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Insulated Gate Bipolar Transistors

IGBTs from International Rectifier

The Insulated Gate Bipolar Transistors (IGBTs) contained in this Designer’'s Manual represent
International Rectifier's second generation of IGBT devices. Much progress has been made
in our research and development labs, and the devices covered here represent the state of
the art with regard to any IGBT available today. In creating the Generation-Il process,
International Rectifier has taken a quantum leap in IGBT technology—thus establishing the
IGBT as a commercially viable power transistor—just as we did with our HEXFET power
MOSFET more than a decade ago.

For designers who are new to IGBTs, these devices are voltage-controlled power transistors,
similar to the power MOSFET in operation and in construction. While the IGBT is inherently
faster than the power bipolar transistor, it is still not quite as fast as the power MOSFET (it
is, however, getting closer). Because IGBTs have higher current densities (i.e. smaller die sizes)
than equivalent high-voltage power MOSFETs, and offer far superior drive and output
characteristics than bipolars, they are a more cost-effective solution in almost all high-voltage,
high-current, moderate frequency applications.

International Rectifier is fully committed to its IGBT product line with expansions in voltage
selections and package options in progress, as well as with the development of ancillary devices
such as fast-recovery rectifiers and driver ICs to complement them.

You are invited to familiarize yourself with International Rectifier's present IGBT family by
exploring this designer’s manual. If you have any questions, please feel free to contact us directly.
We will appreciate hearing from you, and look forward to filling your IGBT needs.
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The information presented in this publication 18 believed to be accurate and reliable. However, International Rectifier can assume no
responsibility for its use nor any infringement of patents or other rights of third parties which may result from its use. No licanse is granted
by implication or other use under any patent or patent rights of International Rectifier. No patent liability shall be incurred for use of the
circuits or devices described harain.
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Discrete IGBTs

International Rectifier presently offers discrete IGBTs in the popular TO-220 and TO-247
(TO-3P) industry-standard packages. However, the performance of our IGBTs far
surpasses present industry standard IGBTs. We offer IGBTs in different speeds which
are optimized for your particular range of operating frequency.

Standard-Speed IGBTs.

These devices are optimized for the slowest range of operation, from dc to about
1 kHz. They are useful for many applications in line-frequency and pulse-type
applications such as UPS systems and motor control circuits.

Fast-Speed IGBTs.

These devices are optimized for applications ranging in frequencies of about 3 to
10 kHz. They combine very low forward voltage drops with significantly lowered
switching losses to provide the most efficient devices available for this frequency range.
They find extreme usefulness in motor drives and general switching applications.

UltraFast™ IGBTs.

These devices minimize their overall switching losses in order to provide an IGBT
which is useful in the range of 10 kHz to 100 kHz and beyond. No other IGBTs available
possess ETg (overall switching energy loss) values which are as low as IR’s UltraFast
series, and no other supplier measures switching losses as conservatively or as
meaningfully to the designer as does IR.

These three families of IGBT devices offer the designer maximum flexibility and
efficiency (cost and performance) for his or her design. (See page vi for more
information on how to go about selecting the best device for your particular application).
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PRODUCT SELECTOR GUIDE

Standard-Speed IGBTs (< 1 kHz) Applications: High Voltage Mator Controls, UPS

Veewn) | VeE(on) e Ets tvp
BVcES Gate Collector Continuous Total
Collector | to Emitter {to Emitter Collector Switching | Pp
Part to Emitter | Threshold | Saturation Current Loss @ Max. | Page

Number Breakdown | Voltage Voltage | @ T¢ @ Tg | Ty = 150°C | Power |Number Case Style

Voltage = 25°C | = 1gp°c|Vgg = 480V | Dissip.

Min  Max Max
V) v V) (A) A md) (A | W
IRGBC20S 2.0 19 10 41 10 60 7 T0-220AB j\é
IRGBC30S 600 30 55 1.9 34 18 71 18 100 25 »
IRGBC40S 1.8 50 3 13 31 160 43 Y
IRGPC40S 1.8 60 31 13 31 160 61 T0-247AC
IRGPC50S 1.6 70 41 16 41 200 79 (TO-3P) y
‘,//

Fast-Speed IGBTs (3 ~ 8 kHz) Applications: High Voltage UPS'’s, Motor Control, Industrial

Veeeh) | VeE(n) e Eys typ
BVeEs Gate Collector Continuous Total
Collector | to Emitter |to Emitter Collector Switching | Pp
Part to Emitter | Threshold | Saturation Current Loss @ Max. | Page
Number ]Breakdown | Voltage | Voltage | @ Tg @ Tg | Ty = 150°C | Power | Number Case Style
Voltage = 25°C | = 100°c|Vge = 480V | Dissip.
Min  Max Max
V) vy v V) (R) (A) md) A | W
IRGBC20F 2.8 16 9 18 9 60 1 T0-220AB _Xg
IRGBC30F 600 30 55 2.1 31 17 25 17 100 19 //*/
IRGBC40F 20 49 27 4.4 27 160, 37 f%
IRGPC40F 2.0 49 47 44 27 160 55 T0-247AC
IRGPC50F 17 70 39 60 39 200 73 (TO-3P) y
&

UltraFast™ IGBTs (> 10 kHz) Applications: High Voltage SMPS’s, Motor Controls, Robotics

VgEth) | VeE(on) Ic Ets typ
BVcEes Gate Collector Continuous Total
Collector | to Emitter [to Emitter Collector Switching Pp
Part to Emitter | Threshold | Saturation Current Loss @ Max. | Page
Number  lBreakdown | Voltage | Voltage | @ Tg @Tg | Ty = 150°C | Power | Number Case Style
Voltage = 25°C | = 1pp°c|Vgg = 480V | Dissip.
Min  Max Max
V) v W V) (R) ) my (A) | W
IRGBC20U 3.0 13 6.5 035 6.5 60 13 T0-220AB _\5
IRGBC30U 600 30 55 3.0 23 12 059 12 100 31 y
IRGBC40U 3.0 40 20 15 20 | 160 49 {g%
IRGPC40U 3.0 40 20 15 20 160 67 T0-247AC
IRGPC50U 3.0 55 27 17 27 200 85 (TO-3P)
P
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How to Select the Best IGBT for Your Applications
Follow 3 simple steps:

1. What blocking voltage do you require? At present, IR offers only 600V devices,
so this question has limited significance for the moment; however, this question will
become meaningful in the very near future as our 900V and 1200V devices are
introduced (as well as a potential 250V family). Realize also that if you only require
a 100 or 200-volt device, then our HEXFET power MOSFET will probably continue
to be the most cost effective solution for your needs.

2. What frequency will the device be operated at? This will help you to decide whether
to use ““S”, “F”, or “U’suffixed devices (for Standard, Fast, and UltraFast, respectively).
If you are planning to operate in the overlap regions between families (i.e., ~1-3 kHz,
or ~10 kHz), then we recommend that you try both of the closest family of devices,
in order to see which one operates most efficiently in your application.

3. What current will be required? The current of the IGBT will determine the amount
of power dissipated by the device, and will be a function of the operating temperature,
the duty cycle, your particular drive circuit and/or PWM scheme, and other minor
factors. However, the power dissipation can be simply approximated by plugging the
anticipated current requirement into the following qualitative formula:

Vce

PD = IC . VCE (lc) . Duty Cycle + ETS (lc) . Freq .
VCE(meas)
where Ppy is the total power dissipated (limited by max junction temp and case temp),
and Vg and Etg are both functions of I (the collector current). These values can
be approximated by using the graphs prcvided in the data sheets.

This will result in a feeling for the power you will need to dissipate, and will tell you

(for any given device size you have chosen) whether that device is likely to be able
to handle your needs.

vi
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INSULATED GATE BIPOLAR TRANSISTOR

IRGBC20F

Fast-Speed IGBT

» Latch-proof C
* Simple gate-drive Vceo =600V
» Fast operation 3kHz~8kHz lcpcy=16 A
» Switching-Loss Rating includes 5 VcE(say 2.8 V
all "tail" losses g Ers <23 mJ
n-channel

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

of higher-voltag

e, higher-current applications.

Absolute Maximum Ratings

TO-220AB

Parameter Max. Units
lc @ T =25°C | Continuous Collector Current 16
lc @ T¢ = 100°C | Continuous Collector Current 9.0 A
lem Pulsed Collector Current ® 64
Vce Collector-to-Emitter Breakdown Voltage 600
Ve Gate-to-Emitter Voltage +20 v
Im Clamped Inductive Load Current @ 64 A
Eary Reverse Voltage Avalanche Energy ® 5.0 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 60
Pp @ T¢ = 100°C | Maximum Power Dissipation 24 w
'T‘JSTG gg)er;?;n%éjr%ggtr'g{:ﬁengange -5510 +150 °oC
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 inelbs (11.5 kgecm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Rguc Junction-to-Case 2.1.
Recs Case-to-Sink, flat, greased surface 0.50 Kw ®
Reoua Junction-to-Ambient, typical socket mount - 80
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Electrical Characteristic @ Ty = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Collector-to-Emitter Breakdown Voltage | 600 [ - -— y Vge=0V, lc=250pA
BVecs Emitter-to-Collector Breakdown Volt. @ | 28 - - Vge=0V, lc=1.0A
ABVces/AT, | Temp. Coeff. of Breakdown Voltage . 10721 — | wvrc [Vge=0V, Ic =1.0mA
. . - - | 28 Vge=15V, Ic=9.0A See fig 4.

Vceon Collector-to-Emitter Saturation Voltage | --- 26 | — v Vge=15V, Ic=16A

- [ 283 | — Vee=15V, 1c=9.0A, T;=150°C
Vaegh) Gate Threshold Voltage 30 { — | 55 Vce=VaE, lc=250pA
ABVggmy/AT,{ Temp. Coeff. of Threshold Voltage - | -1 -— | mV/°C | Vee=VgE, Ic=250pA
gte Forward Transconductance ® 29 | - | 72 S | Vce=100V, Ic=9.0A

- - 250 Vge=0V, V=600V, T,;=25°C
lces Zero Gate Voltage Collector Current — 7000 HA Vae=0V, Veg=600V, T,=150°C
lges Gate-to-Emitter Leakage Current - — [4500 | nA | Vgg=x20V

Switching Characteristics @ T, = 25°C (un

less otherwise

specified)

T Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate' Charge (turn-on) 11 - 21 16=0.0A, V=480V
Qge Gate - Emitter Charge (turn-on) 1.4 - 34 nC See Figure 6.
Qge Gate - Collector Charge (turn-on) 53 | — 10
td(on) Turn-On Delay Time — | 24 | — See test circuit, figure 13.
t, Rise Time - | 13 — ns |[Ig=9.0A, Vcc=480V
t(of) Turn-off Delay Time - - | 270 T,=25°C
t Fall Time - - | 600 Vge=15V, Rg=50Q
Eon Turn-On Switching Loss -~ 1016 [ - Energy losses include "tail".
Eof Turn-Off Switching Loss — | 1.2 - mJ | Also see figures 9, 10, & 11.
Eis Total Switching Loss - 1.3 | 23
ta(on) Turn-(?n Delay Time 25 - 16=9.0A, V=480V
t Rise Time — | 18 | - ns | 1-150°C
ta(ott) Turn-Off Delay Time — 210 | — Voo 15V
- GE
t Fall Time -~ | 8600 | - Re=500
Es Total Switching Loss — | 18 | - mJ
Le Internal Emitter Inductance - 75 | - nH | Measured 5mm from package.
Cico Input Capacitance — | 340 | - Vge=0V
Coeo Output Capacitance - | 63 - pF | Vgo=30V See fig 5.
Cree Reverse Transfer Capacitance - | 59 - f=1.0MHz
Notes:

@ Repetitive rating; Vgg=20V, pulse width
limited by max. junction temperature

(See figure 12b).

® Vcc=80%(BVces), Vae=20V, L=10uH,

Rg=10Q,

(See figure 12a).

® Repetitive rating; pulse width limited
by maximum junction temperature.

@ Pulse width < 80us; duty factor <0.1%.

® Pulse width < 5ps,
single shot.

® KW equivalent to
°C/W.
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Graphs indicate performance of typical devices
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IRGBC20S

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

+ Simple gate-drive

« Standard operation < 1kHz

« Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

Standard-Speed IGBT

© Vgeo = 600 V
VcE(say £2.4 V
E Ers<6.0md
n-channel

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

TO-220AB

Parameter Max. Units
Ic @ Tc =25°C | Continuous Collector Current 19
Ic @ T¢ = 100°C | Continuous Collector Current 10 A
lem Pulsed Collector Current © 76
Vee Collector-to-Emitter Breakdown Voltage 600 Y
Vae Gate-to-Emitter Voltage 20
ILm Clamped Inductive Load Current ® 76 A
Earv Reverse Voltage Avalanche Energy ® 5.0 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 60
Pp @ T¢ = 100°C | Maximum Power Dissipation 24 w
psm 8&?2?;”%:;322&3 gange -5510 +150 oG
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 inelbs (11.5 kgecm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Reyc Junction-to-Case --- 241
Recs Case-to-Sink, flat, greased surface -- 0.50 -- Kw ®
Rosa Junction-to-Ambient, typical socket mount -- --- 80
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Electrical Characteristic @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions

BVces Collector-to-Emitter Breakdown Voltage | 600 | --- — Vge=0V, |c=250uA
BVecs Emitter-to-Collector Breakdown Volt. @ | 15 — - v Vge=0V, lc=1.0A
ABVceg/AT,| Temp. Coeff. of Breakdown Voltage — {075 | — | vrec | Vge=0V, Ic =1.0mA

. ' - — | 20 Vge=15V, Ic=10A See fig 4.
VcE(on) Collector-to-Emitter Saturation Voltage | -—- | 24 | -— v Vge=15V, Ic=19A

- 19 - Vee=15V, le=10A, T;=150°C
VGE(th) Gate Threshold Voltage 3.0 - 5.5 Vce=Vae, lc=250pA
ABVgg(ny/aT,| Temp. Coeff. of Threshold Voltage — | 93| — [mVI°C|Vee=Vqge, Ic=250pA
Jie Forward Transconductance ® 20 - | 9.5 S [ Vce=100V, Ic=10A
- - | 250 Vge=0V, V=600V, T,;=25°C
lces Zero Gate Voltage Collector Current — — 19000 HA Vae=0V, Vgg=600V, T,=150°C
lges Gate-to-Emitter Leakage Current - - |1500 [ nA [ Vge=t20V
Switching Characteristics @ T,; = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate. Charge (turn-on) 11 - 26 =10, Vg=480V
Qqae Gate - Emitter Charge (turn-on) 10| — | 40 | nC See Figure 6.
Qgc Gate - Collector Charge (turn-on) 40 | - 12
td(on) Turn-On Delay Time --- 24 - See test circuit, figure 13.
t Rise Time --- 23 - ns lc=10A, Vcc=480V
ty(otr) Turn-off Delay Time - --- 11200 T,=25°C
t Fall Time - -~ 11600 Vge=15V, Rg=50Q
Eon Turn-On Switching Loss -~ | 024 | - Energy losses include "tail".
Eotr Turn-Off Switching Loss — | 39 | - mJ | Also see figures 9, 10, & 11.
Es Total Switching Loss — | 41 | 6.0
ta(on) Turn-On Delay Time - 26 - Ig=10A, V=480V
t Rise Time . - 30 - ns T,2150°C
tdtoft) Turn-Off Delay Time - [ 1100 | -—- Vae=15V
t Fall Time -- | 1800 — R=50Q
[ Total Switching Loss —-— | 70 | - mJ
Le Internal Emitter Inductance - | 75 | - nH [ Measured 5mm from package.
Cico Input Capacitance - | 860 | - Vge=0V
Coee Output Capacitance -— 36 - pF | Vgc=30V See fig 5.
Cree Reverse Transfer Capacitance — | 82 | — f=1.0MHz
Notes:

@ Repetitive rating; Vge=20V, pulse width
limited by max. junction temperature

(See figure 12b).

