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This Design Idea
presents a low-
side, reverse-bat-

tery-protection tech-
nique for a dc-motor
system. The system in
Figure 1 incorporates
two protection op-
tions. The common
practice of using a
diode for reverse-bat-
tery protection does
not work with dc mo-
tors’ inductive loads.
In Figure 1, an Alle-
gro (www.allegromi
cro.com) A3940, a
low-cost power MOS-
FET controller,
drives a dc mo-
tor. An H-bridge for
driving the motor
comprises the n-
channel MOSFETs Q

0

to Q
3
. To change the

motor’s direction from forward (current
flowing from Phase A to Phase B) to re-
verse, the direction of current in the mo-
tor winding must reverse. This reversal
means that Q

0
and Q

3
switch from on to

off, and Q
1

and Q
2 
switch from off to on.

For an inductive load, the induced volt-

age, E, produced by a change in current
is E�L(di/dt), where L is the inductance,
and di/dt is the rate of change of the cur-
rent. The induced voltage opposes any
change in current. Therefore, after the
switches attempt a current reversal, cur-
rent continues to flow forward (forced by
the induced voltage) from ground back to
the power supply through Q

2
and Q

1
. The

current gradually decays to zero and then
reverses direction. If a reverse-battery-
protection diode is present in the current
path, the decaying current is blocked and
a large voltage can develop across the pro-
tection diode. Thus, the normal current
recirculation meets interference. Further,
the protection diode may break down,
and potentially destructive voltages can
appear on the FETs and the IC.

Figure 1 shows how to implement re-
verse-battery protection using the n-
channel MOSFET, Q

6
, at the ground (low

side) of a power supply. You can use ei-

ther Option A (solid line) or Option B
(broken line) to complete the circuit pro-
tection. If you use Option A, remove Q

5
.

If you use Option B, you should cut open
the bold trace marked “Option A.” In
both options, Q

6
is connected such that

its source connects to the H bridge, its
drain to the power-supply ground, and its
gate to the VREG13 output (a regulated
13.5V). At power-up, the body diode of
Q

6
, D

1
, is forward-biased and provides

the dc current path that allows the IC to
power up.As the VREG13 regulator pow-
ers up, it turns on Q

6
, which provides a

lower resistance path to ground than does
the body diode, D

1
. Thus, Q

6
connects the

IC’s ground and the power supply’s
ground. In normal operation, the motor
current in the H bridge can flow from the
power supply to ground or from ground
back to the power supply through Q

6
. In

the case of a reverse-battery condition, Q
6

stays off, because the VREG13 voltage is
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Motor uses simple reverse-battery protection
Dongjie Cheng, Allegro Microsystems, Warminster, PA

Using MOSFETs instead of a diode for
reverse-battery protection prevents inductive-
kick problems in motor-drive circuits.
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not available and the Q
6

body diode, D
1
,

is reverse-biased, preventing any reverse-
current flow.

We devised Option B because of a con-
cern that switching noise may appear at
the IC’s ground if Q

6
’s on-resistance is

not low enough. By opening the connec-
tion labeled Option A, you isolate the IC
ground from the potentially noisier con-
nection at the source of Q

6
. Q

5
is config-

ured and operates in the same fashion as
Q

6
. Q

5 
can have higher on-resistance than

Q
6
, and, in this configuration, you may

relax the on-resistance requirements for
Q

6
. Experiments have demonstrated that

both options work equally well if you
carefully choose Q

6
’s on-resistance.�

Traditionally, the reception quali-
ty of a digital receiver is expressed in
terms of BER (bit-error rate). This

figure is the proportion of received bit er-
rors in a given period. Typically, you
measure the BER in the lab by applying
an RF signal, modulated by a pseudo-
random code, to the receiver under test.
This Design Idea suggests an alternative
method based on the use of a simple
square wave. This method may not be su-
perior to the usual technique, but it is
simple to implement and gives a reliable
result. The simplicity of the method is
based on the fact that it requires no com-
plex synchronization. Admittedly, a
square wave is not truly representative of
the data a receiver encounters in normal
use (Figure 1). The square wave to mod-
ulate the RF carrier is phase-shifted to al-
low for the delay in the receiver. An ex-
clusive-OR gate produces a sampling
pulse at each bit transition—typically,
10% of the data-bit width. This sample
pulse samples the raw data the receiver
generates, producing clean data.

The key to understanding this
technique is to keep in mind that a string

of two successive ones or zeros indi-
cates an error. A D flip-flop imple-
menting a 1-bit delay detects the error.

