

Part of VPG Foil Resistors

July, 2017

ΒΑΤΕΜΙΚΑ Improving Long-Term Stability measurement solutions of Batemika UT-ONE Thermometer Readouts with Hermetically-Sealed High Precision Resistors

Batemika Measurement Solutions was able to improve the accuracy of its UT-ONE family of thermometer readouts by implementing a VHP101T Hermetically-Sealed Bulk Metal[®] Foil resistor as the internal reference resistor. Long-term drifts were improved from over 20 ppm per year to less than 5 ppm per year.

Author: Valentin Batageli, Ph.D., Managing Director and Lead Developer

Company/Institute: BATEMIKA Measurement Solutions, www.batemika.com

Industry/Application Area: Precision Instruments

Products used: - VHP101T Ultra-High Precision Hermetically-Sealed Bulk Metal[®] Foil Resistor - SMR3DZ Ultra-High Precision Z Foil Molded Surface Mount Resistor

The Challenge

Precise measurement of temperature with platinum resistance thermometers requires resistancemeasuring instrument with extremely tight accuracy requirements. To achieve 0.001°C accuracy in temperature requires 4 ppm accuracy in resistance for the industry-standard Pt-100 probe at 0°C. With the advent of modern 24-bit sigma-delta analog-to-digital converters, achieving linearity and effective resolution on the level of a few ppm has become relatively straightforward, so the main challenge now remains assuring low short-term and long-term drifts.

The Solution

At Batemika we started the development of UT-ONE family of thermometer readouts with the total accuracy target under 0.01°C. Our first generation of UT-ONE devices was able to achieve all our targets in effective resolution, linearity, temperature coefficients and short-term drift, but was struggling to achieve the expected long-term drift specifications. Based on the suggestion of the VPG Foil Resistors field design engineer, we replaced our internal reference resistor with the Vishay Foil Resistors VHP101T hermetically-sealed Bulk Metal[®] Foil resistor. This single step has dramatically improved the long-term stability of the entire instrument and gives a new level of

Document Number: 63632 Revision: 21 July 2017

For technical questions, contact: foil@vpgsensors.c

page 1 of 5

confidence in its measurement results. The typical accuracy specification that we were able to achieve is 0.006°C for Pt-100 probe at 0°C, and as the long-term drift data is slowly accumulating, we are now considering further improving the accuracy specification.

Figure 1: Batemika UT-ONE B03A 3-channel thermometer readout

The User Explains

The measurement circuit of the UT-ONE thermometer readouts is based on the 24-bit sigma-delta analog-to-digital converter in 4-wire ratiometric configuration. The simplified measurement circuit consists of the current source with 1 mA measurement current, which creates a voltage drop on the unknown resistance RRTD and reference resistor RREF. The voltage drop over unknown resistance is amplified with the programmable-gain amplifier and fed into the ADC input. The voltage drop over the reference resistor is used as the reference voltage of the ADC.

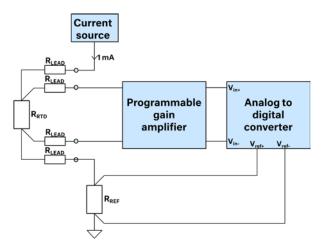


Figure 2: Simplified measurement circuit of UT-ONE thermometer readouts

The advantage of this configuration is that the accuracy and low-frequency noise of the current source has no effect on measurement results. The long-term drift is determined only by the reference resistor and the programmable-gain amplifier, and the contributions of these two sources can't be distinguished from each other. In our initial design, the reference resistor was a Bulk Metal[®] SMR3DZ molded Vishay Foil Resistor, which has a load life stability of 50 ppm at 70°C and rated power. As our instrument is specified only up to 36°C with almost negligible power, we assumed the stability of the resistor would be between 10 and 20 ppm per year. We also assumed that the stability of the programmable-gain amplifier would be in the same range, so further improvement of the reference resistor would be pointless. The long-term drift results presented in figure 3 appeared to confirm our assumptions. The long-term drift seems to have a yearly period and might be related to seasonal variation in relative humidity. The drift has no particular trend and does not accumulate over several years.