@ Voc:BO%(BVCES), VGE=20V, L=10}.I.H,
Rg=10Q,

(See figure 12a).

@ Repetitive rating; pulse width limited
by maximum junction temperature.

@ Pulse width < 80us; duty factor <0.1%.

® Pulse width < 5ps,
single shot.

® K/W equivalent to
°C/W.
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International

IGR

Rectifier

PD-9.681

IRGBC20U

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

« Simple gate-drive

* Ultra-fast operation > 10kHz

+ Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

UltraFast™ IGBT

E
n-channel

Vogo = 600 V
IC(DC) =13 A
VCE(sat) <30V

Ers< 0.50 mJ

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

TO-220AB

Parameter Max. Units
lc @ Tc =25°C | Continuous Collector Current 13
Ic @ T¢ = 100°C | Continuous Collector Current 6.5 A
lem Pulsed Collector Current ® 52
Vce Collector-to-Emitter Breakdown Voltage 600
Vae Gate-to-Emitter Voltage +20 v
ILm Clamped Inductive Load Current @ 52 A
EaRv Reverse Voltage Avalanche Energy @ 5 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 60
Pp @ T¢ = 100°C | Maximum Power Dissipation 24 w
%TG gt%?g'en%:rﬂggg&g]gange -5510 +130 oG
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in*lbs (11.5 kgscm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Reusc Junction-to-Case - 21
Recs Case-to-Sink, flat, greased surface - 0.50 - Kw ®
Reya Junction-to-Ambient, typical socket mount - - 80

13



IRGBC20U

Electrical Characteristic @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. [ Units Test Conditions

BVees Collector-to-Emitter Breakdown Voltage | 600 | -— - v Vge=0V, Ic=250pA
BVecs Emitter-to-Collector Breakdown Volt. ® | 15 -— - Vge=0V, lc=1.0A
ABVces/AT,| Temp. Coeff. of Breakdown Voltage — | 069 | — | wec |Vge=0V, Ic =1.0mA

. . — [ — [ 30 Voe=15V, Ic=65A __ fa 4.
VcE(on) Collector-to-Emitter Saturation Voltage | — | 28 | — v Vge=15V, lc=13A

- | 25 | — Vee=15V, Ic=6.5A, T,=150°C
VGE(th) Gate Threshold Voltage 3.0 — 5.5 Vee=Vae, Ic=250pA
ABVgeuny/AT,| Temp. Coeff. of Threshold Voltage — | -11 — |mVI°C | Vee=VeE, Ic=250pA
Ote Forward Transconductance ® 14 | — [ 72 S | Vce=100V, Ic=6.5A
lces Zero Gate Voltage Collector Current — — 1202% HA zzizgx z::zggz Ijj:ofc
laes Gate-to-Emitter Leakage Current - -— |1500 [ nA | Vgg=t20V
Switching Characteristics @ T; = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate. Charge (turn-on) 11 - 22 Ig=6.5A, V=480V
Qae Gate - Emitter Charge (turn-on) 1.1 - 3.8 nC See Figure 6.
Qae Gate - Collector Charge (turn-on) 26 - 13
t3(0n) Turn-On Delay Time - 22 - See test circuit, figure 13.
t Rise Time - 12 - ns |lc=6.5A, V=480V
Y oty Turn-off Delay Time - - 95 T,=25°C
Y Fall Time — | — ] 280 Vge=15V, Rg=50Q
Eon Turn-On Switching Loss -~ 1009 | -- Energy losses include "tail".
Eoft Turn-Off Switching Loss — | 0.26 | -~ mJ | Also see figures 9, 10, & 11.
Ets Total Switching Loss -- (035 | .50
t9(on) Turn-On Delay Time - 23 --- Ic=6.5A, Vc=480V
t Rise Time — | 13 - ns T,2150°C
Loty Turn-Off Delay Time — | 140 | — Vae=15V
t Fall Time — [ 200 | —
Rg=50Q
Es Total Switching Loss — 0585 mJ
Le Internal Emitter Inductance — | 75 | — nH | Measured Smm from package.
Cico Input Capacitance — ]3830 [ — Vge=0V
Cooe Output Capacitance - | 65 - pF | Vec=30V See fig 5.
Cree Reverse Transfer Capacitance - | 6.0 - f=1.0MHz
Notes:

@ Repetitive rating; Vge=20V, pulse width
limited by max. junction temperature

(See figure 12b).

@ Vco=80%(BVces), Vge=20V, L=10uH,

Rg=10Q, (See figure 12a).

@ Repetitive rating; pulse width limited
by maximum junction temperature.

@ Pulse width < 80us; duty factor <0.1%.

® Pulse width < 5ps,
single shot.

® K/W equivalent to
°C/W.
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IRGBC20U
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Graphs indicate performance of typical devices
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International

IGR

Rectifier

PD-9.689

IRGBC30F

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

« Simple gate-drive

* Fast operation 3kHz~8kHz

» Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

Fast-Speed IGBT

¢ Voeo = 600 V
IC(DC) =31A
VCE(sat) <21V
£ ETS <35md
n-channel

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

Parameter Max. Units
Ic @ T¢c =25°C | Continuous Collector Current 31
lc @ T¢ = 100°C | Continuous Collector Current 17 A
lem Pulsed Collector Current ® 120
Vce Collector-to-Emitter Breakdown Voltage 600 y
Ve Gate-to-Emitter Voltage +20
Im Clamped Inductive Load Current @ 120 A
Earv Reverse Voltage Avalanche Energy @ 10 mJ
Pp @ Tg =25°C | Maximum Power Dissipation 100
Pp @ T¢ = 100°C | Maximum Power Dissipation 42 w
gTG gt%?:gl;t('en'?':nliggtrlg&?engange -5510 +150 oc
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in<lbs (11.5 kgecm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Reuc Junction-to-Case --- 1.2
Recs Case-to-Sink, flat, greased surface - 0.50 Kw ®
Raya Junction-to-Ambient, typical socket mount -- -- 80 ]
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IRGBC30F

Electrical Characteristic @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Collector-to-Emitter Breakdown Voitage | 600 | --- — v Vae=0V, Ic=250pA
BVEcs Emitter-to-Collector Breakdown Volt. @ | 24 -— - Vae=0V, lIg=1.0A
ABVceg/AT,| Temp. Coeff. of Breakdown Voltage — 1089 | -—— | wec | Vge=0V, Ic =1.0mA
' . — — 2.1 Vge=15V, lc=17A See fig 4.

VcE(on) Collector-to-Emitter Saturation Voltage | — [ 24 | - v Vge=15V, Ic=31A

- 2.2 -— VCE=1 5V, |c=1 7A, T;=150°C
Vaeh) Gate Threshold Voltage 3.0 - | 55 Vee=Vae, lc=250pA
ABVggny/aT,| Temp. Coeff. of Threshold Voltage — | -1 ~ | mV/°C | Voe=Vge, lc=250uA
O Forward Transconductance ® 61| — | 15 | S [Vce=100V, Ic=17A

- — | 250 Vge=0V, Vce=600V, T,=25°C
lces Zero Gate Voltage Collector Current — 17000 uA Vae=0V, Vee=600V, T,=150°C
laes Gate-to-Emitter Leakage Current - - [+500 [ nA | Vgg=t20V

Switching Characteristics @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
Qe Total Gate. Charge (turn-on) 23 - 30 Ig=17A, V=480V
Qge Gate - Emitter Charge (turn-on) 24 | — | 59 nC See Figure 6.
Qqac Gate - Collector Charge (turn-on) 92 | — 15
t90n) Turn-On Delay Time - | 25 - See test circuit, figure 13.
t Rise Time - 21 --- ns |[lc=17A, Vcc=480V
t(oft) Turn-off Delay Time - - | 320 T,=25°C
t Fall Time - - | 500 Vge=15V, Rg=23Q
Eon Turn-On Switching Loss - 1040 | - Energy losses include "tail".
Eott Turn-Off Switching Loss — | 21 - mJ | Also see figures 9, 10, & 11.
Eis Total Switching Loss - | 25 | 35
tg(on) Turn-On Delay Time — | 25 — l=17A, Vo=480V
t, Rise Time - 21 - ns T,=150°C
t9(otry Turn-fo Delay Time — {280 | — Vae=15V
t Fall Time — [ 590 [ - Ra=23Q
Es Total Switching Loss - | 4.0 - md
Le Internal Emitter Inductance - | 75 | - nH | Measured 5mm from package.
Cioe Input Capacitance - | 670 | - Vge=0V
Cooe Output Capacitance - 1100 | - pF | Veo=30V See fig 5.
Cree Reverse Transfer Capacitance - 10 - f=10MHz
Notes:
® Repetitive rating; Vge=20V, pulse width ® Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
@ Vc=80%(BVces), Vae=20V, L=p10H, @ Pulse width < 80ys; duty factor <0.1%.  © K/W equivalent to
Rg=10Q, (See figure 12a). °CIW.
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Internatiqpal

IGR

Rectifier

PD-9.688

IRGBC30S

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

* Simple gate-drive

+ Standard operation < 1kHz

+ Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

Standard-Speed IGBT

E
n-channel

Veeo = 600 V
lcipcy=34 A

Ets<10mJ

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

TO-220AB

Parameter Max. Units
lc @ Tc =25°C | Continuous Collector Current 34
Ilc @ T¢ =100°C | Continuous Collector Current 18 A
lom Pulsed Collector Current ® 136
Vee Collector-to-Emitter Breakdown Voltage 600
Vae Gate-to-Emitter Voltage +20
hm Clamped Inductive Load Current @ 136 A
Earv Reverse Voltage Avalanche Energy @ 10 mdJ
Pp @ T¢ =25°C | Maximum Power Dissipation 100
Pp @ T¢ = 100°C | Maximum Power Dissipation 42 w
Foe S oo e 55104150 -
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 inelbs (11.5 kgecm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Rayc Junction-to-Case 1.2
Recs Case-to-Sink, flat, greased surface - 0.50 Kw ®
Resa Junction-to-Ambient, typical socket mount --- - 80
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IRGBC30S

Electrical Characteristic @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Coliector-to-Emitter Breakdown Voltage | 600 | --- -— v Vge=0V, lc=250puA
BVecs Emitter-to-Collector Breakdown Volt. ® | 15 — - Vge=0V, Ic=1.0A
ABVces/AT,| Temp. Coeff. of Breakdown Voltage — |078 | —— | vrC | Vge=0V, Ic =1.0mA
. ' -_ -— 19 VGE=15V, |c=18A See fig 4.
VcE(on) Collector-to-Emitter Saturation Voltage | — | 2.4 -— v Vae=15V, Ic=34A
- 19 - VCE=1 5V, |c=18A, TJ=1 50°C
VGE(th) Gate Threshold Voltage 3.0 — 5.5 Vee=Vae. lc=250pA
ABVgg /AT, Temp. Coeff. of Threshold Voltage — |98 | — |mVI°C|Vce=Vge, lc=250pA
Jte Forward Transconductance ® 6.0 | - 17 S | Vce=100V, Ic=18A
-— —_ 250 VGE=0V, VCE=600V, TJ=25°C
lces Zero Gate Voltage Collector Current — —T7000 HA Vae=0V, V=600V, T,=150°C
laes Gate-to-Emitter Leakage Current -— -— 500 | nA | Vgg=t20V
Switching Characteristics @ T,; = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate' Charge (turn-on) 16 - 40 lg=18A, V=480V
Qge Gate - Emitter Charge (turn-on) 30 - 8.0 nC See Figure 6.
Qgc Gate - Collector Charge (turn-on) 60 | — 20
t4(on) Turn-On Delay Time - 26 - See test circuit, figure 13.
t Rise Time - 32 -— ns |[lc=18A, Vcc=480V
t4(otf) Turn-off Delay Time - -- [ 1100 Ty=25°C
t Fall Time - - | 1200 Vge=15V, Rg=24Q
Eon Turn-On Switching Loss -~ (051 | - Energy losses include "tail".
Eoft Turn-Off Switching Loss -— | 66 —- md | Also see figures 9, 10, & 11.
Eis Total Switching Loss - | 71 10
taon) Turn-On Delay Time — 26 -— lo=18A, V=480V
t Rise Time — | 35 - ns T,=150°C
to(oft) Turn-Off Delay Time — 11200 | - Vag=15V
t Fall Time —- [ 1500 | - Re=240
Es Total Switching Loss — | 12 - mJ
Le Internal Emitter Inductance - | 75 | — nH | Measured 5Smm from package.
Cioe Input Capacitance — | 700 | — Vge=0V
Cooee Output Capacitance - 70 — pF | Vcc=30V See fig 5.
Croe Reverse Transfer Capacitance - | 92 - f=10MHz
Notes:
® Repetitive rating; Vge=20V, pulse width ® Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
® Vo=80%(BVces), Vae=20V, L=10pH, ® Pulse width < 80ps; duty factor <0.1%.  © K/W equivalent to

Rg=10Q, (See figure 12a).

°C/W.
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International

IfR

Rectifier

PD-9.682

IRGBC30U

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

« Simple gate-drive

+ Ultra-fast operation > 10kHz

+ Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

UltraFast™ |GBT

¢ Voeo =600 V
lcipc) =23 A
E Ers<12md
n-channel

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

TO-220AB

Parameter Max. Units
Ilc @ Tc =25°C | Continuous Collector Current 23
Ic @ T¢ = 100°C | Continuous Collector Current 12 A
lem Pulsed Collector Current ® 92
Vce Collector-to-Emitter Breakdown Voltage 600
Ve Gate-to-Emitter Voltage +20
lim Clamped Inductive Load Current ® 92
EaRv Reverse Voltage Avalanche Energy ® 10 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 100
Pp @ T¢ = 100°C | Maximum Power Dissipation 42 w
Foo S T oo B
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in-lbs (11.5 kgecm)
Thermal Resistance
Parameter Min Typ. Max. Units
Resc Junction-to-Case - 1.2
Recs Case-to-Sink, flat, greased surface 0.50 Kw ®
Reoua Junction-to-Ambient, typical socket mount - -- 80
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Electrical Characteristic @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Collector-to-Emitter Breakdown Voitage | 600 | — -— N Vge=0V, Ic=250pA
BVecs Emitter-to-Collector Breakdown Volt. @ | 15 - — Vae=0V, lc=1.0A
ABV(ceg/AT, | Temp. Coeff. of Breakdown Voltage — 1063 | — | Vi°C |Vae=0V, Ic =1.0mA
‘ . -— - 3.0 V65=15V, |c=12A See fig 4.
Veeon) | Collector-to-Emitter Saturation Voltage — 2.7 —_ y Vge=15V, Ic=23A
-—- 2.4 - VCE=15V, |c=1 2A, TJ=1 50°C
VGE(lh) Gate Threshold Voltage 3.0 - 55 Vee=Vae, |c=250uA
ABVgeny/aT,[ Temp. Coeff. of Threshoid Voltage — | -11 — | mVP°C [ Vee=Vge, Ic=250pA
Jie Forward Transconductance ® 31| — | 14 | S |Vce=100V, Ic=12A
-—- - 250 VGE=0V, VCE=600V, TJ=25°C
lces Zero Gate Voltage Collector Current — — 17000 HA Vae=0V, Ve=600V, T,=150°C
laes Gate-to-Emitter Leakage Current — — [4500 | nA [ Vge=t20V
Switching Characteristics @ T, = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions
gG Lotal Gate' Charge (turn-on) 21 - 36 o lc=12A, Vo=480V
GE ate - Emitter Charge (turn-on) 28 - 6.8 n See Figure 6.
Qgc Gate - Collector Charge (turn-on) 6.8 - 17
t310n) Turn-On Delay Time - | 24 | - See test circuit, figure 13.
t Rise Time -— 15 - ns |lg=12A, V=480V
Lot Tumn-off Delay Time — -— | 200 T,=25°C
t Fall Time - - 190 Vge=15V, Rg=23Q
Eon Turn-On Switching Loss - 1018 | - Energy losses include "tail".
Eoft Turn-Off Switching Loss - | 041 | - mJ | Also see figures 9, 10, & 11.
Eis Total Switching Loss - 059 | 1.2
td(on) Tt..vm~0.n Delay Time - 24 - lg=12A, Vg=480V
t, Rise Time - 11 5 — ns T,=150°C
tyotty Turn-Off Delay Time 22 - Vae=15V
& Fall Tlme' : - - Rg=23Q
Eys Total Switching Loss -— 1.2 - mJ
Le Internal Emitter Inductance - 7.5 - nH [ Measured 5mm from package.
Cice Input Capacitance - | 660 | --—- Vge=0V
Cooo Output Capacitance -— | 100 -— pF | Vgg=30V See fig 5.
Croo Reverse Transfer Capacitance -— 11 - f =1.0MHz
Notes:
@ Repetitive rating; Vgg=20V, pulse width @ Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
@ Vcc=80%(BVces), Vae=20V, L=10pH, @ Puise width < 80us; duty factor <0.1%. ~ © KW equivalent to

Rg=10Q,

(See figure 12a).