You can display error pulses on an os-
cilloscope or count them by using a fre-
quency counter. Figure 2 shows a typi-
cal test setup. You modulate the RF
generator at the prescribed data rate.
Note that a 500-Hz square wave is
equivalent to a baud rate of 1 kbps. Both
the modulating signal and the received
data feed into the BER-test board. You
adjust the sampling signal to be near the
end of the received-data pulse. In many
digital receivers, this arrangement yields
a fair approximation to a correlation re-

ceiver. Error pulses appear on the oscillo-
scope. If you wish, for example, to set the
RF level for a BER of 1-to-100, you reduce
the RF level to the receiver such that, in a
100-msec sweep you see, on average, one
error pulse per sweep.

In Figure 3, IC
1

and potentiometer P
1

form the basis of an adjustable phase
shifter. R

2
provides hysteresis, and R

1
, C

1
,

and IC
2

form a differentiator that pro-
vides a sampling pulse train. The first
flip-flop clocked by the sampling pulse
makes a hard decision concerning each
bit. The next D flip-flop, together with
exclusive-OR gate IC

2B
detects the oc-

currence of two successive identical bits.
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Simple setup tests bit-error rate
Israel Schneiderman, Rosslare Israel Ltd, Rosh Ha’ayin, Israel

This timing diagram illustrates the operating principles of a simple BER tester.F igure  1
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The simple BER tester uses an adjustable phase shifter and a differentiator.
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This situation constitutes an error. A fi-
nal D flip-flop and a transistor ensure
that the Error output is clean. The con-
struction of the system follows the circuit
diagram in Figure 3. It sets an HP8647 RF
signal generator at 868.35 MHz, and a
function generator provides OOK
(on/off-key) modulation. The receiver

under test was a Melexis (www.melexis.
com) TH7122 at 868.35 MHz in the
OOK-modulation mode. Adjust the RF
level to vary the error rate. This design
obtains an RF level of �107 dBm for a 1-
to-1000 BER and �108 dBm for a BER of
1-to-100, levels consistent with the data
sheet. You should take care when you’re

implementing OOK. Most RF generators
provide AM. Thus, you must remove 3 dB
from the displayed RF value. You can use
this technique for other types of binary
modulation, such as FSK (frequency-shift
keying), for example.�

Designs for solar-powered appli-
cations with low-duty-cycle re-
quirements can often rely on ca-

pacitors for energy storage in place of less
reliable batteries. Typical applications in-
clude solar positioning, telemetry trans-
mitters, chemical pumps, data loggers,
and solar-powered toys. The circuit in
Figure 1 can run a small pager motor
from the output of a small calculator-
type solar cell in near darkness. The cir-
cuit works by repeatedly charg-
ing a 4700-�F capacitor, C

1
, to

1.75V and then dumping the charge into
the motor. Only the self-leakage current
of the solar cell limits low-light opera-
tion. The circuit itself has such low leak-
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Solar-powered motor runs on 10 nA
Stepan Novotill, Victoria, BC, Canada

By repeatedly charging a storage capacitor and then dumping its charge into a small motor, this
circuit can run the motor on only 10 nA of current.
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age currents and trigger-current require-
ments that it can run the motor on 10 nA
of current if you use a low-leakage ener-
gy-storage capacitor. Transistors Q

1
and

Q
2 
form a regenerative pair similar to a

thyristor. The 1N4007 diodes take the
place of pullup and pulldown resistors,
and the diodes bypass the leakage current
of the transistors and LED.

As the C
1
’s charge approaches 1.75V,

the green LED starts to conduct, causing
Q

1
to turn on and feed current to the base

of Q
2
. The amplified base current appears

as a disturbance at the collector of Q
2
.

The emitter-base drop of output transis-
tor Q

4
isolates the collector of Q

2
from the

output transistor, and the emitter-base-
drop of Q

3
and the 10-nF capacitor, C

2
,

isolate Q
2

from the dc bias at the base of

Q
2
. However, the nanoamp-magnitude ac

disturbance at the collector of Q
2
couples

into the base of Q
1 
via C

2
, causing fierce

regenerative action. You achieve nano-
amp triggering and charging of C

1

through the use of leakage diodes in place
of pullup resistors, through isolation of
the load at the start of regeneration, and
through the dc isolation of Q

1
’s bias volt-

age from the collector of Q
2

at start of re-
generation. As regenerative action con-
tinues, a dc latching path appears be-
tween the base of Q

1
and the collector of

Q
2 

through transistor Q
3
. At this point,

output transistor Q
4

also enters satura-
tion, and the motor runs.

