This equipment has been tested and found to comply with the limits
br a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These
imits are designed to provide reasonable protection against harmful inter-
:erence in a residential installation. This equipment generates, uses, and can
radiate radio frequency energy and, if not installed in accordance with the
nstructions, may cause harmful interference to radio communications.
Sowever, thereis no guarantee that interference will not occur in a particular
,nstallation. If this equipment does not cause harmful interference to radio
jr television reception, which can be determined by turning the equipment
,ff and on, the user is encouraged to try to correct the interference by one or
nore of the following measures:

. Reorient or relocate the receiving antenna

* Increase the separation between the equipment and receiver.

* Connect the equipment into an outlet on a circuit different
from that to which the receiver is connected.

. Consult the dealer or an experienced radio/tv technician
for help.

EK NOTE: Changes or modifications not expressly approved by the party
responsible for compliance could void the user’s authority to operate this
equipment.

ce NOTE: Theuse of a non-shielded interface cable with the referenced device
is prohibited.

IV

CHAPTER 1
INTRODUCTION.. , .I -1

1.1 General Introduction . l-1
1.2 Programming Overview . 1-2
; .i

115 Manual . l-9

CHAPTER 2
INSTALLATION AND CONFIGURATION . 2-1

Part 1 -Hardware Installation

2.1 Unpacking and Ins ection . 2-2
2.2 Jumpers and Switc R es . 2-3
2.3 Board Installation . 2-8
2.4 Multiple Board Installation Notes . 2-10

Part 2 - Initial Software Installation and Configuration

2.5 Initial Software Installation and Configuration . 2-12

Part 3 - Driver Installation

2.6 Loading the KM-488-DD Driver from AUTOEXEC.BAT . 2-24
2.7 Loadin the KM-48%DD Driver from DOS . 2-26
2.8 Unloa cf mg the KM-488-DD Driver from DOS . 2-27

Part 4 -Software Re-Configuration

CHAPTER 3
INTRODUCTION TO PROGRAMMING VIA THE FILE I/O COMMANDS 3-1

3.1 The DOS File Interface . 3-1

3.8 Timeout . ~ . 3-9
3.9 Buffered . 3-9
3.10 Trigger .. 3-10
3.11 Status and Spoll . 3-10

;:A; I..#&e~nI~teep’t..
...

.3-l 1

.3-12
3.14 Request.. .. .3-13

CHAPTER 4
USING THE FILE I/O COMMANDS
4.1 In BASICA.. .. .4-l
4.2 Additional BASICA Routines.. .. .4-4
4.3 In QuickBASIC..4-12
4.4 In Microsoft PASCAL .. 4-15
4.5 In TURBO PASCAL..4-20
4.6 In Microsoft C..4-25
4.7 InTURBOC.. .. ,431

CHAPTER 5
THE FILE I/O COMMANDS . 5-l

5.1 Command
5.2 The File

Description Format.. .. .5-l
I/O Commands.. .. .5-2

CHAPTER 6
INTRODUCTION TO PROGRAMMING VIA THE CALL INTERFACE

6.1 Accessing the Call Interface..6-l
6.2 GPIB Terminators ... 6-2
6.3 KCONFIG..6-3
6.4 Clear Devices.. .. .6-4
6.5 Data.. .. .6-3
6.6

Transmitting
Receiving Data..6-3

6.7 KTO.. ... 6-4
6.8 KBUFD.. .. .6-4
6.9 KTRIGGER.. .. 6-4
6.10 KSTATUS and KSPOLL.. .. .6-4
ii:;; Li&tg;;;;dypF; ::: ; :::::::::::::::::::::::::::: f55;

6.13 KREQUEST..6-6

CHAPTER 7
USING THE CALL INTERFACE IN BASICA

7.1 Description Format.. .. .7-5

CHAPTER 8
USING THE CALL INTERFACE IN QUICKBASIC

8.1 Description Format ..8-4

Vi

CHAPTER 9
USING THE CALL INTERFACE IN MICROSOFT PASCAL

9.1 Description Format . 9-4

CHAPTER 10
USING THE CALL INTERFACE IN BASICA

10.1 Description Format . 10-4

CHAPTER 11
USING THE CALL INTERFACE IN C

11.1 Description Format . 11-3

CHAPTER 12
WARRANTY INFORMATION . 12-l

12.1
12.2

Warranty . 12-l
Return to Factory Information . 12-l

APPENDIX A - ASCII EQUIVALENCE CHART
APPENDIX B - IEEE-488 TUTORIAL
APPENDIX C - IEEE MULTILINE COMMANDS
APPENDLX D - DEVICE CAPABILITY CODES
APPENDIX E - PRINTER AND SERIAL PORT RE-DIRECTION
APPENDIX F - THE CONFIG.DAT FILE
AI’PENDLX G - ERROR MESSAGES

SUMMARY OF CALLS
SUMMARY OF FILE I/O COMMANDS
GPIB SYSTEM CONFIGURATION WORKSHEET

Vii

LIST OF TABLES

Table l-l. Orderin
f

Information . l-9
Table 2-l. Default
Table 2-2. Wait

umper and Switch Settings . 2-4
States . 2-6

Table 2-3. Default
Table

Terminator Sequences . 2-19
2-4.