°C/W.
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zer] Rectifier

PD-9.691

IRGBC40F

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

+ Simple gate-drive

* Fast Operation 3kHz~8kHz

» Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

Fast-Speed IGBT

E
n-channel

Voeo = 600 V
lC(DC) =49 A
VCE(sat) <20V

Ers<9.0md

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

TO-220AB

Parameter Max. Units
lc @ Tc =25°C | Continuous Collector Current 49
Ic @ T¢ = 100°C | Continuous Collector Current 27 A
lem Pulsed Collector Current @ 200
Vee Collector-to-Emitter Breakdown Voltage 600
Vae Gate-to-Emitter Voltage +20 v
ILm Clamped Inductive Load Current @ 200 A
Earv Reverse Voltage Avalanche Energy ® 15 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 160
Pp @ T¢ = 100°C| Maximum Power Dissipation 65 w
RTG g@?&?&"%:%g@?ﬁ&? glange -5510 +150 oC
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in*lbs (11.5 kgecm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Resc Junction-to-Case - - 0.77
Recs Case-to-Sink, flat, greased surtace 0.50 Kw ®
Rgua Junction-to-Ambient, typical socket mount 80
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Electrical Characteristic @ T; = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions

BVces Collector-to-Emitter Breakdown Voltage | 600 | - — v Vge=0V, Ic=250pA
BVEcs Emitter-to-Collector Breakdown Volt. @ | 24 -— - Vge=0V, Ic=1.0A
ABVceg/AT,| Tomp. Coeff. of Breakdown Voltage — (070 — | virCc | Vge=0V, Ic =1.0mA

. . — — | 20 Vge=15V, Ic=27A See fig 4.
Vce(on Collector-to-Emitter Saturation Voltage [ — [ 2.2 [ -— v Vge=15V, Ic=49A

- 1.9 - VCE=15V, 'c=27A, TJ=150°C

VGE(lh) Gate Threshold Voltage 3.0 - 55 Vee=Vae, lc=250pA
ABVgeny/AT | Temp. Coeff. of Threshold Voltage -— -12 — |mV/rC Vce=Vae, lc=250pA
Oie Forward Transconductance ® 92 | — | 15 S | Vce=100V, Ic=27A
lces Zero Gate Voltage Collector Current — 120%% pA X:E;g\\:' xz;zggz Ijjgosc
lges Gate-to-Emitter Leakage Current - — |3500| nA |Vgg=t20V

Switching Characteristics @ T, = 25°C (unless otherwise specified)
| Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate. Charge (turn-on) 38 - 80 Ig=27A, Vog=480V
Qae Gate - Emitter Charge (turn-on) 7.1 - 10 nC See Figure 6.
Qac Gate - Collector Charge (turn-on) 77 | — 42
td(on) Turn-On Delay Time -— 26 - See test circuit, figure 13.
t, Rise Time - 37 - ns |Ig=27A, Vcc=480V
Loty Turn-off Delay Time — | — | 410 T,=25°C
% Fall Time - — | 420 Vge=15V, Rg=10Q
Eon Turn-On Switching Loss - 060 | — Energy losses include "tail".
Eog Turn-Off Switching Loss — | 3.8 - mJ | Also see figures 9, 10, & 11.
Es Total Switching Loss ~— | 44 | 9.0
taton) Turn-On Delay Time — 28 - Ic=27A, V=480V
t, Rise Time . - 37 - ns T,=150°C
tacothy Tum-pff Delay Time - | 380 | - Vae=15V
Y Fall Time - | 460 | -—- Re=10Q
Es Total Switching Loss - | 7.0 - mJ
Lg Internal Emitter Inductance — | 75 | - nH | Measured Smm from package.
_(_:i_ee Input Capacitance - 1800 | -— Vge=0V
Coee Output Capacitance - | 190 | — pF | Vec=30V See fig 5.
Croe Reverse Transfer Capacitance - 20 - f=10MHz
Notes:

@ Repetitive rating; Vge=20V, pulse width
limited by max. junction temperature

(See figure 12b).

® Vc=80%(BVces), Vae=20V, L=10pH,

Rg=109,

(See figure 12a).

® Repetitive rating; pulse width limited
by maximum junction temperature.

@ Pulse width < 80ps; duty factor <0.1%.

® Pulse width < 5ps,
single shot.

® K/W equivalent to
°C/W.
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I¢R|Rectifier

PD-9.690

IRGBC40S

INSULATED GATE BIPOLAR TRANSISTOR

Standard-Speed IGBT

» Latch-proof

+ Simple gate-drive

« Standard operation < 1kHz

» Switching-Loss Rating includes
all "tail" losses

© Vego = 600 V
VCE(Sat) <18V
£ ETS <20md
n-channel

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the

familiar power MOSFET. They provide substantial
of higher-voltage, higher-current applications.

Absolute Maximum Ratings

benefits to a host

TO-220AB

Parameter Max. Units
Ilc @ Tc =25°C | Continuous Collector Current 50
Ic @ T¢ = 100°C | Continuous Collector Current 31 A
lem Pulsed Collector Current 1 240
Vee Collector-to-Emitter Breakdown Voltage 600
Vae Gate-to-Emitter Voltage +20 v
] Clamped Inductive Load Current @ 240 A
Earv Reverse Voltage Avalanche Energy @ 15 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 160
Pp @ T¢ = 100°C| Maximum Power Dissipation 65 w
PSTG gtlz)?;?gtén%é’#\gg?g&;ngange 5510 +150 °C

Soldering Temperature, for 10 sec.

300 (0.063 in. (1.6mm) from case)

Mounting Torque, 6-32 or 3mm MA screw

10 in+ibs (11.5 kg=cm)

Thermal Resistance

Parameter Min. Typ. Max. Units
Reuc Junction-to-Case 0.77
Rocs Case-to-Sink, flat, greased surface 0.50 Kw ®
Roua Junction-to-Ambient, typical socket mount - --- 80
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Electrical Characteristic @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Collector-to-Emitter Breakdown Voltage | 600 | — — Vge=0V, lc=250pA
BVecs Emitter-to-Collector Breakdown Volt. @ | 1§ - - v Vge=0V, Ic=1.0A
ABVceg/AT, | Temp. Coeff. of Breakdown Voltage — | 075 — | wrc |Vae=0V, Ic =1.0mA
‘ . — — | 18 Vae=15V, Ic=31A See fig 4.
Vce(on) Collector-to-Emitter Saturation Voltage — 2.2 - v Vge=15V, Ic=60A
- 1.7 - VCE=1 5V, |c=31A, TJ=1 50°C
VGE(th) Gate Threshold Voltage 3.0 - 5.5 Vee=VaE, Ic=250pA
ABVgey/AT,[ Temp. Coeff. of Threshold Voltage — [ 9.3 | — |mVIPC|vee=Vge, Ic=250pA
Ofe Forward Transconductance ® 12 | - 30 S | Vce=100V, ic=31A
lces Zero Gate Voltage Collector Current —t— 1205;) pA xz;g:l/ \\;zi;zgg\\; ..:-.jjgofc
laes Gate-to-Emitter Leakage Current -— - |4500 | nA | Vgg=t20V
Switching Characteristics @ T, = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate. Charge (turn-on) 40 - 90 lc=31A, Vg=480V
Qge Gate - Emitter Charge (turn-on) 50 | — 15 nC See Figure 6.
Qac Gate - Collector Charge (turn-on) 13 | — 40
td(on) Turn-On Delay Time — 28 | — See test circuit, figure 13.
t Rise Time - 50 | - ns | le=31A, Voc=480V
t4 (ot Turn-off Delay Time — | -— }1500 T,=25°C
t Fall Time -— - | 1100 Vge=15V, Rg=10Q
Eon Turn-On Switching Loss - 1.0 - Energy losses include "tail".
Eotf Tum-Off Switching Loss -— 12 - mJ | Also see figures 9, 10, & 11.
Eis Total Switching Loss - 13 20
t(on) Turn-On Delay Time - 29 - lo=31A, V=480V
t, Rise Time -~ 53 -— ns T,=150°C
ty(otty Turn-Off Delay Time - [1600 | — Vae=15V
t Fall Time — | 1200 -- Re=10Q
Es Total Switching Loss - 22 — mJ
Le Internal Emitter inductance - 7.5 - nH | Measured 5mm from package.
Cioo Input Capacitance - 11600 | -- Vge=0V
Cooe Output Capacitance ~ | 140 | - pF | Vgc=30V See fig 5.
Cree Reverse Transfer Capacitance - 20 - f =1.0MHz
Notes:
® Repetitive rating; Vge=20V, pulse width @ Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
® Pulse width < 80us; duty factor <0.1%.  © K/W equivalent to

@ V¢ =80%(BVces), Vae=20V, L=10pH,
Rg=10Q,

(See figure 12a).

°C/W.
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ror]Rectifier

PD-9.683

IRGBC40U

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

» Simple gate-drive

* Ultra-fast operation > 10kHz

» Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

UltraFast™ |IGBT

¢ Vceo = 600 V
IC(DC) =40 A
VcE(say <3.0V
E ETS <20md
n-channel

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

TO-220AB

Parameter Max. Units
lc @ Tc =25°C | Continuous Collector Current 40
lc @ Tc = 100°C | Continuous Collector Current 20 A
lom Pulsed Coilector Current ® 160
Vce Collector-to-Emitter Breakdown Voltage 600
Vae Gate-to-Emitter Voltage 20 v
ILm Clamped Inductive Load Current @ 160 A
Earv Reverse Voltage Avalanche Energy @ 15 mJ
Pp @ T¢ =25°C | Maximum Power Dissipation 160
Pp @ T¢ = 100°C | Maximum Power Dissipation 65 w
%TG g&?&%‘é"%rﬂggtﬁgﬂ faengange 5510 +150 °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in+lbs (11.5 kgecm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Resc Junction-to-Case 0.77
Recs Case-to-Sink, flat, greased surface 0.50 Kw ®
Reua Junction-to-Ambient, typical socket mount 80
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Electrical Characteristic @ T; = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Collector-to-Emitter Breakdown Voltage | 600 | —- - v Vge=0V, Ic=250pA
BVecs Emitter-to-Collector Breakdown Volt. @ | 15 — -— Vge=0V, Ic=1.0A
ABVceg/AT, | Temp. Coeft. of Breakdown Voltage — |o63| - | vec | Vae=0V, Ic =1.0mA
‘ ' -— - 30 VGE=15V. |c=2OA See ﬁg 4.
Vce(on) Collector-to-Emitter Saturation Voltage - 27 | - y Vge=15V, Ic=40A
- 23 - Vee=15V, 1c=20A, T;=150°C
VaEh) Gate Threshold Voltage 30 | — | 55 Vce=Vae, lc=250pA
ABVggwny/aT,| Temp. Coeft. of Threshold Voltage — | <18 | — |mV/°C|Ver=Vge, lc=250puA
dte Forward Transconductance ® 11 - 24 S | Vge=100V, Ic=20A
Ices Zero Gate Voltage Collector Current : _-: 1202% pA \\;Z'E;gz :I/ZE::Z?\; :.jj:ofc
lges Gate-to-Emitter Leakage Current - —- |#500 | nA |Vgg=t20V
Switching Characteristics @ T, = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate. Charge (turn-on) 35 — 67 Ic=20A, V=480V
Qae Gate - Emitter Charge (turn-on) 65 [ — 11 nC See Figure 6.
Qgc Gate - Collector Charge (turn-on) 59 - 33
t3(on) Turn-On Delay Time - 25 - See test circuit, figure 13.
t Rise Time -— 21 - ns |[Ic=20A, Voc=480V
t(off) Turn-off Delay Time - - | 190 T,=25°C
Y Fall Time - | 120 Vge=15V, Rg=10Q
Eon Turn-On Switching Loss - | 018 | - Energy losses include "tail”.
Eot Turn-Off Switching Loss - 1.3 - mJ | Also see figures 9, 10, & 11.
Eis Total Switching Loss - 156 | 20
taon) Turn-On Delay Time - 25 - =20, V=480V
t, Rise Time — 23 - ns T,=150°C
taotfy Turn-Off Delay Time — | 174 | - Vag=15V
t Fall Time -—- | 140 | — Ra=10Q
Es Total Switching Loss — | 24 | — mJ
Le Internal Emitter Inductance —~ {75 | - nH | Measured 5mm from package.
Cico Input Capacitance -— [ 1500 | - Vge=0V
Cose Output Capacitance —- (190 ]| — pF | Vgo=30V See fig 5.
Croo Reverse Transfer Capacitance - 17 - f=10MHz
Notes:
@ Repetitive rating; Vge=20V, pulse width @ Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
® Vcc=80%(BVces). Vag=20V, L=10uH, @ Pulse width <80ys; duty factor <0.1%.  © K/W equivalent to

Rg=10Q,

(See figure 12a).

°C/W.
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International

PD-9.693

xR Rectifier IRGPC40F

INSULATED GATE BIPOLAR TRANSISTOR

Fast-Speed IGBT

* Latch-proof C

« Simple gate-drive

* Fast operation 3kHz~8kHz

» Switching-Loss Rating includes
all "tail" losses

E
n-channel

Veeo =600 V
IC(DC) = 49 A
VCE(sat) S 20 V

ETS <9.0md

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host
of higher-voltage, higher-current applications.

Absolute Maximum Ratings

Parameter Max. Units
Ic @ Tc =25°C | Continuous Collector Current 49
lc @ T¢ = 100°C | Continuous Collector Current 27 A
lem Pulsed Collector Current ® 200
Vee Collector-to-Emitter Breakdown Voltage 600 v
Vae Gate-to-Emitter Voltage +20
Im Clamped Inductive Load Current @ 200 A
Earv Reverse Voltage Avalanche Energy @ 15 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 160
Pp @ T¢ = 100°C | Maximum Power Dissipation 65 w
Tre S e A e 5104150 B
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in<lbs (11.5 kgecm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Resc Junction-to-Case 0.77
Recs Case-to-Sink, flat, greased surface 0.24 - Kw ®
Reua Junction-to-Ambient, typical socket mount 40
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Electrical Characteristic @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Collector-to-Emitter Breakdown Voltage { 600 | -— - v Vge=0V, lc=250pA
BVEcs Emitter-to-Collector Breakdown Voit. @ | 24 - — Vge=0V, Ic=1.0A
ABVcegg/AT, | Temp. Coeff. of Breakdown Voltage — | 070 — v/eC | Vge=0V, Ic =1.0mA
. . -— — 20 VGE=15V, |c=27A See fig 4.