The high motor load quickly dis-
charges C

1
toward 1.1V, at which point Q

1

can no longer sustain regenerative action

because of the voltage loss in the  emit-
ter-collector junctions of Q

1
and Q

3
. The

100� resistor and the reverse charge on
C

2
drive Q

1 
into cutoff and another en-

ergy-storage-capacitor charging cycle be-
gins. Substitute a blue LED for the green
one or add diodes in series with the LED
to increase circuit-firing voltage beyond
1.75V. You can use 10-M� resistors in
place of 1N4007 diodes to improve noise
immunity if you don’t need less-than-1-
�A operation. Capacitors become leaky
if you leave them in storage. You may
need to condition such capacitors by ap-
plying a 9V battery to the capacitor for a
few days. Use two solar panels in series
to provide enough voltage for very-low-
light operation.�

In many applications, it’s desirable to
disable LEDs used for system verifica-
tion. Many options are available for the

disabling function, including manual
SPST (single-pole single-throw) switches,
enhancement- and depletion-mode
MOSFETs, bipolar-junction transistors,
and JFETs. The circuit in Figure 1 auto-
matically disables the LEDs when a me-
chanical housing encloses the circuit card,
thereby preventing you from accidentally
leaving the LEDs on to waste power. The
main switch portion of the circuit
comprises an amplified photovolta-
ic cell (photodiode) and a small, n-chan-
nel MOSFET. The amplified photodiode
signal provides drive to the MOSFET’s
gate when enough light is available. Be-
cause the photodiode generates its own
power from the available light, the ampli-
fied photodiode IC consumes only mi-
crowatts in a unity-gain configuration.

Originally, I considered using a series
string of photodiodes to directly drive
the MOSFET’s gate. However, the inte-
grated OPT101 design provides reliable
operation under a number of light con-
ditions. If you adjust the gain of the am-

plifier, the circuit can function in both
bright and dim applications. I use mul-
tiple MOSFETs for unique voltage
ranges in which the LED would suffer
damage from excessive reverse-bias volt-
ages. This precaution is important in a
design with multiple power-supply volt-
ages. For instance, if you used only one
MOSFET to control the LEDs in a de-
sign using 3.3 and 12V supplies, the re-
verse voltage across the 3.3V LED would

be 8.7V when the switch is off. This re-
verse voltage exceeds the absolute max-
imum rating for many LEDs. If you need
to control status LEDs using a micro-
controller or some other logic-level de-
vice, add another MOSFET between the
LED and the light-switch circuit. This
configuration allows the light switch to
act as a master on/off switch and the 
logic device to act as a secondary on/off
control.�
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Photovoltaic switch disables unused LEDs
Lance McBride, Monterey Bay Aquarium Research Institute, Moss Landing, CA

This circuit configuration turns off unneeded LEDs when it’s dark.
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Assume that a design requires posi-
tive voltage, but only a negative-volt-
age power source is available. Using

a standard boost-converter IC in the cir-
cuit of Figure 1, you can efficient-
ly generate a positive voltage from
a negative source. The boost converter
generates an output voltage that’s higher
than the input voltage. Because the out-
put voltage—5V in this example—is
higher than the negative-input-voltage
ground level, the circuit does not violate
the boost-converter principle. The circuit
in Figure 1 uses the EL7515, a standard
boost converter. The ground pins of the
converter IC connect to a negative-volt-
age input source. Ground becomes the
“positive” input source.V

OUT
is as follows:

V
OUT

��V
FB

(R
2
/R

1
)��1.33V (37.5k�/

10k�)��5V. The Q
1
and Q

2
pnp transis-

tors form a translator that scales the 5V
output voltage (referred to
ground) to a feedback voltage
referred to the negative input.
The transistor pair also elimi-
nates temperature-change and
voltage-drop effects.As the neg-
ative input voltage decreases, Q

2

runs at an increasingly higher
current than Q

1
, causing addi-

tional transistor-offset mis-
match.

For optimal line regula-
tion, you should set Q

1
and Q

2

to operate at the same currents

with the nominal input-voltage applied.
Figure 2 shows the line-regulation re-
sults. The maximum output-to-input
voltage difference must be within the

boost converter’s internal power FET
drain-to-source breakdown voltage
(V

DS
). For the EL7515, the maximum V

DS

is 18V. For the 5V output, the minimum
(most negative) input voltage is
�12V. A 1V safety margin com-
pensates for the D

1
diode drop

and any voltage spikes on the
drain of the power FET. Figure 3
shows the load-regulation test re-
sults. The maximum output cur-
rent is a function of the input-to-
output voltage ratio and cur-
rent-limit setting of the boost
converter. As Figure 4 shows, the
circuit yields greater than 80% ef-
ficiency at 200-mA output.�
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Boost converter works 
with wide-range negative-input supply
Mike Wong, Intersil Corp, Milpitas, CA

By using its ground terminals as the negative-voltage input, a boost converter can efficiently gener-
ate a positive output voltage.
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The line regulation is within ��40 mV over the full range of
negative inputs.
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The output voltage varies by less than 14 mV over the full
range of output currents.
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The efficiency of the circuit peaks at 81% for medium output
current (200 mA).