Table 5-l.
Assigned DOS Devices . 2-23
Lit of File I/O Commands . 5-2

Table 5-2. Status Strin
Table 7-1. Default hf

. 5-52
K

;;;;&;;.
-488-DD Operating Parameters . 7-3

Table S-2:

~~~ls’~~~~~~~~~~~~~~~~~~~~::~:::~ :::: ;:::::::: :::: ;:::::::: :::::: ::::::: :::: %;8 

Status Strin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-76 
Table 9-1. Default K hk 
Table 9-2. Status Strln 

-488-DD Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-75 

Table 10-l. Default K 
Table 10-2. Status Strin 

-488-DD Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 

Table 11-2: Stabs S~~~-~~-~-~ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-78 
Table 11-1 Default K -488-DD Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-61 

LIST OF FIGURES 

Figure l-l. ......................................................................... 
Figure l-2. 

KM-488-DD Block Diagram.. l-2 
File I/O Interface - Direct Path.. ...................................................... l-4 

Figure l-3. File I/O Interface - Direct 
Output 

Figure l-4. 
Input Path.. ......................................................... l-5 

File I/O Commands - Buffered Output Path.. ............................................ l-6 
Figure l-5. Call Interface Path.. ......................................................................................... l-7 
Figure 2-1. Location and Switches.. ............................................................. .2-3 
Figure 2-2. Base 

of Jumpers 
Address Switch.. .................................................................................... .2-4 

Figure 2-3. Interru 
z 

t Selection.. ........................................................................................ .2-5 
Figure 2-4. Base A dress Selection.. ................................................................................ .2-5 
Figure 2-5. I/O Wait State Selections.. ............................................................................ .2-6 
Figure 2-6. Interrupt Level Jumpers.. .............................................................................. .2-7 
Figure 2-7. DMA Level Jumpers.. .................................................................................... .2-7 
Figure 2-8. Clock Source 
Figure 2-9. Software 

Jumpers.. 
Installation Screen.. .......................................................................................................................................................... 

.2-S 
.2-13 

Figure 2-10. Selecting Langua es.. 
5 

.................................................................................... .2-13 
Figure 2-11. Select Command .................................................................................. .2-15 
Figure 2-12. Device Confi 

tyle 
ration Screen.. 

Figure 2-13. Selecting the ?z 
..................................................................... .2-15 

rd Option.. .......................................................................... .2-16 
Figure 2-14. Selecting the Default EOL and Bus Terminators.. .................................... .2-19 
Figure 3-l. Terminators used with the File I/O Commands.. ..................................... .3-5 

Viii 



KM-488-DD Programming Guide Introduction 

CHAPTER I 
/NTRODUCT/ON 

1.1 GENERAL INTRODUCTION 

Keithley MetraByte’s KM-488-DD is an IEEE-488 interface board which allows programs 
written on an IBM@ PC/XT/AT/386~ or IBM ES2 models 2S/30 to communicate with the 
IEEE-488 bus. The KM-488-DD conforms to the 1978 IEEE-488 (GPIB) standard and thus, is 
compatible with other IEEE-488 products currently offered by many other manufacturers. 
Up to fourteen other devices may be connected to the IEEE-488 bus, including instruments, 
printers, and other computers. 

The KM-488-DD’s design includes a Wait State Generator to adjust the bus timing. This 
allows the KM-488-DD to perform within the operating specifications of the GPIB controller 
chip, even on the fastest 386 or 486-based PC’s, The KM-488-DD can also be configured to 
generate interrupts on any of 6 interrupt request lines and DMA transfers on channels 1,2, 
or 3. Figure l-l provides a functional block diagram of the KM-488.DD. 

Keithley MetraByte’s software allows the KM-488-DD to be accessed either through the use 
of the File I/O Commands or from the Call Interface, both of which can be used in programs 
written in QuickBASIc?, BASICA, MicrosofP C, TURBOTMC, TURBOTM PASCAL, and 
MicrosofP PASCAL. The KM-488-DD is also compatible with a variety of third-party soft- 
ware packages, such as Keithley Asyst’s Asystant GPIB. 

l-l 



Introduction KM-488-DD Programming Guide 

Figure l-l. KM-488-DD Block Diagram 

1.2 PROGRAMMING OVERVIEW 

Keithley MetraByte’s driver for the KM-488-DD is a Terminate and Stay Resident driver 
which provides a means of transferring data between your application program and the 
GPIB bus. Once the driver is installed, the application program can access it either through 
the DOS file facility or directly by program calls. 

Programs which must be optimized for GPIB throughput should employ the CALL inter- 
face. If throughput is not a consideration then the choice between the CALL interface and 
the FILE interface is a matter of personal preference. 

Programmers familiar with using file I/O (Opening files and transferring data between the 
program and files) may be more comfortable with the FILE interface. The File I/O Com- 
mand interface tends to distance the programmer a bit more from the “mechanics” of the 
GPIB bus than the CALL interface. Programming can be as simple as writing strings to a 
file opened for output or reading strings from a file opened for input. The File I/O Com- 
mands are “English-Language” like representations of the GPIB commands. Through the 
use of the CONFIG program, you can create series of facts about a particular GPIB device 
(i.e., bus address and terminators) and refer to it as a Named Device through the File I/O 

1-2 



KM-488-DD Programming Guide Introduction 

Command Interface. For example, the GPIB address 12 could have the name “SCOPE”, 
which when used implies the GPIB address 12 and whatever terminators were associated 
with “SCOPE”. 

With the exception of the fact that Named Devices cannot be referred to directly through the 
CALL interface, for most of the File I/O Commands there is an a CALL which performs an 
equivalent function. 

The following two sections are provided for those who wish to know a bit about how the 
driver functions. You do not have to read these sections in order to employ the driver. 
Most of what is described occurs automatically without the programmeis knowledge. 

FILE l/O COMMAND INTERFACE 

To employ the File I/O Command Interface, the programmer will use the facilities of 
his/her particular programming language to open a file for outputting to the driver and a 
file for inputting from the driver. 

Driver Commands/Direct Data Output 

Transfers between the application program and the GLIB bus will be initiated by the appli- 
cation program sending a command to the driver. Commands take the form of character 
strings which are written to the driver output file opened through DOS (Groups of 
commands and also data may be placed in one string; but the maximum string length is 255 
characters.). This has the effect of calling DOS with a “Write to Device” request as shown in 
Figure 1-2. DOS moves the character string one character at a time from the application pro- 
gram into the command parser of the KM-48%DD device driver. DOS must make two calls 
to the driver for each character that is transferred. This command transfer process is 
relatively time consuming. 

Once the command is in the driver parser, the driver must interpret the command and jump 
to a particular set of code within the driver which will carry out the appropriate function. 

If the command is to output data to the GPIB bus, the data can be included in the string 
along with the command and follows the same path as the command through DOS. The 
amount of data than can be sent in this manner is limited by the string length and must also 
pass through DOS character by character. The one exception is the “OUTPUT DEVICE; 
data” command in which data can consists of an infinite number of characters. OUTPUT’s 
of this type are halted when the EOL character sequence is encountered in the data stream 
of characters. 

l-3 



Introduction KM-488-DD Programming Guide 

Direct Data Entry 

To return information from the driver, the application program sends a command to the 
driver requesting data in the manner described above and then initiates an input from the 
driver. For example, the returned data may pertain to the status of the driver or be 
obtained from the GPIB bus. In either case, the data is buffered in the driver awaiting an 
INPUT action. 

To bring the data into the application program, the program does an input from the file that 
was opened for driver input as shown in Figure l-3. This amounts to employing the DOS 
“read from device” request and data will be returned in the same manner as it was sent, 
character by character. It is important to input data resulting from a command before issu- 
ing a second command which will return data. Otherwise, a driver error will occur. 

1-4 



KM-488-DD Programming Guide Introduction 

- 

DATA 

+y SPIT 

Figure 13. File I/O Interface - Direct Input Path 

BufferecVDMA Dafa l/O 

The amount of data that can be transferred by Direct I/O is limited (except in the case of 
“OUTPUT 05; data” and the transfer mechanism is relatively slow. Both these deficiencies 
can be overcome by using buffered transfers. In this case, the command sent to the driver 
contains information about the location in memory where data will sent to/received from 
the GPIB bus. Once set up, the data will move directly between the program memory and 
the GPIB bus via the KM-488-DD’s hardware. Figure 1-4 illustrates the case of data send. A 
data entry would appear similar with the data passing through an ENTER routine in the 
opposite direction. 

In normal buffered transfers, the driver transfers the data between memory and the GPIB 
bus via the KM-488-DD’s hardware. The PC’s DMA facility can be used to make a buffered 
transfer. Although buffered transfers are generally faster, there will be some overhead in 
setting them up so direct transfers are probably just as efficient if only small amounts of 
data are involved. All transfers through the CALL interface are buffered. 

1-5 



Introduction KM-488-DD Programming Guide 

Figure 1-4. File I/O Commands -Buffered Output Path 

To employ the CALL interface, the programmer uses the call facility of his/her particular 
programming language. Typically, a Keithley MetraByte provided library(ies) or loadable 
module is incorporated when building the application with a supported language. Appro- 
priate batch files are provided to assist in remaking these libraries/modules. 

When a call is made, the appropriate parameters contained in the call are placed on the cal- 
ler’s stack for use by the driver and the program enters the code of the interface module as 
diagrammed in Figure 1-5. The interface module for the particular language verifies that 
the driver is installed and jumps directly to the driver command code which performs the 
desired function. The amount of time required to get to the driver command code from the 
application by means of the call interface is much less than that by means of the file inter- 
face. 

If data is to be transferred, then the call parameters include addresses of location(s) in pro- 
gram memory where the data is to be found and/or sent. As opposed to the File I/O Com- 
mand Interface, the Call Interface always uses the faster buffered transfers (with or without 
DMA). 

l-6 



KM-488-DD Programming Guide 

m- 
Figure l-5. Call Interface Path 

1.3 SPECIFICATIONS 

Specifications for the KM-488-DD are as follows: 

Dimensions: One Short PC Slot size 

Weight: .29 lb. 

Data Transfer Rate:’ > 300 KB per second 

IEEE Controller Chip: NEC @‘D7210 

Power Consumption: < 650 mA 

Operating Temperature: O’to50”C 

Storage Temperature: -2o’to +7O”C 

Humidity: 0 to 90% non-condensing 

tGovemed by the slowest device on the GPIB bus. 

1-7 



Introduction KM-488-DD Programming Guide 

Wait States: 

I/O Base Address: 

DMA Capability: 

Interrupt (IRQ) Address: 

Device Interface Capabilities 
Supported 

Switch Selectable 
1,2,3 or 4 

Switch Selectable 
&HO2El, &H22El, &H42El, or &H62El 

Switch Selectable 
Channels 1,2, or 3 shareable 

Switch Selectable 
Levels 2 through 7 

SHl, AHI, T6, TEO, L4, LEO, SRI, Pl’O, RLO, DCl, DTl, CO, 
El 12, 

Controller Subsets: Cl, C2, C3, C4, and Cl0 
Terminator: Software Selectable characters and/or EOI 

1.4 ORDERING INFORMATION 

Table l-l provides additional ordering information, in the event that you need additional 
KM-488-DD’s or appropriate cables. 

1-8 



KM-488-DD Programmlng Guide Introduction 

Part Number 

KM-488-DD 

KM-488-DD/3.5 

KM-488-DD-BRD 

CGPIB-1 

CGPIB-2 

CGPIB-4 

Table l-l. Ordering Information 

Description 

Includes the KM-488-DD IEEE-488 Interface Board, Software (on 
5.25” disks), and appropriate documentation. 

Includes the KM-488-DD IEEE-488 Interface Board, Software (on 
3.5” disks), and appropriate documentation. 

Includes the KM-488-DD IEEE-488 Interface Board and appropri- 
ate documentation. 

1 meter IEEE-488 cable. 

2 meter IEEE-488 cable. 

4 meter IEEE-488 cable. 

1.5 HOW TO USE THIS MANUAL 

This manual provides you with the information necessary to install and program the KM- 
488-DD. It assumes you are familiar with the language in which you are developing your 
application program. It also assumes that you are familiar with the GLIB protocol. 

Chapter 2, “Installation and Configuration”, provides all the necessary information for you 
to get the KM-488-DD “up and running”. It details how to unpack, inspect, and install the 
KM-488-DD. It also describes how to install and configure the software. Jumper and switch 
setting information is provided in case you should need to change the factory-selected 
defaults. 

Chapters 3 through 5 describe the use of the File I/O Command Interface. Chapter 3 pro- 
vides introductory information. Chapter 4 describes how to implement the commands in 
each supported language: BASICA, QuickBASIC, C, Microsoft PASCAL, and TURBO 
PASCAL. Chapter 5 describes each command in detail. 

Chapters 6 through 11 described the use of the Call Interface. Chapter 6 provides introduc- 
tory information. Chapters 7 through 11 provide a detailed description of each routine and 
how it is called from each of the languages supported: BASICA, QuickBASIC, C, Microsoft 
PASCAL, and TURBO PASCAL. 

l-9 



Introduction KM-488-DD Programming Guide 

Chapter 12, “Warranty Information”, describes Keithley MetraByte’s warranty and gives 
instructions for returning the board to the factory. 

The appendices contain additional useful information. Appendix A contains an ASCII 
Equivalence Chart. This gives hexadecimal and decimal equivalents for the ASCII 128 Char- 
acter Set. Appendix B is an IEEE-488 tutorial. Appendices C and D contain supplementary 
information to the IEEE-488 tutorial (Device Capability Identification Codes and IEEE 
Multiline Commands). Appendix E describes how to use the KM-488-DD Printer and COM 
Port Re-Director. Appendix F describes the CONFIG.DAT file. Appendix G lists and 
describes the Error Messages. 

l-10 



KM-488-DD Programming Guide Software Installation and 
Configuratlon 

CHAPTER 2 
INSTALLATION AND CONFIGURATION 

This chapter outlines all of the steps necessary to get your KM-488-DD “up and running”. 
The chapter is broken up into four parts; 

. PCS’/ I - Hardware Insfcrlloti~n. This section describes how to unpack and inspect the 
KM-488-DD, set its jumpers and switches, and install the KM-488-DD board(s). 

. Part 2 - Initial SofTware Installation and Configuration. This section describes those 
procedures which are to be used the first time you install and configure the KM- 
488-DD software. 

. Par/ 3 - Driver insfallafion. Once you have configured the software, you will need to 
load the driver software before you can use the KM-488-DD. This section describes 
how to load the driver from your AUTOEXECBAT file or manually from the DOS 
prompt. 

. Parf 4 - Soffware Re-Conllgumtion. Thii section describes how to change your sys- 
tem configuration once it has already been made. 

Once you have installed the KM-488-DD and configured the software, you may want to run 
the HEEECMD.BAS program. This program will allow you to send Fine I/O Commands 
and see the results. Note, however, that this program can only be run in a single board 
set-up. To run this program, make sure that BASICA is installed and from the DOS prompt, 
type: BASICA KIEEECMD. 

2-l 



Software Installation and 
Configuration 

KM-488-DD Programming Guide 

PART 1 - HARDWARE INSTALLATION 

Before you can use your new KM-488-DD board you must unpack and install it correctly. 
To do this, follow these steps: 

. Unpack and inspect the KM-4&I-DD. This seems like a trivial step; however it is cru- 
cial that your board be unpacked correctly. This information is described in section 
2.1. 

. Set the Jumpers andSwitches on the KM-488-DD. This step is unnecessary if you elect 
to use the factory selected defaults shown in Table 2-1. If you want to change any of 
these settings, consult section 2.2. 

. lnsfa// the KM-488-DD. The KM-488-DD is installed in the same manner as any other 
peripheral board. If you are unfamiliar with this process, follow the instructions in 
section 2.3. 

If you are installing multiple KM-488-DD’s in the same GPIB system, be sure to read Section 
2.4, Multiple Board Installation Notes. 

2.1 UNPACKlNG AND INSPECTION 

Confirm that each item on the packing list has been shipped. It is a good idea to retain the 
outer packing material in the event that the board must be returned to the factory for repair. 

1. Then, if you haven’t already done so, unpack the board down to its anti-static 
packaging. 

2. Hold the board (in its anti-static bag) in one hand. Place the other hand firmly on a 
metal portion of the system chassis. This procedure eliminates static electricity 
build-up, thus preventing any possible damage to the board. 

3. After allowing a moment for static electricity discharge, carefully unwrap the board 
from the anti-static material. 

4. Inspect the board for any possible shipping damage. If any sign of damage is detected, 
return the board to the factory as described in section 12.2. 

You are now ready to set the jumpers and switches on the KM-488-DD. 

2-2 



KM-488-DD User’s Manual Software installation and 
Configuration 

2.2 JUMPERS AND SWITCHES 

The KM-488-DD contains one DIP switch, two 12-pin jumper banks, and a single 3-pin 
jumper. The locations of these are shown ln Figure 2-1. The Base Address switch controls 
the base address, interrupt address, and wait states. The jumper banks are used to select the 
interrupt level and DMA Channel to be used. The single jumper is used to select the source 
of the master clock signal. The default switch and jumper selections are listed in Table 2-1. 

Figure 2-l. Location of Iumpers and Switches 

A program, IJCTALL.EXE, Is provided to assist you with setting the switches and jumpers. 
To run the INSTALL program: 

1. Insert Disk #1 “Installation and Setup” into your computer’s floppy drive. 

2. Then, change the directory and from the DOS prompt, type: 

INSTXUA 

It is a good idea to record all switch and jumper selections on the GPIB System Configura- 
tion Worksheet found in the rear of this manual. 

2-3 



Software lnstallatlon and 
Configuration 

KM-4tWDD Programming Guide 

Table 2-1. Default Jumper and Switch Settings 

Switch/Jumper Default 

Base Address Switch (Sl) 
Base Address OZEl hex 
Interrupt Address 02F7 hex 
I/O Wait States 1 

Interrupt Level 02) 7 

DMA Channel 03) 1 

Clock (J4, 8 MHz. On-board 

Switches 
There is only one switch on the KM-488-DD board. This is the Base Address Switch. 
Remember to record your switch selections on the GPIB System Configuration Worksheet 
found in the rear of this manual. 

The Base Address Switch 611 is a 7-slide, 
DIP switch. When a rocker is moved to the 
ON position, this sends the signal low (logical 
0). The 7 slide switches are used to select the 
Base Address, Interrupt Address, and I/O 
Wait States. 

Figure 2-2. Base Address Switch 

hferrupf Address. Switches 1,2, and 3 (IO, 11, and I2) are used to select the Interrupt 
Response Level Address. This is the address to which the interrupting device must write 

2-4 



KM-488-DD User’s Manual Software Installation and 
Configuration 

to be reset. The address is 02F.r, where x is 
the interrupt level, from 2 to 7. The default OCR 
selection is 7. To make another choice, confi- 4 
gure the slide switches as shown in Figure 
2-3. These switches only need to be set if the ~zy 
KM-488-DD is used with software other than 
that provided. 

Figure 2-3. Interrupt Selection 

Base Address. Switches 4 and 5 (A14 and A13) set the address used by the computer to 
communicate with the IEEE Controller Chip on the board. 
Available base addresses (in hex) are: 02E1, 
22E1,42El, and 62E1. The default base 
address is 02El. To select another base 
address, move the switches to the positions 

Tib Qj 

shown in Figure 2-4. ot, *Et irzFml,, 

Figure 2-4. Base Address Selection 

f/O Wail States. The KM-488-DD is designed with a switch-selectable wait state generator. 
Selectable wait states are provided to insure optimum performance and reliable operation at 
the differing bus clocks found in personal computers. The default number of wait states (1) 
should be correct for most personal computers. However, if you get garbled data or your 
program crashes, you may need to adjust the number of wait states. Some general guide- 
lines are presented in Table 2-2. The number of wait states is selected 

2-5 



Sofhvare lnstallatlon and 
Conflguratlon 

KM-488-DD Programming Guide 

by setting switches 6 and 7 (marked WS1 and 
WS2) on the DIP switch. You can select one, 
two, three, or four wait states. The default 
number of wait states is 1. To select a differ- 
ent number, set the switches to one of the 
positions shown in Figure 2-5. 

z VIA” 1 WA” 
BTITES STATES 

Figure 2-5. I/O Wait State Selections 

Table 2-2. Wait States 

Bus Clock Frequency 

15h4Hz. 
5 MHz < freqj 8 MHz. 
8 MHz < freq < 10 MHz. 
10 MHz < freq. 

Number of Wait States 

1 fdefault) 

; 
4 

Jumpers 
There are two jumper blocks and a single 3-pin jumper on the KM-488-DD. These are used 
to select the Interrupt Level, DMA Level, and the Clock Source. Remember to record your 
jumper selections on the GPIB System Configuration Worksheet found in the rear of this 
manual. 

lnferrupf Level. If you are using third-party software, note that the KM-488.DD is capable 
of interrupting the PC under some circumstances. The interrupt level jumper 02) defines 
the interrupt level to be used. Valid interrupt levels (2 through 7) and the jumper positions 
used are shown in Figure 2-6. 

Be certain that the same Interrupt Level and the Interrupt Response Level (See Base Address 
Switch.) are selected. If you are programming the KM-488-DD with Keithley MetraByte’s 
KM-488-DD driver software, note that this software does not support these interrupts. 
Thus, you should place the interrupt level jumper in the disabled position. 

2-6 



KM-488-DD User’s Manual Software Installation and 
Configuration 

Figure 2-6. Interrupt Level Jumpers 

DMA Level. DMA (Direct Memory Access) can be used to/from transfer data quickly 
from/to a peripheral to the computer. The PC has four DMA channels of which one or 
three may be selected. However, based on your system configuration they may not all be 
available. Select an appropriate DMA level using the DMA Level Jumpers. Refer to Figure 
2-7 for jumper positions. 

8 : 
i3 i : 

8 
of.44 of.44 CHANNEL 3 OlsmLEO 

Figure 2-7. DMA Level lumpers 

2-7 



Software Installation and 
Configuration 

KMd&DD Programming Guide 

Clock Source. The IEEE bus interface circuitry on the KM-488DD board requires a master 
clock signal. This clock is normally connected to an on-board 8 MHz clock 
oscillator. You can, however, elect to drive 
this circuitry from the PC’s clock. Be aware IpB 

that the clock speed will vary according to the 
IUrn. au8 
IWFIULT) 

model of computer used. To select the clock 
source, place the jumper block between the 
appropriate pins. See Figure 2-8. 

Figure 2-8. Clock Source Jumper 

ns NOTE: The BUS position may be required by certain third party software 
uackatxes. 

2.3 BOARD lNSTALL4TlON 

This section provides general instructions for installing the KM-488-DD Board in an IBM 
PC/XT/AT/286/386 or compatible. Some things, such as removing the computer’s cover, 
are machine-dependent. Consult the documentation provided with your computer, if nec- 
essary. 

WARNING 

DO NOT ATTEMPT TO INSERT OR REMOVE ANY ADAmER BOARD WITH THE 
COMPUTER POWER ON! THIS COULD CAUSE DAMAGE TO THE COMPUTER! 

To install the KM-488-DD Board: 

1. Turn the power to the PC and all attached options OFF. 

2. Unplug the power cords of all attached options from the electrical outlets. Then, make 
a note of where all the device cables are attached to the rear of the system unit. Discon- 
nect the cables. 

2-8 



KM-488-DD User’s Manual Software Installation and 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Configuration 

Remove the cover of the PC. To do this, first remove the cover mounting screws on the 
rear panel of the computer. Then, slide the cover of the computer about 3/4 of the way 
forward. Tilt the cover upwards to remove. 

Choose an available option slot. Loosen and remove the screw at the top of the blank 
adapter plate. Then slide the plate up and out to remove. 

Hold the KM-488-DD (in its anti-static bag) in one hand. With the & hand, touch 
any metallic part of the PC/AT cabinet. This will safely discharge any static electricity 
which has built-up in your body. Unwrap the KM-488-DD from the anti-static bag. 

If you haven’t already done so, set the switches and jumpers as described in section 2.4. 

Align the gold edge connector with the edge socket and the back adapter plate with the 
adapter plate screw opening. Gently press the board downward into the socket. Re 
install the adapter plate screw. 

Replace the computer’s cover. Tilt the front of the cover up and slide it onto the sys- 
tem’s base, making sure the sides of the cover are under the rail along the sides of the 
frame. Install the mounting screws. 

Plug in all cords and cables. Turn the power to the computer back on. 

2-9 



Sofhvare Installation and 
Configuration 

KM-408-DD Programming Guide 

2.4 MULTIPLE BOARD INSTALLATION NOTES 

When installing multiple KM-488-DD in the same GPIB system, be sure to: 

. Assign a different Base Address to each KM-488-DD 

. Assign a different Interrupt Level to each KM-488-DD, if required by your software 

. Assign a different DMA Level to each KM-488-DD, if required by your software 

2-10 



KM-488-DD User’s Manual Software Installation and 
Configuration 

PART 2 - INITIAL SOFTWARE INSTALLATION AND CONFIGURATION 

The first time you install the KM-488-DD software and configure your KM-488-DD system, 
you will run the SETUP batch file. Subsequent configurations are performed in a different 
manner as described in Part 4 -Reconfiguring the Software. 

Before you install the software, you will need to determine the following: 

Which programming style ore you going to use? Decide whether you want to 
develop your applications program using the File I/O Commands or Call Interface. If 
absolutely necessary, you can write your program using both interfaces. If you are 
having trouble deciding which programming style to use, refer to the Programming 
Overview in section 1.2 and glance through the reference chapters for each program- 
ming style. 

Also, know which language(s) you will be developing your programs in. 

Do you wont fo be able fo refer to example programs? A full selection of exam- 
ple programs for each language and programming style is provided. 

Will you need to recompile the lnterfoce Modules? If so, you may want to access 
the batch files which will do thii for you automatically. These are considered source 
files. 

What kinds of termlnotors do you wonf to use? A discussion of terminator types is 
provided in Chapters 3 (for the File I/O Commands) and 6 (for the Call Interface). 
You may want to read these sections prior to configuring your system. 

/f you ore programming v/o the File l/O Commonds, do you want to use 
Named Devices? Named devices are discussed in Chapter 3. If you want to use 
named devices, it is a good idea to determine what instruments will be part of your 
system before you begin the SETUP program. 

Have ready the GPIB System Configuration Worksheet before you begin the configuration 
process. This worksheet can be found in the rear of this manual. 

2-l 1 



Software Installation and 
Configuration 

KM-488-DD Programming Guide 

2.5 INITIAL KM-488-DD SOFTWARE INSTALLATION AND CONFIGURATION - 

Follow the procedure outlined in this section if you are installing the KM-488-DD software 
for the first time. (NOTE: If you have already installed the software and simply need to 
change its parameters, see Part 4-Reconfiguring the Software.) 

To begin, insert the KM-488-DD Installation and Setup Disk into the floppy disk drive on 
your computer. Then: 

1. 

2. 

3. 

If necessary, return to the DOS prompt. This will look something like: 

c:\ 

Change the directory to the drive containing the disk. In most instances, this will be 
disk drive A: or B:. Thus, at the DOS prompt type: 

A: - for the A: drive 

or 

B : - for the B: drive 

Now, type: 

SETUP 

The SETUP program will now run. This program allows you to copy the KM-488-DD 
software to your computer’s hard drive, configure the KM-488DD(s), select default 
terminators, and configure the other devices in your GPIB System. 

1 - Copying the Software to fhe Hard Drive 
The first step in the SETUP program is to copy the KM-488-DD software to your hard 
drive. This software consists of the KM-488DD driver and language support files. 
(A complete list of the files comprising the KM-488-DD software can be found in the 
FILESDOC file on the KM-488-DD Utility/Driver disk.) The SETUP program 
prompts you for the necessary information by displaying the screen shown in Figure 
2-9. 

2-12 



KM-48%DD User’s Manual Software Installation and 
Configuration 

Figure 2-9. Software Installation Screen 

At any time, if you wish to abort from the Software Installation Screen, move the 
highlight to EXIT. Select ABORT. 

Select the Language(s). The first step is to select the language(s) which 
you are going to develop your application programs in. Choice of lan- 
guages include: C, Microsoft PASCAL, TURBO PASCAL, BASICA, and 
QuickBASIC. Any combination of languages may be chosen. You must 
indicate whether or not you want language support for each language 
listed. To select/unselect a language: 

l Move the highlight to the language desired. (Use @ or @I or press 
@iiJ.) 

. Use the @ or @ keys to select a YES or NO response. An example 
is shown in Figure 2-10. 

Figure 2-10. Selecting LunguageW 

2-13 



Software Installation and 
Configuration 

KM-488-DD Programmlng Guide 

Choose the Destincrflon. Next, you will need to tell the SETUP program 
which drive to copy the KM-488-DD software from and where to put the 
software on your hard drive. The default path is C : \KM488DD. You can 
elect to use thii path or select another. To select a different one, type a 
new pathname in typical DOS format, i.e., (drive):\(main 
directory)\(sub-directory). The directory does not have to already exist 
on your hard drive. The SETUP program will create the directory for 
you. 

Note that when the SETUP program copies the KM-488-DD software to 
your hard drive, it will automatically create the necessary sub-directories. 
For example, if you elected to copy the C support files and the example 
programs, the tree structure that would be created would look like this: 

At this time, you will also need to indicate whether or not you want the 
Example Programs and Source Programs copied. There are example pro- 
grams available for each language using both the File I/O Commands 
and the Call Interface. The Source Programs consist of batch files which 
can be used to produce executable versions of the example programs. 
The example and source programs are further described in the file 
FILESDOC. 

.%/t?Ct frogfcYmm/ng Sty/e. Next, you need to instruct the SETUP pro- 
gram that you will be programming via the File I/O Commands, the Call 
Interface, or both. To do this: 

. Move the highlight to File I/O Commands. (Use @ or @ or press 
[Enterl.) 

. Use the @ or @ keys to select a YES or NO response. Repeat this 
procedure for Call Interface. Your selections will look something 
like Figure 2-l 1. 

2-14 



KM-488-DD User’s Manual Software Installation and 
Configuration 

Figure 2-l 1. Select Command Style 

Exit and COPY. If you want to discontinue or abort from the software 
copying procedure, at EXIT select ABORT. Otherwise, review your 
selections: 

l If they are all correct, select COPY. The program will prompt you to 
insert the required disks. 

l If your selections are incorrect, return to the selection and alter your 
choice. Then, return to EXIT, select COPY, and follow the instructions. 

Once the disk copying process has been completed, SETUP will advance 
to the Device Configuration Screen. 

Figure 2-12. Device Configuration Screen 

In this part of the initial software installation process, you will configure the “devices” 
which are part of your GPIB application. These devices include the KM-488-DD 
board(s) and other GPIB instruments such as meters, scopes, and plotters. The config- 
uration parameters needed vary according to your application and whether you are 
conflgurlng a KM-488-DD or a GPIB instrument. Note that the parameters selected 
must agree with the actual board switch and jumper settings. 

2-15 



Software lnstallatlon and 
Configuration 

KM-488-DD Programming Guide 

For every KM-488-DD installed (you can have up to 4), you must assign it a CPU Base 
Address, a GPIB Address, and select various operating parameters. If you are using 
the File I/O Command Interface, you also have the option of setting other GPIB 
devices as named devices. This means that for every device you can assign it a name, a 
GPIB address, and the Bus terminators which it will recognize. The use of named 
devices is especially helpful in applications where you have many devices which rec- 
ognize different terminator sequences. 

A GPIB System Configuration Worksheet is provided in the rear of this manual. You 
may find it helpful to keep track of your system configuration. If you have more 
devices than there are spaces allocated, simply photocopy the rear side of the work- 
sheet. 

Once you have completed your System Configuration, you will need to save the 
parameters to the CONFIG.DAT file. This file is read into the KM-488-DD driver. The 
CONFIG.DAT file is described in more detail in Appendix F. 

2 - Configuring the KM-488-DD(s) 
The first step is to configure the KM-488-DD(s). Note that bypassing the configuration 
forces the KM-488-DD to work with the default settings. To do this, use the @ and @ 
keys to highlight the CONFIGURE option at the top of the System Configuration 
Screen. Then, select CARD. The Card Configuration section of the screen will be 
highlighted. (See Figure 2-13.) 

Figure 2-13. Selecting the Card Option 

Keys Used Within the System Conliguration Screen 

The keys listed below have the following general functions. Note that these functions 
may change according to the option being configured. Be sure to watch the listing at 
the bottom of the System Configuration Screen. 

Q&l Changes the highlighted choice. 
Q Moves to the next selection. 
0 Moves to the previous selection. 

2-16 



KM-488-DD User’s Manual Software Installation and 
Configuration 

IEnter] Takes action or moves on to the next selection. 

If You Cannot Remember Your Switch/Jumper Settings. Refer to your GPIB SYS- 
tern Configuration Worksheet. 

Adding Board Structures. w have multiole KM-488-DDs, you will 
need to add board structures. This is accomplished by moving the cursor 
to the Card1 option and pressing f&l. 

You are now ready to begin configuring your KM-488-DDfs). 

Select the Board fo be Configured. If YOU have mulQleKM-488-DD& 
you will need to select the board to be configured. Move the cursor to the 
list of boards, using the cursor keys. Then press @ or @ to move the 
highlight to the board to be configured. 

Select a Buse Address. The KM-488-DD can be assigned any one of 
four base addresses: 02El hex, 22El hex, 42El hex, and 62El hex. The 
default base address is 02El hex. To select a different base address: 

. Press @I to move to the CPU Base Address option. If the base 
address displayed conflicts with (is also assigned to) another KM- 
488-DD, it will appear in red. 

. Press @ or @I to toggle through the list of valid base addresses. 

. Press @Zl or @I to select a base address and advance to the Pri- 
mary Address option.. 

Assign a GPIB PrimarY Address. The KM-488.DD must be assigned a 
unique GI’IB Primary Address in the range 00 to 30. To define the GPIB 
Primary Address, enter each digit separately. Then, press m. 

Enable/D/sable Llghtpen Inferrupfs. It is possible for lightpen interrupts 
to occur under certain conditions. However, the Lightpen option must be 
enabled for this to occur. Choose enable or disable by pressing the @ or 
@I keys. Then press m or @ to advance to the DMA Level option. 

2-17 



Software Installation and 
Configuration 

KM-488-DD Programming Guide 

Select a DMA Level. The KM-488-DD must be assigned one of the fol- 
lowing DMA Levels: 0, 1, 23, or none. If the DMA level selected conflicts 
with that assigned to another board, it will be displayed in red. To select 
an DMA level, toggle through the options by pressing &I. When you 
reach the desired value, press (Enterl or @I to select the value and advance 
to the Mode option. 

Choose a GPlB Operating Mode. The KM-488-DD is capable of acting 
as either a Controller (System) or a Peripheral (non-System Controller). 
You must indicate which function the KM-488-DD is to perform. Toggle 
through the selections by pressing @I or Q. At the appropriate selection, 
press Isntcr) or @I to select the mode and advance to the CPU Clock 
option. 

Select a CPU Clock Speed. The IEEE bus interface circuitry on the 
KM-488-DD board requires a master clock signal. This clock is normally 
connected to an on-board 8 MHz clock oscillator. You can, however, elect 
to drive this circuitry from the PC’s clock. The actual clock speed will 
vary according to the model of computer used. The CPU Clock option is 
used to select the clock speed. (Remember that source of the clock is 
selected by Jumper J4. See section 2.2.) Clock speeds range between 1 
MHz. and 8 MHz. 

To select the clock speed: 

. Press @ or @ to toggle through the list of valid clock speeds. Note 
that if the clock source is the on-board clock, you must select 8. 

. Press IEnter) or @I to select the clock speed and advance to the 
Device Timeout option. 

Set o Device Timeout. This parameter sets the maximum amount of 
time (in milliseconds) which is to elapse before a Device Timeout Error 
occurs. The default value is 10 seconds. Valid Timeouts range from .l to 
65535.9 seconds. A timeout value of 0.0 will disable timeout checking. 

To change the value, enter each digit separately. Then, press [Enters. 

Be sure to specify all of the above parameters for each KM-488-DD board. 

2-18 



KM-488-DD User’s Manual Software lnstallatlon and 
Configuration 

3 - Choosing the Default Termlnatofs 
Next, you will need to select the default terminator sequences to be used. To begin, 
use the @I and @I keys to select the TERMINATORS option from the CONFIGURE 
menu. The Default EOL and Bus Terminators section of the screen will be highlighted. 
(See Figure 2-14.) 

The KM-488-DD driver recognizes two types of terminator sequences: Bus Termina- 
tors and EOL Terminators. The Bus Terminators are used to delimit data transmitted 
between the KM-488-DD driver and the GPlB Bus. The EOL terminators mark the end 
of a character string which ls being transferred between your application program and 
the KM-488-DD driver. The KM-488-DD driver then replaces these EOL terminators 
with a GPIB Bus Terminator sequence when communicating with the GPIB bus 
devices. m.ws are only used bv the File I/O Commands, (See Chapter 3 
for more information.) The default terminators are listed in Table 2-3. 

Table 2-3. Default Terminator Seauences 

GPIB II 

EOL Terminators. You need not change the default EOL terminators if 
you are using the Call Interface. (KM-488-DD Calls don’t recognize 
EOL’s.) 

The EOL Input Terminator(s) is appended to data sent from the KM- 
488-DD to the application program. It consists of one or two ASCII char- 
acters. (They don’t have to be printable.) To change the EOL Input 
Terminator, press @I to the 1st prompt. Enter the desired ASCII character 
using the format described in the help screen. Do the same for the second 
character. If no second character ls desired, leave the space blank. 

The EOL Output Terminator(s) are selected in the same manner as the 

2-19 



Software Installation and 
Configuration 

KM-488-DD Programming Guide 

EOL Input Terminators. 

GPlB BUS Termhafors. The BUS Input Terminator sequence marks the 
end of data transferred from the GPIB bus to the KM-488-DD driver. This 
terminator sequence can be comprised of one or two ASCII characters 
and may include detection of an EOI signal. Any combination of ASCII 
characters and EOI may be selected, including no termination or EOI 
alone. 

To change the Bus Input Terminator, press @I to the 1st prompt. Enter 
the desired ASCII character using the format described in the help screen. 
Do the same for the second character. If no second character is desired, 
leave the space blank. Then, press @I to advance to the EOI prompt. Press 
@ or @I to select ON or OFF. 

The BUS Output Terminator sequence delimits the data transferred from 
the KM-488-DD driver to the GPIB bus. This terminator sequence ls com- 
prised of one or two ASCII characters and may include an asserted GPIB 
EOI signal. Any combination of ASCII characters and EOI may be 
selected, including no termination or EOI alone. If only EOI ls used to 
signal the end of an output data transmission, the EOI signal will be 
asserted when the last data character is transmitted. Otherwise, the ter- 
minator sequence character(s) is appended to the data characters and 
EOI, if used, is asserted on the last terminator character sent. 

The Bus Output Terminator Sequence ls selected in the same manner as 
the Bus Input Terminator Sequence. 

If you are programming via the Call Interface and have completed configuring your 
KM-488-DDW and selecting the default terminator sequences, you are ready to save 
your configuration parameters to the CONFIG.DAT file. Proceed to Step 5. (You can 
also go to step 5 if you don’t want to set-up any Named Device structures.) Other- 
wise, continue to step 4. 

2-20 



KM-488-DD User’s Manual Software installation and 
Configuration 

4 - Configuring the Named Devices 
Named Devices can be used if you are using the File I/O Command Interface. 

Create a New Device and Give it a Name. Each device must be 
assigned a name. This name will be used to identify the set of characteris- 
tics which you have selected. The name can be from 1 to 8 characters 
long. Press [Enter). 

NOTE: Do not name “NAMED DEVICES” the same as any directory on the 
current working disk. For example, if you have a directory called 
C : \PROGS\DMM, do not create a named device called Dh4M. 

Assign a GPIS Primary Address. The device must be assigned a GPIB 
Primary Address in the range 00 to 30. To define the GPIB Primary 
Address, enter each digit separately. Then, press (Enters. 

Assign a GPh3 Secondary Address, M desired. You can also assign the 
device a secondary address. This secondary address must fall in the 
range 00 to 31. To define the address, enter each digit separately. Then, 
press m. 

GPUI BUS Termhafon As explained above, the BUS Input Terminator 
sequence marks the end of data transferred from the GPIB bus to the KM- 
488-DD driver. This terminator sequence can be comprised of one or two 
ASCII characters and may include detection of an EOI signal. Any 
combination of ASCII characters and EOI may be selected, including EOI 
alone. 

To change the Bus Input Terminator, press Q to the 1st prompt. Enter 
the desired ASCII character using the format described in the help screen. 
Do the same for the second character. If no second character is desired, 
leave the space blank. Then, press @I to advance to the EOI prompt. Press 
@ or @I to select ON or OFF. 

Remember that the BUS Output Terminator sequence delimits the data 
transferred from the KM-488-DD driver to the GLIB bus. This terminator 
sequence ls comprised of one or two ASCII characters and may include 
an asserted GPIB EOI signal. Any combination of ASCII characters and 
EOI may be selected, including EOI alone. If only EOI is used to signal 
the end of an output data transmission, the EOI signal will be asserted 

2-21 



Software lnstallatlon and 
Configuration 

KM-488-DD Programming Guide 

when the last data character is transmitted. Otherwise, the terminator 
sequence character(s) is appended to the data characters and EOI, if used, 
is asserted on the last terminator character sent. 

The Bus Output Terminator Sequence is selected in the same manner as 
the Bus Input Terminator Sequence. 

5 - Suvhg Your Configuration fcmxneters to CONf/G.DAT 
When you have checked all of your configuration parameters and are ready to save 
them to the CONFIG.DAT file, select SAVE. Then, enter the appropriate filename, 
when prompted. The contents of this file can be reloaded by selecting the LOAD from 
the top menu. 

2-22 



KM-488-DD User’s Manual Software Installation and 
Configuration 

PART 3 - DRIVER INSTALLATION 

The KM-488-DD driver consists of two pieces of loadable/unloadable TSR (Terminate Stay 
Resident) software. These are the VLEXE (or optionally the VIPARSE.EXE) driver and the 
KM.EXE driver. 

The VLEXE driver is a support program which provides the graphics display routines 
required by the CONFIG.EXE and CFGFILES.EXE program. It also provides other software 
routines required by the KM.EXE driver. If you are not going to use the CONFIG.EXE pro- 
gram after the initial software configuration or you find that the VI.EXE program takes up 
too much memory for your application, you can alternatively load the VIPARSE.EXE driver, 
which is much smaller yet adequate for supporting KM.EXE. 

The KM.EXE driver is the software driver for the KM-488-DD. The U&EXE driver reads in 
the contents of the software configuration file, CONFIG.DAT, which was created when the 
SETUP program was run. The CONFIG.DAT file is re-generated every time the CON- 
FIG.EXE program is run or may be modified manually. The CONFIG.DAT program is dis- 
cussed in more detail in Appendix F. 

When the KM.EXE driver is loaded, it creates and installs three IX% devices for each KM- 
488-DD board configured. (It is important that you properly configure every KM-488-DD 
board using the CONFIG.EXE program. This is the only way the KM.EXE driver will be 
able to recognize the number of KM-488-DD’s used in your system.) Because BASICA and 
QuickBASIC require a different device for input and output operations, two devices are 
created for use with those languages. The third device is one which can be used in both 
input and output operations. The device names are shown in Table 2-4. The use of these 
devices is discussed further in Chapter 4. 

Table 2-4. Assigned DOS Devices 

Board Number Input/Output Device BASIC Input Device BASIC Output 
Device 

0 IEEE IEEEIN IEEEOUT 
1 IEEE2 IEEEIN2 IEEEOUT2 
2 IEEE3 IEEEIN3 IEEEOUT3 
3 IEEE4 IEEEIN4 IEEEOUT4 

2-23 



Software Installation and 
Configuration 

KMd88-DD Programmlng Guide 

The VI and KM drivers are TSR programs can be loaded manually from DOS or can be 
loaded from your ALITOEXECBAT file or another batch file. One advantage to loading the 
drivers from a batch file (such as AUTOEXECBAT) is that the software is automatically 
available once your computer has been powered-up. This is useful if you are frequently 
going to run GPIB programs. However, the drivers do occupy memory and may Interfere 
with other programs you use. If this becomes a problem or you are only running GPIB 
programs once in a while, you will probably want to load the drivers from the DOS prompt. 
You can also elect to unload the drivers, while using memory intensive software, as 
described in Section 2.9. 

2.7 Loading the KM-488-DD Driver from AUTOEXECBAT 

When you load the driver via the AUTOEXECBAT file, your files will remain loaded until 
you shut down the computer or manually unload the drivers from DOS. (See section 2.9.) 
Note, however, that if you unload the drivers from DOS and need to re-activate them, you 
will have to re-load the drivers from the command line as described in section 2.8. If they 
are loaded via the AUTOEXECBAT file, they will automatically be re-loaded each time the 
computer is powered-up. 

If you choose to load the drivers directly from the AUTOEXEC.BAT file, start by copying 
your existing AUTOEXECBAT file to a back-up file (e.g., AUTOEXEC.BAK). Then, bring 
the ALITOEXEC.BAT file into EDLIN or some other word processor which will handle raw 
ASCII text. Your AUTOEXEC.BAT file might look something like this: 

path c:\;c:\dos: 
prompt = 8pSg 
c:\mouse\mousa 

Then: 

1. If you want to use the CONFIG.~EXE program, add a statement to load the VI or 
VIPARSE driver. 

Addtheline [D:] [PATH]VIPARSE 

or. in the case of VI 

Addtheline [D:] [PATHIVI [MONO] 

2-24 



KM-488-DD User’s Manual Software Installation and 
Configuration 

Where: 

ID:1 is an optional parameter which indicates the DOS drive where VLEXE 
or VIPARSE.EXE is installed. You must only include this if the VI driver 
is not installed in the root directory. 

[PATE] is an optional parameter which represents the path to the directory in 
which VLEXE or VIPARSE.EXE is installed. You must only include this 
if the VI driver is not installed in the root directory. 

[Mow is an optional parameter which must be included for computers with 
monochrome displays. If this parameter is not include, it is assumed 
that a color monitor is being used. 

2. Then, install the KM driver. 

Addtheline [D:][PATH]KM<[D:][PATH]FILE.EXT 

Where: 

[D:l is an optional parameter which indicates the DOS drive where KM.EXE 
or FILE.EXT exists. You must only include this if the corresponding file 
is not resident in the same directory as the AUTOEXECBAT file. 

[PATH] is an optional parameter which represents the path to the directory in 
which KM.EXE or FILE.EXT resides. You must only include this if the 
corresponding file is not installed in the same directory as the AUTOEX- 
EC.BAT file. 

< Instructs DOS to “pipe” the contents of FILE. EXT into KM at load time. 

FILE. EXT is the name of the configuration file to be “piped” into the KM-488-DD 
driver. This file is created by the CONFIG program and is generally 
called CONFIG.DAT, unless you have specified otherwise. 

Your resulting AUTOEXECBAT file would look something like this: 

PATE C:\;C:\DOS: 
PROMPT = $P$G 

2-25 



Software Installation and 
Configuration 

KM-488-DD Programming Guide 

C:\MOVSE\blOVSE 
C:\lQ4400DD\VIPARSE 
C:\KM488DD\Kld <C:\l#i400DD\CONFIG.DAT 

2.8 Loading the KM-488-DD Driver from DOS 

If you elect to load the drivers manually from DOS, you must remember to load the VI 
driver first, then the KM driver. 

To load the VI driver, at the DOS prompt, type: 

[D:] [PATHIVIPARSE 

or, in the case of VI 

[D:] [PATHIVI [MONO] 

Where: 

ID:1 is an optional parameter which indicates the DOS drive where VI.EXE 
or VIPARSE.EXE ls installed. You must only include this if the VI driver 
is not installed in the current directory. 

[PATE] is an optional parameter which represents the path to the directory in 
which VLEXE or VIPARSE.EXE is installed. You must only include this 
if the VI driver ls not installed in the current directory. 

[MONO] is an optional parameter which must be included for computers with 
monochrome displays. If this parameter is not include, it ls assumed 
that a color monitor is being used. 

For example: 

C:\KM488DD\VIPARSE 

or 

C: \KM488DD\VI 

2-26 



KM-488-DD User’s Manual Software Installation and 
Configuration 

Then. install the KM driver. 

Typetheline [D:] [PATH]XM<[D:][PATB]FILE.EXT 

Where: 

In:1 is an optional parameter which indicates the DO!3 drive where KM.EXE 
or FILE.EXT exists. You must only include this if the corresponding file 
is not resident in the current directory. 

[PATE] is an optional parameter which represents the path to the directory in 
which KM.EXE or FILE.EXT resides. You must only include this if the 
corresponding file is not installed in the current directory. 

< Instructs DOS to “pipe” the contents of FILE. EXT into KM at load time. 

FILE. EXT is the name of the configuration file to be “piped” into the KM-488-DD 
driver. This file is created by the CONFIG program and is generally 
called CONFIG.DAT, unless you have specified otherwise. Note that if 
the configuration file ls no specified, the software will use the default 
values. 

For example: 

2.9 Unloading the KM-488-DD Driver from DOS 

To unload the KM-488-DD driver software, first unload KM.EXE and then the VI software. 
For example, make sure your path name is correct, then at the DOS prompt, type: 

XM /v 

Then: 

VI /V or VIPARSE /V 

2-27 



Software Installation and 
Configuration 

KM-488-DD Programming Guide 

PART 4 - SOFTWARE RE-CONFIGURATION 

Before you reconfigure the software make sure the VI driver has been loaded, this can be 
done manually (See section 2.7) or via your AUTOEXECBAT file (See section 2.8). To recon- 
figure, the software: 

1. 

2. 

3. 

4. 

Switch to the directory where the KM-488DD software is loaded. 

At the DDS prompt, type: 

CONFIG 

Load the existing software configuration file (for example, CONFIG.DAT) by selecting 
the LOAD option. Then, enter the appropriate filename when prompted. 

Modify the necessary parameters by using the same method described in Section 2.5, 
steps 2 through 4. 

2-28 



KM-488.DD Programming Guide Introduction to Programming via the File I/O 
Commands 

CHAPTER 3 
INTRODUCTION TO PROGRAMMING VIA THE FILE I/O COMMANDS 

Chapter 5 contains a detailed description of all of the KM-488-DD commands that are avail- 
able for use through the DOS file interface. Chapter 4 deals with the idiosyncrasies of 
employing the commands in the various languages supported (BASICA, C, Quick BASIC, 
Microsoft PASCAL and TURBO PASCAL). This chapter gives an overview of the file inter- 
face and an introduction to the more common commands that will be used in nearly every 
application. 

3.7 THE DOS FILE INTERFACE 

When the KM-488-DD driver is installed, it creates three DOS devices for each KM-4%DD 
board(card) specified in CONFIG.DAT. In addition, one file is created for each NAMED 
GPIB device. Likewise, DOS creates devices associated with other drivers such as disks, 
COM ports, or printer ports. To keep track of the open devices (or files), DOS makes entries 
in a table. This table must be large enough to hold the required number of open files; but if 
it is larger than required, it is wasting computer memory. DOS is optimized at power-up 
through entries in the CONFZG.SYS file. The entry which controls the number of files which 
can be opened is: FILES = n where n is some number. If errors are encountered about 
insufficient files, check your CONFIGSYS file. A good compromise is FILES=20. 

Once the driver is installed, it is controlled by commands consisting of strings of characters 
which are sent through the DOS file interface. The contents of these strings are discussed in 
detail in Chapter 5. The way these commands are sent and received from the various sup- 
ported programming languages is discussed in Chapter 4. As a side item, because the KM- 
488-DD is a DOS device then, commands and data can be sent to the KM-488-DD driver 
from the DOS command prompt by using the DOS ECHO command and data returned from 
the driver by means of the DOS TYPE command. As an example, consider the RESET com- 
mand. 

RESET 

When starting a program, it is a good idea to reset the driver by issuing a REST command to 
the driver which returns the driver to its default conditions. If the KM-4138-DD is also the 
System Controller, the GPIB IFC line will be asserted for 500 pets. From the DOS prompt, 
the KM-488-DD device can be reset by issuing the following: 

3-1 



Introduction to Programming via the File I/O 
Commands 

KM-488-DD Programming Guide 

ECHO RESETXEEE Thenpress-. 

If the KM driver has not been previously installed, DOS will write RESET to a disk file 
called IEEE, creating the file if one does not already exist. The presence of such a file does 
not cause any problem with the driver installed, because DOS has a hierarchy and will try to 
send a command to a driver before writing to a file. These erroneous files can always be 
deleted. It is necessary to delete them before installing the driver, however. Otherwise, 
DOS thinks you are trying to delete a driver and will not allow it. 

For a more complicated example, consider the following monitor display. This is entered 
from the DOS prompt: 

ECHO HELLO>IEEE> Thenpress=. 
TYPE IEEE Then press Ienter). 

copyright (c) 1991 Keithley MetraPyte Carp will be returned. 

HELLO is one of the commands discussed in Chapter 5. Pressing [Enter) in the ECHO line of 
the above screen display uses the string HELLO followed by CR,LF (Carriage Return, Line 
Feed) to be sent to the driver. The driver recognizes this as a command places the copyright 
message followed by a carriage return line feed in a driver buffer associated with the device 
IEEE. The DOS TYPE command reads the message from the IEEE device and displays it on 
the monitor. 

Observe that the above screen display remains on the monitor for a few moments and then 
scrolls off the top. Depending on the FILL command used, the screen will fill with some 
character or blanks. It will be necessary to press fGi)l[BnatJ to regain control and return the 
DOS prompt to the monitor. The reason for this behavior is discussed in the following 
section. 

FILL 

The DOS TYPE command does not realize that the CR,LF appended to the end of the copy- 
right message means an end of message. In fact, TYPE is used to display large files of text 
with lots of CR, LF’s. When left on its own, TYPEwill continue to ask for characters from a 
driver until it receives the ASCII character 26 (CTRL Z), the End of File designator. The 
driver, on the other hand, knows that its buffer has been emptied and considers a further 
request to be an OUT OF DATA error. The way the driver reacts to an OUT OF DATA error 
ls determined by the configuration and can be modified by means of the FILL command. 

3-2 



KM-488-DD Programmlng Guide Introduction to Programming via the File I/O 
Commands 

The default for the FILL command is to return the NUL.L character (ASCII character 0). This 
may be appropriate for a C language program where a NULL signifies the end of the string; 
but, not for DOS TYPE which sends the NULL to the monitor and asks for another charac- 
ter. Since NULL is displayed as a a blank space, eventually the screen ln blanked. 

To correct the problem, the FILL character can be changed to CTRL Z, for example from the 
DOS prompt, type; 

ECHO FILL $26>IEEE Thenpress@. 
ECEO EELLOXCEEE Thenpress=. 
TYPE IEEE Then press (Entcrl. 

copyright (a) 1991 Keithley MetraByte Carp will be returned, followed by: 

c:\- 

In the above example, the driver has been instructed to respond by returning CTRL Z every 
time it is asked for data and its buffer is empty. The TYPE command recognizes CTRL Z to 
mean that there is no more data and returns to the DOS prompt. Note there is a blank line 
between message and the prompt because of the addition of the CR,LF appended to the 
message by the KM-488-DD driver. 

EOL 

The optional characters that are appended to the strings sent from the application program 
to the driver or returned from the driver to the application program are called End of Line 
(EOL) terminators. The terminators send by the application program are called output ter- 
minators and those returned to the application program are called input terminators. The 
EOL terminators can be set up by CCXVFGDAT or altered from within a program by the 
CONFIG. or EOL commands. The defaults are CR LF which are appropriate to most pro- 
gramming languages. 

Obviously, the EOL IN terminators are not appropriate for the DOS TYPE command; but a 
CTRL X would be. Consider the following monitor display (Note: Enter this at the WS 
prompt.): 

ECliO EOL IN $26>IEEE Thenpress@. 
ECEO EELLOXEEE Thenpress@. 
TYPE IEEE Then press IEnter). 

3-3 



Introduction to Programming vla the File I/O 
Commands 

KM-488-DD Programming Guide 

copyright (c) 1991 Keithley bl&raByte Carp will be returned, followed by: 

C: \>- Your DOS prompt. 

Note in this case TYPE returns to a DOS prompt on the line immediately following the 
copyright message because CTRL Z instead of CR,LF was appended to the copyright mes- 
sage. Note also that TYPE will cease asking for character when CTRL Z is returned so the 
error condition described in the previous section is never reached and the FILL character is 
irrelevant. 

Refer to Chapter 5 for a discussion of the options available for EOL and Chapter 4 for the 
choice appropriate to a particular language. Usually if one programming language is being 
used, EOL can be determined at configuration and never changed. 

3.2 SELECTING THE GPIB BUS TERMINATORS 

The GPIB BUS Terminators are used to delimit data transmitted between the KM-488-DD 
driver and the GLIB Bus. There are two types of GPIB BUS Terminators: Input and Output. 

The GPIB BUS Output Terminator sequence delimits the data transferred from the KM- 
488-DD driver to the GPIB bus. This terminator sequence is comprised of one or two ASCII 
characters and may include an asserted GPIB EOI signal. Any combination of ASCII 
characters and EOI may be selected, including EOI alone. If only EOI is used to signal the 
end of an output data transmission, the EOI signal will be asserted when the last data char- 
acter is transmitted. Otherwise, the terminator sequence character(s) is appended to the 
data characters and EOI, if used, is asserted on the last terminator character sent. 

If the data to be sent to the GI’IB bus passes through the File Interface (as opposed to being a 
buffered transfer), the application program will typically append output EOL terminators to 
the data. The EOL output terminator is intercepted by the driver and not sent to the GPIB 
bus. If GPIB output terminator characters are used, they will immediately follow the data as 
shown in Figure 3-1. Frequently both the GPIB and EOL terminators are CR LF so the 
switch is not obvious. 

3-4 



KM-488-DD Programming Guide Introduction to Programming via the File l/O 
Commands 

Figure 3-1. Terminators used with the File l/O Commands 

The GPIB BUS Input Terminator sequence marks the end of data transferred from the 
GPIB bus to the KM-488-DD driver. This terminator sequence can be comprised of one or 
two ASCII characters and may include detection of an EOI signal. Any combination of 
ASCII characters and EOI may be selected, including EOI alone. 

If Qnly EOI is chosen to signal the end of input data, then all the characters received from the 
bus device, including the one on which EOI was asserted will be returned to the application 
program. 

If Qnlv ASCII characters are used, then all the characters up to, but not including, the termi- 
nator characters, will be returned. 

However, if ,4SCII characters are selected in comb-on with EO[, the following will cwxr: 

3-5 



Introduction to Programming vla the File I/O 
Commands 

KM-488-DD Programming Guide 

. If EOI is received and the a ASCII terminator sequence has not been received, 
all of the received characters are returned to the program. 

. If the complete terminator sequence has been received, then all of the data excluding 
the terminator sequence will be returned. 

If the data received from the GPIB bus passes through the File Interface (as opposed to being 
a buffered transfer) to the application program, the driver will typically strip the GPIB ter- 
minators and append the appropriate input EOL terminators to the data as shown in Figure 
3-l. Frequently both the GPIB and EOL terminators are CR LF so the switch is not obvious. 

Because it is sometime convenient to send data in two “pieces” without terminators between 
the pieces and because different GPIB devices use different GPIB terminators, there will be 
cases where it will be necessary or desirable to change the GPIB terminators within a pro- 
gram. 

The OUTPUT command allows the same data to be sent to multiple GPIB devices. Because 
the OUTPUT command can only append one set of terminators, care must be taken that all 
of the listening devices will respond to the terminators used. 

TERM 
This command is used to change the default terminators used when transferring data 
between the KM-488-DD driver and a GPIB bus device. The default input and output GPIB 
BUS terminators are initially set by the CONFIG program. The sequence CR LF EOI is 
appropriate for most GPIB bus devices. 

3.3 RE-CONFIGURING THE DEWCES 

The operating parameters of the KM-48%DD can be re-configured at run-time by issuing a 
CONFIG command. 

CONHG 

This command re-configures the operating parameters of the KM-488-DD. These include: 

. GPIB Bus Terminators . GPIB Bus Address 

. Named Devices . EOL Terminators 

3-6 



KM-488-DD Programming Guide Introduction to Programming via the File I/O 
Commands 

3.4 NAMED DEVICES 

The KM-488-DD allows a GPIB device to be referred to by a name of up to 8 characters. The 
device created will contain information about the device’s GPIB address and terminators 
which will be employed automatically by the driver as is appropriate to the command 
involved. Named devices can be set up through the configuration software an by means of 
the CONFIG command within the program. For example, from the DOS prompt, typing: 

ECHO CONFIG /N DMM 12 /T CR LF EOI>IEEE followed by- 

will allow a programmer to refer to a digital multimeter at GPIB address 12 as DMM. 
Whenever data is sent or received from the meter, the GPIB terminators of CR, LF (Carriage 
Return, Line Feed) accompanied by the EOI signal will be used. 

3.5 CLEARlNG DEVICES 

Devices can be returned to their power-up initial state (ranges and functions) by issuing a 
CLEAR command. If the clear command contains addresses then only those devices are 
cleared by means of the addressed GPIB selected device clear. If no addresses are sent, then 
all the GLIB bus devices are cleared by means of the universal device clear. For example, 
from the DOS prompt, type: 

ECHO CLEAR D-IEEE followed by @ 

3.6 TRANSMITTING DATA 

Once you have selected the appropriate terminator sequences to be used, you will be able to 
transmit data. Data is transmitted in one of two ways, either through Direct Output or 
Buffered Output. 

Direct I/O makes use of the OUTPUT command and the data to be sent on the GLIB bus is 
sent through the File Interface along with the command. For example, to set a Keithley 196 
to the ac volts range, send the following from the DOS prompt: 

ECHO OUTPUT DMM; FlX>IEEE followed by (Enter) 

In this case, the data to be sent on the GPIB bus (FlX) is sent along with the command 
(OUTPUT DMM;) through the file interface. This is convenient where a limited number of 
characters (length of data plus the length of command is not more than 255 characters) and 
the data are normal printable characters. 

3-7 



lntroductlon to Programming via the File I/O 
Commands 

KM-488-DD Programming Guide 

DOS interprets certain characters such as CTRL Z in special ways, rather than passing the 
character and those that might follow on to a device such as the monitor (which is con- 
trolled by DOS CON device). This feature of DOS can be disabled by putting DOS into 
RAW MODE via an INT 21 H DOS call. See 1EEEIO.C for more details on Raw Mode 
operations. 

A better approach to sending any number of any kind of characters is to use the OUTPUT 
#count BUFFER buffer-address command. In this case, the address of a program 
data area containing the data and the number of bytes to be transmitted on the GPIB bus are 
sent to the driver with the command. The data is then moved directly from the program 
memory to the GPIB bus (without passing through DOS) either via the KM driver or by the 
PC DMA controller, if the DMA option has been invoked. A further CONTINUE option is 
available for DMA. In this case, the driver does not monitor the transfer, but returns control 
to the application program. In this case, the application program can perform tasks while 
the DMA proceeds in the background. At some point, the application program should use 
the WAIT command to verify that transfer is complete. 

Because their data does not have to pass through XX, buffered transfers are generally 
faster than unbuffered transfers when the amounts of data to be transferred are large 
enough to warrant the time required to set up the buffered transfer. Because setting up the 
data buffers is language-dependent, no example is given here. Refer to the appropriate sec- 
tion of Chapter 4 and the appropriate example programs on the distribution disks to see 
how buffered transfers are implemented. 

3.7 RECEIVING DATA 

Once you have selected the appropriate GPIB terminator sequences to be used, you will be 
able to receive data. Data is received in one of two ways, either through Direct Input or 
Buffered Input. 

Direct I/O makes use of the ENTER command and the data to be received from the GPIB 
bus is received through the File Interface. For example, to return a reading from a Keithley 
196, the ENTER command is issued which tells the driver to receive data from a GPIB bus 
device. The driver places the data in a driver buffer where the application program can 
retrieve it through DOS. For example, from the DOS prompt, type: 

ECHO ENTER D-IEEE followed by (Ente;) 
TYPE IEEE followed by [Enter) 

NACV + OOO.O163E+O or something like it will be returned. 

3-8 



KM-488-DD Programming Guide lntroductlon to Programming via the File I/O 
Commands 

The same limitations of direct data transfer discussed in the previous section for OUTPUT 
also apply to ENTER. Again buffered inputs (with or without DMA )overcome these defi- 
ciencies. To do a buffered input, use the ENTER #count BUFFER buffer address 
command. Refer to the previous section for general information on buffered transfers and 
to the appropriate section of Chapter 4 and example programs on the distribution disks for 
information pertaining to your programming language. 

3.6 TIMEOUT 

A TIMEOUT check is available to ensure that the commands which perform handshake data 
transfers on the GPIB bus (i.e., ENTER, ENTER #count BUFFER buffer-address, OUTPUT, 
OUTPUT #count BUFFER buffer-address, SEND, and SPOLL 1, complete their data transfer 
within a limited amount of time. This prevents the application program and/or GPIB bus 
from hanging because a device was turned off or failed to function. The timeout can be 
modified by the timeout COMMAND. For example, to set the timeout to 8.6 seconds, from 
the DOS prompt type: 

ECHO TIMEOUT 8.6 >IEEE followed by (Enter) 

The timeout can be disabled by sending 0 for the timeout value; but this is not recom- 
mended. The timeout should be long enough so that a data transfer can complete. This will 
depend on the speed of the GPIB device and the amount of data to be transferred. In 
normal buffered transfers or DMA without CONTINUE, this includes all the characters 
transferred. In a DMA with CONTINUE, the driver only monitors the first character trans- 
ferred so the timeout applies only to that character. After the first character, the transfer 
occurs automatically while the application program perform other tasks. At some point, the 
application program will want to verify that the transfer is complete by issuing a WAIT 
command. When the WAIT command is issued, the timeout function will start. Altema- 
tively, the buffered command can be used. 

3.9 BUFFERED 

The BUFFERED command can be used to determine the number of character transferred in 
the last buffered transfer. This is particularly useful where a DMA with CONTINUE has 
been initiated and the application program has worked on other tasks. By issuing the BUFl- 
ERED command, the application program can determine the number of bytes transferred 
thus far. If the number of transferred characters equals the expected number to be 

3-9 



Introduction to Programming via the File I/O 
Commands 

KMd88-DD Programming Guide 

transferred, the application program knows the transfer is complete. Otherwise, the appli- 
cation program can check back later or issue a WAIT and wait for the completion or a time- 
out. 

3.10 TRIGGER 

GPlB devices can be triggered by a GPIB command to perform some function such as to 
make a measurement. The Keithley 196 can be configured to make a measurement when 
triggered and generate an SRQ (See the next section.) when the measurement is complete. 
The following sequence initializes the 196 to that mode and triggers it to perform the mea- 
surement. For example, from the DOS prompt type: 

ECHO OUTPUT DMM; T3M8X>IEEE followed by (Ente;) 
ECHO TRIGGER DMM>IEEE followed by (Enters 

3.11 STATUS and SPOLL 

Many GPlB bus devices have a status register which can be read by the controller by means 
of the SPOLL (Serial poll) mechanism. To eliminate the need for the controller to SPOLL a 
device when no change of status has occurred, many devices can assert an SRQ (service 
request) line on a status change. In this way, the controller can be performing other tasks 
while devices do not need attention. Furthermore, some instruments do not take kindly to 
being queried while they are in the middle of something. Because all bus devices share the 
same SRQ line, the controller may have to poll several devices before it arrives at the one 
requesting service. 

In the previous example, the 196 has been triggered to make a measurement and assert SRQ 
when the measurement is complete. An application program can determine when an SRQ 
is present by looking at the driver status. When the status reveals the presence of an SRQ, a 
serial poll can be conducted which returns a status byte from the device polled. For exam- 
ple, from the DOS prompt you would enter: 

ECHO OUTPUT STATU.S>IEEE followedby- 

TYPE IEEE followed by IEnter) 

C 00 Gl T Sl EOO TO CO PO OKwillberetumed. 

TYPE IEEE followed by (E.terl 

88 will be returned. 

3-10 



KM-488-DD Programming Guide Introduction to Programming via the File I/O 
Commands 

ECHO ENTER D-IEEE followedby[Enter) 

TYPE IEEE followed by (Enters 

NACV+OOO .0163E+O or something like it will be returned. 

Es NOTE: The commands BUFFERED, ENTER, HELLO, PPOLL, SPOLL, and 
STATUS cause the driver to generate data to be returned to the application 
program. It is necessary to return the data from one of these commands (such 
as by TYPE IEEE) before a command from the group is issued again. Other- 
wise, errors will occur. 

A discussion of the returned status string is provided in Chapter 5, in the STATUS com- 
mand description. The result of the SPOLL indicates the 196 is asserting SRQ as indicated 
by D107 being asserted. The act of serial polling the 196 cause the 196 SRQ to be cleared so 
a subsequent SPOLL would return 24. The meaning of the 24 is unique to the 196 and 
indicates that the 196 has completed a measurement and is ready for another command. 

3.12 LIGHTPEN INTERRUPTS 

The KM-488DD board is capable of being configured to generate hardware interrupts on 
receipt of an SRQ. the KM-488-DD driver does not support hardware interrupts, but does 
implement the lightpen “pseudo interrupt”. 

To employ the lightpen interrupt, the driver must be configured to accept interrupts at load 
time via the CONFIG.DAT file. The driver will periodically check for the SRQ and set a flag 
that is normally set when a lightpen is activated, if it detects the presence of an SRQ (It also 
can flag many other conditions.). The application program must then check for the presence 
of the lightpen interrupt. 

In BASIC and Quick BASIC, if the PEN ON command is issued the lightpen interrupt will 
be checked at the completion of each BASIC command (A FOR/NEXT loop is considered a 
single command, so detection does not take place within a FOR/NEXT loop). If an interrupt 
is detected, the program can jump to a routine which services the interrupt and then return 
to the main routine. In other languages, it is necessary to decide your own strategy for 
checking the lightpen interrupt. 

3-11 



Introduction to Programming via the File I/O 
Commands 

KM-488-DD Programming Guide 

3.13 PPOLL and PPC 

A few GPlB devices, such as the Sorenson HPDSO-10 power supply, support a parallel poll 
mode of operation. A device which support parallel polling can be configured to assert one 
particular GPIB data line when the controller conducts the parallel poll. lf different devices 
assert different data lines, the controller can rapidly determine which device needs service 
by issuing a parallel poll and then interpreting the result. 

Many times the device’s parallel response is asserted when the device asserts SRQ. In most 
cases, the controller will generally perform a serial poll of the device(s) which a parallel poll 
has revealed needed servicing. This is to obtain more complete status information and to 
cause the device to unassert its SRQ and parallel responses. 

The following monitor display results from a parallel poll example for the Sorenson power 
supply at GPIB address 01. The Sorenson is configured to generate an SRQ when it receives 
an over-range value. It is also configured to generate a parallel response on the third data 
line when an SRQ is generated and then sent an out of range value. From the DOS prompt, 
you would enter: 

ECHO SPOLL 01 >IEEE followed by @ 

TYPE IEEE 

66 will be returned. 

ECHO 0UTPUTOl;MSK 02>IEEE followed by (Enters 

ECHO PPCOl; &HO-IEEE followed by [Enter) 

ECHO 0UTPUTOl;V 80. S>IEEE followed by IEnte;) 

ECHO STATUS>IEEE followed by ~ 

TYPE IEEE 

C 00 Gl T Sl EOO TO CO PO OKwill be returned. 

ECHO PPOLL>IEEE followed by IEnterl 

TYPE IEEE 

3-12 



KM-488-DD Programming Guide Introduction to Programmlng via the File I/O 
Commands 

4 will be returned. 

ECHO SPOLL Ol>IEEE followed by [Enters 

TYPE IEEE 

66 will be returned. 

ECHO PPOLL>IEEE followed by m 

TYPE IEEE 

0 will be returned. 

The power supply generates an SRQ and a parallel poll reveals the third line is asserted by 
returning the value 4. The SPOLL clears the SRQ and thus, the parallel poll response of the 
Sorenson. 

3.14 REQUEST 

The KM-48%DD can function in the non-controller or peripheral mode. In this mode, the 
KM-488-DD can set its serial poll response which can be read by a controller in charge. The 
seventh bit, when set, is reserved to generate an SRQ when desired. The significance of the 
other bits would be defined by the application. An SRQ without an address can be used to 
determine if the SRQ has been serviced. If the value returned is 64, the SRQ is still pending, 
if 0 the SRQ has been serviced by the controller and the KM-48%DD has automatically 
stopped asserting the SRQ. 

You must first unload the KM-48%DD driver and then reload it as a peripheral before verl- 
fying the following example. At the DOS prompt, type: 

ECHO EOL IN $26>IEEE followed by (Enters 

ECHO STATUS>IEEE followed by (Enter) 

TYPE IEEE 

P 00 Gl I SO EOO TO CO PO OKwillberetumed. 

ECHO REQUEST 64>IEEE followed by [Enterl 

3-13 



Introduction to Programming via the File I/O 
Commands 

KM-488-DD Programming Guide 

ECHO SPOLL>IEEE followedbyIEnter) 

TYPE IEEE 

64 will be returned. 

The P returned by STATUS verifies the KM-488.DD is a peripheral and the I indicates that it 
is in an idle state (not addressed to talk or listen). Sending a REQUEST with 64 sets the SRQ 
and reading back a 64 indicates the SRQ has not been serviced. 

3-14 



KM-488-DD Programming Guide Using the File I/O Commands 

CHAPTER 4 
USING THE FILE l/O COMMANDS 

Chapter 3 introduced communicating with the KM-488-DD driver through the FILE inter- 
face. Chapter 5 contains a detailed description listed in alphabetical order of all the com- 
mands available. This chapter deals with the peculiarities of using the FILE interface in the 
programming languages supported. 

Driver 
Configuration 

EOLIN - CRLF 

EOL OUT - CR LF 

FILL - ERROR 

Preparing the 
Environment 

Opening the KM-488-DD driver’s I/O devices (IEEEIN, IEEEOUT, etc.) 
uses up BASIC’s limited default number of file handles. Usually, the 
number of files available for a program is small (i.e. GW-BASIC Version 
3.2 allows two user files). This is because BASIC needs at least three file 
handles just to support the DOS STDERR, STDIN, STDOUT, STDAUX 
and STDPRN devices. If your program needs several file handles beyond 
the two normally used for IEEEIN and IEEEOUT, you must invoke the 
BASIC interpreter with the : 

option, which will allocate data space for additional file opens. Consult 
your particular BASIC manual for the correct value of num. 

Opening the 290 ‘Open the driver to receive connnands from this 
Driver Fog=- 

300 OPEN "IEEEOIJT" FOR INPUT AS #l 
310 ' 
320 'Reset the Driver 
330 IOCTL #l, "BREAK" 
340 ’ 
350 ‘Open the driver to return data to this program 
360 OPEN "IEEEIN" FOR INPUT AS #2 

4-1 



Using the File I/O Commands KM-488-DD Programming Guide 

If the KM-488-DD driver is not installed, an error will result in Line 300 
and DOS will open a file called IEEEOUT. Exit BASICA, delete the file 
IEEEOUT and install the driver. After the driver has been opened for 
output, the BASICA program can send it commands. The IOCTL will 
abort any activity previously going on and clear the buffer for data to be 
returned. RESET resets the driver to its default conditions. 

Users with more than one KM-488-DD card installed will have to open 
other devices to access the drivers for those cards. Consult the following 
table for the appropriate device names: 

Board Number BASIC Input Device BASIC Output 
Device 

0 IEEEIN IEEEOUT 
1 IEEEINZ IEEEOUTZ 
2 IEEEIN3 IEEEOUT3 
3 IEEEIN4 IEEEOUT4 

Once the files have been opened properly, the BASICA PRINT or INPUT 
command is used to pass through the File I/O Command and communi- 
cate with the KM-488-DD board. The PRINT command is used to pass 
commands to the KM-488-DD and the INPUT command is used to read 
data from the KM-488DD. If an error occurs, the KM-48%DD’s driver 
will return an error code and error description. These error codes are 
listed in Appendix F. 

The EOL Input Terminator delimits the end of data which is passed from 
the KM-488-DD to the application program, during an ENTER routine. If, 
however, a character count is specified in the ENTER, only that number 
of characters will be returned. (An EOL will not be appended to the 
data.) In this instance, you will not be able to read the data by using the 
BASICA INPUT function. You will have to use the BASICA 
INPUTS (count, file) function to read a specified number of charac- 
ters, for example: 

210 PRINT#l,"ENTER 16#10" 
220 A$=INPlJT$(10,2) 

Typical 
Code 
Sequence 

Refer to the example programs on the distribution disks. 

4-2 



KM-48&J-DD Programming Guide Using the File I/O Commands 

Utilities for 
Buffered 
Transfers 

The KM-488-DD driver supports four utilities to overcome certain BAS- 
ICA deficiencies. These utilities are reauired for buffered transfers. The 
utilities are described in section 4.3. They include GETSEGMENT, 
PACKBYTES, UNPACKBYTES, and SWAP.BYTES. 

Thesedriverutilitiesare accessedasCALLsfromtheBASICAprogram. 
BASICAnormallyworkswithitsowncodearea;butcanjumptoroutines 
outside its own environment through a segment and an offset. In this 
case, the segment will be the location of the beginning of the driver in 
memory andcanbefoundbyusingthedriverCODEADDRESScom- 
mand (Seesection4.2). Thevalueretumecibythiscommandisusedwith 
the BASICA DEF SEG command to define the code segment. The 
particular place for a specific CALL to jump within the driver is defined 
by an offset from the beginning address. The following code segment 
illustrates defining the code offsets and finding the driver location: 

100 ' Define the CALL offsets 
120 GET.SEGMENT = 0 
130 PACK.BYTES = 5 
140 UNPACK.BYTES = 10 
150 SWAP.BYTES = 15 
200 'The KM-488-DD driver has already been opened 
210 PRINT #1, "CODE ADDRESS" 
220 ‘Ask for segment location of driver 
230 INPUT #2, IEEESEG% 
'Return segment location of driver 
240 ' 
250 'Use BASICA DEF SEG to set code segment to 
driver location 
260 ' 
270 DEF SEG = IEEESEG% 
280 ' 
290 'Call routine in driver to return segment 
location of 
300 'BASICA's data memory. 
310 ' 
320 DSEG% = 0 
330 'All arguments of a RASICA call must be allo- 
cated before 
331 ' before the call DSEG% can be used in 
buffered transfers. 
340 CALL GET.SEGWENT(DSEG%) 
341 'DSEG% can be used in buffered transfers 

4-3 



Using the File I/O Commands KM-488-DD Programming Guide 

NOTE: All arguments of a BASICA CALL must be allocated before the 
CALL. SettingDSEG% = 0 in line 320 provides a storage space. Other- 
wise, the driver may write the returned value to another area. 

Buffered 
Transfers 

Buffered transfers are normally used to send large amounts of data and 
will frequently represent numerical values. Thus, you can use integer 
arrays. (Refer to section 4.2). It is possible to send characters; but note 
that if transfers involving strings are used, they are limited to 256 charac- 
ters in BASICA. 

Data buffers are located by a segment and offset ln BASICA. The seg- 
ment location is obtained by means of GETSEGMENT and the offset is 
determined by the BASICA function VARPTR. Note that VARPTR should 
be called imm&&& before the File I/O command. 

Refer to the example program BDMAF.BAS for an example of buffered 
transfers. 

Data 
Limitaiions 

It is important to note that BASIC is limited to a single 64K segment of 
data. This data space ls shared by all data items (arrays, strings, vari- 
ables) and the names and internal descriptors used by BASIC to manage 
its own memory. This means that any BASIC program will normally be 
limited to 64K of data items. It is possible to input and output data to 
absolute addresses with commands such as the following: 

100 PRINT #l, “ENTER 05 #lo0 BUFFER SE8000:O" 

and then view the data using the BASICA DEF SEG and PEEK direc- 
tives. It should be noted that this method makes no assumptions about 
the current contents of the memory at address &H8000:0, and that such 
an operation may write over existing BASICA data, or the code in the 
BASICA interpreter itself, thereby causing corrupted data and/or pro- 
gram crashes. For applications requiring more than 64K of data space 
and not using DMA, it is recommended that you perform repeated reads 
into smaller arrays or switch to a language that supports FAR data areas, 
such as QuickBASIC. 

4.3 ADDITIONAL BASICA ROUTINES 

The following routines can be called directly from BASICA and QuickBASIC. 

4-4 



KM-488-DD Programming Guide Using the File I/O Commands 

CODE ADDRESS 

Purpose Returns the segment address that points to the GET.SEGMENT, 
PACK.BYTBS, and UNPACK.BYTES routines. 

Syntax CODE ADDRESS 

Parameters None. 

Returns An integer from 0 to 65535 which represents the segment address. 

Programming 1. This routine is useful when defining the buffer address sequence before 
Nofes anENTER #count BUWFERoor OUTPUT #count BUFFER. 

2. This routine needs only to be called once. 

4-5 



KM-480-DD Programming Guide Using the File I/O Commands 

GET.SEGMENT 

Purpose Responds with data segment value of the BASIC variable space. 

Offset 0 

Syntax CALL GET.SEGMENT(dataseg%) 

Parameters None. 

Returns dataseg% is an integer variable which is set to the data space segment value. 

Programming This routine ls useful when defining the buffer address sequence before an 
Notes ENTER #count BUEFERorOtPJ!PUT #count BUFFER. 

4-6 



KM-488-DD Programming Guide Using the File I/O Commands 

IOCTL 

Purpose When followed by BREAK, it resets the KM-488-DD and its EOL terminators 
to their defaults. 

Syntax IOCTL#2, “BBBAK” 

Returns None. 

Programming None. 
Notes 

4-7 



Using the File I/O Commands KM-488-DD Programming Guide 

lOCTL$ 

Purpose 

ay 

Syntax 

Parameters 

Returns 

Thii is a BASIC function which, when used with the IOCTL Read DOS- 
command, can be used to define the current communication status of the 
KM-488-DD. The IOCTL$ function can be utilized in other languages by 
using MSDOS FUNCTION calls. 

NOTE: BREAK represses lightpen interrupt emulation so that the next light- 
pen status request returns a “no interrupt status”. Then, lightpen emulation 
is restored. 

A$=ICCTL$(#2) 

A$ is a string variable to which the value is returned. 

When executed, this routine returns one of the following values into the $A 
variable: 

0 This indicates that the KM-488-DD is ready to receive a com- 
mand. 

1 This indicates that the KM-488-DD has data available . . 
by the -bon program. This must be read before 

the program sends a new command (except IOCTL BREAK) or 
SEQUENCE-DATA BAS NOT BEEN READerror willoccur. 

2 This indicates that the KM-488-DD is waiting for &a to outuut 
tothe Thii data must be sent (via the PRINT state- 
ment or equivalent) equipped with terminators. If the applica- 
tion program tries to read data from the KM-488-DD before it is 
readywillcause ~sEQOENCE-NO DATA AVAILABLE~IT~~. 

3 This indicates that the KM-488-DD is waiting for the application 
program to execute a command. 

Programming None. 
Notes 

4-8 



KM-4tWDD Programming Guide Using the File I/O Commands 

PACKMTES 

This is a BASIC callable subroutine which packs discrete S-bit data values (stored in a lbbit 
integer array) into sequential bytes. This routine is useful when an instrument can only 
accept an &bit data value. 

Syntax CALL PACK.BYTES(source%(O) ,dest%(O),count%) 

Ottset 5 

Parameters source% is the name of the integer array which contains the data to be con- 
verted. 

dest% is the name of the integer array in which the converted data is to be 
stored. 

count% is an integer which represents the number of elements comprising 
the source% array. (This is also the number of elements contained in the 
dest% array.) 

Returns Result is stored in dest%. 

Programming None. 
Notes 

4-9 



Using the File I/O Commands KM-408-DD Programming Guide 

SWAP.BMES 

Purpose 

Offset 

Syntax 

Parameters 

Returns 

Exchanges the bytes contained in the elements of an integer array. 

15 

CALL SWAP.BYTES(arroy%(O),count%) 

array% is the name of the integer array whose bytes are to be “swapped”. 

count% is an integer representing the number of elements contained in the 
integer array (array%). 

array% will contain the newly formatted integer array. 

Programming 1. 
Notes 

This routine exchanges the bytes which comprise the elements of an 
array of integer variables. It may be required to perform a “byte swap” 
when exchanging data between the KM-488-DD and various IEEE-488 
bus device. 

“Byte Swaps” are necessary because the KM-488-DD stores integer vari- 
ables as two consecutive bytes. The lower byte contains the eight least 
significant bits of the integer. Likewise, the higher byte contains the 
eight most significant bits. Unfortunately, many IEEE-488 devices will 
transfer the most significant byte of an integer variable first. Therefore, 
the bytes which constitute the integer are opposite of the format in 
which the KM-488-DD stores them. It is necessary to use SWAP.BYTES 
before sending to, or after receiving from this type of device. 

2. SWAP.BYTES must be called before a data transfer between devices 
which store data in the opposite manner occurs. 

4-10 



KM-488-DD Programmlng Guide Using the File I/O Commands 

UNPACK. BYTES 

Purpose 

Offset 

Syntax 

Parameters 

Reiurns 

Converts an integer array to consecutive 16-bit integers. 

10 

CALL UNPACK.BYTES (source% (0) ,dest% to), count%) 

source% is the name of the integer array which contains the data to be con- 
verted. 

dest% is the name of the integer array in which the converted data is to be 
stored. 

count% is an integer which represents the number of elements comprising 
the source% array. (This is also the number of elements contained in the 
dest% array.) 

dest% will contain the newly converted data. 

Programming None. 
Notes 

4-11 



Using the File I/O Commands KM-488-DD Programming Guide 

4.3 IN QUCKBASIC 

Driver 
Conligurcrlion 

Versions 
Supported 

Preparing the 
Environment 

Opening the 
Driver 

EOLIN - CRLF 

EOL OUT - CR LF 

FILL - ERROR 

QuickBASIC 4.0 and higher 

To program the KM-488-DD driver from within the QuickBASIC environ- 
ment, invoke QuickBASIC with the “/l” option (load Quick Library Mod- 
ule) followed by either KM488QB4.QLB (QuickBASIC 4.5 and older) or 
KM488QB7.QLB (QuickBASIC 7 and newer) and the name of your 
program. For example : 

QB /lXM488QB4 blYPROG.BAS(For A QuickBASIC 4.0 User) 
QBX /llU4400QBl bWPROG.BAS(For A QuickBASIC 1.0 User) 

MYPROGBAS is loaded in conjunction with a .QLB file for two reasons. 
First, the .QLB file contains KUNPACK, KSWAP and KNACK routines for 
manipulating byte data stored within integer BASIC arrays. Secondly, 
KM488QB4.QLB contains the function SSEGADD, which is intrinsic to 
QBX. Therefore, SSEGADD is not included in KM488QB7.QLB, as this 
would result in a multiply defined function. At any rate, the .QLB file 
format is different for both QBX.EXE (BASIC 7.00) and QB.EXE (Quick- 
BASIC 4.5 and older) and a working Quick Library for each is provided. 

To create an executable MYPROGEXE, link MYPROG.OBJ with the 
appropriate standard .LIB library file - KM488QB4.LIB for QuickBASIC 
4.5 and older, KM488QB7.LIB for BASIC 7.00 and above users. 

'Open the driver to receive commands from this 
program 
OPEN "IEEEOUT" FOR OUTPUT AS #l 
I 
'Reset the driver 
IOCTL #l,"BRE?W' 
PRINT#l, "RESET" 
'Open driver to return data to this program 
OPEN "IEEEIN" FOR INPUT AS #2 

4-12 



KM-488-DD Programming Guide Using the File I/O Commands 

Typical 
Code 
Sequence 

If the KM-488-DD driver is not installed, an error will result in the first 
OPEN statement and DOS will open a file called IEEEOUT. If this should 
occur, exit QuickBASIC, delete the flle IEEEOUT and install the driver. 
After the driver has been opened for output the program can send it com- 
mands. The IOCTL will abort any activity previously going on and clear 
the buffer for data to be returned. RESET resets the driver to its default 
conditions. 

Users with more than one KM-48%DD card installed will have to open 
other devices to access the drivers for those cards. Consult the following 
table for the appropriate device names: 

Board Number QBASIC Input Device QBASIC Output 
Device 

0 IEEEIN IEEEOUT 
1 IEEEINZ IEEEOUT2 
2 IEEEIN3 IEEEOUT3 
3 IEEEIN4 IEEEOLJT4 

Once the files have been opened properly, the BASICA PRINT or INPUT 
command is used to pass through the File I/O Command and communi- 
cate with the KM-488-DD board. The PRINT command is used to pass 
commands to the KM-488-DD and the INPUT command is used to read 
data from the KM-488-DD. If an error occurs, the KM-48%DD’s driver 
will return an error code and error description. These error codes are 
listed in Appendix F. 

The EOL Input Terminator delimits the end of data which is passed from 
the KM-488-DD to the application program, during an ENTER routine. If, 
however, a character count is specified in the ENTER, only that number 
of characters will be returned. (An EOL will not be appended to the 
data.) In this instance, you will not be able to read the data by using the 
BASICA INPUT function. You will have to use the BASICA 
INPUTS (count, file) function to read a specified number of charac- 
ters, for example: 

210 PRINT#l,"ENTER 16#10" 
220 A$=INPUT$(10,2) 

Refer to the example programs on the distribution disks. 

4-13 



Using the File I/O Commands KM-488-DD Programming Guide 

Uilllfles for 
Buffered 
Transfers 

The Kh4-488-DD driver supports three utilities to facilitate manipulating 
data involved ln buffered transfers. Buffered transfers move bytes 
between the GPIB bus and contiguous locations in memory. There are 
three utilities which aid in manipulating these bytes. They are: 

KPACK (BYVAL source% (0) , BYVAL de&% (0) , count%) - 
This routine packs discrete 8-bit data values (stored in a 16-bit integer 
array) into sequential bytes. 

KUNPACK(BYVAL source%(O), BYVAL de&%(O), count%)- 
This converts an integer array to consecutive 16-bit integers. 

KSWAP (BYVAL array (0) , count%) - This swaps the high and low 
bytes stored in the integer array. 

Buffered 
Transfers 

Buffered transfers are normally used to send large amounts of data and 
will frequently represent numerical values. Thus, you can use integer 
arrays. (Refer to section 4.3). It is possible to send characters; but note 
that if transfers involving strings are used, they are limited to 256 charac- 
ters in BASICA. 

Data buffers are located by a segment and offset in BASICA. The seg- 
ment location is obtained by means of GETSEGMENT and the offset is 
determined by the BASICA function VARPTR Note that VARPTR should 
be called m before the File I/O command. 

Refer to the example program BDMAF.BAS for an example of buffered 
transfers. 

4-14 



KM-488~DD Programming Guide Using the File I/O Commands 

4.3 IN MICROSOFT PASCAI 

Driver 
Conliguratlon 

EOL IN - CR LF 

EOL OUT - CR LF 

FILL - ERROR 

Vealons 
Supported 

4.0 and later 

Preparing the 
Environment 

You must ensure that the driver is installed prior to opening the device 
IEEE or Microsoft PASCAL will create a disk file called IEEE ln the cur- 
rent working directory. 

When using the supplied function IEEEOpen, or any of the other func- 
tions supplied in the source code files IEEEIOl.ASM and IEEEI02.PA5, 
you should invoke the PASCAL compiler in compile-only fashion, then 
include the library KMPASIOLIB in the link statement in the following 
manner: 

PAS1 blYPROG.PAS : 
PAS2 
LINK MYPROG ,,, KNPASIO ; 

Opening the 
Device 

In Microsoft PASCAL, File I/O to and from the KM-488-DD driver ls 
accomplished via the intrinsic PASCAL type TEXT. This type of file han- 
dle allows files opened for input and output at the same time. Remember 
that when you installed the KM-488-DD driver (See Chapter 2.), it created 
three DOS devices for each installed KM-488-DD board. These devices 
were IEEE, IEEEIN, IEEEOLJT. Because Microsoft PASCAL can use open 
devices for read and write operations via a single handle, you should 
only have to use the IEEE device. You can, however, use the IEEEIN and 
IEEEOUT devices if needed. 

The IEEE device can be opened ln either of two ways. The first is to open 
the file via the PASCAL ASSIGN command and assign the IEEE device to 
a variable of type TEXT. The second ls to use the IEEEOpen procedure 
supplied in the file IEEEI02.PAS. This is accomplished as follows: 

VAR IEEE : TEXT; 
(* KM-4BB-DD Device Sandlo Variable *) 

BEGIN 

4-15 



Using the File I/O Commands KM-488-DD Programming Guide 

(**** Open KM-4SS-DD Device for Input/Output ****) 
IeeeOpen (IEER) : 
EWD. 

Thefollowingisan exampleofopening theIEEEdeviceyourself, without 
the aid of the supplied IEEEOpen procedure: 

(* Assign Dev. 'IEEE' to Var. IWEE *) 
Assign (IEEE, 'IEEE') ; 
(* Set Mode to Read/Wzito *) 
IEEW.MOD := DIRECT ; 
(* Rewind File for Output *) 

Rewrite (IWEE) ; 
(* Reset PASC.?&~s File Pointer 
Seek (IEEE, 1) : 

f) 

Programming 1. The IEEEI02.PAS contains several useful procedures which can be 
NCtW called from your application program. These include: 

IEEEWrite ( ) Write a command string to the selected 
KM-488-DD device. 

IEEEReadStz() Read data from the KM-48%DD driver 
into a STRING. 

IEEEReadIntO Read an integer from the KM-488-DD 
driver into an INTEGER. 

IEEEOpen() Open the device IEEE and assign it to a 
TEXT variable. 

The IEEE101 .ASM file also contains the following: 

IOCTL ( ) Perform the IOCTL “BREAK” command 
on the KM-488-DD driver. (See section 
4.1., BASIC.) 

If your program is to make use of these external procedures, they 
should be declared either in your main source file, or in an ‘include’ 
file so that PASCAL can perform a syntax and argument type-check 
during the compile process. You should declare these external 
procedures as follows: 

4-16 



KM-488-DD Programming Guide Using the File I/O Commands 

PROCEDDRE IeeeWrite (VAR bndle:TEXT; COWST Com- 
mand: LSTRIWG) : EXTERW ; 
PROCEDURE IeeeReadStr (VAR Eandle:TEXT; VARS 
Buffer: STRING) ; EXTERN: 
PROCEDURE IeeeReadInt (VAR Eandle:TEXT; VAR Sta- 
tus: INTEGER) ; EXT'ERN: 
PROCEDURE IeeeOpen (VAR Iiandle:TEXT) ; EXTERN: 
PROCEDIJRX IOCTL (VAR Eandle:TeXT) ; !ZXT!&RN: 

Once you have successfully opened (or ASSIGNed) the IEEE device 
for reading and writing, you can then send commands to the driver 
and receive data either directly from the KM-488-DD driver (for 
example, via the HELLO command) or from GPIB instruments 
through the KM-488-DD driver (for example, via the ENTER com- 
mand). 

Writing commands to the KM-488-DD driver can be accomplished 
either by using the WRITELN command, or by using the IEEEWrite 
procedure, provided in the KMPASIOUB library. Direct command 
writes appear in the following fashion: 

WRITELN(IEEE, 'SELLO'); 
Rewrite (IEEE); (* Rewind after write *) 

The following is an example of using the supplied IEEEWrite proce- 
dure to send a command string to the KM-488DD driver: 

IEEEWrite (IEEE, 'EELLO'); 

Notice that a PASCAL REWRITE command is issued following the 
WRITELN command. This forces your PASCAL program to write 
the command immediately, rather than buffering your command as 
PASCAL’s file internals would normally do in order to optimize 
buffered writes to disk files. The procedure IBEEWrite automati- 
cally performs the Rewrite operation for you. 

If a syntax error or GPIB bus error occurs as a result of writing a 
command to the KM-488DD device, the error will appear in the 
‘.ERRS’ Bled of the TEXT variable directly after the Rewrite com- 
mand is issued. Here is an example of writing a command checking 
for an error: 

4-17 



Using the File I/O Commands KM-488-DD Programming Guide 

WRITELN (IEEE, 'datadatadata'); 
Rewrite (IEEE); (* Rewind after write *) 
if (IEEE.ERRS ,. 0 ) TEEN 
WRITELN('EBROR DDRING COMMAND : data data data'); 

The following is an example of performing the write using IEEEW- 
rite : 

IeeeWrite(IEBE, 'SPOLL SCOPE'); 
IF (IEEB.ERRS <> 0) TBEN 
WRITELN('EBROR DDRING CObQd&ND : data data data') ; 

Note that IEEEWrite does not check the ‘.ERRS’ filed of the IEEE 
TEXT variable after writing your command string to the KM- 
488-DD driver. Your program should check this record field for a 
non-zero value just as it should do if you issue a Writeln of the 
command directly. 

2. Note that many of the arguments to the procedures in KMPA- 
SIOLIB are all declared as ‘VAR XXX’ in the case of STRING vari- 
ables. This type of declaration instructs the PASCAL compiler to 
pass these arguments by reference, rather than by value. Passing 
variables by reference passes the address of a variable, rather than 
the contents of that variable into a procedure. This is always the 
convention for calling KM-488-DD functions that will return a value 
via a call. 

When performing BUFFERED I/O, as in the ENTER and OUTPUT 
commands, it is necessary to supply the KM-488-DD driver with a 
segmented (far) address of the location in which to store or retrieve 
data to be transferred. PASCAL provides an intrinsic directive for 
determining the segment and offset of variables. In this example, 
data is being entered into the character array sdata from a device 
at GI’IB address 05. The intrinsic PASCAL ‘ADS directive is used 
to determine first the segment ( ( ADS sdata) . S) and then the 
offset ( (DS sdata) . R) of the character array sdata. 

IEEE.ERRS := 0; 
WRITELN(IERE, 'ENTER 05 110 BUFFER ', (ADS sda- 
ta).S, ':' , (ADS sdata).R'); 
Rewrite (IEEE): 

4-18 



KM-48&3-DD Programming Guide Using the File I/O Commands 

if (IEEE.ERRS <> 0) TEEN 
wRITELN('Errot occurred during ENTER From Device 

05’); 

4. The default input and output EOL (End of Line) for PASCAL is the 
Carriage Return/Line Feed pair. This is the default for the KM- 
488-DD driver, and should not be changed unless you are running 
other application programs requiring different EOL characters. For 
example, a program written in C would possibly have the NULL (0) 
character as a single character EOL sequence. Should you need to 
reset the EOL terminator to the default, the IOCTL procedure is the 
correct mechanism for doing so. The IOCTL command is issued as 
follows: 

IOCTL( IEEE) ; 

The maximum allowable string length for a command string writ- 
ten to any of the KM-488-DD devices is 256 characters, including 
the two character EOL sequence. Any command requiring more 
than 256 characters should be broken up into several commands, 
each of which is issued separately. For example, a lengthy ‘SEND’ 
command can be sent as repeated smaller ‘SEND commands: 

IEEEWrite(IEEE, 'SEND UNT DNL MTA LISTEN 10 DATA 
1, 2, 3, 4’); 

is equivalent to: 

IEEEWrite(IEEE, ‘SEND DNT’) ; 
IEEEW~~~~(IEEE, 'SEND DNL') ; 
IEEEWrite(IEEE, 'SEND blTA’) ; 
IEEEWrite(IEEE, ‘SEND LISTEN 10') ; 
IEEEWrite(IEEE, 'SEND DATA 1') ; 
IEEEWrite(IEEE, 'SEND DATA 2') ; 
IEEEWrite(IEEE, 'SEND DATA 3') ; 
IEEEWrite(IEEE, 'SEND DATA 4') ; 

Consult the provided example programs for further details about 
using the various GPIB control commands accessible via the KM- 
488-DD driver. 

4-19 



Using the File I/O Commands KM-488-DD Programming Guide 

4.4 IN TURBO PASCAL 

Driver 
Configuration 

Versions 
Supported 

Preparing ihe 
Environment 

EOLIN - CRLF 

EOLOUT -CRLF 

FILL - ERROR 

Turbo PASCAL versions 4.0 and higher 

To use these supplied functions in the file fEEEIO.PAS, you should 
include the statement USES IEEE10 ; in your application program. 
This statement tells the TURBO PASCAL compiler to include the code in 
the IEEEIO.TPU module in the following form: 

PRcGRAMtdmaf ; 
USES ort, dos, IeeeIO : (* Version 4.0 Users replace 
IEEEI~ with IEmIav4 *) 

(Note that several of the example programs used the CRT and DOS units 
supplied with TURBO PASCAL). 

Users of version 4.0 of TURBO PASCAL should ‘USES the unit 
IEEEIOV4.TPU, rather than ieeeio.tpu which is intended for users of Ver- 
sion 5.0 and above. The .TPU file format is different for these two ver- 
sions of TURBO PASCAL, although the source code used to create the 
two .TPU modules is identical. To create the file IEEEIO.TPU from the 
source file IEEEIO.PAS, type the following compiler statement: 

TPC IEEEIO.PAS [Enter) 

This statement will work for both versions of TURBO PASCAL, and in 
each case will create a file called IEEEIO.TPU. The version 4.0 
IEEEIO.TPU was renamed to IEEEIOV4.TPU for the sake of clarity. 

To create an executable MYPROG.EXE, type: 

TPC MYPROG.PAG (Enter) 

4-20 



KMd88-DD Programming Guide Using the File I/O Commands 

Opening the 
Ddver 

In TURBO PASCAL, File I/O to and from the KM-488-DD driver is 
accomplished via the intrinsic PASCAL type TEXT. This type of file han- 
dle allows files opened for input and output at the same time. Remember 
that when you installed the KM-488-DD driver (See Chapter 2.1, it created 
three DOS devices for each installed KM-488-DD board. These devices 
were IEEE, IEEEIN, IEEEOUT. The IEEEIN and IEEEOUT devices should 
be used for developing application programs in TURBO PASCAL. 

The IEEEIN and IEEEOUT devices are used via the PASCAL ASSIGN 
command. Thii command assigns each device to a variable of type TEXT. 
This is accomplished in the IEEEIO.TPU unit in the following manner: 

VAR IEEEIn, IEEEOut : TEXT; 
(* KM-488-DD Device Eandle Variables *) 

(*****BEGIN MAIN *****) 

BEGIN 
Assign(Ieeecut,'Ieeechlt' 
Rewrite (IeeeOut); 

); 

Assign(IeeeIn, 'Ieeeln') : 
Reset(IeeeIn); 

END. 

You must ensure that the driver ls installed prior to opening the device 
IEEEOUT for output or TURBO PASCAL will create a disk file called 
IEEEOUT in the current working directory. 

Programming 1. 
Notes 

Several commonly used functions are supplied in the TURBO PAS 
CAL UNIT (.Tl’U) file IEEEIO.PAS, which is compiled to produce 
IEEEIO.TPU. The functions available are: 

Routine Description 

IOCTL f ) Perform the IOCTL “BREAK” command 
on the KM-488-DD driver. (See section 
4.1.‘ BASIC.) 

IOCTLRead Performs a DOS int 21H function 44H sub- 
function 2 

4-21 



Using the File I/O Commands KM-48%DD Programming Guide 

RawModeO 

ieeeComplete 

MAIN 

Sets characters transfer to Binary. 

Closes IEEE Input and Output streams. 

Opens the IEEEIN and IEEEOUT devices 
for I/O operations, performs an IOCTL 
“BREAK” EOL reset on the devices, sets 
the command/data transfer mode to 
binary, and performs a warm reset of the 
driver and interface card. 

2. Once you have successfully opened (or ASSIGNed) the IEEEIN and 
IEEEOUT devices for reading and writing, you can then send com- 
mands to the driver and receive data directly from either the KM- 
488-DD driver (for example, by using the HELLO command) or 
from the GPIB instruments via the KM-488-DD driver (for example, 
by using the ENTER command). 

Writing commands to the KM-4%DD driver can be accomplished 
by using the WRITELN command in the following manner: 

WRITELN(IEEEChzt, 'EELLO'); 

If a syntax error or GPIB bus error occurs as a result of writing a 
command to the KM-48%DD device, the error will appear in the 
global TURBO PASCAL variable IOResult directly after the Wri- 
teLn command is issued. It is wise to check the IOResult variable 
directly after the WriteLn command is issued. Here is an example 
of writing a command and checking for an error: 

WRITELN(IEEEOut, 'data data data data'): 
if (IOResult <> 0) TEEN 

WRITELN('ERROR DDRING COMMAND : data data data 
data'); 

2. Note that many of the arguments to the procedures in IEEEIOPAS 
are all declared as vAR XXX or VARS XXX in the case of string 
variables. This type of declaration instructs the PASCAL compiler 
to pass these arguments by reference, rather than by value. Passing 
variables by reference passes the address of a variable, rather than 
the contents of that variable into a procedure. This is always the 
convention for calling KM-48%DD functions that will return a value 
via a call. 

4-22 



KM-488-DD Programming Guide Using the File I/O Commands 

When performing BUFFERED I/O as in the ENTER and OUTPUT 
commands, it is necessary to supply the KM-488-DD driver with a 
segmented (far) address of the location in which to store or retrieve 
data to be transferred. TURBO PASCAL provides intrinsic directive 
for determlnlng the segment and offset of variables. In this exam- 
ple, data is being entered into a character array sdata from a device 
at GPIB address 05. The intrinsic PASCAL SEG and OFS directives 
are used to determine first the segment (SEC (sdata [ 01) ) and 
then the offset (OFS(sdata[Ol)) of the character array sdata. 

IOResult := 0; 
WRITELN(IEEBOut, "ENTER 05 #lo0 BUFFER ',SEG(sda- 
ta[Oj),':' ,OES(sdata[O])); 
If (IOResult <> 0) then 

Writeln(‘Erzor During Enter From Device 05’); 

3. The default input and output EOL (End of Line) terminator for 
PASCAL is the Carriage Return/Line Feed combination. The is the 
default for the KM-48%DD driver, and should not be changed 
unless you are running other application programs requiring differ- 
ent EOL characters. For example, a program written in C would 
possibly have the NLJLL (0) character as a single character EOL 
sequence. Should you need to reset the EOL terminator to the 
default, the IOCTL procedure is the correct mechanism for doing so. 
The IOCTL command is issued as follows: 

IOCTL( IEEE) ; 

The maximum allowable string length for a command string wrlt- 
ten to any of the KM-48%DD devices is 256 characters, including 
the two character EOL sequence. Any command requiring more 
than 256 characters should be broken up into several commands, 
each of which is issued separately. For example a lengthy SEND 
command can be sent as repeated smaller SEND commands: 

IEEEWrite (IEEE, ‘SEND UWT UWL NTA LISTEN 10 DATA 
1, 2, 3, 4’) ; 

ls equivalent to : 

IEEEWrite(IEEE, ‘SEND UWT’) ; 
IEEEWrite(IEEE, ‘SEND WL’) ; 

4-23 



Using the File I/O Commands KM-488-DD Programming Guide 

IEEEWrite(IEEE, 'SEND mA') ; 
IEEEWrito(IEEE, 'SEWD LISTEN 10') : 
IEEEWrite(IEEE, 'SEND DATA 1') : 
IEEEWrite(IEEE, 'SEND DATA 2') : 
IEEEWrito(IEEE, 'SEWD DATA 3') ; 
IEEEWtite(IEEE, 'SEWD DATA 4I) ; 

Consult the provided example programs fro further details about 
using the various GPlB control commands accessible via the KM- 
48%DD driver. 

4-24 



KM-48EbDD Programming Guide Using the File l/O Commands 

4.5 IN MICROSOFT C 

Driver 
Configuration 

Verslonr 
supported 

Preparing the 
Environment 

Opening the 
Driver 

EOL IN - NULL (01 

EOL OUT - LF 

FILL - ERROR 

Microsoft C version 4.0 and later 

The 1EEEIO.C source file contains several routines to facilitate interfacing 
applications to the driver. It is compiled using the following statement : 

CL /C 1EEEIO.C : 

This operation produces the file IEEEIO.OBf which you can then link to 
your application program to create an executable that takes advantage of 
the various functions supplied in 1EEEIO.C. For example : 

cl /c ieeei0.c ; 
cl /c mypr0g.c ; 
link myprog + ieeeio ; 

( Note that your application should contain the line: 
#include "ieeeio . h” instructing the C compiler to include the file 

1EEEIO.H which contains various definitions pertaining to the functions 
and variables in the 1EEEIO.C module 1 

File or device style I/O to and from the KM-488-DD driver is accom- 
plished either via a device handle of type FILE as defined in the STDI0.H 
header file or by using the older UNlX-style integer file handle with the 
lower level (openf), writef), readf), etc.) file internals in the C library. 

Each of these file handles allows files opened for input and output at the 
same time. For each installed card, the KM-488-DD driver provides three 
devices whose operation is identical. They are : 

‘IEEE’, 'IEEEIW' and 'IEEEOUT' 

The KM-48%DD driver provides three devices for languages such as 
BASIC which cannot open devices for read and write operations via a 

4-25 



Using the File I/O Commands KM-488-DD Programming Guide 

single handle. Use of only the ‘IEEE’ device should suffice for all Micro- 
soft C application programs, although the others, notably ‘IEEEIN’ and 
‘IEEEOUT’ are available should you need to use them. 

The ‘IEEE’ device can be opened two ways. The first is to open the file 
via a UNIX-style open and assigned the returned handle 
to an integer variable. An example is given here: 

int ieee ; 
if ((bee = open ("ieee", 0 RDWR I 0 BINARY)) - -1) 

printf("\n Error Opening-IEEB Device ") : 

The second method of opening the file involves defining a variable of 
type FILE *and assigning it the value returned by the fopen function as 
shown here: 

FILE *ieee ; 
if ((ieee = fopen("$Kbl488DD", "I+")) = NDLL) 
f 
printf("\n Error Opening IEEE Device ") ; 
exit(l) : 

In the file IEEEIOC, several functions have been supplied to facilitate the 
handling of the KM-488-DD’s devices, including the function ieeei- 
nit () which opens the ‘IEEE’ device via a UNIX style integer handle. 

ieeeinit () also puts the ‘IEEE’ device into raw mode (No Carriage 
Return/Line Feed Translation is performed as characters are passed 
through DOS en route to your program from the KM-488-DD driver), 
issues the IOCTL “BREAK” command to reset the default EOL’s to Car- 
riage Return/Line Feed, commands a warm reset of the KM-488-DD 
interface card and device, and sets the EOL (end of line) terminator 
sequence to the NULL character (0) for inputs and Line Feed (OxOA) for 
output. 

When utilizing the UNIX style file open, you must ensure that the KM- 
488-DD driver is installed prior to opening the device ‘IEEE’ for reading 
and writing, or Microsoft C’s internal file routines will create a disk file 
called IEEE in the current working directory. An alternative to this is to 

4-26 



KM-488-DD Programming Guide Using the File I/O Commands 

attempt to open the IEEE device for read-only operations. This type of 
file open will fail if the target file does not currently exist (i.e. the KM- 
488-DD driver has not been loaded). 

IEEEI0.C Func- 
tlons 

Several functions are supplied in the ZEEEI0.C module to facilitate inter- 
facing an application program with the driver. These are : 

ioctl-rd() 

ioctl_rt() 

segment ( 1 

offset0 

ieeerd() 

ieeewt ( ) 

-false-O 

no-opo 

cklpint() 

ramode ( ) 

ieeeinit() 

ieeeprtf() 

ieeescnf() 

Performs DOS int 21H function 44H subfunction 2 

Performs DOS int 21H function 44H subfunction 3 

Returns Segment value of a pointer. 

Returns Offset value of a pointer. 

Reads from specified IEEE device. 

Writes to specified IEEE device. 

Does nothing; just returns false (0). 

Does nothing. 

Checks if Light Pen interrupt is pending. 

Sets character transfer to Binary. 

Initializes KM-488. 

Special printfo. 

Special scanf0. 

Once you have successfully opened (or “fopenedy’ the ‘IEEE’ device for 
reading and writing, you can then send commands to the driver and 
receive data from either the KM-488-DD driver (i.e. the HELLO com- 
mand) or from GPIB instruments via the KM-488-DD driver (i.e. the 
ENTER command). 

Writing commands to the KM-488-DD driver can be accomplished in 
several fashions--many of which are listed below. The intrinsic C func- 
tions which use the FILE * style device handle include: 

fprintf() ; Intrinsic C formatted file printf 

4-27 



Using the File I/O Commands KM-488-DD Programming Guide 

fwrita() : Intrinsic C buffered file write 

fputso : Intrinsic C unformatted file puts 

fputc 0 ; Intrinsic C character file write 

The Intrinsic C functions which utilize the UNIX style integer file handle 
include: 

*rite() : UNIX-style buffered file write 

doe-write0 UNIX-handle buffered file write 
; 
The IEEEI0.C customized device write functions include: 

ieeewt ( ) ‘IEEE’ specific write 

ieeeprtf() ‘IEEE’ specific variable arg write 

Likewise, there are numerous ways of reading data from the KM-488-DD 
driver via the ‘IEEE’, ‘IEEEIN’ and ‘IEEEOUT’ devices. They include the 
Intrinsic C functions (using the FILE ‘style device handle): 

fread() Intrinsic C buffered file read 

wets 0 Intrinsic C file gets0 

fgetchar() Intrinsic C file getchar 

fgetc0 Intrinsic C file get& 

fscanf () Intrinsic C file scanf0 

The intrinsic C functions using the UNIX style integer file handle include: 

read0 UNIX-style direct buffered read 

dos-read0 UNIX-style direct Ws file read 

The IEEEI0.C customized device read functions include: 

ieeerd() ‘IEEE’ Specific UNIX buffered read 

ieeescnf() ‘IEEE’ Specific formatted read of up to five values 

4-28 



KM-488-DD Programming Guide Using the File I/O Commands 

Because the number of options available for communicating with the 
KM-488-DD driver via the ‘IEEE’, ‘IEEEIN’ and ‘IEEEOUT’ devices, it is 
suggested that you consult the provided example programs for working 
examples of these types of operations. 

Programming 1. 
Notes 

When performing command writes via a PILE * style file handle, 
(fprintf, fwrite, etc.)issuea rewind0 or fflush() 
directly following the command output. This insures that your 
command is written to the ‘IEEE’ device immediately, rather than 
buffered as is normally the case with disk file writes. 

2. It is conventional to set the input EOL terminator to the NULL (0) 
character, and the output EOL terminator to Line-Feed (OxA) or 
Carriage Return/Line Feed (Oxa, OxD). When returning data to an 
application program, the ‘IEEE’ (or ‘IEEEIN’) device will append 
the default EOL terminator to the input data except in the case of 
bufferedinputssuchas ENTER 01 BUFFER &H9000:0. Use 
the EOL command to reset the default terminators to your needs. 
Notice that the ieeeinit () function in the IEEEIOC module 
performs this task automatically for you by setting the default input 
terminator to the NULL (0) character and the default output termi- 
nator sequence 
to Line-Feed (OxA). 

3. Understandably, it is often necessary to provide the KM-488-DD 
driver with a far address of where to store or retrieve data used by 
an application program. A far address is always needed in a 
BUFFER operation, as the KM-488-DD has no knowledge of your 
application program’s data areas. Microsoft C provides the 
FP-SEG and FP-OFF macros for deriving the segment and offset 
of a pointer, and the ZEEEI0.C module contains two routines -- 
segment ( ) ; and off set () ; which can perform the same task 
using a pointer (near or far) as their argument. 

Although C supports a %p format identifier in its printf-style string 
writes, this option cannot be used because it does not adhere to the 
more common &Hssss:&Hoooo segment:offset address specifica- 
tion. The following is an example of issuing a BUFFER command 
containing a far address to a data buffer : 

if (ieeeprtf("ENTER 01 #lo00 BUFFER %d:%d \n", 
segment (d&array), offset (datarray) ) 

= -1) 
1 

4-29 



Using the File I/O Commands KM-488-DD Programming Guide 

printf (“Error on writing to &iver.\n") ; 
exit(l) ; 

1 

4. The maximum allowable string length for a command string wrtt- 
ten to any of the KM-4%DD devices is 256 characters, including 
the two character EOL sequence. Any command requiring more 
than 256 characters should be broken up into several commands, 
each of which is issued separately. For example, a lengthy ‘SEND 
command can be sent as repeated smaller ‘SEND’ commands : 

ieeewt(IR.EE, 'SEND DNT UNL MTA LISTEN 10 DATA 1, 
2, 3, 4’) ; 

is equivalent to : 

ieeewt(“SEND DNT”) ; 
ieeewt (“SEND DNL”) ; 
ieeewt(“SEND blTA”) ; 
ieeewt("SEND LISTEN 10") ; 
ieeewt("SEND DATA 1") : 
ieeewt("SEND DATA 2") ; 
ieeewt("SEND DATA 3”) ; 
ieeewt (“SEND DATA 4”) : 

Consult the provided example programs for further details about 
using the various GPIB control commands accessible via the KM- 
488-DD driver. 

4-30 



KM-488-DD Programming Guide Using the File I/O Commands 

4.6 /N TURBO C 

Driver 
Configuration 

Versions 
Supported 

Preparing the 
Environment 

Opening the 
Driver 

EOL IN - NULL (0) 

EOL OUT - LF 

BILL - ERROR 

TURBO C version 4.0 and later 

The IEEEI0.C source file contains several routines to facilitate interfacing 
application programs to the driver. It is compiled using the following 
statement: 

tee - c 1EEEIO.C 

and the resulting object file is linked to the object file created by compil- 
ing your program. 

If your program is to make use of these external procedures, it should 
’ #include’ the header file IEEEI0.H which is supplied with the KM- 
488-DD driver. This header file is needed so that the Turbo C compiler 
perform a syntax and argument type-check during the compile process. 

File or device style I/O to and from the KM-488-DD driver is accom- 
plished either via a device handle of type FILE as defined in the STDI0.H 
header file or by using the older UNIK-style integer file handle with the 
lower level (open () , write () , read () , etc.1 file internals in the C 
library. 

Each of these file handles allows files opened for input and output at the 
same time. For each installed card, the KM-488-DD driver provides three 
devices whose operation is identical. They are ‘IEEE’, ‘IEEEIN’ and 
‘IEEEOUT’. 

The KM-488-DD driver provides three devices for languages such as 
BASIC which cannot open devices for read and write operations via a 
single handle. Use of only the ‘IEEE’ device should suffice for all Turbo C 
application programs, although the others, notably ‘IEEEIN’ and ‘IEEE- 
OUT’ are available should you need to use them. 

4-31 



Using the File I/O Commands KM-488-DD Programming Guide 

IEEE10 Functions 

The ‘IEEE’ device can be opened two ways. The first is to open the file 
via a UNIX-style open and assigned the returned handle to an integer 
variable. An example is given here: 

int ieee ; 

if ((ieee = open ("ieee", O_RDNR 1 O_BINABY)) P -1) 
printf (“\n Error Opening IEEE Device IT) ; 

The second method of opening the file involves defining a variable of 
type FILE * and assigning it the value returned by the f open ( ) func- 
tion as shown here: 

FILE l ieee : 
if ((ieee = fopen (~~$~24488~~~, "r+")) = NuLL) 
{ 
printf("\n Error Opening IEEE Device ") ; 
exit(l) ; 

1 

In the file IEEEIO.C, several functions have been supplied to facilitate the 
handling of the KM-488-DD’s devices, including the function ieeei- 
nit () which opens the ‘IEEE’ device via a UNIX style integer handle. 
ieeeinit () also puts the ‘IEEE’ device into raw mode (No Carriage 
Return/ Line Feed Translation is performed as characters are passed 
through DO!3 en route to your program from the KM-488-DD driver), 
issues the IOCTL “BREAK” command to reset the default EOL’s to Car- 
riage Return/Line Feed, commands a warm reset of the KM-48%DD 
Interface card and device, and sets the EOL (end of line) terminator 
sequence to the NULL character (0) for inputs and Line Feed (OxOA) for 
output. 

When utilizing the UNLX style file open, you must ensure that the KM- 
488-DD driver is installed prior to opening the device ‘IEEE’ for reading 
and writing, or Turbo C’s internal file routines will create a disk file 
called IEEE in the current working directory. An alternative to this is to 
attempt to open the IEEE device for read-only operations. This type of 
file open will fail if the target file does not currently exist (i.e. the KM- 
488-DD driver has not been loaded). Several functions are supplied in 
1EEEIO.C to facilitate interfacing an application program with the driver. 
These are: 

4-32 



KMdtWDD Programming Guide 

iootl_rd() 

ioct1-ut() 

segment ( 1 