VcE(on) Collector-to-Emitter Saturation Voltage - 22 | - v Vge=15V, Ic=49A

== 1.9 e VCE=1 5V, |c=27A, TJ=1 50°C
VaE(n) Gate Threshold Voltage 30 | — | 55 Vee=Vae, lc=250pA
ABVgeiy/aT,| Temp. Coeff. of Threshold Voltage - -12 -- |mVvrC Vee=Vae, lc=250pA
Ote Forward Transconductance ® 92| — | 15 S | Vce=100V, Ic=27A

—~ 1 = | 250 Vae=0V, Vge=600V, T,=25°C
Ices Zero Gate Voltage Collector Current — —T1000 MA Vag=0V, V=600V, T,=150°C
lges Gate-to-Emitter Leakage Current — — 1500 [ nA | Vge=t20V

Switching Characteristics @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate' Charge (turn-on) 38 -— 80 l=27A, V=480V
Qge Gate - Emitter Charge (turn-on) 7.1 10 nC See Figure 6.
Qac Gate - Collector Charge (turn-on) 7.7 | — 42
ta(on) Turn-On Delay Time — | 26 | - See test circuit, figure 13.
t Rise Time - 37 - ns |lg=27A, V=480V
ta(ott) Turn-off Delay Time - | - | 410 T,=25°C
% Fall Time - - | 420 Vge=15V, Rg=10Q
Eon Turn-On Switching Loss - | 060 | — Energy losses include "tail".
Eoff Turn-Off Switching Loss -— | 38 | - mJ | Also see figures 9, 10, & 11.
Es Total Switching Loss — | 44 | 9.0
t(on) Turn-On Delay Time — | 28 | — lo=27A, Voc=480V
t, Rise Time — | 37 | — ns T,2150°C
tycotty Turn-Off Delay Time - | 380 [ - Vae=15V
t Fall Time — | 460 [ — Ra=100
Eys Total Switching Loss - | 70 | -- mJ
Lg Internal Emitter Inductance — | 13 | - nH | Measured 5mm from package.
Cice Input Capacitance - {1500 -- Vge=0V
Cooee Output Capacitance — [ 190 | — pF | V=30V See fig 5.
Creo Reverse Transfer Capacitance - 20 - f =1.0MHz
Notes:
@ Repetitive rating; Vge=20V, pulse width ® Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
@ Ve=80%(BVces), Vae=20V, L=10uH, @ Pulse width < 80ps; duty factor <0.1%.  © K/W equivalentto
Ra=10Q, (See figure 12a). C/W.
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International
Rectifier

PD-9.692

IRGPC40S

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

+» Simple gate-drive

+ Standard Operation < 1kHz

« Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

Standard-Speed IGBT

¢ Veeo = 600 V
IC(DC) =60 A
VCE(sat) <18V
E Erg<20md
n-channel

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

Parameter Max. Units
lc @ Tc =25°C | Continuous Collector Current 60
Ic @ T¢ = 100°C | Continuous Collector Current 39 A
lem Puised Collector Current ® 240
Vce Collector-to-Emitter Breakdown Voltage 600
Vge Gate-to-Emitter Voltage +20 v
ILm Clamped Inductive Load Current @ 240 A
EaRv Reverse Voltage Avalanche Energy ® 15 md
Pp @ T¢ = 25°C | Maximum Power Dissipation 160
Pp @ T¢ = 100°C | Maximum Power Dissipation 65 w
ETG g%?;?én%:;gzt:g&?: gange R oC
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in-lbs (11.5 kg=cm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Rouc Junction-to-Case 0.77
Recs Case-to-Sink, flat, greased surface 0.24 Kw ®
Rosa Junction-to-Ambient, typical socket mount - 80
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Electrical Characteristic @ T,; = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVees Collector-to-Emitter Breakdown Voltage | 600 | --—- - y Vge=0V, lc=250pA
BVEcs Emitter-to-Collector Breakdown Volt. @ | 15 - -- Vge=0V, Ic=1.0A
ABVcgs/AT, | Temp. Coeff. of Breakdown Voltage — o075 — | vrc | Vge=0V, Ic =1.0mA
' ‘ - - 1.8 VGE=15V, |c=31A See ﬁg 4.

Vce(on) Collector-to-Emitter Saturation Voltage | -- 22 | - v Vge=15V, Ic=60A

— 1 17| — Vee=15V, Ic=31A, T,=150°C
Veean) Gate Threshold Voltage 30 | — | 65 Vee=Vag, Ic=250pA
ABVge(ny/AT,| Temp. Coeff. of Threshold Voltage — | 93| — |mVrC Vee=Vae, Ic=250pA
e Forward Transconductance ® 12 | — [ 30 | S [Vceg=100V,lc=31A

- — 250 Vge=0V, V=600V, T,;=256°C
lces Zero Gate Voitage Collector Current — 17000 HA Vae=0V, Ve=600V, T,=150°C
lges Gate-to-Emitter Leakage Current - — [+500 | nA | Vge=t20V

Switching Characteristics @ T, = 25°C (un

less otherwise

specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate. Charge (turn-on) 40 -— 90 Ic=31A, V=480V
Qge Gate - Emitter Charge (turn-on) 5.0 - 15 nC See Figure 6.
Qac Gate - Collector Charge (turn-on) 13 - 40
ty(on) Turn-On Delay Time — 28 — See test circuit, figure 13.
t Rise Time - 50 - ns |ic=31A, Vgc=480V
t(ofty Turn-off Delay Time -— — | 1500 T,=25°C
|17 Fall Time - - 11100 Vge=15V, Rg=10Q2
Eon Turn-On Switching Loss - 1.0 | - Energy losses include "tail".
Eoft Turn-Off Switching Loss — 12 — mJ | Also see figures 9, 10, & 11.
Es Total Switching Loss - 13 20
taton) Turn-On Delay Time - 29 - lo=31A, V=480V
t Rise Time - 53 --- ns T,=150°C
ta(ot) Turn-Off Delay Time — | 1600 | - Vae=15V
i Fall Time — {1200 | --- Re=100
Eys Total Switching Loss - 22 - mJ
Le Internal Emitter Inductance - 13 - nH | Measured 5mm from package.
Cioe Input Capacitance - [ 1600 | —- Vge=0V
Cooe Output Capacitance - | 140 | — pF | Vgc=30V See fig 5.
Cree Reverse Transfer Capacitance - 20 - f =1.0MHz
Notes:
@ Repetitive rating; Vge=20V, pulse width @ Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
@ Vc=80%(BVces), Vae=20V, L=10uH, @ Pulse width < 80ys; duty factor <0.1%.  ©® K/W equivalent to

Rg=10Q,

(See figure 12a).

°C/W.
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International
Rectifier

PD-9.684

IRGPC40U

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof
» Simple gate-drive
* Ultra-fast operation > 10kHz

» Switching-Loss Rating includes

all "tail" losses

UltraFast™ |GBT

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

n-channel

E

Vgeo = 600 V
IC(DC) =40 A
VeE(sa <3.0 V

Ers<20md

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

Parameter Max. Units
lc @ Tc =25°C | Continuous Collector Current 40
lc @ T¢ = 100°C | Continuous Collector Current 20 A
lom Pulsed Collector Current ® 160
Vce Collector-to-Emitter Breakdown Voltage 600
Vae Gate-to-Emitter Voltage +20 v
ILm Clamped Inductive Load Current ® 160 A
EaRrv Reverse Voltage Avalanche Energy @ 15 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 160
Pp @ T¢ = 100°C | Maximum Power Dissipation 65 w
T S o e 5510+150 N
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in°lbs (11.5 kgecm)
Thermal Resistance
Parameter , Min. Typ. Max. Units
Reyc Junction-to-Case - - 0.77
Recs Case-to-Sink, flat, greased surface 0.24 - Kw ®
Reya Junction-to-Ambient, typical socket mount - - 40
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Electrical Characteristic @ Ty = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions

BVces Collector-to-Emitter Breakdown Voitage | 600 | — — y Vge=0V, Ic=250pA

BVecs Emitter-to-Collector Breakdown Volt. @ | 15 - - Vge=0V, ic=1.0A

ABVces/AT, | Temp. Coeff. of Breakdown Voltage — | o063 — | vee | Vae=0V, Ic =1.0mA

) . -— —_ 3.0 VGE=1 5V, |c=20A See ﬁg 4.
VcE(on) Collector-to-Emitter Saturation Voltage | — | 27 | — v Vge=15V, Ic=40A
- 23 --- VCE=1 5V, |c=2OA, TJ=150°C

Vaen) Gate Threshold Voltage 30 — | 55 Vce=Vae, lc=250pA
ABVgey/AT,[ Temp. Coeff. of Threshold Voltage — 13 | — |mVIPC|Vep=Vge, Ic=250uA

die Forward Transconductance ® 1 - 24 S [ Vce=100V, Ic=20A

lees Zero Gate Voltage Collector Current — :: 22550(:) HA xz;g\\; Xgé:ggz ;j_jzofc
laes Gate-to-Emitter Leakage Current - - [1500 | nA |Vgg=t20V
Switching Characteristics @ T, = 25°C (unless otherwise specified)

[ Parameter Min. | Typ. | Max. | Units Test Conditions

Qg Total Gate‘ Charge (turn-on) 35 | — | 67 Ig=20A, V=480V

Qae Gate - Emitter Charge (turn-on) 65 | — 11 nC See Figure 6.

Qqac Gate - Collector Charge (turn-on) 59 [ — 33

td(on) Turm-On Delay Time - 25 - See test circuit, figure 13.

t, Rise Time -— 21 - ns |lg=20A, Vgc=480V

4oty Tum-off Delay Time - — 190 T,;=25°C

% Fall Time -— - | 120 Vge=15V, Rg=10Q

Eon Turn-On Switching Loss - 018 | - Energy losses include "tail".
Eot Turn-Off Switching Loss — | 1.3 | - mJ | Also see figures 9, 10, & 11.
Eis Total Switching Loss — | 15 | 20

t4(0m) Tt.xrn~0n Delay Time - 25 - lc=20A, Vo=480V

t, Rise Time : - 23 - ns T,=150°C

Ld(off) Turn-(?ff Delay Time — | 174 | - Voe=15V

& Fall Time — | 140 [ — Re=10Q

Es Total Switching Loss — | 24 [ — mJ

Le Internal Emitter Inductance - 13 — nH | Measured 5mm from package.
Cioe Input Capacitance — | 1500 | -- Vge=0V

Coee Output Capacitance —- 1190 | — pF | Vee=30V See fig 5.
Cree Reverse Transfer Capacitance - 17 -— f=10MHz
Notes:

@ Repetitive rating; Vge=20V, pulse width
limited by max. junction temperature

(See figure 12b).

@ Vcc=80%(BVces), Vge=20V, L=10uH,
Rg=10Q,

(See figure 12a).

@ Repetitive rating; pulse width limited
by maximum junction temperature.

@ Pulse width < 80ps; duty factor <0.1%.

® Pulse width < 5ps,
single shot.

® K/W equivalent to
°C/W.
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Internatiqr]al

IGR

Rectifier

PD-9.695

IRGPC50F

INSULATED GATE BIPOLAR TRANSISTOR

» Latch-proof

» Simple gate-drive

» Fast operation 3kHz~8kHz

* Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

Fast-Speed IGBT

¢ Vego = 600 V
lcipc)y=70 A
VCE(sat) <1.7V
E Ers<10mJ
n-channel

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

Parameter Max. Units
lc @ T¢ =25°C | Continuous Collector Current 70
lc @ Tg = 100°C | Continuous Collector Current 39 A
lem Pulsed Collector Current ® 280
Vee Collector-to-Emitter Breakdown Voltage 600 v
Vae Gate-to-Emitter Voltage +20
ILm Clamped Inductive Load Current @ 280 A
EaRv Reverse Voltage Avalanche Energy ® 20 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 200
Pp @ T¢ = 100°C | Maximum Power Dissipation 78 w
e S o e 55104150 o
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in<lbs (11.5 kgecm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Reuc Junction-to-Case 0.64
Recs Case-to-Sink, flat, greased surface 0.24 - Kw ®
Regya Junction-to-Ambient, typical socket mount -- - 40
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Electrical Characteristic @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Collector-to-Emitter Breakdown Voltage | 600 | -- - v Vge=0V, 1c=250pA
BVgcs Emitter-to-Collector Breakdown Volt. @ | 25 - - Vge=0V, ic=1.0A
ABVceg/AT, | Temp. Coeff. of Breakdown Voltage — 1062 — | vrc |Vae=0V, Ic =1.0mA
. . -— - 1.7 Vge=15V, 1c=39A Soe fig 4.
VcE(on) Collector-to-Emitter Saturation Voltage | — 20 | — v Vge=15V, Ic=70A
- 1.7 - VCE=1 5V, |c=39A. TJ=1 50°C
VeE(th Gate Threshold Voltage 30 | — | 55 Vee=Vae, Ic=250pA
ABVgg(ny/aT,| Temp. Coeff. of Threshold Voltage - -14 | — |mV/°C|Vee=Vge, Ic=250uA
Oie Forward Transconductance ® 21 — 39 S | Vce=100V, 1c=39A
Ices Zero Gate Voltage Collector Current __: : 2250% HA zzz;gx xziiggz Ijj:ofc
laes Gate-to-Emitter Leakage Current - - |#500 | nA |Vge=t20V
Switching Characteristics @ T,; = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate' Charge (turn-on) 67 | — | 100 Ig=39A, V=480V
Qge Gate - Emitter Charge (turn-on) 14 - 25 nC See Figure 6.
Qge Gate - Collector Charge (turn-on) 35 — 67
ta(on) Turn-On Delay Time - 24 - See test circuit, figure 13.
t, Rise Time — 50 - ns |lc=39A, Vcc=480V
Loty Turn-off Delay Time — — | 540 Ty=25°C
t Fall Time - - 360 Vge=15V, Rg=2.0Q
Eon Turn-On Switching Loss — {020} - Energy losses include "tail".
Eos Turn-Off Switching Loss - | 68 -— mJ | Also see figures 9, 10, & 11.
E Total Switching Loss — | 6.0 10
t30n) Turn-On Delay Time - 25 - I6=39A, V=480V
t, Rise Time - 49 - ns T,2150°C
tacofty Turn—pff Delay Time — | 440 | - Vae=15V
Y Fall Time — | 410 | — Ra=2.00
Eis Total Switching Loss - 10 - mJ
Le Internal Emitter Inductance — 13 - nH [ Measured 5mm from package.
Ciso Input Capacitance - |3000| -- Vge=0V
Cooe Output Capacitance -~ | 340 | — pF | Vocc=30V See fig 5.
Croo Reverse Transfer Capacitance - 40 - f=10MHz
Notes:
@ Repetitive rating; Vge=20V, pulse width @ Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
@® Pulse width < 80ys; duty factor <0.1%. ~ © K/W equivalent to

® Vcc=80%(BVcEs), Vge=20V, L=10pH,
Rg=10Q,

(See figure 12a).

°C/W.
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International
Rectifier

PD-9.694

IRGPC50S

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

* Simple gate-drive

» Standard Operation < 1kHz

+ Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

of higher-voltag

Standard-Speed IGBT

¢ Voeo = 600 V
lcioc) =70 A
VCE(sat) < 1.6 V
E Ers<22md
n-channel

e, higher-current applications.