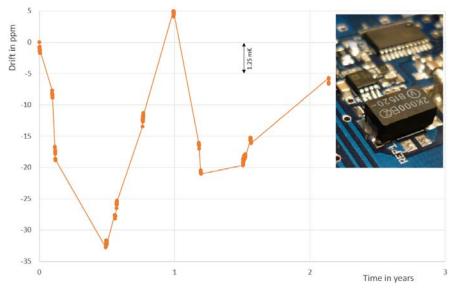


Figure 3: Long-term drift of the UT-ONE thermometer readout at 100 Ω with SMR3DZ resistors

The long-term drift results were shown to the VPG Foil Resistors field design engineer, who suggested the replacement of the Vishay Foil Resistors SMR3DZ molded resistor with the VHP101T hermetically-sealed resistor in order to improve further the long-term stability. We were initially very skeptical about the change, as the assumption was that the improvement in the reference resistor would be overshadowed by the drift of the programmable-gain amplifier. Nevertheless, we acquired one sample of the VHP101T 100 Ω unit for evaluation purposes. This resistor had been installed in a small metallic case, which provides good mechanical and electrical protection. We now produce it as a check standard in combination with our thermometer readouts.

This resistor was regularly recalibrated over a period of more than two years with the resistance bridge with uncertainty better than 1 ppm. The results in figure 4 show that the long-term drift for this particular unit is less than 1 ppm per year.

foil@vpgsensors.com

www.vpgfoilresistors.com

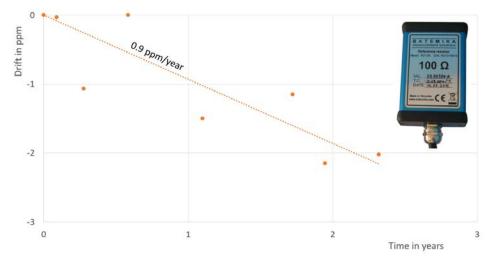


Figure 4: Long-term drift of the Vishay Foil Resistors VHP101T 100 Ω hermetically sealed resistor

Impressed by the long-term performance of the VHP101T resistor, we decided to replace the reference resistor in one of our UT-ONE units with the VHP101T. This would at least allow us to examine the drift of the programmable-gain amplifier, as in this case the influence of the reference resistor would be negligible. Contrary to our assumptions and expectations, the results for the long-term drift, as presented in figure 5, show a huge improvement. The scale in figures 3 and 5 is the same to simplify the comparison. The long-term drift was reduced from over 20 ppm per year to less than 5 ppm per year. This improvement is consistent with all units tested. The VHP101T resistor resulted also in a better short-term stability and lower initial drift after assembly, which simplifies our quality-control procedures and gives a new level of confidence in our products. We now use only VHP101T resistors as the reference in our thermometer readouts and we even retrofitted most of our existing units.

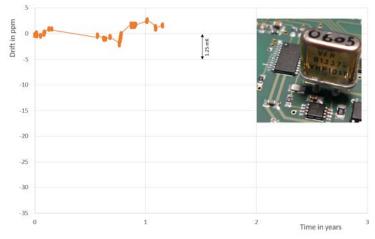


Figure 5: Long-term drift of the UT-ONE thermometer readout at 100 Ω with VHP101T resistors

"Replacing the reference resistor in our UT-ONE thermometer readout with Vishay Foil Resistors hermetically-sealed foil resistors resulted in a dramatic improvement of the long-term drift of our instrument from over 20 ppm to less than 5 ppm per year."

Acknowledgement:

Batemika specializes in measurement solutions in thermometry and temperature metrology. We produce high-precision instrumentation and measurement software solutions for calibration and R&D laboratories. Our lead product is the UT-ONE family of thermometer readouts, which is capable of measuring temperature with all commonly-used temperature probes with accuracy down to a few thousandths of a degree Celsius. Our background in both electrical engineering and temperature metrology allows us to provide solutions that are specifically tailored to your everyday measurement needs. www.batemika.com

Contact Information

Valentin Batagelj Batemika d.o.o. Slap 57 5271 Vipava Slovenia, EU info@batemika.com www.batemika.com Vishay Precision Group, Inc. (VPG) Vishay Foil Resistors foil@vpgsensors.com

Click here for our full contact information

www.vpafoilresistors.com