offset() 

ieeerd() 

ieeewt ( ) 

-false-O 

no-op() 

cklpint() 

rawmode ( ) 

ieeeinit ( ) 

ieeeprtf() 

iaeesonf () 

Using the File I/O Commands 

Performs DOS int 21H function 44H subfunction 2 

Performs DOS int 21H function 44H subfunction 3 

Returns Segment value of a pointer. 

Returns Offset value of a pointer. 

Reads from specified IEEE device. 

Writes to specified IEEE device. 

Does nothing; just returns false (0). 

Does nothing. 

Checks if Light Pen interrupt is pending. 

Sets character transfer to Binary. 

Initializes KM-488. 

Special printff). 

Special scanffl. 

Once you have successfully opened (or “fopened)” the ‘IEEE’ device for 
reading and writing, you can then send commands to the driver and 
receive data from either the KM-488-DD driver (i.e. the HELLO com- 
mand) or from GPIB instruments via the KM-488-DD driver (i.e. the 
ENTER command). 

Writing commands to the KM-488-DD driver can be accomplished in 
several fashions --many of which are k&d below. The intrinsic C func- 
tions which use the FILE *style device handle include: 

fprintf() ; Intrinsic C formatted file prlntf 

f*lrite() ; Intrinsic C buffered file write 

fputs0 : Intrinsic C unformatted file puts 

fputc0 ; Intrinsic C character file write 

4-33 



Using the File I/O Commands KM-488-DD Programming Guide 

The Intrinsic C functions which utilize the UNIX style integer file handle 
include: 

write () : UNIX-style buffered file write 

don-write ( ) UNIX-handle buffered file write 
; 
The ZEEEI0.C customized device write functions include: 

ieeewt () ‘IEEE’ specific write 

ieeeptt f ( ) ‘IEEE’ specific variable arg write 

Likewise, there are numerous ways of reading data from the KM-488-DD 
driver via the ‘IEEE’, ‘IEEEIN’ and ‘IEEEOUT’ devices. They include the 
Intrinsic C functions (using the FILE * style device handle): 

fread() Intrinsic C buffered file read 

fgets 0 Intrinsic C file gets0 

fgetchar() Intrinsic C file getchar0 

fgeto ( ) Intrinsic C file getc() 

fFlcanf() Intrinsic C file scanf() 

The intrinsic C functions using the UNIX style integer file handle include: 

read0 UNIX-style direct buffered read 

dos-read0 UNlX-style direct DOS file read 

The 1EEEIO.C customized device read functions include: 

ieeerd () ‘IEEE Specific UNIX buffered read 

ieaescnf ( ) ‘IEEE’ Specific formatted read of up to five values 

Because the number of options available for communicating with the 
KM-48%DD driver via the ‘IEEE’, ‘IEEEIN’ and ‘IEEEOUT’ devices, it is 
suggested that you consult the provided example programs for working 
examples of these types of operations. 

4-34 



KM-488-DD Programming Guide Using the File I/O Commands 

Programmlng 1. When performing command writes via a FILE * style file han- 
Notes dle,(fprintf,fwrite,etc.)issuearewind() orfflush() 

directly following the command output. This insures that your 
command is written to the ‘IEEE’ device immediately, rather than 
buffered as is normally the case with disk file writes. 

2. It is conventional to set the input EOL terminator to the NULL (0) 
character, and the output EOL terminator to Line-Feed (OxA) or 
Carriage Return/Line Feed (Oxa, OxD). When returning data to an 
application program, the ‘IEEE’ (or ‘IEEEIN’) device will append 
the default EOL terminator to the input data except in the case of 
buffered inputs such as ‘ENTER 01 BUFFER &H9000:0’. Use the 
EOL command to reset the default terminators to your needs. 
Notice that the ieeeinito function in the 1EEEIO.C module performs 
this task automatically for you by setting the default input termina- 
tor to the NULL (0) character and the default output terminator 
sequence to Line-Feed (OxA). 

3. It is often necessary to provide the KM-488-DD driver with a far 
address of where to store or retrieve data used by an application 
program. A far address is always needed in a BUFFER operation, 
as the KM-48&DD has no knowledge of your application program’s 
data areas. Turbo C provides the FP-SEG and FP-OFF macros for 
deriving the segment and offset of a pointer, and the 1EEEIO.C 
module contains two routines -- segment0 ; and offset0 ; which can 
perform the same task using a pointer (near or far) as their argu- 
ment. 

Although C supports a %p format identifier in its printf-style string 
writes, this option cannot be used because it does not adhere to the 
more common &Hssss:&Hoooo segmentzoffset address specifica- 
tion. The following is an example of issuing a BUFFER command 
containing a far address to a data buffer : 

if (iaeeprtf("EN~R 01 #lo00 BUFFER %d:%d \o", 
segmant(datarray), offset(datarray)) = -1) 

1 
printf("Error on writing to driver.\n") ; 
exit(l) ; 

1 

4-35 



Using the File I/O Commands KM-488-DD Programming Guide 

4. The maximum allowable string length for a command string writ- 
ten to any of the KM-48%DD devices is 256 characters, including 
the two character EOL sequence. Any command requiring more 
than 256 characters should be broken up into several commands, 
each of which is issued separately. For example, a lengthy SEND 
command can be sent as repeated smaller SEND commands : 

ieeewt(IEEE, 'SEND UNT UNL MTA LISTEiN 10 DATA 1, 
2, 3, 4') ; 

is equivalent to : 

ieaewt("SEND UNT") ; 
ieeewt("SEND UNL") ; 
ieeawt("SEND MTA”) : 
i.eeewt("SEND LISTEN 10") ; 
ieeewt("SEND DATA 1") ; 
ieeewt("SEND DATA 2") : 
ieeewt("SEND DATA 3") ; 
ieeewt("SEND DATA 4") ; 

Consult the provided example programs for further details about 
using the various GPIB control commands accessible via the KM- 
488-DD driver. 

4-36 



KM-488-DD Programming Guide The File I/O Commands 

CHAPTER 5 
THE FILE I/O COMMANDS 

This chapter provides detailed information about each of the commands provided with the 
KM-488-DD driver. The File I/O Commands are listed within this chapter in alphabetical 
order. 

5.1 COMMAND DESCRIPTION FORMAT 

Each command description is divided into several sections as described below. 

Syntax This section describes the syntax required by each command. The com- 
mands are implemented as described in Chapter 4. The following rules are 
used in this section. 

Command names and input parameters which are mandatory appear in 
this typeface. 

Parameters and delimiters which are optional appear in this typeface. 

Square Brackets f [I 1 enclose a list of optional parameters. You may select 
any combination of these options as described in the command-specific 
parameters section. 

Parameters This section describes the input parameters. In some instances, multiple 
parameters may be specified (for example, multiple device addresses). 

Returns This part of the command description describes any data which will be 
returned after execution of the command has been completed. Your applica- 
tion program must read these responses. Errors will occur if it is not. 

Programming This section describes any special programming considerations for the File 
Notes I/O Command. 

Example This section provides an example of valid File I/O Command Syntax. This is 
independent of the programming language. Refer to Chapter 4 for more 
information regarding how to implement the File I/O Command in each lan- 
guage. 

51 



The File I/O Commands KM-488-DD Programming Guide 

5.2 THE FILE l/O COMMANDS 

Table 5-1 lists the available File I/O Commands. It provides a brief description of the com- 
mand and the corresponding action on the GPIB interface. In the pages following Table 5-1, 
more detailed descriptions of each command are provided. 

RM 

UFFRR 

IJFFERED 

LEAR 

ODE ADDRESS 

ONFIG 

lISARM 

A 

A 

B 

B 

c 

C 

c 

0 

D 

E; 

El 

I 

IMA 

WER 

NTER BUFFER 

SOL 

Enablesa U@pen interrupt con 
dttion(s). 
Deflnea dIrection of acce85 with1 
memory buffers. 

Reads the number of b 
transferred by buffere B 

tes last 
ENTER, 

OUTPUTcommand. 

clears designated deviccW. 

Returns a memory segment 
address. 
Alters drwer parameters. 

Disables a lIghtpen Interrupt 
co”dltionW. 

Deftne DMA transfer mode. 

Read data from a bus device. 

Sets the EOL terminators. 

3% r/o commands 

KM-DD MODB 1 BUS ACTION 

sys cant I Awert IFC, then Unaasert IFC 

Active Controller 

A”Y 
- 

*“Y 

Active Controller 

A”Y 

A”Y 

A”Y 

A”Y 

Active Controller 

Peripheral 

Acttve Controller 

Peripheral 

A”Y 

Assert ATN tine, then MTA. 

- 

Assert ATN, then DCL. 

-L, MTA, LAG, 
and SDC. 

.- 

- 

- 

Asert ATN, UNL, MLA, TAG, Unarr 
sert ATN, read data, and Assert ATN 

Unassert ATN, read data, and Assert 
*TN. 

Read data when addressed to listen 
and ATN Is unasserted. 

Assert ATN, UNL, MLA, TAG, Unas 
sert ATN, read data, and Assert AX’4 

4v~thout Aggrssn 
Unassert ATN, read data, and Assert 
ATN. 

Detennlned by the Active Controller. 

5-2 



KWUBDD Programming Guide The File I/O Commands 

COMMANDNAMR 1 DESCRIF-TION 
I 

RROR Enable/Disable error message 
display. 

LL Deftnes response If no data is 
available. 

ELLO Reads KM-488~DD identifica!lo” 
Ski”& 

JCAL Allows designated device(s) to bi 
locally programmed. 

3CAL LOCKOUT I Disables the local button on a 
GPIB device. 

UTPUT Transmits data to the designated Transmits data to the designated 
devke(s). devke(s). 

UTPUT BUFFER Transmits contents of a Transmits contents of a memor memor 
buffer to the designate dev,ce(s buffer to the designate dev,ce(s 7 7 

LSS CONTROL 

‘OLL 

Ass&n another device as the Ass&n another device as the 
Active Controller. Active Controller. 

I Read the Parallel Poll response 
from all bus devices. 

Table 5-1. List 
KM&DD MODE BUS ACTION 

I 
A”Y ._ 

A”Y 

A”Y 

System Gmtrolln 

Active Controller 

Unasserts REM 

I &TCt;;TN the” UNL, MTA, LAG, 

Actlve Controller Asserts A’fN then LLO. 

Active Controller 

Ue I/O Commands 

Peripheral 

Active Contmller 

l’erlpheral 

Active Controller 

Active Controller 

Unassert ATN, and write data. 

(If System Conholler assert RENj. 
Unassert ATN, write data. 

If System Controller, aert REN. 
Then mltedata when addressed to 
talk and ATN Is unasserted 

Write data when addressed to talk a”, 
ATN Is unaserted. 

(If System Controller assert REN). 
Then assert ATN, MTA, UNL, LAG, 
Unaseert ATN, and write data. 

(If System Controller assert REN). 
Unassert ATN, write data. 

If System Controller, a-t REN. 
Then as determlned by the Active 
Controller. 

Otherwise, a8 determIned by the 
Active Controller. 

Assert ATN, UNL, MLA, TAG, UNL, 
TCT, then Unassert ATN. 

Assert ATN, the” EOl, receive l’aralle 
Poll Response, then Unassert EOI. 

5-3 



The File I/O Commands KMd&DD Programming Guide 

Table 5-1. List of File l/O Commands 

ZOMMAND NAME DESCRIPTION KM-488-DD BUS ACTION 
MODE 

?OLL CONFIG WC) Shuchxe the Parallel Poll Active Controller 
response stttng. 

;p4 ATN, UNL, MTA, LAG, PPC, 

?OLL DISABLE 
PD) 

Disables Parallel Polling far de+ Active Controller 
lgnated device(s). 

AHp$‘N, UNL, MTA, LAG, 

‘DLL UNCONFlG Disables Parallel Polling for all Active Controlter Assert ATN, then PPU. 
‘Pen devices. 

EMOTE Puts device(s) Into remote state System Controller Assert REN 
t;8n;~,pHonally addresses them to 

System Controller and Assert RRN, then ATN and UNL, 
Active Controller MTA, wtth addreeaks) LAG. 

EQUEST Defines own Serial Poll Response. Peripheral 

BET 

SSUMB 

END 

POLL 

Resets KM4WDD to Its default A”Y 
parameters. 

Unasserts A’IN. Allows Porlph- Active Controller Unassert ATN. 
era1 to Peripheral transfers. 

Sends low-level bus commands Acttve Controller User deftned 
and data. This mode can we any 

submmmand. 
Peripheral User deflned 

This mcde can use ml 
the LMT~~f~~l s d 

Reads response(s) to serial poll. A”Y 

A’lN, then SPD, UNT 

rATuS 

TOP 

Returns KM-4@8-DD status string. 

Frny DMA CONTINUE tran%- 
e 

A”Y 

Any Jf Active Controllec 
Asserts ATN. 

54 



KM-488-DD Programming Guide The File I/O Commands 

Table 5-l. List of File I/O Commands 
COMMAND NAME DESCRIPTION KM4S%DD MODE BUS ACTION 

TBRM Sets the GPIB bus terminators. A”Y 

TIME OUT Sets theout elapse. A”Y 

TRIGGER TrIggem device(s). Active Controller With 
&.yt ATN, UNL, MTA, LAG, and 

Aeaert ATN, GET. 

WAIT Waits for the current DMA con- 
hue transfer to complete. 

5-5 



The File I/O Commands KM-4%DD Programming Guide 

Purpose 

Syntax 

Paramefers 

Returns 

Programming 
Noles 

Example 

The ABORT command allows the KM-488-DD to take control of the GPIB bus 
by forcing all other devices on the bus to the idle state. & KM-488-DIJ 
mu% be the Act&e Controlls 

ABORT 

None. 

None. 

If the KM-488-DD is both the Active and System Controller, ABORT asserts 
the IFC line to retain control of the bus. Otherwise, the KM-488-DD will 
assert the ATN line, and then untalk and unlisten all devices. 

This forces the KM-488-DD to regain control of the bus and put all GPIB bus 
devices into an idle state. 

ABORT 

56 



KMd88-DD Programming Guide The File I/O Commands 

Purpose Defines the conditions under which the lightpen status becomes true. 

Syntax ARbl interrupt, interrupt.. . 

Parameters interrupt specifies the conditions under which an interrupt may be gen- 
erated. Multiple conditions may be selected. interrupt can be any 
combination of the following: 

The lightpen status will become true when the KM-488-DIYs 
internal Service Request Bit (SRQ) is set. 

PERIPEEFUG The lightpen status will become true when control is passed to 
* the KM-488-DD and it becomes the Active Controller. 

CONTROLLER The lightpen status will become true when the KM-488-DD 
* 

CLEAR 

TALK* 

LISTEN* 

IDLE* 

which has been acting as a Peripheral becomes the Active 
Controller. 

The lightpen status will become true when a KM-488-DD, act- 
ing as a Peripheral, receives a GPIB Trigger command. 

The lightpen status will become true when a KM-488-DD, act- 
ing as a Peripheral, receives a GPIB Clear command. 

The lightpen status will become true when the KM-488-DD, 
acting as a Peripheral, is addressed as a Talker and can output 
data to the GPlB. 

The lightpen status will become true when the KM-488-DD, 
acting as a Peripheral, is addressed as a Listener and can 
accept data from the GPIB. 

The lightpen status will become true when the KM-488-DD, 
acting as a Peripheral, is unaddressed as a Talker or a Lis- 
tener. 

57 



The File I/O Commands KM-488-DD Programming Guide 

ARM 

CRANGR The lightpen status will become true when a chance in 
Y . ” 

address status has occurred (i.e., a Talker becomes a Listener, 
or a Peripheral becomes an Active Controller). This encom- 
passes all of the above conditions which are marked with an 
asterisk (*). 

NOTE: The conditions marked by an asterisk (9 will generate an interrupt 
only when the KM-488-DD’s address status has changed. This is indicated 
by the state of the Address Change Bit in the Status byte. See the STATUS 
command description for more information. 

Returns None 

Programming Lightpen emulation must be enabled at driver installation via the CON- 
Notes FZGDAT file. (Default is no lightpen emulation.) 

Example This activates a lightpen interrupt when the KM-488-DD as a peripheral 
receives a trigger or a clear command. 

ARM CLEAR, TRIGGER 

58 



KM-488-DD Programming Guide The File I/O Commands 

BUFFER 

Purpose 

Syntax 

Returns 

Selects the direction in which memory is addressed for during buffered 
transfers. 

BUFFER direction 

direction indicates which direction the memory is to be addressed. 
Select either INCREMENT or DECREMENT where: 

INCREMENT increases the buffer address after each byte is transferred. 

DECREMENT decreases the buffer address after each byte is transferred. 

None. 

Programming When using INCREMENT during a bus I/O operation, specify the lowest 
Notes address of the designated buffer in the command. Likewise, when using 

DECREMENT, select the highest address. 

Example This instructs the KM-488-DD to increment the buffer address during a buff- 
ered transfer. 

BDFFEB INCBF.MBNT 

59 



The File I/O Commands KM-488-DD Programming Guide 

BUFFERED 

Purpose Returns the number of characters transferred in the last BUFFERED transfer 
or, in the case of DMA transfers, the current transfer. 

Syntax BUFFBRED 

Parameters None. 

Returns An integer from 0 to 1,048,575 (22o-1). 

Programming 1. 
Notes 

If the data was transferred using DMA with the CONTINUE option, 
the integer returned represents the number of characters transferred 
thus far into the operation. 

2. It is useful to call this command after an ENTER #count BUFFER 
terra. This will help you determine if the expected number of charac- 
ters has been received and/or the transfer has terminated as the result 
of a detected terminator. 

3. In BASIC, do not input the returned value into an integer variable, as 
counts greater than 32K will cause an overflow. 

Example This will return the number of characters transferred during the last buffer 
transfer. 

BDFFERED 

510 



KM-488-DD Programming Guide The File I/O Commands 

CLEAR 

Purpose 

Syntax 

Returns 

Resets device(s) to their power-up parameters. The KM-488-DD must 

CLFAR addr 

addr is the GPIB BUS address of the device to be reset. Multiple addresses 
may be selected. addr is a primary address (00 - 30) with an optional sec- 
ondary address (00 - 31), each of which must be specified as two digits, i.e. 
05,10,0901, etc. 

None 

Programmlng 1. 
Notes 

2. 

When no address is specified, the universal GPIB DCL (Device Clear) 
command will be issued and all bus devices will be cleared. 

When an address is specified, the corresponding device(s) is lii- 
tened and sent a GPIB SDC (Select Device Clear) command. 

Example This will issue a device clear to device 15. 

CLRAR 15 

511 



The File I/O Commands KM-488-DD Programming Guide 

Purpose Resets the KM-488DD to its default operating parameters or to those 
specified. 

Syntax CONEIG options 

Parameters options is a user-defined string. This string can be comprised of any of the 
following options: 

/Bnn sets the primary GPIB bus address of the KM- 
488-DD. nn is the primary GPIB address and can be any 
value between 00 and 30. A secondary address is not 
allowed. 

/T [term term Sets the input and output GPIB bus terminators. You can 
EOIJ select one or two GPIB bus terminators followed by EOI 

or just EOI. If you just specify /T, the GPIB bus termina- 
tors will be reset to no terminators. 

Where: 

term is an optional parameter which represents a GPIB 
bus terminator byte to be used. This terminator byte can 
be represented as any of the following: 

Qchar where char is an integer representing the 
hex or decimal equivalent of the terminator’s 
ASCII representation. (See Appendix B for 
ASCII Equivalents.) char must be prec- 
eded by a dollar sign ($1. Hexadecimal val- 
ues must also be preceded by &H. For 
example, $84 represents the letter “T” as does 
$&H54. 

CR This represents the Carriage Return character 
(13 decimal, OD hex). 

512 



KM-488-DD Programming Guide The File l/O Commands 

/TI [term 

term EOI] 

/TO [term 

term EOI] 

/E [term 

term] 

/EI [term 

term] 

/EO [term 
term] 

LF This represents the Line Feed character (10 
decimal, OA hex). 

‘X where X represents a printable ASCII charac- 
ter. The character must be preceded by an 
apostrophe (‘), for example: ’ B represents 
the character B. 

~01 (End or Identify) is an optional GPIB BUS termina- 
tor. If included, the KM-488-DD will detect/assert the 
GLIB bus EOI line. (This would indicate that the last 
character has been sent.) Data will continue to be read 
until this terminator, a valid terminator sequence, or 
both are detected. Use of the EOI terminator is further 
described in Chapter 4. 

Sets the input GPIB bus terminators. You can select one 
or two GLIB bus terminators followed by EOI or just EOI. 
If you just specify /TI, the input GPIB bus terminator 
will be reset to none. tenn and EOI are described above. 

Sets the output GPIB bus terminators. You can select one 
or two GPIB bus terminators followed by EOI or just EOI. 
If you just specify /TO, the input GPIB bus terminator 
will be reset to none. term and EOI are described above. 

Sets the input and output EOL terminators. term is 
described above. 

Sets the input EOL terminators.term is described above. 

Sets the output EOL terminators. term is described 
above. 

513 



The File I/O Commands KM-488-DD Programming Guide 

mnpmaaddr Configures a named device. Sets its address to the given 
[xc-addr] value and its GPIB bus terminators to the current GPlB 

bus terminator settings. 

name is the name of the device. 

addr is the primary GPlEJ address (00 to 30). 

see-addr is the secondary GPIB address (00 to 31). 

If the options string is not given, then the configuration will revert to the 
installation configuration. 

Returns None 

Programming String length cannot exceed 255 characters. 
Notes 
Example This would reset the KM-48%DD to its initial configuration. 

CONFIG 

514 



KM-488-DD Programming Guide The File I/O Commands 

DISARM 

Purpose Resets previously set conditions which cause lightpen interrupts. 

Syntax DISARM interrupt, interrupt... 

Parameters interrupt specifies which conditions should be reset. Multiple conditions 
may be selected. interrupt can be any of the following: 

SRQ The lightpen status will not change when the KM-488-DD’s 
internal Service Request Bit (SRQ) is set. See the SPOLL com- 
mand for more information. 

PERIPEERAL The lightpen status will not change when the KM-488-DD is 
acting as a peripheral. 

CONTROLLER The lightpen status will not change when the KM-488-DD is 

TRIGGER 

CLEAR 

TALK 

LISTEN 

IDLE 

CFIANGE 

- _ 
- acting as an Active Controller. 

The lightpen status will not change when a KM-488-DD, act- 
ing as a Peripheral, receives a GPIB Trigger command. 

The lightpen status will not change when a KM-488-DD, act- 
ing as a Peripheral, receives a GPIB Clear command. 

The lightpen status will not change when the KM-488-DD is 
addressed as a Talker and can output data to the GPIB. 

The lightpen status will not change when the KM-488-DD is 
addressed as a Listener and can accept data from the GPIB. 

The lightpen status will not change when the KM-488-DD is 
not addressed as a Talker or a Listener. 

The lightpen status will not change when a change in address 
status has occurred (i.e., a Talker becomes a Listener, or a 
Peripheral becomes an Active Controller). 

515 



The File I/O Commands KM-488-DD Programming Guide 

DISARM (cont’d) 

Returns None. 

Programming 
Notes 

If interrupt is not provided, then all conditions which will cause a light- 
pen interrupt to occur will be disabled. 

Example This will disable the KM-488-DD from causing a lightpen interrupt condition 
when the KM-488-DD becomes addressed as a talker, or when an SRQ 
occurs. 

DISARM TALK,SRQ 

5-16 



KM-488-DD Programming Guide The File I/O Commands 

DMA 

Purpose 

Syntax 

Sets the DMA transfer mode. 

DMA mode autoinitialize 

Parameters mode is an optional parameter which determines the DMA mode to be used 
in DMA transfers. This mode affects the way in which control is returned to 
the PC bus during Dh4A transfers. mode choices include SINGLE and 
DEMAND. If no mode parameter is given, SINGLE mode will be used. 
SINGLE and DEMAND are defined as follows: 

SINGLE - In this mode, when the DMA Request line is asserted the 
DMA controller assumes control of the bus and transfers a single byte 
of data. Control of the bus ls then returned to the microprocessor. 

DEMAND - In this mode, when the DMA Request line ls asserted the 
DMA controller assumes control of the bus. The DMA controller 
retains control of the bus until the DMA request signal is unasserted. 
Once this signal has been unasserted for more than one microprocessor 
clock cycle, control of bus is returned to the microprocessor. This mode 
allows the DMA controller chip to pass data at a slightly faster rate and 
the microprocessor to access the bus when it ls not needed. 

AUTOINITIALIZE is an optional parameter which enables the Dh4A 
AUTOINITIALIZE mode. Under normal circumstances, the DMA controller 
transfers the specified number of bytes to/from the PC memory from the 
given starting address and terminates when completed. When the AUTOIN- 
lTIALIZE mode is enabled, the DMA controller will reset the original byte 
count, reset the initial address, and repeat the transfer again. The 
AUTOINITIALIZE option is only in effect until the ENTER BUFFER DMA 
CONTINUE or OUTPUT BUFFER DMA CONTINUE routine has been com- 
pleted. If the ENTER BUFFER DMA CONTINUE option is specified (See the 
ENTER BUFFER command), the AUTOINITIALIZE option will only be in 
effect for that transfer. 

Returns None. 

5-17 



The File I/O Commands KM-488-DD Programming Guide 

DMA (cont’d) 

Pr~ramming 1. AU DMA AUTOINITIALIZE transfers must occur entirely within a 
Noler single DMA 64 KByte page. If a DMA buffer operation involves a 

transfer of more than 64K or occurs across a DMA page boundary, the 
AUTOINITIALIZE option affects only those bytes in the last transfer 
occurring within one DMA page. 

Also, note that DMA AUTOINITIALIZE transfers specified for buffers 
that are located in more than a single DMA page are unpredictable. 

2. It is impossible for a program to halt a Dh4A AUTOINITIALIZE opera- 
tion unless the DMA CONTINUE option is selected. (See ENTER 
BUFFER, OUTPUT BUFFER.) This is because the driver does not 
return control to a program using non-CONTINUE operations until the 
transfer completes. 

Example This will program DMA transfers to occur in DEMAND, AUTOINlTIALIZE 
mode. 

DMA DF.blAND AUTOINITIALIZE 

518 



KM-488-DD Programming Guide The File I/O Commands 

ENTER 

Purpose Allows the KM-488-DD to receive data from a GPIB bus device. 

Syntax ENTER addr; [#count term1 term2 EOI] 

Parameters addr is an optional parameter which specifies the GPIB BUS address of the 
device which is to send the data. If this parameter is included, the KM- 
488-DD is also addressed to listen. If this parameter is not included, some 
Active Controller must have already addressed a device to talk and the 
Kh4-488-DD to listen. addr is a primary address (00 - 30) with an optional 
secondary address (00 - 31), each of which must be specified as two digits, i.e. 
05,10,0901, etc. 

. is a delimiter. This delimiter musl be used if only addr and a term are 
Specified. Otherwise, it is optional. 

[#count terra1 term2 EOI] are the conditions which can be used to 
terminate ENTER. You may specify a count m a one or two character GPIB 
bus terminator, with or without EOIQB just EOI alone. The parameters are: 

#count is an optional parameter. It ls a long integer representing the 
number of characters to be read. It must always be preceded by a pound 
sign (#). Valid counts are within the range 1 to 4294967295 (232-1) deci- 
mal, or from 1 to FFFFFFFF hex. All hex values must be preceded with an 
&H, i.e. #&H300 would specify 768 bytes. 

term1 is an optional parameter which represents the first GPIB bus 
input terminator byte to be used. This terminator byte can be represented 
as any of the following: 

$ohar where char ls an integer representing the hex or decimal 
equivalent of the terminator’s ASCII representation. (See 
Appendix B for ASCII Equivalents.) char must be prec- 
eded by a dollar sign ($). Hexadecimal values must also 
be preceded by &H. For example, 584 represents the 
letter “T” as does $&H54. 

CR This represents fhe Carrikge Return character (13 decimal, 
OD hex). 

I5 This represents the Line Feed character (10 decimal, 
OA hex). 

519 



The File l/O Commands KM-488-DD Programming Guide 

ENTER tcont’d) 

'X where X represents a printable ASCII character. The 
character must be preceded by an apostrophe 0, for 
example: ’ B represents the character B. 

term2 is an optional parameter which represents the second GPIB bus 
input terminator byte (in a two-byte terminator) to be received. This 
parameter is represented in the same manner as the term1 parameter. 

EOI (End or Identify) is an optional GPIB BUS terminator. If included, 
the KM-488-DD will check for the assertion of the GPIB bus EOI line. 
(This would indicate that the last character has been sent.) Data will con- 
tinue to be read until this terminator, a valid terminator sequence, or both 
are detected. Use of the EOI terminator ls further described in Chapter 4. 

Returns The returned data is device-dependent. 

Programming 1. 
Notes 

If the KM-488-DD is a Peripheral, the addr parameter must not be 
included and an Active Controller must address a device to talk and 
the KM-488-DD to listen before the ENTER command is called, unless 
that bus has already been addressed. 

2. 

3. 

4. 

5. 

If the terml, tenn2, or EOI parameters are included, these settings 
will override the default terminator and EOI selections made while 
configuring your system. (See Chapter 2.) If not, the defaults are used. 

If both term characters and EOI are specified then ENTER will termi- 
nate on the condition which occurs first, i.e., the terminators or EOI. 

If a count is given, then only that number of characters will be 
returned. No EOL terminator will be appended. If no count is given, 
data will not be accepted after the KM-488-DD detects the GPIB BUS 
input terminator(s) or EOI. In this case, an EOL sequence will be 
appended to the accepted data. 

If count is given, the sending device must have at least that number 
of bytes to send. Otherwise, a time out will occur (if time out is 
enabled) or the process will “hang”. 

Example Thii will read data from device 25 until a CR LF pair or EOI is detected. 

ENTER: 25 CR LF EOI 

5-20 



KM-488-DD Programming Guide The File I/O Commands 

ENTER BUFFER 

Purpose Reads data t%om a bus device into an area of memory. 

Syntax BNTBR addr ; #count BtlWER buf-adds DMA CONTINUE term EOI 

Parameters addr is an optional parameter which specifies the GPIB BUS address of the 
device which is to send the data. If this parameter is included, the KM- 
488-DD is also addressed to listen. If this parameter ls not included, the 
Active Controller must have already addressed a device to talk and the 
KM-488-DD to listen. addr is a primary address (00 - 30) with an optional 
secondary address (00 - 31), each of which must be specified as two digits, i.e. 
05,10,0901, etc. 

; is a delimiter. This delimiter must be used if only addr and a term are 
specified. Otherwise, it is optional. 

#count is an integer representing the number of characters to be read. It 
must always be preceded by a pound sign 00. Valid counts are within the 
range 1 to 4294967295 (232-1) decimal, or from &HI to &HFFFFFFFF hex. All 
hex values must be preceded with an &H, i.e. #&H300 represents 768 bytes. 

buf -addr represents the memory buffer address. buf -addr may be given 
either as segmenboffset (the colon is required), or as an absolute memory 
address, where: 

segmenboffset - The segment and offset values rrmst be separated by a 
colon. The segment portion of the address represents a particular 
64KByte area of PC memory. This must in the range 0 to 65535 (&HO 
to &HFFFF hex). If this value is greater than 32767 and ls printed out, 
in languages without an unsigned integer type (such as BASICA), it 
will be printed as a negative number. Nevertheless, the KM-488-DD 
will properly interpret this value. 

offset represents the actual address of memory location with regard to 
the segment value. That is, the number of bytes from the segmenkoth 
location. The offset value must be an integer in the range 0 to 65535 
(&HO to &HFFFF hex). As with segment, negative offset value will be 
interpreted as an unsigned 16-bit integer. 

absolute - This is a value which identifies a “real” address. It is a 
20-bit long integer in the range 0 to 1048575 &HO to &HFFFFF). Con- 
sult your language reference manual for manipulating address pointer 
values in this fashion. 

5-21 



The File l/O Commands KM-488-DD Programming Guide 

Addresses of the format SEGMENTzOFFSET are converted to ABSO- 
LUTE format by multiplying the segment value by 16 and adding the 
offset value. 

DMA is an optional parameter which is used to enable DMA. Using DMA 
will transfer data at a higher speed. 

CONTINUE is an optional parameter which is used in conjunction with the 
DMA parameter. When this parameter is specified, the KM-488-DD returns 
control to the application program as soon as it can without waiting for com- 
pletion of the transfer. The KM-488-DD will at least wait for the first byte to 
check for time-out (Unless TIME OUT = 0) before continuing. DMA 
CONTINUE execution concludes when the KM-488-DD completes its trans- 
fer. 

If CONT’INUE is used and the DMA AUTOINITIALIZE has been enabled, 
then the DMA transfer will continue until a STOP command is invoked or an 
GLIB BUS input terminator is detected. 

term is an optional parameter which represents the GPIB bus input termina- 
tor byte to be used. This terminator byte can be represented as any of the 
following: 

Qchar where char is an integer representing the hex or decimal 
equivalent of the terminator’s ASCII representation. (See 
Appendix B for ASCII Equivalents.) char must be prec- 
eded by a dollar sign ($1. Hexadecimal values must also 
be preceded by &H. For example, $84 represents the 
letter “T” as does $&H54. 

CR 

Ia 

‘X 

This represents the Carriage Return character (13 decimal, 
OD hex). 

This represents the Line Feed character (10 decimal, OA 
hex). 

where X represents a printable ASCII character. The 
character must be preceded by an apostrophe (‘1, for 
example: ’ B represents the character B. 

522 



KM-488-DD Programming Guide The File I/O Commands 

ENTER BUFFER (cont’d) 

EOI (End or Identify) is an optional GPIB BUS terminator. If included, the 
KM-488-DD will check for the assertion of the GPIB bus EOI line. (This 
would indicate that the last character has been sent.) Data will continue to be 
read until this terminator is detected. Use of the EOI terminator is further 
described in Chapter 4. 

Returns Data from the GPIB bus is placed directly in the program memory location. 

Programming 1. If the KM-488-DD is a Peripheral, the addr parameter must not be 
Notes included and an Active Controller must address a device to talk and 

the KM-488-DD to listen before the ENTER command is called, unless 
that bus has already been addressed. 

2. During a DMA CONTINUE transmission, the KM-488-DD will only 
check for a timeout after the first byte is transferred. It is important 
that your application program check for completion of Dh4A CON- 
TINUE transfers, especially before accessing the memory where DMA 
is taking place. 

The purpose of DMA CONTINUE is to allow the application program 
to continue while the GPIB transfer takes place in the background 
through DMA. At some point, when the ENTER data to be used, the 
application program should issue a WAIT command. If the DMA 
transfer is still in progress, the program should wait for completion; 
otherwise, it can proceed immediately. The WAIT command also starts 
the timeout check (if enabled), so that a timeout error will be found if 
the transfer has “hung”. Be sure to specify a timeout value that allows 
for the entire DMA CONTINUE operation to complete. 

3. If the designated memory buffer region crosses a 64 kbyte page bound- 
ary, DMA CONTINUE will not return control to the application pro- 
gram until a significant portion of the transfer is complete. This is 
because the PC’s DMA controller is unable to continue a background 
transfer that crosses a 64 KByte DMA page boundary. Thus, the trans- 
fer must be divided into several intra-page transfers. When the last 
transfer is begun, the KM-488-DD will return control to the application 
program. The DMA AUTOINITIALIZE (See DMA command descrip- 
tion.) option cannot be used if the buffer crosses a 64K page boundary, 
without unpredictable results. 

4. If terra or EOI is not specified, then the SEND device must send the 
number of bytes specified by count. Otherwise, a timeout will occur 
(if enabled) or the process will “hang”. 

5-23 



The File I/O Commands KM-488-DD Programming Guide 

ENTER BUFFER (cont’d) 

Example This will read 95 characters from device 19 into memory at &H40000. 

ENTER 19#95 BDFFER hB4OOO:O 

5-24 



KM-488-DD Programming Guide The File I/O Commands 

EOL 

Purpose 

Syntax 

Returns 

This modifies the End-Of-Line (EOL) terminators selected at initial start-up 
or selected by the CONFIG command. The EOL terminators are used in 
transfers between the driver and the application program. 

EOL dir term 

dir is an optional parameter which represents the EOL terminator to be pro- 
grammed, where: 

IN = the INPUT EOL terminator. 
OUT = the OUTPUT EOL terminator 

If this parameter is omitted, both the input and output EOL terminators will 
be set as specified. See Chapter 3 for more information regarding the use of 
EOL terminators. 

term is an optional parameter which specifies either no terminators are to be 
used or one or two ASCII character(s) to be used as the EOL. This terminator 
character can be represented in any of the following manners: 

$char where char is an integer representing the hex or decimal 
equivalent of the terminator’s ASCII representation. (See 
Appendix B for ASCII Equivalents.) Hexadecimal values 
must also be preceded by &H. For example, $84 repre- 
sents the letter ‘7”’ as does $&H54. 

CR This represents the Carriuge Return character (13 decimal, 
OD hex). 

Is This represents the Line Feed character (10 decimal, OA 
hex). 

'X where X represents a printable ASCII character. The 
character must be preceded by an apostrophe (‘1, for 
example: ’ B represents the character B. 

NONE This specifies that no EOL terminator is to be used. This 
is not recommended for operations that transfer binary 
data equal to EOL’s, buffered transfers should be used. 

None. 

5-25 



The File I/O Commands KM-488-DD Programming Guide 

EOL (cont’d) 

Programming 1. 
Notes 

2. 

If you elect to not use EOL Terminators (e.g., EOL NONE), be sure to 
consult Chapter 4. 

When the application program sends a string to the driver, it will nor- 
mally append the EOL output terminator to the string. When the 
driver returns a string, it will append the EOL input terminator. It the 
programmer’s responsibility to know what EOL’s are appended by a 
programming language. 

Example 

3. EOL terminators are not used in BUFFERED transfers. 

This will set the input and output EOL terminators to Line Feed. 

EOL LF 

This will specify that no output EOL terminator is to be used. 

EOL OUT NONE 

This will set that input EOL terminator to Carriage Return and Line Feed. 

EOL IN CR LF 

5-26 



KM-488-DO Programmlng Guide The File I/O Commands 

ERROR 

Purpose 

Syntax 

Parameters 

Returns 

Example 

Enables/disables display of error messages. 

ERRORX 

x is an optional parameter which determines whether the error message dis- 
play function will be enabled or disabled. If ON is specified, the error mes- 
sage display is enabled. If OFF is specified, the error message display is 
disabled. 

None. 

This will disable display of error messages. 

ERROR OFF 

527 



The File I/O Commands KM-488-DD Programming Guide 

FILL 

Purpose 

Syntax 

Parameters 

Defines the KM-488-DD driver’s response to a request for data when none is 
available. 

FILL x 

x represents the fill condition. This can be any one of the following: 

OFF. This type of response will not return any data characters or a DOS 
error message. 

ERROR This type of a response will not return any data characters, but 
will generate an Error Message. The error message number can then be 
trapped by calling the STATUS command. (Refer to the STATUS command 
for more information.) 

ASCII indicates that a specific ASCII character be returned. This charac- 
ter is designated according to the following conventions: 

$char where char is an integer representing the hex or decimal 
equivalent of the terminator’s ASCII representation. (See 
Appendix B for ASCII Equivalents.) char must be prec- 
eded by a dollar sign ($1. Hexadecimal values must also 
be preceded by &H. For example, 584 represents the 
letter “T” as does $&H54. 

CR This represents the Carriage Return character (13 decimal, 
OD hex). 

I5 This represents the Line Feed character (10 decimal, OA 
hex). 

‘X where X represents a printable ASCII character. The 
character must be preceded by an apostrophe f’), for 
example: ’ B represents the character B. 

If x is not specified, a NULL character will be returned when there is no data 
available. 

Returns None. 

528 



KM-48&l-DD Programming Guide The File I/O Commands 

Example This will generate an error message and will not return any characters, if no 
data is available when requested. 

FILL ERROR 

529 



KM-488-DD Programming Guide The File I/O Commands 

HELLO 

Purpcse 

Syntax 

Parameters 

Returns 

Returns an identification string from the KM-488-DD driver. 

EELLO 

None. 

A string similar to the following: 

copyright (c) 1991 Keithley MetraByte Carp 

Programming None. 
Notes 

Example This example would return the KM-488-DD’s identification string. 

BELL0 

530 



KM-488-DD Programming Guide The File I/O Commands 

LOCAL 

Purpose 

Syntax 

Parameters 

Returns 

Forces the specified bus device(s) to return to being programmed locally 
from their front panels. This can onlv be u -if 488 DD 12 _ _ 

LOCAL addr, addr 

addr specifies the GPIB BUS device addressfes) of the device(s) to be sent to 
LOCAL. If this parameter is not included and the KM-488-DD is the System 
Controller, all devices on the GPIB bus will be sent to LOCAL. If the KM- 
488-DD is an Active Controller and this parameter is not included, only those 
devices which have been previously addressed to listen will be sent to 
LOCAL. Up to 15 device addresses can be given. addr is a primary address 
(00 - 30) with an optional secondary address (00 - 311, each of which must be 
specified as two digits, i.e. 05,10,0901, etc. 

None 

Programming 1. 
Notes 

If the KM-488DD is the System Controller and no address ls given, 
then the GPIB REN (Remote Enable) line is unasserted and all devices 
are returned to Local. In order to return them to remote mode, it will 
be necessary to issue a KLOL call, if Local Lockout is required. 

2. As an Active Controller, the KM-488-DD can issue the GPIB GTL (Go 
To Local) message to those devices specified. In this case, the GPIB 
REN (Remote Enable) line remains asserted and devices will return to 
remote when addressed to listen. If a KLOL (Local Lockout) call has 
been issued previously, it should still be in effect when a device is 
returned to Remote. 

Example This would send device 25 to local. 

LOCAL 25 

531 



The File I/O Commands KM-488-DD Programming Guide 

LOCAL LOCKOUT 

Purpose 
Controller.It will disable the GLIB bus devices from being returned to local 
control by means of the Local Remote button on the device. 

NOTE: This command issues an IEEE-488 bus signal, LOL. This signal ls not 
supported by all IEEE-488 bus devices. 

Syntax 

Alternate 
Syntax 

LOCAL LOCKOUT 

LOL 

Parameters None. 

Returns None. 

Programming 1. The “LOCAL” button is disabled so that a device cannot be returned to 
Notes local state for manual programming or control. The Active Controller 

can return specific devices to “local with lockout state”, whereby an 
operator can then use the front panel controls. When the device is 
addressed to listen again, it returns to “remote with lockout state”. 
Thus, the effect of the LOL call will remain until the REN line is unas- 
serted (LOCAL) by the System Controller. 

2. It is good practice to issue a LOL so that devices are under strict pro- 
gram control. LOL can be issued before a device is put in remote and 
will take effect when the device’s LOCAL button is set to remote. 

Example This would send the Local Lockout command to all listening devices, 

5-32 



KMdWDD Programming Guide The File l/O Commands 

Purpose Transmits data from the KM-488-DD to the GPIB bus. 

Syntax OUTPUT addr #count;data 

Parameters addr specifies the GPIB BUS device address of the device(s) to which the 
data is to be sent. Multiple device addresses can be given, separated by com- 
mas. If this parameter is not included, the Active Controller must have 
already addressed the KM-488-DD to talk and the GLIB Bus device(s) to 
listen before the OUTPUT is issued. addr is a primary address (00 - 30) with 
an optional secondary address (00 - 31), each of which must be specified as 
two digits, i.e. 05,10,0901, etc. 

; is a delimiter. 

#count is an optional parameter. It is an integer representing the number 
of characters to output. It must always be preceded by a pound sign (##). 
Valid counts are within the range 1 to 4294967295 (~“2-1) decimal, or from 
&Hl to &HFFFFFFFF hex. All hex values must be preceded with an &H, i.e. 
#&H300 would specify 768 bytes. 

data is a string of characters to be sent to the GPIB bus. This string will be 
terminated by the GPIB default output terminator, unless count is speci- 
fied. 

Returns None. 

Programming 1. The total number of character which can be contained in the data 
Notes string is unlimited. The length of the string is controlled only by 

count# or the EOL character in the data. 

2. If the KM-488-DD is the System Controller, it will automatically assert 
REN. 

3. 

4. 

addr can only be specified if the KM-488-DD is the Active Controller. 

If no character count is specified, fhe EOL output terminator will signal 
the end of data. This EOL terminator will be replaced with the GPIB 
Bus Output Terminator before the data is sent to the GPIB bus device. 
If, however, a character count is specified, exactly that number of char- 
acters will be accepted (regardless of whether it includes the EOL out- 
put terminator) and sent to the GPIB bus device. 

533 



The File I/O Commands KMd88-DD Programmlng Guide 

OUTPUT 

Example This example will send the string CAT to devices 9 and 25. 

OUTPUT 09,25:CAT 

5-34 



KM-488-DD Programming Guide The File I/O Commands 

Purpose 

Syntax 

Transmits data from an area of PC memory to the GPIB bus. 

OUTPUT addr #count BWWR buf-ad& DMA CONTINUE EOI 

Parameters addr specifies the GPIB BUS device addressfes) of the device(s) to which the 
data is to be sent. Multiple device addresses can be given. If this parameter is 
not included, the Active Controller must have already addressed the KM- 
488-DD to talk and the GPIB Bus device(s) to listen before the OUTPUT is 
issued. addr is a primary address (00 - 301 with an optional secondary 
address (00 - 311, each of which must be specified as two digits, i.e. 05,10, 
0901, etc. 

#count is an optional parameter. It is an integer representing the number 
of characters to transmit. It must always be preceded by a pound sign f#). 
Valid counts are within the range 1 to 4294967295 (r”-11 decimal, or from 
&Hl to &HFFFFFFFF hex. All hex values must be preceded with an &H, i.e. 
#&H300 would specify 768 bytes. 

buf -addr is the memory buffer address. This address can be represented 
in segmenboffset or absolute format. 

segmenboffset - The segment and offset values & be separated by a 
colon. The segment portion of the address represents a particular 
64KByte area of PC memory. This must in the range 0 to 65535 (&HO 
to &HFFFF hex). In languages without an unsigned integer type (such 
as BASICA), if this value is greater than 32767, it will be printed as a 
negative number. The KM-488-DD will automatically interpret this 
negative number as its corresponding positive value. 

offset represents the actual address of memory location with regard to 
the segment value. That is, the number of bytes from the segment:OTh 
location. The offset value must be an integer in the range 0 to 65535 
&HO to &HFFFF hex). As with segment, a negative offset value will 
be interpreted as an unsigned 16-bit integer. 

absolute - This is a value which identifies a “real” address. It is a 
20-bit long integer in the range 0 to 1048575 (&HO to &HFFFFF). Con- 
sult your language reference manual for manipulating address pointer 
values in this fashion. 

Addresses of the format segmenboffset are converted to absolute for- 
mat by multiplying the segment value by 16 and adding the offset 
value. 

535 



The File I/O Commands KM-488-DD Programming Guide 

OUTPUT BUFFER (cont’d) 

EOI is an optional parameter which specifies that the EOI signal is to be 
asserted when the last data byte is transferred. 

DMA is an optional parameter, which enables DMA. Using DMA will trans- 
fer data at a higher speed. 

CONTINUE is an optional parameter which is used in conjunction with the 
DMA parameter. When this parameter is specified, the KM-488-DD returns 
control to the application program immediately without waiting for comple- 
tion of the transfer. The KM-488-DD will wait for the first byte to check for 
time-out (Unless TIME OUT = 0) before continuing. DMA CONTINUE 
execution concludes when the KM-488-DD completes its transfer. 

If the DMA AUTOINITIALIZ.E (See the DMA command description.) option 
is used, the DMA transfer will continue until a STOP command is issued. 

Returns None 

Programming 1. All DMA AUTOINlTIALIZE transfers must occur entirely within a 
Notes single DMA 64 KByte page. See the notes regarding DMA pages pro- 

vided in Chapter 3. 

2. If the KM-488-DD is the System Controller, it will automatically assert 
REN. 

Example 

3. addr can only be specified if the KM-488-DD is the Active Controller. 

This syntax would send 512 characters (ArH200) from memory location 
&H10000 to device 21 using DMA. 

OUTPUT 21 #aE200 BUFFER 6ElOOO:O DbiA 

5-36 



KM-488-DD Programming Guide The File I/O Commands 

PASS CONTROL 

Purpose 

Syntax 

Parameters 

Returns 

Designates another controller to be the Active Controller. JJ.&&l-488-DD 

PASS CONTROL addr 

addr specifies the GPIB BUS device address. addr is a primary address (00 
- 301 with an optional secondary address (00 - 311, each of which must be 
specified as two digits, i.e. 05,10,0901, etc. 

None 

Programming If the KM-488-DD which is relinquishing its position as the Active Controller 
Notes is also a System Controller, it retains its status as System Controller. 

Example This example will pass control to device 19. 

PASS CONTROL 19 

537 



The File I/O Commands KM-488-DD Programming Guide 

PPOLL 

Purpose 

Syntax 

Parameters 

Returns 

Initiates a Parallel Poll. The KM-488-DD &be an Active 

NOTE: Many GPIB devices do not support parallel polling. Check your 
device’s documentation. 

PPOLL 

None. 

An integer in the range 0 to 255 decimal that indicates the Data Lines which 
have been asserted (DIOl-DI08). 

Programming None. 
Notes 

Example This would initiate a parallel poll. 

PPOLL 

5-38 



KM-488-DD Programming Guide The File I/O Commands 

PPOLL CONFIG 

Purpose 

Syntax 

Alternate 
Syntax 

Parameters 

Configures the Parallel Poll response of a GPIB bus device. De KM-488-DD 
muat be an Active Controller. 

NOTE Many GPIB devices do not support parallel polling. Check your 
device’s documentation. 

PPOLL CONFIG addr;reaponse 

PPC l ddr:re*ponse 

addr specifies the GPIB BUS device address of the device whose parallel 
poll response byte is to be configured. addr is a primary address (00 - 30) 
with an optional secondary address (00 - 31), each of which must be specified 
as two digits, i.e. 05,10,0901, etc. 

; is an optional delimeter. 

response is an integer which represents the desired Parallel Poll Response 
Byte. This decimal integer is of the following format: 

Parallel Poll Response Byte 
Bll 7 6 6 4 3 2 1 0 

0 ) 1 1 1 [ 0 1 s 1 P2 I Pl I PO 

Where: 

s is the parallel poll response value (0 or 1) that the device uses to 
respond to the parallel poll when service is required. This bit is 
generally set to 1. 

NOTE: This value must correspond to the setting of the GPIB 
bus device’s ist bit. Refer to the Device’s documentation for 
more information. 

P2Pl PO is a 3-bit value which tells the device being configured which 
data bit CD101 through DIO8) it should use as its parallel poll 
response. 

5-39 



The File I/O Commands KM-488-DD Programming Guide 

PPOLL CONFIG (cont’d) 

Returns None. 

Programming None. 
Notes 

Example This would configure device 12 to assert (= 1) DI04 when it is parallel polled 
and needs service. 

PPOLL CONFIG 12; &BOB 

540 



KM-488-DD Programming Guide The File I/O Commands 

PPOLL DISABLE 

Purpose 

Syntax 

Alternate 
Syntax 

Parameters 

Returns 

Disables the Parallel Poll response capability of the specified GPIB bus 
device(s). w-488-DD must 

PPOLL DISABLE addr 

PPD addr 

ad& specifies the GPIB BUS address of the device(s) which is to be parallel 
poll disabled. Multiple addr parameters can be included. addr is a primary 
address (00 - 30) with an optional secondary address (00 - 311, each of which 
must be specified as two digits, i.e. 05,10,0901, etc. 

None 

Programming None 
Notes 

Example This will disable the ability of devices 2 and 14 to respond to a parallel poll. 

PPOLL DISABLE 2,14 

541 



The File I/O Commands KM-488-DD Programming Guide 

PPOLL UNCONHG 

Purpose 

Syntax 

Alternate 
Syntax 

Disables the Parallel Poll Response of all GPIB bus device. The KM-488-DD 
& be an Active Controllet 

PPOLL UNCONWIG 

PPV 

Parameters None. 

Returns None. 

Programming None. 
Notes 

Example This will disable the ability of all devices to respond to a parallel poll 
response. 

PPU 

5-42 



KM-488-DD Programming Guide The File I/O Commands 

REMOTE 

Purpose 

oip 

Syntax 

Parameters 

Returns 

Pragrammlng 
Notes 

Forces the GPIB bus device(s) to the REMOTE mode (ignore the bus). 

NOTE: The KM-488-DD must be a System Controller to execute this com- 
mand. 

BEMOTE addr 

addr is an optional parameter which specifies the GPIB BUS device address 
to be sent to REMOTE. Multiple devices can be specified. addr is a pri- 
mary address (00 - 30) with an optional secondary address (00 - 311, each of 
which must be specified as two digits, i.e. 05,10,0901, etc. 

None. 

1. If addr is included, those devices will be addressed to listened and the 
GPIB REN line will be asserted. Once this has happened, they will go 
to REMOTE. If no addr is specified, the GPIB REN line will be 
asserted. The next time a device(s) is addressed to listen by the Active 
controller, it will go to REMOTE. 

2. It is good programming practice to issue a Local Lockout to prevent the 
devices from being returned to local mode. 

This will force devices 5 and 6 to the remote state and address them to listen. 

REMOTE OS,06 

5-43 



The File I/O Commands KM-488-DD Programming Guide 

REQUEST 

Purpose Sets the Serial Poll Response of a KM-488-DD which is a Peripheral. 

Syntax REQVEST: response 

Parameters ; is an optional delimeter. 

response is an INTEGER in the range 0 to 255 which represents the serial 
poll response and the state of the SRQ (Service Request) bit. Thii serial poll 
response byte is of the following format: 

Bit 

Where: 

D101-8 

RSV 

Returns None. 

Serial Poll Response Byte 
7 6 5 4 3 2 10 

Dl06 RSV Dl06 Dl05 Dl04 Dl03 Dl02 DlOl 

Bits 1 through 8 of this device’s Serial Poll Response Byte 
(correspond to data lines DIOl-DIO8). 

If this bit is 1, the SRQ (Service Request) line will be asserted to 
request servicing, Otherwise, SRQ will not be asserted. 

Programming 1. 
Notes 

When the KM-488-DD is serial polled by the Active Controller, the SRQ 
bit will be automatically cleared and SRQ unasserted (assuming they 
were set). 

2. Use the STATUS or SPOLL command to check if the Peripheral has 
been serial polled (check the status of the SRQ bit). 

Example This will generate an SRQ and set DIOl and DI02 in the Serial Poll Response 
Byte. 

BEQVEST : 64+1+2 

5-44 



KM-488-DD Programming Guide The File I/O Commands 

Purpose Performs a “warn” reset of the KM-488-DD and the GPIB bus. 

Syntax RESET 

Parameters None. 

Returns None. 

Programmlng This command is the equivalent of issuing the following commands: 
Notes 

l STOP l ERRORON 
l DISARM l FILLNULL 
. CONFIG l LOCAL 
l ABORT l REOUEST 0 (If Periuheral) 
l BUFFERINCREMENT l Clear CHANGE, TRIGGER, and 
l DMASINGLE CLEAR STATUS 

. TIMEOUT10 

It also clears all error conditions. 

2. If the KM-488-DD is the System Controller, it will assert the GPIB IFC 
(Interface Clear) line for at least 200 pxs. 

Example This will clear all error conditions. 

RESET 

545 



The File I/O Commands KM-488-DD Programming Guide 

RESUME 

Purpose Initiates data transfers between two non-Active Controller GPIB devices, by 
unasserting the ATN line. The KM-488-DD p 

Syntax BESVME 

Parameters None. 

Returns None. 

Programming This command is normally called after a SEND command has addressed a 
Notes talker and a listener. 

Example This will unassert the ATN line. 

BESVblE 

5-46 



KM-488-DD Programmlng Guide The File I/O Commands 

SEND 

Purpose Sends GPIB commands and data from a string. 

Syntax SEND; wbaommand 

Parameters subcommand can be any one of the following: CMD, UNT, MTA, MLA, 
TALK, LISTEN, DATA, and EOI. Multiple subcommands may be specified; 
however, the length of the &ire SEND command string cannot exceed 255 
characters. The subcommands are as follows: 

CMD -Sends information with the ATN line asserted. This indicates to 
the bus devices that the characters are to be interpreted as GPIB bus 
commands. The command may be sent as either a quoted string (e.g., 
’ COMMAND’ 1 or as a numeric equivalent of an individual ASCII char- 
acter (e.g., 13 decimal or &HOD hex for a Carriage Return). Hex values 
must be preceded by &H. Multiple quoted strings or ASCII values 
bytes may be sent if they are separated by commas (e.g., SEND CMD 
61,19,17,11,65,1B,6B~. 

An EOI cannot be sent with this subcommand, because an EOI with 
ATN asserted would initiate a Parallel Poll. 

UNT - Untalks all devices by sending a GPIR UNTALK command with 
ATN asserted. 

UNL - Unlistens all devices by sending the GLIB UNLISTEN command 
with ATN asserted. 

MTA - Designates the KM-488-DD to address itself to talk by sending 
the GPIB MTA (My Talk Address) command with the ATN line 
asserted. 

MLA - Designates the KM-488-DD to address itself to listen by sending 
the GLIB MLA (My Listen Address) command with the ATN line 
asserted. 

547 



The File I/O Commands KM-488-DD Programming Guide 

SEND (conf’d) 

TALK addr - Addresses another GPIB device or KM-48%DD to talk 
by sending a GPIB TAG (Talk Address Group) command with the ATN 
line asserted. addr is an integer representing the GPIB BUS device 
address of the device to talk. This integer ranges from 00 to 30 decimal. 

LISTEN addr - Addresses another GPIB device(s) or KM-488-DDf’s) 
to listen by sending a GLIB LAG (Listen Address Group) command 
with ATN asserted. addr is an integer representing the GPIB BUS 
device address of the device(s) to talk. This integer ranges from 00 to 
30 decimal. Multiple listeners can be specified. If addr is not specified, 
all other devices on the GPIB BUS will be designated listeners. 

DATA - Sends information with the ATN line unasserted. This indi- 
cates to the bus devices that the characters are to be interpreted as data. 
This ls the technique which is to be used to send device-dependent 
commands. (See the IEEE-4888 Tutorial in Appendix C for more infor- 
mation.) The data may be sent as either a quoted string (i.e., ’ DATA’ I 
or as a numeric equivalent of an individual ASCII character (i.e., 13 
decimal or SHOD hex for a Carriage Return). Hex values must be prec- 
eded by &H. Multiple quoted strings or ASCII values bytes may be 
sent if they are separated by commas (e.g., SEND DATA 
68,65,84,65X 

This sub-command is useful when you are sending commands which 
are unique to your interface. 

EOI -Sends information with the ATN line unasserted. EOI will be 
asserted when the last character ls transmitted. This information is 
interpreted as GPIB bus data and may be sent as either a quoted string 
(e.g., ’ xyz ’ I or as a numeric equivalent of an individual ASCII charac- 
ter (e.g., 13 decimal or &HOD hex for a Carriage Return). Hex values 
must be preceded by &H. Multiple quoted strings or ASCII values 
bytes may be sent if they are separated by commas (e.g., SEND EOI 
120,121,122). 

5-48 



KM-488-DD Programming Guide The File I/O Commands 

SEND (cont’d) 

Programming 1. The maximum length of the SEND command, including any subcom- 
Notes mands, is 255 characters. To SEND large amounts of data, use multiple 

SEND commands. 

2. SEND should only be used when a nonconforming device requires a 
special command sequence or a non-standard GPIB command. Do not 
use the SEND command unless you are extremely familiar with GLIB. 

3. SEND would typically be used to address a device to talk and a second 
device to listen (such as a scope sending its display to a plotter) so that 
data passes between the devices without passing through the KM- 
488-DD . In this case, a RESUME command must follow. 

4. If a DATA subcommand is not included in the SEND string, be sure to 
call RESUME immediately after SEND. This ls necessary because the 
ATN line must be dropped so that the transfer will proceed. 

5. The KM-488-DD must be the Active Controller to send commands. 
Any KM-488-DD can send data. 

Example This will address the KM-488-DD to talk, unlisten all devices, and send the 
bytes representing HI to device 19. 

SEND MTA UNL LISTEN 19 DATA '61' 

This will cause a device at address 5 to send data to a device at address 10. It 
must be followed by a RESUME command. 

SEND UNL TALK 05 LISTEN 10 
REStlblFd 

5-49 



The File I/O Commands KM-488-DD Programming Guide 

SPOLL 

Purpose 

Syntax 

Parameters 

Returns 

Initiates an Serial Poll. 

SPOLL addr 

addr is the GPIB bus address of the device to be Serial Polled. This parame- 
ter can only be included if the KM-488-DD is the Active Controller. addr is 
a primary address (00 - 30) with an optional secondary address (00 - 31), each 
of which must be specified as two digits, i.e. 05,10,0901, etc. 

KM-488 _ . DD IS an Active Controller -mete raddrisa ._ 
&&an integer in the range 0 to 255 will be returned to response. The 
definition of this integer varies from device to device; however, Bit 6 ls 
always used to indicate whether the device ls in need of service. Consult the 
manufacturer’s operator’s manual for more information. 

_ ‘n. eter addr is noJ 
Specified. the KM-488-DD will read its internal SRQ status bit. This means 
that response will contain an integer either of value 0 or 64 decimal. If 
response is 64, a device is asserting SRQ. 

If the KM 488 DD 1s a Pen- _ _ . ‘ohen& it will return an integer in the range 0 to 
255. This integer represents the contents of the KM-488DD’s serial poll 
mode register and can be interpreted according to the format of the serial 
poll response byte, as shown below. If bit DI07 (decimal value 64) ls 
asserted, it signifies that the KM-488-DD has not been serial polled since lssu- 
ing the last REQUEST. This is the way a peripheral can know when the con- 
troller has recognized its request for service. 

Bit 

Where: 

D101-8 

PEND 

Serial Poll Response Byte 
7 6 5 4 3 2 1 0 

DIOB PEND Dl06 Dl05 Dl04 0103 Dl02 DlOl 

Bits 1 through 8 of this device’s Serial Poll Response Byte korre- 
spond to data lines DIOl-DIOB). 

If this bit is 1, the SRQ (Service Request) line will be asserted to 
request servicing. Otherwise, SRQ will not be asserted. 

5-50 



KM-488-DD Programming Guide The File I/O Commands 

SPOLL (cont’d) 

Programming 1. 
Notes 

2. 

The internal SRQ bit status will not be reset if SRQ is unasserted for 
any reason other than an ABORT, RESET, or SF’OLL. 

If an Active Controller conducts a serial poll (with or without an 
address), the internal serial poll bit as indicated by Bit 6 of the Serial 
Poll byte or Sl from the STATUS command will be cleared. So that a 
subsequent SPOLL or STATUS will not reveal an SRQ until a new SRQ 
is received. 

3. If two devices are simultaneously asserting SRQ, serial polling one of 
the devices will cause that device to relinquish SRQ, but the presence of 
the second device’s SRQ will cause a new SRQ to be detected. 

Example This serial polls device 22. 

SPOLL 22 

5-51 



The File I/O Commands KM-488-DD Progrommlng Guide 

STATUS 

Purpose 

Syntax 

Parameters 

Returns 

Returns a character string describing the current operating state of the KM- 
488-DD. 

STATUS 

None. 

A character string describing the current operating state. The string is of the 
format shown in Table 5-2. 

Table 5-2. Status String 

Stndhg Y of Cob. Name and Descriptton 
Cd 

I 1 S&a&g&&- Tells if the KhMSS-DD Is acting 8s an Active 
Controller or Peripheral. Cm be C or P where: 

C = The KW4WDD is an Actiw Cmtmllm 
P = The KM-QBSDD Is a Periphend 

3 2 &&A&&q-Gives the IEEE4tl3 Bus Address of the KtvM%DD. 
Th,s Is a twodg,t de&ml integer ranging from 00 to 30. 

5 2 Addressed - Indkates If the device has changed 
addressed state, Le., tf It has cyded between the Talker, Listener, or 
Actbe Confm,,n states. This Is meet whenever a STATUS Is read. 
This can be one of the followtng: 

GO = There has not been a change in the addressed status. 

Gl = There has been a change in the addressed status. 
3 1 m- lndkates if the KM-4WDD Is currently 

acting as a Talker or Listener, or is Idle. Can be T, L, or I, where: 

T = The KtMS&DD is a Talker 
L = The KW48BDD is a Listener 
1 = The KM-tSS-DD is Idle 

11 2 3m&&u& - Represents the current internal SRQ status where: 

SO = SRQ not asserted 
Sl = SRQ asserted 

If the KM-488-DD is in the Acline Confmller mode, the internal SRQ 
state initially reflects the state of the GPIB bus SRQ. Conducting an 
SPOLL can dear this bit even though the SRQ line is stttt asserted. 

5-52 



KM-4WDD Programming Guide The File I/O Commands 

STATUS (cont’d) 

Starting 
Cd 

14 

I8 

I of cots. 

Table 5-2. Status String 
Name and Description 

If the KM-488.DD Is acting as a Peripheral, the internal SRQ state is set 
by using the REQUEsT command. It is deared by a serial poll from 
the Active Controller. 

&Q&& IndIcatea whether or not an error has olx-urrd. The 
three characters consist of the letter ‘E’ followed by a two diglt error 
code. (A list of these error codes is provided In Appendix C.) An 
error code of 00 lndlcates no error has occurred. 

Jl@x&&& Indicates if a Paipheral KM-48aDD has received a 
GPIB trigger command. ‘Ihi is not updated during DMA CON- 
TINUE transfers. Triggered State values are: 

TO = No trigger command has been received. 
Tl = A Mgger command has been received. 

~-Indicates if a Peripheral KM-488.DD has received a GPlB 
Clear command. ‘IhIs is not updated during DMA CONTlNUE 
transfers. aed V~IU~S B~e: 

CO = No Clear command has been received. 
Cl = A Clear command has been received. 

TTanPferStatus - Indicates if a data transfer is in progress. Values 
which may appear are: 

W = No transfer 
p1= DMA CONTINUE Transfer occurring 
I’2 = DMA AUTOINITIALIZE Transfer occurring 

&w&&w&&- Contains the Error MessageText aawdated with 
the given error cc-de (D(X). These error mesages are llsted in 
Appendix G. 

Programming If the KM-488-DD is the Active Controller, the Service Request line may be 
Notes cleared (i.e., SO) as a result of a SPOLL, even when the SRQ line is still 

asserted. See the discussion in POLL. 

Example This retrieves the status string. 

STATUS 

5-53 



The File I/O Commands KM-488-DD Programming Guide 

STOP 

Purpae Stops a DMA CONTINUE transfer. 

Syntax STOP 

Parameters None. 

Returns None. 

Programming 1. If the DMA CONTINUE transfer has been completed, a STOP com- 
Notes mand will have no effect. 

2. Use the BUFFERED command to determine the actual number of char- 
acters which were transferred before the STOP command took effect. 

Example This will stop a DMA CONTINUE transfer. 

STOP 



KM-488-DD Programming Guide The File I/O Commands 

TERM 

Purpose Defines the GPIB bus terminator(s) to be used in ENTER and OUTPUT calls. 

Syntax TERM [dir term1 term2 EOI] [NONE] 

Parameters dir is an optional parameter which represents the GI’IB BUS terminator to 
be programmed, where: 

IN = the INPU’f GPIB BUS terminator sequence. 
OUT = the OUTPUT GPIB BUS terminator sequence. 

If this parameter is omitted, both the input and output GPIB BUS terminators 
will be set as specified. See Chapter 3 for more information regarding the 
use of GPIB BUS terminators. 

term1 is an optional parameter which represents the first GPIB bus termina- 
tor byte to be used. This terminator byte can be represented as any of the 
following: 

Qchar where char is an integer representing the hex or decimal 
equivalent of the terminators ASCII representation. (See 
Appendix B for ASCII Equivalents.) char must be prec- 
eded by a dollar sign ($1. Hexadecimal values must also 
be preceded by &H. For example, $84 represents the 
letter ‘7” as does $&H54. 

CB This represents the Carriage Return character (13 decimal, 
OD hex). 

LP This represents the Line Feed character (10 decimal, OA 
hex). 

‘X where X represents a printable ASCII character. The 
character must be preceded by an apostrophe Cl, for 
example: ’ B represents the character B. 

term2 is an optional parameter which represents the second GLIB bus input 
terminator byte (in a two-byte terminator) to be sent. This parameter is 
represented in the same manner as the terra1 parameter. 

5-55 



The File I/O Commands KM-488-DD Programming Guide 

EOI (End or Identify) is an optional GPIB BUS terminator which indicates 
that the EOI line will be asserted when the last character is transferred (OUT- 
PUT). Data will continue to be read/transmitted until this terminator is 
detected (ENTER). Use of the EOI terminator is further described in Chapter 
4. See also Programming Note 3 below. 

Returns None 

Programming 1. The terminators set by the TERM command will change the default set- 
Notes tlngs for the GPIB terminators made during software installation. 

2. The termination characters can also be modified by CONFIG. 

3. EOI is used differently in input operations than output. During an 
ENTER, EOI indicates that input will be terminated upon detection of 
the EOI bus signal; whereas during an OUTPUT it indicates that EOI 
bus signal will be asserted during transfer of the last byte. 

4. The terminator character(s), if specified, is appended to a message in 
KOUTPUT and checked for in KENTER. 

Example This sets the input bus terminator to Horizontal Tab with no EOI detection. 

TERM IN $09 

5-56 



KM-488-DD Programming Guide The File I/O Commands 

TIME OUT 

Purpose Defines a timeout period. 

Syntax TIM& OUT n.nn 

Parameters n . nn is the number of seconds to allow before a time-out. This number 
must fall within the range 0.00 to 65535.99 seconds. Timeout intervals must 
be specified two decimal places. Any timeout below 1.00 must include a 0, 
e.g. 0.61. 

NOTE: Even though you can specify the timeout period to the nearest 
l/100 second, the actual interval is always a multiple of 55 milllseconds due 
to computer limitations. Thus, there is an uncertainty of 55 msec in the 
actual time out interval. Time out intervals from 0.01 to 0.11 seconds are 
rounded to 0.11 seconds. Larger intervals are rounded to the nearest 
multiple of 55 msec. 

Returns None 

Programming 1. If no timeout period is specified, the default of 10 seconds will be used. 
Notes 

2. 

3. 

To suppress Timeout checking, set n . nn to 0. 

If a DMA CONTINUE transfer is in progress, the KM-488-DD will 
check for timeouts only for the first byte that is transmitted/received. 
During other types of transfers, the KM-488-DD will check for a time- 
out between transmission of bytes. 

You must be certain to check that a DMA CONTINUE transfer has 
been completed using the BUFFERED command. 

Example This will disable timeout checking. 

TIW& OUT 0 

This will set the timeout to 5 seconds. 

TIME OUT 5 

557 



The File I/O Commands KM-488-DD Programming Guide 

Purpose 

Syntax 

Parameters 

Returns 

Triggers the specified device(s). w-488-DD must be an Active 

TRIGGER addr 

addr is an optional parameter which represents the GPIB bus address of the 
device to be triggered. Multiple devices may be specified. If addr is not 
specified, then the Active Controller must have previously listened the devi- 
ce(s) to be triggered addr is a primary address (00 - 30) with an optional 
secondary address (00 - 31), each of which must be specified as two digits, i.e. 
05,10,0901, etc. 

None. 

Programming None. 
Notes 

Example This will issue a Group Execute Trigger (GET) to device 4. 

TRIGGER 04 

5-58 



KM-488-DD Programming Guide The File I/O Commands 

WAIT 

Purpore Forces the KM-488DD driver to wait until a DMA CONTINUE transfer has 
been completed before returning control to the application program. 

Syntax WAIT 

Parameters None. 

Returns None. 

Programming 1. The WAIT command is particularly useful in situations where an 
Notes ENTER BUFFER DMA CONTINUE or OUTPUT BUFFER DMA CON- 

TINUE specifies a terminator. (Remember that the DMA CONTINUE 
function allows your application program to do some processing while 
DMA ls finishing in the background.) 

2. Time out checking, if enabled, is performed while WAITing. 

3. This is an e@j& wait. The following commands perform an 
w wait: 

ABORT l POLL DISABLE 
CLEAR l I’I’CILL UNCONFIG 
ENTER l REMOTE 
LOCAL l REQUEST 
LOCAL LOCKOUT l RESUME 
OUTPUT . SEND 
PASS CONTROL l SPOLL 
PPQLL l TRIGGER 
I’I’OLL CONFIG 

Example This will force the KM-488-DD to wait for a DMA CONTINUE transfer to 
complete before it returns control to the application program. 

WAIT 

559 



The File I/O Commands KM-488-DD Programming Guide 

This page intentionally left blank. 



KM-488.DD Programming Guide introduction to Programming via the 
Call Interface 

CHAPTER 6 
INTRODUCTION TO PROGRAMMING VIA THE CALL INTERFACE 

Chapters 7,8,9,10, and 11 contain language-specific information and a detailed description 
of all of the KM-488-DD calls. The calls are listed in alphabetical order. Each of the above 
listed chapters describes the use of the call within one of the supported languages: BASICA, 
QuickBASIC, Microsoft PASCAL, or TURBO PASCAL. This chapter provides an overview 
of the call interface and an introduction to the more common commands. 

6.7 ACCESSlNG THE CALL /NTERFACE 

Once the KM-48%DD driver is installed, CALLS can be issued from a program to access the 
driver capabilities. (A list of all of the available calls can be found in the rear of this man- 
ual.) With the exception of KDIAGOFF, all of the calls have two or more arguments. The 
details of passing arguments are language-dependent and are discussed in the following 
chapters. 

All calls contain an input parameter board-nr and a returned value err-code. 
board-nr is an integer O-3 which selects the particular KM-488-DD that the command 
affects and err-code is an integer which returns an error code after the call. You should 
perform an error check after each call. No error corresponds to 0. Refer to appendix G for a 
listing of error numbers and their corresponding codes. 

All data is transferred directly between the program data area and the driver; thus the 
address of the program data structure where the data is to be found or sent is passed as a 
parameter. 

All calls such as KSTATUS, KENTER, or KOUTPUT which require a GPIB bus device(s) to 
be addressed contain an address argument mygads. Address structures can contain from 1 
to 15 devices or can specify no address where appropriate. 

The calls KENTER and KOUTPUT contain an argument term-list which specifies the 
GPIB terminators to be used. 

In addition, there are some miscellaneous arguments (usually integers) which specify the 

number of bytes to be transferred, a mode of operation, or a switch. 

6-1 



Introduction to Programming via the 
Call Interface 

KM-488-DD Programming Guide 

KRESET 

When starting a program, it is a good idea to reset the driver by calling KRESET. This 
returns the driver to its default conditions. If the KM-48%DD is also the System Controller, 
the GPIB IFC line will be asserted for 500 usecs. 

6.2 GPIB TERMINATORS 

Data is sent from the application programs to GPIB bus devices and data is returned to 
application program from GPIB bus devices. The GPIB BUS Terminators are used to delimit 
data transmitted between the KM-488-DD driver and the GPIB Bus. There are two types of 
GPIB BUS Terminators: Input and Output. 

The GPIB BUS Output Terminator sequence delimits the data transferred from the KM- 
488-DD driver to the GPIB bus. These terminator sequences can be comprised of one or two 
ASCII characters and may include an asserted GPIB EOI signal. Any combination of ASCII 
characters and EOI may be selected, including EOI alone. If only EOI is used to signal the 
end of an output data transmission, the EOI signal will be asserted when the last character 
in the sequence is transmitted. Otherwise, the terminator sequence character(s) is appended 
to the data characters, and EOI, if used, is asserted on the last character sent. 

The GPIB BUS Input Terminator sequence marks the end of data transferred from the 
GPIB bus to the KM-488-DD driver. This terminator sequence can be comprised of one or 
two ASCII characters and may include detection of an EOI signal. Any combination of 
ASCII characters and EOI may be selected, including EOI alone. 

If only EOI is chosen to signal the end of input data, then all the characters received from the 
bus device, including the one on which EOI was asserted will be returned to the application 
program. 

In KENTER calls, if onlv ASCII terminator CharacterSare used, then all the characters 
including the terminator characters will be returned: However, if ASCIIcharacters are 

n with EOl and EOI is received and the complete ASCII terminator 
sequence has not been received, all of the received characters are returned to the program. 

Because it is sometimes convenient to send data in two “pieces” without terminators 
between the pieces and because different GPIB devices require different GI’IB terminators, 
there will be cases where it will be necessary to change the GPIB terminators within a pro- 
gram. 

6-2 



KM-488-DD Programming Guide Introduction to Programming via the 
Call Interface 

The KOUTPUT call allows the same data to be sent to multiple GPIB devices. Because 
KOUTPUT can only specify one set of terminators, care must be taken that all of the listen- 
ing devices will respond to the terminators used. For other routines, you can modify the 
GI’IB terminator defaults using the KTERM call. 

This call is used to change the default terminators when transferring data between the KM- 
488-DD driver and a GPIB bus device. 

6.3 KCONFIG 

This routine re-configures the operating parameters of the KM-488-DD. These include: 

. GPIB Bus Terminators 

. Named Devices 

6.4 CLEAR DEVICES 

. GPIB Bus Address 

. EOL Terminators 

Devices can be returned to their power-up initial state (ranges and functions) by calling 
KCLEAR. If the KCLEAR contains an address structure with addresses, then only those 
devices are cleared (via the GPIB Selected Device Clear command). If the no address struc- 
ture is selected, then all GPIB bus devices are cleared via the universal Device Clear. 

6.5 TRANSMITTING DATA 

Data is sent from the program to the GPIB bus by using the KOIJTPUT (or in BASI- 
CA/Quick BASIC KOUTPUTSTR and KOUTPUTBUFFl. An address structure with no 
addresses can be used if the appropriate GPIB devices are addressed; otherwise an address 
structure containing the addressfes) of the device(s) to receive the data is used. In the latter 
case, the receiving devices are addressed to listen and the KM-488-DD is addressed to talk. 

A terminator structure is also a required argument and can either specify the existing driver 
GPIB output terminators be used or override those terminators for the one call. 

6.6 RECEIVING DATA 

Data is received by the program from the GPIB bus by using the KENTER (or KENTER- 
BUFF or KENTERSTR in BASICA or QuickBASIC). An address structure with no addresses 
can be used, if the appropriate GPIB devices are addressed. Otherwise, an address structure 
containing the address of the device to send the data is used. In the latter case, the sending 
device is addressed to talk and the KM-488-DD is addressed to listen. 

6-3 



Introduction to Programming via the 
Call Interface 

KM-488-DD Programming Guide 

A terminator structure is also a required argument and can either specify the existing driver 
GPIB input terminators be used or override those terminators for the one call. 

6.7 KTO 

A timeout check is available to insure that the calls KENTER, KOUTPUT, KSEND, and 
KSPOLL, which perform handshake data transfers on the GPIB bus, complete their data 
transfer within a limited amount of time. This prevents the application program and/or 
GPIB bus from hanging because a device was turned off or failed to function. The timeout 
can be set in CONFIG.DAT or modified by the KTO call. 

The timeout can be disabled by sending 0 for the timeout value; but this is not recom- 
mended. The timeout should be long enough so fhat a data transfer can complete. This will 
depend on the speed of the GLIB device and the amount of data to be transferred. In 
normal buffered or DMA without CONTINUE transfers, this includes all the characters 
transferred. In a DMA with CONTINUE transfer, the driver only monitors the first charac- 
ter transferred so the timeout applies to only that character. After the first character, the 
transfer occurs automatically while the application program performs other tasks. At some 
point, the application program will want to verify that the transfer is complete by calling 
KWAITC. When KWAITC is issued, the timeout function will start. Alternatively, the 
KBUFD call can be used for verifying the completion of a transfer. 

6.8 KBUFD 

The KBUFD call can be used to determine the number of characters transferred in the last 
buffered transfer. This is particularly useful where a DMA CONTINUE transfer has been 
initiated and the application program has worked on other tasks. By calling KBUFD, the 
application program can determine the number of byte transferred thus far. If the number 
of transferred characters equals the expected number to be transferred, the application pro- 
gram knows the transfer is complete. Otherwise, the application program can check back 
later or issue KWAITC and wait for the completion of a timeout. 

6.9 KTRIGGER 

GPIB devices can be triggered by a GPIB command to perform some function such as to 
make a measurement. KTRIGGER is used to trigger the GPIB devices specified by address 
argument. 

6.10 KSTATUS AND KSPOLL 

Many GLIB bus devices have a status register which can be read by the controller by means 
of a serial poll mechanism. To eliminate the need for the controller to serial poll a device 
when no change of status has occurred, many devices can assert an SRQ (Service Request) 

6-4 



KM-488-DD Prooramming Guide introduction to Programming via the 
Call Interface 

line on a status change. In this way, the controller can be performing other tasks while 
devices do not need attention and furthermore, some instruments do not take kindly to 
being queried while they are in the middle of something. Because all bus devices share the 
same SRQ line, the controller may have to poll several devices before it arrives at the one 
requesting service. 

The Keithley 196, for example, can be triggered to make a measurement and assert SRQ 
when the measurement is complete. An application program can determine when an SRQ 
is present by looking at the driver status by means of the KSTATUS call. The status string 
returned by KSTATUS is described in the KSTATUS call description. When the status 
reveals the presence of an SRQ, a serial poll can be conducted by the KSPOLL call which 
returns a status byte from the device polled. If the spoll byte indicates that D107 of the 
GPIB bus is asserted, then the device is asserting SRQ. The act of serial polling a device 
asserting SRQ causes the SRQ of the device to be cleared. 

6.11 LIGHTPEN /NTERRUPTS 

The KM-488-DD board can be configured to generate hardware interrupts on receipt of an 
SRQ. The KM-488-DD driver does not support hardware interrupts; but does implement 
the lightpen “pseudo” interrupt. 

To employ the lightpen interrupt, the driver must be configured to accept interrupt at load 
time via the COAJFIG.DAT file. Then, the driver will periodically check for the SRQ and set 
a flag that is normally set when a lightpen is activated if the presence of an SRQ is detected. 
The application program must then check for the presence of the lightpen interrupt. 

In BASIC and QuickBASIC, if the PEN ON command is issued the lightpen interrupt will be 
checked at the completion of each BASIC command. (A FOR loop is considered a single 
command so detection does not take place within a FOR loop.) If an interrupt is detected, 
the program can jump to a routine which services the interrupt and then return to the main 
routine. In other languages, it is necessary to decide your own strategy for checking the 
lightpen interrupt. (See IEEEI0.C for an example of testing the lightpen from ‘2.1 

6.12 KPPOLL and KPPC 

A few GI’IB devices support a parallel poll mode of operation. A device which supports 
parallel polling can be configured to assert one particular GLIB data line, when the control- 
ler conducts the parallel poll. Many times devices can be configured remotely over the GPIB 

6-5 



Introduction to Programming via the 
Call Interface 

KM-488-DD Programmlng Guide 

bus by using the KPPC call. If different devices assert different data lines, the controller can 
rapidly determine which device needs service by issuing a parallel poll and then interpret- 
ing the result. 

Many times the device’s parallel response is asserted when the device asserts SRQ. In most 
cases, the controller will generally perform a serial poll of the device(s) which a parallel poll 
has revealed needed service. This is to obtain more complete status information and to 
cause the device to unassert its SRQ and parallel responses. 

A parallel poll is conducted by the KPPOLL call. 

6.13 KREQUEST 

The KM-488-DD can function in the non-controller or peripheral mode. In this mode, the 
KM-488.DD can set its serial poll response which can be read by an Active Controller. The 
seventh bit, when set, is reserved to generate an SRQ when desired. The significance of the 
other bits is user-defined. The KREQUEST call can be used to write the status byte. A 
KSPOLL call with an address argument specifying no address can be used to determine if 
the SRQ has been serviced. If the value returned is 64, then the SR is still pending, if 0 then 
SRQ has been serviced by the controller and the KM-488.DD has automatically stopped 
asserting the SRQ. 

6-6 



KM-488-DD Programmlng Guide Using the Call Interface in BASICA 

CHAPTER 7 
USING THE CALL INTERFACE IN BASICA 

BASICA uses the CALL statement to access GPIB language extension for BASICA from 
within a user program. Before any CALL statement can be executed, these things must 
occur: 

. The location of the routines (offset addresses) must be specified 
(see HEADER.BAS) 

. The parameters used by the routine must be declared 

. The interface module (KM488BAS.BP.9 must be loaded 

The offset address of each KM-488DD Routine must be identified so that BASIC knows 
how many bytes from the start of the (BLOADed) KM488BASBIN file to jump to execute the 
called routine. Each KM-488DD interface routine must be assigned a variable which is set 
to the offset for that routine. The offsets of the routines in KM488BASBIN are not user- 
selectable. They have been defined for you in the file HEADER.BAS. For example, the offset 
for the KABORT routine is always zero; therefore you must include the line XABORT = 0 
before calling KABORT. 

Note that any name can be used for these routines, as long as the alternate name matches 
the offset of the desired function. For example, if we define KABT = 0 and KABORT = 0 
within a program, the statements CALL KABT and CALL KABORT will physically execute 
the same function. 

Each KM-488-DD Interface Routine requires certain parameters to be provided. These 
parameters are always integer or string variables. They must be defined prior to executing 
the CALL statement. The variable names must be enclosed within parentheses and follow 
the function name within the CALL statement, for example: 

BOARDNR% = 0 : ERRORFLAG% = 0 
CALL KABORT (BOARDNR%, ERRORE’LAG%) 

7-1 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

These call parameters are used to pass values into and out of the KM-488-DD driver. When 
passing values into a call routine, you must equate a named variable of the appropriate type 
with the desired value, and subsequently pass that variable name into the call. 

The example below shows the proper way to initiate a CALL statement sequence. In this 
example, the variable names BOARD% and ERRFLAG% have been used to pass the values 0,O 
into the KABORT routine. Note that any legal BASICA name can be assigned to these vari- 
ables. However, they must be the correct data type and value, and must be passed into a 
callable routines in the same order as shown in the routine descriptions. 

xx BLOAD “l0l488DAS. BIN", 0 
xx KABORT=O:BOARD%=O:ERRFIAG%=O 

'Gives offset of XABORT routine 6 variable definitions 
xx CALL XABORT(BOARD%,ERRFXAG%) ‘~80s call statement 

Software 
Conli~uration 

A number of KM-488-DD configuration parameters are set via the 
CONFIG program. (See Chapter 2.) Some of these can be modified within 
a program (i.e., at runtime). The defaults for these are listed in Table 7-1. 
There are other defaults you may have to m-program if you are using File 
I/O Commands in the same program as the call interface routines. 

7-2 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

Table 7-l. Default KM-4&WDD Operating Parameters 

Parameter Default 

Device Timeout 10.0 seconds 
GPIB Bus Input Terminator CR LF with no EOI detection 
GPIB Bus Output Terminator CR LF with no EOI assertion 

EOL Terminators CR LF 

The KCONFIG call can be used to reset the GPIB input and output bus 
terminators. 

The KTERh4 call can be used to change the default GPIB bus terminators 
settings. 

The KTO call can be used to change the default device timeout value. 

Programming 1. 
Notes 

2. 

In BASICA, only variables may be passed into and out of functions. 
Values are not allowed as CALL arguments. 

You must also be sure to include all of the parameters for the Call 
Interface Routine. The parameters must be the same data type and 
appear in the same order as those given. You can, however, change 
their names. BASICA has no means for checking that the exact 
number of parameters are given or that the parameters of the 
appropriate type. If an incorrect number or type of parameters are 
specified, your program may crash. 

3. 

4. 

Strings are limited to the BASICA maximum of 256 characters. 

All integers are treated by the KM-488-DD routines as unsigned val- 
ues (0 to 65535). However, BASICA treats them as signed magni- 
tudes (-32768 to +32767). When you need to express a value which 
is greater than or equal to 32768, you will need to express it in one 
of two ways: 

l Convert it to a hexadecimal value. Be sure to prefix these val- 
ues with &H when equating them to a variable name. Legal hexade- 
cimal values range from 0 to &HFFFF and can be used to represent 
values from 0 to 65535. 

l Use unsigned values from 0 to 32767 as is, but for values of 
32768 to 65535 subtract 65536. 

7-3 



Using the Call Interface in BASICA KM-486-DD Programming Guide 

5. The file HEADER.BAS has been provided to assist you with defin- 
ing CALL routine offsets. This is a BASICA source file which pre- 
defines the offsets. It can be modified to suit your needs. 

6. Do not name your variables with the same name as any of the KM- 
488-DD routines. 

7-4 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

7. I DESCRIPTION FORMAT 

The routines are described according to the following criteria. 

Purpose This section provides a “one-line” description of the routine. A more detailed 
general description of each routine is provided ln Chapter 3. 

Offset 

Syntax 

This section gives the BASICA offset for each routine. 

This section gives the syntax for each routine. The provided syntax assumes 
that the input parameters are passed in as variables. 

Parameters This section describes the input parameters. In some instances, an array of 
multiple parameters may be specified (for example, multiple device 
addresses). 

MYGADS (N*2) is used in many calls. This is an array of n (1 to 15) pairs of 
GPIB addresses which are required by the call. A GPIB address pair consists 
of two integers. The first is the primary address of a device. The second is 
the secondary address. If the first is set to -1, the device is assumed to not 
exist. If no address is provided, it ls assumed that the bus is already 
addressed. When the KM-488-DD driver encounters a primary address = -1, 
it assumes that there are no more addresses in mygads. 

An example of a structure with two devices is: 

DIM blYGADS% (5) r 2*3 -1 
MYGADS% = 3 ' first device - pri addr 
MYGADS% = -1 ' first device - no set addr 
biYGADS%(2) = 15 ' second device - pri addr 15 
MYGADS%(3) = 2 ' second device - set addr 2 
bl?GADS%(Q) = -1 ' third device doesn't exist 

If the KM-488-DD ls a Peripheral (in which case the call will not require a 
GPIB bus address), you will want to use the following MYGADS array: 

Returns 

MYGADS% = -1 : bfYSADS%(l) = -1 : MYGADS%(2) = -1 

This section describes any values which are returned by the routine. 

ERRCODE% - All calls except KUNPACK, KPACK, KSWAP, KDIAGON and 
KDIAGOFF return an integer error code which will be 0 if no error was 
detected. It is good practice to check ERRCODE% after each call and provide 
a routine to handle errors if they arise. 

7-5 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

Programming This section lists any special programming considerations for the routine. 
Notes 

Example This section gives a programming example using the routine. Note that all of 
the examples given, assume that the offsets have been set. (The HEAD- 
ER.BAS file which defines the BASICA call routine offsets definitively has 
been included in the first section of the program.) 

7-6 



KM-48%DD Programming Guide Using the Call Interface in BASICA 

KABORT 

Purpose 

Offset 

Syntax 

Parameters 

Returns 

This routine allows the KM-488-DD to take control of the GPIB bus by 
forcing all other devices on the bus to the idle state. The KM-488-DD must be 

0 

xx BoARDNR% = 
XX ERRCODE%= 
XX CALL KABORT(BOARDNR%, BRRCODE%) 

BOAFQNRB is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming If the KM-488-DD is both the Active and System Controller, KABORT asserts 
Notes the IFC line to retain control of the bus. Otherwise, the KM-488-DD will 

assert the ATN line, and then untalk and unlisten all devices. 

Example 770 BRDNDM% = 0 ’ First GPIB Board 
1572 '*** Seize Control of GPIB Bus *** 
1573 ' 
1575 CALL KABORT(BRDNDM%, ERRNUbl%) 
1580 IF ERRNDbl% TSEN PRINT "IEEE Error ";ERRNDbf%:STOP 

7-7 



Using the Call Intelface In BASICA KM-488-DD Programming Guide 

Purpose Defines the conditions under which the lightpen status becomes true. 

Offset 3 

Syntax XX BOABDNB%= 
XX ABMCODE% = 
xx ERRCoDE% = 
XX CALL KABbf(BOABDNB%, ERRCODE%, ARMCODE%) 

Parameters BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be 
programmed. 

ABMCODE% is a 16-bit integer describing on which conditions a light pen 
interrupt may occur. The integer is of the format: 

Sit 15.6 6 7 6 6 4 3 2 1 0 

0 ADSC CIC PER DET SRQ DEC LA TA IDLE 

Where: 

ADSC Address Status Change. If this bit is set to 1, the lightpen status 
will become true when a change in address status has occurred 
(i.e., a Talker becomes a Listener, or a Peripheral becomes an 
Active Controller). This encompasses all the conditions marked 
with an asterisk (9 below. 

cc* Controller in Charge. If this bit is set to 1, the lightpen status 
will become true when the control is passed to the KM-488-DD 
and it becomes the Active Controller. 

PEW Peripheral. If this bit is set to 1, the lightpen status will become 
true when the KM-488-DD passes control to another device and 
becomes a Non-Active Controller. 

DET Device Triggered. If this bit is set to 1, the lightpen status will 
become true when a KM-488-DD, acting as a Peripheral, receives 
a GPIB Trigger command. 

7-8 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KARM (cont’cf) 

SRQ Internal SRQ. If this bit is set to one, the lightpen status will 
become true when the KM-488-DD’s internal Service Request Bit 
(SRQ) is set. 

DEC Device Cleared. If this bit ls set to one, the lightpen status will 
become true when a KM-488-DD, acting as a Peripheral, receives 
a GPIB Clear command. 

LA* Listen Addressed. If this bit is set to one, the lightpen status 
will become true when the KM-488-DD, acting as a Peripheral, is 
addressed as a Listener and can accept data from the GLIB. 

TA* Talk Addressed. If this bit is set to one, the lightpen status will 
become true when the KM-488-DD, acting as a Peripheral, is 
addressed as a Talker and can output data to the GPIB. 

IDLE* Idle. If this bit is set to one, the lightpen status will become true 
when the KM-488-DD, acting as a Peripheral, is unaddressed as 
a Talker or a Listener. 

w NOTE The conditions marked by an asterisk (‘1 will force the lightpen 
status to true only when the KM-488-DD’s address status has changed. This 
is indicated by the state of the Address Change Bit in the Status byte. See 
the KSTATUS or KQUIKSTAT routine descriptions for more information. 

Returns ERRCODE% is a variable through which error codes are returned. If this 
variable is set to 0, then no error occurred. If it is set to a value other than 0, 
then an error did occur. The error codes are listed in Appendix G. 

Programming The driver must be configured for lightpen emulation at load time via the 
Notes CONFIG.DAT”pipe” file, as the default for lightpen emulation is off. 

7-9 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KARM (cont’d) 

Example 770 
1150 
1160 
1170 
1180 
1190 
1195 
1200 
1210 
1270 
1271 
1275 
1280 
1285 
1290 
1300 

2000 'lightpen handler here 

3000 RESUNF, NEXT 'continue program 

BRDNDbl% = 0 ’ First GPIB Board 
' SET DP LIGET PBN INTBRRUPT 

'Enable light pen interrupt detection on SRQ 

ON PEN GOSDB 2000 
'BASICA connection of subroutine to the light pen 
PEN ON 
'BASICA comnand to turn on light pen interrupt 
ARWXDE%=CElO 
'KM-488-DD will signal light pen status hit on SRQ 
EImNDM% = 0 
CFLLL XARM(BRDNWM%, EBRNDbl%, ARbCODE%) 
IF ERPNUbl% TBEN PRINT "IEEE Error ":ERRNDM%:STOP 
I 
'other pzogram operations 

7-10 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

Purpose 

Offset 

Syntax 

Parameters 

Returns 

Selects in which direction the memory is to be addressed for both DMA and 
non-DMA buffered transfers. 

6 

XX DIR% = 
xx BoARDNR% = 
XX ERRCODE% = 
XX CALL XBDF(BOMDNR%, RRRCODE%, DIR%) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

DIR% selects the direction in which the buffer is to be read. If DIR% is equal 
to 1, the buffer address will be incremented. lf DIR% is equal to 0, the buffer 
address will be decremented. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming If the buffer’s address is to be incremented during a bus I/O operation, be 
Notes sure to use the lowest address in the designated buffer. Likewise, if it is to be 

decremented, select the highest address. 

Example 770 BRDNDM% = 0 ' First GPIB Board 
780 DECRM% = 0 ' Decrement Memory Address On DMA 
790 ERRNDM% = 0 
1000 'Set Direction Of blemory Address Change With DbfA 
1010 CALL RBW(BRDNDM%, ERPNDM%, DECRbl%) 
1020 IF BRRNIJM% TBEN PRINT "IEEE Error ":EBlUiUM%:STOP 

7-11 



Using the Call Interface in BASICA KM-4l33-DD Programming Guide 

KBUFD 

Purpose 

Offset 

Syntax 

Parameters 

Returns 

Returns the number of characters transferred in the last buffered transfer or, 
in the case of DMA transfers, the current transfer. 

9 

XX BOARDNR%= 
XX ERRCODE% = 
xx BCODNT% = 
XX CALL XBUFD(BDABDNR%, ERRCODE%, BCODNT%) 

BCABBNR% is an integer which represents the board identification number. 
This ls an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ERRCODEB is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

BCOUNT% represents the number of characters which were transferred dur- 
ing the last buffered transaction. This will be an integer (16-bits) in the range 
0 to 65,535. 

Programming 1. 
Notes 

2. 

If the data was transferred in the DMA CONTINUE mode, KBUFD 
returns the number of characters transferred thus far. 

It is useful to call this routine after a buffered KENTER has been per- 
formed. This will help you to determine if the expected number of 
characters has been received and/or the transfer has terminated as the 
result of a detected terminator. 

Example 710 BRDNDM% = 0 ’ First GPIB Board 
780 Em%=0 
1000 ' *** Return Number Of Bytes In Last GPIB BUS 
1001 ' Data Transfer *** 
1010 CALL RBDFD(BRDNDbf%, ERRNDbl%, XFER%) 
1020 IF ERRNDM% TBEN PRINT "IEEE Error ":ERRNlJM%:STOP 

7-12 



KM-48fi-DD Programming Guide Using the Call Interface in BASICA 

Purpose The KM 488 - _ DD mw be an Active Cant roller, Resets device(s) to their 
power-up parameters. 

Offset 12 

Syntax xx BaFaDNR% = 
xx KRRcoDE% = 
XX DIM MYGADS%() 'for N address pairs 
XX CALL KCLERR(BDARDNR%, ERRCODE%, bUGADS%( 

Parameters BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

MYGADS (N*2) represents the GPIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure is described in section 7.1. 

Returns ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

If MYGADS contains no addresses, then the universal GPIB DCL (De- 
vice Clear) command ls issued and all devices will be cleared. 

2. If MYGADS contains addresses, then those devices specified will be lis- 
tened and sent a GPIB SDC (Select Device Clear) Command. 

Example 770 BFzDNUbl% = 0 ' First GPIB Board 
780 EBRNDbl% = 0 
600 DIM NOADR%(3) 
620 NOADR%(O) = -1 ' first primary address = NONE 
1000 ' 
1610 ' With No Addresses Issue The Universal Device Clear 
1620 CALL KCLEAR(BRDNUbf%, ERRNUM%, NOADR%(O)) 
1630 IF ERBNJbt% TEEN PRINT "IEEE Error ";ERRNUM%:STOP 

7-13 



Using the Call Interface In BASICA KM-4B8-DD Programming Guide 

Purpose 

Ottset 

Syntax 

Parameters 

Resets the KM-4%DD to its default operating parameters or to those 
specified. 

15 

XX BOABDNB%= 
XX ERRCODE% = 
XX CFGSTRINGQ = 
xx STRING=N% = 
XX CJLLL XCONFIG(BOAXDNB%, ERRCODE%, CFGSTRINGS, STRING- 
LEN%) 

BOABDNR% is an integer which represents the board identification number. 
This ls an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

CFGSTRING$ is a user-defined string. This string can be comprised of any 
of the following options: 

/T [term term Sets the input and output GPIB bus terminators. You 
EOII can select one or two GLIB bus terminators followed by 

EOI or just EOI. If you just specify /T, the GPIB bus 
terminators will be set to none. 

term is an optional parameter which represents a ter- 
minator byte to be used. This terminator byte can be 
represented as any of the following: 

Qchar where char is an integer representing the 
hex or decimal equivalent of the termina- 
tofs ASCII representation. (See Appendix 
B for ASCII Equivalents.) char must be 
preceded by a dollar sign ($). 

Hexadecimal values must also be preceded 
by &H. For example, $84 represents the let- 
ter ‘7” as does $&H54. 

CR This represents the Carriage Return charac- 
ter (13 decimal, OD hex). 

7-14 



KM-48&l-DD Programming Guide Using the Coil Interface in BASICA 

LF 

‘X 

This represents the Line Feed character (10 
decimal, OA hex). 

where X represents a printable ASCII 
character (32 to 254 decimal). The character 
must be preceded by an apostrophe 0, for 
example: ’ B represents the character B. 

EOI (End or Identify) is an optional GPIB BUS termina- 
tor. If included, the KM-488-DD will detect/assert the 
GPIB bus EOI line. (This would indicate that the last 
character has been sent.) Data will continue to be read 
until this terminator, a valid terminator sequence, or 
both are detected. 

/TI [term term Sets the input GPIB bus terminators. You can select one 
EOIl or two GPIB bus terminators followed by EOI or just 

EOI. If you just specify /TI, the input GPIB bus termi- 
nator will be reset to none. term and EOI are described 
above. 

/TO [term term Sets the output GPIB bus terminators. You can select 
EOI] one or two GPlB bus terminators followed by EOI or 

just EOI. If you just specify /TO, the input GPIB bus 
terminator will be reset to none. term and EOI are 
described above. 

/E [term term] Sets the input and output EOL terminators. (Note that 
this should only be used if the application program also 
includes File I/O Commands.) term is described 
above. 

7-15 



Using the Call Interface In BASICA KMdBS-DD Programming Guide 

* 

/EI [term 
term] 

Sets the input EOL terminators. (Note that this should 
only be used if the application program also includes 
File I/O Commands.) term is described above. 

/&O [term 
term] 

Sets the output EOL terminators. 
(Note that this should only be used if the application 
program also includes File I/O Commands.) 

/N name ad& Configures a named device. Sets its address to the given 
[secaddrl value and its GPIB bus terminators to the current GLIB 

bus terminator settings. (Note that this should only be 
used if the application program also includes File I/O 
Commands utilizing the named device configurations.) 

name is the name of the device. 

addr is the primary GPIB address (00 to 30). 

secaddr is the secondary GPIB address (00 to 31). 

NOTE: Do not create a named device with the same name as an 
existing dlrectory on the current working disk. 

If CFGSTRING is empty, then the configuration will revert to the load-time 
configuration. 

STRINGLEN% is an Integer from 0 to 255 which gives the length of the 
CFGSTRING string. 

Returns ERRCODE% is a variable through which error codes are returned. If this varl- 
able ls set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

7-16 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KCONFIG (cont’d) 

Programming 1. The /E, /EI, /EO, and /N options will only take effect if File I/O 
Notes Commands are used within the same application program as the call- 

ables. 

2. If you are converting an application program previously written using 
the File I/O commands to callables, be sure to note that the CONFIG 
string for the KCONFIG call does not include the “CONFIG” keyword 
(i.e., as it would if you were using the CONFIG File I/O command). 

3. Primary and Secondary Addresses must each be two characters long, 
e.g. 01 or 0209. 

Example 760 CONES = STRING$(20,32) ‘initialize string 
770 BRDNm% = 0 ' First GPIB Board 
780 ERRNoM% = 0 
1000 ' *** Configure Terminators for Carriage Return, 
1005 ' Line Feed With EOI *** 
1010 COwF$ = "/T CR LE EOI" 
1020 STNLEN% = LRN(CONF$) 'Length of CON@ 
1030 CALL RCONFIG(BRDNUM%, ERRNUM%, CONFQ, STNLBN%) 
1040 IF RRRNUM% TEEN PRINT "IEEE Error ":ERBNUM%:STOP 

7-17 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KDIAGOFF 

Purpose Disables file diagnostics. 

Ottset 18 

Syntax xx CALL lanAGoET() 

Parameters None. 

Returns None. 

Programming None. 
Notes 

Example 1000 CALL KDIAGOFF() 

7-18 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KDIAGON 

Purpose 

Ottset 

Syntax 

Parameters 

Returns 

Turns file diagnostics on. (Default is off) 

21 

XX FILENAME$ = "blYDIAG.DAT" 
xx STRLRW% = 
XX CALL KDIAGON(FILENAblS$, STRLEN%) 

FILENAMES is a string containing the name of the file to which the diagnos- 
tic information is to be written. 

STRLEN% is the length of the string representing the name of the file. 

None. 

Programming This will echo the value of call parameters into a file in readable form. 
Notes 

Example 760 DIAGON$ = STRING$(10,32) 'initialize string 
1010 DIAGON$ = "DEBOG.DAT" 'Target Diagnostic File Name 
1020 STNLEN% = LEN(DIAGON$) 'Length of DIAGON$ 
1030 ' Turn Driver Diagnostics On 
1040 CALL KDIAGON(DIAGON$,STNLEN%) 'File Name 6 Length 

7-19 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

Purpose 

Offset 

Syntax 

Resets previously set conditions which cause lightpen interrupts. 

24 

XX BOARDNR%= 
XX ARMCODE% = 
XX ERRCODE% = 
XX CALL KDISARM(BOARDNR%, ERRCODE%, ARMCODE%) 

Parameters BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ARMCODE% is a 16-bit integer describing which conditions should be reset. 
The integer ls of the format: 

Bit 15.9 9 7 6 6 4 3 2 1 0 

0 ADSC CIC PER DET SRQ OEC LA TA IDLE 

Where: 

AOSC Address Status Change. If this bit is set to 1, light pen status 
will not change when a change in address status has occurred 
(i.e., a Talker becomes a Listener, or a Peripheral becomes an 
Active Controller). 

CIC Controller in Charge. If this bit is set to 1, light pen status will 
not change when the control is passed to the KM-488-DD and it 
becomes the Active Controller. 

PER 

DET 

Peripheral. If this bit ls set to 1, light pen status will not change 
when the KM-488-DD passes control to another device and 
becomes a Non-Active Controller (Peripheral). 

Device Triggered. If this bit is set to 1, light pen status will not 
change when a KM-488-DD, acting as a Peripheral, receives a 
GPIB Trigger command. 

7-20 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KDISARM (cont’d) 

SRQ Internal SRQ. If this bit is set to one, light pen status will not 
change when the KM-488-DD’s internal Service Request Bit 
(SRQ) is set. 

DEC Device Cleared. If this bit is set to one, light pen status will not 
change when a KM-488-DD, acting as a Peripheral, receives a 
GPIB Clear command. 

LA Listen Addressed. If this bit is set to one, light pen status will 
not change when the KM-488-DD is addressed as a Listener and 
can accept data from the GPIB. 

TA Talk Addressed. If this bit is set to one, light pen status will not 
change when the KM-488-DD is addressed as a Talker and can 
output data to the GPIB. 

IDLE Idle. If this bit is set to one, light pen status will not change 
when the KM-488-DD is unaddressed as a Talker or a Listener. 

Returns ERRCODE% is a variable through which error codes are returned. If this 
variable is set to 0, then no error occurred. If it ls set to a value other than 0, 
then an error did occur. The error codes are listed in Appendix G. 

Programming None. 
Notes 

Example 770 BRDNDM%=O ' First GPIB Board 
780 ERRNOM% = 0 
1150 '**if* DISABLE LIGET PEN INTERRUPT *** 
1160 ' 
1170 'Dieable light pen interrupt detection on SRQ 
1180 ' 
1200 PEN OFF 'BASICA ccmmand to turn off light pen 
1270 DIS~%=CElO 
1275 'KM-4SS-DD will clear light pen status bit of SRQ 
1280 CALL KDISARM(BRDNDM%, ERRNUN%, DISARM%) 
1285 IF ERRNDbl% TEEN PRINT "IEEE Error ";ERRNUbl%:STOP 
1290 ' 
1920 CALL KDISARM(BRDNDbl%, ERRNUbl%, DISARM%) 

7-2 1 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KDMA 

Purpose Sets DMA transfer mode. 

Offset 27 

Syntax xx BOARDNR% = 
XX DblAMODE%= 
xx ERRc!oDE% = 
XX CALL KDbfA (BOABDNB%, ERRCODE%, DMA!dODE%) 

Parameters BOARBNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

DMAMODE% is a 16-bit integer which represents the DMA mode to be used. If 
no DMAMODE% is given, then single mode without autoinitialization will be 
assumed. The DMAMODE% integer ls interpreted as follows: 

Bll 15-3 2 1 0 

0 I SIN I ~~-~- I 

Where: 

SIN 

DEM 

SINGLE. When this bit is set to one, the SINGLE mode is 
selected. In this mode, when the DMA Request line is asserted 
the DMA controller assumes control of the bus and transfers a 
single byte of data. Control of the bus is then returned to the 
microprocessor. 

DEMAND. When this bit is set to one, the DEMAND mode is 
selected. In this mode, when the DMA Request line is asserted 
the DMA controller assumes control of the bus. The DMA con- 
troller retains control of the bus until the DMA request signal is 
unasserted. Once this signal has been unasserted for more than 
one microprocessor clock cycle, control of bus is returned to the 
microprocessor. This mode allows the DMA controller chip to 
pass data at a slightly faster rate and the microprocessor to 
access the bus when it is not needed. Note that SINGLE and 
DEMAND mode cannot be used simultaneously. 

7-22 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KDMA (cont’d) 

AUTO AUTOINITIALIZE. When this bit is set to one, the AUTOIN- 
ITIALIZE mode is selected. Under normal circumstances, the 
DMA controller transfers the specified number of bytes to/from 
the PC memory from the given starting address and terminates 
when completed. When the AUTOINITIALIZE mode is 
enabled, the DMA controller will reset the original byte count, 
reset the initial address, and repeat the transfer again. The 
AUTOINITIALIZE option is only in effect until the next 
KENTER or KOUTPUT buffered transfer is completed. Addi- 
tionally, if a KENTER or KOUTPUT transfer in DMA CON- 
TINUE mode is selected, the AUTOINITIALIZE option will only 
be in effect for that transfer. 

Returns None. 

Programming 1. 
Notes 

All DMA AUTOINITIALIZE transfers should occur entirely within a 
single DMA 64 KByte page. So, if a DMA buffer operation involves a 
transfer of more than 64K or occur across a DMA page boundary, the 
AUTOINITIALIZE option affects only those bytes in the last transfer 
occurring within one DMA page. 

Also note that DMA AUTOINITIALIZE transfers specified for buffers 
that are located in more than a single DMA page are unpredictable. 

2. It is impossible for a program to halt a DMA AUTOINITIALIZE opera- 
tion unless the DMA CONTINUE option is selected. This is because 
the driver does not return control to a program using non-CONTINUE 
operations until the transfer completes. 

Example 770 BRDNUM% = 0 ' First GPIB Board 
SO0 ERBNDbf% = 0 
830 AUTOSING%= 4 + 1 'Single Mode With Autoinitialize 
1000 I*** Set Up DblA Mode To Single With Autoinitialize 
*** 
1010 CALL XDbfA(BRDNDM%, -%, AUTOSING%) 
1020 IF ERRNUbl% TBEN PRINT "IEEE Error ";ERRNUM%:STOP 

J-23 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

Ottset 

Syntax 

Parameters 

Allows the KM-488-DD to receive data from a GPIB bus device into an inte- 
ger BASIC array. 

30 

XX BOARDNR%= 
XX ERRCODE% = 
XX DIM DATA%0 
XX COUNT% = 
xx MODE% = 
XX DIM MYGADS%() 
XX DIM TBBMLIST%() 
XX CALL KENTERBWF(BOABDNB%, ERBCODE%, DATA%(O), 
COUNT%, MODE%, wYGADS%(O), TEBtdLIST%(O)) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

DATA% is an integer array large enough to accept the returned data. If a 
non-zero COUNT% is specified, DATA% (COUNT%/2) will suffice for any 
returned data. If COUNT% is 0 and terminator characters are used, then 
DATA% () must be large enough to accommodate both data and terminators 
retuned by the device. 

COUNT% is an integer representing the number of characters to be read. 
Valid counts are within the range 0 to 65535 decimal, or from 0 to &HFFFF 
hex. When 0 is used, the KENTER will stop when the termination specified 
by TERMLIST% is satisfied. 

MODE% is an integer which represents whether or not DMA is to be used and 
if the CONTINUE mode is to be used. This integer is interpreted as follows: 

Bit 15.2 1 0 

0 CONT DMA 

J-24 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KENTERBUFF (cont’d) 

Where: 

CONT CONTINUE. This an optional mode which is used in conjunc- 
tion with DMA. When this bit is set to one, the CONTINUE 
mode will be used. If CONTINUE is specified, the KM-488-DD 
will return control to the application program as soon as it can 
without waiting for completion of the transfer. The KM-488-DD 
will at least wait for the first byte to check for time-out (Unless 
TIME OUT = 0) before continuing. DMA CONTINUE execu- 
tion concludes when the KM-488-DD completes its transfer. 

If CONTINUE ls used and the DMA AUTOINITIALIZE has 
been enabled, then the DMA transfer will continue until a 
KSTOP routine is invoked or a pre-specified GPIB BUS input 
terminator ls detected. 

DMA DMA. If this bit is set to one, then DMA will be used in the data 
transfer. (See also the KDMA call description.) 

MYGADS (N*L?) represents the GPIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure is described in section 7.1. 

TERMLIST% (3) is an integer array which defines the GPIB bus terminators 
to be used dtiring the KENTERBUFF call. These terminators are used in con- 
junction with COUNT to terminate the input process. Terminator choices 
include whether or not EOI will be detected to signal the end of input and 
which character sequence, if any, is to be detected as an end of message code. 
The default terminator scheme is initially set up by the CONFGDAT file and 
can be modified by calling KTERM and KCONFIG. TERMLIST can either 
specify the use of the default terminators or temporary overrides. 

TERMLIST% (3) is comprised of the following elements: 

TERMLIST% (0 EOI detection. Possible values are: 
): 

-l(&HFFFF) Use the default EOI setting. 
0 Don’t Detect EOI. 
1 Detect EOI. 

7-25 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KENTERBUFF (cont’ci) 

TERMLIST% (1) 1st GPIB bus terminator. Possible values are: 

-1 (&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
the default second terminator will 
also be used. 

0 to 255 Detect this ASCII character as the first 
GPIB bus terminator instead of the 
default first GPIB Input Terminator. 
The 0 - 255 value represents the ASCII 
value of the terminator character to 
be used. (An ASCII Equivalence 
Chart ls provided in Appendix A.) 

TERMLIST% (2) 2nd GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
this will automatically be selected. 

0 to 255 Detect this ASCII character as the sec- 
ond GPIB bus terminator instead of 
the default second GPIB Input 
Terminator. The 0 - 255 value repre- 
sents the ASCII value of the terrnina- 
tor character to be used. (An ASCII 
Equivalence Chart is provided in 
Appendix A.) 

The following TERMLIST can also be used: 

DIM TERMLIST% (2) 
TERMLIST = -1 
TERMLIST = -1 
TEFU.lLIST(2) = -1 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able ls set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

7-26 



KM-488-DD Programmlng Guide Using the Call Interface in BASICA 

KENTERBUFF (cont’d) 

Programming 1. 
Notes 

If the KM-488-DD is a Peripheral, an active controller must address 
KM-488-DD as a listener before KENTERBUFF is called. In this 
instance, you should define MYGADS to include no addresses. This is 
described in section 7.1. 

2. If the KM-488-DD ls the Active Controller, it will automatically address 
itself as a listener and another device defined in MYGADS as the talker. 
Since only one device can be a talker, the address group MYGADS can 
contain only one address. If a device has been previously addressed to 
talk and the KM-488-DD previously addressed to listen, then MYGADS 
can specify no addresses (See section 7.1) and the bus will not be re- 
addressed. 

3. If COUNT% is specified as 0, then KENTER will terminate when the ter- 
minator(s) specified by TERMLIST% is encountered. 

4. lf it is desirable to terminate on COUNT% only and not use the default 
terminators, then you must select no terminator overrides in TERM- 
LIST%, in addition to giving the count. In this case, a byte by byte 
synchronous transfer is executed. 

5. If both counts and termination are specified, the KENTER will termi- 
nate on whichever condition is encountered first. 

6. If the condition(s) for termination is not encountered and the device 
has no more data, KTERM will timeout unless the timeout has been 
disabled. 

7. To manipulate the data, which is returned in the form of two data bytes 
per integer location, you may need to use KUNPACK. 

7-27 



Using the Call Interface in BASICA KM-4tXbDD Programming Guide 

KENTERBUFF (cont’d) 

Example 370 BRDNIJbf% = 0 ' First GPIB Board 
400 ' 
470 MODE% = 1 ' DMA mode flag -- 0: no Dada 
400 , 1: DblTi Without CONTINUN 
490 , 3: DMA With CONTINUE 
500 ERmuM% = 0 
890 DIM GADS%(3) ' Address Array for one device 
900 GADS%(O) = 5 ’ first primary address = 5 
910 GADS%(l) = -1 ' first secondary address = NONE 
920 G?bDS%(2) = -1 ' second primary address = NONE 
1000 ' 
1090 DIM TEBM%(3) ' Default terminator array 
1100 TEBl.l%(O) = -1 'Use default SOI 
1110 TERM%(l) = -1 ' Use default first terminator 
1120 TERM%(2) = -1 ' Use default second terminator 
1130 ’ 
1240 NDblD% = 1028 'Number of bytes to transfer 
1280 DIM DbfAIN%(NUblD%/2) 'Array to hold DMA input data 
1300 ' 
1800 'Enter 1028 bytes from the device at GPIB address 5 
2460 CALL KENTERBUP6'(BBDNDbl%, ERBNUM%, DMAIN%(O), NUMD%, 
MODE%, GADS%(O), TERM%(O)) 

7-28 



KM-488-DD Programming Guide Using the Call Interface In BASICA 

KENTERSTR 

Ottset 

Syntax 

Parameters 

Allows the KM-488-DD to receive data from a GPIB bus device into a BASIC 
data string. 

33 

XX BOARDEIR% = 
XX ERRCODE%= 
XX DATA$ = 
XX CODNT% = 
xx MODE% = 
XX DIM blYGADS%() 
XX DIM TERMLIST%() 
XX CALL KENTEBSTR (BOABDNB%, ERRCODE%, DATA$, COUNT%, 
MODE%, MYGADS% (0) , TEBMLIST% (0)) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

DATA$ is a string large enough to accept the returned data. If a non-zero 
COUNT% is specified, the string should be of lengthCOUNT%. If COUNT% is 0 
and terminator characters are used, the string must be large enough to 
accommodate both data and terminator characters returned by the device. 

COUNT% is an integer representing the number of characters to be read. 
Valid counts are within the range 0 to 256 decimal, or from 0 to &HFF. When 
COUNT% is 0, the KENTERSTR will stop when the terminators specified by 
TERMLIST% is satisfied. 

MODE% is an integer which represents whether or not DMA is to be used and 
if the CONTINUE mode is to be used. This integer is interpreted as follows: 

Bit 15-2 1 0 

0 CON1 DMA 

7-29 



Using the Call interface in BASICA KM-488-DD Programming Guide 

KENTERSTR (conf’d) 

Where: 

CONT CONTINUE. This an optional mode which is used in conjunc- 
tion with DMA. When this bit is set to one, the CONTINUE 
mode will be used. Lf CONTINUE is specified, the KM-488-DD 
will return control to the application program as soon as it can 
without waiting for completion of the transfer. The KM-488-DD 
will at least wait for the first byte to check for time-out (Unless 
TIME OUT = 0) before continuing. DMA CONTINUE execu- 
tion concludes when the KM-488-DD completes its transfer. 

If CONTINUE ls used and the DMA AUTOINITIALIZE has 
been enabled, then the DMA transfer will continue until a 
KSTOP routine is invoked or a pre-specified GPIB BUS input 
terminator is detected. 

DNA DMA. If this bit is set to one, then DMA will be used in the data 
transfer. 

MYGADS (N*2) represents the GPIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure is described in section 7.1. 

TERMLIST% (3) is an integer array which defines the GPIB bus terminators 
to be used during the KENTERSTR call. These terminators are used in con- 
junction with COUNT to terminate the input process. Terminator choices 
include whether or not EOI will be detected to signal the end of input and 
which character sequence, if any, is to be detected as an end of message code. 
The default terminator scheme is initially set up by the COAJFIG.DAT file and 
can be modified by calling KTERM and KCONFIC. TERMLIST can either 
specify the use of the default terminators or temporary overrides. 

TERMLIST% (3) is comprised of the following elements: 

TEmIST% (0) EOI detection. Possible values are: 

-l(&HFFFF) Use the default EOI setting. 
0 Don’t Detect EOI. 
1 Detect EOI. 

7-30 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KENTERSTR (cont’d) 

TERMLIST% (1) 1st GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
the default second terminator will 
also be used. 

0 to 255 Detect this ASCII character as the first 
GPIB bus terminator instead of the 
default first GPIB Input Terminator. 
The 0 - 255 value represents the ASCII 
value of the terminator character to 
be used. (An ASCII Equivalence 
Chart is provided in Appendix A.) 

TERMLIST% (2) 2nd GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator ls used, 
this will automatically be selected. 

0 to 255 Detect this ASCII character as the sec- 
ond GPIB bus terminator instead of 
the default second GPIB Input 
Terminator. The 0 - 255 value repre- 
sents the ASCII value of the termina- 
tor character to be used. (An ASCII 
Equivalence Chart is provided in 
Appendix A.) 

The following default TEEMLIST% can also be used: 

DIM TEEMLIST% (3) 
TEEMLIST% = -1 
TERMLIST% = -1 
TERsaLIST%(2) = -1 

Returns EEECODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

7-31 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KENTFRSTR (cont’d) 

Programming 1. If the KM-488-DD ls a Peripheral, an active controller must address the 
Notes talker as a listener and some other device as the talker, before KEN- 

TERSTR is called. In this instance, you should specify no addresses in 
MYCGADS%. This is described in section 7.1. 

2. If the KM-488-DD is the Active Controller, it will automatically address 
itself as a listener and another device defined ln MYGADS% as the 
talker. Since only one device can be a talker, the address group in 
MYGADS% can contain only one address. If a device has been pre- 
viously addressed to talk and the KM-488-DD previously addressed to 
listen, then MYGADS% can contain no addresses (See section 7.1) and 
the bus will not be m-addressed. 

3. If COUNT% is specified as 0, then KENTERSTR will terminate when the 
terminator(s) specified by TERMLIST% (3) is encountered. 

4. If it is desirable to terminate on COUNT% only, and not use the default 
terminators, then you must select no terminator overrides in the 
TERMLIST% (3) array. In this case, a byte by byte synchronous trans- 
fer is executed. 

5. If both counts and termination are specified, the KENTERSTR will ter- 
minate on whichever condition is encountered first. 

6. If the condition(s) for termination is not encountered, KTERM will 
timeout unless the timeout has been disabled. 

7-32 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

Example 370 BRDNDM% = 0 ' First GPIB Board 
420 INDAT$ = STRING$(18,32) 'String for Data from DbM 
470 WODE% = 0 ’ DblA mode flag -- 0: no DblA 
480 I 1: DMA Without CONTINUE 
490 , 3: DMA With CONTINUE 
590 DIM F,ADS%(3) ' addressing axray for ENTER comnand 
600 PADS%(O) = 12 ' first primary address = 12 
610 EADS%(l) = -1 ' first secondary address = NONE 
620 EADS%(2) = -1 ' second primary address = NONE and 
NONB to follow 
630 ' ONLY ONE address is allowed for ENTER, EADS%(2) 
must = -1 
640 ' 
820 ' Terminator Attays 
830 ' 
840 DIM ETERM%(3) ' ENTER terminator array 
850 ETBRM%(O) = -1 ' NO EOI OVERRIDE 