Absolute Maximum Ratings

TO-247AC

Parameter Max. Units
lc @ T¢c =25°C | Continuous Collector Current 70
lc @ T¢ = 100°C | Continuous Collector Current 41 A
lem Pulsed Collector Current i 320
Vee Collector-to-Emitter Breakdown Voltage 600
Vae Gate-to-Emitter Voltage +20 v
ILm Clamped Inductive Load Current @ 320 A
Eary Reverse Voltage Avalanche Energy @ 20 mJ
Pp @ T¢ = 25°C | Maximum Power Dissipation 200
Pp @ T = 100°C | Maximum Power Dissipation 78 w
T S o S e 55104150 o
Soldering Temperature, for 10 sec. 300 {0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 in+lbs (11.5 kgecm)
Thermal Resistance
Parameter Min. Typ. Max. Units
Rayc Junction-to-Case 0.64
Racs Case-to-Sink, flat, greased surface 0.24 Kw ®
Rgua Junction-to-Ambient, typical socket mount 40
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Electrical Characteristic @ T, = 25°C (unless otherwise specified)

Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Collector-to-Emitter Breakdown Voltage | 600 | — -— v Vae=0V, Ic=250pA
BVecs Emitter-to-Collector Breakdown Volt. @ | 15 | — | - Vge=0V, Ic=1.0A
ABVces/AT, | Temp. Coeff. of Breakdown Voltage — 10751 — | Vi°C | Vae=0V, Ic =1.0mA
. ' - - 1.6 Vge=15V, Ic=41A See fig 4.

Vce(on) Collector-to-Emitter Saturation Voltage | -— 19 | — Y Vge=15V, Ic=80A

— 15 | — Vee=15V, lg=41A, T;=150°C
Vae(h Gate Threshold Voltage 3.0 — 5.5 Vee=Vae, Ic=250pA
ABVggny/AT,| Temp. Coeff. of Threshold Voltage — | -93 | — |mVIPC|Vee=Vqe, lc=250uA
Oie Forward Transconductance ® 17 | — 50 S | Vce=100V, Ic=41A

- - 250 Vge=0V, Vce=600V, T,=25°C
lces Zero Gate Voltage Collector Current — — 1000 HA Vae=0V, V=600V, T,=150°C
laes Gate-to-Emitter Leakage Current - — [3500 | nA |Vgg=t20V

Switching Characteristics @ T, = 25°C (unless otherwise specified)
I Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate. Charge (turn-on) 84 — | 150 lg=41A, V=480V
Qge Gate - Emitter Charge (turn-on) 80 | — 23 nC See Figure 6.
Qgc Gate - Collector Charge (turn-on) 20 - 90
td(on) Turn-On Delay Time - 25 - See test circuit, figure 13.
t, Rise Time -— 59 - ns |lc=41A, Vcc=480V
ty(ofhy Turn-off Delay Time - --- {1400 T,=25°C
1 Fall Time — | — ] 700 Vae=15V, Rg=2.0Q
Eon Turn-On Switching Loss — [ 035 -- Energy losses include “tail".
Eoft Turn-Off Switching Loss - 15 - mJ | Also see figures 9, 10, & 11.
[ Total Switching Loss - 16 22
ta(on) Turn-On Delay Time - 26 - lo=41A, Vog=480V
t Rise Time - 58 - ns T,=150°C
tacotty Turn-Off Delay Time - (2000 | -—- Vag=15V
] Fall Time - | 1100 | -— Re=2.0Q
Eys Total Switching Loss - 28 - md
Le Internal Emitter Inductance - 13 — nH | Measured 5mm from package.
Cioo Input Capacitance — |3100| - Vge=0V
Cooe Output Capacitance — | 240 | — pF | Vce=30V See fig 5.
Cree Reverse Transfer Capacitance - 37 - f=10MHz
Notes:
@ Repetitive rating; Vge=20V, pulse width ® Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
@ Vee=80%(BVces), Vae=20V, L=10pH, @ Pulse width < 80ps; duty factor <0.1%.  © K/W equivalent to

Rg=10Q,

(See figure 12a).

°C/W.
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Rectifier

PD-9.685

IRGPC50U

INSULATED GATE BIPOLAR TRANSISTOR

* Latch-proof

+ Simple gate-drive

* Ultra-fast operation > 10kHz

» Switching-Loss Rating includes
all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host

UltraFast™ |GBT

E
n-channel

Vceo =600V
lC(DC) =55A
VCE(sat) <30V

Ers<2.8mJ

of higher-voltage, higher-current applications.

Absolute Maximum Ratings

TO-247AC

Parameter Max. Units
lc @ Tc =25°C | Continuous Collector Current 55
Ilc @ T¢ = 100°C | Continuous Collector Current 27 A
Icm Pulsed Collector Current @ 220
Vce Collector-to-Emitter Breakdown Voltage 600
Vae Gate-to-Emitter Voltage +20
Im Clamped Inductive Load Current ® 220 A
Earv Reverse Voltage Avalanche Energy ® 20 mJ
Pp @ T = 25°C | Maximum Power Dissipation 200
Pp @ T¢ = 100°C| Maximum Power Dissipation 78 w
L Shrage Tomperamis Range 55 t0 +150 o
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or 3mm MA screw 10 inelbs (11.5 kgecm)
Thermal Resistance
Parameter Min Typ. Max. Units
Rayc Junction-to-Case 0.64
Recs Case-to-Sink, flat, greased surface 0.24 Kw ®
Reua Junction-to-Ambient, typical socket mount - 40
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Electrical Characteristic @ T, = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions
BVces Collector-to-Emitter Breakdown Voltage | 600 | - - y Vge=0V, Ic=250pA
BVecs Emitter-to-Collector Breakdown Volt. ® | 23 — - Vge=0V, lc=1.0A
ABVceg/AT, | Temp. Coeff. of Breakdown Voltage — 1060| — | vi°C |Vae=0V, ic =1.0mA
' . m—— ol 30 VGE=15V, |c=27A See ﬁg 4.
VcE(on) Collector-to-Emitter Saturation Voltage | — | 24 | — v Vge=15V, Ic=556A
- 1.9 - VCE=1 5V, |c=27A, TJ=1 50°C
VaEah) Gate Threshold Voltage 30 | — | 55 Vce=VaE, lc=250pA
ABVggmy/AT,| Temp. Coeff. of Threshold Voltage - -13 | — |mVI°C| Vge=VgE, Ic=250pA
e Forward Transconductance ® 16 | — | 32 S | Vce=100V, Ic=27A
— — 250 Vge=0V, Vce=600V, T,=25°C
lces Zero Gate Voltage Collector Current — 15000 pA Vae=0V, Ve=600V, T,=150°C
lges Gate-to-Emitter Leakage Current -— — | 4500 nA | Vge=t20V
Switching Characteristics @ T, = 25°C (unless otherwise specified)
Parameter Min. | Typ. | Max. | Units Test Conditions
Qg Total Gate. Charge (turn-on) 77 | — | 140 Ig=27A, Vcc=480V
Qge Gate - Emitter Charge (turn-on) 13 - 21 nC See Figure 6.
Qac Gate - Collector Charge (turn-on) a5 — 70
t(0n) Turn-On Delay Time - | 28 | - See test circuit, figure 13.
t, Rise Time - 28 - ns | lg=27A, Vcc=480V
t(ott) Turn-off Delay Time - -- | 200 T,=25°C
11 Fall Time - - 140 Vage=15V, Rg=2.0Q
Eon Turn-On Switching Loss — (012 | - Energy losses include "tail".
Eoff Turn-Off Switching Loss — 1.6 - mdJ | Also see figures 9, 10, & 11.
Es Total Switching Loss - 1.7 | 28
(o) Turn-On Delay Time il L M lo=27A, V=480V
t Rise Time -— 12870 - ns T,=150°C
taiott) Tum-Off Delay Time - bt -— Vae=15V
% Fall Tume. -— - Rg=2.0Q
Ey Total Switching Loss — | 27 | - md
Le Internal Emitter Inductance - 13 - nH | Measured 5mm from package.
Cice Input Capacitance - 12900 | -- Vge=0V
Cose Output Capacitance — | 83 | -— pF | Vco=30V See fig 5.
Cree Reverse Transfer Capacitance — 41 - f =1.0MHz
Notes:
@ Repetitive rating; Vge=20V, pulse width @ Repetitive rating; pulse width limited ® Pulse width < 5ps,
limited by max. junction temperature by maximum junction temperature. single shot.
(See figure 12b).
@ Pulse width < 80us; duty factor <0.1%. ® K/W equivalent to

® Vcc=80%(BVces), Vge=20V, L=10uH,
Rg=10Q,

(See figure 12a).

°C/W.
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AN-983

IGBT Characteristics and Applications

(HEXFET is a trademark of International Rectifier)
by S. Clemente, A. Dubhashi, B. Pelly

Summary

This application note describes International Rectifier’s
Insulated Gate Bipolar Transistors (IGBTs).

Section I describes the characteristics of the device, its
technology and the key trade-offs in its design, comparing
it to MOSFETs and bipolar transistors.

Section II reviews the data sheet and explains the terms
and test methods used to characterize the IGBT.

Section III contains an overview of the three families
of IGBTs available from International Rectifier.

Section IV covers some application issues such as gate
drive requirements, calculation of power losses, and
thermal design.

Introduction

Switching speed, peak current capability, ease of drive,
wide SOA, avalanche and dv/dt capability have made
power MOSFETs the logical choice in new power
electronic designs. These advantages, a natural
consequence of being majority carrier devices, are partly
mitigated by their conduction characteristics which are
strongly dependent on temperature and voltage rating.

Furthermore, as the voltage rating goes up, the inherent
reverse diode displays increasing Qrr and Tyy which leads
to increasing switching losses.

IGBTs on the other hand, being minority carrier
devices, have superior conduction characteristics, while
sharing many of the appealing features of power
MOSFET: such as ease of drive, wide SOA, peak current
capability and ruggedness. Generally speaking, the
switching speed of an IGBT is inferior to that of power
MOSFETs. However, as will be shown in Section III, a
new line of IGBTs from International Rectifier has
switching characteristics that are very close to those of
power MOSFETS, without sacrificing the much superior
conduction characteristics.

The absence of the integral reverse diode gives the user
the flexibility of choosing an external fast recovery diode
to match a specific requirement. This feature can be an
advantage or a disadvantage, depending on the frequency
of operation, cost of diodes, current requirement, etc.

The purpose of this application note is to provide the
design engineer with a comprehensive understanding of
this new class of devices, with special reference to those
provided by International Rectifier.

GATE POLYSILICON OXIDE

N+ BUFFER LAYER

P+ SUBSTRATE
COLLECIOR
() DEVICE STRUCTURE
COLLECTOR
c
G J !I'
E o)
EMITTER

(b) DEVICE SYMBOL (c) EQUIVALENT CIRCUIT

Figure 1. Silicon cross-section of an IGBT with its equivalent
circuit and symbol (N-Channel, enhancement mode). The
terminal called collector is, actually, the emitter of the PNP.
In spite of its similarity to the cross-section of a power
MOSFET, operation of the two transistors is fundamentally
different, the IGBT being a minority carrier device.
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Section I: The IGBT Technology and Characteristics

Except for the P+ substrate, the silicon cross-section
of an IGBT (Figure 1) is virtually identical to that of a
power MOSFET. Both devices share a similar polysilicon
gate structure and P wells with N+ source contacts. In
both devices the N- type material under the P wells is sized
in thickness and resistivity to sustain the full voltage rating
of the device.

However, in spite of the many similarities, the physical
operation of the IGBT is closer to that of a bipolar
transistor than to that of a power MOSFET. This is due
to the P+ substrate which is responsible for the minority
carrier injection into the N- region and the resulting
conductivity modulation. In a power MOSFET, which
does not benefit from conductivity modulation, a
significant share of the conduction losses occur in the
N- region, typically 70% in a 500V device.

As shown in the equivalent circuit of Figure 1, the IGBT
consists of a PNP driven by an N-Channel MOSFET in
a pseudo-Darlington configuration. The JFET supports
most of the voltage and allows the MOSFET to be a low
voltage type, and consequently have a low Rps(on)-

The base region of the PNP is not brought out and the
emitter-base PN junction, spanning the entire extension
of the wafer cannot be terminated nor passivated. This
influences the turn-off and reverse blocking behavior of
the IGBT, as will be explained later. The breakdown
voltage of this junction is about 20V and is shown in the
IGBT symbol as an unconnected terminal (Figure 1).

A. Conduction Characteristics

As it is apparent from the equivalent circuit, the voltage
drop across the IGBT is the sum of two components: a
diode drop across the P-N junction and the voltage drop
across the driving MOSFET. Thus, unlike the power
MOSFET, the on-state voltage drop across an IGBT never
goes below a diode threshold. The voltage drop across the
driving MOSFET, on the other hand, has one
characteristic that is typical of all low voltage MOSFETs:
it is sensitive to gate drive voltage. This is apparent from
Figures 12 and 13 where, for currents that are close to their
rated value, an increase in gate voltage causes a reduction
in collector-to-emitter voltage. This is due to the fact that,
within its operating range, the gain of the PNP increases
with current and an increase in gate voltage causes an
increase in channel current, hence a reduction in voltage
drop across the PNP. This is quite different from the
behavior of a high voltage power MOSFET that is largely
insensitive to gate voltage.

As the final stage of a pseudo-Darlington, the PNP is
never in heavy saturation and its voltage drop is higher
than what could be obtained from the same PNP in heavy
saturation. It should be noted, however, that the emitter
of an IGBT covers the entire area of the die, hence its
injection efficiency and conduction drop are much
superior to that of a bipolar transistor of the same size.
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Two options are available to the device designer to
decrease the conduction drop:

1. Reduce the on-resistance of the MOSFET. This
can be done by increasing the die size and/or the packing
density. Both have a negative impact on yield and cost.

2. Increase the gain of the PNP. As explained later,
this option is limited by latch-up considerations.

International Rectifier has pursued the optimization of
the MOSFET component of the IGBT to the point where
its devices can be correctly referred to as a ‘‘conductivity
modulated MOSFET”’ with its characteristic features of
high speed, low voltage drop and efficient silicon
utilization. Other semiconductor companies, on the other
hand, have concentrated on the optimization of the
bipolar part and the resulting product should be more
correctly referred to as a ‘““MOSFET-driven transistor’’
with a different set of characteristics.

The dramatic impact of conductivity modulation on
voltage drop can be seen from Figure 2 which compares
a HEXFET power MOSFET and an IGBT of the same
die size. Temperature dependence, very significant in a
power MOSFET, is minimal in an IGBT, just enough to
ensure current sharing of paralleled devices at high current
levels under steady state conditions, as shown in Figure
14 for the IRGBC20U. This same figure shows that the
temperature dependence of the voltage drop is different
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Figure 2. On-state voltage drop vs temperature of two IGBTs
of different switching characteristics compared to those of a
HEXFET of the same die size (IRGBC40S and IRGBC40U
vs |RF840).

Conductivity modulation causes a dramatic improvement in
the on-state voltage drop. To take the avalanche capability of
the HEXFET into account, a 500V device is compared with
600V IGBTs.



at different current levels. This is because the diode
component of this drop has a temperature coefficient that
is initially negative becoming positive at higher current
levels. The MOSFET component, on the other hand, is
positive. The problem is made more complex by the fact
that these two components are weighted differently at
different current and temperatures.

In addition to reducing the voltage drop and its
temperature coefficient, conductivity modulation virtually
eliminates its dependence on the voltage rating. This is
shown in Table I, where the conduction drops of four
IGBTS of different voltage ratings are compared with those
of HEXFETs at the same current density!.

Table 1: Dependence of Voltage Drop From Voltage Rating

iGBT | 100 | 300 | 600 | 1200
HEXFET | 100 | 250 | 500 | 1000
Typical Voltage Drop 1GBT 15 21 24 31

@ 1.7Amm?, 100°C  TREvEET | 20 | 1.2 | 267 | 100

The voltage rating of the HEXFET power MOSFETs used in this
comparison are lower than the 1GBTs to take into account their avalanche capability.

Rated Voltage

B. Switching Characteristics

The biggest limitation to the turn-off speed of an IGBT
is the lifetime of the minority carriers in the N- epi, i.e.,
the base of the PNP. Since this base is not accessible,
external drive circuitry cannot be used to improve the
switching time. It should be remembered, though, that
since the PNP is in a pseudo-Darlington connection, it
has no storage time and its turn-off time is much better
than the same PNP in heavy saturation. Even so, it may
still be inadequate for many high frequency applications.

The charges stored in the base cause the characteristic
‘“‘tail’’ in the current waveform of an IGBT at turn-off
(Figure 3). As the MOSFET channel stops conducting,
electron current ceases and the IGBT current drops rapidly
to the level of the hole recombination current at the
inception of the tail. This tail increases turn-off losses and
requires an increase in the deadtime between the
conduction of two devices in a half-bridge.

Traditional lifetime killing techniques and/or an N+
buffer layer to collect the minority charges at turn-off are
commonly used to speed-up recombination time. Insofar
as they reduce the gain of the PNP, these techniques
increase the voltage drop. Pushed to the extreme, minority
lifetime killing causes a quasi-saturation condition at turn-
on, as shown in Figure 4, where the turn-on losses have
become larger than the turn-off losses.

Thus, the gain of the PNP is constrained by conduction
and turn-on losses on one hand, and by latching
considerations on the other, as explained in the next
section.

Like all minority carrier devices, the switching
performance of an IGBT degrades with temperature. As
can be seen in Figure 18, this phenomenon is less
significant at high current levels.
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Figure 3. Turn-off waveform of a commercial IGBT at 25°C, rated
current. Notice the clean break at the inception of the “tail”.
Switching circuit as in Figure 16.
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Figure 4. Switching waveforms of a commercially available IGBT
with heavy lifetime killing.

It takes approximately 0.5 ns for the voltage to drop the last 50V.
The energy plot shows that the losses at turn-on are twice as
high as those at turn-off.

Switching circuit as in Figure 16.

d

ISeveral papers make refé to a voltage d
a power MOSFET of the following type:

of the Rpg(on) of

R = Ry V&

with & = 2.5, i.e., the on-resistance increases with the voltage rating at a higher

rate than a square law. In reality, assuming that a power law is a true representation
of the underlying physical phenomena, the correct value would be = 1.6, as can
be easily verified from the data sheets of any manufacturer. These data sheets
will also contradict the common misconception that power MOSFETS have better
silicon utilization at low voltage. In actual fact they achieve their highest power
handling capability per unit area between 400V and 600V.

95



C. Latching

As shown in the cross-section of Figure 1, the IGBT
is made of four alternate P-N-P-N layers. Given the
necessary conditions (onpn + apnp > 1) the IGBT could
latch-up like a thyristor.

The N + buffer layer and the wide epi base reduce the
gain of the PNP, while the gain of the NPN, which is
the parasitic bipolar of the MOSFET, can be reduced with
the same techniques [1] that are commonly employed to
give HEXFETS their avalanche and dv/dt capability,
mainly a drastic reduction of the ry. If this ry is not
adequately reduced, ‘‘dynamic latching’’ could occur at
turn-off when a high density of hole current flows in rf,
taking the gain of the parasitic NPN to much higher
values.

Latching should not occur under any of the operating
conditions of current, temperature and dv/dt that the
device may see within its rated limits of operation. IGBTs
from International Rectifier are guaranteed not to latch
at the maximum current that can be sustained with
Vgg = 20V, T = 150°C and the highest dv/dt the device
is capable of. At the same time, since a PNP with higher
gain reduces conduction losses, International Rectifier has
been careful not to reduce it beyond what is necessary for
safe and reliable operation at the data sheet limits.

D. Safe Operating Area

The safe operating area (SOA) describes the capability
of a transistor to withstand significant levels of voltage
and current at the same time. The three main conditions
that would subject an IGBT to this combined stress are
the following:

1. Operation in short circuit. The current in the
IGBT is limited by its gate voltage and transconductance
and can reach values well in excess of 10 times its
continuous rating. The level of hole current that flows
underneath the N+ source contact can cause a drop
across ry, large enough to turn on the NPN parasitic
bipolar with possible latching. This is normally prevented
by a reduction in rf, , as mentioned in the previous section
or by a reduction of the total device transconductance
(essentially the gain of the PNP). This second technique
increases conduction losses and reduces switching speed.

Lower power dissipation was deemed a more desirable
feature than short circuit capability, particularly
considering that simple protection circuitry can be added
to the gate drive to protect the IGBT in those applications
where a short circuit is a likely event.

2. Inductive turn-off, sometimes referred to as
“clamped Iy’ In an inductive turn-off the voltage
swings from a few volts to the supply voltage with constant
current and with no channel current. These conditions
are different from those described in the previous section
in so far as the load current is totally made up of holes
flowing through rf,. For this reason some manufacturers
suggest the use of gate drive resistors to slow down the
turn-off dv/dt and maintain some level of electron current,
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thereby avoiding a potential ‘‘dynamic latching”’
condition. IGBTs from International Rectifier can be
operated at their maximum switching speed without any
problem. Reasons to limit the switching speed should be
external to the device (e.g., overshoots due to stray
inductance), rather than internal.

3. Operation as a linear amplifier. Linear
operation exercises the SOA of the IGBT in a combination
of the two modes described above, but in a less severe
fashion. A device that is designed to withstand those
stresses will be more than suited to operate as a linear
amplifier. No second breakdown has been observed in
IGBTs from International Rectifier in any mode of
operation within the data sheet limit.

E. Transconductance

The current handling capability of a semiconductor
can be limited by thermal constraints or by gain/
transconductance constraints. While the ‘‘headline current
rating”” of power semiconductors is based solely on
thermal considerations, it is entirely possible, as is
frequently the case with bipolar transistors, that the device
cannot operate at the current level it is thermally capable
of, because its gain has fallen to very low values. As shown
in Figure 5, the transconductance of an IGBT tops out
at current levels that are well beyond its thermal capability,
while the gain of a bipolar of similar die size is on a steep
downslope within its current operating range.

100 T T

70 l 100°C —

| \) //ﬂ\gh_‘

40— Buxgs e

™ )

20 N —
o 4q N T -
Nt 7 \Q&""" o ||

4,

2

1
1A 108 100A 1000A

COLLECTOR/DRAIN CURRENT

Figure 5. Current dependence of the transconductance of
an IGBT compared to that of a HEXFET and to the gain of
a bipolar of approximately the same die size.

The IGBT, like the power MOSFET, is not “‘gain limited.”

The flattening out of transconductance occurs when the
saturation effects in the MOSFET channel, that reduce
the base current of the PNP, combine with the flattening
of the gain of the PNP. Since temperature reduces the
MOSFET channel current more than it increases the gain
of the PNP, the saturation in transconductance occurs at
lower current as the temperature increases.



Since lifetime killing reduces the gain of the PNP, the
transconductance of fast IGBTS peaks at a lower level than
those without lifetime killing. This, however, is a second
order effect because the gain of the PNP is determined
mainly by the N+ buffer layer.

The decrease in transconductance at very high current
and its additional decrease with temperature helps protect
the IGBT under short circuit conditions. With a gate
voltage of 15V, the current density of a standard IGBT
from International Rectifier reaches values of
10-20A/mm?2 in short circuit. This high transconductance
is partly responsible for their superior switching and
conduction characteristics.

Section ll: The Data Sheet

International Rectifier prides itself on having one of
the most comprehensive IGBT data sheets in the industry,
with all the information required to operate the IGBT
reliably. However, like all technical documents it requires
a good understanding by the user of the different terms
and conditions. These are briefly explained in the
following sections.

A. The Headline Information

In addition to the mechanical layout, the front page
gives the voltage and current ratings. The current rating
is the industry standard dc current capability of the device
with the case being maintained at 25°C.

The part number itself contains in coded form the key

features of the IGBT. An explanation of the nomenclature
is contained in Figure 6.

IRG BC 4 0F

INTERNATIONAL RECTIFIER J l -L SPEED DESIGNATOR

1GBT S STANDARD
PACKAGE DESIGNATOR FFAST
A TO3 U ULTRAFAST
B T0-220 MODIFIER
P T0-247 DIE SIZE
VOLTAGE DESIGNATOR
C 600V
E 800V
F g00v
G 1000V
H 1200V

Figure 6. Simplified nomenclature code for commercial IGBTs
from International Rectifier.

B. The Absolute Maximum Ratings

This table sets up a number of constraints on device
operation that apply under any circumstance.

Continuous. Collector Current @ Tc = 25°C and
100°C (I¢). This represents the dc current level that will
take the junction to its rated temperature from the
stipulated case temperature. It is calculated with the
following formula:

AT
0j-c * Ic » Veg(on) @ I¢

IC=

where AT is the temperature rise from the stipulated case
temperature to the maximum junction temperature
(150°C)2.

It is clear, from this formula, that a current rating has
no meaning without a corresponding junction and case
temperature. Since in normal applications the case
temperature is much higher than 25°C, the associated
rating is of no practical value and is only reported because
transistors have been traditionally rated in this way. Figure
7 shows how this rating changes with case temperature,
with a junction temperature of 150°C, for a specific
device.
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Figure 7. Maximum Collector Current vs. Case Temperature

Pulsed Collector Current (Icpy). Within its thermal
limits, the IGBT can be used to a peak current well above
the rated continuous DC current. The temperature rise
during a high current transient can be calculated as
indicated in Section IVC. The test circuit is shown in
Figure 8.

Collector-to-Emitter Voltage (V). Voltage across the
IGBT should never exceed this rating, to prevent
breakdown of the collector-emitter junction. The
breakdown itself is guaranteed in the Table of Electrical
Characteristics.

2Notice tha't VCE(qn) @ Ic is not known because I is not known.
It can be found with few iterations.
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Figure 9. Clamped Inductive Load Test Circuit

Maximum Gate-to-Emitter Voltage (Vgg). The gate
voltage is limited by the thickness and characteristics of
the gate oxide layer. Though the gate dielectric breakdown
is typically around 80 volts, the user is limited to 20V to
limit current under fault conditions and to ensure long
term reliability.
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Figure 10a. Turn-on with a clamped inductive load and a fast
recovery diode. Test circuit as in Figure 9.

Clamped Inductive Load Current (Ip,). This rating
guarantees that the device is able to repetitively turn off
the specified current with a clamped inductive load, as
encountered in most applications. In fact, the test circuit
(Figure 9) exposes the IGBT to the peak recovery current
of the free-wheeling diode, which adds a significant
component to the turn-on losses (Figure 10).

This rating guarantees a square switching SOA, i.e., that
the device can sustain high voltage and high current
simultaneously. The I ) rating is specified at 150°C,
80% of the rated voltage and at four times the rated
current at T¢ = 25°C. This is a simpler and more direct
representation of the device capability than the traditional
SOA curve that lends itself to many misunderstandings.

Reverse Avalanche Energy (E, gy). This subject is
covered in detail in the BVEcg section of the electrical
characteristics.

Maximum Power Dissipation @ 25°C and 100°C
(Pp). It is calculated with the following formula:

AT
ej_c

Pp =

The same comments that were made on the Continuous
Collector Current apply to Power Dissipation.

Junction Temperature (Tj): the device can be operated

in the industry standard range of -55°C to 150°C
respectively.

C. Thermal Resistance

Rthjcs Rthess Rthja are needed for the thermal design,
as explained in Section IV, C.
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Figure 10b. Turn-on with an ideal diode (zener clamp). Test
circuit as in Figure 16.

The reverse recovery is a significant contributor to turn-on losses. To discriminate between the losses that are intrinsic to
the IGBT and those due to the diode reverse recovery, the test circuit shown in Figure 16 has been used to generate the

data sheet values.
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D. Electrical Characteristics

The purpose of this section is to provide a detailed
characterization of the device so that the designer can
predict with accuracy its behavior in a specific application.

Collector-to-Emitter Breakdown Voltage (BV gg).
This parameter guarantees the lower limit of the
distribution in breakdown voltage. Breakdown is defined
in terms of a specific leakage current and has a positive
temperature coefficient (listed in the table as BVcgs/AT)
of about 0.63V/°C. This implies that a device with 600V
breakdown at 25°C would have a breakdown voltage of
550V at -55°C.

Emitter-to-Collector Breakdown Voltage (BVgcs).
This rating characterizes the reverse breakdown of the
unterminated collector-base junction of the PNP. The
relevance of this specification and its associated reverse
avalanche energy can be better understood with reference
to Figure 11. When an IGBT turns off and current is
transferred to the diode across the complementary device,
the turn-off di/dt in the stray inductance that is in series
with the diode generates a reverse voltage spike across the
IGBT (i.e., the collector voltage goes negative with respect
to the emitter). This reverse voltage is typically less than
10V, though higher voltages can result from very high
di/dt or poor layout. Since this reverse voltage can cause
avalanche in the junction, International Rectifier IGBTs
have an energy rating, given in the Absolute Maximum

{
L\.
Dy

Figure 11. When T2 goes off, load current flows into the
diode in parallel with Tq. The reverse turn-off di/dt of To
develops a voltage across the stray inductance in series
with D1 which reverse biases T1. IR’s IGBTs have a
specified reverse blocking capability (BVogg) and an
avalanche rating (ERy).

Ratings table, that is more useful to the designer than a
traditional diode characterization. This rating is typically
an order of magnitude more than what would be required
by the user.

Collector-to-Emitter Saturation Voltage (Vcg(on))-
Being the key rating to calculate conduction losses, this
value is supported by three figures that provide a detailed
characterization in temperature, current and gate voltage
(Figures 12, 13, and 14 for the IRBGC20U). The Table
of Switching Characteristics lists three values at two
currents and two temperatures.

Gate Threshold Voltage (V gg(tn)). This is the range of
voltage on the gate at which collector current starts to
flow.

The variation in gate threshold with temperature is also
specified (Vgg(th)/ATj). Typically the coefficient is -11
mV/°C, leading to a reduction of about 1.4V in the
threshold voltage at high temperatures.
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Figure 14. Collector-to-Emitter Saturation Voltage vs. Case
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Forward Transconductance (ggg). This parameter is
measured by superimposing a small variation on a gate
bias that takes the IGBT to its 100°C rated current in
“linear’’> mode. As mentioned in Section II, E,
transconductance increases significantly with current so
that the “‘current throughput’’ of an IGBT is not limited
by gain, as a bipolar, but by thermal considerations.

Zero-Gate-Voltage Collector Current (Icgs). This
parameter guarantees the upper limit of the leakage
distribution at the rated voltage and two temperatures.
It complements the BV gg rating seen above.

E. Switching Characteristics

Gate Charge Parameters (Qg, Qge, Qgc). Gate charge
values of an IGBT are useful to size the gate drive circuit
and estimating gate drive losses. Unfortunately they
cannot be used to predict switching times, as for a power
MOSFET, because of the minority carrier nature of this
device. The test method and the characteristics described
in the application note AN-944 [3] for power MOSFETs
are also applicable to IGBTs. Figure 15 gives the typical
value of the total gate charge as a function of the voltage
applied to the gate. The shape of the curve is explained
in detail in AN-944.

Switching Times (tq, tr, tf). The switching times are
defined in a fairly conventional way (Figure 16):
- Turn-on delay time: 10% of gate voltage to 10% of
collector current
- Rise time: 10 to 90% of collector current
- Turn-off delay time: 90% of gate voltage to 90% of
collector voltage
- Fall time: 90 to 10% of collector current. The fall time
definition is a problem with some IGBTSs, because of the
current tail, mentioned in Section IIB, a significant part
of which may be below 10%. The voltage fall time, on
the other hand, is not characterized in any way. Thus, two
significant contributors to losses are not properly
accounted for by the switching times and, for this reason,
they should not be used to calculate switching losses.