860 ETERM%(l) = GBD ' first terminator = CR 
870 ETEBM%(2) = LBA ' second terminator = LP 
1800 'Enter the character string from the device at 
1801 'GPIB address 12 
1805 CODNT%=O 
1806 ERRNDM% = 0 
1810 CALL RENTERETR(BRDNDM%, ERRNDbl%, INDAT$, COUNT%, 
MODE%, EADS%(O), ETEBM%(O)) 
1920 IF ERRNUM% TEEN PRINT "IEEE Error ";EmM%:STOP 

7-33 



Using the Call interface in BASICA KM-488-DD Programming Guide 

KERROR 

Purpose 

Offset 

Syntax 

Parameters 

Returns 

Enables/Disables display of Error Messages. 

39 

xx BoARDNR% = 
XX ERRCODE% = 
XX ESW% = 
XX CALL KRRROR(BOARDNR%, BRRC!ODE%, ESW%) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ESW% is an integer which determines if error message display function will 
be enabled or disabled. If ESW%=l, the error message display is enabled. 
(This is the default.) If ESW%=O is specified, the error message display is dis- 
abled. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

If KERROR has been used to enable error messages, the message will 
only reveal that -or has m for the KM-488-DD calls. It does 
not identify what type of error occurred. The KDIAGON routine for 
should be used to help debug applications utilizing the KM-488-DD 
calls, and the KSTATUS routine used for identifying the error number. 

2. Programs can also check ERRCODE% after each call to identify the exact 
nature of call errors. 

Example 770 BRDNDM8 = 0 ' First GPIB Board 
780 ERRON% = 1 ' Enable Errot Display 
800 ERIWDM% = 0 
1000 ' *** Enable Error Display *** 
1010 CALL KF.RROR(BBDNLRd%, FsRWObl%, ERRON%) 
1020 IF BRRNUM% TEEN PRINT "IEEE Error ";EPRNUbl%:STOP 

7-34 



KM-488-DD Programming Guide Using the Call interface in BASICA 

KFlLL 

Purpose 

Offset 

Syntax 

Parameters 

Returns 

Defines the KM-488-DD driver’s response to a request for data when none is 
available. 

NOTE: KFILL is provided for users who mix File I/O Commands and Calls 
in the same program. It only affects inputs performed using the File I/O 
Commands. 

42 

xx BoARDNR% = 
XX ERRCODE% = 
XX FILLSW% = 
XX CALL KFILL(BOARDNB%, ERRCODE%, FILLSWB) 

BOAFtDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

FILLSW% is an integer which represents the fill condition. (The default con- 
dition returns a NULL character.) Valid integers are any one of the follow- 
ing: 

-1 OFF. The KM-488-DD driver will not return any data charac- 
ters or a DDS error message, if no input data is available. 

-2 ERROR. The KM-48%DD driver will not return any data 
characters, but will generate an Error Message. The error 
message number can then be trapped by calling the KSTATUS 
routine. (Refer to the KSTATUS routine for more information.) 

O-255 ASCII. The KM-488-DD driver will return the designated 
ASCII character. (An ASCII Equivalence Chart is provided in 
Appendix A.) Specify the decimal equivalent of the character 
to be used. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it ls set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

7-35 



Using the Call Interface in BASICA KMdB&DD Programming Guide 

KF/LL (cont’d) 

Example 77OBRDNmd%= 0 ' First GPIB Board 
780 FILUXiAR% = 88 ' Decimal equivalent of "X“ 
880 ERBNDN% = 0 
1000 ' l ** Set Fill Character To 'X' *** 
1010 CALL KFILL(BBDNDM%, E-%, FILLCRAR%) 
1020 IF ERRNDbfB THEN PRINT "IEEE Error ":ERRNUM%:STOP 

7-36 



KM-488-DD Programming Guide Using the Call Interface In BASICA 

KHELLO 

Purpose 

Ottset 

Syntax 

Parameters 

Returns 

Returns an identification string from the KM-488-DD driver. 

45 

XX BOARDNR%= 
XX ERRCODE% = 
xx IDPUWPONSE$ = 
XX CALL KSBLLO(BOABDNR%, EBRCODE%, IDBBSPONSE$) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

IDNNSPONSE$ will contain a string similar to: copyright (c) 1991 
Keithley MetraByte Corp. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able ls set to 0, then no error occurred. If it ls set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

The string into which the HELLO message ls returned must be dimen- 
sioned prior to calling KHELLO. Otherwise, BASICA assumes that the 
string of length 0 and calling KHELLO will result in destroying other 
programmed data. (See the BASIC STRING$ function.) 

Example 770 ElRDNm% = 0 'First GPIB Board 
800 IDSTR$=STRING$(50,0) 'String to hold ID from KSBLLO 
810 ERRNUM% = 0 
1410 'Return ID from driver to verify it.8 presence 
1420 CALL KEELLO(BRDNUM%, ERRNDM%, IDSTR$) 
1430 IF EBBNDH% THEN PRINT "IEEE Error ";ERRNUM%:STOP 

7-37 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

Purpose 

Offset 

Syntax 

Parameters 

Forces the specified bus device(s) to return to being programmed locally 
from their front panels. This be use&f&e KM-488-DD is 

48 

xx BoARDNR% = 
xx ERRcoDE% = 
XX DIM MYGADS% () 
XXCALL KLOC!J& (BOARDNR$, ERRCODE%, MYGADS) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

MYGADS (N*2) represents the GPIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure is described in section 7.1. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. If the KM-488-DD is the System Controller and if MYGADS does not 
Notes specify an address, then the GPIEI REN (Remote Enable) line is unas- 

serted and all devices are returned to Local. In order to return them to 
remote mode, it will be necessary to issue a KREMOTE call. Likewise, 
it will be necessary to issue a KLOL call, if Local Lockout is required. 

2. As an Active Controller, the KM-488-DD can issue the GPIB GTL (Go 
To Local) message to those devices specified by MYGADS. In this case, 
the GPIB REN (Remote Enable) line remains asserted and devices will 
return to remote when addressed to listen. If a KLOL (Local Lockout) 
call has been issued previously, it should still be in effect when a device 
is returned to Remote. 

7-38 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KLOCAL (cont’d) 

Example 370 BBDNDM% = 0 ' First GPIB Board 
500 BRRNDM% = 0 
590 DIM GADS%(3) ' addressing array for KXCAL conmand 
600 GADS%(O) = 12 ' firat pri.ma?zy address = 12 
610 GADS%(l) = -1 ' first secondary address = NONE 
620 GADS%(2) = -1 ' no second device 
2000 ' Sand Devioe With GPIB Addresrr Back To Local 
2160 CALL KLGCAL(BRDNUM%, BRRNDbl%, GADS% (0)) 
2170 IF ERRNow% TEEN PRINT "IEEE Error ";EBRNlJM%:STOP 

7-39 



Using the Call Interface In BASICA KM-48B-DD Programmlng Guide 

KLOL 

Offset 

Es 

Syntax 

Returns 

Programming 
Notes 

Example 

-488 _ . DD IS an Active or Svstem 
Controller. It will disable the GPIB bus devices from being returned to Local 
Control by means of the Local/Remote button on the device. 

51 

NOTE: This routine issues an IEEE-488 bus signal, LOL. This signal is not 
supported by all IEEE-488 bus devices. 

xx BOABDNR% = 
XX ERRCODE% = 
XX CALL KLOL(BOARDNR%, ERRCODE%) 

BOARDNR% is an integer which represents the board identification number. 
This ls an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

1. The “LOCAL” button is disabled so that a device cannot be returned to 
local state for manual programming or control. The Active Controller 
can return specific devices to “local with lockout state”, whereby an 
operator can then use the front panel controls. When the device is 
addressed to listen again, it returns to “remote with lockout state”. 
Thus, the effect of the LOL call will remain until the REN line is unas- 
serted (LOCAL) by the System Controller. 

2. It is good practice to issue a KLOL so that devices are under strict pro- 
gram control. KLOL can be issued before a device is put in remote and 
will take effect when the device is set to remote. 

760 ERBNDM% = 0 
770 BRDNDM% = 0 ' First GPIB Board 
800' 
1000 'Prevent Devices From Being Returned To Local Con- 
trol 
1010 CALL KLOL(BBDNlJM%, EBFWWM%) 
1020 IF ERRNUId% TEEN PRINT "IEEE Error ";ERRNUM%:STOP 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KOUTPUTBUFF 

Purpose Transmits data from the KM-488-DD to the GPIB bus from a BASIC array. 

Onset 54 

Syntax XXBOABDNR%= 
MMODE% = 
XX EBRCODE% = 
XX DIM DATA%() = 
XK COUNT% = 
XX DIM blYGADS%() 
XX DIM TBBMLIST%() 
XX CALL KOUTPUTBtJFE(BOABDNB%, EBBCODE%, DATA%(O), COUNT%, 
MODE%, MYGADS%( TElUdLIST%(O)) 

Parameters BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

DATA% is an array of byte data to output. 

COUNT% is a long integer representing the number of characters to be output. 
Valid counts are within the range 1 to 65535 decimal, or from 1 to &HFFFF 
hex. 

MODE% is an integer which represents whether or not DMA is to be used and 
if the CONTINUE mode is to be used. This integer is interpreted as follows: 

Bit 15-2 1 0 

0 CONT DMA 

Where: 

CONT CONTINUE. This an optional mode which is used in conjunc- 
tion with DMA. When this bit is set to one, the CONTINUE 
mode will be used. If CONTINUE is specified, the KM-488-DD 
will return control to the application program as soon as it can 
without waiting for completion of the transfer. The KM-488-DD 
will at least wait for the first byte to check for time-out (Unless 
TIME OUT = 0) before continuing. DMA CONTINUB execu- 
tion concludes when the KM-488-DD completes its transfer. 

7-41 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KOUTPUTBUFF ~cont’ci) 

If CONTINUE ls used and the DMA AUTOINITIALIZE has 
been enabled, then the DMA transfer will continue until a 
KSTOP routine ls invoked. 

DNA DMA. If this bit is set to one, then DMA will be used in the data 
transfer. (See also the KDMA call description.) 

MYGADS (N*2) represents the GLIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGSDS to your application. The 
MYGADS structure is described in section 7.1. 

TERMLIST% (3) is an integer array which defines the GPIB bus terminators 
to be used during the KOUTl’UTBUFF call. These terminators are used in 
conjunction with COUNT% to terminate the input process. Terminator 
choices include whether or not EOI will be asserted to signal the end of input 
and which character sequence, if any, is to be asserted as an end of message 
code. The default terminator scheme is initially set up by the CONFIG.DAT 
file and can be modified by calling KTERM and KCONFIG. TERMLIST can 
either specify the use of the default terminators or temporary overrides. 

TERMLIST% (3) is comprised of the following elements: 

TERMLIST% (0) EOI assertion. Possible values are: 

-l(&HFFFF) Use the default EOI setting. 
0 Don’t Assert EOI. 
1 Assert EOI. 

TBPMLIST% (1) 1st GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
the default second terminator will 
also be used. 

7-42 



KM-4t38-DD Programming Guide Using the Call interface in BASICA 

0 to 255 Send this ASCII character as the first 
GLIB bus terminator instead of the 
default first GPIB Input Terminator. 
The 0 - 255 value represents the ASCII 
value of the terminator character to 
be used. (An ASCII Equivalence 
Chart is provided in Appendix A.) 

TERMLIST%(2) 2nd GPIBbusterminator. Possiblevaluesare: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator ls used, 
this will automatically be selected. 

0 to 255 Send this ASCII character as the sec- 
ond GPIB bus terminator instead of 
the default second GPIB Input 
Terminator. The 0 - 255 value repre- 
sents the ASCII value of the termina- 
tor character to be used. (An ASCII 
Equivalence Chart is provided in 
Appendix A.) 

The following default TERMLIST can also be used: 

DIM TERb&IST%(3) 
TERMLIST% = -1 
TERMLIST% = -1 
TBRMLIST%(2) = -1 

Returns ERRCODE% is a variable through which error codes are returned. If this vari- 
able ls set to 0, then no error occurred. If it ls set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. If the KM-488-DD is a peripheral, then an Active Controller must 
Notes address the KM-488-DD as a talker. In this case, do not specify any 

addresses using in MYGADS. (See section 7.1.). 

2. If the KM-488-DD is both the System and Active Controller, and 
MYGADS contains the device(s) to be addressed, the KOUTPUTBUFF 
will automatically assert the GPIB REN (Remote Enable) line. 

7-43 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KOUTPUTBUFF (cont’d) 

3. 

4. 

5. 

6. 

7. 

If the KM-488-DD is the Active Controller and KOUTPUTBUFF is 
called, it will automatically address itself as the talker and another 
device(s) contained in MYGADS as the listener(s). If the devices have 
been previously addressed, then MYGADS does not have to specify 
addresses and the bus will not be re-addressed. 

A non-zero COUNT% must always be specified. 

If you do not wish to append terminator characters, then be sure to set 
the terminator defaults via CONFIG.DAT file or by calling KTERM or 
KCONFIG d select no terminator overrldes in TERMLIST%. 

If a listener does not accept a character, a timeout will occur unless the 
timeout has been disabled. 

To manipulate outgoing data, which must be in contiguous bytes 
within a BASIC integer array, use KSWAP and KPACK. 

7-44 



KM-488-DD Programmlng Guide Using the Call Interface in BASICA 

KOUTPUTBUFF (cont’d) 

370 BPDNDM% = 0 ‘ Fitst GPIB Board 
470 MODE% = 1 ' DMA mode flag -- 0: no Dm 
480 ' 1: DblA Without CONTINUE 
490 ' 3: DblA With CONTINUE 
500 ' 
590 Address Structure For No Address Can Be Integer 
600 NOADR% = -1 ' No first primary address 
630 ' Multiple addresses are allowed with KOUTPUTBWF 
640 ' 
820 ' Terminator Array 
830 EBBNDM% = 0 
840 DIM TF,Raa%(3) ' KOUTPUTBUFF terminator: array 
850 TKBM%(O) = -1 ' NO EOI OVERRIDE 
860 TERM%(l) = -1 ' use default first terminator 
870 TFml%(2) = -1 ' use default second terminator 
880 ' 
1240 NUMD% = 1028 'Number of bytes to transfer 
1280 DIM DMAOUT%(NDMD%) 
1281 'Array to hold DMA output waveform for scope 
1300 ' 
1310 '*** Calculate DMAOUT% *** 
1320 ' . . . 
1330 ' 
1650 I*** Send DblAOUT% To Previously Addressed Device *** 
1680 CALL KOUTPUTBUFF(BRDNUM%, ERRNUN%, DblAOUT%(O), 
NUbfD%, MODE%, NOADR%, TERM%(O)) 
1690 IF BRRNUM% TEEN PKINT "IEEE Error ";EPRNIJM%:STOP 

7-45 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

PWpO93 

Offset 

Syntax 

Parameters 

Transmits data from the KM-488-DD to the GPIB bus, from a BASICA string. 

57 

xx BoARDNR% = 
XX blODE% = 
Xx BBRCODE% = 
Xx DIM TBRMLIST%() 
XX DATA$ = 
XX CODNT% = 
Xx DIM bXYGADS%() 
XX CALL KOUTPUTSTB(BOARDNR%, ERRCODE%, DATA$, COUNT%, 
MODE%, MYGADS% (0) , TERbfLIST% (0) ) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

DATA$ is a string of data to output. 

COUNT% is an integer representing the number of characters to be output. 
Valid counts are within the range 1 to 65535 decimal, or from 1 to &HFFFF 
hex. Note, however, that the limit for a BASICA string is 256 bytes. 

MODE% is an integer which represents whether or not DMA is to be used and 
if the CONTINUE mode is to be used. This integer is interpreted as follows: 

Bit 15.2 1 0 

0 CONT DMA 

Where: 

CONT CONTINUE. This an optional mode which is used in conjunc- 
tion with DMA. When this bit is set to one, the CONTINUE 
mode will be used. If CONTINUE is specified, the KM-488-DD 
will return control to the application program as soon as it can 
without waiting for completion of the transfer. The KM-488-DD 
will at least wait for the first byte to check for time-out (Unless 
TIME OUT = 0) before continuing. DMA CONTINUB execu- 
tion concludes when the KM-488-DD completes its transfer. 

7-46 



KM-4tWDD Programming Guide Using the Call Interface in BASICA 

KOUTPUTSTR (cont’d) 

If CONTINUE is used and the DMA AUTOINITIALIZE has 
been enabled, then the DMA transfer will continue until a 
KSTOP routine ls invoked. 

DNA DMA. If this bit is set to one, then DMA will be used in the data 
transfer. (See KDMA for more information.) 

MYGADS (N*2) represents the GPIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure is described in section 7.1. 

TERMLIST% (3) is an integer array which defines the GLIB bus terminators 
to be used during the KOUTPUTBUFF call. These terminators are used in 
conjunction with COUNT% to terminate the input process. Terminator 
choices include whether or not EOI will be asserted to signal the end of input 
and which character sequence, if any, is to be asserted as an end of message 
code. The default terminator scheme is initially set up by the CONFIG.DAT 
file and can be modified by calling KTERM and KCONFIG. TERMLIST can 
either specify the use of the default terminators or temporary overrides. 

TERMLIST% (3) is comprised of the following elements: 

TERMLIST% (0) EOI detection. Possible values are: 

-l(&HFFFF) Use the default EOI setting. 
0 Don’t Assert EOI. 
1 Assert EOI. 

TERMLIST (1) : 1st GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator ls used, 
the default second terminator will 
also be used. 

7-47 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KOUTPUTSTR tcont’cf) 

0 to 255 Send this ASCII character as the first 
GPIB bus terminator instead of the 
default first GPIB Input Terminator. 
The 0 - 255 value represents the ASCII 
value of the terminator character to 
be used. (An ASCII Equivalence 
Chart ls provided in Appendix A.) 

TERMLIST (2) : 2nd GPIB bus terminator. Possible valuesare: 

-l(&HFFFF) Use the default terminator. Note that 
lf the default first terminator is used, 
this will automatically be selected. 

0 to 255 Send this ASCII character as the sec- 
ond GPIB bus terminator instead of 
the default second GPIB Input 
Terminator. The 0 - 255 value repre- 
sents the ASCII value of the termina- 
tor character to be used. (An ASCII 
Equivalence Chart is provided in 
Appendix A.) 

The following default TERMLIST can also be used: 

DIM TERblLIST%(3) 
TERMLIST% = -1 
TERMLIST% = -1 
TERMLIST%(2) = -1 

Returns EFtRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

If the KM-48%DD is a peripheral, then an Active Controller must 
address the KM-48%DD as a talker and some other device(s) as the lls- 
tener(s). In this case, do not specify addresses in MYGADS. (See section 
7.1.). 

2. If the KM-48%DD is both the System and Active Controller, and 
MYGADS contains the device(s) to be addressed, the KOUTPUTSTR will 
automatically assert the GPIB REN (Remote Enable) line. 

7-40 



KM-488-DD Programmlng Guide Using the Call Interface in BASICA 

KOUTPUTSTR (cont’d) 

3. If the KM-488-DD ls the Active Controller and KOUTPUTSTR ls called, 
it will automatically address itself as the talker and another device(s) 
contained in MYGADS as the listener(s). If the devices have been pre- 
viously addressed, then MYGADS can specify no addresses and the bus 
will not be re-addressed. 

4. 

5. 

A non-zero COUNT% must always be specified. 

If you do not wish to append terminator characters, then be sure to set 
the terminator defaults via CONFIG.DAT or by calling KTERM or 
KCONFIG & select no termiantor overrides in the TERMLIST% 
array. 

6. If a listener does not accept a character, a timeout will occur unless the 
timeout has been disabled. 

7-49 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KOUTPUTSTR (cont’d) 

Example 300 ERIumM% = 0 
370 BRDNm% = 0 ' First GPIB Board 
470 MODE% = 0 ' DMA made flag -- 0: no DblA 
480 , 1: DMA Without CONTINUE 
490 , 3: Dt4A With CONTINUK 
590 DIM GADS%(3) ' addressing array for ENTER command 
600 GADS%(O) = 05 ' first primary address = 5 
610 GADS%(l) = -1 ' first secondary address = NONE 
620 GADS%(2) = -1 ' no mcce devioes 
640 'Multiple addresses are allowed with KOUTPUTSTR 
760 S$ = STr~NG$(100,32) 
761 'must initialize string before call 
770 ' 
820 ' Terminator Arrays 
830 ' 
840 DIM TBRM%(3) ' KOUTPIJTSTR terminator array 
850 TERM%(O) = -1 ' NO EOI OVBRRIDE 
860 TKRM%(l) = cBD I first terminatot = CR 
870 TBRM%(2) = CBA ' second terminator = LF 
880 ' 
1650 I*** Send Message To Device At GPIB Address 5 
1660 S$=wBSS lo:~+cSR8(34)+" INITIALIZE SCOPE"+CSR8(34) 
1670 CO'JNT%=LBN(S$) 
1680 CALL KOUTPUTSTR(BRDNUM%, ERRNDM%, S$, COUNT%, MODE%, 
GADS% (0) , TERM% (0) ) 
1690 IF KRRNDM% TSEN PRINT "IEEK Error ";ERRNUM%:STOP 

7-59 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KPACK 

Purpose This packs discrete &bit data values (stored ln a 16-bit integer array) into 
sequential bytes. This routine is useful when an instrument can only accept 
an 8-bit data value, because the KM-488-DD driver can only transfer contigu- 
ous bytes. 

Syntax XX DIM SODRCE% () 
XX DIM DEST% () 
XX COUNT% = 
XX CALL KPACK(SODRCE% (0) ,DEST% (0) ,CODNT%) 

Offset 60 

Parameters SOURCE% is the name of the integer array which contains the data to be con- 
verted. 

DEST% ls the name of the integer array in which the converted data is to be 
stored. 

COUNT% is an integer which represents the number of elements comprising 
the SODRCE% array. (The number of elements needed in the DEST% array is 
COUNT%/2.) 

Returns Result is stored in DEST%. 

Programming 1. COUNT% cannot be 0. 
Notes 

7-51 



Using the Call Interface in BASICA KM-488-DD ProSramming Guide 

KPACK (cont’d) 

Example 1240 NDMD% = 1024 'Number of bytes to KPACK 
1250 ' 
1260 'Wee array* of integers (2 bytes) in BASICA 
1270 ' 
1280 DIM OUTARRAY%(NDMD%) ' Data To Send To Device 
1290 DIM WOm%(NIJMD%/2) ' Temporary Work Buffer 
1300 ' 
1310 ' . . . . Code To Fill OKlTARRAY%() Here . . . . 
1320 ' 
1330 ‘ Pack OUTABRAY%() Into Contiguous Bytes In 
1340 ' WORKB%() And KOUTPUTBWP WOBKB%() Later 
1350 ' 
1370 CALL XPACK(OlJTABBAY%(O), WOBKB%(O), NDMD%) 
1380 ' 
1390 ' . . . . Code To KOUTPUTBDPF WOBKB%() Here ._._ 

7-52 



KM-488.DD Programming Guide Using the Call Interface In BASICA 

KPASCTL 

Purpose 

Offset 

Syntax 

Parameters 

Returns 

Designates another controller to be the Active Controller. The 
muatbean&kiWbmb 

63 

xx BoARDNR% = 
Xx BBRCODE% = 
Xx DIM MYGADS% 
XX CALL KPASCTL(BOABDNB%, ERRCODE%, bWGADS%(O)) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

MYGADS (N*2) represents the GPIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure is described in section 7.1. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming If the KM-488-DD which is relinquishing its position as the Active Controller 
Notes is also a System Controller, it retains its status as System Controller. 

7-53 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KPASCTL (cont’d) 

Example 370 BRDNUM% = 0 ’ Birst GPIB Board 
380 ERBwDbf% = 0 
960 DIM PERIADS%(3) ' addressing array for PERIPHERAL 
970 PERIADS%(O) = 2 ' first primary address = 2 
980 PERIADS%(l) = -1 ' first secondary address = NONE 
990 PERIADS%(2) = -1 ' no more devices 
2400 ' Pass Control To Devise At GPIB Address 2 
2410 UUAL XPASCTL(BRDNDM%, EPRNDbl%, PERIADS%(O)) 
2420 IF RRRNDM% TREW PRINT "IEEE Error ";ERRNDM%:STOP 

7-54 



KM-4WDD Programming Guide Using the Call Interface in BASICA 

KPPOLL 

Purpose 

Ottset 

Syntax 

Parameters 

Returns 

Initiates a Parallel Poll. mKM-488-DD must be the Active Controller, 

66 

NOTE: Many GPIB devices do not support parallel polling. Check your 
device’s documentation. 

xx BOAFtDNR% = 
XX ERRCODE% = 
xx PPRTN% = 
XX CALL RPPOLL(BOARDNR%, ERRCODE%, PPRTNB) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it ls set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

PPRTN% is an integer variable which will contain an integer in the range 0 to 
255 decimal. This integer indicates which Data Lines which have been 
asserted (DIOI-DI08). 

Programming None. 
Notes 

Example 370 BRDNUM% = 0 ' First GPIB Board 
1500 ERRNubl% = 0 
1510 ' Conduct Parallel Poll 
1570 CALL XPPOLL(BRDNUbi%, ERRNUM%, PPRTN%) 
1590 IF BRRNUM% TEEN PRINT "IEEE Error ";ERRNUM%:STOP 
1590 ' 
1600 PRINT 
1610 PRINT "The Parallel Poll Returned = ":PPRTN% 

7-55 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KPPC 

Purpose 

Ottset 

us 

Syntax 

Parameters 

Configures the Parallel Poll response of a GLIB bus device. The KM-488-DD 
must be the Active 

69 

NOTE: Many GI’IB devices do not support parallel polling. Check your 
device’s documentation. 

XX BOARDNR%= 
XX ERRCODE% = 
XX PPCCFG% = 
XX DIM MYGADS%() 
XX CALL KPPOLL(BOARDNR%, ERRCODE%, blYGADS%(O), PPCCFG%) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

MYGADS (N*2) represents the GPIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure is described in section 7.1. 

PPCCFG% is an integer which represents the Parallel Poll Response of the 
device to be programmed. This integer is of the format: 

Bll 7 6 5 4 3 2 10 

0 1 1 0 s P2 Pl PO 

7-56 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KPPC (cont’d~ 

Where: 

s is the parallel poll response value (0 or 1) that the device uses to 
respond to the parallel poll when service is required. This bit is 
generally set to 1. 

NOTE: This value must correspond to the setting of the GLIB 
bus device’s ist (individual status) bit. Refer to the Device’s 

Id ocumentation for more information. I 

PRPI m is a 3-bit value which tells the device being configured which 
data bit CD101 through DIOE) it should use as its parallel poll 
response. 

Returns ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming None. 
Notes 

7-57 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KPPC (cont’d) 

Example 370 BRDNDM% = 0 ' First GPIB Board 
380 EBRNubl% = 0 
500 DIM GADS%(3) ' addressing array 
510 GADS%(O) = 1 ' first primary address = 1 
520 GADS%(l) = -1 ' first secondary address = NONE 
530 GADSrb(2) = -1 ' no more devices 
1240 'Configure Device At GPIB Address 1 To Respond 
1241 IOn D103 Line 
1250 PPCONFIG%=6EA 
1260 CALL RZPC(BRDNUbl%, ERBNDbl%, GADS%(O), PPCONFIG%) 
1270 IF BRRNDM% TEEN PRINT "IEEE Error ";ERP.NUM%:STOP 

7-58 



KM-488-DD Programming Guide Using the Coil Interface in BASICA 

KPPD 

ottset 

Syntax 

Parameters 

Returns 

Disables the Parallel Poll response capability of the specified GPIB bus 
device(s). y 

72 

xx BOARDNR% = 
xx ERRCODE% = 
xx DIM MYSADS% () 
xx CALL KJ?BD (BCARDNR%, ERRCODE%, MyGADS%( 

BCARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

MYGADS (N*2) represents the GPIB bus address of the device to be 
accessed. MYGADS ls a pointer to an array of n (n can range from 1 to 15) 
pairs of GLIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure is described in section 7.1. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming None. 
Notes 

7-59 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KPPD (conf’d) 

Example 370 BBDNDM% = 0 ' First GPIB Board 
380 BRBNDM% = 0 
500 DIM GADS%(3) ' addressing array 
510 GADS%(O) = 1 ' first primary address = 1 
520 GADS%(l) = -1 ' first secondary ad&ass = NONE 
530 GADS%(2) = -1 ' no mote devices 
1240 ' Disable Device At GPIB Address 1 
1250 'From Responding To WPOLL 
1260 CALL KPPD(BRDNUM%, ERRNUN%, GADS% (0)) 



KM-488-DD Programmlng Guide Using the Call Interface in BASICA 

Purpose 

onset 

Syntax 

Parameters 

Returns 

Programming None. 
Notes 

Example 370 BBDNDM% = 0 ’ First GPIB Board 
1500 ERRNOW% = 0 
1510 ‘Disable Parallel Poll Response Of All Devices 
1570 CALL lU?PlJ(BRDNUbI%, ERRMJbf%) 
1580 IF BRRNDM% TEEN PRINT “IEEE Error ” :EBBBDM% : STOP 

Disables the Parallel Poll Response of all GPIB bus device(s). The KM- 
488-DD nut be the Active 

75 

xx BCABDNB% = 
xx ERRC!ODE% = 
xx CALL BPPD(BoARDNB%, EBBCODE%) 

BCABDNR% is an integer which represents the board identification number. 
This ls an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

EBBCODE% is a variable through which error codes are returned. If this vari- 
able ls set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

7-61 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

Purpose Returns the KM-488DJYs status byte. 

onset 78 

SyntCtx xx BOARDNR% = 
xx ERRCoDE% = 
xx QSTAT% = 
xx CALL KQUIKSTAT(BOARDNR%, ERRCODE%, QSTATB) 

Parameters BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

Returns QSTAT% is a pointer to the returned status integer. The status integer ls of 
the following format: 

sit 15-9 8 7 6 5 4 3 2 1 0 

0 ADSC CIC PEND DET SRQ DEC LA TA DMA 

Where: 

ADSC Address Status Change. If this bit is set to 1, a change in address 
status has occurred (i.e., a Talker becomes a Listener, or a 
Peripheral becomes an Active Controller). 

cc Controller in Charge. If this bit is set to 1, the KM-488-DD ls an 
Active Controller. 

PEND SRQ Pending. If this bit is set to 1, the KM-488.DD has an SRQ 
request pending. 

DE7 Device Triggered. If this bit is set to 1, a GPIB Trigger com- 
mand has been received. 

SRQ Internal SRQ. If the KM-488-DD is an Active Controller and 
this bit is set to one, a device is requesting service. If the KM- 
488-DD is a Peripheral and this bit is set to one, then its SRQ 
(issued by KREQUEST) has not been serviced. 

DEC Device Cleared. If this bit is set to one, the KM-48%DD has 
received a GLIB Clear command. 

7-62 



KM-4&WDD Programming Guide Using the Call Interface in BASICA 

KQUIKSTA Won t’ct) 

LA Listen Addressed. If this bit is set to one, the KM-488-DD is 
addressed as a Listener and can accept data from the GPIB. 

TA Talk Addressed. If this bit is set to one, the KM-488-DD is 
addressed as a Talker and can output data to the GPIB. 

DMA DMA. A DMA transfer is currently in progress. 

ERRCODE% is a variable through which error codes are returned. If this 
variable is set to 0, then no error occurred. If it is set to a value other than 0, 
then an error did occur. The error codes are listed in Appendix G. 

Programming None. 
Notes 

Example 370 BBDNUbl% = 0 ' First GPIB Board 
1500 ERRNUbl% = 0 
1510 QSTATUS% = 0 ' *** Return Status Word *** 
1570 CALL KQUIKSTAT(BBDNUM%, EBRNUM%, QSTATUS%) 
1580 IF BFCNUM% TBEN PRINT "IEEE Ettor ";EBRNUM%:STOP 
1590 ' 
1600 RESULT% = QSTATUS% AND SE10 
1610 IF RESULT% = 0 TEEN PRINT "NO SRQ DETECTED" ELSE 
PRINT "SRQ" 

7-63 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KREMOTE 

PurpXe 

w 

Ottset 

Syntax 

Parameters 

Returns 

Forces the GPIB bus device(s) to the remote mode. 

NOTE: The KM-488-DD must be a System Controller to execute this 
command. 

81 

xx BOARDNR% = 
xx ERRCODE% = 
xx DIM MYSADS%() 
xx CALL EREblDTE (BCARDNR%, ERRCODE%, MYGADS% (0) ) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

MYGADS (N*2) represents the GPiB bus address of the device to be 
accessed. MYSADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYSADS to your application. The 
MYGADS structure is described in section 7.1. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

7-64 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KREMOTE (COW) 

Programming 1. If MYGADS does not specify an address, then the GPIE3 REN (Remote 
Notes Enable) line is asserted. Devices will not be in the remote mode until 

addressed to listen. If MYGADS contains address then those devices 
will also be addressed to listen, so they will be put in remote. 

2. It is good programming practice to issue a Local Lockout to prevent the 
device(s) from being returned to Local mode. 

Example 370 BRDNUbf% = 0 ' Firat GPIB Board 
500 KRRNuM% = 0 
590 DIM GADS%(3) ' addreSSing array for KRBMOTE command 
600 GADS% (0) = 12 ’ first primary address = 12 
610 GADS%(l) = -1 ' first secondary address = NONE 
620 GADS%(2) = -1 ' no amre device 
2000 ’ Assert REN and Address Device At GPIB Address 12 
To Listen 
2160 CALL ~OTE(BRJJNDM%, ERRNW%, GADS%(O)) 
2170 IF ERRNUM% THEN PRINT "IEEE Error ";EP.RNUM%:STOP 

7-65 



Using the Call interface in BASICA KM-488-DD Programming Guide 

Purpose 

Ottset 

Syntax 

Parameters 

Returns 

Sets the Serial Poll Response of a KM-488-DD which is a Peripheral. 

84 

xx BoARDNR% = 
xx ERRcoDE% = 
xx SP%= 
XX CALL KRBQUEST (BOABDNB%, BBBCODE%, SP%) 

BOABDNR% is an integer which represents the board identification number. 
This ls an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

SP% is an integer in the range 0 to 255 which represents the serial poll 
response of the device. This integer is of the following format: 

811 7 6 6 4 3 7. 1 0 

DlO6 rsv Dl06 D105 Dl04 Dl03 DIOZ DlOi 

Where: 

Dl01-6 Bits 1 through 8 of this device’s Serial Poll Response Byte 
(correspond to data lines DIOl-DIOE). 

If this bit ls 1, the KM-488-DD will generate a Service Request 
(assert SRQ). 

ERRCODE% is a variable through which error codes are returned. If this 
variable is set to 0, then no error occurred. If it ls set to a value other than 0, 
then an error did occur. The error codes are listed in Appendix G. 

Programming 1. The Active Controller can read the value of SP% by serial polling the 
Notes KM-488-DD. This will clear bit 6, if it was set. 

2. Use KQUIKSTAT or KSPOLL to check if the Peripheral has been serial 
polled (checks the status of the SRQ bit). 

7-66 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KRFQUEST (cont’d) 

Example 370 BRDNDM% = 0 ' Birst GPIB Board 
510 ERBxnd% = 0 
3100 'Set RSV. Don’t Set Any Other Bits In Status Byte 
3110 WV%=64 
3120 CALL -QUEST(BRDNUM%, BRRNDbf%, RSV%) 
3230 IB ERBNUM% TBBN PRINT *IEEE Error ";ERRNUbl%:STOP 

J-67 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KRESET 

Purpose 

Ottset 

Syntax 

Parameters 

Returns 

Programming 
Notes 

Performs a “warm” reset of the KM-488-DD and the GPIB bus. 

87 

xx BOARDNR%= 
xx ERRCODE%= 
XX CALL XRESET(BOARDNR%, ERRCODE%) 

BOARDNFt% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ERRCODE is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

1. The KM-488-DD is reset to the following conditions: 

l STOP . ERRORON 
l DISARM l FILLNULL 
. CONFIG l LOCAL 
l ABORT l REQUEST 0 (If Peripheral) 
l BUFFER INCREMENT l Clear CHANGE, TRIGGER, and 
l DMA SINGLE CLEAR 

STATUS 
. TIMEOUT 10 

It also clears all error conditions. 

2. If the KM-488-DD is the System Controller, it will assert the GPIB IFC 
(Interface Clear) line for at least 500 psecs. 

370 BRDNDM% = 0 ' Birat GPIB Board 
510 ERRNuM% = 0 
3100 ’ *** Reset Driver l ** 
3120 CALL XRESET(BRDNUbt%, ERRNDbl%) 
3230 IF ERRNDM% TEEN PRINT "IEEE Error ";EBRNDbl%:STOP 

7-68 



KM-488-DD Programmlng Guide Using the Call Interface in BASICA 

KRESUME 

Purpose 

Ottset 

Syntax 

Parameters 

Returns 

Initiates data transfers between two non-Active Controller Gl’IB devices, by 
unasserting the ATN line. TheI(M _ - 488 DD must be a n Active Controller in . . to use this 

90 

xxBOABDNR% = 
xx ERRCODE% = 
xx CALL KRESDMZ(BOARDNR%, ERRCODE%) 

BOARDNR% is an integer which represents the board identification number. 
This ls an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able ls set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming This routine ls normally called after a KSEND has addressed a talker and a 
Notes listener. (See KSEND description.) 

Example 370 BBDNDM% = 0 ' First GPIB Board 
510 EFmNm% = 0 
3100 ’ *** Drop ATN Line After A Send Command *** 
3120 CALL XRBSUblE(BRDNUId%, ERRNUM%) 
3230 IF ERBNDM% TEEN PRINT "IEEFs Error ";ERRNtJM%:STOP 

7-69 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KSEND 

Purpose 

Ottset 

Syntax 

Parameters 

Sends GPIB commands and data from a string. 

93 

XX BOARDNR% = 
XX ERRCODE% = 
XX S!J!RINGLEN% = 
xx SNNDSTRQ = 
XX CALL KSEND(BOARDNR%, ERRCODE%, SENDSTR$, STRINGLEN%) 

BOARDNR% is an integer which represents the board identification number. 
This ls an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

SENDSTRQ is a string which includes any of the following subcommands: 
CMD, UNT, MTA, MLA, TALK, LISTEN, DATA, and EOI. Multiple sub- 
commands may be specified; however, the length of the I&& SEND com- 
mand string cannot exceed 255 characters. The subcommands are as follows: 

CMD - Sends information with the ATN line asserted. This indicates to 
the bus devices that the characters are to be interpreted as GPIB bus 
commands. (See Appendix B.) The command may be sent as either a 
quoted string (e.g., f CO-D’ 1 or as a numeric equivalent of an indi- 
vidual ASCII character (e.g., 13 decimal or &HOD hex for a Carriage 
Return). Hex values must be preceded by &H. Multiple quoted strings 
or ASCII values bytes may be sent if they are separated by commas 
(e.g.,CMD 67,79,77,77,65,78,68). 

An EOI cannot be sent with this subcommand, because an EOI with 
ATN asserted would initiate a Parallel Poll. (Use EOI directly in 
SENDSTRQ.) 

UNT - Untalks all devices by sending a GPIB UNTALK command with 
ATN asserted. 

UNL - Unllltens all devices by sending the GPIB UNLISTEN command 
with ATN asserted. 

7-70 



KM-408-DD Programming Guide Using the Call Interface in BASICA 

KSEND (cont’d) 

MTA - Designates the KM-488-DD to address itself to talk by sending 
the GPIB MTA (My Talk Address) command with the ATN line 
asserted. 

MLA - Designates the KM-488-DD to address itself to listen by sending 
the GPIB MLA (My Listen Address) command with the ATN line 
asserted. 

TALK addr - Addresses another GPIB device or KM-488-DD to talk 
by sending a GMB TAG (Talk Address Group) command with the ATN 
line asserted. Addr is an integer representing the GPIB BUS device 
address of the device to talk. This integer ranges from 00 to 30 decimal 
(addresses less than 10 must have a leading 0). A secondary address 
may be appended to the primary address. 

LISTEN addr - Addresses another GPIB device(s) or KM-488-DDf’s) 
to listen by sending a GLIB LAG (Listen Address Group) command 
with ATN asserted. Addr is an integer representing the GPIB BUS 
device address of the device(s) to talk. This integer ranges from 00 to 
30 decimal. (addresses less than 10 must have a leading 01. A second- 
ary address may be appended to the primary address. Multiple listen- 
ers can be specified. 

DATA- Sends information with the ATN line unasserted. This indi- 
cates to the bus devices that the characters are to be interpreted as data. 
This is the technique which ls to be used to send device-dependent 
commands. (See the IEEE-488 Tutorial in Appendix C for more infor- 
mation.) The data may be sent as either a quoted string (i.e., ’ DATA’ I 
or as a numeric equivalent of an individual ASCII character 

7-7 1 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KSEND (cont’d) 

(i.e., 13 decimal or &HOD hex for a Carrlage Return). Hex values must 
be preceded by &H. Multiple quoted strings or ASCII values bytes 
may be sent if they are separated by commas (e.g., DATA 
68,65,84,65). 

This sub-command is useful when you are sending commands which 
are unique to your interface. 

EOI -Sends information with the ATN line unasserted. EOI will be 
asserted when the last character is transmitted. This information is 
interpreted as GLIB bus data and may be sent as either a quoted string 
(e.g., ’ xyz’ ) or as a numeric equivalent of an individual ASCII charac- 
ter (e.g., 13 decimal or &HOD hex for a Carriage Return). Hex values 
must be preceded by &H. Multiple quoted strings or ASCII values 
bytes may be sent if they are separated by commas (e.g., EOI 
120,121,122). 

STRINGLEN% is an integer between 0 and 255 which represents the length of 
the SEND string. 

Returns ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

Typically, KSEND is used to send commands to initiate communication 
directly between peripheral devices. For example, the KM-488-DD 
driver might talk a scope and send a trace to a listened plotter. 

2. The maximum length of the KSEND command, including any subcom- 
mands, is 255 characters. To KSEND large amounts of data, use multi- 
ple KSEND commands. 

3. KSEND should only be used when a non-conforming device requires a 
special command sequence or a non-standard GPIB command. Do not 
use the KSEND command unless you are extremely familiar with GPIB. 

4. The KM-488-DD must be the Active Controller to KSEND commands. 
Any KM-488-DD can KSEND data. 

7-72 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KSEND (cont’d) 

5. If a DATA subcommand is not included in the KSEND string, be sure 
to call KRESUh4E immediately after the KSEND. This ls necessary 
because the ATN line must be dropped so that the transfer will pro- 
ceed. 

6. Do not include the word SEND within the KSEND string as you might 
do in the FILE I/O SEND command. 

370 BRDNDbl% = 0 ' First GPIB Board 
510 ERRNUM% = 0 
2250 'Address The Device At Address 2 TO Listen 
2251 'And The Device At 12 to talk 
2260 S$= "UNT UNL LISTEN 02 TALK 12" 
2270 COUNT%=LEN(S$) 
2280 CA&L KSEND(BRDNDbl%, ERRNUbf%, S$, COUNT%) 
2290 IF BRRNDbf% TEEN PRINT "IEEE Error ":ERRNUM%:STOP 
2300 ’ 
2310 ’ *** Drop ATN Line Aftel: A Send Command *** 
2320 CALL KBXSUblE(BRDNDbl%, ERRNUbl%) 
2330 IF ERRNUtd% TEEN PRINT "IEEE Error ":ERRNUbf%:STOP 

7-73 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

Purpose 

onset 

Syntax 

Parameters 

Returns 

If the KM-488-DD is an Active Controller, KSPOLL will check for an SRQ or 
conduct a serial poll. If the KM-488-DD is a Peripheral, KSPOLL will check if 
the KM-488-DD’s SRQ has been serviced. 

96 

XXBOABDNR%= 
XX EBRCODB% = 
XX DIM SPR%() 
XX DIM MYGADS(N*2) 
XX CALL KSPOLL(BOARDNR%, ERRCODE%, SPR%, MYGADS%( 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

MYGADS (N*2) represents the GPIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure ls described in section 7.1. 

ERRCODE% is a variable through which error codes are returned. If this varl- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

SPR% is an integer or an array of unsigned integers with an entry for each 
address in MYGADS. The value of the integer is 0 to 255 and corresponds to a 
byte with the following bitmap: 

Bit 7 6 5 4 3 2 1 0 

Ill06 SRQ 0106 Dl05 Cl104 D103 0102 Dl01 

7-74 



KMd&%DD Programming Guide Using the Call Interface in BASICA 

KSPOLL (cont’d) 

Where: 

Dl01-8 Bits 1 through 8 of this device’s Serial Poll Response Byte (corre- 
spond to data lines DIOl-DI08). 

SRQ If this bit is 1, the SRQ (Service Request) line has been asserted 
to request servicing. Otherwise, SRQ has not been asserted by 
thii device. 

Bit 6 has the special significance of indicating an SRQ pending. The signifi- 
cance of the other bits will be device-dependent. 

Programming 1. The most common use of KSI’OLL is for the KM-488-DD, as an active 
Notes controller, to issue SI’OLL with MYGADS% containing the address of a 

single device. This addresses and serial polls the device and, upon 
return, SPR% contains the serial poll response of the polled device. If 
the SRQ bit in SPRB is set, the device had issued an SRQ. The other 
bits in SPR% are device-dependent. Serial polling a device which is cur- 
rently asserting SRQ will cause the device to unassert its SRQ. 

The string returned by KSTATUS or the integer status word set by 
KQUIKSTAT can be checked to determine the presence of an SRQ 
before a serial poll is conducted. If only one device is asserting SRQ, 
the effect of issuing KSPOLL will be clear to the internal SRQ pending 
“bit”, even if the polled device is not issuing the SRQ. It is also the case 
when multiple devices are asserting SRQ and device not currently 
asserting SRQ ls polled. In this case, a subsequent use of KSTATUS or 
KQUIKSTAT will not reveal a pending SRQ. 

To aid in identifying which bus device(s) is currently requesting ser- 
vice, a KM-488-DD which is the Active Controller, can serial poll as 
many as 14 devices by issuing a KSPOLL call with MYGADS% 
containing the address of more than one device. In this case, SPR% 
should be an array of unsigned integers with an element for each 
address. In this case, KSF’OLL will serial poll each addressed device 
and return the serial poll bytes in the SPR% array. This is a faster way 
for discerning the source of an SRQ among several devices. 

7-75 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KSPOLL (cont’d) 

2. If the KM-488-DD is a peripheral and KSPOLL is called with MYGADSB 
having no addresses, SPR% will be the serial poll response (SP%) set by 
KREQUEST - with the possible exception of the SRQ bit, which may 
have disappeared as a result of an Active Controller having serial 
polled the KM-488-DD since the last KREQUEST call. In the instance of 
an Active Controller serial polling a peripheral KM-488-DD, the 
peripheral KM-488-DD unasserts the SRQ line. For an example, see 
KREQUEST. The state of the SRQ bit can also be determined from the 
string returned by KSTATUS or the integer status word returned by 
KQUIKSTAT. 

3. If the KM-488-DD is the Active Controller and issues KSPOLL with 
MyGADS% containing no addresses, SPR% will be 64 if a device is 
asserting SRQ and 0 if not. This same result could have been deter- 
mined from KQIJIKSTAT or KSTATUS. 

Note that if this call is issued when a SRQ is pending, it internally 
“clears” the SRQ “pending” bit, even though the requesting device has 
not been polled and is still issuing an SRQ. Thus, a subsequent 
KSPOLL, KQLJIKSTAT, or KSTATIJS call would not reveal a pending 
SRQ 

Example 350 DIM SBYTPr(2) ' Array To Receive SPOLL Bytes 
360 DIM GADS%(5) ' Address Array for two devices 
370 BRDNDM% = 0 ' First GPIB Board 
380 Em% = 0 
900 GADS%(O) = 5 ' first primary address = 5 
910 GADS%(l) = -1 ' first secondary address = NONE. 
920 GADS%(2) = 7 ' second primary address = 7 
930 GADS%(3) = -1 ' second secondary address = NONE 
940 GADS%(2) = -1 ' no third device 
950 ' 
960 ' KSPOLL Both Devices In GADS%0 
970 ' 
2950 CALL RSPOLL(BRDNUbl%, ERRNDMB, GADS%(O), SBYT%(O)) 
2970 IF m% TEEN PRINT "IEEE Error ";ERRNUM%:STOP 
2980 ' 
2990 ' Test Device Dependent SBYT%() Results Here . . . 

7-76 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KSTATUS 

Purpose 

onset 

Syntax 

Parameters 

Returns 

Returns a character string describing the current operating state of the KM- 
488-DD. 

99 

xx BOARDNR% = 
xx FaRcODE% = 
XX STATS = 
XK CALL KSTATUS(BOARDNB%, EBBCODE%, STATS) 

BOABDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

STATS is a character string which describes the current operating state of the 
KM-488-DD. The string is of the format shown in Table 7-2. STATS should 
be 75 bytes in order to contain the longest message that might be returned. If 
it is too short, data may be written in other regions of memory. You can 
create STATS prior to a call via the BASICA STRINGS function. 

7-77 



Using the Call Interface In BASICA KM-488-W Programming Guide 

Table 7-2. Status String 

S&a 
Cd 

I of cola Name and Description 

1 Ooeratinp- Tells If the KM-lt3g-DD is acting as an Active 
Gmtrdln or Periphed Can be C or P where: 

C = The KM-W-DD is an Active Controller 
P = The KM-4tWDD is a Peripheral 

2 Bus - Gives the IEEE-488 Bus Address of the KM-4tWDD. 
lhls Is a hvcdigit dedmal integer ranging from 00 to 30. 

2 m Indicates if the device has changed 
addressed state, i.e., tf It has cycled between the Talker, Listener, or 
Active Contmller states. This is reset whenever a STATUS is read. 
This can be one of the foBowing: 

GO = There has not been a change in the addrcsscd status. 

Gl = There has been a change in the addrcsscd status. 

1 mAddressed Indicates if the KM-4%DD is currently 
acting as a Talker or Listener, or is Idle. Can be T, L, or 1, where: 

T = The KM-W-DD is a Talker 
L = The KM-4tWDD is a Listener 
I = The KhUWDD is Idle 

2 v Represents the current internal SRQ status where: 

SO = SRQ not asserted 
Sl = SRQ asserted 

If the KM-4&3-DD Is in the Active Controller mode, the internal SRQ 
stale indicates if a device is asserting SRQ. 

If the Kh%aDD 1s acting as a Peripheral, the internal SRQ state is set 
by ustng the KREQUFST calI. It is cleared by B serial poll from the 
Active Controller and indicates it is asserting SRQ. 

7-78 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KSTATUS (cont’d) 

Starting 
Cd 

14 

1 of Cole. 

Table 7-2. Status String 

Name and Dwcription 

1p to 45 

I 
a Indicates whether or not an error has occurred. The 
three characters consist of the letter ‘E’ followed by a two digit error 
code. ( A list of these error codes is provided in Appendix G.) An 
error code of 00 indicates no error has occurred. 

m Indicates If a IEEE-488 trigger command has been 
received or not. This le not updated durhg DMA CONTINUE trans- 
fen Triggered State values are: 

To = No trigger command has been received. 
IY = A trigger command has been rccxivcd. 

~-Indicates if the IEEE Clear command has been received or 
not. This Is not updated during DMA CONTINUE transfers. Clearec 
values are: 

CO = No Clear command has becn rcccivcd 
Cl = Aaear command has been rcccivcd. 

v - Indicates if a data transfer is in progress. Values 
which may appear are: 

I’0 = No transfer 
F, = DMA CONTINUE Transfer occurring 
F-2 = DMA AUTOINITIALIZE Transfer occurring 

w - Contains the Error Message Text associated witI 
the give” error code (EXX,. These error mcssngcs arc listed in 
Appendix G. 

Programming If the KM-488-DD is the Active Controller, the Service Request Status may be 
Notes cleared (i.e, So) as a result of a KSPOLL, even when the SRQ line is still 

asserted. See the discussion in KSPOLL. 

7-79 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KSTATUS (coni’d) 

370 BRDNDN% = 0 ' First GPIB Board 
380 STAT$=STRING$(75,32) 
390 EiRmmbl% = 0 
3950 '*** Log, and check status for SRQ *** 
3960 ' 
3970 CALL KSTATUS(BRDNDM%, ERRNUM%, STATS) 
3971 ' Request status 
3980 IF ERRNUN% TEEN PRINT "IEEE Error ";ERRNUbl%:STOP 
3990 IF (blID$(STAT$,12,1) <> "1") GOT0 3970 

7-80 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KSTOP 

Purpose 

Syntax 

Parameters 

Returns 

Stops a DMA CONTINUE transfer. 

xx BOARDNEt% = 
xx BBBCODE% = 
xx CALL KSTOP (BOARDNR%, ERRCODE%) 

BOAFiDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ERFlCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

If the DMA CONTINUE transfer has been completed, a KSTOP will 
have no effect. 

2. Use the KBUFD call to determine the actual number of characters 
which were transferred before the KSTOP took effect. 

Example 370 BBDNUM% = 0 ' First GPIB Board 
510 ' 
3100 ' *** Stop DMA *** 
3120 CALL KSTOP(BBDNUbl%, ERRNDbl%) 
3230 IF EBBMJld% TXEN PRINT "IEEE Error ";ERBNUM%:STOP 

7-81 



Using the Call Interface In BASICA KM-488-DD Programming Guide 

KSWAP 

Purpose 

Ottset 

Syntax 

Parameters 

Returns 

Exchanges the bytes contained in the elements of an integer array. 

105 

XX DIM ARRAY%0 
XX CODNT% = 
XX CALL KSWAP (ARRAY% (0) , COUNT%) 

ARRAY% is the name of the integer array whose bytes are to be “swapped”. 

COUNT% is an integer representing the number of elements contained in the 
integer array @RFtAY%). 

ARRAY% will contain the newly formatted integer array. 

Programmlng 1. 
Notes 

This routine exchanges the bytes within individual elements of an inte- 
ger array. Byte swaps are necessary when communicating with devices 
that transfer binary data (real or integer numbers) in high byte-low 
byte order. 

When such a device transfers data into a BASICA integer array, your 
program must swap the bytes in each array location, as BASICA will 
expect the bytes to be in low byte-high byte order in memory. Like- 
wise, you must KSWAI’ data in an integer array that is being sent to a 
device expecting high byte-low byte data. The KM-488-DD driver is 
unable to perform the swap during a transfer, as it treats PC memory as 
a linear sequence of bytes. 

7-82 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KSWAP (cont’d) 

Example 1240 DIM WORKB%(100) 
1250 COUNT% = 101 ' WORXB%(lOO) SAS 101 ELEMENTS 
1260 ' 
1270 ' FILL WORKB%() WITE A SINE WAVE 
1280 ' 
1290 FOR X = 0 TO 100 
1300 WORFE%(X) = 10 * SIN(X) 
1310 NEXT X 
1320 ' 
1330 ' KSWAP DATA FOR A DEVICE EXPECTING HB/LB 
1340 ' 
1350 CALL KSWAP(WORKB%(O), COUNT%) 
1360 ' 
1370 ' . . . OUTPUT DATA TO DEVICE IiERE . . . 

7-83 



Using the Call intelface in BASICA KM-488-DD Programming Guide 

KTERM 

Offset 

Syntax 

Parameters 

Changes the default GPIB bus terminator(s) to be used in ENTER and/or 
OUTPUT calls. 

108 

xx BOARDNR% = 
xx ERRCODE% = 
xx DIM TEBMLIST% () 
xx CALL KTERM(BOARDNR%, ERRCODE%, TERMLIST%( 

BOARDNRB is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

TERMLIST% () is an integer array which defines the GPIB bus terminators. 
See Chapter 6 for more information regarding the use of GPIB bus termina- 
tors. TERMLIST% () is comprised of the following elements: 

TERMLIST% (0) Input/Output GPIB Terminators. Possible values 
are: 

-1 

0 

Change the Input Terminators. 

Change both Input and Output 
Terminators. 

1 Change the Output Terminators. 

TERblLIST% (1) EOI detection. Possible values are: 

0 No EOI setting. 
1 Assert EOI. 

7-84 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KTERM (cont’d) 

TERbfLIST% (2) 1st GPIB bus terminator. Possible values are: 

-1 Don’t use first or second GPIB bus 
terminator. 

0 to 255 Use this ASCII character as the first 
GLIB bus terminator instead of the 
default first GPIB Terminator. The 0 
- 255 decimal value represents the 
ASCII value of the terminator charac- 
ter to be used. (An ASCII Equiva- 
lence Chart is provided in Appendix 
A.) 

TERMLIST% (3) 2nd GPIB bus terminator. Possible values are: 

-1 No default second GPIB bus termlna- 
tor. 

oto255 Use this ASCII character as the sec- 
ond GPIB bus terminator instead of 
the default second GPIB Terminator. 
The 0 - 255 decimal value represents 
the ASCII value of the terminator 
character to be used. (An ASCII 
Equivalence Chart is provided in 
Appendix A.) 

Returns ERRCODE% is a variable through which error codes are returned. If this 
variable is set to 0, then no error occurred. If it is set to a value other than 0, 
then an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

KTERM will change the default bus terminators set during software 
installation, as directed by TERMLIST% () . 

7-85 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

370 BRDNUM% = 0 ’ First GPIB Board 
510 RRRNDM% = 0 
1010 ' Tezminator Arrays 
1020 ' 
1030 DIM DRVTERM%(4) 
1031 'used by XTERN to initialize driver terminations 
1040 DRVTERW%(O)=O 
1041 ' set both input L output default terminators 
1050 DRVTRRbl%(l)= 1 ' Asrrert/Detect EOI 
1060 DRVTEBM%(2)=-1 ' no first terminator character 
1070 DRVTRRM%(3)=-1 ' no second terminator character 
1080 ' 
1540 ' *** Initialize Driver Terminators *** 
1550 ’ 
1560 CALL XTERbf(BRDNDbf%, EBRNDM%, DRVTERM%(O)) 
1570 IF ERBlWM% THEN PRINT "IEEE Error ";ERRNDM%:STOP 

7-86 



KM-488-DD Programming Guide Using the Call Interface In BASICA 

KTO 

Purpose Changes the timeout period. 

Offset 111 

Syntax xx BoARDNR% = 
XX ERRCODE% = 
xxTvAL%= 
XX CALL KTO(BOARDNR%, BRRCODE%, TVAL%) 

Parameters BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

TVAL% is the number of 55 ms. timer ticks to allow before a time-out. 

Returns ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

To suppress Timeout checking, set TVALB to 0. 

2. If a DMA CONTINUE transfer is in progress, the KM-488-DD will 
check for timeouts only for the first byte that is transmitted/received. 
During other types of transfers, the KM-488-DD will check for a time- 
out between transmission of bytes. 

You must be certain to check that a DMA CONTINUE transfer has 
been completed. 

3. Because BASIC has no “long” integer type, the maximum timeout avail- 
able is approximately (65535/18.3) seconds. 

Example 370 BRDNUM% = 0 ' First GPIB Board 
510 ERRNDM% = 0 
1480 'Set time out to 15 seconds 
1490 ' 
1500 TIME0%=15000\55 'Need Nun&et Of Ticks With 
55ms/tiok 
1510 CALL KTO(BRDNUbl%, ERRNDbl%, TIMeO%) 
1520 IF BBRNtlM% TSRN PRINT "IEEE Error ":ERRNUM%:STOP 

7-87 



Using the Call Interface In BASICA KM-4WDD Programming Guide 

Purpose 

Offset 

Syntax 

Parameters 

Returns 

Triggers the specified device(s). M-488-DD must be an Active 

114 

xx BaARDNR% = 
xx ERRCODE% = 
xx DIM MYGADS%() 
xx CALL KTBIGGER(BOARDNB%, ERRCODE%, biYGADS%(O)) 

BOARDNB% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

MYGADS (N*2) represents the GLIB bus address of the device to be 
accessed. MYGADS is a pointer to an array of n (n can range from 1 to 15) 
pairs of GPIB addresses. You must tailor MYGADS to your application. The 
MYGADS structure is described in section 7.1. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming The devices listed in MYGADS will be triggered. 
Notes 

7-88 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KTRIGGER (cont’d) 

370 BRDNDM% = 0 ' Pirst GPIB Board 
500 BRRNDM% = 0 
590 DIM oADS%(3) I addressing array for KTRIGGER command 
600 GADS%(O) = 12 ' first primary address = 12 
610 GADS%(l) = -1 ' first secondary address = NONE 
620 GADS%(2) = -1 'no mope devices 
2000 I*** Trigger Device With GPIB Address 12 *** 
2160 CALL KTRIGGER(BRDNUM%, ERRNDM%, GADS%(O)) 
2170 IF EPRNlJM% TEEN PRINT "IEEE Error ";ERRNCM%:STOP 

7-89 



Using the Call Interface in BASICA KM-488-DD Programming Guide 

KUNPACK 

Purpose 

OffS.4 

Syntax 

Unpacks consecutive byte values into a BASIC integer array. 

117 

XX DIM SOURCE%(N) 
XX DIM DEST%(2*N) 
XX CODNTB = 
XX CALL KUNPACK (SOURCE%(O),DEST%(O),COUNT%) 

Parameters SOURCE% is the name of the integer array which contains the data to be con- 
verted. 

DEST% is the name of the integer array in which the converted data is to be 
stored. (It must be twice the size of SOURCE%.) 

COUNT% is an integer which represents the number of bytes to unpack from 
the SOURCE% array. (The number of elements needed in the DEST% array in 
COUNT%/2.) 

Returns dest% will contain the newly converted data. 

Programming None. 
Notes 

Example 
1240 NUMD% = 1028 ‘Number of bytes to transfer 
1250 ’ 
1260 ‘We can only use arrays of integers (2 bytes) 
1270 ‘in BASICA 
1280 DIM DMAOUT% (WUMD%/Z) 
1281 ‘Array to hold DWA output. waveform from scope 
1300 ’ 
1390 DIM WORKB%(NUWD%) 
1391 ‘Working buffer for manipulating ourve data 
1400 ’ 
3450 ‘ConvetL the byte artay to word (integer) 
3460 ’ 
3470 CALL KUNPAC!K(DMAOUT% (0) , WORKB% (Cl), NUMD%) 

7-90 



KM-488-DD Programming Guide Using the Call Interface in BASICA 

KWAITC 

Offset 

Syntax 

Parameters 

Refurns 

Forces the KM-48&DD driver to wait until a DMA CONTINUE transfer has 
been completed before returning control to the application program. 

120 

%%BOARDNR%= 
xx EBRCODE% = 
XX CALL KWAITC(BOARDNB%, ERRCODE%) 

BOARDNR% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

ERRCODE% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

Time out checking, if enabled, is performed while WAITing. 

2. This is an w wait. The following calls perform an 
implirit wait: 

. KABORT 

. KCLEAR 

. KENTER 

. KLOCAL 
l KLOCAL LOCKOUT 
. KOUTHJT 
. KPASS CONTROL 
. KPPOLL 

KPPOLL DISABLE 
KPPOLL UNCONFIG 
KREMOTE 
KREQUEST 
KRESUME 
KSEND 
KSPOLL 
KTRIGGER 

. KI’POLL CONFIG 

Example 370 BRDNUbl% = 0 ' First GPIB Board 
500 ERRwDM% = 0 
900 . . . STARTUP DMACONTINUE SERF,... 
2100 ' *** Wait For DbfA CONTINDB To Finish *** 
2160 CALL KWAITC(BRDNDM%, -%) 
2170 IF ERRNVMB TEEN PRINT "IEEE Error ";EBRNDM%:STOP 

7-91 



Using the Call Interface in BASICA KM-4WDD Programming Guide 

This page intentionally left blank. 

7-92 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

CHAPTER 8 
USING THE CALL INTERFACE IN QUICKBASIC 

Versions 
Supported 

File Header 

Compiling The 
Program 

Software 
Configuration 

QuickBASIC 4.0 and higher 

Be sure to include the following line within your program: 

The inclusion of this file allows QuickBASIC to check that the correct 
number and type of parameters are specified for each routine called. 

Once your QuickBASIC application program has been written, you may 
want to compile the program. Be sure to include full path names to the 
various library files where needed. 

From within the QuickBASIC Environment 

Be sure that the appropriate .QLB file (KM488QB4.QLB or 
KM488QB7.QLB) is located where QuickBASIC can find it. Then, invoke 
QuickBASIC by typing: 

qb /Lkm488qb4 yourprog qb /Lkm488qb7 yourprog 

where yourprog ls the name of your program. 

A number of KM-48%DD configuration parameters are set via the CON- 
FIGDAT file. (See Chapter 2 and Appendix F.) These govern the default 
settings of the GPIB input and output bus terminators, lightpen interrupt 
enable, device timeout period, and the KM-488-DD’s Base Address. The 
defaults for these are listed in Table 8-l. There are other defaults you 
may have to re-program if you are using File I/O Commands in the same 
program as the library interface routines (calls). 

8-l 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

Table 8-l. Default KM-48%DD Operating Parameters 

Parameter Default 

Device Timeout 10.0 seconds 
GPIB Bus Input Terminator CR LF with no EOI 
GPIB Bus Output Terminator CR LF with no EOI 

EOL Terminators CR LF 

The KCONFIG call can be used to reset the GPIB address, and the GPIB 
input and output bus terminators. 

The KTERM call can be used to change the default GLIB bus terminator 
settings. 

The KTO call can be used to change the default device timeout value. 

To create a Standalone Program 

This process compiles the QuickBASIC source code and links it to the 
QuickBASIC and KM-488-DD library files. This process is slightly differ- 
ent depending on the version of QuickBASIC used. (See your manual for 
specifics.) The following example shows you how to link the files in 
Version 4.x: 

bc /o /d youzprog.bas; 
link yourprog, I, bcom4x.lib+km488qb4; 

where: 

yourprog is the name of your program. 

bcom4x. lib is the QuickBASIC Runtime library name. 

km488qb4 . lib is the linkable QuickBASIC library file. 

a-2 



KM-488.DD Programming Guide Using the Call Intelface 
in QuickBASIC 

Programming 1. Any parameters that are not modified by a call may be passed as 
Notes constants. 

2. Parameters which are used to return values must be declared as 
variables. 

3. Integer variable names end with a percent sign (or are declared AS 
INTEGER). 

4. All integers are treated by the KM-488-DD routines as ansiened val- 
ues (0 to 65535). However, QuickBASIC treats them as signed mag- 
nitudes (-32768 to +32767). When you need to express a value 
which is greater than or equal to 32768, you will need to express it 
in one of two ways: 

l Convert it to a hexadecimal value. Be sure to prefix these val- 
ues with hH when equating them to a variable name. Legal hexade- 
cimal values range from 0 to &HFFFF and can be used to represent 
values from 0 to 65535. 

5. 

Use unsigned values from 0 to 32767 as is, but for values of 
l2768 to 65535 subtract 65536. 

Do not name any of your variables with the same name as those 
assigned to the KM-48%DD routines. 

a-3 



Using the Call Interface 
in QuickBASIC 

KM-4tWDD Programming Guide 

8.1 DESCRIPTION FORMAT 

The routines are described according to the following criteria. 

Purpose Thii section provides a “one-line” description of the routine. A more detailed 
general description of each routine is provided in Chapter 3. 

Syntax This section gives the syntax for each routine. The provided syntax assumes 
that the input parameters are passed in as variables. 

Parameters This section describes the input parameters. In some instances, a structure or 
array of multiple parameters may be specified (for example, multiple device 
addresses). 

MYGADS (N) is used in many calls. This is an array of n (1 to 15) GADS 
(GPIB addresses) structures which are required by various calls for address- 
ing the bus. A single GADS structure consists of two integers. The first is the 
primary address of a device. The second is the secondary address. If the first 
is set to -1, the device is assumed to not exist. If no addresses are provided, it 
is assumed that the bus is already addressed. 

An example of a structure with two devices is: 

'QINCLUDE : 'ERADER.BI' 
DIM MYGADS(15) AS GADS 
MYGADS(O).PRIMAD = 3 'first device -- pri. a&. 3 
blYGADS(O).SPCAD = -1 'first device -- no sac. adr. 
bfYGADS(l).PRIbUUl = 2 'second device -- pri. adr. 2 
MYGADS(l).SECAD = 8 ' second device -- sac. adr. S 
MYGADS(Z).PRIblAD = -1 ' no third device 

If the bus is not going to be addressed (Le., the KM-4%DD is a Peripheral), 
use the following mygads structure: 

DIM NOADD(1) AS GADS 
NOADD(O).PRIbl&D = -1 

Returns This describes any data which will be returned after execution of the call,. 
has been completed. 

a-4 



KM-488.DD Programmlng Guide Using the Call Interface 
in QuickBASIC 

erraode% - All calls except KDIAGON, KLJNPACK, KPACK, KSWAP, and 
KDIAGOFF return an integer error code which will be 0 if no error was 
detected. It is good practice to check errcode% after each call and provide 
a routine to handle errors if they arise. 

Returns Thii section describes any values which are returned by the routine. 

Programming This section lists any special programming considerations for the routine. 
Notes 

Example This section gives a programming example using the routine. 

a-5 



Using the Call interface 
in QuIckBASIC 

KM-4&3-DD Programming Guide 

KABORT 

Purpose This routine allows the KM-488-DD to take control of the GPIB bus by 
forcing all other devices on the bus to the idle state. The 

Syntax CALL KARORT(boardnr%, errcode%) 

Parameters boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

Returns errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming If the KM-488-DD is both the Active and System Controller, KABORT asserts 
Notes the IFC line to retain control of the bus. Otherwise, the KM-488-DD will 

assert the ATN line, and then untalk and unlisten all devices. 

DIM brdnum AS INTEGER I Number of board to be accessed. 
DIM errnun AS INTEGER 
’ Error code returned if any. 0 indicates no error 
brdnum= 0 ' First GPIB Board 
'*** Seize Control of GPIB Bus *** 

errnum = 0 
CALL KARORT(brdnum, errnum) 
IF errnum TERN PRINT "IEEE Error ":errnum:STOP 

a-6 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

Purpose Defines the conditions under which the lightpen status becomes true. 

Syntax CALL KARbf(boardnr%, errcode%, amcode%) 

Parameters boar&m% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be 
programmed. 

armcode% is a 16-bit integer describing on which conditions a light pen 
interrupt may occur. The integer is of the format: 

Bit 15-9 6 7 6 6 4 3 2 1 0 

0 ADSC CIC PER DET SRQ DEC LA TA IDLE 

Where: 

ADSC Address Status Change. If this bit is set to 1, the lightpen status 
will become true when a change in address status has occurred 
(i.e., a Talker becomes a Listener, or a Peripheral becomes an 
Active Controller). This encompasses all the conditions marked 
with an asterisk (9 below. 

cv Controller in Charge. If this bit is set to 1, the lightpen status 
will become true when the control is passed to the KM-488-DD 
and it becomes the Active Controller. 

PER* 

DET 

Peripheral. If this bit is set to 1, the lightpen status will become 
true when the KM-488-DD passes control to another device and 
becomes a Non-Active Controller. 

Device Triggered. If this bit is set to 1, the lightpen status will 
become true when a KM-488-DD, acting as a Peripheral, receives 
a GPIB Trigger command. 

8-7 



Using the Call Interface 
in QuickBASIC 

KMd88-DD Programming Guide 

KARM (cont’d) 

SRQ Internal SRQ. If this bit is set to one, the lightpen status will 
become true when the KM-488-DD’s internal Service Request Bit 
(SRQ) is set. 

DEC Device Cleared. If this bit is set to one, the lightpen status will 
become true when a KM-488-DD, acting as a Peripheral, receives 
a GPIB Clear command. 

LA* Listen Addressed. If this bit is set to one, the lightpen status 
will become true when the KM-4WDD, acting as a Peripheral, is 
addressed as a Listener and can accept data from the GPIB. 

TA* Talk Addressed. If this bit is set to one, the lightpen status will 
become true when the KM-4WDD, acting as a Peripheral, is 
addressed as a Talker and can output data to the GPIB. 

IDLE* Idle. If this bit is set to one, the lightpen status will become true 
when the KM-48&DD, acting as a Peripheral, is unaddressed as 

w 

a Talker or a Listener. 

NOTE: The conditions marked by an asterisk (‘9 will force the lightpen 
status to true only when the KM-4WDD’s address status has changed. This 
is indicated by the state of the Address Change Bit in the Status byte. See 
the KSTATUS or KQUIKSTAT routine descriptions for more information. 

Returns errcode% is a variable through which error codes are returned. If this 
variable is set to 0, then no error occurred. If it is set to a value other than 0, 
then an error did occur. The error codes are listed in Appendix G. 

Programming The driver must be configured for lightpen emulation at load time via the 
Notes CONFIG.DAT “pipe” file, as the default for lightpen emulation is off. 

a-0 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

KARM (cont’d) 

Example DIM brdnum AS INTEGER I Number of board to be accessed. 
DIM errnun AS INTEGER 
' Error code returned if any. 0 indicates no error 
DIM -ode AS INTEGER ' Integer to hold interrupt enable 
mask 
brdnum= 0 ' First GPIB Board 
'** SET UP LIGHT PEN INTERRUPT ** 

'Enable light pen interrupt detection on SRQ 

ON PEN GOSW 2000 
'QB connection of subroutine to the light pen 
PEN ON 
'QB aomnand to turn on light pen interrupt 

armoode=SXlO 'IQd-488-DD will set light pen status bit on 
SRQ 
CALL XARM(brdnum, ermum, armoode) 
IF erzmun TREN PRINT "IEEE Error “;ermnm:STOP 
I 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

KBiJF 

Purpose 

Syntax 

Parameters 

Returns 

Selects in which direction the memory is to be addressed for both DMA and 
non-DMA buffered transfers. 

CALL KBDF(boardnr%, errcode%, dir%) 

boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

dir% selects the direction in which the buffer is to be read. If dir% is equal 
to 1, the buffer address will be incremented. If dir% is equal to 0, the buffer 
address will be decremented. 

errcode% is a variable through which error codes are returned. If this varl- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming If the buffer’s address is to be incremented during a bus I/O operation, be 
Notes sure to use the lowest address in the designated buffer. Likewise, if it is to be 

decremented, select the highest address. 

Example DIM brdoum AS INTEGER ' Number of board to be 
accessed. 
' Error code returned if any. 0 indicates no error 
DIM errnum AS INTEGER 
DIM meadit AS INTEGER ' Direction to access memory 
errnum = 0 
brdnum= 0 ' First GPIB Board 
memdit = 0 ' Decrement Memory Address On Dm 
' l ** Set Direction Of Memory Address Change With DMA 
*** 
CALL XBDF(brdnum, errnum, medir) 
IF errnum TEEN PRINT "IEEE Error ";ermum:STOP 

8-10 



KM-4&WDD Programming Guide Using the Call Interface 
in QuickBASIC 

KBUFD 

Purpose 

Syntax 

Parameters 

Returns 

Returns the number of characters transferred in the last buffered transfer or, 
in the case of DMA transfers, the current transfer. 

CALL KBDFD(boardnr%, errcode%, bcount%) 

boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

bcount% represents the number of characters which were transferred dur- 
ing the last buffered transaction. This will be a long integer (32-b&) in the 
range 0 to 1,048,575 (0 to 20z0-1). 

Programming 1. 
Notes 

2. 

If data is transferred in the DMA CONTINUE mode, KBUFD returns 
represents the number of characters transferred thus far. 

It is useful to call this routine after a buffered KENTER has been per- 
formed. This will help you to determine if the expected number of 
characters has been received and/or the transfer has terminated as the 
result of a detected terminator. 

Example DIM brdnum AS INTEGER ' Number of board to be accessed. 
DIM errnum AS INTEGER 
' Error aode returned if any. 0 indicates no error 
DIM StrCnt AS LONG 
errnum = 0 
I Number of characters to be transferred to/from memory 
brdnum= 0 I First GPIB Board 
'Return # Of Bytes In Last GPIB BUS Data Transfer 
CALL KBDFD(brdnum, ermnum, StrCnt) 
IF errnum THEN PRINT "IEEE Error ";errmam:STOP 

8-11 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

KCLEAR 

Purpose 

Synfax 

Parameters 

Returns 

nu&t be an Active Controller, Resets device(s) to their 
power-up parameters. 

CALL KCLEJiR(boardnr%, errcode%, mygads(0)) 

boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses 
to be accessed. mygads (n) is comprised of n structures of type GADS. You 
must tailor mygads to your application. The GADS structure is described in 
section 8.1 and defined in the QuickBASIC include file HEADERBI. 

errcode% is a variable through which error codes are returned. If this varl- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. If mygads contains no addresses, then the universal GPIB DCL (De- 
Notes vice Clear) command is issued and all devices will be cleared. 

2. If mygads contains addresses, then those devices specified will be lis- 
tened and sent a GPIB SDC (Select Device Clear) Command. 

Example 'QINCLODE : ~HR~ER.SI' 
DIM noadd(1) AS GADS 
' this structure holds primary and 
' secondary addresses of the devices for the group 
DIM brdnum AS INTEGER ' Number of board to be 
accessed. 
DIM errnum AS INTEGER 
errnun = 0 
' Error code returned if any. 0 indicates no error 
noadd(O).primad = -1 
' No first primaty address, hence no addresses 
I 
'** WMzh No Address Issue The Universal Device Clear-- 
Clear All Devices** 
CALL KCLEAR(brdnum, etmum, noadd(0)) 
IB errnum THEN PRINT "IEEE Error ";errnum:STOP 

8-12 



KM-488.DD Programming Guide Using the Call Interface 
In QuickBASIC 

KCONFlG 

Purpose Resets the KM-488-DD to its default operating parameters or to those 
specified. 

Syntax CALL KCONFIG(boardnr%, errcode%, cfgstring$, stringlen%) 

Parameters boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

cfgstring$ is a user-defined string. This string can be comprised of any 
of the following options: 

/T [term term Sets the input and output GPIB bus terminators. You 
EOI] can select one or two GPIB bus terminators followed by 

EOI or just EOI. If you just specify /T, the GPIB bus 
terminators will be reset to none. 

term is an optional parameter which represents a ter- 
minator byte to be used. This terminator byte can be 
represented as any of the following: 

$char where char is an integer representing the 
hex or decimal equivalent of the termina- 
tor’s ASCII representation. (See Appendix 
B for ASCII Equivalents.) char must be 
preceded by a dollar sign ($). 

8-13 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programmlng Guide 

KCONFlG (cont’d) 

Hexadecimal values must also be preceded 
by &H. For example, $84 represents the let- 
ter “T” as does $&H54. 

CR This represents the Carriage Return charac- 
ter (13 decimal, OD hex). 

Ia This represents the Line Feed character (10 
decimal, OA hex). 

'X where X represents a printable ASCII char- 
acter. The character must be preceded by 
an apostrophe f’), for example: ’ B 
represents the character B. 

~01 (End or Identify) is an optional GPIB BUS termina- 
tor. If included, the KM-488-DD will detect/assert the 
GLIB bus EOI line. (This would indicate that the last 
character has been sent.) Data will continue to be read 
until this terminator, a valid terminator sequence, or 
both are detected. 

/TI [term term Sets the input GLIB bus terminators. You can select one 
EOI] or two GPIB bus terminators followed by EOI or just 

EOI. If you just specify /TI, the input GPIB bus termi- 
nator will be reset to none. term and EOI are described 
above. 

/TO [term term Sets the output GPIB bus terminators. You can select 
EOI] one or two GPIB bus terminators followed by EOI or 

just EOI. If you just specify /TO, the input GPIB bus 
terminator will be reset to none. terra and EOI are 
described above. 

/E [term term] Sets the input and output EOL terminators. (Note that 
this should only be used if the application program also 
includes File I/O Commands.) term is described 
above. 

8-14 



KM-488.DD Programming Guide Using the Call Interface 
in QuickBASIC 

KCONFIG tcont’d) 

/EI [term term] Sets the input EOL terminators. (Note that this 
should only be used if the application program 
also includes File I/O Commands.) term is 
described above. 

/EO [term term] Sets the output EOL terminators. 
(Note that this should only be used if the appli- 
cation program also includes File I/O Com- 
mands.) 

/N name addr 
[secaddrl 

Configures a named device. Sets its address to 
the given value and its GPIB bus terminators to 
the current GPIB bus terminator settings. 
(Note that this should only be used if the appli- 
cation program also includes File I/O Com- 
mands using named devices.) 

name is the name of the device. 

addr is the primary GPIB address (00 to 301. 

secaddr is the secondary GPll3 address (00 to 
31). 

NOTE: Do not create a named device with the same name as an existing 
directory on the current working disk. 

If cfgstring is empty, then the configuration will revert to the installation 
configuration. 

stringlen is an integer from 0 to 255 which gives the length of the 
cfgstring string. 

Returns errcode% is a variable through which error codes are returned. If this vari- 
able ls set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

8-15 



Using the Call Interface 
in QuickBASIC 

KM-4tWDD Programming Guide 

KCONHG (cont’d) 

Programming 1. The /E, /EI, /EO, and /N options will only take effect if File I/O 
Notes Commands are used within the same application program as the call- 

ables. 

2. If you are converting an application program previously written using 
the File I/O commands to callables, be sure to note that the CONFIG 
string for the KCONFIG call does not include the “CONFIG” keyword 
(i.e., as you would if you were using the CONFIG File I/O command). 

3. Primary and Secondary Addresses must each be two characters long, 
e.g. 01 or 0209. 

Example DIM Str AS STRING ' String to hold comnand 
DIM brdnum AS INTEGER r Number of board to be accessed. 
DIM exnum AS INTEGER 
’ Error code returned if any. 0 indicates no e==or 
DIM SttCnt AS INTEGER ’ Integer to hold size of Str 
etrnum = 0 
brdnum = 0 ’ First GPIB Board 
' Configure Terminators a8 Carriage Return, Line Feed 
With EOI 
Str = "/T CR LF EOI" 
Strcnt = LEN(Stt) 'Length of Str 
CALL KCONFIG(brdnum, er?xwm, Str, StrCnt) 
IF ez?xum TEEN PRINT "IEEE Error ";ermum:STOP 

8-16 



KM-488.DD Programming Guide Using the Call Interface 
in QuickBASiC 

Purpose Turns file diagnostics on. (Default is off.) 

Syntax CALL RDIAGON(filename$, strlenrb) 

Parameters filenameS is a string containing the name of the file to which the diagnos- 
tic information is to be written. 

strlen% is the length of the string representing the name of the file. 

Returns None. 

Programming 1. This will echo the value of the call parameters into a disk file. 
Notes 

Example DIM Str AS SIRING ’ String to hold coznmand 
DIM StrCnt AS INTEGER ’ Integer to hold size of Str 
Str = "DEBUG.DAT" 'Target Diagnostic File Name 
StrCnt = LEN(Str) 'Length of Str 
‘Turn Driver Diagnostics On And Send Info To Disk File 
CALL KDIAGON(Str,St&nt) 'File Name 6 File Name Length 

a-17 



Using the Call Interface 
in QuIckBASiC 

KM-488-DD Programming Guide 

KDIAGOFF 

Purpose Disables file diagnostics. 

Syntax CALL KDIAGOFF() 

Parameters None. 

Returns None. 

Programming None. 
Notes 

Example CALL KDIAGOFB() 

a-18 



KM-488.DD Programming Guide Using the Call Interface 
in QuickBASIC 

KDISARM 

Purpose Resets previously set conditions which cause lightpen interrupts. 

Syntax CALL XDISARbl (boardnr% , errcode%, armoode%) 

Parameters boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

arracode% is a 16-bit integer describing which conditions should be reset. 
The integer is of the format: 

Bit 15.9 6 7 6 5 4 3 2 1 0 

0 ADSC CIC PER DET SRQ DEC LA TA IDLE 

Where: 

ADSC 

cc 

PER 

DE-r 

Address Status Change. If this bit is set to 1, light pen status 
will not change when a change in address status has occurred 
(i.e., a Talker becomes a Listener, or a Peripheral becomes an 
Active Controller). 

Controller in Charge. If this bit is set to 1, light pen status will 
not change when the control is passed to the KM-488-DD and it 
becomes the Active Controller. 

Peripheral. If this bit is set to 1, light pen status will not change 
when the KM-488-DD passes control to another device and 
becomes a Non-Active Controller (Peripheral). 

Device Triggered. If this bit is set to 1, light pen status will not 
change when a KM-48&DD, acting as a Peripheral, receives a 
GPIB Trigger command. 

Internal SRQ. If this bit is set to one, light pen status will not 
change when the KM-488-DD’s internal Service Request Bit 
(SRQ) is set. 

a-19 



Using the Call Interface 
in QuickBASiC 

KM-488-DD Programming Guide 

DEC Device Cleared. If this bit is set to one, light pen status will not 
change when a KM-488-DD, acting as a Peripheral, receives a 
GPIB Clear command. 

LA Listen Addressed. If this bit is set to one, light pen status will 
not change when the KM-488-DD is addressed as a Listener and 
can accept data from the GLIB. 

TA Talk Addressed. If this bit is set to one, light pen status will not 
change when the KM-488-DD is addressed as a Talker and can 
output data to the GPIB. 

IDLE Idle. If this bit is set to one, light pen status will not change 
when the KM-488-DD is unaddressed as a Talker or a Listener. 

Refurns errcode% is a variable through which error codes are returned. If this 
variable issetto0,then no error occurred. Ifitissettoa valueother than0, 
then an error did occur. The error codes are listed in Appendix G. 

Programming None. 
Notes 

Example DIM brdnum AS INTEGER f Number of board to be accessed. 
DIM ezfnum AS INTEGER 
r Error code returned if any. 0 indicates no error 
DIM disarm AS INTEGER ' Integez to disable mask 
efr** = 0 
brdnum= 0 ' First GPIB Board 
' DISABLE LIGBT PEN INTERRUPT 

'Disable light pen interrupt detection on SRQ 

PEN OFF 'QB comaand to turn off light pen interrupt 
'KM-4SS-DD will not set light pen status bit on SRQ 
disarm=LalO 
CALL KDISARM(brdnum, ermum, disarm) 
IF rrrnum THEN PRINT "IEEE Error ";e~mn'.m:STOP 

8-20 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

KDMA 

Purpose Sets DMA transfer mode. 

Syntax CALL KDMA (boarder%, errcode%, draamode%) 

Parameters boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

dmamode% is a 16-bit integer which represents the DMA mode to be used. If 
no dammode% is given, then single mode without autoinitialization will be 
assumed. The draamode% integer is interpreted as follows: 

Blt 15-3 2 1 0 

0 I SIN I OEM AUTO 

Where: 

SIN 

DEM 

SINGLE. When this bit is set to one, the SINGLE mode is 
selected. In this mode, when the DMA Request line is asserted 
the DMA controller assumes control of the bus and transfers a 
single byte of data. Control of the bus is then returned to the 
microprocessor. 

Note that SINGLE and DEMAND mode can not be invoked 
simultaneously. 

DEMAND. When this bit ls set to one, the DEMAND mode is 
selected. In this mode, when the DMA Request line is asserted 
the DMA controller assumes control of the bus. The DMA con- 
troller retains control of the bus until the DMA request signal is 
unasserted. Once this signal has been unasserted for more than 
one microprocessor clock cycle, control of bus is returned to the 
microprocessor. This mode allows the DMA controller chip to 
pass data at a slightly faster rate and the microprocessor to 
access the bus when it is not needed. 

Note that SINGLE and DEMAND mode can not be invoked 
simultaneously. 

a-2 1 



Using the Call Interface 
In QuickBASIC 

KM-488-DD Programming Guide 

KDMA (cont’d) 

AUTO AUTOlNlTlALIZE. When this bit is set to one, the AUTOIN- 
ITIALIZE mode is selected. Under normal circumstances, the 
DMA controller transfers the specified number of bytes to/from 
the PC memory from the given starting address and terminates 
when completed. When the AUTOINITIALIZE mode is 
enabled, the DMA controller will reset the original byte count, 
reset the initial address, and repeat the transfer again. The 
AUTOINITIALIZE option is only in effect until the next 
KENTER or KOUTPUT buffered transfer is completed. Addi- 
tionally, if a KENTER or KOUTPUT transfer in DMA CON- 
TINUE mode is selected, the AUTOINlTlALlZE option will only 
be in effect for that transfer. 

Returns None. 

Programming 1. All DMA AUTOINITIALIZE transfers should occur entirely within a 
Notes single DMA 64 KByte page. So, if a DMA buffer operation involves a 

transfer of more than 64K or occur across a DMA page boundary, the 
AUTOINITIALIZE option affects only those bytes in the last transfer 
occurring within one DMA page. 

Also note that DMA AUTOlNlTlALIZE transfers specified for buffers 
that are located in more than a single DMA page are unpredictable. 

2. It is impossible for a program to halt a Dh4A AUTOlNlTlALlZE opera- 
tion unless the DMA CONTINUE option is selected. This is because 
the driver does not return control to a program using non-CONTINUE 
operations until the transfer completes. 

8-22 



KM-488-DD Programming Guide Using the Call Interface 
In QuickBASIC 

KDMA (conf’d) 

Example DIM brdnum AS INTEGER ' Number of board to be accessed. 
DIM ertnum AS INTEGER 
' Era-or code returned if any. 0 indicates no error 
DIM aingleauto AS INTEGER ' Integer to hold DblA command 
brdnum= 0 ' First GPIB Board 
errnuln = 0 
singleauto = 4 + 1 'Singla/autoinitialiee DblA Transfer 
'*** Set Up DMA blode To Single With Autoinitialize *** 
CALL DMA (brdnum, ermnum, singleauto) 
IF ermmm TEEN PRINT "IEEE Error “:errnum:STOP 

8-23 



Using the Call interface 
in QuickBASIC 

KM-488-DD Programming Guide 

Purpose Allows the KM-488-DD to receive data from a GPIB bus device into a Quick- 
BASIC integer array. 

Syntax CALL lcENTERBm (boardnr%, errcode%, data% (0) , count, 
mode%, mygads% (0) , termlist% (0) ) 

Parameters boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

data% is an integer array large enough to accept the returned data. If a 
non-zero count is specified, data% (count/2) will suffice for any 
returned data. If count is 0 and terminator characters are used, then data% 
must be dimensioned to accommodate both data and terminators returned 
by the device. 

count is a long integer representing the number of characters to be read. 
Valid counts are within the range 0 to 4294967295 (~‘-1) decimal, or from 0 to 
&HFFFFFFFF. When 0 is used, the KENTERBUF will stop when the termina- 
tion specified by termlist is satisfied. 

mode% is an integer which represents whether or not DMA is to be used and 
if the CONTINUE mode is to be used. This integer is interpreted as follows: 

Bll 15-2 1 0 

0 CONT DMA 

Where: 

CONT CONTINUE. This an optional mode which is used in conjunc- 
tion with DMA. When this bit is set to one, the CONTINUE 
mode will be used. If CONTINUE is specified, the KM-488-DD 
will return control to the application program as soon as it can 
without waiting for completion of the transfer. The KM-488-DD 
will at least wait for the first byte to check for time-out (Unless 
TIME OUT = 0) before continuing. DMA CONTINUE execu- 
tion concludes when the KM-488-DD completes its transfer. 

8-24 



KM-488-DD Programming Guide Using the Call Interface 
In QuickBASIC 

KENTERBUF (cont’d) 

If CONTINUE is used and the DMA AUTOINITIALIZE has 
been enabled, then the DMA transfer will continue until a 
KSTOP routine ls invoked or a pre-specified GPIB BUS input 
terminator is detected. 

DMA DMA. If this bit is set to one, then DMA will be used in the data 
transfer. 

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses 
to be accessed. mygads (n) is comprised of n structures of type GADS. You 
must tailor mygads to your application. The GADS structure is described in 
section 8.1 and defined in the QuickBASIC include file HEADER.BI. 

termlist (3) is an integer array which defines the GPIB bus terminators 
to be used during the KENTERBUF call. These terminators are used in con- 
junction with count to terminate the input process. Terminator choices 
include whether or not EOI will be detected to signal end of input and which 
character sequence, if any, is to be detected as an end of message code. The 
default terminator scheme is initially set-up by the CONFIG.DAT file, and 
can be modified by calling KTERM or KCONFIG. termlist can either 
specify the use of the default terminators or temporary overrides. 

termlist ls comprised of the following elements: 

tezmlist (0) : EOI detection. Possible values are: 

-l(&HFFFF) Use the default EOI setting. 
0 Don’t Detect EOI. 
1 Detect EOI. 

termlist (1) : 1st GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
the default second terminator will 
also be used. 

8-25 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

0 to 255 Detect this ASCII character as the first 
GPIB bus terminator instead of the 
default first GLIB Input Terminator. 
The 0 - 255 value represents the ASCII 
value of the terminator character to 
be used. (An ASCII Equivalence 
Chart is provided in Appendix A.) 

termlist (2) : 2nd GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
this will automatically be selected. 

0 to 255 Detect this ASCII character as the sec- 
ond GPIB bus terminator instead of 
the default second GPIB Input 
Terminator. The 0 - 255 value repre- 
sents the ASCII value of the termina- 
tor character to be used. (An ASCII 
Equivalence Chart is provided in 
Appendix A.) 

The following default termlist can also be used: 

DIM DTRBl(3) AS INTEGER 
DTRM(0) = -1 ' Use the default EOI choice 
DTRM(1) = -1 ' Use the default first terminator 
DTRM(2) = -1 ' Use the default seaond teminator 

Returns errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

a-26 



KM-4tWDD Programmlng Guide Using the Call interface 
In QuickBASIC 

KENTERBUF (cont’d) 

Programming 1. If the KM-488-DD is a Peripheral, an active controller must address the 
Notes KM-488-DD as a listener before KENTERBUF is called. In this instance, 

you should use the noadd structure in lieu of mygads. This is 
described in section 8.1. 

2. If the KM-488-DD is the Active Controller, it will automatically address 
itself as a listener and another device defined in mygads as the talker. 
Since only one device can be a talker, the address group mygads can 
contain only one address. If a device has been previously addressed to 
talk and the KM-488-DD previously addressed to listen, then mygads 
can be naadd (See section 8.1) and the bus will not be re-addressed. 

3. If count is specified as 0, then KENTER will terminate when the ter- 
minator(s) specified by termlist is encountered. 

4. If it is desirable to terminate on count only and not use the default 
terminators, then you must select no terminator overrides in the ter- 
mlist array, in addition to giving the count. In this case, a byte by 
byte synchronous transfer is executed. 

5. If both count and terminators are specified, the KENTERBUF will ter- 
minate on whichever condition is encountered first. 

6. If the condition(s) for termination is not encountered, KENTERBUF 
will timeout unless the timeout has been disabled. 

7. To manipulate the data, which is returned in the form of two data bytes 
per integer location, you may need to use KUNPACK. 

E-27 



Using the Call Interface 
in QuickBASiC 

KM-488-DD Programming Guide 

KENTERBUF (cont’d) 

Example '$INCLDDE : 'BEADER.BI' 
DIM brdnum AS INTEGER ' Number of board to be accessed. 
DIM errnum AS INTEGER ' Error code returned, 0 = no 
error 
DIM numb AS INTEGER ' Number of bytes to transfer 
DIM mode As INTEGER ' DblA mode 
' this structure will hold the primary and 
' secondary addresses of the devices 
DIM SCOPEadd(2) AS GADS 
DIM SCOPEtrm(3) AS INTEGER 
' Terminators for enter 
DIM dmain(514) 'Array to hold DblA input waveform from 
scope 
SCOPEadd(0) .primad = 5 ' first primary address = 5 
SCOPEadd(O).secad = -1 ' first secondary address = NONE 
SCOPEadd(l).primad = -1 
' second primary address = NONE and NONE to follow 
brdnum= 0 ' First GPIB Board 
errnum = 0 
mode =l ' DMA mode flag -- 0: no DMA 

I 1: DtdA Without CONTINUE 
I 3: DblA With CONTINUB 
, 

sCOPEtrm(0) = -1 ' Use default EOI 
SCOPEtrm(1) = -1 ' Use default first 
sCOPEtrm(2) = -1 ' Use default second 

nd = 1028 'Number of bytes to transfer 
, 
'Enter 1028 bytes form the device at GPIB address 5 

CALL RBNTBRBUP(brdnum, errnum, dmain(O), numd, mode, SCO- 
PEadd(O), SCOPEtrm(0)) 
IF errnum TEEN PRINT "IEEE Error ";errnum:STOP 

8-28 



KM-488.DD Programming Guide Using the Call Interface 
in QuIckBASIC 

PUpXe Allows the KM-488-DD to receive data from a GPIB bus device. 

Syntax CALL KENTERSTR(boardnr%, errcode%, data$, count, mode%, 
mygads% (01, termlist% (0) ) 

Parameters boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

data$ is a string large enough to accept the returned data. If a non-zero 
count is specified, the string should be of length count. If count ls 0 and 
terminator characters are used, the string must be large enough to accommo- 
date both data and terminator characters returned by the device. 

count is a long integer representing the number of characters to be read. 
Valid counts are within the range 0 to 4294967295 (232-1) decimal, or from 0 
to &HFFFFFFFF. Note however, that QuickBASIC strings have a maximum 
length of 65535(&HFFFF). When count is 0, the KENTERSTR will stop 
when the terminators specified by termlist have been detected. 

mode% is an integer which represents whether or not DMA is to be used and 
if the CONTINUE mode is to be used. This integer is interpreted as follows: 

Bit 15-2 1 0 

0 1 CONT 1 DMA 1 

Where: 

CONT CONTINUE. This an optional mode which is used in conjunc- 
tion with DMA. When this bit is set to one, the CONTINUE 
mode will be used. If CONTINUE is specified, the KM-488-DD 
will return control to the application program as soon as it can 
without waiting for completion of the transfer. The KM-488-DD 
will at least wait for the first byte to check for time-out (Unless 
TIME OUT = 0) before continuing. DMA CONTIm execu- 
tion concludes when the KM-488-DD completes its transfer. 

8-29 



Using the Call Interface 
in QuickBASIC 

KMd88-DD Programming Guide 

KENTERSTR (conf’cf) 

If CONTINUE is used and the DMA AUTOINITIALIZE has 
been enabled, then the DMA transfer will continue until a 
KSTOP routine is invoked or a pre-specified GPIB BUS input 
terminator is detected. 

OMA DMA. If this bit is set to one, then DMA will be used in the data 
transfer. 

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses 
to be accessed. mygads (n) is comprised of n structures of type GADS. You 
must tailor mygads to your application. The GADS structure is described in 
section 8.1 and defined in the QuickBASIC include file HEADER.BI. 

termlist (3) is an integer array which defines the GPIB bus terminators 
to be used during the KENTERSTR call. These terminators are used in con- 
junction with count to terminate the input process. Terminator choices 
include whether or not EOI will be detected to signal end of input and which 
character sequence, if any, is to be detected as an end of message code. The 
default terminator scheme is initially set-up by the CONFIG.DAT file, and 
can be modified by calling KTERM or KCONFIG. termlist can either 
specify the use of the default terminators or temporary overrides. 

termlist is comprised of the following elements: 

termlist (0) : EOI detection. Possible values are: 

-l(&HFFFF) Use the default EOI setting. 
0 Don’t Detect EOI. 
1 Detect EOI. 

termlist (1) : 1st GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
the default second terminator will 
also be used. 

8-30 



KM-488-DD Programming Guide Uslng the Call Interface 
in QuickBASIC 

0 to 255 Detect this ASCII character as the first 
GPIB bus terminator instead of the 
default first GPIB Input Terminator. 
The 0 - 255 value represents the ASCII 
value of the terminator character to 
be used. (An ASCII Equivalence 
Chart is provided in Appendix A.) 

termlist (2) : 2nd GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
this will automatically be selected. 

0 to 255 Detect this ASCII character as the sec- 
ond GLIB bus terminator instead of 
the default second GPIB Input 
Terminator. The 0 - 255 value repre- 
sents the ASCII value of the termina- 
tor character to be used. (An ASCII 
Equivalence Chart is provided in 
Appendix A.) 

The following default termlist can also be used: 

Relurns 

DIM DTRld(3) AS INTEGER 
DTRM(0) = -1 ’ Use the default EOI choice 
DTRM(1) = -1 I Use the default first terminator 
DTRM(2) = -1 ' Use the default second terminator 

errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

a-3 i 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

KENTERSTR (cont’d) 

Programming 1. 
Notes 

2. 

3. 

4. 

5. 

6. 

7. 

If the KM-48%DD is a Peripheral, an active controller must address the 
KM-488-DD as a listener and some other device as the talker, before 
KENTERSTR is called. In this instance, you should use the noadd 
structure in lieu of mygads. This is described in section 8.1. 

If the KM-488-DD is the Active Controller, it will automatically address 
itself as a listener and another device defined in mygads as the talker. 
Since only one device can be a talker, the address group mygads can 
contain only one address. If a device has been previously addressed to 
talk and the KM-488-DD previously addressed to listen, then mygads 
can be noadd (See section 8.1) and the bus will not be re-addressed. 

If count is specified as 0, then KENTERSTR will terminate when the 
terminator(s) specified by termlist is encountered. 

If it is desirable to terminate on count only and not use the default 
terminators, then you must select no terminator overrides in the ter- 
mlist array, in addition to giving the count. In this case, a byte by 
byte synchronous transfer is executed. 

If both count and terminators are specified, the KENTERSTR will ter- 
minate on whichever condition is encountered first. 

If the condition(s) for termination is not encountered, KENTERSTR will 
timeout unless the timeout has been disabled. 

Use the LONG function SSEGADD& () to obtain the address of a string. 
This function is intrinsic to QuickBASIC 7.X only. It is supplied for 
users of Versions 4.X in the files KM488QB4.LIB and KM488QB4.QLB. 

Exomple '$INCLUDE : 'BEADER.BI' 
DIM brdnum AS INTEGER ' Number of board to be accessed. 
DIM errnum AS INTEGER 
' Error code returned if any. 0 indicates no error 
DIM numd AS INTEGER ’ Number of bytes to transfer 
DIM mode AS INTEGER ' DMA mode 
DIM StrCnt AS INTEGER ' Integer to hold size of Str 
DIM Str AS STRING ‘ String to hold co-d 

a-32 



KM-488-DD Programmlng Guide Using the Call interface 
in QuIckBASIC 

KENTERSTR tcont’d) 

DIM DMMadd(2) AS GADS ’ this structure will hold the 
ptimezy and 

devices 
' secondary addresses of the 

DIM DbtMtnn(3) AS INTEGER ' Terminators for enter 

DIM brdnum AS INTEGER ' This variable will contain the 
board 

' numhez to be accessed. 

Db0ladd(O).primad = 5 ' first primary address = 5 
DMMadd(O).seoad = -1 ' first secondary address = NONE 
DMMadd(l).primad = -1 
' second primary address = NONE and NONE to follow 
brdnum= 0 ' First GPIB Board 
ettnum = 0 
mode = 0 ' DMA mode flag -- 0: no DblA 

1: DMA Without CONTINDE 
3: DMA With CONTINUE 

DMMtna(0) = -1 ' Use default EOI 
DMMtna(1) = -1 ' Use default first 
DbQ4trm(2) = -1 ' Use default second 
nmnd=O 
'Number: of bytes to transfer -- 0 means go until termina- 
tion 
, 
str = STRING$ (20, 32) 
‘ Must be long enough to hold returned data including 
GPIB 
' terminators 
CALL ICENTRRSTR(brdnum, errxnun, SSEGADDS(Str), numd, mode, 
DMMadd(O), DMMtrm(0)) 
IF ezxnum TBEN PRINT "IEEE Error ";ermum:STOP 

a-33 



Using the Call Interface 
in QuickBASIC 

KM-408~DD Programming Guide 

Purpose 

Syntax 

Parameters 

Returns 

Enables/Disables display of Error Messages. 

CALL KEBBOR(boardnr%, etrcode%, em%) 

boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

esw% is an integer which determines if error message display function will 
be enabled or disabled. If esw%=l, the error message display is enabled. 
(This is the default.) If esw%=O is specified, the error message display ls dis- 
abled. 

errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

If KERROR has been used to enable error messages, the message will 
only reveal that Bn error has occurred for the KM-488-DD calls. It does 
not identify what type of error occurred. The KDIAGON routine 
should be used to help debug applications utilizing the KM-488-DD 
calls, and the KSTATUS routine used for identifying the error number. 

2. Programs can also check err-code% after each call to identify the 
exact nature of call errors. 

Example DIM brdnum AS INTEGER ' Number of board to be aCCe8.90d. 
DIM errnum AS INTEGER 
' Error code returned if any. 0 indicates no error 
’ 0 disables error display 1 enables 
DIM errsv AS INTEGER 
brdnum= 0' First GPIB Board 
errnum = 0 
erra = 1 ' Enable Error Display 
' *** Enable Error Display *** 
CALL lOXBBOR(brdnum, errnum, errsw) 
IF errnum TERN PRINT "IEEE Error ";errmm:STOP 

a-34 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

KHLL 

Purpose 

Syntax 

Parameters 

Returns 

Defines the KM-48t?-DD driver’s response to a request for data when none is 
available. 

NOTE: KFILL is provided for users who mix File I/O Commands and Calls 
in the same program. It only affects inputs performed using the File I/O 
Commands. 
CALL KFILL(boardnr%, errcode%, fillsw%) 

boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

fillsw% is an integer which represents the fill condition. (The default con- 
dition is for the KM-488-DD driver to return a NULL character.) fillsw% 
can be any one of the following: 

-1 OFF. The KM-488-DD driver will not return any data charac- 
ters or a DOS error message, if no input data is available. 

-2 ERROR. The KM-488-DD driver will not return any data 
characters, but will generate an Error Message. The error 
message number can then be trapped by calling the KSTATUS 
routine. (Refer to the KSTATUS routine for more information.) 

O-255 ASCII. The KM-488-DD driver will return the designated 
ASCII character. (An ASCII Equivalence Chart is provided in 
Appendix A.) Specify the decimal equivalent of the character 
to be used. 

errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

a-35 



Using the Call Interface 
in QuickBASIC 

KM-4BB-DD Programming Guide 

KFILL 

Example DIM brdnum AS INTEGER ' Number of board to be 
accessed. 
DIM errnm AS INTEGER 
' Error code returned if any. 0 indicates no error 
DIM fillchar AS INTEGER ' ASCII value of fill character 
brdnum= 0 ' First GPIB Board 
errnum = 0 
fillohar = SE ' Decimal equivalent of "X" 
' *** Set Fill Character To ‘X' *** 
CALL KFILL(brdnum, ermum, fillohar) 
IF errnm TBRN PRINT "IEEE Error ";errnum:STOP 

a-36 



KM-4t38-DD Programming Guide Using the Call Interface 
in QuickBASIC 

Purpose 

Syntax 

Parameters 

Returns 

Programming 1. 
Notes 

The string into which the HELLO message is returned must be dimen- 
sioned prior to calling KHELLO. Otherwise, QuickBASIC assumes that 
the string is of length 0 and calling KHELLO will result in destroying 
other programmed data. (See the QuickBASIC STRINGS function.) 

Example DIM brdnum AS INTEGER ' Number of board to be accessed. 
DIM errnum AS INTEGER 
' Error code returned if any. 0 indicates no e*rcr 
DIM Str AS STRING ’ Stting to hold returned message 
brdnum= 0 'First GPIB Board 
' Must be long enough to hold returned id 
Str = STRINGQ(50, 32) 
'*** Return ID from driver to verify its presence *** 
CALL KBELLO(brdnum, ermum, Six) 
IF errnum TEEN PRINT "IEEE Error ";errnum:STOP 

Returns an identification string from the KM-488-DD driver. 

CALL KBBLLO(boardnr%, errcode%, idresponseS) 

boarclnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

idresponseS will contain a string similar to: copyright (c) 1991 
Keithley MetraByte Corp. 

errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

8-37 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

KLOCAL 

Purpose 

Syntax 

Parameters 

Returns 

Forces the specified bus device(s) to return to being programmed locally 
from their front panels. This _ _ . 

CALL KIOCAL (boardnr%, errcode%, mygads (0) ) 

boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses 
to be accessed. mygads (n) is comprised of n structures of type GADS. You 
must tailor mygads to your application. The GADS structure is described in 
section 8.1 and defined in the QuickBASIC include file HEADER.BI. 

errcode% is a variable through which error codes are returned. If this varl- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

If the KM-488-DD is the System Controller and if mygads does not 
specify an address, then the GPIB REN (Remote Enable) line is unas- 
serted and all devices are returned to Local. In order to return them to 
remote mode, it will be necessary to issue a KREMOTE call. Likewise, if 
Local Lockout is required, it will be necessary to issue a KLOL call. 

2. As an Active Controller, the KM-488.DD can issue the GPIB GTL (Go 
To Local) message to those devices specified by mygads. In this case, 
the GPIB REN (Remote Enable) line remains asserted and devices will 
return to remote when addressed to listen. If a KLOL (Local Lockout) 
call has been issued previously, it should still be in effect when a device 
is returned to Remote. 

a-38 



KM-488.DD Programming Guide Using the Call Interface 
in QuickBASiC 

KLOCAL (cont’d) 

Example '$INCLUDE : ~ximmm.BI 
DIM btdnum AS INTEGER ' Number of board to be accessed. 
DIM erxnum AS INTEGER r Error code returned if any. 0 
indicates no error 
DIM DblMadd(2) AS GADS 
’ thin structure will hold the primary 
' and secondary addresses of the devices 

DbfMadd(O).primad = 5 r first primary address = 5 
DMMadd(O).seoad = -1 ' first secondary address = NONE 
Db46add(l).primad = -1 
' second primary address = NONE and NONF, to follow 
btdnum = 0 ' First GPIB Board 
errnom = 0 
I*** Send Device With GPIB Address Back To Local 
CALL KLOCA.L(brdnum, ermum, DbMadd(0)) 
IF errnum TREN PRINT "IEEE Error ":ercnum:STOP 

a-39 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

KLOL 

Purpose 

Syntax 

Parameters 

Returns 

be usedif the KM _ _ 488 DD is an Active or Sy&zn 
Controller. It will disable the GLIB bus devices from being returned to Local 
Control by means of the Local/Remote button on the device. 

NOTE: This routine issues an IEEE-488 bus signal, LOL. This signal is not 
supported by all IEEE-488 bus devices. 

CALL KLOL(boardnt%, errcode%) 

boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

The “LOCAL” button is disabled so that a device cannot be returned to 
local state for manual programming or control. The Active Controller 
can return specific devices to “local with lockout state”, whereby an 
operator can then use the front panel controls. When the device is 
addressed to listen again, it returns to “remote with lockout state”. 
Thus, the effect of the LOL call will remain until the REN line is unas- 
serted (LOCAL) by the System Controller. 

2. It is good practice to issue a KLOL so that devices are under strict pro- 
gram control. KLOL can be issued before a device is put in remote and 
will take effect when the device’s LOCAL button is set to remote. 

Example DIM brdnm AS INTEGER ' Number of board to be accessed. 
DIM errnum AS INTEGER 
’ Error code returned if any. 0 indicates no error 
bxdnum = 0 ' First GPIB Board 
'Prevent Devices From Being Returned To Local Control 
errnum = 0 
CALL KLOL(brdnum, ermum) 
IF ermnum TEEN PRINT "IEEE Error ";errnum:STOP 

a-40 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

Purpose 

Syntax 

Transmits data from the KM-488-DD to the GPIB bus. 

CALL SCOUTPUTBUF (boardnr%, errcode%, data% (0) , count, 
mode%, mygads (0) , termlist (0) ) 

Parameters boa&m% is an integer which represents the board identification number. 
This ls an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

data% is an array containing the data to be output. 

count is a long integer representing the number of characters to be output. 
Valid counts are within the range 1 to 4294967295 @‘-I) decimal, or from 1 to 
ISKHFFFFFFFF. 

mode% is an integer which represents whether or not DMA is to be used and 
if the CONTINUE mode is to be used. This integer is interpreted as follows: 

Where: 

Bit 15-2 1 0 

1 0 1 CONT 1 DMA 

CON1 CONTINUE. This an optional mode which ls used in conjunc- 
tion with DMA. When this bit is set to one, the CONTINUE 
mode will be used. If CONTINUE is specified, the KM-488-DD 
will return control to the application program as soon as it can 
without waiting for completion of the transfer. The KM-488-DD 
will at least wait for the first byte to check for time-out (Unless 
TIME OUT = 0) before continuing. DMA CONTINLJ!Z execu- 
tion concludes when the KM-488-DD completes its transfer. 

8-41 



Using the Call intelface 
in QuickBASIC 

KM-488-DD Programming Guide 

KOUTPUTBUF (cont’ci) 

If CONTINUE is used and the DMA AUTOINITIALIZE has 
been enabled, then the DMA transfer will continue until a 
KSTOP routine is invoked. 

DMA DMA. If this bit is set to one, then DMA will be used in the data 
transfer. 

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses 
to be accessed. mygads (n) ls comprised of n structures of type GADS. You 
must tailor mygads to your application. The GADS structure is described in 
section 8.1 and defined in the QuickBASIC include file HEADER.BI. 

termlist is an integer array which defines the GPIB bus terminators to be 
used during the KOUTIWTBUF call. These terminators are used in conjunc- 
tion with count to terminate the output process. Terminator choices 
include whether or not EOI will be asserted with the last byte and whether or 
not a certain byte or sequence of two bytes will be sent as an end of message 
code. The default terminator scheme is initially set-up via the CONFIG.DAT 
file, and can be modifled by calling KTERM or KCONFIG. termlist can be 
used either to specify the use of the default terminators or to use temporary 
override terminators. 

termlist ls comprised of the following elements: 

termlist (0) : EOI assertion. Possible values are: 

-l&HFFFF) Use the default EOI setting. 
0 Don’t Assert EOI. 
1 Assert EOI. 

termlist (1) : 1st GPIB bus terminator. Possible values are: 

-l&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
the default second terminator will 
also be used. 

8-42 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

KOUTPUTBUF tcont’d) 

0 to 255 Send this ASCII character as the first 
GPIB bus terminator instead of the 
default first GPIB Input Terminator. 
The 0 - 255 value represents the ASCII 
value of the terminator character to 
be used. (An ASCII Equivalence 
Chart is provided in Appendix A.) 

tenslist (21 : 2nd GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator ls used, 
this will automatically be selected. 

0 to 255 Send this ASCII character as the sec- 
ond GPIB bus terminator instead of 
the default second GPIB Input 
Terminator. The 0 - 255 value repre- 
sents the ASCII value of the termina- 
tor character to be used. (An ASCII 
Equivalence Chart ls provided in 
Appendix A.1 

The following default termlist can also be used: 

Returns 

DIM DTRM(3) AS INTEGER 
DTRM(O) = -1 ' Use the default EOI choice 
DTRM(1) = -1 ' Use the default first terminator 
DTRbl(2) = -1 ' Use the default seaond terminator 

errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

If the KM-488-DD is a peripheral, then an Active Controller must 
address the KM-488-DD as a talker and some other device(s) as the lis- 
tener(s). In this case,use noadd formygads. (Seesection 8.1.). 

2. If the KM-488-DD is both the System and Active Controller, and 
mygads contains the device(s) to be addressed, the KOUTPUTBUF 
will automatically assert the GPIB REN (Remote Enable) line. 

a-43 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

3. If the KM-488DD ls the Active Controller and KOUTPUTBUF is called, 
it will automatically address itself as the talker and another device(s) 
contained in mygads as the listener(s). If the devices have been pre- 
viously addressed, then mygads can be noadd and the bus will not be 
readdressed. 

4. 

5. 

A non-zero count must always be specified. 

If you do not wish to append terminator characters, then be sure to set 
the terminator defaults via CONFIG.DAT or by calling KTERM or 
KCONFIG j& select no terminator overrides in the tennlist array. 

6. If a listener does not accept a character, a timeout will occur unless the 
timeout has been disabled. 

Example DIM SCOPEtm(3) AS INTEGER ’ Terminators for output 
DIM brdnm AS INTEGER 
' This will contain the board number to be accessed. 
DIM drnaout(514) 
‘Array to hold DMA output waveform for scope 
noadd(O).primad = -1 
' No first p?zimary address, hence no addresses 
brdnum = 0 ' First GPIB Board 

mode=1 ' DblA mode flag -- 0: no DMA 
, 1: DMA Without CONTINVE 
, 3: DbfA With CONTINUE 
I 

scoPEtrsl(0) = -1 ' Use default EOI 
scoPEtrm(l) = -1 ' Use default first 
SCOPEt?xn(2) = -1 I Use default second 
numd = 1028 'Number of bytes to transfer 
errnum = 0 
, 
'*** Code to fill dmaout here *** 
r 
, 

CALL koutputBuf(brdnum, errnum, dmaout(O), numd, mode, 
noadd( SCOPEtrm(0)) 
IB erfnum TEEN PRINT "IEEE Error ";ertnum:STOP 

8-44 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

KOUTPUTSTR 

Purpose 

Syntax 

Transmits data from the KM-488-DD to the GPIB bus. 

CALL KOUTPUTSTR (boardnr%, errcode%, data$, count, mode%, 
mygads (0) , termlist (0) ) 

Parameters boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

data$ is a string of data to be output. 

count% is a long integer representing the number of characters to be output. 
Valid counts are within the range 1 to 4294967295 (23*-1) decimal, or from 1 to 
&HFFFFFFFF hex. 

mode% is an integer which represents whether or not DMA is to be used and 
if the CONTINUE mode is to be used. This integer is interpreted as follows: 

811 15-2 1 0 

I 0 1 CONT 1 DMA 1 

CONT CONTINUE. This an optional mode which is used in conjunc- 
tion with DMA. When this bit is set to one, the CONTINUE 
mode will be used. If CONTINUE is specified, the KM-488-DD 
will return control to the application program as soon as it can 
without waiting for completion of the transfer. The KM-488-DD 
will at least wait for the first byte to check for time-out (Unless 
TIME OUT = 0) before continuing. DMA CONTIm execu- 
tion concludes when the KM-488-DD completes its transfer. 

8-45 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

KOUTPUTSTR (cont’d) 

If CONTINUE is used and the DMA AUTOINlTIALIZE has 
been enabled, then the DMA transfer will continue until a 
KSTOP routine is invoked. 

OMA DMA. If this bit is set to one, then DMA will be used in the data 
transfer. 

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses 
to be accessed. mygads (n) is comprised of n structures of type GADS. You 
must tailor mygads to your application. The GADS structure ls described in 
section 8.1 and defined in the QuickBASIC include file HEADER.BI. 

termlist is an integer array which defines the GPIB bus terminators to be 
used during the KOUTIWTSTR call. These terminators are used in conjunc- 
tion with count to terminate the output process. Termination choices 
include whether or not EOI will be asserted with the last byte and whether or 
not a certain byte or sequence of two bytes will be sent as an end of message 
code. The default termination scheme ls initially set-up via CONFIG.DAT 
program, and can be modified by calling KTERM or KCONFIG. termlist 
can be used to specify the use of the default terminators or a different termi- 
nator. 

termlist (3) is comprised of the following elements: 

termlist (0) : EOI detection. Possible values are: 

-l(&HFFFF) Use the default EOI setting. 
0 Don’t Assert EOI. 
1 Assert EOI. 

temli8t(l): 1st GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
the default second terminator will 
also be used. 

8-46 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

KOUTPUTSTR (cont’d) 

0 to 255 Send this ASCII character as the first 
GPIB bus terminator instead of the 
default first GLIB Input Terminator. 
The 0 - 255 value represents the ASCII 
value of the terminator character to 
be used. (An ASCII Equivalence 
Chart is provided in Appendix A.) 

termlist (2) : 2nd GPIB bus terminator. Possible values are: 

-l(&HFFFF) Use the default terminator. Note that 
if the default first terminator is used, 
this will automatically be selected. 

0 to 255 Send this ASCII character as the sec- 
ond GPIB bus terminator instead of 
the default second GPIB Input 
Terminator. The 0 - 255 value repre 
gents the ASCII value of the termina- 
tor character to be used. (An ASCII 
Equivalence Chart is provided in 
Appendix A.) 

The following default termlist can also be used: 

DIM DTRM(3) AS INTEGER 
DTRM(0) = -1 ' Use the default EOI choice 
DTRM(1) = -1 r Use the default first terminator 
DTRM(2) = -1 r Use the default second terminator 

Returns errcode% is a variable through which error codes are returned. If this varl- 
able is set to 0, then no error occurred. If it ls set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming 1. 
Notes 

If the KM-488-DD is a peripheral, then an Active Controller must 
address the KM-48%DD as a talker and some other device(s) as the lis- 
tener(s). In this case, use the noadd structure in lieu of mygads. (See 
section 8.1.). 

2. If the KM-488-DD is both the System and Active Controller, and 
mygads contains the device(s) to be addressed, the KOUTPUT will 
automatically assert the GPIB REN (Remote Enable) line. 

8-47 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

KOUTPUTSTR (cont’d) 

3. If the KM-488-DD is the Active Controller and KOUTPUT is called, it 
will automatically address itself as the talker and another device(s) con- 
tained in mygads as the listener(s). if the devices have been pre- 
viously addressed, then mygads can be noadd and the bus will not be 
re-addressed. 

4. 

5. 

A non-zero count must always be specified. 

If you do not wish to append terminator characters, then be sure to set 
the terminator defaults accordingly. This may be accomplished via 
CONFIG.DAT or by calling KTERM or KCONFIG d use no overrides 
inthetennlist. 

6. If a listener does not accept a character, a timeout will occur unless the 
timeout has been disabled. 

7. Use the LONG function SSEGADD& () to obtain the address of a string. 
This function is intrinsic to QuickBASIC 7.X only. It is supplied for 
users of Versions 4.X in the files KM488QB4.LIB and KM488QB4.QLB. 

8-48 



KM-48B-DD Programming Guide Using the Call Interface 
In QuickBASIC 

KOUTPUTSTR (cont’d) 

Example '$INCLVDE : 'ERADER.BI' 
DIM btdnum AS INTEGER f Number of board to be accessed. 
DIM ertnum AS INTEGER 

I Error aode returned if any. 0 indicates no error 
DIM numd AS INTEGER r Number of bytes to transfer 
DIM mode AS INTEGER ' DMAmode 
DIM Str AS STRING r String to hold returned message 
DIM SCOPEadd(2) AS GADS 
' this structure will hold the primary 
r and seaondary addresses of the devices for output 
DItd SCOPEtrm(3) AS INTEGER ' Terminators for output 
DIM btdnum AS INTEGER 
r This variable will contain the board number to be 
' accessed. 

SCOPEadd(O).primad = 5 ' first primary address = 5 
SCOPEadd(O).secad = -1 ' first secondary address = NONE 
SCOPEadd(l).primad = -1 

' second primary address = NONE and NONE to follow 
brdnum = 0 r First GPIB Board 
ermmm = 0 
mode=1 I DblA mode flag -- 0: no DMA 

, 1: DMA Without CONTINVB 
3: DMA With CONTINVB 

I 
SCOPEtrm(0) = -1 ' Use default EOI 
SCOPEtrm(1) = -1 ' Use default fit& 
SCOPEtnn(2) = -1 ( Use default second 
Str = STRINGQ(20, 32) 
Str = "BOR ASE:5E-4" 
sttcnt = LEN(str) 
CALL KOVTPVTSTR(brdnum, ermum, SSEGADDb(Str), StrCnt, 
mode, SCOPEadd( SCOPEtrm(0)) 
IF exmnum TXEN PRINT "IEEE Error ";errnum:STOP 

8-49 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

KPACK 

Purpose This packs discrete B-bit data values (stored in a 16-bit integer array) into 
sequential bytes. This routine is useful when an instrument can only accept 
an 8-bit data value, because the KM-488-DD driver can only transfer contigu- 
ous bytes. 

Syniax KPACK(source% (0) ,dest% (0) ,count%) 

Parameters source% is the name of the integer array which contains the data to be con- 
verted. 

de&% is the name of the integer array in which the converted data is to be 
stored. 

count% is an integer which represents the number of elements comprising 
the source% array. (The number of elements needed in the de&% array is 
count%/2.) 

Returns Result is stored in de&%. 

Programming 1. 
Notes 

Both source% and de&% must be declared as COMMON- 
SHARED. The KM-488-DD driver assumes that each of these arrays 
resides in QuickBASIC’s default data segment. 

Example DIM nuud AS INTEGER ' Number of bytes to transfer 
'Array to hold Dbl& output waveform 
DIM dmaout(514) AS INTEGER 
'Working array 
DIM workb(1028) AS INTEGER 
COMMON SSARED cknaout () , workb () 
numd = 1028 'Number of bytes to transfer 
‘Convert the word (integer) working array into 
r a packed array. 
CALL KPACK(VARPTR(workb(O)), VARPTR(dmaout(O)), numb%) 

8-50 



KM-4WDD Programming Guide Using the Call interface 
In QuickBASIC 

KPASCTL 

Purpose 

Syntax 

Parameters 

Returns 

Designates another controller to be the Active Controller. TheE;M-488-DD 

CALL KPASCTL(boardnr%, errcode%, mygads(0)) 

boardnr% is an integer which represents the board identification number. 
Thii is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses 
to be accessed. mygads (n) is comprised of n structures of type GADS. You 
must tailor mygads to your application. The GADS structure is described in 
section 8.1 and defined in the QuickBASIC include file HEADER.BI. 

errcode% is a variable through which error codes are returned. If this vart- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming If the KM-48%DD which is relinquishing its position as the Active Controller 
Notes is also a System Controller, it retains its status as System Controller. 

8-51 



Using the Call Interface 
in QuIckBASIC 

KM-488-DD Programming Guide 

KPASCTL (cont’d) 

Example '$INCLUDE : 'BRADER.BI' 
DIM brdnum AS INTEGER ' Number of board to be accessed. 
DIM errnum AS INTEGER 
' Error code returned if any. 0 indicates no erx-or 
DIM PERIadd(2) AS GADS 
' this structure will hold the primary and 
' aeoondary addresses of the devise to take control 
PERIadd(O).primad = 2 ' first primary address = 2 
PERIadd(O).secad = -1 ‘ first secondary address = NONE 
PERIadd(l).ptimad = -1 
' second primary address = NONE and NONE to follow 
brdnum= 0 ' First GPIB Board 
errnum = 0 

' *** Pass To Device At GPIB Address 2 *** 
CALL KPASCTL(brdnum, ermum, PERIadd(0)) 
IF errnum TRRN PRINT "IEEE Error '~:exrnum:STOP 

8-52 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

KPPOLL 

Purpose 

Syntax 

Parameters 

Returns 

Initiates a Parallel Poll. The KM-488-DD m be the Active Controller. 

NOTE: Many GPIB devices do not support parallel polling. Check your 
device’s documentation. 

CALL KPPOLL(boardnr%, erroode%, pprtn%) 

boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

pprtn% is an integer variable which will contain an integer in the range 0 to 
255 decimal. This integer indicates which Data Lines which have been 
asserted (DIOI-DI08). 

Programming None. 
Notes 

Example DIM brdnum AS INTEGER ' Number of board to be accessed. 
DIM errnum AS INTEGER 
’ Error code returned if any. 0 indicates no error 
DIM ppreap AS INTEGER ' Parallel poll response 
brdnum= 0 ' First GPIB Board 
, 
' *** Conduct Parallel Poll *** 
errmun = 0 
CALL KPPOLL(brdoum, ermum, ppzeap) 
IF errnum TEEN PRINT "IEEE Error ";errnum:STOP 

PRINT 
PRINT "The Parallel Poll Returned = ";ppresp 

8-53 



Using the Call Interface 
in QuickBASIC 

KM-488-DD Programming Guide 

Purpose Configures the Parallel Poll response of a GI’IB bus device. The KM-488-DD 

m= NOTE: Many GPIB devices do not support parallel polling. Check your 
device’s documentation. 

Syntax CALL KPPC (boardnr%, errcode%, mygads (0) , ppccfg%) 

Parameters boardnr% is an integer which represents the board identification number. 
This is an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses 
to be accessed. mygads (n) is comprised of n structures of type GADS. You 
must tailor mygads to your application. The GADS structure is described in 
section 8.1 and defined in the QuickBASIC include file HEADER.BI. 

ppccfg% is an integer which represents the Parallel Poll Response of the 
device to be programmed. This integer is of the format: 

Bit 7 6 6 4 3 2 1 0 

0 1 1 0 s P2 Pl PO 

a-54 



KM-4t38-DD Programming Guide Using the Call Interface 
In QuickBASIC 

KPPC (conl’d) 

Where: 

S is the parallel poll response value (0 or 1) that the device uses to 
respond to the parallel poll when service is required. This bit is 
generally set to 1. 

NOTE: This value must correspond to the setting of the GPIB 
bus device’s ist bit (individual status bit). Refer to the Device’s 
documentation for more information. 

P2 Pi PO ls a 3-bit value which tells the device being configured which 
data bit CD101 through DIOE) it should use as its parallel poll 
response. 

Returns errcode% is a variable through which error codes are returned. If this vari- 
able is set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming None. 
Notes 

a-55 



Using the Call Interface 
in QuickBASIC 

KM-4tWDD Programming Guide 

Example '$IN~LDDE : 'EBADER.BI' 
DIM brdaum AS INTEGER ' Number of board to be accessed. 
DIM errnm AS INTEGER 
' Error code returned if any. 0 indicates no error 
DIM ppconf AS INTRGER ' Parallel poll configuration 
DIM PWRadd(2) AB GADS 

f this structure will hold the primary and 
I secondary addresses of the device to take to be confi- 
gured 
~WRadd(O).primad = 1 ' first primary address = 1 
~wRadd(O).secad = -1 f first secondary address = NONE 
~WRadd(l).primad = -1 
r second primary address = NOW and NONE to follow 
brduum= 0 ' First GPIB Board 
1 Configure Device At GPIB Address 1 To Respond On D103 
Line *** 
ppconf = Llin 
errnum = 0 
CALL RPPC(btdnum, ermum, PWRadd(O), ppconf%) 
IF errnum TEEN PRINT "IEEE Error ";errnum:STOP 

a-56 



KM-488-DD Programming Guide Using the Call Interface 
in QuickBASIC 

KPPD 

Purpose Disables the Parallel Poll response capability of the specified GPlB bus 
device(s). m-488-DD nu&be the Active Control& 

Syntax CALL KPPD (boardmA, errcode%, mygads (0) ) 

Parameters boardnr% is an integer which represents the board identification number. 
This ls an integer in the range 0 to 3 and represents the board to be pro- 
grammed. 

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses 
to be accessed. mygads (n) is comprised of n structures of type GADS. You 
must tailor mygads to your application. The OADS structure is described in 
section 8.1 and defined in the QuickBASIC include file HEADER.BI. 

Returns errcode% is a variable through which error codes are returned. If this vari- 
able ls set to 0, then no error occurred. If it is set to a value other than 0, then 
an error did occur. The error codes are listed in Appendix G. 

Programming None. 
Notes 

8-57 



Using the Call Interface 
in QuickBASIC 

KM-48&l-DD Programming Guide 

KPPD (cont’d) 

Example '$INCLDDE : 'BEADER.BI' 
DIM brdnum AS INTEGER I Number of board to be accessed. 
DIM errmm AS INTEGER 
' Error code returned if any. 0 indicates no error 
DIM PNRadd(2) AS GADS 
’ this structure will hold the primary and secondary 
' addresses of the device to take to be disabled 
PWRadd(O).primad = 1 ' first primary address = 1 
~~~add(O).secad = -1 ' first secondary address = NONE 
PWRadd(l).primad = -1

r second primary address = NONE and NONE to follow
brdnum= 0 ' First GPIB Board
errmm = 0
I Disable Device @ GPIB Add I1 From Responding To WPOLL
CALL KPPD (brdnum, errmm, PWRadd(0))

a-58

KM-488.DD Programming Guide Using the Call Interface
in QuickBASIC

Purpose

Syntax

Parameters

Returns

Programming None.
Notes

Example DIM brdnum AS INTEGER ' Number of board to be accessed.
DIM errnum AS INTEGER

' Error code returned if any. 0 indicates no error
brdnum= 0 ' Fix& GPIB Board
errrum = 0
’ Disable Parallel Poll Response Of All Devices
CALL lCPPIJ(brdnum, ermum)
IF errnum TEEN PRINT "IEEE Erzor ";errnum:STOP

Disables the Parallel Poll Response of all GPIB bus device(s). The KM-
be the Active ControlleD

CALL KPPIJ(boardnr%, errcode%)

boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

errcode% is a variable through which error codes are returned. If this vari-
able is set to 0, then no error occurred. If it ls set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Using the Call Intelface
in QuickBASIC

KM-488-DD Programming Guide

Purpose Returns the KM-488DD’s status byte.

Syntax CALL KQUIKSTAT(boardnr%, errcode%, qstat%)

Parameters boardnr% is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns qstat% is a pointer to the returned status integer. The status integer is of
the following format:

Bit 15-9 9 7 6 5 4 3 2 1 0

0 ADSC CIC PEND DET SRQ DEC LA TA DMA

ADSC

cc

PEND

DET

SRQ

Address Status Change. If this bit is set to 1, a change in address
status has occurred (i.e., a Talker becomes a Listener, or a
Peripheral becomes an Active Controller).

Controller in Charge. If this bit is set to 1, the KM-488DD is an
Active Controller.

SRQ Pending. If this bit is set to 1, the KM-488-DD has an SRQ
request pending.

Device Triggered. If this bit is set to 1, a GPIB Trigger com-
mand has been received.

Internal SRQ. If the KM-488-DD is an Active Controller and
this bit ls set to one, a device is requesting service. If the KM-
488-DD is a Peripheral and this bit ls set to one, then its SRQ
(issued by KREQUEST) has not been serviced.

Device Cleared. If this bit is set to one, the KM-488-DD has
received a GPIB Clear command.

8-60

KM-488-DD Programming Guide Using the Call Interface
in QuickBASIC

LA Listen Addressed. If this bit is set to one, the KM-488-DD is
addressed as a Listener and can accept data from the GPIB.

TA Talk Addressed. If this bit is set to one, the KM-48%DD is
addressed as a Talker and can output data to the GPIB.

DMA DMA. A DMA transfer is currently in progress.

errcode% is a variable through which error codes are rehwned. If this
variable is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

DIM brchum AS INTEGER * Number of board to be accessed.
DIM errnum AS INTEGER
' Error code returned if any. 0 indicates no error
DIM qstatue AS INTEGER
' Number to hold the quick status work
brdnum= 0 ' First GPIB Board
errnum = 0
r *** Return Status Word ***
CALL KQUIKSTAT(brdnum, errnum, qstatus)
IF emmum THEN PRINT "IEEE Error ";errnum:STOP
I
if (qstatue AND 6HlO)
THEN PRINT "NO SRQ DETECTED" ELSE PRINT "SRQ"

Using the Call Interface
in QuickBASIC

KM-4WDD Programming Guide

Purpose Forces the GPIB bus device(s) to the remote mode (ignore the bus).

w NOTE: The KM-488-DD must be a System Controller to execute this
command.

Syntax CALL KRKMOTS (boardnr% , errcode%, mygads (0))

Parameters boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads (n) is an array of n (n can range from 1 to 15) GLIB bus addresses
to be accessed. mygads (n) is comprised of n structures of type GADS. You
must tailor mygads to your application. The GADS structure is described in
section 8.1 and defined in the QuickBASIC include file HEADER.BJ.

Returns errcode% is a variable through which error codes are returned. If this vari-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

a-62

KMdBB-DD Programming Guide Using the Call Interface
in QuickBASIC

KREMOTE (cant’)

Programming 1. If mygada does not specify an address (i.e., noadd is used), then the
Notes GPIB REN (Remote Enable) line is asserted. Devices will not be in the

remote mode until addressed to listen. Ifmygads contains address
then those devices will also be addressed to listen, so they will be put in
remote.

2. It is good programming practice to issue a Local Lockout to prevent the
device(s) from being returned to Local mode.

Example '$INCLDDE : 'IiBADER.BI'
DIM brdnum AS INTEGER ' Number of board to be accessed.
DIM errnum AS INTEGER
' Error code returned if any. 0 indicates no error
DIM Dmdd(2) AS GADS
' this structure will hold the primary and
' secondary addresses of the devices
DblMadd(O).primad = 12 ' first primary address = 12
DbWadd(0) .secad = -1 ' first secondary address = NONE
DMMadd(l).primad = -1
' second primary address = NONS and NONE to follow
brdnum= 0 ' First GPIB Board
err** = 0
‘Assert REN + Address Device At Address 12 To Listen
CALL XREbfOTE(brdnum, errnun, DMMadd(0))
IF errnum TEBN PRINT "IEEE Error ";ermum:STOP

8-63

Using the Call Interface
in QuickBASIC

KM-488-DD Programming Guide

PlJrpose Sets the Serial Poll Response of a KM-488-DD which is a Peripheral.

Syntax CALL KREQUEST(boardnr%, erroode%, sp%)

Parameters boardnr% is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be pro-
grammed.

sp% is an integer in the range 0 to 255 which represents the serial poll
response of the device. This integer is of the following format:

sll 7 6 5 4 3 2 10

DKXI rsv Dl06 0105 Dl04 Dl03 Dl02 DlOl

Where:

D101-0 Bits 1 through 8 of this device’s Serial Poll Response Byte
(correspond to data lines DIOI-DIOB).

ISV If this bit is 1, the KM-488-DD will generate a Service Request
(assert SRQ).

errcode% is a variable through which error codes are returned. If this
variable is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

2.

The Active Controller can read the value of sp by serial polling the
KM-488-DD. This will clear bit 6, if it was set.

Use KQUIKSTAT or KSPOLL to check if the Peripheral has been serial
polled (checks the status of the SRQ bit).

8-64

KM-488-DD Programming Guide Using the Call Interface
In QuickBASIC

KREQUEST (cont’d)

Example DIM brdnum AS INTEGER ' Number of board to be accessed.
DIM etrnum AS INTEGER
’ Error ooda returned if any. 0 indicates no error
DIM srqreq AS INTEGER
' Integer to hold byte to request service
brdnurn= 0 ’ Firet GPIB Board
,
f Set RSV But Don't Set Any Other Bits In Status Byte
srqreq = 64
errnum = 0
CALL KREQDEST(brdnum, e~mum, stqreq)
IF errnum TIiEN PRINT "IEEE Error ";errnum:STOP

8-65

Using the Call Interface
in QuickBASiC

KM-488-DD Programming Guide

Purpose

Syntax

Parameters

Returns

Performs a “warm” reset of the KM-488-DD and the GPIB bus.

CALL KBESET(boardnt%, errcode%)

boardnr% is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be pro-
grammed

errcode% is a variable through which error codes are returned. If this varl-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. The KM-488-DD is reset to the following conditions:
Notes

l STOP l ERRORON
. DISARM l FILL NULL
l CONFIG . LOCAL
l ABORT l REQUEST 0 (If Peripheral)
l BUFFER INCREMENT l Clear CHANGE, TRIGGER, and
. DMASINGLE CLEAR STATUS

l TIMEOUT 10
It also clears all error conditions.

2. If the KM-488-DD ls the System Controller, it will assert the GPIB IFC
(Interface Clear) line for at least 500 usecs.

Example DIM brdnum AS INTEGER ' Number of board to be accessed.
DIM errnum AS INTEGER
' Error code returned if any. 0 indicates no error
brdnum= 0 ' First GPIB Board
,
' *** Reset Driver ***
ertnum = 0
CALL RRRSRT(brdnum, ermnum)
IF errnum TSEN PRINT "IEEE Error ":errnum:STOP

8-66

KM-488-DD Programming Guide Using the Call Interface
In QuickBASIC

KRESUME

Purpose Initiates data transfers between two non-Active Controller GPIB devices, by
unasserting the ATN line. TheE;M 488 - _ DDm be an Active

Syntax CALL KRBSLlbiE(boardnr%, errcode%)

Parameters boardnrlb is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns errcode% is a variable through which error codes are returned. If this vari-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming This routine is normally called after a KSEND has addressed a talker and a
Notes listener. (See KSEND description.)

Example DIM brdnum AS INTEGER ' Number of board to be accessed.
DIM errnum AS INTEGER
' Error code returned if any. 0 indicates no error
brdnum= 0 ' First GPIB Board
,
' *** Drop ATN Line After A Send Conmand ***
errnum = 0
CALL XRESDblE(brdmm, ermum)
IB rrrnum TEEN PRINT "IEEE Error ":ertnum:STOP

8-67

Uslng the Call interface
in QuickBASIC

KM-4&WDD Programmlng Guide

KSEND

Purpose Sends GPIB commands and data from a string.

Syntax CALL KSEND(boardnr%, errcode%, sendstr$, stringlen%)

Parameters boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

sendstr$ is a string which includes any of the following subcommands:
CMD, UNT, MTA, MLA, TALK, LISTEN, DATA, and EOI. Multiple sub-
commands may be specified; however, the length of the & SEND com-
mand string cannot exceed 255 characters. The subcommands are as follows:

CMD -Sends information with the ATN line asserted. This indicates to
the bus devices that the characters are to be interpreted as GPIB bus
commands. The command may be sent as either a quoted string (e.g.,
’ COMMAND’) or as a numeric equivalent of an individual ASCII char-
acter (e.g., 13 decimal or &HOD hex for a Carriage Return). Hex values
must be preceded by &H. Multiple quoted strings or ASCII values
bytes may be sent if they are separated by commas (e.g., CMD
67,79,77,77,65,78,68).

An EOI cannot be sent with this subcommand, because an EOI with
ATN asserted would initiate a Parallel Poll.

UNT - Untalks all devices by sending a GPIB UNTALK command with
ATN asserted.

UNL - Unllltens all devices by sending the GLIB UNLISTEN command
with ATN asserted.

MTA- Designates the KM-488-DD to address itself to talk by sending
the GPIB MTA (My Talk Address) command with the ATN line
asserted.

8-68

KM-488-DD Programming Guide Using the Call Interface
in QuickBASIC

KSEND (cont’ci)

MLA - Designates the KM-488-DD to address itself to listen by sending
the GPIB MLA (My Listen Address) command with the ATN line
asserted.

TALX addr - Addresses another GLIB device or KM-488-DD to talk
by sending a GPIB TAG (Talk Address Group) command with the ATN
line asserted. addr is an integer representing the GPIB BUS device
address of the device to talk. This integer ranges from 00 to 30 decimal.

LISTEN addr - Addresses another GPIB device(s) or KM-488-DDc.9
to listen by sending a GPIB LAG (Listen Address Group) command
with ATN asserted. addr is an integer representing the GPIB BUS
device address of the device(s) to talk. This integer ranges from 00 to
30 decimal. Multiple listeners can be specified.

DATA - Sends information with the ATN line unasserted. This indi-
cates to the bus devices that the characters are to be interpreted as data.
This is the technique which is to be used to send device-dependent
commands. (See the IEEE-488 Tutorial in Appendix C for more infor-
mation.) The data may be sent as either a quoted string (i.e., ’ DATA’)
or as a numeric equivalent of an individual ASCII character (i.e., 13
decimal or &HOD hex for a Carriage Return). Hex values must be prec-
eded by &H. Multiple quoted strings or ASCII values bytes may be
sent if they are separated by commas (e.g., DATA 68, 65,84, 65).

Thii sub-command is useful when you are sending commands which
are unique to your interface.

8-69

Using the Call Interface
In QuickBASiC

KM-488-DD Programming Guide

KSEND (cont’d)

EOI -Sends information with the ATN line unasserted. EOI will be
asserted when the last character is transmitted. This information is
interpreted as GPIB bus data and may be sent as either a quoted string
(e.g., ’ xye’) or as a numeric equivalent of an individual ASCII charac-
ter (e.g., 13 decimal or &HOD hex for a Carriage Return). Hex values
must be preceded by &H. Multiple quoted strings or ASCII values
bytes may be sent if they are separated by commas (e.g., EOI
120,121,122).

stringlen% is an integer between 0 and 255 which represents the length of
the SEND string.

Returns errcode% is a variable through which error codes are returned. If this vari-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

Typically, KSEND is used to send commands to initiate communication
directly between peripheral devices. For example, the KM-488-DD
driver might talk a scope and send a trace to a listened plotter.

2. The maximum length of the SEND command, including any subcom-
mands, is 255 characters. To SEND large amounts of data, use multiple
SEND commands.

3. SEND should only be used when a non-conforming device requires a
special command sequence or a non-standard GLIB command. Do not
use the SEND command unless you are extremely familiar with GPIB.

4. The KM-488-DD must be the Active Controller to send commands. Any
KM-488-DD can send data.

5. If a DATA subcommand is not included in the KSEND string, be sure
to call KRESLJME immediately after the KSEND. This is necessary
because the ATN line must be dropped so that the transfer will pro-
ceed.

6. Do not include the word SEND within the SEND string as you might
do in the File I/O SEND Command.

S-70

KM-488-DD Programming Guide Using the Call Interface
In QuIckBASIC

KSEND (conf’d)

Example DIM brdnum AS INTEGER ' Number of board to be accessed.
DIM errnurn AS INTEGER
' Error code returned if any. 0 indicates no error
DIM StrCnt AS INTEGER ' Length of Str
DIM Str AS STRING ' String to hold returned message
b&nun= 0 ' First GPIB Board
I
‘Address Device @ 2 To Listen + Device @ 12 to talk
str = "lJ?JT UNL LISTEN 02 TALK 12"
StrCnt = LEN(Str)
errnum = 0
CALL KSEND(brdnum, errnun, Str, StrCnt)
IF errnum THEN PRINT "IEEE Error ";ertnum:STOP
I
'Drop ATN Line After A Send Connnand
CALL RESDME(brdnum, errnum)
IF errnum TBEN PRINT "IEEE Error ";errnum:STOP

0-71

Using the Call Interface
in QuickBASIC

KM-4&3-DD Programming Guide

Purpose If the KM-488-DD is an Active Controller, KSPOLL will check for an SRQ or
conduct a serial poll. If the KM-488-DD is a Peripheral, KSPOLL will check if
the KM-488-DD’s SRQ has been serviced.

Syntax CALL KSPOLL (boardnr%, errcode%, spr%, mygads (0))

Parameters boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses
to be accessed. mygads (n) is comprised of n structures of type GADS. You
must tailor mygads to your application. The GADS structure is described in
section 8.1 and defined in the QuickBASIC include file HEADERJI.

Returns errcode% is a variable through which error codes are returned. If this vari-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

spr% is an unsigned integer or an array of unsigned integers with an entry
for each address in mygads. The value of the integer is 0 to 255 and corre-
sponds to a byte with the following bitmap:

Bit 7 6 5 4 3 2 1 0

DtO6 1 SRQ D106 Dl05 II104 Dl03 DIOZ DlOl

8-72

KM-488-DD Programming Guide Using the Call Interface
in QuickBASIC

KSPOLLtcontW

Where:

DIO1-8 Bits 1 through 8 of this device’s Serial Poll Response Byte (corre-
spond to data lines DIOI-DI08).

SRQ If this bit is 1, the SRQ (Service Request) line will be asserted to
request servicing. Otherwise, SRQ will not be asserted.

Bit 6 has the special significance of indicating an SRQ pending. The signifi-
cance of the other bits will be application dependent.

Programming 1. The most common use of KSPOLL is for the KM-48%DD, as an active
Notes controller, to issue POLL with mygads containing the address of a

single device. This addresses and serial polls the device and, upon
return, spr contains the serial poll response of the polled device. If the
SRQ bit in spr is set, the device had issued an SRQ. The other bits in
sprare device-dependent. Serial polling a device which is currently
asserting SRQ will cause the device to unassert SRQ.

The string returned by KSTATUS or the integer status word set by
KQUIKSTAT can be checked to determine the presence of an SRQ
before a serial poll is conducted. If only one device is asserting SRQ,
the effect of issuing KSPOLL will be to clear the internal SRQ pending
“bit”, even if the polled device is not issuing the SRQ. It is also the case
when multiple devices are asserting SRQ and a device not currently
asserting SRQ is polled. In this case, a subsequent use of KSTATUS or
KQUIKSTAT will not reveal a pending SRQ.

To aid in identifying which bus device(s) is currently requesting ser-
vice, a KM-48%DD which is the Active Controller can serial poll as
many as 14 devices by issuing a KSPOLL call with mygads containing
the address of more than one device. In this case, spr should be an
array of unsigned integers with one element for each address in
mygads. In this case, KSPOLL will serial poll each addressed device
and return the serial poll bytes in the spr array. This is a faster way
for discerning the source of an SRQ among several devices.

8-73

Using the Call Interface
In QuickBASIC

KM-488-DD Programming Guide

KSPOLL (cont’d)
2. If the KM-488-DD is a peripheral and KSPOLL is called with mygads

equal to the no address structure (noadd), epr will be the serial poll
response (sp) set by KREQUEST - with the possible exception of the
SRQ bit, which may have disappeared as a result of an Active Control-
ler having serial polled the KM-488-DD since the last KREQLJEST call.
In the instance of an Active Controller serial polling a peripheral
KM-488-DD, the peripheral KM-488-DD unasserts the SRQ line. For an
example, see KREQUEST. The state of the SRQ bit can also be deter-
mined from the string returned by KSTATUS or the integer status word
set by a KQUIKSTAT call.

3. If the KM-48%DD is the Active Controller and issues KSPOLL with
mygads equal to noadd, spr will be 64 if a device is asserting SRQ
and 0 if not. This same result could have been determined from
KQUIKSTAT or KSTATUS.

Note that if this call is issued when a SRQ is pending, it internally
“clears” the SRQ “pending” bit, even though the requesting device has
not been polled and is still issuing an SRQ. Thus, a subsequent
KSPOLL, KQUIKSTAT, or KSTATUS call will not reveal a pending
SRQ.

Example 'QINCLDDE : 'ERADER.BI'
DIM brdnum AS INTEGER ' Number of board to be accessed.
DIM errnum AS INTEGER
’ Error code returned if any. 0 indicates no error
DIM sbyt(3) AS INTEGER ' Array to hold result of spoll
DIM dewadd(3) AS GADS
' this structure will hold the ptimary and
‘ secondary addresses of the devices
davadd(O).primad = 5 ’ first primary address = 5
davadd(O).aecad = -1 ’ first secondary address = NONE
devadd(l).primad = 7 ' second primary address = 7
devadd(l).secad = -1 ' second secondary address = NONE
devadd(2).pr+mad = -1 'no third device
btdnum= 0 ' First GPIB Board
errnum = 0
' serial poll devices in davadd(). results go in sbyt()
CALL KSPOLL(brdnum, ermum, devadd(O), sbyt(0))
IF errnuxt TSRN PRINT "IEEE Error ";ermum:STOP

8-74

KM-488-DD Programmlng Guide Using the Call lntetface
In QuickBASIC

Purpose

Syntax

Parameters

Returns

Returns a character string describing the current operating state of the KM-
488-DD.

CALL KSTATUS (boardor%, erroode%, stat$)

boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

errcode% is a variable through which error codes are returned. If this vari-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

stat$ is a character string which describes the current operating state of the
KM-488-DD. The string is of the format shown in Table 8-2. stat$ should
be 75 bytes long in order to contain the longest message that might be
returned. If it is too short, data will be written over other regions of memory

E-75

Using the Call Interface
in QuickBASiC

KMdB&DD Programming Guide

Table 8-2. Status String

SWtillg
co1

Y of Cols. Name and Description

1 1 B- Tells if the KM-488.DD is acting as an Active
Gmfrollor or Periphernl. Can be C or P where:

3 2

6 2

9 1

11 2

C = The KM-488-DD Is an Aclioe Controller
P = The KM48BDD Is a Peripheral

Bus - Gives the IEEE488 Bus Address of the m-488.DD.
This is B twdlgit decimal Integer ranging from W to 30.

Addressed - Indicates if the device has changed
addressed state, Le., it it has cycled between the Talker, Listenn, or
Active Gntroller states. This is reset whenever a STATUS is read.
This can be one of the following:

GO = There has not been a change in the addressed status

Gl = Them has been a change in the addressed statw.

Current- Indicates if the KM-488-DD is currently
acting BS a Talker or Listener, or is Idle. Can be T, f., or I, where:

T = The KM-488-DD is a Talker
L = The KM48EDD is a Listener
I = ‘Ihe KM-488.DD is Idle

Service Rwuest Represents the cunent internal SRQ status where:

SO = SRQ not asserted
81 = SRQ asserted

If the KM-488.DD is in the Active Conlroller mode, the internal SRQ
state indicates if a device is asserting SRQ.

If the KM-488.DD Is acting as a Peripheral, the internal SRQ state is set
by using the KREQUFST all. It is cleared by a serial poll from the
Active Controller and indicates It is asrrttng SRQ.

8-76

KM-488-DD Programming Guide Using the Call Interface
in QuickBASIC

KSTA TUSkon t’d)

Starting
Cd

14

I8

21

24

27

Y of Cols.

,p to 45

Table 8-2. Status String

Name and Description

&,.Q&,& Indicates whether or not an error has occurred. The
three characters consist of the letter ‘E’ followed by a two digit error
code. (A list of these error codes is provided in Appendix G.) An
ermr code of 00 Indicates no error has oxurred.

&g&&&i& Indicates if .a IEEE-488 trigger command has been e
recciwd or not. This Is not updated during DMA CONTINUE trans-
fcrs. Triggered State values are:

TO = No trigger command has been received.
Tl = A trigger command has been received.

&u&Indicates if the IEEE Clear command has been received or
not. Tbisis not updated during DMA CONTINUE transfers. Cleared
values are:

CO = No Clear command has been received.
Cl = A Clear command has been received.

Transfer Status Indicates if B date transfer is in progress. Values
which may appear are:

PO = No transfer
PI= DMA CONTINUE Transfer occurring
I’2 = DMA AUTOINITIALIZE Transfer occurring

Error Messaec Text - Contains the Error Message Text associated with
the given error code (EXX). Tbesc error messages are Wed in
Appendix G.

Programming If the KM-488-DD is the Active Controller, the Service Request Status may be
Notes cleared (i.e, SO) as a result of a KSPOLL, even when the SRQ line is still

asserted. See the discussion in KSPOLL.

a-77

Using the Call Interface
in QuickBASiC

KMd88-DD Programming Guide

KSTATUS (cont’d)

Example DIM brdnum AS INTEGER r Number of board to be accessed.
DIM errnum AS INTEGER
f Error code returned if any. 0 indicates no Errol
DIM Str AS STRING ' String to hold returned message
brdnum= 0 ' First GPIB Board
errnum = 0
str = STRING$(75, 32)
I*** Loop and check status for SRQ ***
I
ohkstatus:
CALL KSTATUS(brdnum, errnum, Str) ' Request status
IF erlrnum TSEN PRINT "IEEE Error ";errnum:STOP
IF (bfID$(Str,12,1) <> “1”) GOT0 chkstatus

8-78

KM-488-DD Programming Gulde Using the Call Interface
In QuIckBASIC

KSTOP

Purpose Stops a DMA CONTINUE transfer.

Syntax CJUL KSTOP (boardnr%, errcode%)

Parameters boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns errcode% is a variable through which error codes are returned. If this vari-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

2.

If the DMA CONTINUE transfer has been completed, a KSTOP will
have no effect.

Use the KBUFD call to determine the actual number of characters
which were transferred before the KSTOP took effect.

Example DIM brdmxn AS INTEGER I Number of board to be accessed.
DIM ermnum AS INTEGER
’ Error code returned if any. 0 indicates no error
brdnum= 0 ' First GPIB Board
,

CALL KSTOP (brdnum, ertnum)
IF errnum TEEN PRINT "IEEE Error ";ermum:STOP

8-79

Using the Call Interface
in QuIckBASIC

KM-488-DD Programming Guide

KSWAP

Purpose

Syntax

Parameters

Returns

Exchanges the bytes contained in the elements of an integer array.

CALL KSWAP(array%(O) ,count%)

array% is the name of the integer array whose bytes are to be “swapped”.

count% is an integer representing the number of elements contained in the
integer array (array%).

array% will contain the newly formatted integer array.

Programming 1.
Notes

This routine exchanges the bytes within individual elements of an inte-
ger array. Byte swaps are necessary when communicating with devices
that transfer binary data (real or integer numbers) in high byte-low
byte order.

When such a device transfers data into a QuickBASIC integer array,
your program must swap the bytes in each array location, as Quick-
BASIC will expect integers to be in low byte-high byte order in
memory. Likewise, you must KSWAP data within an integer array that
is being sent to a device expecting high byte-low byte data. The KM-
488-DD driver is unable to perform the swap during a transfer, as it
treats PC memory as a linear sequence of bytes.

Example DIM WORXRDFB%(lOO)
DIM CODNT AS INTEGER

COUNT = 101 ' WORXRDFF%(lOO) HAS 101 ELEM'SNTS

FOR X = 0 TO 100 ' CALCULATE A SINE WAVE
WORXBlJFF%(X) = 10 * SIN(X)
NEXT X

CALL KSWAP(WORXBWF%(O), COUNT) ' SWAP TSJZ INTEGERS

. . . OUTPUT DATA TO DEVICE NEXT . . .

8-80

KM-488-DD Programming Guide Using the Call Interface
In QuickBASIC

KTERM

Purpose Changes the default GLIB bus terminator(s) to be used in ENTER and/or
OUTPUT calls.

Syntax CALL KTERM(boardnr%, errcode%, termlist% (0))

Parameters boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

termlist% (0) is an integer array which contains the new default GPIB
bus terminators for the KM-488-DD device specified by boardnr%. See
Chapter 6 for more information regarding the use of GPIB bus terminators.
termlist (4) is comprised of the following elements:

termlist (0) : Input/Output GPIB Terminators. Possible values
are:

-1

0

Change the Input Terminators.

Change both Input and Output
Terminators.

1 Change the Output Terminators.

termlist(EOI detection/assertion. Possible values are:

0 No EOI assert/detect.
1 Assert/Detect EOI.

a-81

Using the Call Interface
in QuIckBASIC

KM-488-DD Programming Guide

termlist (2) : 1st GPIB bus terminator. Possible values are:

-l(&HFFFF) Don’t use first or second GPIB bus
terminator.

0 to 255 Use this ASCII character as the first
GPIB bus terminator instead of the
default first GPIB Terminator. The 0
- 255 decimal value represents the
ASCII value of the terminator charac-
ter to be used. (An ASCII Equiva-
lence Chart is provided in Appendix
A.)

termlist (3) : 2nd GPIB bus terminator. Possible values are:

-l(&HFFFF) Don’t use second GPIB bus termina-
tor.

0 to 255 Use this ASCII character as the sec-
ond GPIB bus terminator instead of
the default second GPIB Terminator.
The 0 - 255 decimal value represents
the ASCII value of the terminator
character to be used. (An ASCII
Equivalence Chart is provided in
Appendix A.)

Returns errcode% is a variable through which error codes are returned. If this
variable is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

KTERM will change the default bus terminators set during software
installation as directed by termlist (0).

a-82

KM-488-DD Programmlng Guide Using the Call Interface
In QuickBASIC

KTERM (cont’d)

Example DIM btdnum AS INTEGER
' Number of board to be accessed.
DIM errnum AS INTEGER
' Errot code returned if any. 0 indicates no erzo~
DIM modterm(4) AS INTEGER
' used to modify the default terminators
brdnum = 0 ' First GPIB Board
I
r Terminator Arrays
,
modterm(0) = 0' reset both input b output terminators
modterm = 1 ' Enable EOI assert/detect
modterm(2) = -1' no terminator characters
modterm(3) = -1' no terminator characters
' *** Initialize Driver Terminators ***
I
emxnm = 0
CALL KTBRM(brdnum, exrnum, modterm(
IF eztnum TBEN PRINT "IEEE Error ":ermum:STOP

a-83

Using the Call Interface
in QuickBASIC

KM-4SS-DD Programming Guide

Purpose

Syntax

Parameters

Returns

Changes the timeout period.

CALL KTO(boardnr8, errcode%, tval)

boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

tval is a long integer which contains the number of 55 ms. timer ticks to
allow before a time-out.

erraode% is a variable through which error codes are returned. If this varl-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

If no timeout period is specified, the default of 10 seconds will be used.

2.

3.

To suppress Timeout checking, set tval to 0.

If a Dh4A CONTINLTE transfer is in progress, the KM-48%DD will
check for timeouts only for the first byte that is transmitted/received.
During other types of transfers, the KM-48%DD will check for a time-
out between transmission of bytes.

You must be certain to check that a DMA CONTINUE transfer has
been completed.

Example DIM btdnum AS INTEGER
r Number of board to be accessed.
DIM efrnum AS INTEGER
' Error code returned if any. 0 indicates no error
DIM ticks AS LONG ’ Number of ticks to set time
brdnum= 0 ' First GPIB Board
ermum = 0
'Set time out to 15 seconds
ticks = 15000 \ 55 ‘Where a tick is 55 msecs.
CJiLL KTO(brdnum, ermum, ticks)
IF erfnum TEEN PRINT "IEEE Error ";errnum:STOP

a-84

KM-488-DD Programming Guide Using the Call Interface
in QuickBASIC

KTRlGGER

Purpose

Syntax

Parameters

Returns

Triggers the specified device(s). ae KM-488-DD e

CFLLL KTRIGGER(boardnr%, errcode%, mygads (0))

boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads (n) is an array of n (n can range from 1 to 15) GPIB bus addresses
to be accessed. mygads (n) is comprised of n structures of type GADS. You
must tailor mygads to your application. The GADS structure is described in
section 8.1 and defined in the QuickBASIC include file HEADERBI.

errcode% is a variable through which error codes are returned. If this vari-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming The devices listed in mygads will be triggered.
Notes

0-85

Using the Call Interface
in QuickBASIC

KM-488-DD Programming Guide

KTRIGGER (cont’d)

~QIN~LDDE : 'B~DER.BI~
DIM brdnum AS INTEGER ' Number of board to be accessed.
DIM ec~num AS INTEGER
' Error code returned if any. 0 indicates no etcor
' this ektucture holds the primary
’ and secondary addresses of the devices
DIM DMMadd(2) AS GADS
DbR'dadd(O).primad = 12 ' first primary address = 12
DbQ&dd(O).aeoad = -1 ' first secondary address 3: NONE
DblMadd(l).primad = -1
I second primaty address = NONE and NONE to follow
brdnum= 0 ' First GPIB Board
elrnum = 0
'Triggot Device With GPIB Address 12
CALL KTRIGGER(brdnum, ermum, Db%Madd(O))
IF errnum TREN PRINT "IEEE Error ":errnum:STOP

8-86

KM-488-DD Programming Guide Using the Call Interface
in QuickBASIC

KUNPACK

Purpose

Syntax

Parameters

Returns

Converts an integer array to consecutive 16-bit integers.

CALL KDNPACK (source% (0) ,dest% (0) , count%)

source% is the name of the integer array which contains the data to be con-
verted.

dent% is the name of the integer array in which the converted data is to be
stored.

count% is an integer which represents the number of elements comprising
the source% array. (The number of elements needed in the de&% array is
count%/2.)

dest% will contain the newly converted data.

Programming 1. Both source% and dest% must be declared as COMMON-
Notes SHARED. The KM-488-DD driver assumes that each of these arrays

resides in QuickBASIC’s default data segment.

Example DIM nun@ AS INTEGER ' Number of bytes to transfer
DIM dmain%(514) ‘Array to hold DWL input waveform
DIM workb%(1028) 'Working array
CObfbfON SHARED dmain%(), workb%()
nurd = 1028 'Number of bytes to transfer
'Convert the packed byte array into a word
’ (integer) working array
CALL KUNPACK(VARPTR(dmain% (O)), VARPTR(workb%(O)), numd)

8-87

Using the Call Interface
in QuickBASIC

KM-488-DD Programming Guide

Purpose Forces the KM-488DD driver to wait until a DMA CONTINUE transfer has
been completed before returning control to the application program.

Syntax CALL KWAITC (boardnr%, errcode%)

Parameters boardnr% is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns errcode% is a variable through which error codes are returned. If this vari-
able is set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. Time out checking, if enabled, is performed while KWAITCing.
Notes

2. This is an & wait. The following calls perform an
implicit wait:

. KABORT l KPPOLL DISABLE

. KCLEAR

. KENTER

. KLOCAL

l KPPOLL UNCONFIG
l KREMOTE
. KREQUEST

. KLOCAL LOCKOUT l KREStiME

. KOUTI’UT l KSEND

. KPASS CONTROL . KSPOLL

. KPPOLL l KTRIGGER

. KPPOLL CONFIG

DIM brdnum AS INTEGER I Number of board to be accessed.
DIM errnum AS INTEGER
’ Error code returned if any. 0 indicates no Errol
brdnum = 0 ’ First GPIB Board
I
'Code which issued a DMA with CONTINUE followed by
' additional code
' Wait For D&% To Finish
ermwm = 0
CALL RWAITC(brdnum, ermum)
IF errnum TBEN PRINT "IEEE Error ":errnum:STOP

8-88

KM-488-DD Programming Guide Using the Call Interface in
Mlcrosoft PASCAL

CHAPTER 9
USING THE CALL INTERFACE IN MICROSOFT PASCAL

Versions
Supported

File Header

Compiling The
Program

Software
Configuration

Microsoft PASCAL versions 3.0 and higher

Be sure to include the following lines within your program:

ISinclude: ‘mp488dd.inc’]

mp488dd.inc is an “include” file with function/procedure prototypes,
structure definitions, and constants pertinent to the MICROSOFT PAS-
CAL call interface.

km488ifc.obj is a linkable module containing the functions and procedures
defined in mp488dd.inc. This module dispatches KM-488-DD calls into the
KM driver.

If either of these files resides in a directory other than the one in which
you are compiling your program, be sure to specify a complete path to
each file.

Typically, the following statements will suffice for compiling your pro-
gram provided you have adhered to the instructions in the file header
section:

PAS1 MYPROG;
PAS2
LINK MYPROG + KM488IFC;

A number of KM-488-DD configuration parameters are set via the CON-
FIGDAT file. (See Chapter 2 and Appendix F.) These govern the default
settings of the GPIB input and output bus terminators, lightpen interrupt
enable, device timeout period, and the KM-488-DD’s Base Address. The
defaults for these are listed in Table 9-1. There are other defaults you
may have to re-program if you are using File I/O Commands in the same
program as the library interface routines (calls).

9-l

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

Table 9-1. Default KM-488-DD Operating Parameters

IParameter 1 Default I

Device Timeout
GPIB Bus Input Terminator
GPIB Bus Output Terminator

EOL Terminators

10.0 seconds
CR LF with no EOI
CR LF with no EOI

CR LF

The KCONFIG call can be used to reset the GLIB address, and the GPIB
input and output bus terminators.

The KTERM call can be used to change the default GPIB bus terminator
settings.

The KTO call can be used to change the default device timeout value.

Programming 1. Any values passed into a call in a variable may also be passed as a
Notes constant or as the returned value of a function.

2. Parameters which are also used to return values must be declared
as variables.

3. Any of the KM-488-DD routines which are used to receive data
require that a string or array be declared to store the received data.
The length of the string or size of the array should be sufficient to
store the number of bytes that are expected. In addition, when a
KM-488-DD routine requires a parameter specifying the maximum
number of data bytes to be returned, it is extremely important that
the amount of storage space allocated is at least as great as this max-
imum length parameter. Otherwise, data may be stored into
memory which has been allocated for use by other parts of your
program, or for use by DOS. This could lead to erroneous operation
and possibly a system crash.

4. In Microsoft PASCAL, LSTRlNGs are actually a special type of
character array. The first byte of the array is used to store the num-
ber of bytes contained within the string. Hence, strings may range
from 0 to 255 bytes in length and the KM-488-DD routines which
pass data to or from strings are limited to 255 bytes maximum.

9-2

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

When values are returned to the calling program via a LSI’RING
variable, the string length must be calculated and placed in location
0 of the string, where Microsoft PASCAL normally stores it. The
string length must be calculated in this manner as the KM-488.DD
driver is unaware of which language is issuing the current call.

5. Do not name the variables in your application program with the
same name as any of the KM-48BDD routines.

6. Do not assign a program name which is the same name as any of
the KM-488-DD routines.

9-3

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

9.1 CALL DESCRIPTION FORMAT

Each call description is divided into several sections as described below.

Syntax This section describes the syntax required by each call. The following rules
are used in this section.

Call names and input parameters appear in this typeface.

Parameters This section describes the input parameters. In some instances, a structure or
array of multiple parameters may be specified (for example, multiple device
addresses).

mygads [n] is used in many calls. This is an array of n (1 to 15) structures
of type gads which contain the GPIB address information required by the
call. This GPIB address structure consists of:

TYPE
gads = RECORD
primad : INTEGER; (*primary address o-30*)
sacad : INTEGER; (*secondary address o-31*)
END:

When secad is set equal to -1, it indicates that no secondary address is
applicable. When primad is set equal to -1, it terminates the array.

You must tailor mygads to your application. The mygads structure is
defined in the include file mp488dd.inc. An example of a structure with two
devices is:

EXAM : AWAY 10. .2] OF GADS;

axam.prlmad[O] := 3 (* first device - pri addr 3*)
exm.secad[O] := -1 (* and no set addr *I
exam.primad[l] := 15 (* second device - pri addr 15 *)
examsacad[l] := 2 (* and sac addr 2 *)
exam.primd[2] := -1 (* there are only two devices *)

9-4

KM-408~DD Programming Guide Using the Call Interface in
Microsoft PASCAL

If the KM-488-DD ls a Peripheral fin which case the call will not require a
GPIB bus address), you will want to use the following mygads structure:

Returns

VAN
no_add : ANRAY IO..21 OF GAns;

. . .
BEGIN

no-add.primad[O] := -1 (* there are no devices in group *)

This part of the callable description describes any data which will be
returned after execution of the callable has been completed.

err-code - All calls except KDIAGON and KDIAGOFF return an integer
error code which will be 0 lf no error was detected. It is good practice to
check err-code after each call and provide a routine to handle errors if
they arise.

Programming This section lists any special programming considerations for the routine.
Notes
Example This section gives programming examples.

9-5

Using the Call Interface in
Microsoft PASCAL

KM-488-DD Programmlng Guide

KABORT

Purpose

Syntax

Parameters

Returns

This routine allows the KM-48%DD to take control of the GPIB bus by
forcing all other devices on the bus to the idle state. The KM-48%DD mr&l,~

VAR

board-nr : INTEGER;
err~code : WORD:

. . .
BEGIN
. . .
kabort(board-nr, err-code);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming If the KM-488-DD is both the Active and System Controller, KABORT asserts
Notes the lFC line to retain control of the bus. Otherwise, the KM-48%DD will

assert the ATN line, and then untalk and unlisten all devices.

Example CONST
CARDNUW =o; (* Card Number Parameter For Calls *)

VAR
ErrorFlag : WORD; (* Word To Hold Error Code *)

BEGIN
kabort(CARDNUbf, ErrorFlag);
IF (ErrorFlag > 0) THEN err_handler(ErrorFlag);
END.

9-6

KM-488-DD Programmlng Guide Using the Call Interface in
Microsoft PASCAL

Purpose

Syntax

Defines the conditions under which the lightpen status becomes true.

VAR
board_nr : INTEGER;
am-code : INTEGER;
err~code : worm;

. . .
BEGIN
kann(board-nr, err-code, am-code);
. .

Parameters board-nr is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be
programmed.

ax-n-code is a 16-bit integer describing on which conditions a light pen
interrupt may occur. The integer ls of the format:

Bit 15-9 9 7 6 5 4 3 2 1 0

0 1 ABC CIC PER DET SRQ DEC LA TA IDLE

Where:

ADSC Address Status Change. If this bit is set to 1, the lightpen status
will become true when a change in address status has occurred
(i.e., a Talker becomes a Listener, or a Peripheral becomes an
Active Controller). This encompasses all the conditions marked
with an asterisk (*) below.

cc* Controller in Charge. If this bit is set to 1, the lightpen status
will become true when the control is passed to the KM-488-DD
and it becomes the Active Controller.

PEW Peripheral. If thii bit ls set to 1, the lightpen status will become
true when the KM-488-DD passes control to another device and
becomes a Non-Active Controller.

LET Device Triggered. If this bit is set to 1, the lightpen status will
become true when a KM-488-DD, acting as a Peripheral, receives
a GPIEI Trigger command.

9-7

Using the Call Interface In
Microsoft PASCAL

KM-48%DD Programming Guide

KARM (cont’d)

SW2 Internal SRQ. If this bit is set to one, the lightpen status will
become true when the KM-48%DD’s internal Service Request Bit
(SRQ) is set.

DEC Device Cleared. If this bit is set to one, the lightpen status will
become true when a KM-488-DD, acting as a Peripheral, receives
a GPIB Clear command.

LA* Listen Addressed. If this bit is set to one, the lightpen status
will become true when the KM-488-DD, acting as a Peripheral, is
addressed as a Listener and can accept data from the GPIB.

TA* Talk Addressed. If this bit is set to one, the lightpen status will
become true when the KM-488-DD, acting as a Peripheral, is
addressed as a Talker and can output data to the GPIB.

IDLE* Idle. If this bit is set to one, the llghtpen status will become true
when the KM-488-DD, acting as a Peripheral, is unaddressed as
a Talker or a Listener.

NOTE: The conditions marked by an asterisk (9 will force the lightpen
status to true only when the KM-488-DD’s address status has changed. This
is indicated by the state of the Address Change Bit in the Status byte. See
the kstatus or kquikstat routine descriptions for more information.

Returns err-code is a variable through which error codes are returned. If this
variable is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming The driver must be configured for lightpen emulation at load time via the
Notes CONFIG.DAT”pipe” file, as the default for lightpen emulation is off.

9-a

KM-4&WDD Programming Guide Using the Call Interface in
Microsoft PASCAL

KARM (cont’d)

CONS2
CARDNUN =o; (* Card Number Parameter For Calls *)
SRQBNAB = 16 ; (* BIT 4 -- SRQ Detection *)

VAR
ErrorFlag : WORD;

BEGIN
t*

(* Word TO Hold Error Code *)

*** Enable Light Pen Interrupt Detection On SRQ ***
*I
kann(CAPDNUM, ErrorFlag, SRQENne);
IF (ErrorFlag > 0) TSFN err_handler(ErrorFlag);
END.

9-9

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Gulde

Purpose

Syntax

Parameters

Returns

Selects in which direction the memory ls to be addressed for both DMA and
non-DMA buffered transfers.

VAR
dir : INTEGER;
board-nr : INTEGER;
err-code : WORD;

. . .
BEGIN
kbuf (board-m, err-code, die);
. . .

board nr is an integer which represents the board identification number.
This is G integer in the range 0 to 3 and represents the board to be pro-
grammed.

dir selects the direction in which the buffer is to be read. If dir is equal to
1, the buffer address will be incremented. If dir is equal to 0, the buffer
address will be decremented.

err code is a variable through which error codes are returned. If thii vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming If the buffer’s address is to be incremented during a bus I/O operation, be
Notes sure to use the lowest address in the designated buffer. Likewise, if it is to be

decremented, select the highest address.

9-10

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KBUF

CONST
CARDm =o; (* Card Number Parameter Fat Calla *)
DECFWlENT = 0 ; (* Decrament Idawry Address on DMA *)

VAR
EzrorFlag : WORD; (* Word TO Hold Error Code *)

BEGIN
t*

*** Set Direction Of Memory Address Change With DblA ***
*)
!&uf(CARDNUM, ErrorFlag, DECREMENT);
IF (ErrorFlag > 0) THEN err_handler(ErrorFlag);
END.

9-11

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

KBUFD

Purpose

Syntax

Parameters

Returns

Programming
Notes

Returns the number of characters transferred in the last buffered transfer or,
in the case of DMA transfers, the current transfer.

VAR
board-nr : INTEGER;
err~code : WORD;
bcount : INTEGERQ;

BEGIN
. .

kbufd(boa+d-nr, err-code, bcount);
. .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

bcount represents the number of characters which were transferred during
the last buffered transaction. This will be a long integer (32-bits) in the range
0 to 1,048,575 (0 to 2ff”-1).

1. If the data was transferred in the DMA CONTINUE mode, the value
returns the number of characters transferred thus far.

2. It is useful to call this routine after a buffered KENTER has been per-
formed. This will help you to determine if the expected number of
characters has been received and/or the transfer has terminated as the
result of a detected terminator.

9-12

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KBUFD

Example CONST
CAFONUN =o: (* Card Number Parameter For Calls *)

VAR
ErrorFlag : WORD; (* Word TO Hold Error Code *)

XferCount : INTEGERQ;
(* Number Of Bytes Moved In Last Transfer *)

BEGLN
t*

Return Number Of Bytes In La& GPIB BUS Data Transfer

*)
kbufd(CABDNUM, ErrorFlag, XferCount);
IF (ErrorFlag > 0) THEN err_handler(ErrorFlag):
END.

9-13

Using the Call Interface in
Microsoft PASCAL

KM-488-DD Programming Guide

Purpose

Syntax

Parameters

Returns

-488-DD must Resets device(s) to their
power-up parameters.

VAR
board-nr : INTEGER;
err~coda : WORD;
mygads : ABRAY[O..nl OF GADS;

BEGIN
. .
kclaar(board-nr, err-coda, mygads);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] represents the GPIB bus address of the device to be cleared.
mygads is an array of n (n can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

err code is a variable through which error codes are returned. If this varl-
able5 set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. If mygads contains no addresses, then the universal GPIB DCL (De-
Notes vice Clear) command is issued and all devices will be cleared.

2. If mygads contains addresses, then those devices specified will be lis-
tened and sent a GPIB SDC (Select Device Clear) Command.

9-14

KM-488-DD Programmlng Guide Using the Call Interface in
Microsoft PASCAL

KCLEAR

CONST
caRDNol4 10; (* Card Number Parameter For Calls *)

VAR
add-12 : ARRAY[0..11 OF gads;

(* Address Group (One Device At 12) *)
ErrorFlag : WORD;

(* Word For Code Returned By Calls *)
t*
Address Structure For Meter At GPIB Address 12

*I
add-12[O].primad:=12;

(* 1st Instrument Ha8 GPIB Address 12*)
add_l2[0].secad:=-1;

(* -1 Indicates 1st Instrument Has No Secondary Add *)
add-12[1].primad:=-1;

(* -1 Indicates NO 2nd Instrument In Group *)
BEGIN
(* Return The Device TO Its Power Up Condition
*)
kcleae(CAPDNlJbl, ErrorFlag,add_l2[01);
IF (ErrorFlag > 0) THEN arr_handlar(ErrorFlag):
END.

9-15

Using the Call Interface in
Microsoft PASCAL

KM-488-DD Programming Guide

KCONFlG

Purpose Resets the KM-488DD to its default operating parameters or to those
specified.

Syntax VAR

board-m : INTEGER;
err-coda : WORD;
Cfg-string : LSTRING(255);
stringlen : INTEGER;

. . .
BEGIN

kconfig(board-nr, err-coda, cfg_string, stringlen);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

cfg-string is a user-defined string. This string can be comprised of any
of the following options:

/T [term term Sets the input and output GPIB bus terminators. You
EOI] can select one or two GPIB bus terminators followed by

EOI or just EOI. If you just specify /T, the GPIB bus
terminators will be reset to their defaults.

term is an optional parameter which represents a ter-
minator byte to be used. This terminator byte can be
represented as any of the following:

$char where char is an integer representing the
hex or decimal equivalent of the tennina-
tor’s ASCII representation. (See Appendix
B for ASCII Equivalents.) char must be
preceded by a dollar sign ($).

9-16

KM-488-DD Programmlng Guide Using the Call Interface in
Microsoft PASCAL

KCONHG (cont’d)

/Tl [term term
EOII

/TO [term term
EOll

/E [term term]

Hexadecimal values must also be preceded
by &H. For example, $84 represents the let-
ter “T” as does $&H54.

CR This represents the Carriage Return charac-
ter (13 decimal, OD hex).

LF This represents the Line Feed character (10
decimal, OA hex).

‘X where X represents a printable ASCII char-
acter. The character must be preceded by
an apostrophe (‘1, for example: ’ B
represents the character B.

EOI (End or Identify) is an optional GPIB BUS termina-
tor. If included, the KM-488-DD will detect/assert the
GPIB bus EOI line. (This would indicate that the last
character has been sent.) Data will continue to be read
until this terminator, a valid terminator sequence, or
both are detected.

Sets the input GPIB bus terminators. You can select one
or two GPIB bus terminators followed by EOI or just
EOI. If you just specify /TI, the input GPIB bus termi-
nator will be reset to none. term and EOI are described
above.

Sets the output GLIB bus terminators. You can select
one or two GPIE bus terminators followed by EOI or
just EOI. If you just specify /TO, the input GPIB bus
terminator will be reset to none. term and EOI are
described above.

Sets the input and output EOL terminators. (Note that
this should only be used if the application program also
includes File I/O Commands.) term is described
above.

9-17

Using the Call Interface in
Microsoft PASCAL

KM-488~DD Programming Guide

/El [term termJ Sets the input EOL terminators. (Note that this should
only be used if the application program also includes
File I/O Commands.) term is described above.

/EO [term termJ Sets the output EOL terminators.
(Note that this should only be used if the appli-
cation program also includes File I/O Com-
mands.)

/N name addr [xc-addrJ Configures a named device. Sets its address to
the given value and its GPIB bus terminators to
the current Gl’lB bus terminator settings.
(Note that this should only be used if the appli-
cation program also includes File I/O Com-
mands utilizing the named device
configurations.)

name is the name of the device.

addr is the primary GPIB address (00 to 30).

set-addr is the secondary GLIB address (00
to 31).

I NOTE: Do not create a named device with the same name as an existing
directory on the current working disk.

If cfg-string is empty, then the configuration will revert to the installa-
tion configuration.

stringlen is an integer from 0 to 255 which gives the length of the
cfg-string string.

Returns err coda is a variable through which error codes are returned. If this varl-
ablez set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

9-18

KM-488-DD Programming Guide Using the Call Interface In
Microsoft PASCAL

KCONFIG (COnt’cl)

Programming 1. The /E, /El, /EO, and /N options will only take effect if File I/O
Notes Commands are used within the same application program as the call-

ables.

2. If you are converting an application program previously written using
the File I/O commands to callables, be sure to note that the CONFIG
string for the KCONFIG call does not include the “CONFIG” keyword
(i.e., as you would if you were using the CONFIG File I/O command).

3. Primary and Secondary Addresses must be two characters long, e.g. 01
or 0209.

Example CONST
CARDNUN =o;

(* Card Number Parameter For Calls l)
VAR

Confstr : LSTRING(70); (* For Comnd Used In KCONFIG l)
ErrorFlag : WORD; (* Word For Code Returned By Calls

*)
BEGIN
c*

Configure Terminations for Carriage Return, Line Eead With
EOI *)
ConfStr := '/T CR LF EOL';
kconfig(CARDNUbl, ErrorFlag,confstr[l],l2);
IF (ErrorFlag > 0) THEN err_handler(Erro+Flag);

9-19

Using the Call interface in
Microsoft PASCAL

KM-488-DD Programmlng Guide

Purpose

Syntax

Turns file diagnostics on. (Default is off.)

VAR
filename : LSTBING(255);

. . .
BEGIN

kdiagontfilename, strlen(filename));
. . .

Parameters filenameisa stringcontainingthename ofthefileto which the diagnostic
information is to be written.

strlen is the length of the string representing the name of the file.

Returns None.

Programming This will echo the value of the call parameters into a disk file.
Notes

Example CONST
CARDNUN =o;

(* Card Number Parawatar For Calls *)
VAR

tdstr : LSTRING(255);
(* String TO Hold Target Diagnostic File Name *)

BEGIN
t&tr:=‘DEBUG.DAZ'; (* Target Diagnostic File Nauxe *)
('
Turn Driver Diagnostics On And Send Info To Disk Rile

*)
kdiegon(tdstr[ll, 9); (* File Name And File Name Length *)
END.

9-20

KM-488-DD Programmlng Guide Using the Call Interface in
Microsoft PASCAL

KDIAGOFF

Purpose Temporarily disables file diagnostics.

Synlax kdiagoff()

Parameters None.

Returns None.

Programming None.
Notes

Example BEGIN
t*

*** Disable File Dia‘JZI0StiC.S

*)
kdiagofft);
END.

9-21

Using the Call Intelface In
Mlcrosoft PASCAL

KM-488-DD Programming Guide

Purpose

Syntax

Resets previously set conditions which cause lightpen interrupts.

VAR
board-m : INTEGER;
arm-code : INTEGER;
err-code : worm;

. . .
BEGIN

kdisarm(board-nr, err-code, am-code);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

arm code is a 16-bit integer describing which conditions should be reset.
The Gteger is of the format:

811 15-9 9 7 6 5 4 3 2 1 0

0 ADSC CIC PER DET SRQ DEC LA TA IDLE

ADSC Address Status Change. If this bit is set to 1, light pen status
will not change when a change in address status has occurred
(i.e., a Talker becomes a Listener, or a Peripheral becomes an
Active Controller).

CIC

PER

DET

Controller in Charge. If this bit is set to 1, light pen status will
not change when the control is passed to the KM-488-DD and it
becomes the Active Controller.

Peripheral. If this bit is set to 1, light pen status will not change
when the KM-488-DD passes control to another device and
becomes a Non-Active Controller (Peripheral).

Device Triggered. If this bit is set to 1, light pen status will not
change when a KM-488-DD, acting as a Peripheral, receives a
GPIB Trigger command.

9-22

KM-488-DD Programmlng Guide Using the Call Interface in
Microsoft PASCAL

KDISARM (conf’d)

SRQ Internal SRQ. If this bit is set to one, light pen status will not
change when the KM-488-DD’s internal Service Request Bit
(SRQ) is set.

DEC Device Cleared. If this bit is set to one, light pen status will not
change when a KM-488-DD, acting as a Peripheral, receives a
GPIB Clear command.

LA Listen Addressed. If this bit is set to one, light pen status will
not change when the KM-488-DD is addressed as a Listener and
can accept data from the GPIB.

TA Talk Addressed. If this bit is set to one, light pen status will not
change when the KM-488-DD is addressed as a Talker and can
output data to the GPIB.

IDLE Idle. If this bit is set to one, light pen status will not change
when the KM-488-DD is unaddressed as a Talker or a Listener.

Returns err-code is a variable through which error codes are returned. If this
variable is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

CONST
c.ARDNuN=o; (* Card Number Parameter For Calls *)
SRQENAB = 16 ; (* BIT 4 -- SRQ Detection *)

VAR
ErrorFlag : WORD;

BEGIN
t*

(* Word TO Hold Error Code *)

*** Disable Light Pen Interrupt Detection On SRQ ***
*I
kdisarm(CARDNUM, ErrorPlag, SRQENAB);
IF (ErrorFlag > 0) THEN err_handler(ErrorFlag);
mm.

9-23

Using the Call Interface in
Mlcrosoft PASCAL

KM-488-DD Programming Guide

KDMA

Purpose

Syntax

Sets DMA transfer mode.

VAR
board-nr : INTEGER;
dm_mode : INTEGER;
err-coda : WORD:

. . .
BEGIN

kdma (board-m, &err-code, dma~zllcde);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

dma-mode is a 16-bit integer which represents the DMA mode to be used. If
no dma-mode is given, then single mode without autoinitialization will be
assumed. The dma-mode integer is interpreted as follows:

Bit 15-3 2 1 0

I 0 1 SIN 1 DEM 1 AUTO I

Where:

SIN SINGLE. When this bit is set to one, the SINGLE mode is
selected. In this mode, when the DMA Request line is asserted
the Dh4A controller assumes control of the bus and transfers a
single byte of data. Control of the bus is then returned to the
microprocessor.

DEM DEMAND. When this bit is set to one, the DEMAND mode is
selected. In this mode, when the DMA Request line is asserted
the DMA controller assumes control of the bus. The DMA con-
troller retains control of the bus until the DMA request signal is
unasserted. Once this signal has been unasserted for more than
one microprocessor clock cycle, control of bus is returned to the
microprocessor.

9-24

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KDMA (cont’d)

This mode allows the DMA controller chip to pass data at a
slightly faster rate and the microprocessor to access the bus
when it is not needed. Note that SINGLE and DEMAND mode
can not be invoked simultaneously.

AUTO AUTOINITIALIZE. When this bit is set to one, the AIJTOIN-
lTIALIZE mode is selected. Under normal circumstances, the
DMA controller transfers the specified number of bytes to/from
the PC memory from the given starting address and terminates
when completed. When the AUTOINITIALIZE mode is
enabled, the DMA controller will reset the original byte count,
reset the initial address, and repeat the transfer again. The
AUTOINITIALIZE option is only in effect until the next
KENTER or KOUTPIJT buffered transfer is completed. Addi-
tionally, if a KENTER or KOUTPUT transfer in DMA CON-
TINUE mode is selected, the AUTOINITIALIZE option will only
be in effect for that transfer.

Returns None.

Programming 1. All DMA AUTOINITIALIZE transfers should occur entirely within a
Notes single DMA 64 KByte page. So, if a DMA buffer operation involves a

transfer of more than 64K or occur across a DMA page boundary, the
AUTOINITIALIZE option affects only those bytes in the last transfer
occurring within one DMA page.

Also note that DMA AUTOINITIALIZE transfers specified for buffers
that are located in more than a single DMA page are unpredictable.

2. It is impossible for a program to halt a DMA AUTOINITIALIZE opera-
tion unless the DMA CONTINUE option is selected. This is because
the driver does not return control to a program using non-CONTINUE
operations until the transfer completes.

9-25

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

KDMA (cont’d)

Example CONST
CABDNUM =o; (* Card Number Parameter For Calls *)
AUTO = 1; (* Auto Mode of DblA Transfer l)
DEMAND = 2; (* Demand Mode of DMA Transfer *)
SINGLE = 4; (* Single Mod-3 of DMA Transfer *)

VAB
ErrorFlag : WORD;

BEGIN
t*

(* Word TO Hold Error Code

*** Set Up D!dA Mode To Single With Autoinitialize ***
*)
kdma(CABDNlJM, ErrorFlag, SINGLEtAUTO);
IF (ErrorFlag > 0) THEN err_handlar(Errorslag);
END.

9-26

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

Purpose

Syntax

Allows the KM-488-DD to receive data from a GPIB bus device.

VAR
board-m : INTEGER:
error-code : WORD ;
moda : INTEGER;
count : INTEGERQ;

w¶a& : ARRAY[O..ll OF gads;
dsrray : ARRAY[O. .N-11 OF CHAR ;
tenr>ist: ARRAY[o..2] OF INTEGER;

. .
BEGIN

kantar(board-nr, err-code, darray, count, mode, mygads,
tern-list)
. .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

darray is a character array large enough to accept the returned data. If a
non-zero count is specified, the array should be of size count. If count is 0
and terminator characters are used, then darray must be large enough to
accommodate both data and terminators returned by the device.

count is a long integer representing the number of characters to be read.
Valid counts are within the range 0 to 4294967295 (Z3’-1) decimal, or from 0 to
#FFFFFFFF hex. When 0 is used, the KENTER will stop when the termina-
tion specified by term-list is satisfied.

mode is an integer which represents whether or not DMA is to be used and if
the CONTINUE mode is to be used. This integer is interpreted as follows:

Bit 15-2 1 0

0 CONT DMA

9-27

Using the Call Interface in
Microsoft PASCAL

KM-4&WDD Programming Guide

Where:

CONT CONTINUE. This an optional mode which is used in conjunc-
tion with DMA. When this bit is set to one, the CONTINUE
mode will be used. If CONTINUE is specified, the KM-488-DD
will return control to the application program as soon as it can
without waiting for completion of the transfer. The KM-488-DD
will at least wait for the first byte to check for time-out (Unless
TIME OUT = 0) before continuing. DMA CONTINUE execu-
tion concludes when the KM-488-DD completes its transfer.
If CONTINUE is used and the DMA AUTOINITIALIZE has
been enabled, then the DMA transfer will continue until a
KSTOP routine is invoked or a pre-specified GPIB BUS input
terminator is detected.

DMA DMA. If this bit is set to one, then DMA will be used in the data
transfer.

mygads [n] represents the GPIB bus address of the device to be reset.
mygads is an array of n (n can range from 1 to 15) structures of type gads.
You must tailor mygads to your application. The mygads structure is
defined in the include file mp488dd.inc and is described in section 10.1.

term-list [3] is an integer array which defines the GPIB bus terminators
to be used during the KENTER call. These terminators are used in conjunc-
tion with count to terminate the input process. Termination choices
include whether or not EOI will be detected with the last byte and whether
or not a certain byte or sequence of two bytes will be tested for as an end of
message code. The default termination scheme is initially set-up by the
CONFKDAT file, and can be modified by calling KTERM or KCONFIG.
termlist [31 can either specify the use of the default terminators or tem-
porary overrldes.

termlist [3] is defined in the mp488dd.inc header file. termlist [3] is
comprised of the following elements:

KM-488-DD Programming Guide Using the Call Interface In
Mlcrosoft PASCAL

KENTER (cont’d)

termlist 101:

termlist Ill :

termlist I21 :

EOI detection. Possible values are:

-1 (#FFFF) Use the default EOI setting.
0 Don’t Detect EOI.
1 Detect EOI.

1st GPIB bus terminator. Possible values are:

-1WFFFF) Use the default terminator. Note that
if the default first terminator ls used,
the default second terminator will
also be used.

0 to 255 Detect this ASCII character as the first
GPIB bus terminator instead of the
default first GPIB Input Terminator.
The 0 - 255 value represents the ASCII
value of the terminator character to
be used. (An ASCII Equivalence
Chart is provided in Appendix A.)

2nd GPIB bus terminator. Possible values are:

-1 (#FFFF) Use the default terminator. Note that
if the default first terminator is used,
this will automatically be selected.

0 to 255 Detect this ASCII character as the sec-
ond GPIB bus terminator instead of
the default second GLIB Input
Terminator. The 0 - 255 value repre-
sents the ASCII value of the termina-
tor character to be used. (An ASCII
Equivalence Chart is provided in
Appendix A.)

9-29

Using the Call Interface in
Microsoft PASCAL

KMd68-DD Programming Guide

KFNER (cont’d)

The following default termlist can also be used:

VAR
dtrm : ARRAY[O..21 OF INTEGER;

. .
BEGIN
dtm[Ol := -1; (* "se the default EOI choice *)
dtm[ll := -1; (* Use the default first terminator *)
dtnn[21 := -1; (* "BB the default second terminator *)

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

2.

3.

4.

5.

6.

If the KM-48%DD is a Peripheral, an active controller must address the
KM-488-DD as a listener and some other device as the talker, before
KENTER is called. In this case, you should use the no-addr structure
in lieu of mygads. This is described in section 10.1.

If the KM-488-DD is the Active Controller, it will automatically address
itself as a listener and another device defined in mygads as the talker.
Since only one device can be a talker, the address group mygads can
contain only one address. If a device has been previously addressed to
talk and the KM-488-DD previously addressed to listen, then mygads
can be no-add (See section 10.1) and the bus will not be re-addressed.

If count ls specified as 0, then KENTER will terminate when the ter-
minator(s) specified by term-list [3] is encountered.
If it is desirable to terminate on count only and not use the default
terminators, then you must select no terminator overrides in the ter-
mlist array, in addition to giving the count. In this case, a byte by
byte synchronous transfer is executed.

If both counts and termination are specified, the KENTER will termi-
nate on whichever condition is encountered first.

If the condition(s) for termination is not encountered, KTERh4 will
timeout unless the timeout has been disabled.

9-30

KM-488-DD Programming Guide Using the Call Interface In
Microsoft PASCAL

Example CONST
CABDNIJM =o; (* Card Number Parameter For Calls *)
DMAXFER = 1;
(* Transfer mode: non DMA = 0, DMA without
continue = 1, DbfA with continue = 3 *)

NUMO = 1028; (* Number Of Bytes To Transfer l)
VAR

ErrorFlag : WORD ; (* Word For Returned Error Coda *)
ati- : ARRAyto ..l] OF gads;

(* Address Group For Device B 05 *)
sdata : ABRAY[O. .NmdD-11 OF CNAR ;

(* Array For Data From Device *)
dtrm : ARBAY[O..2] OF INTEGER;

(* Array Of GPIB Terminators For VSNTER" And "KOUTPUT"
*)
BEGIN
t*
*** Address Structure For Meter At GPIB Address 05

l)
(* Inat-nt Has GPIB Address 5 l)
ad&O5[0).primad := 5 ;
(* -1 Indicates No Secondary Address *)
add_05(0].secad := -1 ;
(* -1 Indicates No Other Instrumant *)
add_05(1].primad := -1 ;
t*

Structure To Signal:
Usa Default Terminators
Detect EOI On ENTER/Assert EOI On

output
*I
dtrm[Ol := 1 ; (* 1 : Assert EOI (KOUTPUT)/Detect EOI
(KENTER) *)

dtrm[ll := -1 ; (* -1 : Use Default 1st Terminator *)
dtrm[2] := -1 ; (* -1 : Use Default 2nd Terminator *)
WRITELN('BNTER DATA FROM METER');
kenter(0, ErrorFlag, sdata[O], NUMD, DMAXFER, add_O5[01,
dtrm(O1);
IF (ErrorFlag > 0) THEN err-handler(ErrorFlag);
END.

9-3 1

Using the Call Interface in
Microsoft PASCAL

KM-488-DD Programming Guide

KERROR

Purpose

Syntax

Parameters

Returns

Enables/Disables display of Error Messages.

VAR
board-nr : INTEGER;
err-code : WORD;
e-s" : INTEGER;

. . .
BEGIN

kerror(board-nr, err-code, ~-SW)
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

e-sw is an integer which determines if error message display function will
be enabled or disabled. If e-sw=l, the error message display is enabled.
(This is the default.) If e-sw=O is specified, the error message display is dis-
abled.

err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

If KERROR has been used to enable error messages, the message will
only reveal that an error has occurrd for the KM-488-DD calls. It does
not identify what type of error occurred. The KDIAGON routine
should be used to help debug applications utilizing the KM-488-DD
calls.

2. Programs can also check err-code after each call to identify the exact
nature of call errors.

9-32

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KERROR (cont’d)

Example CONST
CARDNUN = 0 ; (* Card Number Parameter For Calls *)
ERP-ON = 1 ; (* Enable Error Display*)

VAR
ErrorFlag : WORD;

BEGIN
t*

(* Word To Hold Error Code *)

*** Enable Error Display ***
*I
kerror (CARDNUM, ErrOrFlag, ERR-ON);
IF (ErrorFlag > 0) THEN err-handler(ErrorFlag);
END.

9-33

Using the Call Intelface In
Microsoft PASCAL

KM-488-DD Programming Gulde

Purpose Defines the KM-488-DD drivei’s response to a request for data when none is
available.

NOTE: KFILL is provided for users who mix File I/O Commands and Calls
in the same program. It only affects inputs performed using the File I/O
Commands.

Syntax VAR
board-m : INTEGER;
err-code : WORD;
fill SW : INTEGER; -

. . .
BEGIN

kfilltboard-nr, err-code, fill-sw)
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

fill-sw is an integer which represents the Ii11 condition. (The default con-
dition returns a NULL character.) Valid integers are any one of the follow-
ing:

-1 OFF. This type of response will not return any data characters
or a DOS error message, if no input data is available.

-2 ERROR. This type of a response will not return any data
characters, but will generate an Error Message. The error
message number can then be trapped by calling the KSTATUS
routine. (Refer to the KSTATUS routine for more information.)

o-255 ASCII. This type of response will return the designated
ASCII character. (An ASCII Equivalence Chart is provided in
Appendix A.) Specify the decimal equivalent of the character
to be used.

9-34

KM-488-DD Programming Guide Using the Call Interface In
Microsoft PASCAL

Returns err code is a variable through which error codes are returned. If this vari-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Example CONST
cARDNuM =o; (* Card Number Parameter For Calls *)
FILL_SW = 88; (* "se 'X' Au Fill Character *)

VAR
Errorslag : WORD; (* Word TO Sold Error Code *)

BEGIN
t*

*** Set Fill Character TO 'X' ***
*)
kfill(CARDNUM, ErrorSlag, FILL-SW);
IF (ErrorFlag > 0) THEN arrhandler(Erro+Flag);
END.

9-35

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

KHELLO

Purpcse

Syntax

Parameters

Returns

Returns an identification string from the KM-488-DD driver.

VAR
board-ne : INTEGER;
err-coda : WORD;
id_response :LSTRING(255);

. .
BEGIN

khello(board-nr, err-code, id-response)
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

id response will contain a string similar to: copyright (c) 1991
Xexthley MetraByte Corp.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

The string into which the KHELLO message is returned must be
dimensioned prior to calling KHELLO. Otherwise, Microsoft PASCAL
assumes that the string is of length 0 and calling KHELLO will result in
destroying other programmed data.

9-36

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

CONST
CARDNDW =o; (* Card Number Parameter For Calls l)

VAR
in&t : LSTRING(255);
(* Array To Hold Copyright Ideasage *)

ErrorFlag : WORD; (* Word TO Hold Error Code *)
i : INTEGER;

(*Procedure TO Determine String Length And Stuff It
In Location 0 *)

PRCCEDUPX char-count (VAR ch_stmg:LSTRING);
BEGIN

(* Check For NULL or 255 Characters *)
i ; := 1
WHILE ((1<>255) AND (ch-stmg[i] <> CHR(0))) DO i := i + 1 ;
(* Assign Calculated Count TO String Location 0 *)
ch-stmg[Ol := CHR(i - 1) ;

END:

BEGIN
t*

l ** Return Driver Copyright Message ***
l)
khallo(CARDNU!d, ErrorFlag, indat[l]);
IF (ErrorFlag > 0) THEN ABORT('Error : Driver Not Instal-
led',l,O) ;
char-count(indat);
(* update string count In PASCAL's Descriptor *)
END.

9-37

Using the Call interface in
Microsoft PASCAL

KM-488-DD Programming Guide

KLOCA L

Purpose

Syntax

Parameters

Returns

Forces the specified bus device(s) to return to being programmed locally
from their front panels. Thisroutine onlv be used if the KM-48%DD is

VAR
board-nr : INTEGER;
err-code : WORD;

mygab : ABRAY[O..l] OF gads;
BEGIN

klocal(board-nr, err-code, mygads);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads represents the GPIB bus address of the device to be sent to local.
mygads is an array of n (n can range from 1 to 15) structures of type gads.
You must tailor mygads to your application. The mygads structure is
defined in the include file mp488dd.inc and is described in section 10.1.

err code is a variable through which error codes are returned. If this vari-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

If the KM-488-DD ls the System Controller and if mygads does not
specify an address, then the GPIB REN (Remote Enable) line is unas-
serted and all devices are returned to Local. In order to return them to
remote mode, it will be necessary to issue a KREMOTE call. Likewise,
if Local Lockout ls required, it will be necessary to issue a KLOL call.