Switching losses are fully characterized as such in the data
sheet, as explained in the next paragraph.

td(on}—|

Ets = (Eon + Eof)

Figure 16. Switching Loss Test Circuit and Waveforms



0.350 1 1
L Vce = 480V

= Vge = 15V
£ 03451 Te-25C (/
%) ic=6.5A
w
A
S 0340 v
& /
e /
w
& 0335
(O]
Z
5
£ 0.330 A
2
(2]
2 )4

0.325
o

0.320

G 25 30 35 a0 45 50 55

Rg, GATE RESISTANCE (OHMS)
Figure 17. Typical Switching Losses vs. Gate Resistance

T 1111
I~ Vge =15V
=5 Vee = 480V
E | Rg-500
o
w
@
4]
3.0 Ic = 13A
o 10 L™
0 T
. - IR
w P
@ Ic =6.5A ——
=
5 ]
[ | oeanporerter==}
; g
® -
2 lc=33A
5 .
=4
16"
60 -40 -20 0 20 40 60 80 100 120 140 160

Tc, CASE TEMPERATURE ('C)
Figure 18. Typical Switching Losses vs. Case Temperature

It should be remembered that IGBTs, like power
MOSFETSs, do not have a storage time. The turn-off
delay is due to the Miller effect, as explained in Section
IVA.

Switching times provide a useful guideline to establish
the appropriate deadtime between the turn-off and
subsequent turn-on of complementary devices in a half
bridge configuration and the minimum and maximum
pulse widths.

Switching Energy (Eon, Eqff, Etg). 1GBTs from
International Rectifier have a guaranteed switching energy
providing a full characterization in terms of temperature,
collector current and gate resistance (Figures 17, 18 and
19 for the IRBGC20U). This allows the designer to
calculate the switching losses, without worrying about the
actual current and voltage waveshapes, the tail and the
quasi-saturation.

Any test circuit for measuring switching losses has to
satisfy two fundamental requirements:

1. It must simulate the switching conditions as they
are encountered in a practical application, i.e., a clamped
inductive load with continuous current flow.

2. It must reflect the losses that are attributable
to the IGBT, and must be independent from those due
to other circuit components, like the freewheeling diode.

The test circuit that meets these requirements is shown
in Figure 16. Its operation is as follows:

The driver IGBT builds the test current in the inductor.
When it is turned off, current flows in the zener. At this
point the switching time and switching energy test begins,
by turning on and off the device under test (DUT). The
DUT will see the test current that was flowing into the
inductor and the voltage across the zener, without any
reverse recovery component from a free-wheeling diode.
This test can exercise the IGBT to its full voltage and
current without any spurious effect due to diode reverse
recovery.

The test method, on the other hand, must account for
all losses that occur because of the switching operation,
including the quasi-saturation at turn-on and the tail at
turn-off. To fulfill this requirement, the energy figures
reported in the data sheet are defined as follows:

Egpn: From 5% of test current to 5% of test voltage.
We feel that 5% is a reasonable compromise between the
resolution of the instrumentation and the need to account
for the quasi-saturation that could occur in some devices.

Eoff: This energy is measured over a period of time
that starts with 5% of test voltage and goes on for 5 usec.
While the current tail of most IGBTs would be finished
well before that time, it was felt that the contribution of

the leakage loses to the total energy is minimal.
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Figure 19. Typical Switching Losses vs. Collector Current
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Ejg: This is the sum of the turn-on and turn-off losses.

As shown in Figure 19, switching energy for
International Rectifier IGBTS is closely proportional to
current. This is not necessarily true for IGBTs from other
manufacturers.

Internal Emitter Inductance (L ). This is the package
inductance between the bonding pad on the die and the
electrical connection at the lead. This inductance slows
down the turn-on of the IGBT by an amount that is
proportional to the di/dt of the collector current, just like
the Miller effect slows it down by an amount that is
proportional to the collector dv/dt. With a di/dt of 1000
A/psec, the voltage developed across this inductance is
in excess of 7V.

Device Capacitances (Cige, Coee, Cree). The test circuit
and a brief explanation of the test method can be found
in Figure 20. The output capacitance has the typical
voltage dependence of a P-N junction. The reverse transfer
(Miller) capacitance is also strongly dependent on voltage
(inversely proportional), but in a more complex way than
the output capacitance. The input capacitance, which is
the sum of the gate-to-emitter and of the Miller

620K

Cige = Ccg + Cge =

N
[N

Cmeasured  C2

wed 02 620K
Coee = Ccg + Cee =

SR N
LS

Crmeasured  C2

CAPACITANCE
METER our

BIAS
VOLTAGE

Low
Low 10:1 14 620K
W e = Cep
CAPACITANCE BIAS Lo
METER VOLTAGE
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620K
—— A

Figure 20. Capacitance test circuits.

The IGBT is biased with 25V between collector and emitter.
Two of its terminals are ac shorted with a large value
capacitor. Capacitance is measured between these two
terminals and the third.
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capacitance, shows the same voltage dependence of the
Miller capacitance but in a very attenuated form since the
gate-to-emitter capacitance is much larger and voltage
independent.

The Transfer Characteristic (Figure 21 for the
IRGBC20U). This curve deviates from the traditional
definition of transfer characteristic in one detail: the drain
is not connected to the gate but to a fixed (100V) supply.
When gate and drain are tied together, the curve is the
boundary separating operation in full enhancement from
operation in linear mode (sometimes referred to as *‘sat
mode’’).

Figure 21 provides an indication of current when
operated in short circuit. In the normal range of operation
this curve shows a slight negative dependence on
temperature and is largely independent from applied
voltage.

Section lll: The IGBT Families from IR

The discussion in Sections I and II can be summarized
in a comparative table (Table II) that may be useful in
placing different power transistors in the proper
perspective. In general, the IGBT offers clear advantages
in high voltage (>300V), high current (1-3 A/mm? of
active area), and medium speed (to 10-20 kHz).

In a technological breakthrough, International Rectifier
has developed a processing method that reduces the
voltage drop per unit of current density to much lower
values than are obtainable with state-of-the-art
technology. This allows higher levels of minority lifetime
killing and, consequently, much lower switching losses.

To maximize the value to the user of its technological
breakthrough, International Rectifier has introduced three
different families of devices with different crossover
frequency: Standard, Fast and UltraFast.
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Figure 21. Typical Transfer Characteristics



Table II: Comparative Table of Power Transistor Characteristics

Power
MOSFETs 1GBTs Bipolars Darlingtons
Type of Drive Voltage Voltage Current Current
Drive Power Minimal Minimal Large Medium
Simple Simple High Medium
Large positive
Drive Complexity and negative
currents are
required
High at | Very High Medium Low
low Small Severe trade-
Current Density voltages | trade-off off with
For Given Voftage with switching
Drop Low at switching speed
high speed
voltages
Very Low | Low to Medium to High
Medium High
depending | depending on
Switching Losses on trade- | trade-off with
off with conduction
conduction losses
losses
Ve — l
AR

-

I (T T T
-

PRSP S e — JR—

ENERGY /

VCE: 100V/div.
Ic: 10A/div.
E: 05 mJidiv., 01 ps/div.

Turn-on. Current rise time is approximately 50 ns with a turn-on
energy of 1.5 mJ.

IR’s Standard 1GBTs have been optimized for voltage
drop and conduction losses and have the lowest voltage
drop per unit of current density that is presently available
in the market.

IR’s UltraFast IGBTS have been optimized for switching
losses and have the lowest switching losses per unit of
current density presently available in the market. As it is
apparent from Figure 22, these devices have switching
speeds that are comparable to those of power MOSFETs
in practical applications. They can operate confortably
at 50 kHz in PWM and significantly higher frequencies
in resonant circuits.

IR’s Fast devices offer a combination of low switching
and low conduction losses that closely matches the
switching characteristics of many popular bipolar
transistors.

Table III shows the key features of the three families.
Section IV: Application Considerations
A. Gate Drive Requirements

The same general considerations that are normally
made for power MOSFETSs would apply to IGBTs [2] [3].

They can be summarized as follows:

- The lowest switching losses are obtained with the lowest
drive impedance;

- To reduce the risk of dv/dt induced turn-on (see Note
3, page 12), the gate must be shorted to the emitter
through a very low impedance;

- Gate charge is a good representation of the input
characteristics of the IGBT, gate capacitance is not.

++

e

H

et
++

Vee

R A

ENERGY

VeE: 100V/div.
Ig: 10A/div.
E: 05 mdddiv, 0.1 usidiv.

Turn-off. Voltage rise time is approximately 50 ns with a current
tail of 100 ns and a turn-off energy of 1.7 mJ. The tail contribution
to these losses is 0.5 mJ. The drop in energy after the turn-off
is due to the saturation of the current sensor.

Figure 22, IRGPC50U switching 50A at 480V, 125°C. Test circuit is as shown in Figure 16.
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Table Ill: International Rectifier IGBT Families

Characteristic Standard Fast Ultrafast

Ve 13V 15V 1V
Switching Energy [ 054 mJ/A mm?2 }0.16 mJ/A mm2  0.055 mJ/A mm?

Conduction Losses
(50% dc) 0625W 0.75W 0.95W

1A/mm2, 100°C, Typical Values

The impedance of the gate drive circuit prolongs the
Miller effect and causes a delay in the current fall time
that is similar to a storage time. This delay is emphasized
in Figure 23 with the addition of a 47Q gate resistor. An
explanation of this phenomenon can be found in Section
6 of Reference [6] and Section B of Reference [7].

In addition to the delay, the gate resistor has an impact
on switching energy, as shown in Figure 17. As should
be expected, total losses decreases as the gate resistor value
goes down. The turn-on losses, being dominated by the
MOSFET characteristics, are more sensitive to the gate
drive impedence than the turn-off losses, which are largely
dictated by minority carrier phenomena. For this reason,
the impact of the gate drive impedance at turn-off is more
prominent in the UltraFast devices, while the Standard
devices are hardly affected.

Vee

Vee

VeE: 100V/div.
Ig:  SA/div.
VGE: 10V/div., 0.1 ps/div.

Figure 23. Turn-off waveform of an IRGBC40F with a 47Q gate
resistor. Notice the turn-off delay of the current waveform during
the Milier effect.

Switching circuit as in Figure 16.

In spite of this, some manufacturers have suggested the
use of gate resistors to reduce the possibility of ‘“dynamic
latching” (Section I, D). Although International Rectifier
IGBTs do not have such requirement, there may be
practical reasons to add them, mainly to reduce the
current spike at turn-on due to reverse recovery of the
diode. A more detailed analysis can be found in AN-978A,
Section 3.b [4].

To reduce the risk of dv/dt induced turn-on a negative
gate bias is frequently used. Unfortunately, this requires
additional isolated supplies for the high side switches. As
explained in [4], a better layout could be as effective in
taking care of this problem as the negative bias. In many
cases the effects of a contained amount of dv/dt induced
turn-on, i.e., a small increase in power dissipation, can
be an appealing alternative to the added complexity of
the negative gate bias.

The gate terminal can be advantageously used to
control the short-circuit withstanding capability of the
IGBT. A decrease in gate drive voltage reduces the
collector current and the power dissipation during short
circuit. Simple circuits can be implemented to perform
this function with a response time of less than 1 usec.

IR2110
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Figure 24. The IR2110 provides a simple, high performance,
low cost solution to the problem of driving a Half-Bridge.

The circuit shown in Figure 24 provides a simple, low
cost, high performance solution to the gate drive
requirements of most applications. As explained in [4],
a diode-resistor network in series with the gate may be
needed in some applications.

31n a MOS-Gated transistor, any dv/dt that appears on the collector/drain
is coupled to the gate through a capacitive divider made of the Miller capacitance
and the gate-t i i If the gate is not solidly clamped to
the source/emitter, a large enough dv/dt will take the gate voltage beyond its
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hreshold and the i would cond As it goes into conduction it clamps

the dv/dt that is causing it to conduct so that the gate voltage never goes much
beyond its threshold. The end result is a limited amount of “‘shoot-through’
current, with an increase in power dissipation.




B. Calculation of losses

In any given interval, the energy dissipated in the device
can be obtained with the following formula:

ts
f I(t) v({) dt
0

Power is obtained by multiplying energy by frequency.

E =

Losses are negligible when the transistor is off because
I(t) = 0. For the sake of analytical expediency we divide
the losses in two groups: conduction and switching.
Again, for expediency’s sake, the switching losses will be
divided in two groups: losses when switching with an ideal
diode and the contribution of reverse recovery.

1. Conduction Losses

If the current waveform during conduction is a
rectangular pulse, the conduction energy is simply the
product of the current times the voltage drop times the
conduction time.

To obtain the maximum voltage drop at any current and
temperature, from the data sheet supplied values, a two
step procedure can be followed.

Firstly, a typical value is obtained by interpolating a
curve in Figure 14 for the IRGBC20U at the desired
current level. Then, to obtain a maximum value, the
voltage drop read from this curve at the appropriate
junction temperature is multiplied by the ratio between
maximum and typical from the Table of Electrical
Characteristics.4

An additional correction may be required if the gate
drive voltage is not 15V. This can be interpolated from
Figures 12 and 13.

If the current waveform is not a rectangular pulse, the
conduction losses can only be found by calculating the
integral. This requires a mathematical expression for the
current waveform and one for the voltage drop. The
expressions for the voltage drop as a function of current
can be found in Table IV for the three familiesS. In many
instances the integral can only be solved through
numerical routines.

4This procedure assumes that the ratio between typical and maximum
values measured at a given current and 25°C maintains over a wide range of current
and temperature.

SThe ~values in the model are expected to become more accurate as the
knowledge of the device and its process grows.

2. Switching Losses With Ideal Diode

In this case, since the mathematical expressions for
current and voltage are awkward and inaccurate, the
option of an analytical calculation is not open and the
data sheet supplied values provide the only recourse.

To obtain the total switching losses for any given current
and temperature, a three step procedure should be
followed, similar to the one for obtaining the on-state
voltage drop. Firstly a typical value is obtained, either by
interpolating a curve in Figure 18 in correspondence of
the desired current, or by plotting another curve on Figure
19 for the appropriate temperature, from the values read
from Figure 18.

From this typical value a max can be obtained by
multiplying the typical by the ratio between maximum and
typical that is in the Table of Switching Characteristics.

Finally, since the switching energy is proportional to
voltage, the result is scaled by the ratio of the actual circuit
voltage to the test voltage (normally 80% of device rated
voltage).

An additional correction may be necessary to account
for the gate resistor. This can be done with the help of
Figure 17.

3. The Contribution of the Diode Reverse Recovery

In a typical clamped inductive load in continuous
current mode, the turn-on of a switch causes a reverse
recovery in the freewheeling diode and a large current
spike in the device that is being turned on (Figure 10a)
[5]. This causes additional losses in the IGBT, as well as
in the diode. Here we are only concerned with the losses
in the IGBT.

Table IV: Voltage Drop as a Function of Collector Current

General Expression: Vge = Vr + R P

\GBT IGBT-2 1GBT-3 16BT-4 16BT-5
Famiy {Vi | R |8 |V| R |8|v|R|8|V| R |8

Standard
Typ. 10.75]0.0771.13{0.75| 0.054 |1.07]0.75| 0.022( 1.08 {0.75 |0.0116 1.09
Max. 10.95 (0.096|1.21(0.95| 0.068 |1.04 {0.95| 0.027(4.090.95|0.015 [1.12

Fast
Typ. {0.95]0.18 |0.90|0.95) 0.076 |0.95 (0.95(0.032 (1.02(0.950.0166 1.03
Max. [1.2310.23 |0.93(1.23f 0.10 |0.98{1.23( 0.42 |1.02{1.23{0.022 | 1.03

Ultrafast
Typ. |1.2 |0.16 |1.04(1.2 0.076 |1.07[1.2 |0.050{1.0 [1.2 |0.016 |1.05
Max. {1.4510.23 |1.09(1.45/0.095 |1.151.450.070| 1.0 |1.45]0.021 {1.17

Rated Voltage: 600V Ty = 150°C Vge = 15V

105



As explained in Section II, C, the switching losses
reported in the data sheet do not include the losses caused
by the diode reverse recovery. These can be approximated
by the following expression, that we supply without
justification:

VI I I th
ED = — (1 + ) ta-(1--T} 2>
2[( I a I 2

where V and I are supply voltage and load current. Ip¢
is the peak reverse recovery current and ty and tp are the
two components of trr.