2. As an Active Controller, the KM-488-DD can issue the GPIB GTL (Go
To Local) message to those devices specified by mygads. In this case,
the GPIB REN (Remote Enable) line remains asserted and devices will
return to remote when addressed to listen. If a KLOL (Local Lockout)
call has been issued previously, it should still be in effect when a device
is returned to Remote.

9-38

KM-48803 Programming Guide Using the Call Interface in
Microsoft PASCAL

KLOCAL (cont’d)

Example CONST

CABDNUN =o; (* Card Number Parameter For Calls
*)
VAR

adc>z : ARRAY[0..11 OF gads:
(* Address Group (One Device At 12) *)

ErrorFlag : WORD;
(* Word For Code Returned By Calls *)

t*
*** Address Structure For Meter At GPIB Address 12 ***

*)
adcm12[0].primad:=12; (* 1st Device Pri. Address 12 *)
add_l2[0].secad:=-1; (* 1st Device NO Sec. Address *)
add 12[1].primad:=-1;

BEGIN -
(* -1 = NO 2nd Device In Group *)

t*
*** Send The Addressed Device TO Local Control ***

*)
klocal(CARDNUbl, ErrorFlag,add_l2[0]);
IF (ErrorFlag > 0) THEN aer_handler(ErrorFlag);
END.

9-39

Using the Call Interface in
Microsoft PASCAL

KM-488-DD Programming Guide

KLOL

Purpcse

KiP

Syntax

Parameters

Returns

onlv be us DD 1s _ _ .

Controller. It will disable the GPIB bus devices from being returned to Local
Control by means of the Local/Remote button on the device.

NOTE: This routine issues an IEEE-488 bus signal, LOL. This signal is not
supported by all IEEE-488 bus devices.

“AR
board-m : INTEGER;
err-code : woBD;

. . .
BEGIN

klol(board-nr, err-code)
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ablez set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

The “LOCAL” button is disabled so that a device cannot be returned to
local state for manual programming or control. The Active Controller
can return specific devices to “local with lockout state”, whereby an
operator can then use the front panel controls. When the device is
addressed to listen again, it returns to “remote with lockout state”.
Thus, the effect of the LOL call will remain until the REN line is unas-
serted (LOCAL) by the System Controller.

2. It is good practice to issue a KLOL so that devices are under strict pro-
gram control. KLOL can be issued before a device is put in remote and
will take effect when the device’s LOCAL button is set to remote.

9-40

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

Example CONST
CARDNUN =o; (* Card Number Parameter For Calls *)

VAR
Errorrlag : WORD ; (* For Returned Error Code 0 = OK *)

BEGIN
klol(CARDNUbl, ErrorFlag);

(* Lock Out Local Control Of Devices *)
IF (ErrorFlag > 0) THEN err_handler(Errorslag);
END.

9-4 1

Using the Call Interface in
Microsoft PASCAL

KM-488-DD Programming Guide

KOUTPUT

Purpose

Syntax

Transmits data from the KM-488-DD to the GPIB bus.

VAR
board-m : INTEGER;
mcx% : INTEGER;
err~code : WORD;
darray : ARRAY[O..N-11 OF CHAR;
count : INTEGERQ;
mygada : AMAY[O..l] OF gads;
tenn_list : AMAY[O..2] OF INTEGER;

. . .
BEGIN
koutput(board-nr, err-code, darray, count, mode, mygads,
tem_list)
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

darray is an array of data to output.

count is a long integer representing the number of characters to be output.
Valid counts are within the range 1 to 4294967295 (232-1) decimal, or from 1 to
WFFFFFFF hex.

mode is an integer which represents whether or not DMA is to be used and if
the CONTINUE mode is to be used. This integer is interpreted as follows:

Bit is-2 1 0

0 CONT DMA

Where:

9-42

KM-488-DD Programmlng Gulde Using the Call Interface In
Microsoft PASCAL

KOUTPUT (con&f)

CONT CONTINUE. This an optional mode which is used in conjunc-
tion with DMA. When this bit is set to one, the CONTINUE
mode will be used. If CONTINUE is specified, the KM-488-DD
will return control to the application program as soon as it can
without waiting for completion of the transfer. The KM-488-DD
will at least wait for the first byte to check for time-out (Unless
TIME OUT = 0) before continuing. DMA CONTINUE execu-
tion concludes when the KM-488-DD completes its transfer.

If CONTINUE is used and the DMA AUTOINITIALIZE has
been enabled, then the DMA transfer will continue until a
KSTOP routine is invoked.

DMA DMA. If this bit is set to one, then DMA will be used in the data
transfer.

mygads [n] represents the GPIB bus address of the device to receive the
data. mygada is a pointer to an array of n fn can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file mp488dd.inc and is described in section
10.1.

term-list [3] is an integer array which defines the GPIB bus terminators
to be used during the KOUTPUT call. These terminators are used in conjunc-
tion with count to terminate the output process. Termination choices
include whether or not EOI will be detected with the last byte and whether
or not a certain byte or sequence of two bytes will be tested for as an end of
message code. The default termination scheme is initially set-up by the
CONFZDATfile, and can be modified by calling KTERM or KCONFIG.
termlist [3] can either specify the use of the default terminators or tem-
porary overrides.

termlist [3] is defined in the mp488dd.inc header file. termlist [3] is
comprised of the following elements:

termlist (01: EOI detection. Possible values are:

-l(#FFFF) Use the default EOI setting.
0 Don’t Assert EOI.
1 Assert EOI.

9-43

Using the Call Interface in
Microsoft PASCAL

KM-488-DD Programming Guide

KOUTPUT (cont’d)

termlist 121:

1st GPIB bus terminator. Possible values are:

-l(#FFFF) Use the default terminator. Note that
if the default first terminator is used,
the default second terminator will
also be used.

0 to 255 Send this ASCII character as the first
GPIB bus terminator instead of the
default first GPIB Input Terminator.
The 0 - 255 value represents the ASCII
value of the terminator character to
be used. (An ASCII Equivalence
Chart is provided in Appendix A.)

2nd GPIB bus terminator. Possible values are:

-1 MFFFF) Use the default terminator. Note that
if the default first terminator is used,
this will automatically be selected.

0 to 255 Send this ASCII character as the sec-
ond GLIB bus terminator instead of
the default second GPIB Input
Terminator. The 0 - 255 value repre-
sents the ASCII value of the termina-
tor character to be used. (An ASCII
Equivalence Chart is provided in
Appendix A.)

The following default termlist can also be used:

VAR
dtnu : ABBAY[O..21 OF INTEGER;

. . .
BEGIN
dtnn[O] := -1; (* Use the default EOI choice *)
dtm[l] := -1; (* Use the default first terminator *)
dtrm[21 := -1: (* Use the default second terminator *)

9-44

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KOUTPUT (cont’d)

Returns err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. If the KM-488-DD ls a peripheral, then an Active Controller must
Notes address the KM-488-DD as a talker and some other device(s) as the lis-

tener(s). In this case, use no-add for mygads. (See section 10.1.).

2. If the KM-488-DD is both the System and Active Controller, and
my-gads contains the device(s) to be addressed, the KOUTPUT will
automatically assert the GPIE3 REN (Remote Enable) line.

3. If the KM-48%DD is the Active Controller and KOUTPUT is called, it
will automatically address itself as the talker and another device(s) con-
tained in my-gads as the listener(s). If the devices have been pre-
viously addressed, then my-gads can be no-add and the bus will not
be re-addressed.

4.

5.

A non-zero count must always be specified.

If you do not wish to append terminator characters, then be sure to set
the terminator defaults via COiVFIGDAT or by calling KTERM or
CONFIG& select no terminator overrides in the termlist array.

6. If a listener does not accept a character, a timeout will occur unless the
timeout has been disabled.

9-45

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

Example CONST
DldAXFER = 1;

(* Transfer mode: non DMA = 0, DMA without
continue = 1, DMA with continue = 3 *)

XFER = 0; (* Normal Non-DMA Style Transfer *)
NUb$D = 1028; (* Number Of Points To OUTPUT *)

VAR

ErrorFlag : WORD ;
(* Word To Hold Error Code Returned By
Each Call (0 = false = no errors) *)

no-add : ARRAY[O..l] OF gads;
(* Addr Group Signaling No Addressing *)
dtm : ARRAY[O..2] OF INTEGER;
(* Array Of GPIB Terminators PO= VENTER" And "KOUTPUT" *)
sdata : AmAY[O..NuMD-11 OF CHAR

(* Array Of Data TO OUTPUT *)
BEGIN

(**** Structure For No Default Terminator/E01 Overrides ****)
dtrm[Ol := 1 ;
(* 1: Assert EOI (koutput)/ Detect EOI (kentar) *)
dtrm[ll := -1 ;
(* -1: Use Default 1st Terminator *)

dtrm[21 := -1 : (* -1 : Use Default 2nd Terminator
*)
(* Address Structure For Not Readdressing The GPIB Bus **)
no-add[O].primad := -1 ;
(* -1 Indicates No New Address *)
no-add101 .secad := -1 ;

(* -1 Indicates NO Secondary Address*)
no-add[ll.primad := -1 ;
(* -1 Indicates No Other Instruments *)
(* .

sdata Array Initialized Here

. *)
koutput(CARDNUM, ErrorPlag, sdata[O], NUMD, DMAKFER,
no-add101 , dtrm[Ol) ;
IF (Errorslag > 0) TIiEN err_handler(E+rorPlag);
END.

9-46

KM-408-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KPASCTL

Purpose

Syntax

Parameters

Returns

Designates another controller to be the Active Controller. The KM 488 _ _ DD
m

“AR
board-m: INTEGER;
err~coda : WORD;
mygads : mRAY[O ..141 OF gads;

. . .
BEGIN

kpasctl(board-nr, err-code, mygads);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

raygads [n] contains the GPIB bus address of the device to become the new
Active Controller. mygads is a pointer to an array of n (n can range from 1
to 15) structures of type gads. You must tailor mygads to your application.
mygads structure is defined in the include file mp488dd.inc and is described
in section 10.1.

err code is a variable through which error codes are returned. If this vart-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming If the KM-488-DD which is relinquishing its position as the Active Controller
Notes is also a System Controller, it retains its status as System Controller.

Using the Call interface in
Microsoft PASCAL

KM-488-DD Programming Guide

KPASCTL (conf’d)

CONST
CABDNUN =o; (* Card Number Parameter For Calls

*)
VAR

ErrorFlag : WORD; (* Word For Code Returned By Calls
*I

add-02 : AMAY[O..14] OF gads;
(* Address Group (One Device At 02) l)

BEGIN
(* Address Structure For Peripheral At GPIB Address 02 *)
add-02[0].primad:= 2;
t* 2 : 1st Instrument Has GPIB Address 02*)
add_02[0].secad:= -1:
(* -1 : 1st Inst-nt Has No Secondary Address *)
add_02[1].primad:=-1;
(* -1 : No 2nd Instrument In Address Group *)

(* PASS CONTROL TO SECOND KM-48S-DD *)
WAITELN('Pass Control To Second lQ4-488-DD');
kpasctl(CABDNIJbl, ErrorFlag, add_02[0]);
IF (ErrorFlag > 0) THEN err_handlar(ErrorFlag);
END.

9-40

KM-488-DD Programming Guide Using the Call Interface in
Mlcrosoft PASCAL

Purpose

*

Syntax

Parameters

Returns

Initiates a Parallel Poll. w-488DD mt be the Active Con-

NOTE: Many GPIB devices do not support parallel polling. Check your
device’s documentation.

VAR
board-nr : INTEGER;
err-code : WORD;
pprtn : INTEGER;

BEGIN
kppoll(board-nr, err-code, pprtn);

Programming None.
Notes

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this varl-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

pprtn is an integer variable which will contain an integer in the range 0 to
255 decimal. This integer indicates which Data Lines which have been
asserted (DIOl-DI08).

9-49

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

KPPOLL

Example CONST
CARDNDN = 0 ; (* Card Number Parameter For Calls l)

VAR
ErrorFlag : WORD;

(* Integer to Hold Error Code Retuned By
Each CALL (0 = false = no error) *)

PP_reSP : INTEGER; (* Integer Folf Parallel Response

t*
*** Conduct Parallel Poll And Print Result ***

*I
kppoll(CABDNUM, ErrorFlag, pp-reap):
IF (ErrorFlag > 0) THEN err_handlar(ErrorFlag);
WRITELN('pp-resp= ',pp_resp);
END.

l I

9-m

KM-4884X3 Programming Guide Using the Call Interface In
Microsoft PASCAL

Purpose Configures the Parallel Poll response of a GPIB bus device. The KM-48%DD

* NOTE: Many GPIB devices do not support parallel polling. Check your
device’s documentation.

Syntax VAR
board-nr : INTEGER;
err-code : WORD;
ppc-cfg : INTEGER;

wga* : ARRAY[O ..14] OF gads;
. . .
BEGIN

kppoll(board-nr, err-code, mygads, ppc-cfg):
. . .

Parameters board nr is an integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus addressfes) of the device(s) to be confi-
gured. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file mp488dd.inc and is described in section
10.1.

ppc cfg is an integer which represents the Parallel Poll Response of the
devis to be programmed. This integer is of the format:

Bit 7 6 5 4 3 2 1 0

0 1 1 0 s P2 Pi PO

9-51

Using the Call Interface In
MIcrosoft PASCAL

KM-4&V&DD Programming Guide

KPPC (conf’d)

Where:

S ls the parallel poll response value (0 or 1) that the device uses to
respond to the parallel poll when service is required. This bit is
generally set to 1.

NOTE: This value must correspond to the setting of the GPIB
bus device’s ist (individual status) bit. Refer to the Device’s
documentation for more information.

P2P1 PO is a 3-bit value which tells the device being configured which
data bit CD101 through DIO8) it should use as its parallel poll
response.

Returns err code is a variable through which error codes are returned. If this vari-
ablez set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

9-52

KM-488-DD Programming Guide Using the Call Interface in
MIcrosoft PASCAL

KPPC (cont’d)

Example CONST
cARDNuM=o; (* Card Number Parameter For Calls *)

VAR

PP-enh : INTEGER;
(* Integer For Parallel Poll Enabling*)

add-1 : ARRAY[O..l] OF gads;
(* Address Group (will have one device Q 1) *)

BEGIN
(*

Device Supporting PPOLL IS At AddreSS 01

*I
add-l[Ol.primad := 1 ;
(* 1st Instrument Has GPIB Address 01 *)
add_l[Ol.secad := -1 :
(* -1 : 1st Instrument Has NO Secondary Addr *)
add-l[l].primad := -1 ;
(* -1 : No 2nd Instrument In Address Group l)
t*

Configure Device TO Assert D103 When SRQ Is Asserted
*)
pp-enab := 106;
kppc (cARDNUb& ErrOrSlag, add-1 [Ol, pp-enab) ;
IF (Errorslag > 0) THEN err_handler(ErrorFlag);
END.

9-53

Using the Call Intelface In
Microsoft PASCAL

KM-488-DD Programming Guide

KPPD

Purpose

Syntax

Parameters

Returns

Disables the Parallel Poll response capability of the specified GPIB bus
device(s). The be the Active

VAR
board-nr : INTEGER;
err-code : WORD:

mYgab : ARRAY[O..l4] OF gads:
.

BEGIN
kppd(board-n+, err-code, mygads);

. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GLIB bus address of the device(es) to be dis-
abled. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file mp488dd.inc and is described in section
10.1.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programmlng None.
Notes

KM-488-DD Programming Guide Using the Call Interface in
Mlcrosoft PASCAL

KPPD (cont’d)

Example CONST
cARDNuN =o: (* Card Number Parameter Foe Calls *)

VAR
ErrorSlag : WORD; (* Holds Returned Error Code *I
add-1 : ARRAY[O..~I OB gads;

(* Address Group (will have one device 0 1) *)

t*
Address Structure For Device At GPIB Address 01

*I
add_l[O].primad := 1 ;

(* 1st Instrument Has GPIB Address 01 *)
add_l[Ol.secad := -1 ;

(* -1 : 1st Instrument Has No Secondary Addr *)
add_l[l].primad := -1 ;

(* -1 : NO 2nd Instrument In Address Group *I
I*

*** Disable Parallel Poll Of Addressed Devices ***
*)
kppd(cARDN'J% ErrorFlag, add-l[O]);
IF (ErrorSlag > 0) THEN err_handler(Errorslag);
END.

9-55

Using the Call interface In
Microsoft PASCAL

KM-488-DD Programming Guide

KPPU

Purpose

Syntax

Disables the Parallel Poll Response of all GLIB bus device(s). TheI(M-
gS8-DD must

VAR
board-m : INTEGER;
err-code : WORD;

. . .
BEGIN

kppu(board-nr, err-code);
. . .

Parameters board nr is an integer which represents the board identification number.
This is G integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this vari-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

Example CONST
CARDNDN = 0 ; (* Card Number Parameter For Calls *)

VAR
ErmrPlag : WORD;

(* Integer to Hold Error Coda Returned By Each CALL (0
= false = no error) *)
BEGIN
t*

*** Disable Parallel Poll Response Of All Bus Devices ***
*I
kppu (CARDNuM, ErrorPlag);
IF (ErrorPlag > 0) THEN err_handler(ErrorPlag);
END.

9-56

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KQUIKSTAT

Purpose

Syntax

Returns the KM-488DD’s status byte.

VAR
board-n+ : INTEGER;
err-code : WORD;
qstat : INTEGER;

. .
BEGIN

kquikstat(board-nr, err-code, qstat);

Parameters board nr is an Integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns qstat is a pointer to the returned status integer. The status integer is of the
following format:

Bit 15.9 0 7 6 5 4 3 2 1 0

0 ADSC CIC PEND DET SRQ DEC LA TA DMA

Where:

ADSC Address Status Change. If this bit is set to 1, a change in address
status has occurred (i.e., a Talker becomes a Listener, or a
Peripheral becomes an Active Controller).

cc Controller in Charge. If this bit is set to 1, the KM-488-DD is an
Active Controller.

PEND SRQ Pending. If this bit is set to 1, the KM-488-DD has an SRQ
request pending.

DET Device Triggered. If this bit is set to 1, a GPIB Trigger com-
mand has been received.

SRQ Internal SRQ. If the KM-488-DD is an Active Controller and
this bit is set to one, a device is requesting service. If the KM-
488-DD is a Peripheral and this bit is set to one, then its SRQ
(issued by KREQUEST) has not been serviced.

9-57

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

KQUIKSTAT(cont’d)

DEC Device Cleared. If this bit ls set to one, the KM-488-DD has
received a GPIEl Clear command.

LA Listen Addressed. If this bit is set to one, the KM-48%DD is
addressed as a Listener and can accept data from the GPIB.

TA Talk Addressed. If this bit is set to one, the KM-488-DD is
addressed as a Talker and can output data to the GI’IB.

DMA DMA. A DMA transfer is currently in progress.

err code is a variable through which error codes are returned. If this
vari&le is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

Example CONST

ADSC = #loo ;

VAR
board-m : INTEGER;
err~code : WORD;
qstat : INTEGER;

. . .
BEGIN

QSTAT := 0 ; (* Initialize QSTAT TO 0 *)
kquikstat(board-nr, err-code, qstat);

IF (QSTAT AND ADSC) THEN
WBITELN('ADDBSSS STATUS CHANGED') ;

. . .

9-58

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KREMOTE

Purpose

Do

Syntax

Parameters

Returns

Forces the GPIB bus device(s) to the remote mode (ignore the bus),

NOTE: The KM-488-DD must be a System Controller to execute this
command.

VAR
board-nr : INTEGER;
err-code : WORD;
mygads : ARRAY[O..141 OF gads;

BEGIN
kremote(board-nr, err-code, mygads);

. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus address of the device(es.1 to be put in
the remote mode. mygads is a pointer to an array of n (n can range from 1 to
15) structures of type gads. You must tailor mygads to your application.
mygads structure is defined in the include file mp488dd.inc and is described
in section 10.1.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

9-59

Using the Call Intelface in
Microsoft PASCAL

KM-488-DD Programming Guide

KREMOTE (cant’)

Programming 1.
Notes

If mygads does not specify an address (i.e., no-addr is used), then
the GPIB REN (Remote Enable) line is asserted. Devices will not be in
the remote mode until addressed to listen. If mygads contains address
then those devices will also be addressed to listen, so they will be put in
remote.

2. It is good programming practice to issue a Local Lockout to prevent the
device(s) from being returned to Local mode.

CONST
CARDNUN =o; (* Card Number Parameter For Calls *)

VAR

ErrorFlag : WORD;
(* Integer to Hold Error Code Returned By Each CALL (0 = false
= no error) *)

add-05 : ARRAY[O..l] OF gads;
(* Address Group (will have one device @ 05) *)

BEGIN
(*

*** Address Structure For Device At GPIB Address 5 ***
*)
sdd_05(0].ptimad := 5 :
(* 1st Instrument Has GPIB Address 05 *)
add_05[0].secad := -1 ;
(* -1 : 1st Instrument Has No Secondary Addr *)
add_05[1].primad := -1 ;
(* -1 : No 2nd Instrument In Address Group *)
t*

AsBert REN And Listen Specified Devices
*)
kremote(CARDNLM, ErrorFlag, u&-05);
IF (ErrorFlag > 0) THEN err_handler(ErrorFlag);
END.

KM-4&WDD Programming Guide Using the Call Interface in
Microsoft PASCAL

Purpose

Syntax

Sets the Serial Poll Response of a KM-488-DD which is a Peripheral.

VAR

board-nr : INTEGER;
err-coda : WORD;
sp : INTEGER;

. . .
BEGIN

krequest(board-nr, err-code, sp);
. . .

Parameters board nr is an integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

sp is an integer in the range 0 to 255 which represents the serial poll
response of the device. This integer ls of the following format:

Bll Bll 7 7 6 6 5 5 4 4 3 3 2 2 10 10

DlO6 rsv Dl06 Dl05 D104 Dl03 Dl02 DlOl DIOB rsv Dl06 Dl05 D104 Dl03 Dl02 DlOl

Where:

D101-6 Bits 1 through 8 of this device’s Serial Poll Response Byte
(correspond to data lines DIOl-DIOS).

ISV If this bit ls 1, the KM-488-DD will generate a Service Request
(assert SRQ).

Returns err code is a variable through which error codes are returned. If this
varl&le is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming 1. The Active Controller can read the value of sp by serial polling the
Notes KM-488-DD. This will clear bit 6, if it was set.

2. Use KQUIKSTAT or KSPOLL to check if the Peripheral has been serial
polled (checks the status of the SRQ bit).

9-61

Using the Call Interface in
Microsoft PASCAL

KMdSS-DD Programming Gulde

KREQUEST (cont’d)

Example CONST
CARDNUN =o;

(* Card Number Parameter For Calls *)
ABSERTSRQ = 64;

(* Set Reserved SRQ Bit In Status Byte *)
ErrorFlag : WORD;

(* Word For Code Returned By Calls *)
BEGIN
t*

*** Generate SRQ ***
*)
krequest(CARDNUM, ErrorFlag, ASSERTSIQ);
IF (ErrorFlag > 0) THEN err_handler(ErrorFlag):
END.

9-62

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

Purpose

Syntax

Performs a “warm” reset of the KM-488-DD and the GPIB bus.

VAR
board-nr : INTEGER;
err-code : WORD;

. .
BEGIN

kreset(board-nr, err-coda);

Parameters board nr is an integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it ls set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

The KM-488-DD is reset to the following conditions:

. STOP . ERRORON

. DISARM l FILLNULL

. CONFIG . LOCAL
l ABORT l REQUEST 0 (If Peripheral)
. BUFFER INCREMENT l Clear CHANGE, TRIGGER, and
l DMA SINGLE CLEAR

STATUS
l TIMEOUT 10

It also clears all error conditions.

2. If the KM-488-DD is the System Controller, it will assert the GPIB IFC
(Interface Clear) line for at least 500 itsecs.

9-63

Using the Call lntefface In
MIcrasoft PASCAL

KMdSS-DD Programming Gulde

KRESET (cont’d)

Example CONST

cARDNrJw =o; (* Card Number Parameter For Calls l)
VAR

Errorslag : WORD; (* Word For Code Returned By Calls *)
BEGIN
t*

*** Reset Driver ***

*)
kreset (CARDNUM, ErrorFlag) :
IF (ErrorFlag > 0) THEN

ABORT('ErrOr In KRESET Call', 1, 0) ;
END.

9-64

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KRESUME

Syntax

Parameters

Returns

Initiates data transfers between two non-Active Controller GLIB devices, by
unasserting the ATN line. The KM 488 _ - DD must be an Active Controlh
m-ler to use this

VAR
board-xx : INTEGER;
err-code : WORD;

. . .
BEGIN
krasume (board-nr, err-code) ;
. .

board-nr is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it ls set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Pragrammlng This routine ls normally called after a KSEND has addressed a talker and a
Notes listener. (See KSEND description.)

Example CONST
CARDNUN =o; (* Card Number Parameter For Calls *)

VAR
ErrorFlag : WORD; (* Word For Code Returned By Calls *)

BEGIN
t*

Drop ATN Line To Allow Inter-Peripheral Communication
*I
krasume(CApDNUM, ErrorFlag);
IF (ErrorFlag > 0) THEN err-handler(ErrorFlag);
END.

9-65

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

KSEND

Purpase

Syntax

Sends GPIB commands and data from a string.

“AR
board-xx : INTEGER;
err-code : WORD;
stringlen : INTEGER;
sendstr: : LSTRING(255);

. . .
BEGIN

ksend(board-nr, err-code, sendstr, atringlen);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

sendstr is a string which includes any of the following subcommands:
CMD, UNT, MTA, MLA, TALK, LISTEN, DATA, and EOI. Multiple sub-
commands may be specified; however, the length of the & SEND com-
mand string cannot exceed 255 characters. The subcommands are as follows:

CMD -Sends information with the ATN line asserted. This indicates to
the bus devices that the characters are to be interpreted as GPIB bus
commands. The command may be sent as either a quoted string (e.g.,
’ COMMAND’) or as a numeric equivalent of an individual ASCII char-
acter (e.g., 13 decimal or #OD hex for a Carriage Return). Hex values
must be preceded by #. Multiple quoted strings or ASCII values bytes
may be sent if they are separated by commas (e.g., CMD
67,79,77,77,65,70,68).

An EOI cannot be sent with this subcommand, because an EOI with
ATN asserted would initiate a Parallel Poll.

UNT - Untalks all devices by sending a GPIB UNTALK command with
ATN asserted.

9-66

KM-488-DD Programming Guide Using the Call Interface In
Microsoft PASCAL

KSEND (cont’d)

UNL - Unlistens all devices by sending the GPIB UNLISTEN command
with ATN asserted.

MTA - Designates the KM-488-DD to address itself to talk by sending
the GPIB MTA (My Talk Address) command with the ATN line
asserted.

MLA - Designates the KM-488-DD to address itself to listen by sending
the GPIB MLA (My Listen Address) command with the ATN line
asserted.

TALK addr - Addresses another GPIB device or KM-488-DD to talk
by sending a GPIB TAG (Talk Address Group) command with the ATN
line asserted. addr is an integer representing the GPIB BUS device
address of the device to talk. This integer ranges from 00 to 30 decimal.

LISTEN addr - Addresses another GI’IB device(s) or KM-488-DDf’s)
to listen by sending a GPIB LAG (Listen Address Group) command
with ATN asserted. addr ls an integer representing the GPIB BUS
device address of the device(s) to talk. This integer ranges from 00 to
30 decimal. Multiple listeners can be specified. If addr is not specified,
all other devices on the GPIB BUS will be designated listeners.

9-67

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programmlng Guide

KSEND tcont’d)

DATA - Sends information with the ATN line unasserted. This lndi-
cates to the bus devices that the characters are to be interpreted as data.
This ls the technique which is to be used to send device-dependent
commands. (See the IEEE-488 Tutorial in Appendix C for more infor-
mation.) The data may be sent as either a quoted string (i.e., ’ DATA’)
or as a numeric equivalent of an individual ASCII character (i.e., 13
decimal or #OD hex for a Carriage Return). Hex values must be prec-
eded by #. Multiple quoted strings or ASCII values bytes may be sent
if they are separated by commas (e.g., DATA 68, 65,84, 65).

This sub-command is useful when you are sending commands which
are unique to your interface.

EOI -Sends information with the ATN line unasserted. EOI will be
asserted when the last character ls transmitted. This information is
interpreted as GPIB bus data and may be sent as either a quoted string
(e.g., ’ xyz’) or as a numeric equivalent of an individual ASCII charac-
ter (e.g., 13 decimal or #OD hex for a Carriage Return). Hex values
must be preceded by #. Multiple quoted strings or ASCII values bytes
may be sent if they are separated by commas (e.g., SEND EOI
120,121,122).

stringlen is an integer between 0 and 255 which represents the length of
the SEND string.

Returns err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. Typically, KSEND is used to have to device transfer data without it
Notes passing through the KM-488-DD. For example, a KM-488-DD might

talk a scope and send a trace to a listened plotter.

2. The maximum length of the KSEND command, including any subcom-
mands, is 255 characters. To KSEND large amounts of data, use multi-
ple KSEND commands.

9-68

KM-488-DD Programmlng Guide Using the Call Interface in
Microsoft PASCAL

KSEND (cont’d)

3. KSEND should only be used when a nonconforming device requires a
special command sequence or a non-standard GPIB command. Do not
use the KSEND command unless you are extremely familiar with GPIB.

4. The KM-488-DD must be the Active Controller to KSEND commands.
Any KM-488-DD can KSEND data.

5. If a DATA subcommand is not included in the KSEND string, be sure
to call KRESUME immediately after the KSEND. This is necessary
because the ATN line must be dropped so that the transfer will pro-
ceed.

Example

6. Do not include the word SEND within the KSEND string as you might
do in the File I/O SEND command.

CONST
CARDNUN =o; (* Card Number Parameter For Calls l)

VAR
snstr : LSTRING(255);

(* For Comnand Used In MEND *)
ErrorFlag : WORD;

(* Word For Code Returned By Calls *)
BEGIN
t*

wA"E 196 DMM SEND READING TO A PERIPHERAL KM-488-DD
DMM IS At Address 12
Peripheral KM-488-DD Is At Address 02

*)
snstt := 'UNT UNL LISTEN 02 TALK 12';
ksend(CAPDNUl4, ErrorFlag, snstr[l], 25);
IF (ErrorFlag > 0) THEN arr_handler(ErrorFlag);

9-69

Using the Call Interface in
Microsoft PASCAL

KM-488-DD Programming Guide

KSPOLL

Purpose

Syntax

Parameters

Returns

If the KM-488-DD is an Active Controller, KSPOLL will check for an SRQ or
conduct a serial poll. If the KM-488-DD is a Peripheral, KSPOLL will check if
the KM-488-DD’s SRQ has been serviced.

VAR
board-nr : INTEGER;
err-code : WORD;
spr : INTEGER;

mYw& : ARRAY[O ..14] OF gads;
. . .
BEGIN

kspoll(boa+d-nr, err-code, spr, myqads);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus address of the devicetes) to be dis-
abled. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file mp488dd.inc and is described in section
10.1.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

spr is an unsigned integer or an array of unsigned integers with an entry for
each address in mygads. The value of the integer is 0 to 255 and corre-
sponds to a byte with the following bitmap:

Bit 7 6 5 4 3 2 1 0

D108 SRQ Dl06 Dl05 Dl04 Dl03 DIOZ DlOi

9-70

KM-488-DD Programming Guide Using the Call Interface In
Microsoft PASCAL

KSPOLL(cont’d)

Where:

DlOl-8 Bits 1 through 8 of this device’s Serial Poll Response Byte (corre-
spond to data lines DIOl-DIO81.

SRQ If this bit is 1, the SRQ (Service Request) line will be asserted to
request servicing. Otherwise, SRQ will not be asserted.

Bit 6 has the special significance of indicating an SRQ pending. The signifi-
cance of the other bits will be application dependent.

Programming 1. The most common use of KSPOLL is for the KM-488DD, as an active
Notes controller, to issue KSPOLL with mygads containing the address of a

single device. This addresses and serial polls the device and, upon
return, spr contains the serial poll response of the polled device. If the
SRQ bit in spr is set, the device had issued an SRQ. The other bits in
aprare device-dependent. Serial polling a device which is currently
asserting SRQ will cause the device to unassert SRQ.

The string returned by KSTATUS or the integer word by KQUIKSTAT
can be checked to determine the presence of an SRQ before a serial poll
is conducted. If only one device is asserting SRQ, the effect of issuing
KSPOLL will be to clear the internal SRQ pending “bit”, even if the
polled device is not issuing the SRQ. It is also the case when multiple
devices are asserting SRQ and a device not currently asserting SRQ Is
polled. In this case, a subsequent use of KSTATUS or KQUIKSTAT will
not reveal a pending SRQ.

To aid in identifying which bus device(s) is currently requesting ser-
vice, a KM-488DD which is the Active Controller can serial poll as
many as 14 devices by issuing a KSPOLL call with mygads containing
the address of more than one device. In this case, spr should be an
array of unsigned integers with an element for each address. In this
case, KSPOLL will serial poll each addressed device and return the
serial poll bytes in the spr array. This is a faster way for discerning
the source of an SRQ among several devices.

9-71

Using the Call Interface In
Mlcrosoft PASCAL

KM-488-DD Programmlng Guide

KSPOLL (cont’d)

2. If the KM-488-DD is a peripheral and KSPOLL is called with mygads
equal to the no address structure (no-addr), spr will be the serial
poll response (sp) set by KREQUEST -with the possible exception of
the SRQ bit. (This may have disappeared as a result of an Active Con-
troller having serial polled the KM-488-DD since the last KREQUEST
call.) In the instance of an Active Controller serial polling a peripheral
KM-488-DD, the peripheral KM-488-DD unasserts the SRQ line. For an
example, see KREQUEST. The state of the SRQ bit can also be deter-
mined from the string returned by KSTATUS or the integer status word
set by a KQUIKSTAT call.

3. If the KM-488-DD is the Active Controller and issues KSPOLL with
mygads equal to no-addr, spr will be 64 if a device is asserting SRQ
and 0 if not. This same result could have been determined from
KQUlKSTAT or KSTATUS.

Note that if this call is issued when a SRQ is pending, it internally
“clears” the SRQ “pending” bit, even though the requesting device has
not been polled and is still issuing an SRQ. That is, a subsequent
KSPOLL, KQUIKSTAT, or KSTATUS call will not reveal a pending
SRQ.

9-72

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KSPOLL (cont’d)

CONST
CARDNUN =o;

(* Card Number Parameter For Calls *)
VAR

add-12 : ARRAY10 ..ll OF gads;
(* Address Group (One Device At 12) *)
Errorslag : worn; (* Word For Coda Returned By Calls *)

BEGIN
t*

*** Address Structure For Meter At GPIB Address 12 ***
*)
add_l2[0].p+imad:=12:

(* 1st Instrument Has GPIB Address 12 *)
add_l2(0].secad:=-1;

(* -1 Indicates 1st Instrument Has No Secondary Add *)
add_l2(1].primad:=-1;

(* -1 Indicates No 2nd Instrument In Group *)
t*

Acknorledqe/iZemve SRQ Of The Device @ Address 12
*I
kspoll(CARDNUM, ErrorSlaq, add_l2[01, sbyt) ;
IF (ErrorFlaq > 0) THEN ere_handler(ErrorFlag) ;
END.

9-73

Uslng the Call Interface in
Microsoft PASCAL

KM-488-DD Programming Guide

KSTA TUS

Purpose Returns a character string describing the current operating state of the KM-
488-DD.

Syntax VAR
board-m : INTEGER;
err-code : WORD;
stat : LSTRIWG(255);

. .
BEGIN

kstatus(board-nr, err-code, stat);
. .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this vari-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

stat is a character string which describes the current operating state of the
KM-488-DD. The string is of the format shown in Table 9-2. stat should be
75 bytes in order to contain the longest message that might be returned. If it
is too short, data will be written over other portions of the program causing
problems.

9-74

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

Stdtlg
Cd

L

9

11

Table 9-2. Status String

Y of Cols. Name and Description

I m- Tells if the KM-48BDD Is acting aa an Actiue
Cmtrolkr or Periphrrd. Can be C or P where:

C = The KM-488-DD Is an Active Controller
P = The KM-488.DD is a Pniphrrol

2 &&&&as - Gives the IEEE488 Bus Address of the KW4WDD.
This is a two-digit d&al integer ranging from W to 30.

2 Addressed - lndiates if the device has changed
addressed state, I.e., lf it has cycled between the Talk-r, Listener, or
Actim Cimtmlhr states. This Is reset whenever a STATUS is read.
‘Ibis can be one of the following:

GO = There has not been a change in the addressed status.

G1= There has been a change in the addressed statw.

I mAddressed India@ if the KM488-DD is currently
acting as a Talker or Listener, or is Idle. Can be T, L, or I, where:

T = The KM-48%DD is a Talker
L = The KM-48&DD is a Listener
I= The KM.488-DD Is Idle

2 ~rvicc Rma Represents the current internal SRQ status whmc:

SO = SRQ not asserted
Sl = SRQ asserted

If the KM-488.DD is in the Active Controller mode, the internal SRQ
state Indicates If a device is asserting SRQ.

If the KM-48&DD is acting a8 a Peripheral, the internal SRQ state Is set
by using the KREQWST call. It is cleared by a serial poll from the
Active Controller and lndlcates it is asserting SRQ.

9-75

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

KSTATUStcont’dJ

Table 9-2. Status String

StMthg
COI

1 of COIS. Name and Description

I4 3 ~-Indicates whether or not an error has -ed. The
three characters mnslst of the letter ‘E’ followed by a two digit error
code. (A list of these error codes is provided in Appendix G.) An
error cc& of W indkates no error has occurred.

I8 2 w - Indicates if a IEEE-Q38 Mgger command has been
received or not. This is not uplated during DMA CONTlNIJE kin%
fen. Triggered State values are:

TO = No trigger command has been received.
T, = A trigger command has been received.

21 2 Qs& - Indicates if the IEEE Clear command has been received or
not. This is not updated during DMA CONTINUE transfers. Cleared
values are:

CO = No Clear command has been received.
Cl = A Ctear c.,mmand has been received.

24 2 TransferStatus - Indhtes if P data transfer is in progress. Values
which may appear are:

PO = No transfer
PI = DMA CONTINUE Transfer occurring
F-2 = DMA AUTOlNITlALlZETransfer occurring

27 up to 45 w - Contains the Error Message Text associated with
the given error code (EXX). These error messages are listed in
Appendix G.

Programming 1.
Notes

If the KM-488-DD is the Active Controller, the Service Request Status
may be cleared fi.e, SO) as a result of a KSPOLL, even when the SRQ
line is still asserted. See the discussion in KSPOLL.

2. If the KSTATUS string is read into a variable of type LSTRING (as
opposed to a character array), the string length must be calculated
upon return from the KSTATUS call and inserted in location 0 of the
LSTRING variable. The string length can be calculated by searching
through the LSTRING (starting with location STRING[l]) for a NULL
character (0).

9-76

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KSTATUS (cont’d)

Example CONST

CAPDNUN =o;
(* Card Number Parameter For Call8 *)

VAR
indat : LSTRING(255);(* Array TO Hold Statull Message

*I
Errorslag : WORD; (* Word TO Hold Error Code *)
i : INTEGER;

t*
Proc. TO Determine String Length And Put It In Loc.0

*I
PROCEDURE char-count (VAR ch-8tmg:LSTRING);
BEGIN
t*

Check For NULL or 255 Characters
*)

i := 1;
WHILE ((1<>255) AND (ch-stmg[il <> Cm(O))) DO

i :=itl;
I*

Asssign Calculated Count TO String Location 0
*)

ch_stmg(O 1 := CEIR(i - 1) ;
END;
BEGIN
t*

*** Return status Nessage ***
*I
kstatus (CARDNUbf, ErrorFlag, st 111) ; (* Request status *)
IF (ErrorFlag > 0) THEN err_handler(ErrorFlag):
char-count(st);
WRITELN (' STATUS : ' , St) ;

END.

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

KSTOP

Purpose

Syntax

Stops a DMA CONTINUE transfer.

VAR
board-nr : INTEGER;
err-code : WOBD;

. .
BEGIN

kstop (board-nr, err-code);
. .

Parameters board nr is an integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

If the DMA CONTINUE transfer has been completed, a KSTOP will
have no effect.

2. Use the KBUFD call to determine the actual number of characters
which were transferred before the KSTOP took effect.

Example CONST
cARDNuw =o; (* Card Number Parameter For Calls *)

VAR
ErrorFlag : WORD ;

(* Word TO Hold Error Code Returned By Each Call (0 = false
= no errors) *)
BEGIN
(*

*** Stop DMA ***

*)
kstop(CABDNUM, ErrorFlag) ;

IF (ErrorFlag > 0) THEN err-handler(ErrorFlag);
END.

9-78

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KTERM

Purpose Changes the default GPIB bus terminator(s) to be used in ENTER and/or
OUTPUT calls.

Syntax VAR

board-nr : INTEGER;
err-code : WORD;
trm_list[41: ARRAY LO...31 OF INTEGER

. . .
BEGIN

kterm(board-nr, err-code, trm_list);
. . .

Parameters board nr is an integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

tern-list is an integer array which defines the GLIB bus terminators. See
Chapter 6 for more information regarding the use of GPIB bus terminators.
(termlist [4] is defined in the mp488dd.inc header file.) termlist [4]
is comprised of the following elements:

termlist (01: Input/Output GPIB Terminators. Possiblevalues
are:

-1

0

Change the Input Terminators.

Change both Input and Output
Terminators.

1 Change the Output Terminators.

termlist[ll: EOI detection/Assertion. Possible values are:

0 No assert/dectect EOI
1 Assert/Detect EOI.

9-79

Using the Coil Interface In
MIcrosoft PASCAL

KM-488-DD Programming Guide

KTERM (cont’d)

termlist [2] : 1st GPIB bus terminator. Possible values are:

-l(#FFFF) Don’t use first or second GPIB bus
terminator.

0 to 255 Use this ASCII character as the first
GPIB bus terminator instead of the
default first GPIB Terminator. The 0
- 255 decimal value represents the
ASCII value of the terminator charac-
ter to be used. (An ASCII Equiva-
lence Chart is provided in Appendix
A.)

termlist (31 : 2nd GPIB bus terminator. Possible values are:

-l(#FFFF) Don’t use second GPIB bus termina-
tor.

0 to 255 Use thii ASCII character as the sec-
ond GPIB bus terminator instead of
the default second GLIB Terminator.
The 0 - 255 decimal value represents
the ASCII value of the terminator
character to be used. (An ASCII
Equivalence Chart is provided in
Appendix A.)

Returns err code is a variable through which error codes are returned. If this
varlaTle is set to 0, then no error occurred. If it ls set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

KTERM will change the default bus terminators set during software
installation, as directed by termlist [I.

9-80

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KTERM (cont’d)

CONST
CARDNUN 10;

VAR

(* Card Uumber Parameter For Calls *)

ErrorFlag : WORD ;
(* Word To Hold Error Code Returned By Each
Call (0 = false = no errors) *)

trm_lst : ARRAY[O..31 OR INTEGER;

(* Array Of GPIB Terminators FOX “KTEBM” l)

BEGIN
t*

*** Configure Terminators For BUS Operations

*)

t*
l ** Structure TO Reset Configuration Terminators ***

*)
tnn_lst[o] := 0 ;

(* 0 Indicates Change Input AND Output Terminators *)

trm_lst[l] := 1 ;
(* 1 = Assert EOI On Output, Detect EOI On Enter *)

tna_lst[21 := -1 ;
(* -1 Indicates No 1st Terminator

tnr>st(31 := -1 ;
*)

(* -1 Indicates NO 2nd Terminator
ktenn(CARDNUM, ErrorFlag, tm_lst[O]) ;
IF (ErrorFlag > 0) THEN err_handler(E+ro+Flag) ;
END.

*I

Using the Call interface in
Microsoft PASCAL

KMdSB-DD Programming Guide

KTO

Purpose

Syntax

Parameters

Relumo

Changes the timeout period.

VAR

board-m : INTEGER
err-code : WORD;
tval : INTEGER4;

. . .
BEGIN

kto(board-nr, err-code,tval);
. . .

board nr is an integer which represents the board identification number.
This is 6 integer in the range 0 to 3 and represents the board to be pro-
grammed.

tval is the number of 55 ms. timer ticks to allow before a time-out.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

To suppress Timeout checking, set tval to 0.

2. If a DMA CONTINUE transfer ls in progress, the KM-48%DD will
check for timeouts only for the first byte that ls transmitted/received. Dur-
ing other types of transfers, the KM-48%DD will check for a timeout between
transmission of bytes.

You must be certain to check that a DMA CONTINUE transfer has been com-
pleted.

9-82

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KTO ~conf’d~
Example CONST

CARDNUN =o; (* Card Number Parameter For Calls *)
FIFTEEN = 273 ; (* 15 seconds at 18.2 ticks per

second *)
VAR

ErrorFlag : WORD ; (* Word TO Hold Errol: Code Returned By
Each Call (0 = false = no errors)

*)
BEGIN
t*

Set Time Out TO 15 Seconds (Approx 18.2 Ticks/&c)
*I
kto (CARDNUM, ErrorSlag, FIFTEEN);
IF (ErrorFlag > 0) THEN err_handler(ErrorFlag);
END.

9-83

Using the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

Purpose

Syntax

Parameters

Returns

Triggers the specified device(s). J& KM-488-DD must be an Active

VAR

board-m : INTEGER

err-code : WORD;
mygads : APRAY[O ..14] OF gads;

. .
BEGIN

ktriggerfboard-nr, err-code, mygads);
. .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus addressfes) of the devicefes) to be trig-
gered. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file mp488dd.inc and is described in section
10.1.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it ls set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming The devices listed in mygads will be triggered
Notes

9-84

KM-488-DD Programming Guide Using the Call Interface in
Mlcrosoft PASCAL

KTRIGGER (cont’d)

Example CONST
CAPDNubl =o; (* Card Number Parameter For Cal

*I
VAB

add-12 : APRAY[O..l] OF gads;
(* Address Group (One Device At 12) *)

ErrorFlag : WORD;

(* Word For Code Returned By Calls *)
t*

*** Address Structure For Meter At GPIB Address 12 ***
*)
add_lZ[O].primad:=lZ;

(* 1st Instrument Has GPIB Address *)

add_lZ[O].secad:=-1;
(* -1 Indicates 1st Instrument Has No Secondary Add *)

adc_lZ[l].prin!ad:=-1;
(* -1 Indicates No 2nd Instrument In Group l)

BEGIN
t*

*** Trigger The Device ***
*)
ktrigger(CAPDNUM, ErrorFlag,add_lZ[O]);
IF (ErrorFlag > 0) THEN err_handler(ErrorFlag);
END.

LlS

9-85

Using the Call Interface in
Microsoft PASCAL

KM-488-DD Programming Guide

Purpose Forces the KM-488-DD driver to wait until a DMA CONTINUE transfer has
been completed before returning control to the application program.

Syntax VAR
board-m : INTEGER;
err-code : WORD;

. .
BEGIN

kwaitc(boaed-nr, err-code);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. Time out checking, if enabled, is performed while KWAITCing.
Notes

2. This is an & wait. The following calls perform an
implicit wait:

. KABORT . KI’I’OLL DISABLE

. KCLEAR

. KENTER
l KPPOLL UNCONFIG
. KREMOTE

. KLOCAL l KREQUEST

. KLOCAL LOCKOUT l KRESUME

. KOUTI’UT l KSEND

. KPASS CONTROL l KSIJOLL

. KI’I’OLL l KTRIGGER

. KI’I’OLL CONFlG

9-86

KM-488-DD Programming Guide Using the Call Interface in
Microsoft PASCAL

KWAITC (cont’d)

Example CONST
CARDNON =o: (* Card Number Parameter For Calls *)

VAR
F.rrorI?1ag : WORD; (* Word For Coda Returned By Calls *)

BEGIN
(*

*** Wait For DNA TO Finish ***

*)
(*

DNA CONTINUE started here.

*)
kwaitc (CARDNUN, ErrorFlag):
IF (ErrorFlag > 0) THEN

WBITELN('Time Out Waiting For DMA To Finish') ;
END.

9-87

Uslng the Call Interface In
Microsoft PASCAL

KM-488-DD Programming Guide

This page intentionally left blank.

9-88

KM-488-DD Programmlng Gulde Uslng the Call Interface In
TURBO PASCAL

CHAPTER 10
USING THE CALL INTERFACE IN TURBO PASCAL

Versions
Supported

Turbo PASCAL versions 4.0,5.0 and higher

File Header Be sure to include the following lines within your program:

($1 tp488dd.inc)
{$L km488tp.objl

tp488dd.inc is an “include” file with function/procedure prototypes, struc-
ture definitions, and constants pertinent to the TURBO PASCAL call
interface.

km488tp.obj is a linkable module containing the functions and procedures
defined in tp488dd.k. This module dispatches KM-488-DD calls into the
KM driver.

If either of these files resides in a directory other than the one in which
you are compiling your program, be sure to specify a complete path to
each file.

The ($V- } is used throughout the example programs to relax string
checking during procedure and function calls. You may want to use this
metacommand in instances where a value is returned in a string and the
ultimate length of the string is unknown.

Compiling The
Program

Typically, the following simple statement will suffice for compiling your
program provided you have adhered to the instructions in the file header
section:

tpc myprog.pas

Software
Configuration

A number of KM-488-DD configuration parameters are set via the CON-
FIGDAT file. (See Chapter 2 and Appendix F.) These govern the default
settings of the GPIB input and output bus terminators, lightpen interrupt
enable, device timeout period, and the KM-488-DD’s Base Address. The

10-l

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programming Guide

defaults for these are listed in Table 10-l. There are other defaults you
may have to re-program if you are using File I/O Commands in the same
program as the library interface routines (calls).

Table 10-I. Default KM-488-DD Operating Parameters

Parameter Default

Device Timeout 10.0 seconds
GPIB Bus Input Terminator CR LF with no EOI
GPIB Bus Output Terminator CR LF with no EOI

EOL Terminators CR LF

The KCONFIG call can be used to reset the GPIB address, and the GPIB
input and output bus terminators.

The KTERM call can be used to change the default GPIB bus terminator
settings.

The KTO call can be used to change the default device timeout value.

Programming 1.
Notes

2.

Any values passed into a call in a variable may also be passed as a
constant or as the returned value of a function.

Parameters which are also used to return values must be declared
as variables.

3. Any of the KM-488-DD routines which are used to receive data
require that a string or array be declared to store the received data.
The length of the string or size of the array should be sufficient to
store the number of bytes that are expected. In addition, when a
KM-488-DD routine requires a parameter specifying the maximum
number of data bytes to be returned, it is extremely important that
the amount of storage space allocated is at least as great as this max-
imum length parameter. Otherwise, data may be stored into
memory which has been allocated for use by other parts of your
program, or for use by DOS. This could lead to erroneous operation
and possibly a system crash.

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

4. In Turbo PASCAL, strings are actually a special type of character
array. The first byte of the array is used to store the number of
bytes contained within the string. Hence, strings may range from 0
to 255 bytes in length and the KM-488-DD routines which pass data
to or from strings are limited to 255 bytes maximum.

When values are retuned to the calling program via a string vari-
able, the string length must be calculated and placed in location 0 of
the string, where Turbo PASCAL normally stores it. The string
length must be calculated in this manner as the KM-48&DD driver
is unaware of which language is issuing the current call.

5. Do not name the variables in your application program with the
same name as any of the KM-488DD routines.

6. Do not assign a program name which is the same name as any of
the KM-488-DD routines.

lo-3

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programming Guide

10.1 CALL DfSCRlPTlON FORMAT

Each call description is divided into several sections as described below.

Syntax This section describes the syntax required by each call. The following rules
are used in this section.

Call names and input parameters appear in this typeface.

Parameters This section describes the input parameters. In some instances, a structure or
array of multiple parameters may be specified (for example, multiple device
addresses).

mygads [n] is used in many calls. This is an array of n (1 to 15) structures
of type gads which contain the GPIB address information required by the
call. This GPIB address structure consists of:

TYPE
gads = RECORD
primad : INTEGER;
secad : INTEGER:
END;

(*primary address o-30*)
(*secondary address O-31*)

When secad is set equal to -1, it indicates that no secondary address is
applicable. When primadis set equal to-1,itterminatesthearray.

You musttailormygads to your application. Themygads structureis
defined in the include file tpWdd.inc. An example of a structure with two
devices is:

NXAM: ARRAY [0..2] OF GADS;

exam.primad[O] := 3 (* first device - pri addr 3*)
exam.secad[O] := -1 (* and no sac ad& *I
exam.primad[l] := 15 (* second device - pri ad& 15 *)
exam.secad[l] := 2 (* and sac addr 2 *)
exam.primad(21 := -1 (* there are only two devices *)

lo-4

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

If the KM-488-DD is a Peripheral (in which case the call wilt not require a
GPIB bus address), you will want to use the following mygads structure:

VAR
no-add : ARRAY [0..2] OF GADS;

. . .
BEGIN

no_rdd.primad[Ol := -1
(* there are no devices in group *)

Returns This part of the callable description describes any data which will be
returned after execution of the callable has been completed.

err-code - All calls except KDIAGON and KDIAGOFF return an integer
error code which will be 0 if no error was detected. It is good practice to
check err-code after each call and provide a routine to handle errors if
they arise.

Programming This section lists any special programming considerations for the routine.
Notes

Example This section gives programming examples.

105

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programming Guide

KABORT

Purpose

Syntax

Parameters

Returns

This routine allows the KM-488-DD to take control of the GLIB bus by
forcing all other devices on the bus to the idle state. The KM-48%DD &

VAR

board-nr : INTEGBR;
err-coda : WORD:

. . .
BEGIN
. . .
kabort(boord-nr, err-code);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming If the KM-488-DD is both the Active and System Controller, KABORT asserts
Notes the IFC line to retain control of the bus. Otherwise, the KM-488-DD will

assert the ATN line, and then untalk and unlisten all devices.

Example CONST
CAPDNUN 0 *

(* Card Number P&&er For Calls *)
VAR

ErrorFlag : WORD;
BEGIN

(* Word To Eold Error Code *)

kabort(CABDNUl4, ErrorFlag);
IB (ErrorFlag > 0) TBEN err-handler(ErrorFlag):
END.

10-6

KM-488-DD Programming Guide Using the Coil Interface in
TURBO PASCAL

Purpose

Syntax

Defines the conditions under which the lightpen status becomes true.

VAR
board-nt : INTEGER;
arm aoda : INTEGER;
a*zIoode : WORD:

. . .
BEGIN
karm(board-nt, err-code, arm-code);
. . .

Parameters board nr is an integer which represents the board identification number.
This ls z integer in the range 0 to 3 and represents the board to be
programmed.

ax-n-code is a 1Cbit integer describing on which conditions a light pen
interrupt may occur. The integer ls of the format:

Bit 15-9 6 7 6 5 4 3 2 1 0

0 ADSC CIC PER DET SRQ DEC LA TA IDLE

Where:

ADBC Address Status Change. If this bit is set to 1, the lightpen status
will become true when a change in address status has occurred
(i.e., a Talker becomes a Listener, or a Peripheral becomes an
Active Controller). This encompasses all the conditions marked
with an asterisk (9 below.

CC’ Controller in Charge. If this bit is set to 1, the lightpen status
will become true when the control is passed to the KM-488-DD
and it becomes the Active Controller.

PER* Peripheral. If this bit ls set to 1, the lightpen status will become
true when the KM-488-DD passes control to another device and
becomes a Non-Active Controller.

DEr Device Triggered. If this bit is set to 1, the lightpen status will
become true when a KM-488-DD, acting as a Peripheral, receives
a GPIEl Trigger command.

lo-7

Using the Call lnterfoce In
TURBO PASCAL

KM-488-DD Programming Guide

KARM (cont’d)

SRQ Internal SRQ. If this bit is set to one, the lightpen status will
become true when the KM-488-DD’s internal Service Request Bit
(SRQ) ls set.

DEC Device Cleared. If this bit ls set to one, the lightpen status will
become true when a KM-488-DD, acting as a Peripheral, receives
a GPIB Clear command.

LA* Listen Addressed. If this bit is set to one, the lightpen status
will become true when the KM-488-DD, acting as a Peripheral, ls
addressed as a Listener and can accept data from the GPIE3.

TA*

IDLE*

Talk Addressed. If this bit ls set to one, the lightpen status will
become true when the KM-488-DD, acting as a Peripheral, is
addressed as a Talker and can output data to the GPIEl.

Idle. If this bit is set to one, the lightpen status will become true
when the KM-488-DD, acting as a Peripheral, is unaddressed as
a Talker or a Listener.

NOTE: The conditions marked by an asterisk (9 will force the lightpen
status to true only when the KM-488-DlYs address status has changed. This
is indicated by the state of the Address Change Bit in the Status byte. See
the kstatus or kquikstat routine descriptions for more information.

Returns err code is a variable through which error codes are returned. If thii
vari&le is set to 0, then no error occurred. If it ls set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming The driver must be configured for lightpen emulation at load time via the
Notes CONFIG.DAT”pipe” file, as the default for lightpen emulation is off.

1 O-8

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

CONST
0 .

(* ~%ex=Parknataz Fat Calls *)
SRQENAN = 16 :

(* BIT 4 -- SRQ Detection *)
VAR

ErrorFlag : WORD; (* Word To Bold Error Code *)
BEGIN
t*

*** Enable Light Pen Interrupt Detection On SRQ ***

karm(CARDNDM, ErrorFlag, SRQENAB);
IF (ErrorFlag > 0) TIlEN err-handler(ErrorFlag);
END.

lo-9

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programming Guide

KBUF

Purpose

Syntax

Parameters

Returns

Selects in which direction the memory ls to be addressed for both DMA and
non-DMA buffered transfers.

VAR
dir : INTEGER;
board-m : INTEGER;
err-code : WORD;

. . .
BEGIN
kbuf(board-nr, err-code, dir):
. . .

board nr is an integer which represents the board identification number.
This is % integer in the range 0 to 3 and represents the board to be pro-
grammed.

dir selects the direction in which the buffer is to be read. If dir is equal to
1, the buffer address will be incremented. If dir ls equal to 0, the buffer
address will be decremented.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming If the buffer’s address is to be incremented during a bus I/O operation, be
Notes sure to use the lowest address in the designated buffer. Likewise, if it is to be

decremented, select the highest address.

10-10

KM-488-DD Programmlng Guide Using the Call Interface In
TURBO PASCAL

KBlJF (cont’d),

CONST
CARDNUM =o;

(* Card Number Parameter For Calls *)
DECREMENT 30;

(* Decrement Memory Address on DMA *)
VAN

ErrorFlag : WORD:
BEGIN
t*

(* Word To Bold Error Code *)

*** Set Direction Of Memory Address Change With DMA ***
*)
kbuf(CARDNIJbf, ErrorFlag, DECMMENT):
IF (ErrorFlag > 0) TBEN err-handler(EtrorFlag);
END.

10-11

Using the Call interface in
TURBO PASCAL

KM-488-DD Programming Guide

KBUFD

Purpose Returns the number of characters transferred in the last buffered transfer or,
in the case of DMA transfers, the current transfer.

Syntax VAR
board-nr : INTEGER:
O~I-CO~CI : warn;
bcount : INTEGERQ;

BEGIN
. . .

kbufdtboard-nr, err-code, bcount);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

bcount represents the number of characters which were transferred during
the last buffered transaction. This will be a long integer (32-bits) in the range
0 to 1,048,575 (0 to 2d0-1,.

Programming 1. If the data was transferred in the DMA CONTINUE mode, the value
Notes returns the number of characters transferred thus far.

2. It is useful to call this routine after a buffered KENTER has been per-
formed. This will help you to determine if the expected number of
characters has been received and/or the transfer has terminated as the
result of a detected terminator.

lo-12

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

KBUFD (cont’dJ
Example CONST

CMDNUM =o;
(* Card Number Parameter For Calls *)

VAB
ErrorRlag : WORD; (* Word To Bold Error Code *)

XferCount : INTEGEB4;
(* Number Of Bytes Moved In Last Transfer *)

BEGIN
t*
Return Numbat Of Bytes In Last GPIB BUS Data Transfer

*I
kbufd(CARDNUb3, ErrorFlag, XferCount);
IF (ErrorFlag > 0) TBEN err-handler(ErrorFlag);
END.

lo-13

Using the Call Interface In
TURBO PASCAL

KMdtWDD Programming Guide

KCLFAR

Purpose

Syntax

Parameters

Returns

p Resets device(s) to their
power-up parameters.

VAR
board-nr : INTEGER:
err-code : WORD:
mygads : ABRAY[O..n] OF GADS;

BEGIN
. . .

k&ear (board-n=, err-code, mygads);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] represents the GPIB bus address of the device to be accessed.
mygads is an array of n (n can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

2.

If mygads contains no addresses, then the universal GPIB DCL (De-
vice Clear) command is issued and all devices will be cleared.

Ifmygads contains addresses, then those devices specified will be lis-
tened and sent a GLIB SDC (Select Device Clear) Command.

10-14

KM-488-DD Programming Guide Using the Call Interface In
TURBO PASCAL

KCLEAR (cont’cr)

Example CONST
cAmNub =o;

(* Card Number Parameter For Calls *)
VAR

add-12 : ARBAY[O..l] OF gads;
(* Address Group (One Device At 12) *)

ErrorFlag : WORD;
(* Word For Code Returned By Calls *)
t*

*** Address Structure FOL Meter At GPIB Address 12 ***
*I
add-12[0].primad:=12;

(* 1st Instrument Bas GPIB Address 12*)
add_l2[0].secad:=-1;

(* -1 Indicates 1st Instrument 888 No Secondary Add
*)
add-12[1].primad:=-1:

(* -1 Indicates No 2nd Instrument In Group *)
BEGIN
t*

*** Return The Device To Its Power Up Condition ***
*)
kolear(CARDNDbl, ErrorFlag,add-12[0]);
IF (ErrorFlag > 0) TBRN err-handler(ErrorFlag);
END.

lo-15

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KCONFIG

Purpcse Resets the KM-488DD to its default operating parameters or to those
specified.

Syntax VAR
board-nr : INTEGER:
err-oode : WORD:
cfg-&ring : STRING;
stringlen : INTEGER;

. . .
BEGIN

kconfig(board-nr, err-code, cfg-string, stringlen);
. . .

Paramefen board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

cfg-string is a user-defined string. This string can be comprised of any
of the following options:

/T [term term Sets the input and output Gl’IB bus terminators. You
EOII can select one or two GPIB bus terminators followed by

EOI or just EOI. If you just specify /T, the GPIB bus
terminators will be reset to their defaults.

term is an optional parameter which represents a ter-
minator byte to be used. This terminator byte can be
represented as any of the following:

$char where char is an integer representing the
hex or decimal equivalent of the termina-
tor’s ASCII representation. (See Appendix
B for ASCII Equivalents.) char must be
preceded by a dollar sign ($1.

lo-16

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

Hexadecimal values must also be preceded
by &H. For example, $84 represents the let-
ter ‘7” as does $&H54.

CR This represents the Carriage Refum charac-
ter (13 decimal, OD hex).

In This represents the Line Feed character (10
decimal, OA hex).

‘X where X represents a printable ASCII char-
acter. The character must be preceded by
an apostrophe 0, for example: ’ B
represents the character B.

EOI (End or Identify) is an optional GPIB BUS termina-
tor. If included, the KM-488-DD will detect/assert the
GPIB bus EOI line. (This would indicate that the last
character has been sent.) Data will continue to be read
until this terminator, a valid terminator sequence, or
both are detected.

/TI [term term Sets the input GPIB bus terminators. You can select one
EOI] or two GLIB bus terminators followed by EOI or just

EOI. If you just specify /TI, the input GPIB bus terml-
nator will be reset to none. term and EOI are described
above.

/TO [term term Sets the output GPIB bus terminators. You can select
EOI] one or two GPIB bus terminators followed by EOI or

just EOI. If you just specify /TO, the input GPIB bus
terminator will be reset to none. term and EOI are
described above.

/E [term term] Sets the input and output EOL terminators. (Note that
this should only be used if the application program also
includes File I/O Commands.) term is described
above.

lo-17

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

/El [term
term]

Sets the input EOL terminators. (Note that this should
only be used if the application program also includes
File I/O Commands.) term is described above.

/EO [term term] Sets the output EOL terminators.
(Note that this should only be used if the appli-
cation program also includes File I/O Com-
mands.)

w

/N name ad&
[set-addrl

Configures a named device. Sets its address to
the given value and its GPIB bus terminators to
the current GPIB bus terminator settings.
(Note that this should only be used if the appli-
cation program also includes File I/O Com-
mands utilizing the named device
configurations.)

name is the name of the device.

addr is the primary GLIB address (00 to 30).

set addr is the secondary GPIB address (00
to 317

NOTE: Do not create a named device with the same name as an existing
directory on the current working disk.

If cfg string is empty, then the configuration will revert to the lnstalla-
tion coQfiguration.

stringlen is an integer from 0 to 255 which gives the length of the
cfg-string string.

Relums err code is a variable through which error codes are returned. If thii vari-
ablez set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

10-18

KM-488-DD Programmlng Guide Using the Call Interface In
TURBO PASCAL

KCONFIG (cont’d)

Programming 1.
Notes

2.

3.

The /E, /El, /EO, and /N options will only take effect if File I/O
Commands are used within the same application program as the call-
ables.

If you are converting an application program previously written using
the File I/O commands to callables, be sure to note that the CONFIG
string for the KCONFIG call does not include the “CONFIG” keyword
(i.e., as you would if you were using the CONFIG File I/O command).

Primary and Secondary Addresses must be two characters long, e.g. 01
or 0209.

Example CONST
CaRDNm =o; (* Card Numbet Parameter FOL Calls *)

VAR
ConfStr : STRING(70):

(* For Comnand Used In KCONFIG *)
ErrorFlag : WORD:

(* Word For Code Returned By Calls *)
BEGIN
t*
Configure Terminations for Carriage Return, Line Feed

With EOI
*I
ConfStr := l/T CR IJ? EOI':
kconfig(CARDNUbl, ErrorFlag,oonfstr[l],12);
IF (ErrorFlag > 0) TSEN err-handler(ErrorFlag);

lc-19

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

Purpcse

Syntax

Parameters

Returns

Turns file diagnostics on. (Default is off.)

VAB
filename : STRING;

. . .
BEGIN

kdiagon(filename, strlen(filename));
. . .

filename is a string containing the name of the file to which the diagnostic
information is to be written.

strlen is the length of the string representing the name of the file.

None.

Programming This will echo the value of the call parameters into a disk file.
Notes

Example CONST
CABDNDM =o: (* Card Number Parameter For Calls

*I
VAR

tdstr : STRING;
(* String To Bold Target Diagnostic File Name *)

BEGIN
tdstr:='DEBUG DAT'. . I (* Target Diagnostic File Name *)
t*

*** Turn Driver Diagnostics On And Send Info To Disk

File ***
*)
kdiagon(tdstr[l], 9);
(* File Name And File Name Length *)

END.

1 O-20

KM-488-DD Programming Guide Using the Call Interface In
TURBO PASCAL

KDIAGOFF

Purpose Temporarily disables file diagnostics.

Syntax kdiagoff()

Parameters None.

Returns None.

Programming None.
Notes

Example BEGIN
t*

*** Disable File Diagnostics
*)
kdiagoff () ;
BND.

lo-21

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programming Guide

Purpose Resets previously set conditions which cause lightpen interrupts.

Syntax VAR
board-nr : INTEGER;
arm-aoda : INTEGER;
err-oode : WORD;

. . .
BEGIN

kdisarm(board-nr, err-code, arm-code);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

arm code is a 16-bit integer describing which conditions should be reset.
The &eger is of the format:

Bll 15-9 8 7 6 5 4 3 2 1 0

0 ADSC CIC PER DET SRQ DEC LA TA IDLE

Where:

ADSC Address Status Change. If this bit is set to 1, light pen status
will not change when a change in address status has occurred
(i.e., a Talker becomes a Listener, or a Peripheral becomes an
Active Controller).

CIC

PER

DEr

Controller in Charge. If this bit is set to 1, light pen status will
not change when the control is passed to the KM-488-DD and it
becomes the Active Controller.

Peripheral. If this bit is set to 1, light pen status will not change
when the KM-488-DD passes control to another device and
becomes a Non-Active Controller (Peripheral).

Device Triggered. If this bit is set to 1, light pen status will not
change when a KM-488-DD, acting as a Peripheral, receives a
GPIB Trigger command.

l&22

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

KDISARM (cont’d)

SRQ Internal SRQ. If this bit is set to one, light pen status will not
change when the KM-488-DD’s internal Service Request Bit
(SRQ) is set.

DEC Device Cleared. If this bit ls set to one, light pen status will not
change when a KM-488-DD, acting as a Peripheral, receives a
GPIB Clear command.

LA Listen Addressed. If this bit is set to one, light pen status will
not change when the KM-488-DD is addressed as a Listener and
can accept data from the GPIB.

TA Talk Addressed. If this bit is set to one, light pen status will not
change when the KM-488-DD is addressed as a Talker and can
output data to the GPIB.

IDLE Idle. If this bit is set to one, light pen status will not change
when the KM-488-DD is unaddressed as a Talker or a Listener.

Returns err-code is a variable through which error codes are returned. If this
variable is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming None,
Notes

lCb23

Using the Call interface in
TURBO PASCAL

KM-488-DD Programming Guide

KDISARM (cont’d)

CONST
CARDNDM =o;

(* Card Number Parameter For Calls *)

SRQENAB = 16 :
(* BIT 4 -- SRQ Detection *)

VAR
ErrorFlag : WORD;

(* Word To Bold Error Code *)
REGIN
I*

*** Disable Light Pen Interrupt Detection On SRQ ***
*)
kdisarm(CARDNDbl, ErrorFlag, SRQFWAB):
IF (ErrorFlag > 0) TERN err-handler(ErrorFlag):
END.

1 O-24

KM-4iWDD Programming Guide Using the Call Interface in
TURBO PASCAL

KDMA

Sets DMA transfer mode.

VAR
board-nt : INTEGER;
drmr_mode : INTEGER:
err-code : WORD;

. . .
BEGIN

kdma (board-m, &err-code, &-mode) ;
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

dma_mode is a 16-bit integer which represents the DMA mode to be used. If
no dma-mode ls given, then single mode without autoinitialization will be
assumed. The &a-mode integer ls interpreted as follows:

ait 15-3 2 1 0

0 I SIN DEM AUTO

Where:

SIN SINGLE. When this bit is set to one, the SINGLE mode is
selected. In this mode, when the DMA Request line is asserted
the Dh4A controller assumes control of the bus and transfers a
single byte of data. Control of the bus is then returned to the
microprocessor.

DEMAND. When this bit ls set to one, the DEMAND mode is
selected. In this mode, when the DMA Request line is asserted
the DMA controller assumes control of the bus. The DMA con-
troller retains control of the bus until the DMA request signal is
unasserted. Once this signal has been unasserted for more than
one microprocessor clock cycle, control of bus is returned to the
microprocessor. This mode allows the DMA controller chip to
pass data at a slightly faster rate and the microprocessor to
access the bus when it is not needed.

lo-25

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KDMA (cont’d)

AUTO

Note that SINGLE and DEMAND mode can not be invoked
simultaneously.

AUTOINITIALIZE. When this bit is set to one, the AUTOIN-
ITIALIZE mode is selected. Under normal circumstances, the
DMA controller transfers the specified number of bytes to/from
the PC memory from the given starting address and terminates
when completed. When the AUTOINITIALIZE mode is
enabled, the DMA controller will reset the original byte count,
reset the initial address, and repeat the transfer again. The
AUTOINlTIALIZE option ls only in effect until the next
KENTER or KOUTIYJT buffered transfer is completed. Addi-
tionally, if a KENTER or KOUTPUT transfer in DMA CON-
TINUE mode is selected, the AUTOINITIALIZE option will only
be in effect for that transfer.

Returns None.

Programming 1. All DMA AUTOINITIALIZE transfers should occur entirely within a
Notes single DMA 64 KByte page. So, if a DMA buffer operation involves a

transfer of more than 64K or occur across a DMA page boundary, the
AUTOINITIALIZE option affects only those bytes in the last transfer
occurring within one DMA page.

Also note that DMA AUTOINITIALIZE transfers specified for buffers
that are located in more than a single DMA page are unpredictable.

2. It is impossible for a program to halt a DMA AUTOINITIALIZE opera-
tion unless the DMA CONTINUE option ls selected. This is because
the driver does not return control to a program using non-CONTINUE
operations until the transfer completes.

KM-46803 Programming Guide Using the Call Interface in
TURBO PASCAL

KDMA (coni’d)

Example CONST
CARDNUN = O:(* Card Number Parameter For Calls *)
ADTO = l:(* Auto bloda of DblA Transfer *)
DEMAND = 2;(* Demand blobode of DMA Transfer *)
SINGLE = 4;(* Single Noda of DMA Transfer *)

VAX4
ErrorFlag : WORD: (* Word To Bold Error Code *)

BEGIN
(*

*** Set up DMA Mode To Single With Autoinitialize ***
*)
kdma(CARDNm, ErrorFlag, SINGLE+AlJTO);
IF (ErrorFlag > 0) TSEN err_hPndler(ErrorFlag);
END.

lo-27

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

Purpose

Syntax

Allows the KM-488-DD to receive data from a GPIB bus device.

VAR
board-nz : INTEGER;
ertor~coda : worm ;
made4 : INTEGER;
count : INTEGER4;
myga& : ARRAY[O..l] OF gads;
darray : ARRAY[O..N-I] OF CEAR :
term-&&: ARRAY[O..2] OF INTEGER;

. . .
BEGIN

kenter(board-nr, err-code, darray, count, mode, mygads,
tenn_liat)
. . .

Parameters board nr is an integer which represents the board identification number.
This is 6 integer in the range 0 to 3 and represents the board to be pro-
grammed.

darray is a character array large enough to accept the returned data. If a
non-zero count is specified, the array should be of size count. If count is 0
and terminator characters are used, then darray must be large enough to
accommodate both data and terminators returned by the device.

count is a long integer representing the number of characters to be read.
Valid counts are within the range 0 to 4294967295 (p2-1) decimal, or from 0 to
$FFFFFFFF hex. When 0 is used, the KENTER will stop when the termina-
tion specified by tern-list is satisfied.

mode is an integer which represents whether or not DMA is to be used and if
the CONTINUE mode is to be used. This integer is interpreted as follows:

Bit 15-2 1 0

I 0 1 CONT 1 DMA

m-28

KM-4&3-DD Programming Guide Using the Call Interface in
TURBO PASCAL

KENTER (cont’d)

Where:

CONT CONTINUE. This an optional mode which ls used in conjunc-
tion with DMA. When this bit is set to one, the CONTINUE
mode will be used. If CONTINUE is specified, the KM-48%DD
will return control to the application program as soon as it can
without waiting for completion of the transfer. The KM-488-DD
will at least wait for the first byte to check for time-out (Unless
TIME OUT = 0) before continuing. DMA CONTINUE execu-
tion concludes when the KM-488-DD completes its transfer.
If CONTINUE is used and the DMA AUTOINITIALIZE has
been enabled, then the DMA transfer will continue until a
KSTOP routine is invoked or a pre-specified GPIB BUS input
terminator ls detected.

OMA DMA. If this bit is set to one, then DMA will be used in the data
transfer.

mygads [n] represents the GPIB bus address of the device to be accessed.
mygads is an array of n (n can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

term-list [3] is an integer array which defines the GPIB bus terminators
to be used during the KENTER call. These terminators are used in conjunc-
tion with count to terminate the input process. Termination choices
include whether or not EOI will be detected with the last byte and whether
or not a certain byte or sequence of two bytes will be tested for as an end of
message code. The default termination scheme is initially set-up by the
CONFKDAT file, and can be modified by calling KTERM or KCONFlG.
termlist [31 can either specify the use of the default terminators or tem-
porary overrldes.

termlist [3] is defined in the tp488dd.inc header file. tennlist [3] is
comprised of the following elements:

lo-29

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KFNTER tcont’d)

termlist (01: EOI detection. Possible values are:

-1 ($FFFF) Use the default EOI setting.
0 Don’t Detect EOI.
1 Detect EOI.

termlist [l] : 1st GPIB bus terminator. Possible values are:

-1 ($FFFF) Use the default terminator. Note that
if the default first terminator is used,
the default second terminator will
also be used.

0 to 255 Detect this ASCII character as the first
GPIB bus terminator instead of the
default first GPIB Input Terminator.
The 0 - 255 value represents the ASCII
value of the terminator character to
be used. (An ASCII Equivalence
Chart ls provided in Appendix A.)

termlist [2] : 2nd GPIB bus terminator. Possible values are:

-lf$FFFF) Use the default terminator. Note that
if the default first terminator ls used,
this will automatically be selected.

0 to 255 Detect this ASCII character as the SIX-
ond GPIB bus terminator instead of
the default second GPIB Input
Terminator. The 0 - 255 value repre-
sents the ASCII value of the termina-
tor character to be used. (An ASCII
Equivalence Chart is provided in
Appendix A.)

1 O-30

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

KENTER (cont’d)

The following default termlist can also be used:

VAR
dtrm : ARRAY[O..2] OF INTEGER;

. . .
BEGIN
dtrm[O] := -1; (* Use the default EOI choice *)
dtrm[l] := -1; (* Use the default first terminator *)
dtrm[2] := -1; (* Use the default second terminator *)

Returns err code is a variable through which error codes are returned. If this vart-
able5 set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. If the KM-488-DD is a Peripheral, an active controller must address the
Notes KM-488-DD as a listener and some other device as the talker, before

KENTER is called. In this case, you should use the no-addr structure
in lieu of mygads. This is described in section 10.1.

2. If the KM-488-DD is the Active Controller, it will automatically address
itself as a listener and another device defined in mygads as the talker.
Since only one device can be a talker, the address group raygads can
contain only one address. If a device has been previously addressed to
talk and the KM-488-DD previously addressed to listen, then mygads
can be no-add (See section 10.1) and the bus will not be re-addressed.

3. If count ls specified as 0, then KENTER will terminate when the ter-
minator(s) specified by terra-list [3] is encountered.

4. If it is desirable to terminate on count only and not use the default
terminators, then you must select no terminator overrides in the ter-
mlist, in addition to giving the count. In this case, a byte by byte
synchronous transfer is executed.

5. If both counts and termination are specified, the KENTER will termi-
nate on whichever condition is encountered first.

6. If the condition(s) for termination ls not encountered, KTERM will
timeout unless the timeout has been disabled.

10-31

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

Example CONST
CARDNDM = 0 ; (* Card Number Parameter For

Calla *)
DblAxFER -1; (* Transfer mode: non DblA = 0,

DMA without
continue = 1, DblA with

continue = 3 *)
Nmm = 1028; (* Nom&r Of Bytes To Transfer *)

VAR
ErrorElag : WORD ; (* Word For Returned Error Code

*)
add 05 : ARRAY[O..l] OF gads;

T* Ad&es8 Group For Device 3 05 *)
adata : ARPAY[O. .NubID-11 OF CBAR ;

(* Array Ear Data From Devioe *)
dtrm : ARRAY[O..2] OF INTEGER:

(* Array Of GPIB Terminators For "EBNTRR" And
"KOUTPUT" *)
BEGIN
(*
*** Address Structure For Meter At GPIB Address 05

*)
add_05[0].primad := 5 ;
(* Instrument Eas GPIB Address 5 *)
add-05[0].secad := -1 ;
(* -1 Indicate8 No Secondary Address *)
add-05[1].primad := -1 :
(* -1 Indicates No Other Instrument *)
t*

Structure To Signal:
Use Default Terminators
Detect EOI On ENTER/Assert $01 On Output

*)
dtrm[O] := 1 ;
t* 1 : Assert EOI (KOUTPUT)/Detect EOI (RENTER) *)

dtrm[l] := -1 ; (* -1 : Use Default 1st Terminator *)
dtrm[2] := -1 ; (* -1 : Use Default 2nd Terminator *)
WRITELN('ENTFR DATA FROM BRTER');
kenter(0, ErrorFlag, sdata[O], NDblD, DblAXFER, add-05[0],
dtrmIO1);
IF (ErrorFlag > 0) TBRN err-handler(ErrorFlag);
END.

1 O-32

KM-488-DD Programming Guide Using the Call Intelface in
TURBO PASCAL

Purpose

Syntax

Returns

Enables/Disables display of Error Messages.

VAR
board-nr : INTEGER:
err-code : WORD:
es* : INTRGER;

. . .
BEGIN

kertor(board-nr, err-code, ~-SW)
. . .

board nr is an integer which represents the board identification number.
This is G integer in the range 0 to 3 and represents the board to be pro-
grammed.

e SW is an integer which determines if error message display function will
beenabled or disabled. If e-sw=l, the error message display is enabled.
(This is the default.) If e-sw=O is specified, the error message display is dis-
abled.

err code is a variable through which error codes are returned. If this vari-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

If KERROR has been used to enable error messages, the message will
only reveal that m error has for the KM-488-DD calls. It does
not identify what type of error occurred. The KDIAGON routine for
should be used to help debug applications utilizing the KM-488-DD
calls.

2. Programs can also check err-code after each call to identify the exact
nature of call errors.

lo-33

Using the Call interface in
TURBO PASCAL

KM-488-DD Programming Guide

KERROR

CONST
CARDNUM 0 ;

(* Card lluuber bamnbstet For Calls! *)
--m =l:

(* Enable Error Display *)
VAN

ErrorFlag : WORD;
(* Word To Bold Error Code *)

BEGIN
t*

*** Enable Error Display ***
*I
kerror(CARDNUbf, ErrorFlag, ERR-ON);
IF (ErrorElag > 0) THEN err-handler(ErrorFlag);
END.

10-34

KM-488-DD Programming Guide Using the Call Interface In
TURBO PASCAL

KFILL

Purpose Defines the KM-488-DD driver’s response to a request for data when none is
available.

NOTE: KFILL is provided for users who mix File I/O Commands and Calls
ln the same program. It only affects inputs performed using the File I/O
Commands.

VAR
board-nr : INTEGER;
err-code : WORD;
fill-sr : INTEGER;

. . .
BEGIN

kfill(board-nr, err-code, fill-sw)
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

fill-sw is an integer which represents the fill condition. (The default con-
dition returns a NULL character.) Valid integers are any one of the follow-
ing:

-1 OFF. This type of response will not return any data characters
or a DOS error message, if no input data is available.

-2 ERROR. This type of a response will not return any data
characters, but will generate an Error Message. The error
message number can then be trapped by calling the KSTATUS
routine. (Refer to the KSTATUS routine for more information.)

O-255 ASCII. This type of response will return the designated
ASCII character. (An ASCII Equivalence Chart is provided in
Appendix A.) Specify the decimal equivalent of the character
to be used.

lo-35

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KFlLL (conf’d)

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Example CONST
CARDNUN -0; (* Card Number Parameter For

Calls *)
FILL-SW = 88: (* Use ‘X’ A8 Fill Character

*)
VAR

ErrorFlag : WORD:
*)
BEGIN
(*

(* Word To Bold Error Code

*** Set Fill Character To 'X' ***
9
kfill (CARDWUbl, ErrorFlag, FILL-SW) :
IF (ErrorFlag > 0) THEN err-handler(ErrorFlag);
END.

lo-36

KM-488-DD Programmlng Guide Using the Call Interface In
TURBO PASCAL

KHELLO

Purpose

Syntax

Parameters

Returns

Returns an identification string from the Kh4-488-DD driver.

VAR
board-nr : INTEGER;
err-code : WORD;
id-response :STRING:

. . .
BEGIN

khello(board-nr, err-code, id-response)
. . .

board nr is an integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

id response will contain a string similar to: copyright (c) 1991
Kezthley MetraByte Corp.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

The string into which the KHELLO message is returned must be
dimensioned prior to calling KHELLO. Otherwise, Turbo PASCAL
assumes that the string is of length 0 and calling KHELLO will result in
destroying other programmed data.

lo-37

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KHELLO (cont’d)

Example CONST
CARDNDN =o; (* Card Number Parameter For Calls

*I
VAR

in&t : STRING: (* Array To Bold Copyright
Wasage *)

ErrorFlag : WORD: (* Word To Bold Error Coda *)
i : INTEGER;

(* Prooedura To Determine String Length And Stuff It In
Location 0 *)
PROtXDDRX char-count (VAR ch-strg:STRING);
BEGIN

(**** Check For NULL or 255 Characters ****)
i : := 1
WRILE ((1<>255) AND (ch-strng[i] <> CER(0))) DO i := i

+1;
(* Assign Calculated Count To String Location 0 *)
oh-strng[O] := CsR(i - 1) ;

END:

BEGIN
t*

*** Return Driver Copyright Message ***
*I
khello(wNDM, ErrorFlag, indat[l]);
IF (ErrorFlag > 0) TEEN SALT(ErrorFLAG) :
ahar-count(indat); (* Update String Count In PASCAL's
Descriptor *)
END.

lo-38

KM-488-DD Programming Guide Using the Call Interface In
TURBO PASCAL

Purpose

Syntax

Returns

Forces the specified bus device(s) to return to being programmed locally
from their front panels. This routine can onlv be used if the KM - _ . 488 DD @

or Achve Controller.

VAR
board-nr : INTEGER:
err-code : WORD;
mygods : ARBAY[O..l] OF gadrr;

BEGIN
klocal(board-nr, err-code, mygadrr);
. . .

board-nr is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] represents the GPIB bus address of the device to be accessed.
rnygads is an array of n (n can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. If the KM-488-DD is the System Controller and if mygads does not
Notes specify an address, then the GPIB REN (Remote Enable) line is unas-

serted and all devices are returned to Local. In order to return them to
remote mode, it will be necessary to issue a KREMOTE call. Likewise,
if Local Lockout is required, it will be necessary to issue a KLOL call.

2. As an Active Controller, the KM-488-DD can issue the GPIB GTL (Go
To Local) message to those devices specified by mygads. In this case,
the GPIEI REN (Remote Enable) line remains asserted and devices will
return to remote when addressed to listen. If a KLOL (Local Lockout)
call has been issued previously, it should still be in effect when a device
is returned to Remote.

lc-39

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KLOCAL (cont’d)

Example CONST
CARDNubl 0 .

(* Card Number iaraimter For Calls *)
VAR

add_12 : ARRAY[O..l] OF gads;
(* Ad&errs Group (One Device At 12) *)

ErrorFlag : WORD;
(* Word For Code Returned By Calls *)

t*
*** Address Structure For Nater At GPIB Address 12 ***

*I
l dd_l2[0].primad:=12;

(* 1st Devioe Pri. Address 12 *)
add_12[0].secad:=-1:

(* 1st Device No Sec. Address *)
add_12[1].primad:=-1;

(* -1 = No 2nd Device In Group *)
BEGIN
P

*** Send The Addressed Device To Local Control ***
*)
klocal (CARDNDM, ErrorFlag,add-12[0]);
IF (ErrorFlag > 0) TIiEN err_handler(ErrorFlag);
END.

1 O-40

KM-488-DD Programmlng Guide Using the Call Interface In
TURBO PASCAL

KLOL

Purpose

w

Syntax

Parameters

Returns

be us& if the KM 488 DD is an Active or Sm _ _
Controller. It will disable the GPIB bus devices from being returned to Local
Control by means of the Local/Remote button on the device.

NOT/Z This routine issues an IEEE-488 bus signal, LOL. This signal is not
supported by all IEEE-488 bus devices.

VAR
board-m : INTEGER:
err-coda : WORD;

. . .
BEGIN

klol (board-nr, err-code)
. . .

board-nr is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ablex set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

The “LOCAL” button ls disabled so that a device cannot be returned to
local state for manual programming or control. The Active Controller
can return specific devices to “local with lockout state”, whereby an
operator can then use the front panel controls. When the device ls
addressed to listen again, it returns to “remote with lockout state”.
Thus, the effect of the LOL call will remain until the REN line is unas-
serted (LOCAL) by the System Controller.

2. It ls good practice to issue a KLOL so that devices are under strict pro-
gram control. KLOL can be issued before a device is put in remote and
will take effect when the device’s LOCAL button is set to remote.

lo-41

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programming Guide

KLOL (cont’d)

CONST
CAXDNUN =o: (* Card Number Parameter For Calls

*)
VAX

ErrorFlag : WOXD ; (* For Returned Error Code 0 = OX
*I
BEGIN
klol (CARDNUM, ErrorFlag) ;
(* Look Out Local Control Of Devices *)
IF (ErrorFlag > 0) THEN err-handler(ErrorFlag);
END.

lo-42

KM-488-DD Programming Guide Uslng the Call Intelface In
TURBO PASCAL

KOUTPUT

Purpose

Synlax

Transmits data from the KM-488-DD to the GPIB bus.

VAR
board-nr : INTEGER;
mode : INTEGER;
err-oo& : WORD:
darray : ARRAY[O..N-11 OF CRAR;
count : INTRGERQ;
mycrab : ARRAY[O ..l] OF gads:
term-u8t : ARRAY[O..2] OF INTEGER:

. . .
BEGIN
koutput(board-nr, err-code, darray, count, mode, mygads,
term_list)
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

darray is an array of data to output.

count is a long integer representing the number of characters to be output.
Valid counts are within the range 1 to 4294967295 @r-l) decimal, or from 1 to
$FFFFF’FFF hex.

mode is an integer which represents whether or not DMA is to be used and if
the CONTINUE mode is to be used. This integer is interpreted as follows:

Where:

EM 15-2 1 0

0 CONT DMA

CONT CONTINUE. This an optional mode which is used in conjunc-
tion with DMA. When this bit is set to one, the CONTINUE
mode will be used. If CONTINUE is specifled, the KM-488-DD
will return control to the application program as soon as it can
without waiting for completion of the transfer. The KM-488-DD
will at

1 o-43

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KOUTPUT tcont’d)

least wait for the first byte to check for time-out (Unless TIME
OUT = 0) before continuing. DMA CONTINUE execution con-
cludes when the KM-488-DD completes its transfer.

If CONTINUE is used and the DMA AUTOINITIALIZE has
been enabled, then the DMA transfer will continue until a
KSTOP routine is invoked.

DMA DMA. If this bit is set to one, then DMA will be used in the data
transfer.

mygads [n] represents the GPIB bus address of the device to be accessed.
mygads is an array of n (n can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

tern-list [31 is an integer array which defines the GPIB bus terminators
to be used during the KOUTPUT call. These terminators are used in conjunc-
tion with count to terminate the output process. Termination choices
include whether or not EOI will be detected with the last byte and whether
or not a certain byte or sequence of two bytes will be tested for as an end of
message code. The default termination scheme is initially set-up by the
CONFIG.DAT file, and can be modified by calling KTERM or KCONFIG.
termlist [31 can either specify the use of the default terminators or tem-
porary overrides.

termlist [3] is defined in the tp488dd.inc header file. termlist [3] is
comprised of the following elements:

termlist [O] : EOI detection. Possible values are:

-1 ($FFFF) Use the default EOI setting.
0 Don’t Assert EOI.
1 Assert EOI.

tenalist[l]: 1st GPIB bus terminator. Possible values are:

-1 ($FFFF) Use the default terminator. Note that
if the default first terminator is used,
the default second terminator will
also be used.

1 o-44

KM-4tWDD Progromming Guide Using the Call Interface in
TURBO PASCAL

KOUTPUT (cont’d)

0 to 255 Send this ASCII character as the first
GPIB bus terminator instead of the
default first GPIB Input Terminator.
The 0 - 255 value represents the ASCII
value of the terminator character to
be used. (An ASCII Equivalence
Chart is provided in Appendix A.)

termlist [2] : 2nd GPIB bus terminator. Possible values are:

-1 ($FFFF) Use the default terminator. Note that
if the default first terminator is used,
this will automatically be selected.

0 to 255 Send this ASCII character as the sec-
ond GPIB bus terminator instead of
the default second GPIB Input
Terminator. The 0 - 255 value repre-
sents the ASCII value of the termina-
tor character to be used. (An ASCII
Equivalence Chart ls provided in
Appendix A.)

The following default termlist can also be used:

VAR
dtrm : ARRAY[O..2] OF INTEGER;

. . .
BEGIN
dtrm[O] := -1; (* Use the default EOI choice *)
dtrm[l] := -1; (* Use the default first terminator *)
dtrrn[2] := -1; (* Use the default second terminator *)

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

If the KM-488-DD is a peripheral, then an Active Controller must
address the KM-488-DD as a talker and some other device(s) as the lls-
tener(s). In this case, use no-add for my-gads. (See section 10.1.).

1 o-45

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KOUTPUT (cont’d)

2. If the KM-488-DD is both the System and Active Controller, and
my-gads contains the device(s) to be addressed, the KOUTPUT will
automatically assert the GPIB REN (Remote Enable) line.

3. If the KM-488-DD is the Active Controller and KOUTPUT is called, it
will automatically address itself as the talker and another device(s) con-
tained in my-gads as the listener(s). If the devices have been pre-
viously addressed, then my-gads can be no-add and the bus will not
be re-addressed.

4.

5.

A non-zero count must always be specified.

If you do not wish to append terminator characters, then be sure to set
the terminator via CONFIG.DAT or by calling KTERM or KCONFIG
d select no terminator overrides in the termlist array.

6. If a listener does not accept a character, a timeout will occur unless the
timeout has been disabled.

1 O-46

KM-488-DD Programming Guide Using the Call Interface In
TURBO PASCAL

KOUTPUT (cont’d)

CONST
DMAXFER = 1;
(* Transfer mode: non DblA = 0, DblA without

continue = 1, DW with continue = 3 l)
KFNR = 0;
(* Normal Non-DbfA Style Transfer *)

Num = 1028:
(* Number Of Points To OUTPUT *)

VAR
ErrorFlag : WORD :

(* Word To Bold Error Code Returned By
Each Call (0 = false = no errors) *)

no-add : AFtRAY[O..l] OF gads;
(* Addr Group Signaling No Addressing *)
dtrm : ARRAY[0..2] OF INTEGER;
(* Array Of GPIB Terminators For "KENTER" And "KOUTPUT"

*)
sdata : ARRAY[O..NOblD-l] OF CBAR;

(* Array Of Data To ODTPDT *)
BEGIN

(* Structure For No Default Terminator/E01 Overrides *)
dtnn[O] := 1 ; (* 1: Assert EOI (koutput)/ Detect EOI
(kenter) *)
dtrm[l] := -1 ; (* -1: Use Default 1st Terminator

*)
dtrm[2] := -1 ; (* -1 : Use Default 2nd Terminator
*)

10-47

Using the Call Interface in
TURBO PASCAL

KMd88-DD Programming Guide

(* Addrem Struoture For Not Readdressing The GPIB Bus *)
no-add[O].primad := -1 : (* -1 Indicates No New Address
*I
no-add[O].eecad := -1 ; (* -1 Indicates No Secondary
Ad&em*)
no-add[l].primad := -1 : (* -1 Indicates No Other
In8tnumnta *)
c* .

data Array Initialized Xere

. *)
koutput(CARDNDbl, ErrorFlag, sdata[O], NUMD, DbfAXFER,
no-add[Ol, dtrm[O]);
IF (ErrorFlag > 0) TiiEN err-handler(ErrorFlag);
END.

1 O-48

KM-488-DD Programming Guide Using the Call Interface In
TURBO PASCAL

KPASCTL

Purpose

Syntax

Designates another controller to be the Active Controller. The KM-488-DR
mutbeanW

VAB
board-nr: INTEGER;
err-sods : WORD;
mygab : ABNAY[O..14] OF gads;

. . .
BEGIN

kparrctl(board-nr, err-code, mygads);
. . .

Parameters board-nr is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus address of the device to become the new
Active Controller. mygads is a pointer to an array of n fn can range from 1
to 15) structures of type gads. You must tailor mygads to your application.
mygade structure is defined in the include file tp488dd.inc and is described
in section 10.1.

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming If the KM-488-DD which is relinquishing its position as the Active Controller
Notes is also a System Controller, it retains its status as System Controller.

lo-49

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Gulde

KPASCTL (cont’d)

CONST
CABDNDM =o;

Calls *)
VAB

(* Card Number Parameter For

EtrorPlag : WORD;
Calls *)

(* Word For Code Returned By

add-02 . ARRAY[O..14] OF gads;
(* Addresa'Group (One Device At 02) *)

BEGIN
(* Address Structute For Peripheral At GPIB Address 02*)
add_02[0].primad:= 2;
t* 2 : 1st Instrument Has GPIB Address 02*)
add-OZ[O].secad:= -1;
(* -1 : 1st Instrument Bas No Secondary Address *)
add-02[1].primad:=-1;
(* -1 : No 2nd Instrument In Address Group *)

(**** PASS CONTROL TO SECOND KM-488-DD ****)
WRITELW('Pasa Control To Seaond KM-488-DD');
kpasctl(CARDNDM, Errorslag, add-02[0]):
IF (ErrorFlag > 0) TJiNN err-handler(ErrorFlag);
END.

1 O-50

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

KPPOLL

Purpose

*

Syntax

Parameters

Returns

Initiates a Parallel Poll. The be the Active Controller.

NOTE Many GPIB devices do not support parallel polling. Check your
device’s documentation.

VAR
board-nr : INTEGER:
err-code : WORD;
pp*n : INTEGNR;

. . .
BEGIN
kppoll(board-nr, err-code, pprtn);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
able5 set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

pprtn is an integer variable which will contain an integer in the range 0 to
255 decimal. This integer indicates which Data Lines which have been
asserted (DIOl-DIOS).

Programming None.
Notes

lo-51

Using the Call Interface in
TURBO PASCAL

KMd88-DD Programming Guide

KPPOLL

Example CONST
CARDNDM = 0 :(* Card Number Parameter For Calls l)

VAR
ErrorFlag : WORD:

(* Integer to Bold Error Code Returned By
Each CALL (0 = false = no error) *)

m-=-p : INTEGER; (* Integer For Parallel Response
*)
P

*** Conduct Parallel Poll And Print Result ***
*)
kppoll(CARDNUM, ErrorFlag, pp-resp);
IF (ErrorFlag > 0) THEN err-handler(ErrorFlag);
WRITELN('pp-resp= ',pp-resp);
END.

1 C-52

KM-488-DD Programming Guide Using the Call Interface In
TURBO PASCAL

Purpose Configures the Parallel Poll response of a GPIB bus device. The KM-488DD
Active Controller.

NOTE: Many GPIB devices do not support parallel polling. Check your
device’s documentation.

Syntax VAR
board-nr : INTEGER:
err-cods : WORD;
ppc-cfg : INTEGER;
mygads : ARRAY[O ..141 OF gads;

. . .
BEGIN

kppoll(board-nr, err-code, mygads, ppc-cfg);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] represents the GPlB bus address of the device to be accessed.
mygads is an array of n fn can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

ppy-cfg is an integer which represents the Parallel Poll Response of the
device to be programmed. This integer is of the format:

Bit 7 6 5 4 3 2 1 0

0 1 1 0 s P2 Pi PO

lo-53

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programming Guide

KPPC (conf’d)

Where:

S is the parallel poll response value (0 or 1) that the device uses to
respond to the parallel poll when service is required. This bit is
generally set to 1.

NOTE: This value must correspond to the setting of the GPIB
bus device’s ist (individual status) bit. Refer to the Device’s
documentation for more information.

P2 PI Pa is a 3-bit value which tells the device being configured which
data bit (DIOl through DIO8) it should use as its parallel poll
response.

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

10-54

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

KPPC (cont’cf)

CONST
cARDNmd ‘0;

(* Card Number Parameter For Calls *)
VAR

PP-a*& : INTEGER:
(* Integer For Parallel Poll Enabling*)

add-l : ARRAY[O..l) OF gads:
(* Address Group (will have one device @ 1) *)

BEGIN
t*

Device Supporting PPOLL Is At Ad&ass 01
*)
add-l[O].primad := 1 :
(* 1st Instrument Bas GPIB Address 01 *)
add-l[O].seoad := -1 ;
(* -1 : 1st Instrument Bas No Secondary Addr *)
add-l[l].primad := -1 ;
(* -1 : No 2nd Instrument In Address Group *)
(*

Configure Device To Assert D103 When SRQ Is Asserted
*I
pp_enab := 106;
kppc (-RDm, ErrorFlag, add-l[O], pp-enab) ;
IF (ErrorFlag > 0) THEN err-handler(ErrorFlag);
END.

1 o-55

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KPPD

Purpose

Syntax

Parameters

Returns

Disables the Parallel Poll response capability of the specified GPIB bus
device(s). TheI(M-488-DD r

VAR
board-nr : INTEGER;
err cods : WORD;
myG& : ARRAY[O..14] OF gads;

. . .
BEGIN

kppd (board-nr, err-code, mygads) ;
. . .

board nr is an integer which represents the board identification number.
This is G integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] represents the GPIB bus address of the device to be accessed.
mygads is an array of n (n can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

PrOgramming None.
Notes

lo-56

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

KPPD (cont’d)

Example CONST
CARDNDN =o; (* Card Number Parameter For

calls *)
VAR

Errorslag : WORD: (* Eolds Returned Error Code*)
dd-1 : ARRAY[O..l] OF gads;

(* Address Group (will have one device @ 1) *)

t*
Address Structure For Device At GPIB Address 01

*I
add-l[O].primad := 1 :

(* 1st Instrument 88s GPIB Address 01 *)
add-l[O].secad := -1 ;

(* -1 : 1st Instrument Ras No Secondary Ad& *)
add-l[l].primad := -1 ;

(* -1 : No 2nd Instrument In Address Group *I
t*

*** Disable Parallel Poll Of Addressed Devices ***
*)
kppd (CARDNoM, ErrorFlag, add_l[O]):
IF (ErrorFlag > 0) TSEN err-handler(ErrorFlag);
END.

lo-57

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programmlng Guide

KPPU

Purpose

Syntax

Parameters

Returns

Disables the Parallel Poll Response of all GPIB bus device(s). M-

VAR

board-nr : INTEGER:
err-code : WORD;

. . .
BEGIN

kppu(board-nr, err-code);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

Example CONST
CARDNUN =o; (* Card Nu&er Parameter For

Calls *)
VAR

ErrorFlag : WORD:
(* Integer to Bold Error Code Returned By Each

c!A.LL (0 = false = no error) *)
BEGIN
t*

*** Disable Parallel Poll Response Of All Bus Devices

*)
kpw t-m, ErrorFlag);
IF (ErrorFlag > 0) TBEN err-handler(ErrorFlag);
END.

1 O-58

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

KWIKSTA T

Purpose

Syntax

Parameters

Returns

Returns the KM-488-DD’s status byte.

VAR
board-nr : INTEGER;
err-code : WORD;
qstat : INTEGER:

. . .
BEGIN

kquikstat(board-nr, err-coda, q&at);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

q&at is a pointer to the returned status integer. The status integer is of the
following format:

sit 15-9 8 7 6 5 4 3 2 1 0

0 ADSC CIC PEND DET SRQ DEC LA TA DMA

Where:

ADSC Address Status Change. If this bit is set to 1, a change in address
status has occurred (i.e., a Talker becomes a Listener, or a
Peripheral becomes an Active Controller).

CIC Controller in Charge. If this bit is set to 1, the KM-48%DD is an
Active Controller.

PEND SRQ Pending. If this bit is set to 1, the KM-488-DD has an SRQ
request pending.

DET Device Triggered. If this bit is set to 1, a GPIB Trigger com-
mand has been received.

SRQ Internal SRQ. If the KM-488-DD is an Active Controller and
this bit ls set to one, a device is requesting service. If the KM-
488-DD is a Peripheral and this bit is set to one, then its SRQ
(issued by KREQUEST) has not been serviced.

lo-59

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programming Guide

DEC Device Cleared. If this bit is set to one, the KM-488-DD has
received a GPIB Clear command.

LA Listen Addressed. If this bit is set to one, the KM-48&DD is
addressed as a Listener and can accept data from the GPIB.

TA Talk Addressed. If this bit is set to one, the KM-488-DD is
addressed as a Talker and can output data to the GPIB.

DMA DMA. A DMA transfer is currently in progress.

err code is a variable through which error codes are returned. If this
vari&le is set to 0, then no error occurred. If it ls set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

KM-488-DD Programming Guide Using the Call Interface In
TURBO PASCAL

KQUIKSTAT(cont%l)

Example CONST

msc = WOO ;

VAR
board-m : INTEGER:
err-code : WORD:
qstat : INTEGER:

. . .
BRGIN

QSTAT := 0 : (* Initialim QSTAT To 0 *)
kquikstat(board-nr, err-code, q&at);

IF (QSTAT AND ADSC) THEN
WRITRLN('ADDRESS STATUS CSANGED') ;

. . .

10-61

Uslng the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KREMOTE

Purpcse

Syntax

Parameters

Returns

Forces the GPIB bus device(s) to the remote mode (ignore the bus).

NOTE: The KM-488-DD must be a System Controller to execute this
command.

VAR
board-nr : INTEGER:
err cods : WORD;
mygiids : ARRAY[O..14] OE gads;

. . .
BEGIN

kremote(board-nr, err-oode, mygads);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] represents the GPIB bus address of the device to be accessed.
rnygada is an array of n (n can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

1 O-62

Using the Call Interface in
TURBO PASCAL

KREMOTE (cont’l

Programming 1.
Notes

If mygads does not specify an address (i.e., no-addr is used), then
the GPIB REN (Remote Enable) line is asserted. Devices will not be in
the remote mode until addressed to listen. If mygads contains address
then those devices will also be addressed to listen, so they will be put in
remote.

2. It is good programming practice to issue a Local Lockout to prevent the
device(s) from being returned to Local mode.

Example CONST
CARDNUN =o:

(* Card Number Parameter For Calls *)
VAR

ErrorFlag : WORD:
(* Integer to Hold Error Code Returned By Each CALL (0 =
false = no error) *)

add-OS : mY[O..l] OF gads;
(* Address Group (will have one device @ 05) *)

BEGIN
t*

*** Address Structure For Device At GPIB Address 5 ***
*I
aad_05[O].primad := 5 ;
(* 1st Instrument Bas GPIB Ad&es8 05 *)
add-05[0].eecad := -1 ;
(* -1 : let Instrument Ha8 No Secondary Ad& *)
add-OS[l].primad := -1 ;
(* -1 : No 2nd Instrument In Address Group *)
t*

Assert RBN And Listen Specified Devices
*)
kremote (CARDWDM, ErrorFlag, add-05);
IF (ErrorFlag > 0) TBEN err-handler(ErrorFlag);
END.

1 O-63

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KREQIJEST

PlJrpO*

Syntax

Sets the Serial Poll Response of a KM-488-DD which is a Peripheral.

VAR
board-xx : INTEGER:
err code : WORD;
SP 7 INTEGER;

. . .
BEGIN

krequest(board-nr, err-code, sp);
. . .

Parameters board nr is an integer which represents the board identification number.
This is G integer in the range 0 to 3 and represents the board to be pro-
grammed.

sp is an integer in the range 0 to 255 which represents the serial poll
response of the device. This integer ls of the following format:

Bll 7 6 6 4 3 2 10

Ill06 rsv Dl06 DlO5 Dl04 Dl03 DIOZ DlOl

Where:

D101-6 Bits 1 through 8 of this device’s Serial Poll Response Byte
(correspond to data lines DIOI-DIO8).

ISV If this bit ls 1, the KM-488-DD will generate a Service Request
(assert SRQ).

Returns err code is a variable through which error codes are returned. If this
variable is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming 1. The Active Controller can read the value of sp by serial polling the
Notes KM-488-DD. This will clear bit 6, if it was set.

2. Use KQUIKSTAT or KSPOLL to check if the Peripheral has been serial
polled (checks the status of the SRQ bit).

1 O-64

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

Example CONST
cAFaNwN 0 .

(* Cord Number Pkn&er Bar Cal18 *)
ASSERTSRQ = 64;

(* Set Reserved SRQ Bit In Status Byte *)
ErrotElag : WORD:

(* Word For Code Returned By Calls *)
BEGIN
t*

*** Generate SRQ ***
*)
krequest. (CARDNUM, ErrorFlag, ASSERTSRQ);
IF (ErrorFlag > 0) TSEN err-handler(ErtozFlag);
END.

lo-65

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programmlng Guide

KRESET

Purpose

Syntax

Parameters

Returns

Programming
Notes

Performs a “warm” reset of the KM-488-DD and the GPIB bus.

VAR
board-nr : INTEGER;
err-code : WORD;

. . .
BEGIN

kreset (board-m, err-code);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ablez set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

1. The KM-488-DD is reset to the following conditions:

. STOP l ERRORON
l DISARM l FILLNULL
. CONFIG l LOCAL
l ABORT l REQUEST 0 (If Peripheral)
l BUFFER INCREMENT l Clear CHANGE, TRIGGER, and
l DMA SINGLE CLEAR

STATUS
. TIMEOUT10

It also clears all error conditions.

2. If the KM-488-DD is the System Controller, it will assert the GPIB IFC
(Interface Clear) line for at least 500 it.~~

1 O-66

KM-488-DD Programming Guide Using the Call Interface In
TURBO PASCAL

KRESET

CONST
CARDNm -0; (* Card Number Parameter For Calls *)

VAR
ErrorFlag : WORD;

(* Word For Code Returned By Calls *)
BEGIN
t*

*** Reset Driver ***

*)
kreset (CAFUMJM, ErrorFlag) ;
IF (ErrorFlag > 0) THEN

EALT(ErrorFlag) ;
END.

lo-67

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KRESUME

Purpose

Syntax

Parameters

Returns

Initiates data transfers between two non-Active Controller GPIB devices, by
unassertlng the ATN line. The KM 488 _ _ DD wt be an Act ive Controller in . . to use this

VAR
board-n= : INTEGER:
err-cods : WORD:

. . .
BEGIN
krerrume(board-nr, err-code);
. . .

board-nr is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
able5 set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming This routine is normally called after a KSEND has addressed a talker and a
Notes listener. (See KSEND description.)

Example CONST
CARDNDN
(* Card Ndez iarameter For Calls *)

VAR
ErrorFlag : WORD:

(* Word For Code Returned By Calls *)
BEGIN
t*

Drop ATN Line To Allow Inter-Peripheral Communication
*)
kraeuma(CARDNUb& ErrorFlag);
IF (Errorslag > 0) THEN err-handler(ErrorFlag);
END.

1 O-68

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

Purpcss

Syntax

Sends GPIB commands and data from a string.

VAR
board-m : INTEGER;
etr_oode : worn:
atringlen : INTEGER:
rend&r : STRING;

. . .
BEGIN

kaend(board-nr, err-code, send&r, stringlen);
. . .

Parameters board nr is an integer which represents the board identification number.
This is & integer in the range 0 to 3 and represents the board to be pro-
grammed.

send&r is a string which includes any of the following subcommands:
CMD, UNT, MTA, MLA, TALK, LISTEN, DATA, and EOI. Multiple sub-
commands may be specified; however, the length of the & SEND com-
mand string cannot exceed 255 characters. The subcommands are as follows:

CMD - Sends information with the ATN line asserted. This indicates to
the bus devices that the characters are to be interpreted as GPIB bus
commands. The command may be sent as either a quoted string (e.g.,
’ COMMAND’) or as a numeric equivalent of an individual ASCII char-
acter (e.g., 13 decimal or #OD hex for a Carriage Return). Hex values
must be preceded by #. Multiple quoted strings or ASCII values bytes
may be sent if they are separated by commas (e.g., CMD
61,19,17,i’i’, 65,78,68).

An EOI cannot be sent with this subcommand, because an EOI with
ATN asserted would initiate a Parallel Poll.

UNT - Untalks all devices by sending a GPIB UNTALK command with
ATN asserted.

lC-69

Uslng the Call Interface In
TURBO PASCAL

KM-488-DD Programmlng Guide

KSEND (cont’d)

UNL - Unlistens all devices by sending the GLIB UNLISTEN command
with ATN asserted.

MTA- Designates the KM-488-DD to address itself to talk by sending
the GPIB MTA (My Talk Address) command with the ATN line
asserted.

MLA - Designates the KM-488DD to address itself to listen by sending
the GPIB MLA (My Listen Address) command with the ATN line
asserted.

TALK addr - Addresses another GPIE3 device or KM-488-DD to talk
by sending a GPIB TAG (Talk Address Group) command with the ATN
line asserted. addr is an integer representing the GPIB BUS device
address of the device to talk. This integer ranges from 00 to 30 decimal.

LISTEN addr - Addresses another GPIB device(s) or KM-488DDC’s)
to listen by sending a GPIB LAG (Listen Address Group) command
with ATN asserted. addr ls an integer representing the GPIB BUS
device address of the device(s) to talk. This integer ranges from 00 to
30 decimal. Multiple listeners can be specified. If addr is not specified,
all other devices on the GPIB BUS will be designated listeners.

1 O-70

KM-488-DD Programmlng Guide Using the Call Interface in
TURBO PASCAL

KSEND (cont’d)

DATA - Sends information with the ATN line unasserted. This indi-
cates to the bus devices that the characters are to be interpreted as data.
Thii is the technique which is to be used to send device-dependent
commands. (See the IEEE-488 Tutorial in Appendix C for more infor-
mation.) The data may be sent as either a quoted string (i.e., ’ DATA’)
or as a numeric equivalent of an individual ASCII character (i.e., 13
decimal or #OD hex for a Carriage Return). Hex values must be prec-
eded by #. Multiple quoted strings or ASCII values bytes may be sent
if they are separated by commas (e.g., DATA 68, 65,84, 65).

This sub-command is useful when you are sending commands which
are unique to your interface.

EOI -Sends information with the ATN line unasserted. EOI will be
asserted when the last character is transmitted. This information is
interpreted as GPIB bus data and may be sent as either a quoted string
(e.g., ’ xyz’) or as a numeric equivalent of an individual ASCII charac-
ter (e.g., 13 decimal or #OD hex for a Carriage Return). Hex values
must be preceded by #. Multiple quoted strings or ASCII values bytes
may be sent if they are separated by commas (e.g., SEND EOI
120,121,122).

stringlen is an integer between 0 and 255 which represents the length of
the SEND string.

Returns err code is a variable through which error codes are returned. If this vari-
able5 set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

Typically, KSEND is used to have to device transfer data without it
passing through the KM-488-DD. For example, a KM-488-DD might
talk a scope and send a trace to a listened plotter.

2. The maximum length of the KSEND command, including any subcom-
mands, is 255 characters. To KSEND large amounts of data, use multi-
ple KSEND commands.

1@71

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programmlng Guide

KSEND (cont’d)

3. KSEND should only be used when a non-conforming device requires a
special command sequence or a non-standard GPIB command. Do not
use the KSEND command unless you are extremely familiar with GPIB.

4. The KM-488-DD must be the Active Controller to KSEND commands.
Any KM-488-DD can KSEND data.

5. If a DATA subcommand is not included in the KSEND string, be sure
to call KRESUME immediately after the KSEND. This is necessary
because the ATN line must be dropped so that the transfer will pro-
ceed.

6. Do not include the word SEND within the KSEND string as you might
do in the File I/O SEND command.

CONST
CARDNubl =o:

(* Card Number Parameter For Calls *)
VAR

snstr : STRING(70);
(* For Comaand tlsed In KSEND *)

EttorRlag : WORD;
(* Word For Coda Returned By Calls l)

BEGIN
(*

RAVE 196 DMM SEND READING TO A PF.RIPREPAL Ead-488-DD
DMM Is At Address 12
Peripheral KM-488-DD 18 At Address 02

*I
snstr := 'DNT WL LISTEN 02 TALK 12';
ksend(CARDNDM, ErrorFlag, snstr[l], 25);
IF (ErrorFlag > 0) TIlEN err-handler(ErrorFlag);

lo-72

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

purpose

Syntax

Parameters

Returns

If the KM-488-DD is an Active Controller, KSPOLL will check for an SRQ or
conduct a serial poll. If the KM-488-DD is a Peripheral, KSPOLL will check if
the KM-488-DD’s SRQ has been serviced.

VAR
board-nr : INTEGER;
011 coda : WORD;
epr-: INTRGER;
mygads : FStRAY[O..14] OF gads;

. . .
BEGIN

kspoll(board-nr, err-code, spx, mygads);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] represents the GPIB bus address of the device to be accessed.
mygads is an array of n (n can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

err code is a variable through which error codes are returned. If this vari-
ablez set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

spr is an unsigned integer or an array of unsigned integers with an entry for
each address in mygads. The value of the integer is 0 to 255 and corre-
sponds to a byte with the following bitmap:

Bll 7 6 5 4 3 2 10

III06 SRQ Dl06 Dl05 Dl04 Dl03 DIOZ DlOl

10-73

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

KSPOLL(cont’d)

Where:

DlDl-8 Bits 1 through 8 of this device’s Serial Poll Response Byte (corre-
spond to data lines DIOI-DIOS).

SRO If this bit is 1, the SRQ (Service Request) line will be asserted to
request servicing. Otherwise, SRQ will not be asserted.

Bit 6 has the special significance of indicating an SRQ pending. The signifi-
cance of the other bits will be application dependent.

Programming 1. The most common use of KSPOLL is for the KM-488-DD, as an active
Notes controller, to issue KSI’OLL with mygads containing the address of a

single device. This addresses and serial polls the device and, upon
return, spr contains the serial poll response of the polled device. If the
SRQ bit in spr is set, the device had Issued an SRQ. The other bits in
sprare device-dependent. Serial polling a device which is currently
asserting SRQ will cause the device to unassert SRQ.

The string returned by KSTATUS or the integer word by KQUIKSTAT
can be checked to determine the presence of an SRQ before a serial poll
is conducted. If only one device is asserting SRQ, the effect of issuing
KSPOLL will be to clear the internal SRQ pending “bit”, even if the
polled device is not Issuing the SRQ. It is also the case when multiple
devices are asserting SRQ and a device not currently asserting SRQ is
polled. In this case, a subsequent use of KSTATUS or KQUIKSTAT will
not reveal a pending SRQ.

To aid in identifying which bus device(s) is currently requesting ser-
vice, a KM-488-DD which is the Active Controller can serial poll as
many as 14 devices by issuing a KSPOLL call with mygads containing
the address of more than one device. In this case, spr should be an
array of unsigned integers with an element for each address. In this
case, KSPOLL will serial poll each addressed device and return the
serial poll bytes in the spr array. This is a faster way for discerning
the source of an SRQ among several devices.

1 o-74

KM-488-DD Programming Guide Uslng the Call Interface in
TURBO PASCAL

KSPOLL (cont’d)

2. If the KM-488-DD is a peripheral and KSPOLL ls called with mygads
equal to the no address structure (no-addr), spr will be the serial
poll response (sp) set by KREQUEST - with the possible exception of
the SRQ bit. (This may have disappeared as a result of an Active Con-
troller having serial polled the KM-488-DD since the last KREQUEST
call.) In the instance of an Active Controller serial polling a peripheral
KM-488-DD, the peripheral KM-488-DD unasserts the SRQ line. For an
example, see KREQUEST. The state of the SRQ bit can also be deter-
mined from the string returned by KSTATUS or the integer status word
set by a KQUIKSTAT call.

3. If the KM-488-DD is the Active Controller and issues KSPOLL with
mygads equal to no-addr, spr will be 64 if a device is asserting SRQ
and 0 if not. This same result could have been determined from
KQUIKSTAT or KSTATUS.

Note that if this call is issued when a SRQ ls pending, it internally
“clears” the SRQ “pending” bit, even though the requesting device has
not been polled and is still issuing an SRQ. That is, a subsequent
gQOLL, KQUlKSTAT, or KSTATUS call will not reveal a pending

10-75

Using the Call Interface In
TURBO PASCAL

KMdBbDD Programming Guide

Example CONST
CARnNuN no:

(* Card Number Parameter For Calls *)
VAR

add_12 : ARRAY[O ..l] OF gads;
(* Address Group (One Device At 12) *)
ErrorFlag : WO-m;

(* Word For Code Returned By Calls *)
BBGIN
P

*** Address Structure For Meter At GPIB Address 12 ***
*)
add_l2(0].primad:=12;

(* 1st Instrument Has GPIB Address 12 *)
add_l2[0].secad:=-1;

(* -1 Indicates 1st Instrument Bas No Secondary Add
*)
add~l2(1].primad:=-1;

(* -1 Indicates No 2nd Instrument In Group *)
t*

Acknowledge/Remove SRQ Of The Device @ Address 12
*)
kspoll(CARDNUM, ErrorFlag, add-12[0], sbyt) ;
IF (ErrorFlag > 0) TIiEN err-handler(ErrorFlag) ;
mm.

lo-76

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

Purpose Returns a character string describing the current operating state of the KM-
488-DD.

Syntax VAR
board-nr : INTEGER;
etr~code : WORD;
stat. : STRING;

. . .
BEGIN

kstatus (board-nr, err-code, stat) ;
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

stat is a character string which describes the current operating state of the
KM-488-DD. The string is of the format shown in Table 10-Z. stat should
be 75 bytes in order to contain the longest message that might be returned. If
it is too short, data will be written over other portions of the program causing
problems.

10-77

Uslng the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

Table 10-2. Status String

Starthlg 1 of cob. Name and Description
co1

1 DMode Tells if the KhGlBg-DD Is acting as an Active
Controller or Peripheral. Can be C or P where:

C = The KM-d&-DD is an Active Cmlroller
P = The KM-lg&DD Is a Peripheral

2 Bus - Gives the IEEE488 Bus Address of the KM-UX-DD.
This is B two-dIgIt decimal Integer ranging from 00 to 30.

2 Addressed Indicates if the device has changed
addressed state, i.e., If It has cycled between the Talker, Listener, or
Active Conlmller states. ‘,I+ is reset whenever a STATUS is read.
This can be one of the following:

GO = There has not been a change In the addressed statw.

Gl = There has been a change In the addressed stat”%

1 mAddressed Indicates if the KM-4WDD is currently
acting as a Talker or Listener, or is Idle. Can be T, L, or I, where:

T = The KM-4&!3-DD is a Talker
L = The KM4gEDD is a Listener
I = The KM-4%DD is Idle

1 2 &y&&g~& - Represents the current internal SRQ status where:

SO = SRQ not asserted
Sl = SRQ asserted

If the KM-U%DD is in the Active ContmNer mode, the internal SRQ
state indicates if a device is asserting SRQ.

If the KM-&W-W Is acttng as a Peripheral, the internal SRQ state is set
by using the KREQUPST call. It is deared by a serial poll from the
Active Controller and IndIcatea it is asserting SRQ.

lo-78

KMd88-DD Programming Guide Using the Call Interface In
TURBO PASCAL

KSTATUS(cont’d)

Table 10-2. Status String

Stdllg
Cd

14

I8

21

24

27

5

1

2

2

up to 45

w - Indicates if a IEEE-488 trigger command has been
received or not. This Is not updated during DMA CONTINUE trarw-
few. Triggered State values are:

TO = No trigger command has been received.
‘I’1 = A trigger command has been received.

w - Indicates if the IEEE Clear mmmand has been received or
not. This is not updated during DMA CONTINUE transfers. CLeared
“dues are:

CO = No ‘Iear command has been rexzeived.
cl = A aear command has been received.

PO = No transfer
PI = DMA CONTINUE Transfer occurring
Pz = DMA AUTOINITIALIZE Transfer occurring

w - Contains the Error Message Text assodated with
the given error code (EXX). These emor mwa,ges are listed in
Appendix G.

Programming 1. If the KM-488-DD is the Active Controller, the Service Request Status
Notes may be cleared (i.e, SO) as a result of a KSPOLL, even when the SRQ

line is still asserted. See the discussion in KSPOLL.

2. If the KSTATLJS string is read into a variable of type STRING (as
opposed to a character array), the string length must be calculated
upon return from the KSTATUS call and inserted in location 0 of the
STRING variable. The string length can be calculated by searching
through the STRING (starting with location STRING[ll) for a NULL
character (0).

10-79

Using the Call Interface in
TURBO PASCAL

KM-488-DD Programming Guide

KSTATUS (cont’d)

Example CONST
CARDNDN 0 .

(* Card Number zara&er For Calla *)
VAR

indat : STRING(255):
(* Array To Bold Status bbdessage *)

Errorslag : WORD;
(* Word To Bold Error Code *)

i : INTEGER:
t*

Ptoo. To Determine String Length And Put It In Loo.0
*)
PRCCEDIJRE char-count (VAR ch-strg:STRING):
BEGIN
t*

Check For NDLL or 255 Characters
*)

i ; := 1
WEILE ((10255) AND (ch-strng[i] <> CER(0))) DO

i :=i+l;
t*

Assign Calculated Count To String Location 0
*I

ch-strng[O] := CER(i - 1) ;
NND;
BEGIN
t*

*** Return Status Message ***
*)
kstatus(CARDNtM, ErrorFlag, St(l)) : (* Request Status
*I
IF (ErrorFlag > 0) THEN err-handler(ErrorFlag);
char-count(st):
WRITELN('STATUS :', St);
END.

lo-80

Using the Call Interface in
TURBO PASCAL

KSTOP

purpose Stops a DMA CONTINUE transfer.

Syntax VAR
board-nr : INTEGER;
err-code : WORD;

. . .
BEGIN

kstop (board-nr, err-code);
. . .

Parameters board nr is an integer which represents the board identification number.
This is & integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this vari-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. If the DMA CONTINUE transfer has been completed, a KSTOP will
Notes have no effect.

2. Use the KBUFD call to determine the actual number of characters
which were transferred before the KSTOP took effect.

CONST
crammbl 0 ;

(* Card Numbzr Parameter For Calls *)
VAR

ErrorFlag : WORD ;
(* Word To Bold Error Code Returned By Each

Call (0 = false = no errors) *)
BEGIN
P

*** Stop DWA ***
*)
kstop(CFXNDM, ErrorFlag);
IF (ErrorFlag > 0) TSEN err-handler(ErrorFlag);
END.

lo-81

Using the Call interface in
TURBO PASCAL

KM-488-DD Programming Guide

KTERM

Purpose Changes the default GPIB bus terminator(s) to be used in ENTER and/or
OUTPUT calls.

Syntax VAN
board-nr : INTNGER;
err_acde : WORD;
tna_lirrt[4]; ARRAY [0...3] OF INTEGER

. . .
BEGIN

kterm(board-nr, err-code, tm_list);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

tern-list is an integer array which defines the GPIB bus terminators. See
Chapter 6 for more information regarding the use of GLIB bus terminators.
(termlist [4] is defined in the tp488ddinc header file.) termlist [4] is
comprised of the following elements:

termlist [01 : Input/Output GPIB Terminators. Possible values
are:

-1

0

Change the Input Terminators.

Change both Input and Output
Terminators.

1 Change the Output Terminators.

termlist [l] : EOI detection/Assertion. Possible values are:

0 No assert/detect EOI
1 Assert/Detect EOI.

10-82

KM-488.DD Programming Guide Using the Call Interface in
TURBO PASCAL

KTERM (cont’d)

termlist 12 I : 1st GPIB bus terminator. Possible values are:

-lf$FFFF) Don’t use first or second GLIB bus
terminator.

0 to 255 Use this ASCII character as the first
GPIB bus terminator instead of the
default fist GPIB Terminator. The 0
- 255 decimal value represents the
ASCII value of the terminator charac-
ter to be used. (An ASCII Equiva-
lence Chart is provided in Appendix
A.1

ternllist [3] : 2nd GPIB bus terminator. Possible values are:

-1 ($FFFF) Don’t use second GPIB bus termina-
tor.

0 to 255 Use this ASCII character as the sec-
ond GPIB bus terminator instead of
the default second GPIB Terminator.
The 0 - 255 decimal value represents
the ASCII value of the terminator
character to be used. (An ASCII
Equivalence Chart is provided in
Appendix A.)

Returns err code is a variable through which error codes are returned. If this
vari&le is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

KTERM will change the default bus terminators set during software
installation, as directed by terralist [1.

lo-83

Using the Call Interface in

TURBO PASCAL
KM-488-DD Programming Guide

KTERM (cont’d)

CONST
CARDNUN =o;

(* Card Number Parameter For Calls *)
VAR

ErrorFlag : WORD ;
(* Word To Bold Error Code Returned By

Eaoh Call (0 = false = no errors) *)
trrf-1st : ARRAY[O..3] OF INTEGER;
(* Array Of GPIB Terminators For "KTEF34" *)

BEGIN
t*

*** Configure Terminators For BUS Operations
*I
t*

*** Structure To Reset Configuration Terminators ***
*I
tm-lst[ol := 0 ;
(* 0 Indicates Change Input AND Output Terminators *)

trx_lst[ll := 1 :
(* 1 = Assert EOI On Output, Detect EOI On Enter *)

trrn~lst[21 := -1 ;
(* -1 Indicates No 1st Terminator *)

trm-lst[3] := -1 ;
(* -1 Indicates No 2nd Terminator *)
kterm(CARDNUb& ErrorFlag, trm>st[O]) ;
IF (RrrorFlag > 0) TRBN err-handler(ErrorFlag) ;
END.

lo-84

KM-488-DD Programming Guide Using the Call lntetface In
TURBO PASCAL

Purpose

Syntax

Parameters

Returns

Programming 1. To suppress Timeout checking, set tval to 0.
Notes

2. If a DMA CONTINtB transfer is in progress, the KM-488-DD will
check for timeouts only for the first byte that is transmitted/received. Dur-
ing other types of transfers, the KM-48%DD will check for a timeout between
transmission of bytes.

You must be certain to check that a DMA CONTINUE transfer has been com-
pleted.

Changes the timeout period.

VAR
board-nr : INTRGER
err code : WORD;
tvai : INTEGER4;

. . .
BEGIN

kto (board-nr, err-code, tval) ;
. . .

board nr is an integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

tval is the number of 55 ms. timer ticks to allow before a time-out.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

lo-85

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programmlng Guide

KTO

Example CONST
CARD- =o;

(* Card Number Parameter For Calls *)
FIFTEEN = 273 ;

(* 15 seconds at 18.2 ticks per second *)
VAN

EEECXF~O~ : warn ;
(* Word TO Bold Error Code Returned By

Each Call (0 = false = no errors) *)
BEGIN
t*

Set Time Out To 15 Seconds (Approx 18.2 Ticks/Sac)
*I
kto(CARDNUM, ErrorFlag, FIFTEEN);
IF (ErrorFlag > 0) TEEN err-handler(ErrorFlag);
END.

1 O-86

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

KTRIGGER

Purpose

Syntax

Parameters

Returns

Triggers the specified device(s). The KM-48%DD must be an Active

VAR
board-nr : INTEGER
err_code : WORD;
mygads : ARRAY[O..14] OF gads;

. . .
BEGIN

ktrigger(board-nr, err-code, mygads);
. . .

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [nl represents the GPIB bus address of the device to be accessed.
mygads is an array of n (n can range from 1 to 15) structures of type gads.
See section 10.1 for more information.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming The devices listed in mygads will be triggered.
Notes

10-87

Using the Call Intetfoce in
TURBO PASCAL

KM-488-DD Programming Guide

KTRlGGER ~cont’d~

CONST
CARDNDN =o; (* Card Nu&er Parameter For

Call6 *)
VAR

add_l2 . AFtRAY[O..l] OF gads;
(* Address Or& (One Device At 12) *)

ErrorFlag : WORD;
(* Word For Code Returned By Calla *)

P
*** Address Structure For Meter At GPIB Address 12 ***

*)
add_l2[O].primad:=12;

(* 1st Instrument Has GPIB Address *)
add-12[0].secad:=-1;

(* -1 Indicates 1st Instrument aas No Secondary Add
*I
add-12[1].primad:=-1;

(* -1 Indicates No 2nd Inattument In Group *)
BEGIN
t*

l ** Trigger The Device ***
*I
ktrigger(CARDNlJbf, ErrorFlag,add_lZ:[O]);
IF (ErrorFlag > 0) TBBN err-handler(ErrorFlag);
END.

lo-88

KM-488-DD Programming Guide Using the Call Interface in
TURBO PASCAL

Purpose Forces the KM-488-DD driver to wait until a DMA CONTINUE transfer has
been completed before returning control to the application program.

Syntax VAR
board-m : INTEGER:
err-code : WORD;

. . .
REGIN

kwaitc(board-nr, err-code);
. . .

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this varl-
ableG set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

Time out checking, if enabled, is performed while KWAlTCing.

2. This is an e wait. The following calls perform an
implicit wait:

. KABORT l KPPOLL DISABLE
l KCLEAR l KPPOLL UNCONFIG
. KENTER l KREMOTE
. KLOCAL l KREQUEST
. KLOCAL LOCKOUT l KRESUME
. KOUTPUT l KSEND
l Kl’ASS CONTROL l KSPOLL
. KPPOLL . KTRIGGER
. KPPOLL CONFIG

lo-89

Using the Call Interface In
TURBO PASCAL

KM-488-DD Programming Guide

Example CONST
CARDNUN 10;

(* Card Number Parameter For Calls *)
VAR

ErrorFlag : WORD;
(* Word For Code Returned By Calls *)

BEGIN
t*

*** Wait For DblA To Finish ***
*)
t*

DM CONTINDB started here.

*)
1cwait.c (CARDNUN, ErrorSlag) ;
IF (ErrorFlag > 0) TBEN

WRITEIN('Tizm Out Waiting For Dbf?& To Finish') :
END.

10-W

KM-488-DD Programming Guide Using the Call Interface in C

CHAPTER I1
USING THE CALL INTERFACE IN C

Supported

Preparing the
Environment

File Header

Compiling lhe
Program

Sotlware
Configuration

Microsoft C version 4.0 and later
TURBO C version 1.0 and later

The C support files and example programs are located on the C Release
Disk. Be sure that all of these files are copied to your working directory.

When you write your program, make sure to include the line:

#include "km488dd.h"

This header file contains all the necessary function prototypes, structures,
etc.

Compile your program in the normal manner, being sure to link it with
the library KM4881FCOBJ. Far example, when working in Microsoft C, at
the DOS prompt, type either:

cl yourprog.c /link km488ifc.obj

or

01 /c you?zprog.c:
link yourprog + km488ifc;

A number of KM-488-DD configuration parameters are set via the
CONFJG program. (See Chapter 2.1 These govern the default settings of
the GPIB input and output bus terminators, lightpen interrupt enable,
device timeout periods, and the KM-488DD’s Base Address. The
defaults for these are listed in Table 11-l. There are other defaults you
may have to re-program if you are using File I/O Commands in the same
program as the library interface routines (calls).

11-l

Using the Call Interface in C KM-488-DD Programming Guide

Table 1 l-l. Default KM-4%DD Operating Parameters

I Parameter 1 Default I

Device Timeout
GLIB Bus Input Terminator
GPIB Bus Output Terminator

EOL Terminators

10.0 seconds
CR LF with no EOI
CR LF with no EOI

CR LF

The KCONFIG call can be used to reset the GPIB input and output bus
terminators.

The KTERM call can be used to change the default GPIB bus terminators
settings.

The KTO call can be used to change the default device timeout value.

Programming 1. Any arguments which are passed as values may also be passed as
Notes constants.

2. “Strings” in C are actually character arrays. Thus, any KM-488-DD
routines which require a string for input or output will need a char-
acter array. The far address of this character array is passed into the
KM-488-DD Routine.

3. Any KM-488-DD routine which returns a value into a string
requires an additional parameter. This defines the total number of
bytes available as string space for storage of received data.

4. For calls which return strings rather than data bytes, (e.g. KSTA-
TUS, KHELLO), it is very important that the number of bytes allo-
cated for storage within a character array is at least one greater than
the maximum byte count of the expected string. This extra byte is
necessary so that a NULL can mark the end of the received data. If
a routine attempts to receive more bytes than have been allocated
for storage into that variable, other internal program variables may
be overwritten, producing unexpected results or a program crash.

5. Note that function and parameter names in Care case-sensitive.
The KM-488-DD routine names must appear in lower-case.

6. Do not name any of your variables with the same name as any of
the KM-488-DD routines. This will cause a linker error.

11-2

KM-488-DD Programming Guide Using the Call Interface In C

11.1 CALL DESCRlPTlON FORMAT

Each call description is divided into several sections as described below.

Syntax This section describes the syntax required by each call. The following rules
are used in this section.

Call names and input parameters appear in this typeface.

Parameters This section describes the input parameters. In some instances, a structure or
array of multiple parameters may be specified (for example, multiple device
addresses).

mygads [n] is used in many calls. This is an array of n (1 to 15) structures
of type gads which contain the GLIB address information required by the
call. This GPIB address structure consists oE

struot gads (:
int primad ; /*primary address o-30*/
int seoad ; /*secondary address O-31*/
1;

When secad is set equal to -1, it indicates that no secondary address is
applicable. When primad is set equal to -1, it terminates the array.

You must tailor mygads to your application. Themygads structure is
defined in the include file km488dd.h. An example of a structure with two
devices is:

cltruot gads exam[3]
axam.primad[O] = 3 /* first device - pri addr 3*/
exam.seoad[O] = -1 /* and no sea addr */
exam.primad[l] = 15 /* second device - pri addr 15 */
exam.seoad[l] = 2 /* and sea ad& 2 */
exawprimad[2] = -1 /* there are only two devices */

11-3

Using the Call Interface in C KM-488-DD Programming Guide

If the KM-488-DD ls a Peripheral (in which case the call will not require a
GPIEl bus address), you will want to use the following mygads structure:

struck gada no-add[l]
no-add.primad[O] = -1 /* there are no devices in group
*/

This part of the callable description describes any data which will be
returned after execution of the callable has been completed.

err-code - All calls except KDIAGON and KDIAGOFF return an integer
error code which will be 0 if no error was detected. It is good practice to
check err-code after each call and provide a routine to handle errors if
they arise.

Programming This section lists any special programming considerations for the routine.
Notes

Example This section gives a programming example using the routine.

1 l-4

KM-488-DD Programming Guide Using the Call Interface In C

KABORT

Purpose

Syntax

Parameters

Returns

This routine allows the KM-488-DD to take control of the GPIB bus by
forcing all other devices on the bus to the idle state. TheI(M-488-DD must be

int board-m:
int err_code:
kabort(board-nr, &err-code);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming If the KM-488-DD is both the Active and System Controller, KABORT asserts
Notes the lFC line to retain control of the bus. Otherwise, the KM-488-DD will

assert the ATN line, and then untalk and unlisten all devices.

Example board-nr = 0;
kabort (board-nr, &err-oode) ;
if (err_code) myetrorhandler (err-oode):

11-5

Using the Call Interface In C KM-488-DD Programming Guide

KARM

Purpose

Syntax

Defines the conditions under which the lightpen status becomes true.

int board-nr, arm-oode;
int err-oode:
kann(board-nr, &err-oode, arm_cocte);

board nr is an integer which represents the board identification number.
This is 2 integer in the range 0 to 3 and represents the board to be
programmed.

era-code is a 16-bit integer describing on which conditions a light pen
interrupt may occur. The integer is of the format:

Bit 15.8 6 7 6 5 4 3 2 1 0

0 ABC CIC PER DET SRQ DEC LA TA IDLE

Where:

ADSC

cc*

PEW

DET

Address Status Change. If this bit is set to 1, the lightpen status
will become true when a change in address status has occurred
(i.e., a Talker becomes a Listener, or a Peripheral becomes an
Active Controller). This encompasses all the conditions marked
with an asterisk (*) below.

Controller in Charge. If this bit is set to 1, the lightpen status
will become true when the control is passed to the KM-488-DD
and it becomes the Active Controller.

Peripheral. If this bit is set to 1, the lightpen status will become
true when the KM-488-DD passes control to another device and
becomes a Non-Active Controller.

Device Triggered. If this bit is set to 1, the lightpen status will
become true when a KM-488-DD, acting as a Peripheral, receives
a GPIEi Trigger command.

11-6

KM-488-DD Programming Guide Using the Call lntetface in C

KARM (cont’d)

SRQ Internal SRQ. If this bit is set to one, the lightpen status will
become true when the KM-488-DD’s internal Service Request Bit
(SRQ) is set.

DEC Device Cleared. If this bit is set to one, the lightpen status will
become true when a KM-4WDD, acting as a Peripheral, receives
a GPIB Clear command.

LA* Listen Addressed. If this bit is set to one, the lightpen status
will become true when the KM-48%DD, acting as a Peripheral, is
addressed as a Listener and can accept data from the GPIB.

TA* Talk Addressed. If this bit is set to one, the lightpen status will
become true when the KM-48&DD, acting as a Peripheral, is
addressed as a Talker and can output data to the GPIB.

IDLE* Idle. If this bit is set to one, the lightpen status will become true
when the KM-48%DD, acting as a Peripheral, is unaddressed as
a Talker or a Listener.

NOTE: The conditions marked by an asterisk (*) will force the lightpen
status to true only when the KM-4%DD’s address status has changed. This
is indicated by the state of the Address Change Bit in the Status byte. See
the kstatus or kquikstat routine descriptions for more information.

Returns err-aode is a variable through which error codes are returned. If this
variable is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming The driver must configured for lightpen emulation at load time via the CON-
Notes FIG.DAT “pipe” file, as the default for lightpen emulation..

1 l-7

Using the Call Interface in C KM-48%DD Programming Guide

Example #define LA 0x4
#define PERI 0x40

int err-ooda = 0;
int board-m = 0:
karm(board-nr, Cerr-oode, PERI 1 LA);
if (err-oode) my errorhandler (err-oode);

11-8

KM-488-DD Programming Guide Using the Call Interface in C

Purpose

Syntax

Parameters

Returns

Selects in which direction the memory is to be addressed for both DMA and
non-DMA buffered transfers.

int dir, board-m;
int err-oode;
kbuf (board-m, cerr-oode, dir);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

dir selects the direction in which the buffer is to be read. If dir is equal to
1, the buffer address will be incremented. If dir is equal to 0, the buffer
address will be decremented.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming If the buffer’s address is to be incremented during a bus I/O operation, be
Notes sure to use the lowest address in the designated buffer. Likewise, if it is to be

decremented, select the highest address.

Example #define ino 1
#define dec 0

int board nr;
int srr_c;;de = 0;
kbuf(boazd-nr, &err-coda, dao);
if (err-ooda) myerrorhandler (err-code);

11-9

Using the Call Interface In C KM-488-DD Programming Guide

KBUFD

Purpose

Syntax

Parameters

Returns

Returns the number of characters transferred in the last buffered transfer or,
in the case of DMA transfers, the current transfer.

int board-m;
int err-code:
long bcount;
kbufd(board-nr, cerr-code, sbcount);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

bcount represents the number of characters which were transferred during
the last buffered transaction. This will be a long integer (32-bits) in the range
oto 1,048,575 (0 to 2d0-1).

Programming 1.
Notes

If the data was transferred in the DMA CONTINUE mode, KBUFD
returns the number of characters transferred thus far.

2. It is useful to call this routine after a buffered KENTER has been per-
formed. This will help you to determine if the expected number of
characters has been received and/or the transfer has terminated as the
result of a detected terminator.

Example long xfercount;
int board-nr = 0, err-code = 0;
kbufd(board-nr, &err-oode, &xferoount);
if (err-code) myerrorhandler (err-oode);
else printf,(“%lu Samples Transferred",xfercount);

11-10

KM-488-DD Programming Guide Using the Call Interface In C

Purpose - _ be an Active Controller. Resets device(s) to their
power-up parameters.

Syntax int board-nr;
int err-code;
strnct gads mygads[n]:
kolear(board-nr, serr-ode, cmygads):

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] represents the GPIB bus address of the device to be cleared.
mygads is a pointer to an array of n (n can range from 1 to 15) structures of
type gads. You must tailor mygads to your application. The mygads struc-
ture is defined in the include file km488dd.h and is described in section 11.1.

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

2.

Ifmygads contains no addresses, then the universal GPIB DCL (De-
vice Clear) command is issued and all devices will be cleared.

If mygads contains addresses, then those devices specified will be lis-
tened and sent a GLIB SDC (Select Device Clear) Command.

Example struct gada mygads[2] = ((2, -l),
i-1, -1));

int board-nr = 0, err-oode = 0 ;
kclear(board-nr, &err-ode, mygads);
if (err-coda) myerrorhandler (err-code);

11-11

Using the Call Interface In C KM-488-DD Programming Guide

KCONHG

Purpose

Syntax

Parameters

Resets the KM-488-DD to its default operating parameters or to those
specified.

int board-au, err-code;
char cfg_string(501;
int stringlen:
kaonfig(board-nr, &err-code, qm-name, stringlen);

board-nr ls an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

cfg-string is a far character pointer to a user-defined string. This string
can be comprised of any of the following options:

/T [term term Sets the input and output GPIB bus terminators. You
EOI] can select one or two GPIB bus terminators followed by

EOI or just EOI. If you just specify /T, the GPIB bus
terminators will be reset to their defaults.

term is an optional parameter which represents a ter-
minator byte to be used. This terminator byte can be
represented as any of the following:

$char where char is an integer representing the
hex or decimal equivalent of the termina-
tor’s ASCII representation. (See Appendix
B for ASCII Equivalents.) char must be
preceded by a dollar sign ($).

11-12

KM-488-DD Programming Guide Using the Call Interface In C

KCOAWG (cont’d)

CR

Is

‘X

Hexadecimal values must also be preceded
by &H. For example, $84 represents the let-
ter “T” as does $&H54.

This represents the Carriage Return charac-
ter (13 decimal, OD hex).

This represents the Line Feed character (10
decimal, OA hex).

where X represents a printable ASCII char-
acter. The character must be preceded by
an apostrophe 0, for example: ‘ B
represents the character B.

EOI (End or Identify) is an optional GI’IB BUS termina-
tor. If included, the KM-488-DD will detect/assert the
GPIB bus EOI line. (This would indicate that the last
character has been sent.) Data will continue to be read
until this terminator, a valid terminator sequence, or
both are detected.

/TI [term term Sets the input GPIB bus terminators. You can select one
EOI] or two GLIB bus terminators followed by EOI or just

EOI. If you just specify /TI, the input GPIB bus terml-
nator will be reset to none. term and EOI are described
above.

/TO [term term Sets the output GPIB bus terminators. You can select
EOIJ one or two GPIB bus terminators followed by EOI or

just EOI. If you just specify /TO, the input GPIB bus
terminator will be reset to none. term and EOI are
described above.

/E [term termJ Sets the input and output EOL terminators. (Note that
this should only be used if the application program also
includes File I/O Commands.) term ls described
above.

11-13

Using the Call Interface In C KM-488-DD Programmlng Guide

KCONFIG (cont’d)

/EI [term
term]

Sets the input EOL terminators. (Note that this should
only be used if the application program also includes
File I/O Commands.) term is described above.

/EO [term term] Sets the output EOL terminators.
(Note that this should only be used if the appli-
cation program also includes File I/O Com-
mands.)

/N name ad&
[set-addrl

Configures a named device. Sets its address to
the given value and its GPIB bus terminators to
the current GPIB bus terminator settings.
(Note that this should only be used if the appli-
cation program also includes File I/O Com-
mands utilizing the named device
configurations.)

name is the name of the device.

addr is the prlmary GPIB address (00 to 30).

sac addr is the secondary GLIB address (00
to 31-I

I NOTE: Do not create a named device with the Same name as an existing
directory on the current working disk. I

If cfg-string ls empty, then the configuration will revert to the installa-
tion configuration.

stringlen is an integer from 0 to 255 which gives the length of the
cfg-atring string.

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it ls set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

11-14

KM-488-DD Programming Guide Using the Call Interface In C

KCONHG &ontW

Programming 1.
Notes

2.

3.

The /E, /EI, /EO, and /N options will only take effect if File I/O
Commands are used within the same application program as the call-
ables.

If you are converting an application program previously written using
the File I/O commands to callables, be sure to note that the CONFIG
string for the KCONFIG call does not include the “CONFIG” keyword
(i.e., as you would if you were using the CONFIG File I/O command).

Primary and Secondary Addresses must be two characters long, e.g. 01
or 0209.

Example char far *cfg = 'l/T CR LF EOI";
int board-nr=O, err-code=O;

kconfig (board-nr, cerr-code, cfg, strlen(cfg));
if (err-oode) myerrorhandler (err-code);

11-15

Using the Call interface in C KM-488-DD Programming Guide

KDIA WN

Purpose

Syntax

Parameters

Returns

Turns fiie diagnostics on. (Default is off.)

Oha filename[]= %lYDIAG.DAT"
kdiagon(filename, strlen(filename)):

filename is string containing the name of the file to which the diagnostic
information is to be written.

strlen is the length of the string representing the name of the file.

This will echo the value of the call parameters into a disk file.

Programming None.
Notes

Example Char SihName[] = 'WYDIAG.DAT"
kdiagon(FileName, strlen(FileName)) ;

11-16

KM-488-DD Programming Guide Using the Call Interface in C

Purpose Temporarily disables file diagnostics.

Syntax kdiagoff()

Parameters None.

Returns None.

Programming None.
Notes

Example char FileName[] = 'WYDIAG.DAT"
kdiagon(FileName, strlen(FileName)) ;

/* Disable File Diagnostics */

kdiagoffo :

11-17

Using the Call interface in C KMd88-DD Programming Guide

Purpose

Syntax

Resets previously set conditions which cause llghtpen interrupts.

int board-m, arm-code:
int err-code;
kdisam(board-nr, &err-code, am-code) ;

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

arm code is a 16-bit integer describing which conditions should be reset.
The gteger is of the format:

Bit 15-9 6 7 6 5 4 3 2 1 0

0 ADSC CIC PER DET SRQ DEC LA TA IDLE

Where:

ADSC Address Stahu Change. If this bit is set to 1, light pen status
will not change when a change in address status has occurred
(i.e., a Talker becomes a Listener, or a Peripheral becomes an
Active Controller).

cc Controller in Charge. If this bit is set to 1, light pen status will
not change when the control is passed to the KM-488.DD and it
becomes the Active Controller.

PER Peripheral. If this bit is set to 1, light pen status will not change
when the KM-48%DD passes control to another device and
becomes a Non-Active Controller (Peripheral).

DEr Device Triggered. If this bit is set to 1, light pen status will not
change when a KM-488-DD, acting as a Peripheral, receives a
GPIB Trigger command.

SRQ Internal SRQ. If this bit is set to one, light pen status will not
change when the KM-488-DIYs internal Service Request Bit
(SRQ) is set.

11-18

KM-488-DD Programmlng Guide Using the Call Interface in C

KDISARM (cont’d)

DEC Device Cleared. If this bit is set to one, light pen status will not
change when a KM-488-DD, acting as a Peripheral, receives a
GPIB Clear command.

LA Listen Addressed. If this bit is set to one, light pen status will
not change when the KM-488-DD is addressed as a Listener and
can accept data from the GPIB.

IA Talk Addressed. If this bit ls set to one, light pen status will not
change when the KM-488-DD is addressed as a Talker and can
output data to the GPIB.

IDLE Idle. If this bit is set to one, light pen status will not change
when the KM-488-DD is unaddressed as a Talker or a Listener.

Returns err code is a variable through which error codes are returned. If this
vari&le is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

Example #define ASC 0x100;
#define DT 0x20;

j*Tuxn off lightpen active on ASC and DT*/
int board-m = 0, err-code=O:
kdiearm(board-nr, berr-code, ASC I DT);
if (err-oode) myerrorhandler (err-code) ;

11-19

Using the Call Interface In C KMdfiS-DD Programming Guide

Purpose

Syntax

Parameters

Sets DMA transfer mode.

int board-nr, dma-mode;
int err-code;
kdma (board-nr, &err-code, dma-tie):

board nr is an integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

dma-mode is a 16-bit integer which represents the DMA mode to be used. If
no dma-mode is given, then single mode without autoinitialization will be
assumed. The dma-mode integer ls interpreted as follows:

ait 15.3 2 2 0

I 0 I SIN I DEM AUTO

Where:

SIN SINGLE. When this bit is set to one, the SINGLE mode is
selected. In this mode, when the DMA Request line is asserted
the DMA controller assumes control of the bus and transfers a
single byte of data. Control of the bus is then returned to the
microprocessor.

Note that SINGLE and DEMAND mode can not be invoked
simultaneously.

DEM DEMAND. When this bit is set to one, the DEMAND mode is
selected. In this mode, when the DMA Request line is asserted
the DMA controller assumes control of the bus. The DMA con-
troller retains control of the bus until the DMA request signal ls
unasserted. Once this signal has been unasserted for more than
one microprocessor clock cycle, control of bus is returned to the
microprocessor. This mode allows the DMA controller chip to
pass data at a slightly faster rate and the microprocessor to
access the bus when it is not needed.

Note that SINGLE and DEMAND mode can not be invoked
simultaneously.

11-20

KM-488-DD Programming Guide Using the Call Interface in C

KDMA (cont’db

AUTO AUTOINITIALIZE. When this bit is set to one, the AUTOIN-
ITIALIZE mode is selected. Under normal circumstances, the
DMA controller transfers the specified number of bytes to/from
the PC memory from the given starting address and terminates
when completed. When the AUTOINITIALIZE mode is
enabled, the DMA controller will reset the original byte count,
reset the initial address, and repeat the transfer again. The
AUTOINITIALIZE option is only in effect until the next
KEN’I’ER or KOUTPUT buffered transfer is completed. Addi-
tionally, if a KENTER or KOUTPUT transfer in DMA CON-
TINLJE mode is selected, the AUTOINITIALIZE option will only
be in effect for that transfer.

Returns None.

Programming 1. All DMA AUTOINITIALIZE transfers should occur entirely within a
Notes single DMA 64 KByte page. So, if a DMA buffer operation involves a

transfer of more than 64K or occur across a DMA page boundary, the
AUTOINITIALIZE option affects only those bytes in the last transfer
occurring within one DMA page.

Also note that DMA AUTOINlTIALIZE transfers specified for buffers
that are located in more than a single DMA page are unpredictable.

2. It ls impossible for a program to halt a DMA AUTOINITIALIZE opera-
tion unless the DMA CONTINUE option is selected. This is because
the driver does not return control to a program using non-CONTINUE
operations until the transfer completes.

Example #define SINGLE 0x4
#define AUTO 0x1
int err-code=O, board-nr=O;

/* next (and only next) dma will be single and auto */
kdma(board-nr, &err-code, SINGLE+AUTO);
if (err-oode) myerrorhandler (atr-coda):

11-21

Using the Call Interface In C KM-488-DD Programming Guide

Purpose Allows the KM-488-DD to receive data from a GPIB bus device.

Syntax int board-nr, mode, err-code, term_list[3];
char huge *datagtr;
unrrigned long oount;
struct gads mygads [n] ;
kenter (board-nr, Lerr-code, datagtr, count, mode, buy-
gads, &term-list) :

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

datagtr is a pointer to the starting buffer position. Be sure to allocate an
area of memory large enough to accept the returned data. If a non-zero
count is specified, the data area can be equal to count. If count is 0 and
termination characters are used, the data area must be large enough to
accommodate both the data returned by the device and the termination char-
acters.

count is a long integer representing the number of characters to be read.
Valid counts are within the range 0 to 4294967295 (23*-l) decimal, or from 0 to
OxFFFFFFFF hex. When 0 is used, the KENTER will stop when the termina-
tion specified by term-list is satisfied.

mode is an integer which represents whether or not DMA is to be used and if
the CONTINUE mode is to be used. This integer ls interpreted as follows:

Bit 15-2 1 0

I 0 1 CONT 1 LIMA 1

Where:

CONT CONTINUE. This an optional mode which is used in conjunc-
tion with DMA. When this bit is set to one, the CONTINUE
mode will be used. If CONTINUE is specified, the KM-488-DD
will return control to the application program as soon as it can
without waiting for completion of the transfer. The KM-488-DD
will at least wait for the first byte to check for time-out (Unless
TIME OUT = 0) before continuing. DMA CONTINUE execu-
tion concludes when the KM-488-DD completes its transfer.

11-22

KM-488-DD Programmlng Gulde Using the Call Interface In C

KENTER (cont’d>

If CONTINUE ls used and the DMA AUTOINITIALIZE has
been enabled, then the DMA transfer will continue until a
KSTOP routine is invoked or a pre-specified GPIB BUS input
terminator is detected.

DMA DMA. If this bit is set to one, then DMA will be used in the data
transfer.

mygads [n] represents the GPIB bus address of the device to be reset.
mygads is a pointer to an array of n (n can range from 1 to 15) structures of
type gads. You must tailor mygads to your application. The mygads struc-
ture is defined in the include file km488dd.h and is described in section 11.1.

term-list [3] is an integer array which defines the GPIB bus terminators
to be used during the KENTER call. These terminators are used in conjunc-
tion with count to terminate the input process. Terminator choices include
whether or not EOI will be detected to signal end of input and which
character sequence, if any, is to be detected as an end of message code. The
default terminators scheme is initially set-up by the CONFKDAT file, and
can be modified by calling KTERM or KCONFIG. termlist can either
specify the used of the default terminators or temporary overrides. ter-
mlist is defined in the km488dd.h header file. termlist [31 is com-
prised of the following elements:

termlist [O] : EOI detection. Possible values are:

-l(OxFFFF) Use the default EOI setting.
0 Don’t Detect EOI.
1 Detect EOI.

termlist [l] : 1st GPIB bus terminator. Possible values are:

-1 (OxFFFF) Use the default terminator. Note that
lf the default first terminator is used,
the default second terminator will
also be used.

1 l-23

Using the Call Interface in C KM-488-DD Programming Guide

KFNTER (cont’d)

0 to 255 Detect this ASCII character as the first
GPIB bus terminator instead of the
default first GPIB Input Terminator.
The 0 - 255 value represents the ASCII
value of the terminator character to
be used. (An ASCII Equivalence
Chart is provided in Appendix A.)

termlist [2] : 2nd GPIB bus terminator. Possible values are:

-1 (OXFFFF) Use the default terminator. Note that
if the default first terminator is used,
this will automatically be selected.

0 to 255 Detect this ASCII character as the sec-
ond GPIB bus terminator instead of
the default second GPIB Input
Terminator. The 0 - 255 value repre-
sents the ASCII value of the termina-
tor character to be used. (An ASCII
Equivalence Chart is provided in
Appendix A.)

The following default termlist can also be used:

int dtnn[3] ;
dtrm[O] = -1; /* Use the default EOI choice */
dtrm[l] = -1; /* Use the default first tennimator */
dtnn[2] = -1; /* Use the default second terminator

(redundant since dtrm[l] = -1) */

Returns err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

11-24

KM-488-DD Programming Guide Using the Call Intelface in C

KENTER (conf’d)

Programming 1.
NOM

2.

3.

4.

5.

6.

If the KM-488-DD is a Peripheral, an active controller must address
KM-488-DD as a listener and some other device as the talker, before
KENTER is called. In this instance, you should use the no-addr
structure in lieu of mygads. This is described in section 11.1.

If the KM-488-DD is the Active Controller, it will automatically address
itself as a listener and another device defined in mygads as the talker.
Since only one device can be a talker, the address group mygads can
contain only one address. If a device has been previously addressed to
talk and the KM-488-DD previously addressed to listen, then mygads
can be no-add (See section 11.1) and the bus will not be re-addressed.

If count is specified as 0, then KENTER will terminate when the ter-
minator(s) specified by term-list is encountered.

If it is desirable to terminate on count only and not use the default
terminators, then you must select no terminator overrides in
terra-list, in addition to giving the count. In this case, a byte by
byte synchronous transfer is executed.

If both count and terminators are specified, the KENTER will terminate
on whichever condition is encountered first.

If the condition(s) for termination is not encountered, KTERM will
timeout unless the timeout has been disabled.

Example /*Enter data with CR LF EOI from addr.l2*/

int board-nr = 0, err-ooda = 0, trmlist[3] = (1,13,10};
struot gads mygads[2]= {{12,-l), {-1,-l)):
unsigned long xfercount = 1000;
int mode = 0; /*don’t use DblA*/
char datarray[lOOO] = (0); /*target srray*/
kenter(board_nr,serr~aode,datarray,xfercount,mode,mygads,
termlist);
if (err-code) myarrorhandler (err-coda);

11-25

Using the Call Interface In C KM-488-DD Programming Guide

KERROR

Purpose

Syntax

Parameters

Returns

Enables/Disables display of Error Messages.

int board-nr, err-code, e_sw:
kerror(board-nr, Cerr-coda, e-m);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

~-SW is an integer which determines if error message display function will
be enabled or disabled. If e-sw=l, the error message display is enabled.
22 the default.) If e-sw=O is specified, the error message display is dis-

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

If KERROR has been used to enable error messages, the message will
only reveal that @ error has occurred for the KM-488-DD calls. It does
not identify what type of error occurred. The KDIAGON routine for
should be used to help debug applications utilizing the KM-488-DD
calls.

2. Programs can also check err-code after each call to identify the exact
nature of the call errors.

Example #define err-on 1
int board-nr = 0, err-coda = 0, err-switch = err-on;
kerror (board-m, herr-code, err-switch);
if (err-coda) myerrorhandler (err-code);

11-26

KM-488-DD Programmlng Guide Using the Call Interface in C

KFlLL

Purpcss

Do

Syntax

Parameters

Returns

Example

Defines the KM-488-DD driver’s response to a request for data when none is

NOTE: KFILL is provided for users who mix File I/O Commands and Calls
in the same program. It only affects inputs performed using the File I/O
Commands. 1
int board-or, err-code, fill-sw;
kfill(boord-nr, &err-oode, fill-ax);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

fill-sw is an integer which represents the fill condition. (The default con-
dition returns a NULL character.) Valid integers are any one of the follow-
ing:

-1 OFF. This type of response will not return any data characters
or a DOS error message, if no input data is available.

-2 ERROR. This type of a response will not return any data
characters, but will generate an Error Message. The error
message number can then be trapped by calling the KSTATUS
routine. (Refer to the KSTATUS routine for more information.)

O-255 ASCII. This type of response will return the designated
ASCII character. (An ASCII Equivalence Chart is provided in
Appendix A.) Specify the decimal equivalent of the character
to be used.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

/* pad DOS inputs with 'X' character */
int err_coda = 0, board-m = 0, fill-switch = (int) 'X';
kfill(board-nr, &err-code, fill-switch);
if (err-oode) myerrorhandler (err-code);

11-27

Using the Call Interface In C KMdSS-DD Programming Guide

KHELLO

Purpose

Syntax

Parameters

Returns

Returns an identification string from the KM-488-DD driver.

int board-m, err-code;
char id-response [50];
khello(board-nr, &err-coda, id-reaponse);

board-nr is an integer which represents the board identification number.
This ls an integer in the range 0 to 3 and represents the board to be pro-
grammed.

id response will contain a string similar to: copyright 1991
Keythley MetraByte Corp.

(c)

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

The string into which the HELLO message is returned must be dimen-
sioned prior to calling KHELLO. Otherwise, C assumes the string is of
length 0 and calling KHELLO will result in destroying other
programmed data.

Example /* Atray for ID String Returned by "KRELLO" co-d*/

char idstr[50]:
int err_cods = 0;

/* Return Driver Copyright Meanage*/

khello(O,CErrorFlag, id&r);
if (ErrorFlag)

f
printf("\n\nError : Driver Not Installed / Exit and

Install K!d.EXE");
exit(l):

1

11-28

KM-488-DD Programming Guide Using the Call Interface In C

Purpose

Syntax

Parameters

Forces the specified bus device(s) to return to being programmed locally
from their front panels. p-488 _ . DD is.

or Active C&&&L

int board-nr, err-code:
&xuot gads mgadsIn1;
klooal(board-nr, &err-code, mygadm);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] represents the GPIB bus address of the device to be sent to
local. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. The
mygads structure is defined in the include file km488dd.h and is described in
section 11.1.

err code is a variable through which error codes are returned. If this vari-
ablez set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

If the KM-488-DD ls the System Controller and if mygads does not
specify an address, then the GPIB REN (Remote Enable) line is unas-
serted and all devices are returned to Local. In order to return them to
remote mode, it will be necessary to issue a KREMOTE call. Likewise,
if Local Lockout is required, it will be necessary to issue a KLOL call.

2. As an Active Controller, the KM-488-DD can issue the GPIB GTL (Go
To Local) message to those devices specified by mygads. In thii case,
the GPIB REN (Remote Enable) line remains asserted and devices will
return to remote when addressed to listen. If a KLOL (Local Lockout)
call has been issued previously, it should still be in effect when a device
ls returned to Remote.

11-29

Using the Call Interface in C KM-488-DD Programming Guide

Example /* Addrelra Group (will have one device @ 05) */

etruct gads add-05[15] ;
int ErrorFlag = 0;

/* Addrem Structure For Device With GPIB Address 05 l /

/* let instrument has GPIB primary address 05, no second-
ary ad&e00 */

add-05[O].primad = 05 ;
add-05[0].secad = -1 :
add_05[1].primad = -1 ; /* no 2nd instrument */

/* Put Device In Local Mode*/

klocal(0, CErrorElag, adc-05) ;
if (ErrorFlag) err-handler(ErrorFlag) :

1 l-30

KM-4%DD Programming Guide Using the Call Interface in C

Purpose onlv be m KM 488 DD IS an Actwe or Sys&+I - _ .
Controller. It will disable the GLIB bus devices from being returned to Local
Control by means of the Local/Remote button on the device.

NOIE: This routine issues an IEEE-468 bus signal, LOL. This signal is not
supported by all IEEE-488 bus devices.

Syntax int board-nr, err-code;
klol(board-nr, serr-code):

Parameters board-nr is an integer which represents the board identification number.
Thii is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this vari-
ablez set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. The “LOCAL” button is disabled so that a device cannot be returned to
Notes local state for manual programming or control. The Active Controller

can return specific devices to “local with lockout state”, whereby an
operator can then use the front panel controls. When the device is
addressed to listen again, it returns to “remote with lockout state”.
Thus, the effect of the LOL call will remain until the REN line is unas-
serted (LOCAL) by the System Controller.

2. It is good practice to issue a KLOL so that devices are under strict pro-
gram control. KLOL can be issued before a device is put in remote and
will take effect when the device’s LOCAL button is set to remote.

Example /* Snteger TO Bold Error Code Returned By Calls*/

int BrrorElag;

/* Look Out Local Control Of Devices */

klol(0, &ErrorElag);
if (ErrorFlag)
err-handler(ErrorBlag):

11-31

Using the Call Interface In C KM-4tWDD Programmlng Guide

KOUTPUT

Purpose

Syntax

Parameters

Transmits data from the KM-488-DD to the GI’IB bus.

int boerd-nr, mode, err-oode, temgtr;
char huge *datagtr;
unsigned long count:
struct gads mgads[nl;
koutput(boPrd-nr, &err-code, datagtr, count, mode, smy-
gada, aterm-list) ;

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

datagtr is a pointer to the starting buffer position.

count is a long integer representing the number of characters to be output.
Valid counts are within the range 1 to 4294967295 (232-1) decimal, or from 1 to
OxFFFFFFFF hex.

mode is an integer which represents whether or not DMA is to be used and if
the CONTINUE mode is to be used. This integer is interpreted as follows:

sit 15.2 1 0

0 1 CONT 1 DMA

Where:

CONT CONTINUE. This an optional mode which is used in conjunc-
tion with DMA. When this bit is set to one, the CONTINUE
mode will be used. If CONTINUE is specified, the KM-488-DD
will return control to the application program as soon as it can
without waiting for completion of the transfer. The KM-488-DD
will at least wait for the first byte to check for time-out (Unless
TIME OUT = 0) before continuing. Dh4A CONTINUE execu-
tion concludes when the KM-488-DD completes its transfer.

11-32

KM-488-DD Programming Guide Using the Call Interface in C

KOUTPUT (cont’d)

If CONTINUE is used and the DMA AUTOINITIALIZE has
been enabled, then the DMA transfer will continue until a
KSTOP routine is invoked.

DMA DMA. If this bit is set to one, then DMA will be used in the data
transfer.

termgtr is a pointer to termlist. [31 integer array. (This is defined in
the h488dd.h header file.) This array defines the GPIB bus terminators to be
used in the KOUTPUT. termlist [3] is comprised of the following ele-
ments:

mygads [n] represents the GPIB bus address of the device to receive the
data. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file km488dd.h and is described in section
11.1.

term-list [31 is an integer array which defines the GLIB bus terminators
to be used during the KOUTRJT call. These terminators are used in conjunc-
tion with count to terminate the output process. Termination choices
include whether or not EOI will be asserted with the last byte and whether or
not a certain byte or sequence of two bytes will be sent as an end of message
code. The default terminator scheme is initially set-up via CONFZG.DAT,
and can be modified by calling KTERM or KCONFIG. termlist can be
used to specify the use of the default terminators or a different terminator.

terralist [3] is defined in the km488dd.h header file. termlist [3] is
comprised of the following elements:

termlist [O] : EOI detection. Possible values are:

-1 (OXFFFF) Use the default EOI setting.
0 Don’t Assert EOI.
1 Assert EOI.

termlist [l] : 1st GPIB bus terminator. Possible values are:

-l(OxFFFF) Use the default terminator. Note that
if the default first terminator is used,
the default second terminator will
also be used.

1 l-33

Using the Call Interface in C KM-488-DD Programming Guide

KOUTPUT (cont’d)

0 to 255 Send this ASCII character as the first
GLIB bus terminator instead of the
default first GPIB Input Terminator.
The 0 - 255 value represents the ASCII
value of the terminator character to
be used. (An ASCII Equivalence
Chart is provided in Appendix A.)

termlist [2] : 2nd GPIB bus terminator. Possible values are:

-1 (OXFFFF) Use the default terminator. Note that
if the default first terminator is used,
this will automatically be selected.

0 to 255 Send this ASCII character as the sec-
ond GPIB bus terminator instead of
the default second GPIB Input
Terminator. The 0 - 255 value repre-
sents the ASCII value of the termina-
tor character to be used. (An ASCII
Equivalence Chart is provided in
Appendix A.)

The following default tsrmlist can also be used:

int dtrm[3] :
dtrm[O] = -1; /* Use the default EOI choice */
dtzm[l] = -1: /* Use the default first terminator */
dtrm[2] = -1; /* Use the default second terminator

(redundant since dtrm[l] = -1) */

Returns err code is a variable through which error codes are returned. If this varl-
able5 set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

If the KM-488-DD is a peripheral, then an Active Controller must
address the KM-488-DD as a talker and some other device(s) as the lis-
tener(s). In this case, use no-add for my-gads. (See section 11.1.).

2. If the KM-488-DD ls both the System and Active Controller, and
my-gads contains the device(s) to be addressed, the KOUTPIJT will
automatically assert the GPIB REN (Remote Enable) line.

11-34

KM-488-DD Programming Guide Using the Call Interface in C

KOUTPUT fcont’d)

3. If the KM-488-DD is the Active Controller and KOUTPUT is called, it
will automatically address itself as the talker and another device(s) con-
tained in my-gads as the listener(s). If the devices have been pre-
viously addressed, then my-gads can be no-add and the bus will not
be m-addressed.

4.

5.

A non-zero count must always be specified.

If you do not wish to append terminator characters, then be sure to set
the terminator defaults via CONFIG.DAT or by calling KTERM or
KCONFIG Andy select no terminator overrldes in term_list.

6. If a listener does not accept a character, a timeout will occur unless the
timeout has been disabled.

Example /* Message To Display On Digital Scope Screen */
chat init-mess [] = { "MESS lo:\" INITIALIZE SCOPE\""

1;
int dtrm[3] ;

/* Address Group (will have one device @ 05) */
struct gads add_05[15] ;

/* Address Structure For Soope With GPIB Address 05 */
tid-05[0].primad = 05 ;
add-Oti[O].secad = -1 :
adc-05[l].primad = -1 ; /* no 2nd instrument */

/* Array With Default Terminators*/
dtrm[O] = 1 ; /* Assert EOI On Last Output Byte*/
dtrm[l] = -1 ; /* Do Not Override 1st Terminator */
dtrm[2] = -1 : /* Do Not Override 2nd Terminator */

/* Write Initialination Message on Soope Screen */
koutput(0, &ErrorPlag, hit-mess, strlen(init-mass), 0,

add-05, dtrm) ;
if (Errorslag) err-handler(ErrorPlag);

11-35

Using the Call Interface In C KM-488-DD Programming Guide

Purpose

Syntax

Parameters

Returns

Designates another controller to be the Active Controller. The-488-DD
rmast be an &tive Controlls

int board-nt, err-code;
struct gads mgads[n];
kpasctl(board-nr, serr-code, cmygads):

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus address of the device to become the new
Active Controller. mygads is a pointer to an array of n (n can range from 1
to 15) structures of type gads. You must tailor mygads to your application.
mygads structure is defined in the include file km488dd.h and ls described in
section 11.1.

err code is a variable through which error codes are returned. If this varl-
ablex set to 0, then no error occurred. If it ls set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming If the KM-488-DD which is relinquishing its position as the Active Controller
Notes ls also a System Controller, it retains its status as System Controller.

1 l-36

KM-488-DD Programming Guide Using the Call Interface In C

KPASCTL (cont’d)

Example /* Address Group (will have one devioe @ 02) */
int ErrorFlag = 0;

struct gads add-02[2];

/* 1st instrument has BIB primary address 02 and no
seaondary address */

add~O2(0).primad = 2 ;
&_02[0).secad = -1 ;
add_02[1].primad = -1 ; /* no 2nd instrument */

/* Pass Control to a Peripheral KM-488-DD At BUS Address
02*/

kpasctl(O,CErrorPlag,add_02):
if (Errorslag) err-handler(ErrorBlag);

1 l-37

Using the Call Interface In C KM-488-DD Programming Guide

KPPOLL

Purpose Initiates a Parallel Poll. m-488DD KU&?&& Active Contru

Es NOTE: Many GPIB devices do not support parallel polling. Check your
device’s documentation.

Syntax int board-nr, err-code, pprtn:
kppoll(board-nr, &err-oode, cpprtn);

Parameters board nr is an integer which represents the board identification number.
This is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

Returns err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

pprtn is an integer variable which will contain an integer in the range 0 to
255 decimal. This integer indicates which Data Lines which have been
asserted (DIOl-DI08).

Programming None.
Notes
Example /* Integer For Parallel Poll Response */

int pp_lesp, Errorslag:

/* Conduot Parallel Poll And Print Result */

kppoll(0, OErrorPlag, rpp-rasp);
if (ErrorPlag) err-handler (ErrorFlag) :
printf("\nParallel Poll Response = %u\n",pp-resp);

11-38

KM-488-DD Programming Guide Using the Call Interface In C

Purpose

Syntax

Parameters

Configures the Parallel Poll response of a GPIB bus device. The KM-488-DlJ
tive Co&&

NOTE: Many GPIB devices do not support parallel polling. Check your
device’s documentation.

int board-nr, err-code, ppc-cfg;
struct gads mgads [n] ;
kppollfboard-nr, &err-oode, rmygads, ppc-cfg);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus address of the deviceces) to be confi-
gured. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file km488dd.h and is described in section
11.1.

ppc cfg is an integer which represents the Parallel Poll Response of the
devil to be programmed. This integer is of the format:

Bit 7 6 5 4 3 2 1 0

0 1 1 1 0 1 s 1 P2 Pl PO

1 l-39

Using the Call Interface in C KM-488-DD Programming Guide

KPPC tconf’d)

Where:

S is the parallel poll response value (0 or 1) that the device uses to
respond to the parallel poll when service is required. This bit is
generally set to 1.

NOTE: This value must correspond to the setting of the GPIB
bus device’s ist (individual status) bit. Refer to the Device’s
documentation for more information.

PRPI m is a 3-bit value which tells the device being configured which
data bit CD101 through DIO8) it should use as its parallel poll
response.

Returns err code is a variable through which error codes are returned. If this varl-
ables set to 0, then no error occurred. If it ls set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

11-40

KM-488-DD Programming Guide Using the Call Interface in C

Example /* Address Group (will have one device @ 1) l /

strwt gads add>1151 :
int ErrorFlag;
int mmenab; /* integer for parallel poll
enabling */

/* Set-up 1st instrument with primary address 1 (hex l),
no secondary address */

add-l[O].primad=Oxl;
add-l[O).secad=-1;
add-l[l].primad=-1; /* no 2nd instrument */

/* Configure Instrument At Address 01 To Assert D103
when SRQ is Asserted */

pp-enab = 106;
kppc(0, SErrorElag, add-l, pp-enab):
if (ErrorFlag) err_handler(ErrorFlag);

11-41

Using the Call Interface In C KM-488-DD Programming Guide

KPPD

Purpose

Syntax

Parameters

Returns

Disables the Parallel Poll response capability of the specified GPIB bus
device(s). mKM-488-DD must

int board-nr, err-code;
struct gads mgads[n]:
kppd(board-nr, ketr-code, Cmygads);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus address of the device(es) to be dls-
abled. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file km488dd.h and ls described in section
11.1.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

11-42

KM-488-DD Programming Guide Using the Call Interface In C

KPPD tcont’d)

Example /* Address Group (will have one device @ 1) */
int ErrcrPlag;
atruot gad8 add-1[15];

/* Sat-up 1st instrument with GPIB primary address 1
(BEX 1) and no secondary address */

add-l[O].primad=Oxl;
add-l[O].mcad=-1:
add-l[l].primad=-1; /* no 2nd instrument */

/* Disable Parallel Poll */

kppd(O,hErrcrPlag,add~l);
if (ErrorSlag) err-handler (ErrorFlag);

11-43

Using the Call Interface In C KM-488-DD Programming Guide

KPPU

Purpose

Synfax

Parameters

Returns

Disables the Parallel Poll Response of all GPIB bus device(s). The-

int board-nr, err-coda:
kppu(bcard-nr, cam-code);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming None.

Notes

Example int board-nr = 0, err-code = 0 :
kppu(bcard-nr, &err-coda) ;
if (err-code) err-handler(err-ocda) ;

11-44

KM-488-DD Programmlng Guide Using the Call Interface in C

Purpose

Syntax

Parameters

Returns

Returns the KM-48%DD’s status byte.

int board-nr, err-code, qatat;
kquikstattboard-nr, &err-code, Cqatat) ;

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

qatat is a pointer to the returned status integer. The status integer is of the
following format:

Bit 15-9 8 7 6 5 4 3 2 1 0

0 ADSC CIC PEND OET SRQ DEC LA TA DMA

Where:

ADSC

CIC

PEND

LET

SRQ

Address Status Change. If this bit is set to 1, a change in address
status has occurred (i.e., a Talker becomes a Listener, or a
Peripheral becomes an Active Controller).

Controller in Charge. If this bit is set to 1, the KM-48%DD is an
Active Controller.

SRQ Pending. If this bit is set to 1, the KM-488-DD has an SRQ
request pending.

Device Triggered. If this bit is set to 1, a GPIB Trigger com-
mand has been received.

Internal SRQ. If the KM-488-DD is an Active Controller and
this bit is set to one, a device is requesting service. If the KM-
488-DD is a Peripheral and this bit is set to one, then its SRQ
(issued by KREQLJEST) has not been serviced.

Device Cleared. If this bit is set to one, the KM-48%DD has
received a GPIB Clear command.

11-45

Using the Call Interface In C KM-488-DD Programmlng Guide

LA Listen Addressed. If this bit is set to one, the KM-488-DD is
addressed as a Listener and can accept data from the GPIB.

TA Talk Addressed. If this bit is set to one, the KM-488-DD is
addressed as a Talker and can output data to the GPIB.

DNA DMA. A DMA transfer is currently in progress.

err code is a variable through which error codes are returned. If this
vari&le is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming None.
Notes

Example int board-m- = 0, err-coda = 0, stat = 0;
kquikstat (board-m, berr-code, &q&at) ;
if (err-code) myerrorhandler(err-code) :
else

printf("QuicJk Status Returned (Sex) : %x", stat) ;

11-46

KM-488-DD Programming Guide Using the Call Interface In C

KREMOTE

Purpose

6%

Syntax

Parameters

Returns

Forces the GPIB bus device(s) to the remote mode (ignore the bus).

NOTE: The KM-488-DD must be a System Controller to execute this
command.

int board-nr, em-code;
etruct gads mgads[n];
kremote(board-nr, &err-code, Cmygade);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus address of the devicefes] to be put in
the remote mode. mygads is a pointer to an array of n (n can range from 1 to
15) structures of type gads. You must tailor mygads to your application.
mygads structure is defined in the include file km488dd.h and is described in
section 11.1.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

1 l-47

Using the Call Interface in C KM-488-DD Programming Guide

KREMOTE (cant’)

Programming 1.
Notes

If mygads does not specify an address (i.e., no addr is used), then
the GLIB REN (Remote Enable) line is asserted.Bevices will not be in
the remote mode until addressed to listen. If mygads contains address
then those devices will also be addressed to listen, so they will be put in
remote.