C. Thermal Design

It should be kept in mind that the IGBT, like the power
MOSFET and the thyristor, is a thermally limited device.
Hence, a good thermal design is the key to its cost effective
utilization.

In general, the objective of the thermal design is the
selection of the heatsink. Having calculated, with the help
of the preceding section, the power dissipation, the
maximum heatsink thermal resistance required to keep the
junction temperature below a certain design limit can be
calculated with the following formula:

AT] -a
P4

Rthsa = - Rths-c - Rthes

The process of selecting the best device-heatsink
combination may require an iterative use of the above
formula.
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In order to obtain a thermal resistance case-to-sink that
is close to the data sheet value, the mounting torque
should be close to what is specified. An excessive
mounting torque causes the package to bow and may
crack the die. An inadequate mounting torque, on the
other hand, gives poor thermal performance.

The temperature rise due to pulses of short duration
can be calculated with the transient thermal response
curve. The section ‘“Peak Current Rating’’ in application
note AN-949A [6], originally written for International
Rectifier HEXFET Power MOSFETs, describes the
procedure in detail and is, in this respect, equally
applicable to IGBTs. O
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AN-984

Protecting IGBTs Against Short Circuit

(HEXFET is a trademark of International Rectifier)
by G. Castino, A. Dubashi, S. Clemente, B. Pelly

Summary

Insulated Gate Bipolar Transistors (IGBTs) with the
most rugged intrinsic short circuit performance generally
have high saturation voltage and high operating losses,
and vice versa.

This application note demonstrates that IGBTs with
even modest intrinsic short-circuit capability can be fully
protected against short circuit, allowing the most efficient,
cost effective IGBTs to be used, without compromising
ruggedness of the overall system.

Introduction

IGBTs are set to displace bipolar transistors and
Darlingtons in applications such as variable speed motor
controllers, uninterruptible power supplies, and high
frequency welders. They generally offer comparable or
lower power dissipation, higher operating frequency, and
simplification of drive circuitry.

Systems using IGBTS offer greater compactness, greater
efficiency, and superior dynamic performar_lce than those
with bipolar transistors.

The properties of the IGBT that make these advantages
possible bring with them a new design consideration. An
IGBT designed to maximize efficiency has a relatively high
gain and this means a short-circuit current that is
significantly greater than that obtained with a bipolar. The
power density in the IGBT with an applied short circuit
can therefore be much higher than that in a bipolar
transistor.

An IGBT designed to minimize power dissipation under
normal load conditions is unable to handle an unabated

short circuit for as long as a bipolar transistor. The IGBT
is not, therefore, as intrinsically fault-tolerant and will
require a more ‘‘alert’’ protective circuit.

The purpose of this application note is to show how
such a protective system can be implemented and to
demonstrate that it can provide full short circuit
protection, even for the most efficient high gain IGBT.

IGBT Short Circuit Characteristics

A test circuit for characterizing the short circuit
capability of an IGBT is shown in Figure 1.

c

)

3
Vg

o
!
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t=0

Figure 1. Typical short-circuit test for IGBT

A “stiff’”’ voltage is applied from the reservoir
capacitor, directly across the collector-emitter terminals
of the device under test.
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A pulse of voltage is applied to the gate (at a low
repetition rate), and a pulse of ‘‘short-circuit” current
flows. The short circuit time, tgc, is gradually increased,
until device failure occurs. The permissible short circuit
time, for given values of collector-emitter voltage, gate
voltage and starting temperature, can thus be determined.

This simple test circuit is useful for obtaining a first
order assessment of the short circuit capability of an
IGBT. It does not completely represent an actual
application short-circuit condition because it does not
apply dynamic dv/dt, which could induce the IGBT to
latch-up. A more application-representative test circuit is
described later.

This short circuit test will yield different results for
IGBT: from the various manufacturers and different types.
Generally, the higher the saturation voltage, Vcgar), of
the IGBT the longer will be the permissible short circuit
time.

Typical permissible short-circuit times, for different
types of IGBTS, are shown in Figure 2. This data assumes
that sufficient voltage is applied to the gate to keep the
normal saturation voltage close to a practical minimum,
and that this same gate drive voltage is maintained during
the fault.

Vc((%,
vou 60

50

40+

0 1 1 1 1 1
10 20 30 40 50 60

tsc. PERMISSIBLE SHORT-CIRCUIT TIME 15

Figure 2. Typical IGBT short circuit time versus
saturation voltage drop, Vcesan

Figure 2 indicates that an IGBT with a saturation
voltage less than 2V typically has a permissible short
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circuit time of 5uS or less. An IGBT with a saturation
voltage of 4 to 5V can have a short circuit time in the range
of 30uS. (This is of the same order as for a typical bipolar
transistor. But the saturation voltage is now higher than
that of a bipolar).

Protecting Against Overcurrent — System Considerations

Different types of overcurrent condition will exist in a
typical application. The most common type of overload
is due to motor start-up, filter inrush current, step changes
of load, and so on.

It is usually not feasible for the transistor (whatever type
it is) to ride ‘‘brute force’’ through this type of situation,
relying only upon its intrinsic short-circuit capability to
carry it through. This type of overload typically lasts
much longer than the transistor’s intrinsic short-circuit
time. The overload must be brought under proper control
by other means.

A closed loop control is normally used that acts on the
drive pulse timing signals to modify the switching instants
and “‘hold back’’ the output current to a set level. The
response of this control loop only has to keep pace with
the rate of change of current that is naturally limited by
motor or filter inductance.

This type of overload, when controlled as above, is not
a threat to the integrity of the IGBT.

A second, more severe and more sudden type of
overload is due to ““mishaps,”’ such as ground faults, or
inadvertent terminal-to-terminal short circuits. Fault
current now bypasses motor or filter inductance, and rises
very rapidly in the transistor.

The regular PWM loop is powerless to protect against
this type of fault. Protection must rely, in the first
instance, upon the intrinsic short-circuit capability of the
transistor, followed by rapid sensing of the fault and
removal of the drive voltage, if the fault persists beyond
the permitted short circuit period.

If the “‘fault’’ is a transient that clears itself before the
permitted short-circuit period has expired, then the
transistor should remain in conduction; turning it off
would only constitute an unnecessary ‘‘nuisance’’ trip.

Diode reverse recovery current is an example of the type
of transient overcurrent which should be ignored.

Referring to the characteristics of the IGBTs illustrated
in Figure 2, the circuit designer’s job is to provide an iron-
clad protection circuit for an IGBT with the lowest
Vcggar) and hence lowest tgc, (but highest efficiency).



This circuit must provide reliable protection against real
faults, yet be insensitive to spikes and ‘‘false alarms.”

Stretching the IGBT’s Short Circuit Time

The most-efficient IGBT, with the lowest saturation
voltage drop, will typically have a short circuit time of
less than 5uS. Allowing a suitable safety margin, the
protection circuitry should react within 1 or 2uS
maximum. One possibility is to remove the gate drive
completely after 2uS, as represented by the waveforms in
Figure 3(a). This would protect the IGBT, but a period
of 1 or 2uS may generally be too short to distinguish
properly between a real fault and a ‘‘false alarm.”
Nuisance trips could result as illustrated in Figure 3(b).

Possible Ways of Protecting the IGBT  (Method 1)
* “Full”’ gate drive voltage for normal conduction

® Gate drive voltage rapidly removed in event of fault

N “FULL" V, \
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GATE VOLTAGE
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Figure 3a. Normal conduction losses minimized.
Rapid fault shut-down.
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Figure 3b. Nuisance shut-down can occur under
transient fault

The short circuit time can be stretched significantly
by the simple expedient of reducing the gate voltage.
Figure 4 illustrates that with reduced gate voltage, short
circuit current is significantly reduced, and short circuit
time is correspondingly increased.

lsc 300 30 s
(AMPS) us

20— tse Isc I3
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o V=0V |

100 ~10

501 5

0 ) ) I 1
0 5 10 15 2 25
Vg (VOLTS)

Figure 4. Typical relationships between gate
voltage, V@G, short circuit current, Ig¢c, and
permissible short-circuit time (IRGPC40F).

Reduction of the gate drive voltage, of course, increases
Vceisar Which cannot be permitted for normal
conduction.

The object is to reduce the gate drive voltage only when
the “‘short circuit”” occurs. This is illustrated by the
operating waveforms in Figure 5(a, b). The short circuit
period is now ‘‘stretched,’ prolonging the ‘‘fault
inspection’’ period, at the end of which the IGBT must
be turned off if the fault is still present.

The IGBT represented in Figure 3 has a short circuit
time of about 5uS with full gate drive voltage of 15V, and
about 15uS with gate drive voltage of 10V. Thus, if the
gate voltage is reduced to 10V as soon as a fault is
detected, the *“fault inspection’’ period can be stretched
to about 10uS (permitting a safety margin of about 5uS),
allowing ample time for ‘‘rejection’’ of transient faults
and false alarms. Operation is illustrated by the waveforms
of Figure 5.
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If the fault still persists after 10uS, the IGBT is turned
off. If the fault disappears before that, full gate voltage
is restored, and operation proceeds almost as if nothing
had happened.

Possible Ways of Protecting the IGBT (Method 2)

e “Full‘‘ gate drive voltage for normal conduction
¢ Gate drive voltage rapidly reduced in event of fault

® Gate drive voltage removed after delay, if fault
persists
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FAULT CURRENT LIMITED
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COLLECTOR-EMITTER VOLTAGE

MIN Veesan

e it

Figure 5a. Normal conduction losses minimized.
Fault current reduced. Delayed fault shut-down.
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Figure 5b. Nuisance shut down avoided under
transient fault

Protection Circuit Implementation

A functional schematic of a protection circuit is
illustrated in Figure 6.
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Figure 6. IGBT short circuit protection drive
circuit schematic
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During normal conduction, the saturation voltage of
the IGBT is less than Vref. The output of the comparator
is low, and the small MOSFETs Q1 and Q2 are OFF. The
IGBT’s gate drive voltage is unmodified.

When an overload occurs, the collector-emitter voltage
of the IGBT increases above Vref, and the output of the
comparator goes high. This initiates the timer;
simultaneously Q2 is turned ON, reducing the IGBT’s gate
voltage to the zener voltage, Vz.

If the fault disappears before the end of the timer
period, the output of the comparator goes low, Q2
switches OFF, full gate drive voltage is restored, and
normal operation proceeds.

If the fault is still present at the end of the timer period,
the timer output goes high, Q1 switches ON and the
IGBT’s gate voltage is removed, turning it OFF.

Performance of Protection Circuit
Test circuit

The protection circuit shown in Figure 6 was tested in
combination with International Rectifier’s IGBT type
IRFPC40F. This IGBT has a maximum permissible short
circuit time, at Vee = 350V and Vgg = 15V, of about
5uS, as illustrated in Figure 3.



The overall test circuit shown in Figure 7 was used to
evaluate the operation of the protection circuit.
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Figure 7. IGBT short-circuit test circuit

With reference to Figure 7, an input ON pulse of about
100xS is applied to the driver/protection circuit of the
IGBT under test. About midway through this ON pulse,
a drive pulse is applied to the larger IGBT, which short-
circuits the load for a controlled period.

When this happens, it is the job of the protection circuit
to immediately react by reducing the gate voltage of the
device under test. It subsequently restores the full gate
voltage, if the fault disappears before the end of the time-
out period, or it removes the gate voltage at the end of
the time-out period, if the fault still exists.

Test Results

The waveforms of Figures 8 through 13 illustrate the
performance of the protection circuit.

Figure 8 shows a pulse of normal current of about 40A,
with 110uS duration, and a superimposed short circuit of
about 10uS duration occurring midway through the
conduction period. The short circuit current initially rises
to about 220A, but is quickly pulled back to about 60A
by the action of the protection circuit. In this case, the
gate voltage is pulled down to about 8V. After about 104S,
the short circuit is removed, the current returns to the
normal load value, and full gate voltage is restored to the
IGBT under test.
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Figure 8. Load current with superimposed
transient fault current. (IRFPC40F).

Figure 9 shows the collector-emitter voltage
corresponding to the current waveform in Figure 8. The
supply voltage is about 370V.

When the short circuit occurs, the voltage across the
IGBT rises to the full supply voltage. When the fault is
removed, the IGBT voltage falls back to the normal
conduction voltage.
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Figure 9. Collector-emitter voltage across device
under test (IRGPC40F) with superimposed
transient short-circuit.
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Figure 10 shows the ‘‘prospective” short circuit current.
This is the fault current through the IGBT when the
protection circuit is disabled and 15V gate voltage is
maintained during the fault.

The peak short circuit current is about 280A. Note that
the time for which the short-circuit is applied has been
reduced to about 548, so as not to exceed the capability
of the IGBT with 15V gate voltage.
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Figure 10. Prospective short-circuit current (i.e.,
without gate voltage reduction) under transient
short circuit. IRGPC40F)

Figure 11 shows the gate voltage and the collector
current on an expanded time scale for approximately the
same conditions as for Figures 8 and 9. Note the very
effective current limiting action of the protection circuit
relative to the prospective short circuit current.
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Figure 11. Actual fault current with gate voltage
reduction from 15V to 8V under transient short-
circuit, and superimposed prospective fault current
with no aate voltaae reduction. (IRGPC40F)
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Figure 12 shows waveforms for a similar fault as for

Figure 11, but with the gate voltage reduced to 10V during
the fault.
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Figure 12. Actual fauit current with gate voltage
reduction from 15V to 10V under transient short
circuit, and superimposed prospective fault current
with no gate voltage reduction. (IRGPC40F).

Figure 13 shows the operation of the protection circuit
when the duration of the short circuit exceeds the time-
out period of the protection circuit. The gate voltage is
removed at the end of the time-out period.
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Figure 13. Actual fault current with gate voltage
reduced from 15V to 8V under short-circuit, and
superimposed prospective fault current with no
gate voltage reduction. Short-circuit is
permanent, and driver switches off after 10 xS
(IRGPCA40F).



Soft Turn-On

Peak diode reverse recovery current when turning on
the IGBT into a diode-clamped inductive load can be
limited by limiting the IGBT’s gate drive voltage at
turn-on.

This may sometimes be desirable, though use of this
technique inevitably increases the total turn-on energy.

A test circuit for demonstrating the effect is shown in
Figure 14. The gate drive circuit for the IGBT has the
facility for limiting the drive voltage for the first 1 or 2uS
at turn-on, prior to stepping up to full drive voltage.

41 -
= /- 400V
SOFT TURN-ON Re (IR I o
AND PROTECTION
CIRCUIT
DOUBLE PULSE
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Figure 14. Soft turn-on test circuit.

Figure 15 shows oscillograms of IGBT voltage and
current at turn-on, with 15V drive applied to the gate. The
peak reverse recovery current of the diode is about 100A,
and the total turn-on energy dissipated in the IGBT is
about 22 mJ.
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Figure 15. Collector voltage and current at turn-on
with Vg(on) = 15V. (IRGPC40F).

Figure 16 shows equivalent waveforms when the IGBT’s
gate drive voltage is held to 10V for the first 2uS before
being stepped up to 15V. The peak reverse recovery current
of the diode is reduced to about 30A. The total turn-on
energy, however, increases more than twice, to about
52 ml.
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Figure 16. Collector voltage and current at turn-on
with Vg(on) = 10V. (IRGPC40F).

Conclusion

This application note demonstrates that it is possible
to provide reliable short-circuit protection of an IGBT
with modest intrinsic short-circuit capability, and
correspondingly with low saturation voltage drop and high
efficiency.

Thus the user is able to capitalize on the most efficient

IGBTs without having to compromise overall system
ruggedness. O
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