2. It is good programming practice to issue a Local Lockout to prevent the
device(s) from being returned to Local mode.

Example /* Address Group (will have one device @ 05) */

struck gads add-05[15];

/* Address Structure Bcr Device With BIB Address 05 */

Pad-05[O].primad = 5 :
adt-05[0].secad = -1 ;
add_05[1].primad = -1 ; /* no 2nd instrument */

/* Put Device In Remote State */

kremote (0, CErrorSlag, add-05);
if (Errorslag) err-handler(BrrcrPlag):

1 l-48

KM-488-DD Programming Guide Using the Call Interface In C

KREQUEST

Purpose

Syntax

Parameters

Returns

Sets the Serial Poll Response of a KM-488-DD which is a Peripheral.

int board-nr, err-code, sp;
krequest (board-m, herr~ccde, spp) :

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

ep is an integer in the range 0 to 2.55 which represents the serial poll
response of the device. This integer is of the following format:

Bit 7 6 5 4 3 2 1 0

DIOB rsv Dl06 Dl05 D104 Dl03 Dl02 DlOl

Where:

DlO1-S Bits 1 through 8 of this device’s Serial Poll Response Byte
(correspond to data lines DIOl-DI08X

ISV If this bit is 1, the KM-488-DD will generate a Service Request
(assert SRQ).

err-code is a variable through which error codes are returned. If this
variable is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming 1. The Active Controller can read the value of sp by serial polling the
Notes KM-488-DD. This will clear bit 6, if it was set.

2. Use KQUIKSTAT or POLL to check if the Peripheral has been serial
polled (checks the status of the SRQ bit).

11-49

Using the Call Interface In C KMdBB-DD Programming Guide

Example int Errorrlag = 0, pend = 0 :

/* Generate SEaQ and Wait for Controller to Respond */

krequeat(O,CErrorPlag,64);
printf (wWait For: Controller To Read SRQ\n\n”) :
do
1

kspoll(0, CErrorFlag, no-add, Spend):
if (Errorrlagg) arr_handler(ErrorFlag);
printf("%i\n I', pend) ;

} while (pend = 64);

11-50

KM-488-DD Programming Gulde Using the Call Interface in C

KRESET

Syntax

Returns

Performs a “warm” reset of the KM-488-DD and the GPIB bus.

int board-nr, err-code:
kreset(board-nr, berr-oode);

board nr is an integer which represents the board identification number.
This is G integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1. The KM-488-DD is reset to the following conditions:
Notes

l STOP l ERRORON
l DISARM l FILLNULL
l CONFIG l LOCAL
l ABORT l REQUEST 0 (If Peripheral)
l BUFFER INCREMENT l Clear CHANGE, TRIGGER, and
l DMA SINGLE CLEAR STATUS

l TIMEOUT10

It also clears all error conditions.

2. If the KM-488-DD is the System Controller, it will assert the GPIB IFC
(Interface Clear) line for at least 500 pets.

Example int board-m = 0, err-oode = 0 ;
kreset (board-m, &err-ooda) ;
if (err-coda) myerrorhaodler(err-code) ;

11-51

Using the Call Interface In C KM-488-DD Programming Guide

Purpose

Syntax

Parameters

Returns

Initiates data transfers between two non-Active Controller GPIB devices, by
unasserting the ATN line. TheI(M _ _ 488 DD WctActlve Con&&&~ . . to use this

int board-m, err-code;
kresume(board-nr, &err-code);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming This routine is normally called after a KSEND has addressed a talker and a
Notes listener. (See KSEND description.)

Example /* Drop Attention Line If Active Controller To
Start Data Transfer */

int Errorslag = 0 :
printf (“Drop Attention.\n”) ;

kresume (0, LErrorSlag) ;
if (ErrorFlag) err-handler (ErrorFlag) ;

11-52

KM-488-DD Programming Guide Using the Call Interface In C

Purpose

Syntax

Sends GLIB commands and data from a string.

int bosrd-nr, err-code, stringlen:
char fsr sendstr;
ksend(board-nr, herr-code, Gsendstr, stringlen);

Parameters board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

sendstr is a string which includes any of the following subcommands:
CMD, UNT, MTA, MLA, TALK, LISTEN, DATA, and EOI. Multiple sub-
commands may be specified; however, the length of the en& SEND com-
mand string cannot exceed 255 characters. The subcommands are as follows:

CMD -Sends information with the ATN line asserted. This indicates to
the bus devices that the characters are to be interpreted as GPIB bus
commands. The command may be sent as either a quoted string (e.g.,
’ COMEbAND’ 1 or as a numeric equivalent of an individual ASCII char-
acter (e.g., 13 decimal or &HOD hex for a Carriage Return). Hex values
must be preceded by &H. Multiple quoted strings or ASCII values
bytes may be sent if they are separated by commas (e.g., CMD
61,19,11,11,65,10,60~.

An EOI cannot be sent with this subcommand, because an EOI with
ATN asserted would initiate a Parallel Poll.

UNT - Untalks all devices by sending a GPIB IJNTALK command with
ATN asserted.

UNL - Unlistens all devices by sending the GPIB UNLISTEN command
with ATN asserted.

MTA - Designates the KM-488-DD to address itself to talk by sending
the GPIB MTA (My Talk Address) command with the ATN line
asserted.

11-53

Using the Call Interface In C KM-488-DD Programming Guide

KSEND (coni’d)

MLA- Designates the KM-488-DD to address itself to listen by sending
the GPIB MLA (My Listen Address) command with the ATN line
asserted.

TALK addr - Addresses another GPIB device or KM-488-DD to talk
by sending a GPIB TAG (Talk Address Group) command with the ATN
line asserted. addr is an integer representing the GPIB BUS device
address of the device to talk. This integer ranges from 00 to 30 decimal.

LISTEN addr - Addresses another GLIB device(s) or KM-488-DD(‘s)
to listen by sending a GPIB LAG (Listen Address Group) command
with ATN asserted. addr is an integer representing the GPIB BUS
device address of the device(s) to talk. This integer ranges from 00 to
30 decimal. Multiple listeners can be specified. If addr is not specified,
all other devices on the GPIB BUS will be designated listeners.

DATA - Sends information with the ATN line unasserted. This indi-
cates to the bus devices that the characters are to be interpreted as data.
This is the technique which is to be used to send device-dependent
commands. (See the IEEE-488 Tutorial in Appendix C for more infor-
mation.) The data may be sent as either a quoted string (i.e., ’ DATA’ 1
or as a numeric equivalent of an individual ASCII character (i.e., 30
decimal or &HOD hex for a Carriage Return). Hex values must be prec-
eded by &H. Multiple quoted strings or ASCII values bytes may be
sent if they are separated by commas (e.g., DATA 68, 65,84, 65).

This sub-command is useful when you are sending commands which
are unique to your interface.

11-54

KM-488~DD Programming Guide Using the Call Interface in C

KSEND (cont’d)

EOI - Sends information with the ATN line unasserted. EOI will be
asserted when the last character ls transmitted. This information is
interpreted as GPIB bus data and may be sent as either a quoted string
(e.g., ’ xyz’ 1 or as a numeric equivalent of an individual ASCII charac-
ter (e.g., 13 decimal or &NOD hex for a Carriage Return). Hex values
must be preceded by &H. Multiple quoted strings or ASCII values
bytes may be sent if they are separated by commas (e.g., SEND EOI
120,121,122).

stringlen is an integer between 0 and 255 which represents the length of
the SEND string.

Returns err code is a variable through which error codes are returned. If this vari-
able3 set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

2.

3.

4.

5.

6.

Typically, KSEND is used to send commands to initiate communication
directly between peripheral devices. For example, the KM-488-DD
driver might talk a scope and send a trace to a listened plotter.

The maximum length of the KSEND call, including any subcommands,
is 255 characters. To KSEND large amounts of data, use multiple
KSEND calls.

KSEND should only be used when a non-conforming device requires a
special command sequence or a non-standard GPIB command. Do not
use the KSEND command unless you are extremely familiar with GLIB.

The KM-488-DD must be the Active Controller to send commands. Any
KM-488-DD can send data.

If a DATA subcommand is not included in the KSEND string, be sure
to call KRESUME immediately after the KSEND. This is necessary
because the ATN line must be dropped so that the transfer will pro-
ceed.

Do not include the word SEND within the KSEND string, as you might
do in the File I/O SEND command.

11-55

Using the Call Interface In C KM-488-DD Programmlng Guide

KSEND (cont’d)

Example int ErrorP18g;
/* String To Listen Peripheral Devioe 02 And Talk*/
/* Peripheral Device 12 */

chu: talk_listen[) = ("UNT UNL LISTEN 02 TALK 12") ;
ksend(0, CErtorFlag, talk-listen, strlen(talk-listen));
if (ErrorRlag) err_handler(ErrorFlag);

kresume(O,CErzorFlag):
if (ErrorBlag) err-handler (ErrorFlag);

KM-488-DD Programming Guide Using the Call Interface in C

Purpose

3yntax

Parameters

Returns

If the KM-488-DD ls an Active Controller, KSPOLL will check for an SRQ or
conduct a serial poll. If the KM-488-DD is a Peripheral, KSPOLL will check if
the KM-488-DD’s SRQ has been serviced.

int board nt, err code;
unsigned znt spr[;];
struct gad8 mgads [nl ;
krrpoll (board-m, cerr-aode, cspr, Cmygads) ;

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus address of the device(es) to be dis-
abled. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file km488dd.h and is described in section
11.1.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

spr is an unsigned integer or an array of unsigned integers with an entry for
each address in mygads. The value of the integer is 0 to 255 and corre-
sponds to a byte with the following bitmap:

Bit 7 6 5 4 3 2 1 0

0108 SRQ 0106 0105 0104 0103 0102 DID1

1 l-57

Using the Call Interface In C KM-488-DD Programming Guide

KSPOLL(contW

Where:

DIO1-8 Bits 1 through 8 of this device’s Serial Poll Response Byte (corre-
spond to data lines DIOl-DIOB).

SRQ If this bit is 1, the SRQ (Service Request) line will be asserted to
request servicing. Otherwise, SRQ will not be asserted.

Bit 6 has the special significance of indicating an SRQ pending. The signifi-
cance of the other bits will be application dependent.

Programming 1. The most common used of KSPOLL ls for the KM-488-DD, as an active
Notes controller, to issue KSPOLL with mygads containing the address of a

single device. This addresses and serial polls the device and, upon
return, spr will contain the serial poll response of the polled device. If
the SRQ bit in spr is set, the device had issued an SRQ. The other bits
in spr will be device-dependent. Serial polling a device which is cur-
rently asserting SRQ will cause the device to unassert SRQ.

The string returned by KSTATUS or the integer status word set by
KQUIKSTAT can be checked to determine the presence of an SRQ
before a serial poll is conducted. If only one device is asserting SRQ,
the effect of issuing KSPOLL will be to clear the internal SRQ pending
“bit”. This is reflected in the returned by KSTATUS or KQUIKSTAT.
This is true even if the polled device is not issuing the SRQ. It is also
the case with multiple devices asserting SRQ when a device not issuing
an SRQ is polled. In this case, a subsequent use of KSTATUS or
KQUIKSTAT would not reveal a pending SRQ.

To aid in identifying which bus device(s) is currently requesting ser-
vice, a KM-488DD which is the Active Controller can serial poll as
many as 14 devices by issuing a KSPOLL call with mygads containing
the address of more than one device. In this case, spr should be an
array of unsigned integers with an element for each address. In this
case, KSPOLL will serial poll each addressed device and return the
serial poll bytes in the spr array. This ls a faster way for discerning
the source of an SRQ among several devices.

1 l-58

KM-488-DD Programming Guide Using the Call Interface In C

KSPOLL (cont’ct)

2. If the Kh4-488-DD ls a peripheral and KSPOLL ls called with mygads
equal to the no address structure (no-addr), spr will be the serial
poll response (sp) set by KRRQUEST - with the possible exception of
the SRQ bit, which may have disappeared as a result of an Active Con-
troller having serial polled the KM-488gDD since the last KREQUEST
call. In the instance of an Active Controller serial polling a peripheral
KM-488-DD, the peripheral KM-4%DD unasserts the SRQ line. For an
example, see KREQUEST. The state of the SRQ bit can also be deter-
mined from the string returned by KSTATUS or the integer status word
set by a KQUIKSTAT call.

3. If the KM-488-DD is the Active Controller and issues KSPOLL with
mygads equal to no-addr, spr will be 64 if a device is asserting SRQ
and 0 if not. This same result could have been determined from
KQUIKSTAT or KSTATUS.

Note that if this call is issued when a SRQ ls pending, it internally
“clears” the SRQ “pending” bit, even though the requesting device has
not been polled and is still issuing an SRQ. Thus, a second KSPDLL or
subsequent KQUIKSTAT or KSTATUS calls would not reveal an SRQ
pending.

Example /* Address Group (will have one device @ 05) */

atruct gads add-05[15];
int DevReady = 0x10 : /* Devioe Specific Value*/
int sbyt : /* integer to hold byte returned by

"spell" */

/* Address Structure For Device With GPIB Address 05 */
add-05[0] .primad = 05 ;
add_05[0].secad = -1 :
add_05[1].primad = -1 ; /* no 2nd instrument */
do
I
kspcll(0,6PrrcrElag,add_05,Csbyt);
if (ErrorSlag) err-handler (ErrorFlag);

) while (! (sbyt h DevReady)) ;

1 l-59

Using the Call Interface In C KM-488-DD Programming Guide

KSTATUS

Pllrpcse

Syntax

Parameters

Returns

Returns a character string describing the current operating state of the KM-
48%DD.

int board-m, err-code;
char etat [70] ;
kstatus (board-nr, &err-code, stat);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

stat is a character string which describes the current operating state of the
KM-488-DD. The string ls of the format shown in Table 11-2. stat should
be 75 bytes in order to contain the longest message that might be returned. If
it is too short, data will be written over other portions of the program causing
problems.

11-60

KM-488-DD Programming Guide Using the Call Intelface in C

Table 11-2. Status String

StnIthlg
Cd

Y of Cols. Name and Descrtptton

1 1 B- Tells if the KM-4tWDD is acting as an Active
Cnntrdler or Peripheral. Can be C or P where:

C = llw Khf-488-DD Is an Active Cntfmtler
p = The KM-48&DD Is a Pniphnal

3 2 Bus - Gives the IEEE-488 Bus Address of the KM-488-DD.
This is a hvdigit dedmal integer ranging from W to 30.

6 2 m - Indtcates If the device has changed
addressed state, I.e., tf it has cycled between the Talker, Listener, or
Active Confmfln states. Thts is reset whenever a STATUS ts read.
This can be one of the following:

GO = There has not been a change in the addressed status.

Gl = There has bean a change in the addressed status.

3 1 Current- Indicates if the KM&Xl-DD is currently
actlng as a Talker or Listener, or Is Idle. Can be T, L, or 1, where:

T = The KM-W-DD is a Talker
L = The KM-48~DD is a Listener
I = The KM-488-DD is Idle

II 2 $&&&g& Represents the current internal SRQ status where:

SO = SRQ not asserted
Sl = SRQ asserted

If the KW4tWDD is In the Active Controller mode, the internal SRQ
state indicates if a device Is asserting SRQ.

I the Ktv4WDD is acting as a Peripheml, the internal SRQ state Is set
by using the KREQUEST call. It is cleared by a serial poll fro,,, the
Active Controller and indtcates it Is asserting SRQ.

1 l-61

Using the Call Interface In C KM-488-DD Programming Guide

KSTATlWcont’d)

Std”g
CO1

I4

I8

21

24

27

Table 11-2. Status String

x of Cols. Name and Description

&&Q& - Indicates whether or not an error has occurred. The
three characters consist of the letter ‘E’ followed bv a two dieit error

1p to 45

code. (A list of these error codes Is provided In Abpendlx 6, An
error code of 00 indicates no error has occurred.

~ w Indicates if a IEEE-488 triigger command has ken
received or not. This is not “plated during DMA CONTINUE bans-
fcrs. Triggered State values are:

TO = No trigger command has been received.
Tl = A trigger command has been received.

~w - Indicates tf the IEEE Clear command has been received or
not. This is not updated during DMA CONTINUE transfers. Cleared
values are:

CO
1 f

No Clear command has been received
Cl -A Clear command has been recetved.

Transfer lndicatee if a data transfer is in progress. Values
whtch may appear are:

PO = No transfer
,‘I = DMA CONTINUE Transfer oavrring
F2 = DMA AUTOINITlALlZE Transfer occurring

mMessaee Contains the Error Message Text awodated with
the give” error code (EXX). These ermr messages are listed in
Appendix G.

Programming If the KM-48%DD is the Active Controller, the Service Request Status may be
Notes cleared (i.e, SO) as a result of a KSPOLL, even when the SRQ line is still

asserted. See the discussion in KSPOLL.

11-62

KM-488-DD Programming Guide Using the Call Interface in C

KSTATUS (cont’d)

Example void err-handler(int err-num)
I

/* For Status String Returned By "STATUS" Conmand *I
ohar at[75];

/* integer to hold Errol coda returned by each
CALL (0 = false = no error) */

int. ErrorFlag;

printf("\nError #%d -- Consult List In
KbMSSDD.E",err-mm);

katatus(0, &ErrorSlag, at);
printf("\n%s\n",st + 26); /* Print Error Message */
exit (err_num) ;

1

11-63

Using the Call Interface In C KM-488-DD Programming Guide

Purpose

Syntax

Paramefen

Reiurns

Stops a DMA CONTINUE transfer.

int board-nr, err-code:
kstop (board-nr, serr-code);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Pragrammlng 1. If the DMA CONTINUE transfer has been completed, a KSTOP will
Notes have no effect.

2. Use the KBUFD call to determine the actual number of characters
which were transferred before the KSTOP took effect.

Example int board-nr = 0, err-coda = 0 ;
kstop(board-nr, berr-code) ;
if (err-code) myerrorhandler(err-code) ;
else printf("DMA Halted") ;

11-64

KM-488-DD Programmlng Guide Using the Call Interface In C

KTERM

Purpose

Syntax

Parameters

Changes the default GPIB bus terminator(s) to be used in ENTER and/or
OUTPUT calls.

int board-nr, err-code:
unsigned int trra-list [41:
kterm(board-nr, cerr-code, &tna_list);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

term~list is an integer array which defines the GPIB bus terminators. See
Chapter 6 for more information regarding the use of GPIB bus terminators.
(terralist [41 is defined in the km488dd.h header file.1 If you wish to
modify the termlist [4] array, it is comprised of the following elements:

termlist IO 1 : Input/Output GPIB Terminators. Possible values
are:

-1

0

Change the Input Terminators.

Change both Input and Output
Terminators.

1 Change the Output Terminators.

termlist [l] : EOI detection/assertion. Possible values are:

0 No EOI assert/detect.
1 Assert/Detect EOI.

1 I-65

Using the Call Interface in C KM-488-DD Progrommlng Guide

KTERM (cont’d)

termlist 121: 1st GPIB bus terminator. Possible values are:

-1 fOxPPPl3 Don’t use first or second GPIB bus
terminator.

0 to 255 Use this ASCII character as the first
GPIB bus terminator instead of the
default first GPIB Terminator. The 0
- 255 decimal value represents the
ASCII value of the terminator charac-
ter to be used. (An ASCII Equiva-
lence Chart is provided in Appendix
A.)

termlist [3] : 2nd GPIB bus terminator. Possible values are:

-l(OxFFFF) Don’t use second GPIB bus termina-
tor.

0 to 255 Use this ASCII character as the sec-
ond GPIB bus terminator instead of
the default second GPIB Terminator.
The 0 - 255 decimal value represents
the ASCII value of the terminator
character to be used. (An ASCII
Equivalence Chart is provided in
Appendix A.)

Returns err code is a variable through which error codes are returned. If this
vari&le is set to 0, then no error occurred. If it is set to a value other than 0,
then an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

KTERM will change the default bus terminators set during software
installation, as directed by termlist.

11-66

KM-488-DD Programming Guide Using the Call Interface in C

KTERM (cont’d)

Example int ErrorFlag, trm_lst[4];

/* Change Configuration Termination to EOI Without
Termination Chataotets */

trrc~lst [Ol=O: /* change input and output termi-
natora */
trm-lat [l]=l; /* 1 indioates assert EOI */
tnr_lst[21=-1: /* -1 indioates no 1st terminator
*/
tnn~at[31=-1; /* -1 indicates no 2nd terminator
*/

/* Change Input and Output GPIB blesaage Termination
to EOI Only */

kterm(O,hErrorFlag,tzm~8t);
if (ErrorFlag) err_handler(ErrorFlag);

11-67

Using the Call Interface In C KM-488-DD Progrommlng Guide

KTO

Purpcse

Syntax

Parameters

Returns

Programming
Notes

Example

Changes the timeout period.

int board-nr, err-code;
int long tval:
kto(board-nr, &err-code,tval):

board nr is an integer which represents the board identification number.
Thii is z integer in the range 0 to 3 and represents the board to be pro-
grammed.

tval is the number of 53 ms. timer ticks to allow before a time-out.

err code is a variable through which error codes are returned. If this vari-
able% set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

1. To suppress Timeout checking, set tval to 0.

2. If a DMA CONTINUE transfer is in progress, the KM-488-DD will
check for timeouts only for the first byte that ls transmitted/received. Dur-
ing other types of transfers, the KM-488-DD will check for a timeout between
transmission of bytes.

You must be certain to check that a DMA CONTINUE transfer has been com-
pleted.

unsigned int ErrorFlag = 0 ;

/* Set Time Out To 15 Seconds (Approx 18.2 Tick Counts
*/
/* Per Second) */

kto(0, CErrorSlag, (unsigned long) 0x00000111):
if (ErrorFlag) err-handler(ErrorFlag);

1 l-68

KM-488-DD Programmlng Guide Using the Call Interface In C

KTR/GGER

Purpose

Syntax

Parameters

Returns

Triggers the specified device(s). ThnI(M-488-DD

int board-nr, err-oode:
struot gads mgads[n];
ktrigger(boatd-nr, Cerr-code, cmygads);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

mygads [n] contains the GPIB bus address of the devicefes) to be trig-
gered. mygads is a pointer to an array of n (n can range from 1 to 15) struc-
tures of type gads. You must tailor mygads to your application. mygads
structure is defined in the include file km488dd.h and is described in section
11.1.

err code is a variable through which error codes are returned. If this vari-
ables set to 0, then no error occurred. If it ls set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming The devices lilted in mygads will be triggered
Notes

11-69

Using the Call Interface In C KM-488-DD Programming Guide

KTRlGGfR (cont’d)

Example /* Address Group (will have one devise @ 12) */

atruct gads add_l2[15]:

/* Address Structure For Meter With GPIB Address 12 */

adt~l2[O].primad = 12 ;
add_12[0].secad = -1 ;
add-12[1].primad = -1 ; /* no 2nd instrument */

/* Trigger DMbl To Perform A Measurement */
ktrigger (0, &ErrorFlag, add_l2):
if (ErrorFlag) err-handler (ErrorFlag) ;

1 l-70

KM-488-DD Programming Guide Using the Call Interface in C

Purpose

Syntax

Parameters

Returns

Forces the KM-488-DD driver to wait until a DMA CONTINUE transfer has
been completed before returning control to the application program.

int board-nr, err~code;
kwaita(board-nr, herr_co&);

board-nr is an integer which represents the board identification number.
This is an integer in the range 0 to 3 and represents the board to be pro-
grammed.

BJX code is a variable through which error codes are returned. If this vari-
able5 set to 0, then no error occurred. If it is set to a value other than 0, then
an error did occur. The error codes are listed in Appendix G.

Programming 1.
Notes

Time out checking, if enabled, is performed while KWAITCing.

2. This is an & wait. The following commands perform an
implirit wait:

. KABORT l KPI’OLL DISABLE

. KCLEAR . KI’I’OLL UNCONFIG
l KENTER l KREMOTE
. KLOCAL l KREQUEST
. KLOCAL LOCKOUT l KRESUME
. KOUTI’UT l KSEND
. KPASS CONTROL
. KPPOLL
. KI’I’OLL CONFIG

l KSPOLL
l KTRIGGER

int board-m = 0, err-code = 0 ;

kwaitc(board-nr, &err-code) ;
if (err-code) myerrorhandler(err_code) ;
else printf("DMA Continue Completed") :

11-71

Using the Call Interface in C KM-488-DD Programming Guide

This page intentionally left blank.

11-72

KM-488-DD Programming Guide Warranty Information

CHAPTER 12
WARRANN INFORMATION

12.1 WARRANN

All products manufactured by Keithley MetraByte are warranted against defective materials
and workmanship for a period of one year from the date of delivery to the original pur-
chaser. Any product that is found to be defective within the warranty period will, at the
option of Keithley MetraByte, be repaired or replaced. This warranty does not apply to
products damaged by improper use.

CAUTION

Keithley MetraByte Corporation assumes no liability for damages consequent to the use
of this product. This product is not designed with components of a level of reliability suit-
able for use in life support or critical applications.

12-1

Warranty Information KM-488-DD Programming Guide

12.2 RETURN TO FACTORY INFORMATION

Before returning any equipment to the factory for repair, you must ftrst call the Technical
Support Department at (508) 880-3000. They will try to diagnose and solve your problem
over the phone. If they ascertain that the unit has to be returned to the factory for repair,
they will issue a Return Material Authorization (RMA) number. Note that if the board is to
be repaired under warranty, the Technical Support Department will need your invoice num-
ber and the date the board was purchased. Please reference the RMA number on any corre-
spondence regarding the board.

When returning the Board for repair, please include the following information:

1.

2.

3.

4.

A brief description of the problem.

Your name, address, and telephone number.

The invoice number and the date when the board was purchased.

Repackage the board in its original anti-static wrapping (Handle
it with ground protection.) and ship it back to:

Repair Department
Keithley MetraByte Corporation
440 Myles Standish Boulevard
Taunton, Massachusetts 02780

Telephone:(508)880-3000
Telex:503989

FAX:(508)880-0179

Be sure to reference your RMA number on the outside of the package!

12-2

KM-488-DD Programming Guide Appendix A
ASCII Code Equivalence Chart

AX// CODE EQUWALENCE CHART

EOT (End of Text)
ENQ (Enquiry)

ACK (Acknowledge)

BACKSPACE
HT (Horizontal Tab)

LF (Line Feed)
VT (Vertical Tab)
FF (Form Feed)

CR (Carriage Return)
SO (Shift Out)

SI (Shift In)
DLE (Data Link Escape)

DC1 (Data Control I)
DC2 (Data Control 2)
DC3 (Data Control 3)
DC4 (Data Control 4)

NAK (Not Acknowledge)
SYN (Synchronous Idle)

ETB (End of Trans. Blank)
CAN (Cancel)

EM (End of Medium)
SUB (Substitute)

ESC (Escape)
ES (File Separator)

GS (Group Separator)
RS (Record Separator)

US (Unit Separator)
SP (Space)

10 16
I1 17
12 18
13 19
14 20
15 21
16 22
17 23
18 24
19 25
1A 26
18 27
1c 28
1D 29
1E 30
1F 31
20 32

f (Left Parenthesis)
1 (Right Parenthesis)

1
2
3
4
5
6
7
8
9

: (Colon)
; (Semi-Colon)
< (Less than)

= (Equal)
> (Greater than)

? (Question Mark)
Cd (At, sign) per

A

31 49
32 50
33 51
34 52
35 53
36 54
37 55
38 56
39 57
3A 58
38 59
3C 60
3D 61
3E 62
3F 63
40 64
41 65

A-l

Appendix A
ASCII Code Equivalence Chart

ASCII CHARACTER

B
C
D
E
F
G
H

;
K
L
M
N
0

;
R
S
T
u
V
W
X
Y
Z

[(Left Bracket)
\ (Backslash)

] (Right Bracket)
h (Caret)

_ (Underline)
’ (Accent, Grave)

l

FE -
42
43
44
45
46
47
48
49
4A
4B
4c
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
58
5c
5D
5E
5F
60
61
62

=

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
a

KM-488-DD Programming Guide

ASCII CHARACTER

i

e

f

:
i

ii
1

m
n
0

P
9
r
S

t
U

V
W

X

Y

I (LeftZBrace)
I CVertical Slash)
) (Right Brace)

- (Tilde)
DEL (Delete)

-
1EC

63 99
64 100
65 101
66 102
67 103
68 104
69 105
6A 106
68 107
6C 108
6D 109
6E 110
6F 111
70 112
71 113
72 114
73 115
74 116
75 117
76 118
77 119
78 120
79 121
7A 122
7B 123
7c 124
7D 125
7E 126
7F 127

A-2

KM-488-DD Programming Guide Appendix B
IEEE-488 Tutorial

IEEE-488 TUTORIAL

The evolution of electronics over the past few decades has lead to concepts and implemen-
tations of test/measurement and control systems of continually increasing complexity and
sophistication. For example, measurement started out as “go no go” tests equivalent to
plugging a lamp into an electrical outlet to determine if the outlet is “hot”. Next, meters
appeared which yielded a single number characterizing a quantity and then oscilloscopes
which displayed how signals varied with time. Today, logic and spectrum analyzers allow
us to further manipulate and display the data in a variety of specialized ways.

At the same time, our expectations on collecting, saving and manipulating the results of
measurements has escalated from writing down meter readings and hand calculations to
automated storage of and complicated computations on large numbers of measurements.
Many instruments have these capabilities “built-in”; thus freeing the system controller from
having to handle complex calculations. A modem test/measurement or control system can
be represented as:

MEASURING
SOURCES t

DEVICE

%OCESS
b DEVICES

A
A

4

Y
v

CONTROL
and STORAGE
COMPUTATION

A typical test would be to measure the “frequency response” of a device. The source would
be capable of supplying a sine wave of varying frequency to the input of the device and the
measuring device would measure the magnitude and phase of the output. In an automated
system, the CONTROL box would step the source through a range of frequencies. At each

B-l

Appendix B
IEEE-488 Tutorial

KM-488-DD Programming Guide

frequency the control would request the measuring device(s) to return a value and the
results could be stored and used to calculate the “transient” response of the device, for exam-
ple.

Traditional test instruments have provided the basic measurement functions for years. For
example, there are oscillators which generate sine waves of various frequencies and meters
to measure responses. The essence of today’s system is that the different functional units of
the system can communicate with each other as required and be run automatically by a con-
troller. To accomplish this goal, a bus has been defined which allows instruments to be
interconnected and to communicate with each other through a standard hardware
arrangement. This bus is often referred to as the GENERAL PURPOSE INTERFACE BUS
(GPIB). It is also identified as the IEEE-488 bus because it has been standardized in specifi-
cations from the Institute for Electrical and Electronic Engineers.

B. 1 TOPOLOGY

An IEEE-488 system allows different manufacturers’ devices to be connected. Systems can
be connected following a star or linear-type topology or using a combination of both. The
system should adhere to the following constraints:

. No more than 15 devices can be connected by a single bus.

. The total transmission length cannot exceed 20 meters or 2 meters times the number
of devices (which ever is less).

. The data rate through any signal line must be less than or equal to one megabyte
per second.

8.2 THE SYSTEM

The simplest IEEE-488 system consists of a single device sending data to another, such as a
meter outputting data to a printer. A more typical IEEE-488 bus system (See Figure B-1.) is
comprised of up to 15 devices, each of which acts as one or more of the following: Control-
ler, Listener, and Talker.

There are a variety of interface functions which GPIB devices can support at various levels.
The IEEE standard recommends that a label listing the device codes be placed on the instru-
ment near the IEEE connector. Codes consisting of 1 or 2 letters indicating the function type

B-2

KM-488-DD Programming Guide Appendix B
IEEE-488 Tutorial

followed by a number indicating the level of support are used to characterize the device. If
the number is 0, it means that the function is not supported. Each device‘s applicable device
codes should be listed within its manual or specification. Appendix D lists the device codes.

Figure B-I. Typical System

Listeners

A Listener is any device which is able to receive data when properly addressed. There can
be up to 14 active listeners on the bus concurrently. Some devices can also be a talker or
controller; however, only one of these functions can be performed at a time.

Talkers

A Talker is any device which can transmit data over the bus when properly addressed.
Only one device can transmit at a time. Some devices can also be a listener or controller;
however, a device can perform only one of these functions at a time.

Controllers

Most IEEE-488 systems contain at least one IEEE-488 Controller (e.g., the KM-488 board).
There may be more than one Controller per system, but only one can be active at any given
time. This function is very important because the Active Controller has the ability to medi-
ate all communications which occur over the bus. In other words, the Active Controller des-

B-3

Appendix B
IEEE-488 Tutorial

KM-488-DD Programming Guide

ignates (addresses) which device is to talk and which devices are to listen. The Active
Controller is also capable of relinquishing its position as Active Controller and designating
another Controller to become the Active Controller.

There is always one System Controller in an IEEE-488 system. The System Controller is
defined at system initialization either through the use of hardware switches or by some type
of configuration software, and usually would not be changed. This System Controller can be
the same controller as the one which is the current Active Controller or an entirely different
one. If the controller is both a System Controller and an Active Controller and it passes con-
trol to another controller, the system controller capability is not passed along with it.

The System Controller has the unique ability to retrieve active control of the bus or to enable
devices to be remotely programmed. It takes control of the bus by issuing an IFC (Interface
Clear) message. The System Controller issues this message by asserting the IFC Control line
(See section B.3.1 for a period of at least 200 psecs.

Likewise, devices cannot be put into the remote state (can be programmed from the GPIB
bus rather than from the normal controls) unless the System Controller is asserting the REN
(Remote Enable) line. (See section 8.3.) With REN asserted, a device will go into the remote
state the first time it is addressed to listen by any Active Controller. All the devices will
return to local control if the System Controller unasserts REN.

If an IEEE-488 device is not a System Controller or an Active Controller, then it will be
referred to as a device. In this capacity, it can be idle, act as a talker and/or listener, when it
has been addressed or unaddressed by the Active Controller.

Figure B-2. IEEE-488 Bus Connector

B-4

KM-488-DD Programming Guide Appendix B
IEEE-488 Tutorial

5.3 BUS LINES

The IEEE-488 bus ls a parallel bus containing 24 lines, 16 of which are signal lines. (See Fig-
ure B-2.) These 16 lines consist of eight data lines, five control lines, and three handshake
lines. The manner in which the bus lines are used is described in the section 8.5

Data Lines

The Data Lines CD101 through DI08) are used to convey messages such as: device
addresses, Parallel Poll Responses, IEEE-488 Interface Commands, or Data/Device Dependent
Commands. They are discussed extensively in section 8.4.

Control Lines

The control Lines perform a variety of control, request, and coordinating functions which
assure the orderly flow of information on the bus. The IEEE standard refers to any bus
activity as being a “message”. Messages used to control bus functions, as opposed to send-
ing data between devices, are called interface messages. Asserting a control line is said to
send a uniline interface message because a specific effect usually occurs as the result of the
assertion. Table B-l briefly describes the control lines and lists their name, associated acro-
nyms and functions. Their functions will be elaborated in subsequent sections.

B-5

Appendix 6
IEEE-488 Tutorial

KM-488-DD Programming Guide

Table B-Z. Control Lines

AC~O”~ Line Name FUldiOll

ATN Attention This line can only be aaPcrted/unasserted by the Actiw Controller. It designates
whether the cwrcnt data on the data ,,,,ea is data 01 a mmmand. When this line
is set low(truc), it indicates that the information to follow represents commands
and/or addresses. When this line is set high (false), the&&&alker is hansmit-
ting device-dependent data to all x& listeners.

This line Is also used with EOI to conduct a parallel poll

EOI End or Identify Signals that the last data byte of a multibyte sequence is being transferred. This
line is also wd in conjunction with the ATN line to initiate parallel polling.

IFC Interface aear When this line is asserted (set low), the bus is cleared and all talkerslltsteners
are placed in an idle state. This is a ptie of 2M) p or more. This line can only be
asserted by the System C.,ntmller.

REN Remote Enable If this tine Is asscrted, bus devices can bc programmed via IEEE bus commands
issued from an active talker. IIis line can only be asserted by the System Control-
ler.

SRQ Service Request This lbw when asserted indicates that service is required from the Actioe Confrol-
ler. SRQ can be asserted by any bus device which supports the function.

Handshake Lines

There are three Handshake Lines which are used to coordinate data transfers between talk-
ers and listeners on the bus. Table B-2 briefly describes the Handshake lines. It lists their
names, associated acronyms, and functions.

Table B-2. Handshake Lines

Acronym Line Name I Function

DAV Data Valid This signal is used to inform the system that valid data is ready for transmission.

NDAC Not Data Accepted Indicates if all devices acccptcd the data or not. As each listener receives data, it
will set its NDAC line high. Once all intended listeners have accepted the data,
the NDAC line to the talker will be set high.

NRF!J Not Ready For Data lndiotcs whether or not the listeners are ready to rcaive data. When each
listener is rcadv. it sets its NRFD line hiti.

B-6

KM-488.DD Programming Guide Appendix B
IEEE-488 Tutorial

Section 8.4 describes the use of the handshaking lines. Figures B-3 and B-4 illustrate the
Handshaking Sequence.

NDACACCEPTOR i i I

III I
I-1 to 11 12

Figure B-3

I II I
0 14 1s IS

Handshake Timing

B-7

Appendix B
IEEE-488 Tutorial

KM-488-DD Programming Guide

Figure B-4. Transmission of Data from Talker to Listener

B-8

KM-488-DD Programming Guide Appendix B
IEEE-488 Tutorial

Preliminary: Source checks for listeners and places data byte on data lines.

t.,: All acceptors become ready for byte. NRFD goes high with slowest
one.

t,: Source validates data (DAV low)

tl: First acceptor sets NRFD low to indicate it is no longer ready for a
new byte.

t2: NDAC goes high with slowest acceptor to indicate all have
accepted the data.

t3: DAV goes high to indicate this data byte is no longer valid.

trl: First acceptor sets NDAC low in preparation for next cycle.

t,: Back to t, again.

t6: Back to b again.

All devices that are to be “sources” i.e., be talkers and send data on the GPIB must be able to
perform the “source” handshake functions of responding to the NRFD and NDAC lines and
controlling the DIO lines and DAV as described above. In terms of the codes of Appendix
D, they must have SHl capability. Devices listed as SHO cannot act as sources.

Likewise, all devices which are to be “acceptors”, i.e. be listeners and receive data on the
GPIB must be able to perform the “acceptor” handshake of responding to the DIO lines and
DAV and controlling NDAC and NRFD as described above. They must have the AH1
capability as defined in Appendix D. Devices listed as AH0 cannot act as acceptors.

8.4 BUS FUNCTIONS

The purpose of the IEEE-488 Bus is to provide a mechanism for the orderly flow of informa-
tion between bus devices. To accomplish this, the IEEE-488.1 specification refers to two
types of messages as occurring on the bus. This first is interface messages which manage
the interface itself and the second are device dependent messages which are used to transfer
information between bus devices.

B-9

Appendix B
IEEE-488 Tutorial

KM-488-DD Programming Guide

Interface messages are summarized in Appendix C and can be placed in two groups. The
first group consists of the so-called “Uniline Interface Messages” introduced in B.3 which are
sent by the controller asserting the special control lines. The second group, the so-called
“multiline interface messages”, which are treated separately in section 8.5. The Active Con-
troller sends multiline interface messages by asserting the ATN line and placing data on the
DIO lines. The multiline interface messages are broken up into 5 groups: Addressed,
Universal, Listen Address Group, Talk Address Group, and Secondary Address Group.

The second type of message is the device-dependent message and is sent by the Active Talker
by placing data on the DIO lines (the ATN line will not be asserted). Device-Dependent
messages are not discussed in this section.

The major functions performed by these messages are: System Initialization and Control,
Device Addressing, Sending and Receiving Data/device Commands, Requesting Service,
Polling and Triggering. These functions are described within this section.

System Initialization

When a typical IEEE-488 system is initialized, there will be one device which will be the Sys-
tem Controller. The System Controller will usually assert the Interface Clear line (See section
8.3.) for at least 200 pets. to make sure it has control of the IEEE-488 bus and that no device
is addressed to be an active talker or active listener. The System Contrder will then unassert
IFC.

Typically the system controller will assert the Remote Enable line (REN , See Section 8.3) so
that bus devices will go to remote when they are addressed to listen. When a device is in
remote it can receive instructions remotely over the GLIB bus which will program its func-
tions and ranges rather than locally from panel controls on the device. The controller might
also issue a Local Lockout message (LLO, see Section B.5) which prevents an operator from
returning a device to local control. In this way, the devices are completely under bus con-
trol.

All Devices can be put back into local by the System Controller unasserting REN or by any
active controller issuing a Go To Local (GTL See section 8.5) message to specific devices. In
the latter case, devices will go back to remote the next time they are addressed to listen. The
remote/local capability of a device is specified by the RL code of Appendix D.

B-10

KM-488-DD Programming Guide Appendix B
IEEE-488 Tutorial

The Active Controller can also issue device clear commands which will return the device(s) to
its initial power-up programming state, for example, its original range and function. In
some cases this means returning to factory-set default values while in others it means
returning to previously saved operator-chosen settings. The functionality of a device is spe
cified by its DC functionality of Appendix D.

Passing Control

Control can be passed to another controller by addressing a prospective controller to listen
and then issuing a Take Control (TCT, See Section 8.5.) message. Care must be taken that
the prospective controller is capable of accepting control because generally no error will be
detected if it is not. Having issued the message the previous controller becomes an inactive
controller and a normal bus device. A system controller can always seize control by assert-
ing IFC.

The function codes of Appendix D which describe controller function start with C. Multiple
numbers are used. CO indicates no controller capability, whereas Cl-C5 would indicate
complete capability.

Addressing u Device

Devices are addressed by the Active Controller issuing multiline interface messages from
either the talk address group (TAG) or listen address group (LAG) as described in section
8.5. Normally, up to 15 IEEE bus devices can be configured within one IEEE-488 system. In
order to avoid data conflicts, each device is assigned a unique primary address in the range
0 to 30. Some devices can support more than one address although usually the device will
present only one electrical load to the bus.

Because there can only be one talker at a time, a talker will be unaddressed automatically
when another device is addressed to talk. However, there will be times when the controller
will want to untalk a device without addressing another. It will always be necessary to
unaddress listeners that no longer should be listening because it is possible to have any
number of devices listening at the same time. Within each of the LAG and TAG groups is
either an unllsten or an untalk command. The talk and listen function codes of talkers and
listeners as listed in Appendix D begin with T and L respectively.

Secondary addresses are used to extend the total number of addresses on the bus. (Second-
ary addresses also must fall within the range 0 to 31.) Devices which employ a secondary

B-11

Appendix B
IEEE-488 Tutorial

KM-488-DD Programming Guide

address in addition to their primary address and are said to be extended talkers and/or
extended listeners. The function codes describing these functions are TE and LE and listed
in Appendix D.

Frequently secondary addressing is used to access additional operating modes on a single
device or a specific device within a rack of devices where the rack is assigned the primary
address. In either case, the electrical load to the IEEE-488 bus should only be the equivalent
of 1 device. To access such a device, a command from the LAG or TAG group would be
issued for the primary address and followed immediately by a command from the second-
ary command group as described in Section 8.5.

w NOTE: Most IEEE instruments are assigned a device address by setting hard-
ware DIP switches, front panel controls, or by running some type of setup
software.

Sending and Receiving Data/Device Commands

Data/Device Commands is a message which is sent over the bus with ATN unasserted. For
example, a multimeter might send the results of several readings to a printer or display.
Data can be sent by any device on the bus which is a talker.

The Device Commands control what tasks the IEEE-488 instrument performs. For example, a
sequence of these commands might set a meter to a particular measuring range. These com-
mands are device-specific. That is, the command required to set the voltage range of one
manufacturer’s multimeter cannot necessarily be used to set the voltage range on a
multimeter produced by another company. The device(s) which is addressed to listen can
distinguish Device Commands from data because certain character or command sequences
are included.

Newer devices which conform to the IEEE-488.2 and or SCPI (Standard Commands for Pro-
grammable Instruments) specifications may have more standardized command sets. Con-
sult the documentation accompanying the device for its command set. Device Commands can
be issued by any device on the bus which is a talker.

B-12

KM-488-DD Programming Guide Appendix B
IEEE-488 Tutorial

Message Terminators
A Message Termination scheme is required if messages of unknown length are to be sent in
order for the receiving device to know when the data transmission has ended. One way of
terminating a message is to employ the End or Identify (EOI) line. (See Section 8.51 The
device transmitting the data will assert the EOI when it puts the last data byte on the DIO
lines. The receiving device then recognizes that the byte it receives with the EOI will be the
last.

As second termination scheme is for the transmitting device to append one or two charac-
ters (which would normally not appear in the message) to the end of the message. The char-
acters causing a carriage return and line feed are frequently used where the message is a
string of text. If the message consists of values between 0 and 255 then termination
characters cannot be used because they might be mistaken for data (Carriage return = 13,
line feed = 10). In this case, an EOI would have to be used or frequently the number of data
bytes to be sent is known so that the receiver could accept that amount of data.

Usually devices provide some flexibility in the terminators they support. By means of
switches or programming one can choose whether or not termination will be used and if so,
whether termination characters and/or EOI will be used.

TRlGGfRlNG

The Active Controller can issue the addressed multiline message of Group Enable Trigger
(GET) which will cause devices to start executing some function such as to make a measure-
ment. This allows the active controller to synchronize various activities. Whether a device
support trigger functions is defined by its DT capability code of Appendix D. See Section
8.5 for further information on GET.

REQUESTING SERVICE

The service request line (SRQ) introduced in Section 8.5 provides a means for bus devices to
request service from the Active Controller. When a device requires service, as for example,
when it has completed a task, the device will assert the SRQ line. All bus devices share the
SRQ line so it will be necessary for the controller to use the polling techniques of the next
section to determine which device is responsible for the SRQ. It is also because a device will
not unassert the SRQ line until it has been serially polled.

The service request capability of the device is defined by the SR code of Appendix D and the
controller must have C4 capability in order to respond to the SRQ.

B-13

Appendix B
IEEE-488 Tutorial

KM-488-DD Programming Guide

Polling

Polling is used on the IEEE-488 bus to ascertain if a device needs service. For example, if it
needs to pass data to the Active Controller. There are two types of polling which are used on
the IEEE-488 interface: serial and parallel. Often, they are used in combination. For exam-
ple, sometimes parallel poll is followed by a serial poll. This enables the Active Controller to
determine the type of service needed by a device.

Serial Polling

Serial polling permits the Active Controller to find out whether any device(s) needs service.
The Active Controller serial polls one device at a time by first issuing the serial poll enable
(SPE) multiline message of Section 8.5. Now when a device is addressed to talk the device
will return a special status byte. If the bit returned on DIO-7 is 1, the device requires ser-
vice. The other bits indicate user-defined status and can indicate why the SRQ was asserted.
The controller can conduct a serial poll even when an SRQ is not generated in order to
determine the status information. If a device has asserted SRQ, it must be polled before it
will release SRQ.

At the end of a serial poll, the controller will issue the serial poll disable (SPD) message of
Section B.5 and the next time the device is addressed to talk, it will return to its normal data.

Devices must have the talker (T) or extend talker (ET) capability as listen in Appendix Din
order to return a status byte.

Parallel Polling

Parallel Polling allows the Active Controller to check the status of up to 8 devices (or groups
of services) at the same time to determine which device(s) may require service. When the
Active Controller asserts both the ATN and EOI lines, devices which support parallel polling
will return a status bit via one of the DIO lines. If the parallel poll indicates a device needs
attention, the Active Controller may have to conduct a serial poll of the device to determine
the reason the device requires service.

There must also be some mechanism to clear the bit the device returns for a parallel poll.
Frequently this bit is tied to the SRQ request. In this case, a device generates a SRQ at the
same time it sets the bit that will be returned by the parallel poll. The Active controller con-

B-14

KM-488-DD Programming Guide Appendix B
IEEE-488 Tutorial

ducts a parallel poll to rapidly determine the device requiring service and then a serial poll
to gain more information about the cause of the SRQ and to clear the SRQ and the bit that
will be returned by parallel polling.

Depending on the device the DIO line assignment will be allocated by the controller or by
switches or jumpers on the device. If the device can be assigned a line by the controller, the
controller will do so by issuing a parallel poll configure fPPC1 interface message followed
by a parallel poll enable (PPE) interface message.

A relative few number of devices support parallel poll. Their capability including the man-
ner of DIO assignment is specified by the PI’ code Appendix D. Only certain controller C
codes support parallel poll.

B.5 BUS INTERfACE COMMANDS

Bus commands are issued by the Active Controller. There are five types of bus commands:

. Universal

. Listen Address Group (LAG)

. Talk Address Group (TAG)

. Addressed Commands

. Secondary Commands

These are described within this section. Also refer to Appendix C for an ASCII table con-
taining a complete interface message summary.

Universal Commands

Devices on the bus respond to these commands whether they have been addressed or not.
However, the commands may affect different devices in different manners. Note too that all
commands are not necessarily supported by all devices. The interface capability codes of
Appendix Dare used to specify the functionality of a device. In order to issue one of these
commands, the Active Controller must go through the following sequence:

. Assert the ATN line.

. Place the desired command byte on the data bus.

Descriptions of the Universal Commands are shown in Table B-3,

B-15

Appendix B
IEEE-488 Tutorial

KM-488-DD Programming Guide

Table B-3. Universal Commands

Acronym Command Name Description

DCL Device Clear This command re-Inltlalizes the device. This is device-dependent.

LLO Local Lockout This command disables the device’s front panel LOCAL button.

SPE Serial Poll Enable This command enables serial poll mode. When addressed to talk, the device will
return a single status byte.

SPD Serial Poll This command disables serial polling. Upon being addressed, a device will
Disable rehun to its normal state and begin outputting device-dependent data.

PPIJ Parallel Poll Unconfi- This command resets all parallel poll devices to the idle state (They will not
gure respond to a parallel pall.).

Talk Address Group (TAG)

The Talk Address Group (TAG) message defines the specified device to be an active taker.
Only one device can be an active talker at a time. The message contains the primary address
(0 to 30) of the device which is to talk. This address consists of a primary address in the
range 0 to 30. (Address 31 can be used to UNTALK all devices.) This may be accompanied
by a secondary address in the range 0 to 31.

Generally, when an Active Controller issues a TAG command, it:

. Asserts the ATN line.

. Untalks all devices.

. Sends a TAG.

. Unasserts the ATN line.

. The talker then sends its data.

Listen Address Group (LAG)

The Listen Address Group (LAG) command defines the specified device(s) to be an Active
Listener. A command from this group contains the bus address of the device to be listened.
This address consists of a primary address in the range 0 to 30. This may be accompanied
by a secondary address in the range 0 to 31. Note that sending a primary address of 31 will
unlisten all devices. Generally, when an Active Controller issues a LAG command, it:

B-16

KM-4%DD Programming Guide Appendix B
IEEE-488 Tutorial

. Asserts the ATN line.

. Unlistens all devices.

. Sends a LAG with the address of the device(s) to listen.

. Unasserts the ATN line.

. Sends data.

Addressed Commands

These commands are issued by the Active Controller and affect only those devices which
have been properly addressed. Not all devices support these commands.

In order to issue an Addressed Command, the Active Controller must go through the following
sequence:

. Assert the ATN line.

. Address the device(s) to listen.

. Place the command byte on the data bus.

The addressed commands are shown in Table B-4.

B-17

Appendix B
IEEE-488 Tutorial

KM-488~DD Programmlng Guide

Table B-4. Prima y Addressed Commands

Acronym
GET

SDC

CTL

Command Name Description

Group Execttte Triggc, This command allows you to trigger a group of devices concurrently.

Selected Device Clear Tlds initializes the addressed device to its reeet state. This is device-dependent.

Go to Local This command allows the device to be programmed locally, i.e.. through the
switches on the front panel. Once the device is addressed to listen again, It will
exit the local mode.

PPC Parallel Poll Configure When combined with the we of the secondary commands PI’E and PPD, this
command enables/disables the addressed device to be remotely parallel polled
by the controller.

KT Take Control This allows the &I& controller to pass control to another controller on the
system. The second controller then becomes the & controller.

Secondary Commands

Secondary commands are sent immediately following a PI’C (Parallel Poll Configure), TAG
(Talk Address Group), or LAG (Listen Address Group). Secondary commands following a
member of the TAG or LAG cause the device identified by the primary and secondary
address to be an &ye talker or listener. The sequence would be:

. Assert the ATN line.

. Place a member of the TAG or LAG group containing the primary address on the
data bus.

. Place a secondary command containing the secondary address on the data bus.

. Unassert the ATN line.

Secondary commands following PPC are divided into the Parallel Poll Enable group and the
Parallel Poll Disable group. Recall that PI’C requires devices to be addressed as listeners.
The sequence in this case will be:

. Assert the ATN line.

. Address the appropriate device(s) to listen (including a secondary address if
required).

B-18

KM-48B-DD Programming Guide Appendix 6
IEEE-488 Tutorial

. Place PPC on the data lines,

. Place a command from the PI’C group (to enable) or from the PPD group (to dis-
able) on the data lines.

. Unassert the ATN line.

Any member of the PPD group will disable the addressed device(s) from responding to a
parallel poll. To enable a device(s) to respond to a parallel poll, the 3 lowest bits of the PPE
command form a code of 0 to 7 which tells the device to control the data line 1 to 8 when a
parallel poll is conducted. Setting the 4th lowest bit of the PPE command tells the device to
assert its assigned line when service is required while setting the 4th lowest bit low will
cause the device to assert its line when service is not required.

B.6 REFERENCE DOCUMENTS

If you require more detailed information than this tutorial provides, refer to the following
documents:

. ANSI/IEEE 488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation

. ANSl/lEEE 488.2-1987, Codes, Formats, Protocols and Common Commands for
Use with IEEE 488.1-1987

The above two documents are available from:

IEEE Service Center
445 Hoes Lane
Piscataway, N.J. 08855
@00)67MEEE

B-19

Appendix B
IEEE-488 Tutorial

KM-48&l-DD Programming Guide

. Standard Commands for Programmable instruments Manual

This document is available from:
SCPI Consortium
8380 Hercules Drive, Suite I’3
La Mesa, California 92042
(619)697-5955

E-20

KM-488-DD Programming Guide Appendix C
IEEE Multiline Commands

IEEE MULTILINE COMMANDS

\CG+“CG+-LAG --t--

C-l

KM-488-DD Programming Guide Appendix D
Device Capability Codes

DEVKX CAPABILITY CODES

AH Function Allowable Subsets

ldentilicalion Desuiplion Other Function Subsets
Rmired

SH Function Allowable Subsets

ldentilication Description Other Function Subsets
Reouired

SHO NOW3
SH1 Tl-TB,TEl-TEB, or C5-C26

TFunction Allowable W

ldentilication Description

TO
T,

Basic
%P’

Talk
Talker Only

Mode
N N N
Y ” ”

Unaddress
il MLA

Other Function Subsets
Required

T2
. -...“.I”,~...

Y Y N N SHl and AH1
T3

T4

T5

Y N Y N SHi and AH1
Y N N N SHl and AH1
Y Y Y Y SHi and Ll-L4 or LEl -LE4

T6 Y Y N Y SHl and Ll-L4 or LEl-LE4

T7 Y N Y Y SHl and L&L4 or LEI-LE4

T6 Y N N Y SHl and Ll-L4or LEl-LE4

D-l

Appendix D
Device Capability Codes

KM-488-DD Programming Guide

T Function (Wifh Address Extension) Alkxmble Subsets

ldentilication Description

Basic Serial
Talker Pall

:Fi Y !

TE2 Y Y

TE3 Y N
TE4 Y N

TE5 Y Y
TE6 Y Y

TE7 Y N

TEE Y N

Other Function Subsets
Required

Talk Unaddress

sJx3
il MSA
“@&

! !
Nbne
SHl and AH1

N N SHl and AH1
Y N SHl and AH1
N N SHi and AH1

Y Y SHl and Ll-L4 or LEl-LE4
N Y SHl and Ll-L4 or LEl-LE4

Y Y SHl and Ll-L4 or LEl-LE4

N Y SHl and Ll-L4 or LEl -LE4

RL Fmcfion Al!avable Subsets

Other Function Subsets
Required
NOIM
Ll-L4, or LEl-LM
Ll-L4, or LEl-LE4

PP Function Allowable Subsets

ldentiiicarion Description zO;$rFhcrion Subsets

PPO
PPI
PP2

No capability
Remote capabilny
Local Conkguration

‘” Ahvable Subs&

Description Other Function Subsets
Rmdrd

DC Funcfio

ldentilicahon

E
DC2

No ability
=f Compete capabirdy

Omii Selective Device Clear

“-.I-“--
NOM
Ll-L4, or LEl-LE4
AH1

D-2

KM-4&3-DD Programming Guide A pendix D
Device Capab hty Codes F!

DT Fmtion Allowabk, Subsets

ldentilication Description O(her Function Subsets
Required

DTO NOIW
DTl Ll-L4, or LEl-LE4

LF irnctbn Allowable Subsets

ldentilication L!+!+dplion Olher Function Subsets Required
Listen Unaddress

Lislener Only Mode il MTA

:7 y” F Ii
NOflR
AH1

L2
L3

L4

Y N N AH1

Y Y Y AH1 and Tl-T6 or TEl-TEB

Y N Y AH1 and Tl-T6 or TEl-TEE

L Function [wfih Address Extension) Allowable Subsets

ldentilication Description Other Function Subsets Required
Basic Listen Unaddress
Listener Only Mode il MSA A

@@

:Fi c” Y i
None
AH1

LE2 Y N

LE3 Y Y

LE4 Y N

* Replaced by MTA when used together with the T Iunction

N AH1
Y AH1 and Tl-T6 or TEl-TE6

Y AH1 andTl-T6 or TEl-TEE

SR Function Allowable Subsets

ldenlilication Descriplion other Function Subsets
Required

SRO No ability
“p

NOlW
SRi Compete Capability Tl.T2,T5,T6,TEi,TE2,TES,or

TE6

D-3

KM-488.DD Programming Guide Appendix E
Printer and Serial Port Re-Direction

PRINTER AND SERIAL PORT RE-DIRECTION

The KMLPT and KMCOM utilities automatically redirect communications destined for
printer or serial ports to specified IEEE-488 bus devices. This is useful in that it allows
application programs which are unaware of the IEEE-488 bus to control bus devices as if
they were printer (KMLPT) and serial (KMCOM) devices.

Before you use these programs, you must understand the difference between logical and
physical printer port devices. A physical device is the actual port which is installed in the
computer. For example, you might have two parallel printer ports and one serial communi-
cations port installed in your computer. These are the physical devices. Physical devices are
depicted by using the port name. For example, the first printer port identified by the
computer is referred to as LPTI, the second LI’TZ, etc.

A logical device is a device which is currently configured to receive the data to be printed.
Logical devices are represented using a colon, for example Lml:. (This would indicate the
device which is currently configured to receive the data to be printed.)

The computer maintains two tables, each of which has four entries. These tables are used to
assign a physical device to a logical device. For example, if two printer ports and one serial
port were installed, these tables would initially appear as:

LPTI:
LPT2:
LPT3:
LI’T4:

Printer Assignments
LPTl
LI’T2
None
None

COMl:
corn
COM3:
COM4:

Serial Port Assignments
COMl
None
None
None

PARALLEL PORT RE-DIRECTION

Parallel Port re-direction is accomplished by using the KMLPTutility. This is a unidirec-
tional re-director which intercepts a character from the DOS BIOS and writes it to the GPIB
via an Lm port. This accomplished by assigning the logical LI’T: port to a GI’IB device
address.

The next sections describe how to load/unload the KMLPT re-director from the DOS com-
mand line. If you need help loading KMLPT, from the DOS command line, type:

E-l

Appendix E
Printer and Serial Port Re-Direction

KM-488-DD Programming Guide

KMLPT /HELP

The KMLPT utility is invoked as follows:

1. Change to the directory where your KM-48%DD software is located.

2. At the DOS prompt, type:

KMLPT nl /A&Hioaddr /Bad& /t

Where:

nl . . . n4 are up to 4 optional device parameters. Each is of the format
IEEEppss or LPTn where:

IEEEppss identifies the IEEE-488 device. ppss is the address of the IEEE-488
device. pp is the address of the IEEE-488 device. This is a primary address,
with a secondary address (ss) if needed. For example, you might specify the
device IEEE2022.

LPTn identifies a physical printer port where n is the printer port number, i.e.
LPTl.

/A&Hioaddr is a requried parameter which follows the nl parameter. It specifies
the I/O Base Address (in hex) of the KM-488-DD.

/Baddr is an optional parameter which follows the nl parameter. It specifies the
IEEE-488 Bus address (0 to 30 decimal) of the IEEE-488 interface board and must be
included if the IEEE-488 interface board is not located at the default address of 0 deci-
mal.

/t is an optional parameter which specifies the timeout period. This can be any
value between 1 to 30 seconds. The default value is 1 second. The timeout period
should be set long enough to allow for the slowest plotter function.

E-2

KM-488-DD Programmlng Guide Appendix E
Printer and Serial Port Re-Direction

Notes

. If KMLPT is executed with no arguments, then it just displays the current
logical printer port assignments.

. If one or more arguments are provided, then the first logical printer port
(LPTI:) is re-directed to the physical device by the first argument, the next
logical port (LI’T2:) is re-directed to the next specified physical, and so on.

. If less than four devices are specified, then the remaining logical printers are
re-directed to any unused physical parallel printer ports.

Examples
These examples assume that your PC has two functioning LPT ports.

KMLPT IEEE05 /A&H2El

KMLPT LPTl IEEE05
/A&H2El

KMLPT IEEE05 IEEE1201
/A&H2El

Configures LPTI: for output to IEEE device
05 on an interface card located at 2El (hex).

Resultinp Printer Port Table
LI’Tl: LPTl
LPT2: IEEE05
LI’T3: LPT2
Lrr4: None

Resultine Printer Port Table
LI’TI: IEEE05
LPI2 IEEE1201
LPT3: LPTl
LpT4: LrT2

Resulting GPlB Bus Activity

When the KMLPT changes from one GPIB bus address to another, the GLIB activity will be
as follows: REN is asserted followed by the ATN line, then the following bus “commands”
are sent UNT, UNL, MTA, LA. ATN is unasserted and the data is sent.

If the GPIB bus address used by the KMLPT re-direct driver remains the same, the data is
simply sent over the bus.

E-3

Appendix E
Printer and Serial Port Re-Direction

KM-488-DD Programming Guide

UNLOADING KMLPT FROM DOS

To unload the KMLPTutility from the DOS command line:

1. Change to the directory where your KM-488-DD software is located,

2. At the DOS prompt, type:

XMLPT /U

. If the driver is already resident and re-direction is requested, the printer
assignments are altered and reported.

. Both of the KMCOM and KMLPT drivers may be loaded at the same time
and name the same IEEE addresses. The drivers must be unloaded in reverse
order of loading.

. If any other TSR is loaded after the re-director, it will not be possible to
unload the re-director until subsequent drivers are unloaded.

. The IFC message is sent when the driver loads.

SERIAL PORT RE-DIRECTION

Serial Port re-direction is accomplished in the same manner as Parallel Port re-direction.
The only difference is that you use the KMCOM utility. This is a bi-directional redirector
which intercepts a character request from DOS BIOS and reads/writes the data from/to the
GPIB. If data is read from the GPIB, the driver will execute synchronous inputs. This
insures that data will not be lost if a different GPIB bus address from the previous one is
used. Note, however, that some devices may “flush” their output buffer when they are “un-
addressed”.

The next sections describe how to load and unload the KMCOM re-director from the DOS
command line. If you need help loading KMCOM, from the DOS command line, type:

KMCOM /HELP

E-4

KM-488-DD Programming Guide Appendix E
Printer and Serial Port Re-Direction

LOADING OR CHANGlNG KMCOM FROM DOS

To load the KMCOM utility from the WS command line:

1. Change to the directory where your KM-488-DD software is located.

2. At the DOS prompt, type:

KMCOM nl /Ioaddr /Baddr /t

Where:

G?F NOTE: Parameters must appear in all UPPER CASE or all lower case.
UPPER CASE and lower case cannot be mixed.

nl . . . n 4 designates a GPIB or COM port device. Up to a total of 4 devices may
be specified.

GPIB bus devices are denoted as IEEEppss, where:
IEEEppss identifies the IEEE-488 device. pp is the address of the IEEE-488
device. This is a primary address, with a secondary address (ss)if needed. For
example, you might specify the device IEEE2022.

COM port devices are denoted as COMn, where:
COMn identifies a physical printer port where n is the printer port number
(1,2,3,or 4), i.e. COMl.

/A&Hioaddr is a required parameter which follows the nl parameter. It specifies
the I/O Base Address (in hex) of the KM-488-DD.

/Baddr is an optional parameter which specifies the IEEE-488 Bus address (0 to 30
decimal) of the KM-488-DD. It must be included if the IEEE-488 interface board is not
located at the default address of 00 decimal.

/t is an optional parameter which specifies the timeout period. This can be any
value between 1 to 30 seconds. The default value is 1 second. The timeout period
should be set long enough to allow for the slowest plotter function.

E-5

Appendix E
Printer and Serial Port Re-Direction

Notes

KM-488-DD Programming Guide

.

.

.

.

we

lw

If KMCOM is executed with no arguments, then it just displays the current logical
printer port assignments.

If one or more arguments are provided, then the first logical COM port (COMl:) is
re-directed to the physical device by the first argument, the next logical port
(COM29 is re-directed to the next specified physical, etc.

If less than four devices are specified, then the remaining logical COM ports are re-
directed to any unused physical COM ports.

For the serial or parallel port to be re-directed effectively, the application program
should be configured to send its output to a disk file rather than directly to the
printer or plotter. If, for example, a file such as corn1 . dat is specified, the pro-
gram will act as if it were writing the data to a genuine file. However, the output
will really be sent to the IEEE bus device to which COMl was re-directed. The
program may even issue a warning message that the specified file exists and will be
overwritten. If it does, instruct it to delete or overwrite the file.

NOTE: When using COM port re-direction, it may be necessary to use the DOS
MODE command to set the serial printer’s parameters (baud rate, etc.). If the
re-direction takes place before the printer is initialized, the MODE command
should be invoked on the logical device (i.e., COM2:) to which the physical
device has been re-assigned.

NOTE: The DOS BIOS system always monitors the communications lines com-
ing from the serial printer; therefore, the DSR, CD, RTS, etc. signals must be
correctly terminated in order to communicate with the RS-232C printer.

E-6

KM-4&3-DD Programming Guide Appendix E
Printer and Serial Port Re-Direction

Examples
These examples assume that your PC has two functioning COM ports.

HMCOM IEEE05 /A&HZEl

KMCOM COMl IEEE05
/A&H2El

KMCOM IEEE05 IEEE1201
/A&H2El

Configures COMl: for output to IEEE device
05 on an interface card located at 2El (hex).

COMI:
COM2:
COM3:
COM4:

COMl
IEEE05
COM2
None

Resultine Printer Port Table
COMl: IEEE05
COM2: IEEE1201
COM3: COMl
COM4: COM2

Resulting GPIB Bus Activity

When the KMCOM changes from one GPIB bus address to another, the GPIB activity will
occur as follows:

On a Wrik

REN is asserted followed by the ATN line, then the following bus “commands” are sent
UNT, UNL, MTA, LA. ATN is unasserted and the data is sent.

ShaRead

REN is asserted followed by the ATN line, then the following bus “commands” are sent
UNT, UNL, MLA, TA. ATN is unasserted and the data is received.

If the GPIB bus address used by the KMCOM re-direct driver remains the same, the data is
simply sent or received over the bus.

E-7

Appendix E
Printer and Serial Port Re-Direction

KM-488-DD Programming Guide

UNLOADING KMCOM FROM DOS

To unload the KMCOM utility from the DOS command line:

1. Change to the directory where your KM-488-DD software ls located.

2. At the DOS prompt, type:

KMCOM /II

Notes

. If the driver is already resident and re-direction is requested, the COM port
assignments are altered and reported.

. Both of the KMCOM and KMLI’T drivers may be loaded at the same time
and name the same IEEE addresses. The drivers must be unloaded in reverse
order of loading.

. If any other TSR ls loaded after the re-director, it will not be possible to
unload the re-director until subsequent drivers are unloaded.

. The IFC message is sent when the driver loads.

APPLICATION NOTES

You may encounter several problems which attempting to send plotter files to your
GPIB plotter. For example, Direct 0 toutto I/O ports can be a problem because
many applications will use their owiI/O driver routines rather than the DOS BIOS
routines that the redirector intercepts. These routines will directly route the data to a
hardware I/O card. This is particularly true with COM ports or input devices which
are installed on COM ports.

Another problem which may occur is that communications are successfully estab-
lished with the requested port; however a plotter error occurs. This is usually caused
by the fact that the application thinks that it is talking to an RS-232C plotter and has
interspersed software handshaking commands, with the plotter graphics commands,
that the GPIB plotter does not understand. To avoid this problem, determine if your

E-8

KM-4tWDD Programming Guide Appendix E
Printer and Serial Port Re-Direction

application will allow you to turn off this hardware handshaking. If you can, strip
out the RS-232 handshaking commands and send a pure plot file to a port (i.e., use
indirect output).

If you are w OutDu&,Q your plot files, try to name your file something
which includes an I/O port name (e.g., COM3.X). However, this may result in the
program searching the DOS device driver list and finding a matching device name. If
this happens, the application may refuse to create a file with the same name as a
device. If all else fails, create a plot file, exit the application, and send the plot file to
there-directed device.

EXAMPLE PROGRAM

An example program in BASICA, COMTEST.BAS, is provide on the KM-488-DD Disks.
This example program illustrates how to use the KMCOM re-director feature.

A plot file, HPEXAMPLPLT, is also provided on the KM-48%DD Disks. This file can be
printed to an HP plotter using the KMLPT Re-Direct Driver.

E-9

Appendix E
Printer and Serial Port Re-Direction

KM-48&l-DD Programming Guide

(This page intentionally left blank.)

E-10

KM-488-DD Programming Guide Appendix F
The CONFIG.DAT File

The CONFIG.DAT file is generated by the SETUP or CONFIG programs. It must be “piped”
into the KM-488-DD driver file when the driver is loaded. (This process is explained further
in Chapter 2.) To pipe in the file, at the DOS prompt, type:

KM < CONFIG.DAT

F-l

Appendix F
The CONFIG.DAT FILE

KM-488-DD Programming Guide

F-2

KM-488-DD Programmlng Guide Appendix F
The CONFIG.DAT File

F-3

Appendix F
The CONFIG.DAT FILE

KM-488-DD Programming Guide

CONFlC /CAN0 1 IF8
COm4N”T
Co-NT *********~******t**t******“***t*t*tt*****************~***”******
CONNNNT * *
CONmNT l “,sn’* : ClOOk Pr*qu.nay *

COmiNNT l *

COhntENT l PUNPOBP : I4aOh 7210 Timing TO Input cloak F’r*quenay t

CONMNNT * *

CONNNNT * OPTIONS : n 1s * o.oima1 “turksee From l-8 signifying “egallerte *

COmJxNT l *

CONmNT l DNFAOLT : .‘,BB” or 8 l6eg.hert.z *

COrnNT l *

COM(&NT l SPBCTAL : *en “cling 0” Ncxxl KN-480-DO Cryd..l, Spdfy “/FEZ” *

COKHNNT l *

COmNT t****t*tttt*t*t**t****t*ttt*t***tt*tt*t**”””************************

CONNEAT

CONFIG ,c.Am 1 ID1

COhxENT

CO-NT *******t*t**t*t**t*t**t***ttt*******t*t*****************************

CONnNNT * l

COmmNT * “,h’~ : DNA Ia”d *

CONmNT * f

CONmNP * PURPOSE : speoi*y The DMA La”d Used Ey The xwrss-00 car.3 *

COmmNT * *

COMblNAT * OPTTONS : “,ol~- = Iave1 1, “,D3” - x.sve1 3, “,D” = NO DIQL “se.3 *

COmENT l t

COHldgNT l 0BFA”L.T : DNA la”*1 1 *

COmmNT * *

CONmNT * SPECIAL : ON& Le”dB Are AOk Shareable Bet*een Cmxh *

COmQ3NP l *

CO-NT ttt***

CONNENT

CONNNNT

CONINZNP The Following COWPIG Statensnte= Baoh Set The EOL Sequenoe To
CONWaNT Carriage N&,YLII (00 Hex, , Line Feed (OA Hex)
CONKENT
CONWNT

CONFTO ,B CR LF
CO-NT
COIMNNT

F-4

KM-488-DD Programming Guide Appendix F
The CONFIG.DAT File

CONFTO /IL 813 810
COMXENT

COHLdBNT
Co-NT **************************************tt**.***.*******.*************

CO&O,ZNT * *

CONXNNT * "IN .oll ..12" : Contigur. D.“iM N”d OF li”. (NOI., T.nai”Ptc.r* l

COINaNT * *

COMlW.NT l PORPOSN : S~oity Ch.r.at.r,.) Fh.t Signify NOL To KM-488~DO *

COI(HBNT l *

CON&SAT l OFTTONS : l

COMMENT l *

COMWNNT * “fB” - No BOL D.t.otio” O~.zur. I” Kl4-4OO-DD Driver *

CONMNNT l ",E eon- - ch*r*ot.r so11 Sig"ifi.‘ an.3 Of Id". *
CONMNNI * "IN .oll .o12" - Ch.r.ot.r. .oll ."d ..12 tog&her ma." EOL l

CONKENT * *

CONNZNT * "her. .oll .nd ..12 .r. on. of th. fcll..ing : *
CONNNNT l *

CONMENT * $nnn : LS.LSCTl Ch.r.at.e ""n (0 <- ""n <- 25.5) *
COWtENT l ‘X : Pri*t*l. ASCII ch.Z.0t.r x *

CONNNNP l CR : c.rri.g. ruturn (13 D.oim.1) l

COtWENT l LB : Li”. F..d (10 D.aim.l) *

CONKENT l *

CO-NT l SPBCTAL : “.i”g “/NT” 1”ste.d Of “,N’t 8.t. Input EOL’. Only *

CO-NT * v.ing ",BO" T".t.rd Of ",B" set.. output EOL'. Only *
COMNNNT * *
CO-NT ***********t**~*
CO-NT
COMMENT
COIMRNT Th. Boll..i"g COIIFIC Strt.m."ts B.ch Set The T.rni".tor Sequence To
COUHBNT C.rZ1.g. R.t"r" (00 N.x, I Li". B..d (OA H.x, x/E01 A...rt.d
COIQ4ZNP
CONMENT

CONFTO IT CR LF NO1
CONNNNT
COMMENT

F-5

Appendix F
The CONFIG.DAT FILE

KM-488-DD Programming Guide

CONNNNT
commN*
CO-N* *******t*t*t*t***************tttt**t*********.***“*““**““**””*~***~*****

CONNNNT * *
CONNNNT l “,T trml tm2” : Config”=. Ds”i-2. NU. T.rmi”.tOr. *

CONNNNT * *

CONMXNP l PURPOSE : S~dfy T.rmi”.tor. To Send (OUTPUT, , D&X& (ENTNRI *

CON&NT * *

CONNNNT * OPTIONS : *

CONNNNT l *

CONMENT * “,*” = S.“d,O.t.ot NO T.d”.tors *

COKNENT * “IT trd” = S."d,D.t.at trnl *
COMXNNT * "IT tnnl tnn2" = s."d,o.t.ct tnrd L trra2 *
COMXNNT * '*IT NOT" I N."d,o.t.ot La& 0.t. Nyt. "/NO1 *.s.rt.* *
CONXENT l “IT td” - O.nd,D.t.at trnl "ith 801 A...rt.d *
COMNENT l “,T tnnl tnn2 BOT” - S.“*,D.t.& tnnl i tr.2 x,Eor A...rt.d *

CONNNNT l *

CO-NT l *h.r. tlml ."d t.& m on. of t.h. Follo*i"g : *
COWNNT * *
COMMENT * 8""" : ASCII Ch.r..at.r n"" (0 <= nnn <= 255) *
CONNENT * 'X : Pri"t.k.1. XXXI: Ch.z.Ot.Z x *
CONMENT l CR : carri.g. Faturn (13 oeoim1, *

COMXNNT * LF : I.**. F..d (10 D.dtn.1, *
COMXENT * *

COblkENT * SPECIAL : v.ing "/IT" 1n.t.s.d Of "IT" 8.b Input txm'. Only *
CONDNT l o.ing ~-fro" 1*.t..* Of "IT" at. Output tnn'. only l

CONXENT * *

ComN* ****t******t**************************...~*****...*.*..**~.~~~~~~~

CO-NT

CONW.NT

CONkC3NT 5-t Th. Tim.o~t TO Fift..” S.oo”d.

CONMFiNT

COHNEN=

TnmOUT 15.0

CONNENT
Co-N* *************t*t*t*t***********************************.***************

CONNNNT * *
COMMENT * TTlbEOOT """""."" : 8.k Th. o.via. *im.out "Pl.. *
COnn&NT l *

COW(&NT l PURPOSB : S~aify No” Long TO N-if For A D-via. N..Po”.. *

CONKNNT * *

CO-NT l OPTIONS : """"n." I. A Number Bet".." 0.1 A"d 65535.9 *
COLQlsNT l *

CONWZNT l SPNCDJ, : "TINEOUT 0" Turn. Timeout Ch..ki"g Off. *
CONNEAT * TilmOUt ".l".. I,... Th." 0.1 Ax. R.""d.d vp TO .I *
COHHBNT * *
Co-N* t***t*tt*t*****************tt*tttt********.******"**"*"**""".*~**""*
CONNXNT
CONNENT
CO-NT Cr..t. ho N-d D."I(I.. -- On., A" O..ill....p. At CPIB ~ddres. 01
CONNNNT And Th. 0tll.r A om z&t Primmy Mdr... 02 A"* s.aon**ry Addr... 14
COhXENT
CONMENT

CONFTO IN SCOPE 01 IN DMN 0214
CO-NT

F-6

KM-488, -DD Programming Guide Appendix F
The CONFIG.DAT File

co-N* ****t**t******.****.t*t**

CO-NT l *

CO-NT l “CONFIG IN d.vn.m. .ddr" : Cr..t. PI Symbolia Or "N-d" Devio. *
CO-NT l *

COWBNT * PORPOBN : Provid. * SymbOli Ali.. FIX A OFTN rmvia. *

COMXNNT l *

CONMBNT * OPTIONS : d.v"..a i. . n- clo".i.ti"g of UP to .ight .h.r.ot.r..*
CONXNNT l m. iir.t ai2.r.ot.r m.t not im 1 digit. t

CO-NT * *

CONMNNT l .ddr = th. d.via.'. CPIB .ddr... in th. form xxyy *
CONt,XNT l .h.e. : *
CONMNNT * *
COMMNNT * x% i* in the rrng. 00 - 30 l

COMMNNT * yy i. in th. r.ng. 00 - 31 .,-ad is option.1 *
CONNNNT l *

CONNZNT l *

CONKENT * SPECIAL : N-d Devia.. AZ. Assigned The C"rr."t D.t."lt *
COMNENT * T.d".tor. A‘ They E2xi.t Wh." CONFTG IN I. B"cou"t.r.d*
CO-NT l *

ComN* *****t*t*t*tt*t*tt*t**tt****t**

COhXENT

F-7

KM-488-DD Programming Guide

INDEX Of ERROR MESSAGES

Appendix G
Error Messages

TIME OUT - NOT ADDRESSED TO The KM-488-DD, acting as a
Peripheral, did not receive data
within the TIME OUT period.

AUTOINITIALIZE MODE NOT ALLOWED DMA with AUTOINITIALIZE is
not allowed if the buffer crosses
a 64 KBYTE page boundary.

TIME OUT ERROR ON DATA READ Expected bus data was not
received within the TIME OUT

INVALID CHANNEL FORDMA DMA transfer requested but the
KM-488.DD was not configured

TIME OUT ON DMA TRANSFER Expected bus transfer did not
occur during TIME OUT period.

TIME! OUT OR BUS ERROR ON WRITE Error occurred transferring a
data byte to a bus device.

SEQDENCE - NO DATA AVAILABLE Application program requested
data from the KM-488-DD; but
no data was available.

G-l

Appendix G
Error Messages

KM-488-DD Programming Guide

ERROR NO. 1 ERROR TEXT

11 ISEQUENCE - DATA HAS NOT BEEN
-

12 SYSTEM ERROR - ON PEN INTS
ALREADY ON

13 SYSTFJ4 ERROR - INVALID ON PEN
INIT

14 SYSTEM ERROR - LIKELY MEMORY
CORRUPTION

15 SYSTEM ERROR - ON PEN INTS
ALREADY OFF

16 BOARD DOES NOT RESPOND AT SPECI-
FIED ADDRESS

17 TIME OUT ON COMMAND (MTA)

18 TIME OUT ON COMMAND (MIA)

19 TIM& OUT ON COMMAND (LAG)

20 TIME OUT ON COMMAND (TAG)

DESCRIPTION

Application program attempted
to write data or commands to thr
KM-488-DD without reading
back a response to the previous
command.

Internal System Error. Report to
Factory. See Section 12.2.

Internal System Error. Report to
FactorySee Section 12.2.

Internal System Error. Report to
Factory. See Section 12.2.

Internal System Error. Report to
Factory. See Section 12.2.

The KM-488-DD can’t communi-
cate with the IEEE interface
board. Make sure that the board
address configuration and that
the software installation parame-
ters are correct.

My Talk Address could not be
sent within the TIME OUT
period.

My Listen Address could not be
sent within the TIME OUT
period.

Listen Address could not be sent
within the TIME OUT period.

Talk Address could not be sent
within the TIME OUT period.

G-2

KM-488.DD Programmlng Guide Appendix G

TINE OUT ON CONMAND (UNT) Untalk could not be sent within
the TIME OUT period.

ONLY AVAILABLE TO SYSTEN CON- The KM-488-DD must be a Sys-
tem Controller to execute this

RESPONSE MVST BE 0 THROUGH 15 The response parameter has a

NOT A PERIPHERAL The KM-488-DD must be a

factory. See Section 12.2.

SYSTEM ERROR - INVALID TIMER

SYSTEM ERROR - TIMER INTS
ALREADY OFF

ADDRESS REQU1PJ.D

Internal system error. Report to
factory. See Section 12.2.

Internal system error. Report to
factory. See Section 12.2.

Command/Call requires an

blUST BE ADDRESSED TO TALK The KM-488.DD must first be
addressed to talk (via MTA).

G-3

Appendix G
Error Messages

KM-488-DD Programming Guide

INVALID BASE ADDRESS I/O Port Base Addresses must be
hexadecimal values which end in

INVALID BUS ADDRESS GPIB Bus Addresses must be in

BADDMACRANNO. ORDMANOT DMA requested, but an invalid
DMA channel is assigned.

NOT AVAILABLE TO A PERIPHERAL A command which cannot be

INVALID PRIMARY ADDRESS

INVALID SECONDARY ADDRESS

GPIB primary bus addresses
must be in the range of 0 to 30.

GPIB secondary bus addresses
must be in the range of 0 to 31.

NOT ADDRESSED TO LISTEN The KM-488-DD has not been
addressed to listen properly.

CONMAND SYNTAX ERROR The command syntax given is

UNABLB TO CHANGE MODE AFTER The KM-488-DD can only be con-
figured as a System Controller or
non-System Controller at initial
start-up. This must be done dur-
ing the installation process.

G-4

KM-488-DD Programming Guide Appendix G
Error Messages

the given timeout period.

VALUE MST BE BETWEEN 1 AND 8 The KM-488-DD clock source fre-
quency must be between 1 and 8.

GPIB bus after a PASS CON-

UNABLE TO ADDRESS SELF TO TALK A TALK or LISTEN subcom-
OR LISTEN mand is a SEND command speci-

fied the controller’s own address,
Use MTA or MLA instead.

TIMEOUT ON COMblAND A Time out error occurred dur-
ing a SEND CMD.

SPECIFIED BOARD BAS NOT BEEN
INITIALIZED

Check Base Address settings.

SEQUENCE REQUIRXS ACTIVE CON- KM-488-DD needs to be an
Active Controller.

DATA SEQUENCE ERROR Application program attempted
to write data or commands to the
KM-488-DD without reading
back a response to the previous

G-5

KM-488-DD Programming Guide Summary of Calls

CALL SUMMARY

ROUTINE +

kabort&oard-nr, err-code)

karmtboard,w, en-code, amt-code)

kbuftboard-nr, en-code, dir)

DESCRIF-TTON

Eo the KM-4%DD to take control of the CPlS

Enables a tightpen interrupt condit‘an(s).

DefInesdirection of access within memory buffers.

kbufdtboard-nr, em-code, bcount) I Reads the number of b
buffered ENTER or 0 Y

tes last transferred by
‘IPUT command.

~ kclear(board-nr, en-code, mygads) Clears designated device(s).

kconfig(twud-tvr, en-code, symname, stringlen) Resets KM488DD default parameters.

kdisarm(boardJu, en-code, arm-code) Msables a lightpen interrupt condition(s).

kdiagoff0 Disables kdiagon.

~ kdiagantfilcname) Writes diagnostic information to a disk file

~ kdma (board-m, err-code, dma-made) Define DMA transfer mode.

~ kentcrtbaard-nr, err-code, data-p& count, mode, mygads, term-list) Read data from a bus devia

~ kenartboard-nr, en-code, C-SW) Enable/Disable error message display.

~ kfill(board-nr, err-code, fill-sw) Defines response If no data is available.

~ khellotbaard-nr, err-code, id-response) Reads KhUS8-DD identification string.

~ klocal(hoard-nr, en-code, mygads)

~ klol(baardnr, err-code)

Allows designated device(s) to be locally pro-
grammed.

I
DLsables the local button on a GPIS device.

koutputfbosrd-nr, en-code, data-p& count, mode, mygads,
temLptrj

Transmits data to the designated device(s).

kpasctltboard-nr, en-code, mygads)

kppoll(baardnr, en-code, pprtn)

Assign another device as the Active Controller

Read the Parallel Poll response from all bus
devices.

kppctboard-nr, en-code, mygads, ppc-cfg)

kppd(boud-nr, err-code, mygads)

kppu(board-nr, err-code)

kqutkstattbaard-nr, err-code, q&t)

kremote(board-nr, en-code, mygads)

Structure the Parallel Poll response.

Msablcs Parallat Polling for designated device(s).

Disables Parallel Polling for &I devices.

Returns the KM4SS-DD’s stat”3 ward.

Puts device(s) Into remote state and optionally
addresses the,,, to Itsten.

tThere are other routines available which can only be called from BASICA or QuickBASIC
programs. See Chapters 7 and 8 for more information.

Summary of Calls KMdB&DD Programming Guide

ROtJTlNE

krequcstfborrd-nr, en-code, up)

kresetfboudnr, em-code)

DIXXRIPTION

Dcfhcs own Serial Poll Reponse.

Resets KM4S&DD to its default parameters

kresumefboard-nr, err-code)

ksendfboardnr, em-code, send&, shinglen) Sends low-level bus commands and data.

kapollfboard-nr, en-code, spr, mygads)

ketatusfboardnr, en-code, stat)

katopfboard-nr, en-code)

ktcrmfboudnr, err-code, tmt-list)

ktofbwardnr, em-code, hvd)

ktriggerfboard-nr, en-code, mygads)

kwaitcfbward-nr, err-code)

Reads response(s) to serial poll.

Returns K&488-DD status string.

Stops DMA transfers.

Sets the GPIB bus terminators.

Sets timeout elapse.

Triggers device(s).

Waits for the current DMA continue transfer to
complete.

KM-488-DD Programming Guide Summary of File I/O Commands

FILE I/O COMMAND SUMMARY

COMMAND DESCRIITION

~y”cs the K&-488-DD to take control of the GplB ABORT
1 ““J.

ARM intempt

BUFFER diredim

BUFFERED

CLBAR addr

CONFIG optbm

DISARM interrupt

DMA mode ouloinilialfze

ENTER oddr;l#count term, km2 E”, EOIJ

ENTER addr ; #count BUFFER butaddr DMA CONTINUE fun, EOI

EOL dir term

ERROR x

FILL x

HELLO

LOCAL nddr

LOCAL LOCKOUT

OUTPUT addr bcount;data

OUTPUT addr #count BUFFER buf-addr [DMA JCONTlNUEJJ EO,

PASS CONTROL oddr

PPOLL

PPOLL CONFIG addr,response

PPOLL DISABLE nddr

PPOLL “NCON”G

REMOTB add,

REQUhST;~esponse

RESET

RBSUME

SEND; subcommand

Enables a lightpen interrupt condition(s).

Defines direction of access within memory buffers.

Reads the number of b tes last transferred by
buffered ENTER or 0 Y TPUT command.

Clears designated device(s).

Resets the KM-4tWDD to its defaults.

Disables a lightpen interrupt condition(s).

Define DMA transfer mode.

Read data from a bus device.

Reads data from a bus device into a buffer.

Sets the language EOL terminators.

Enable/Disable error message display.

Defines response If na data is available.

Reads KM-488.DD identification string.

Allows designated device(s) to be locally pro-
grammed.

Disables the local button an a GPIB device.

Transmits data to the designated dcvicc(s,.

Transmits contents of a memory buffer to the des-
ignated device(s).

Assign another device as the Active Controller.

Read the Parallel Poll rnponse from all bus
devices.

Structure the Parallel Poll rcsponsc string.

Disables l’arallal I’olling far designated device(s).

Disables Parallel Polling for alI devices

Puts device(s) into remote state and optionally
addresses them to Listen.
Defines own Serial Poll Reponse.

Resets KM4BDD to its default parameters.

I Unawrts ATN. AUows Peripheral to peripheral
transfers.

I Sends low-level bus commands

Summary of File I/O Commands KM-408-DD Programming Guide

SPOLL addr

COMMAND I DESCRlPTlON

Reads response(s) to serial poll.

Returns K&4&-DD status string.

STOP

TBRM; dir fcml term2 EOI

TIME OUT “.“”

ITUGGER add?ddr

WAIT

Stops DMA transfers.

Sets the GPIB bus terminators.

sets timeout elapse.

Triggers device(s).

W&s for the current DMA cantbue transfer to
complete.

KM-48t3-DD Programming Guide GPIB System Configuration Worksheet

GPIB SYSTEM CONFIGURATION WORKSHEET

KM-488-DDs

TERMINATOR DEFAULTS

1
1

i

GPIB System Configuration Worksheet KM-488-DD Programming Guide

DEVICES

	TOC:

