
1

Fixed-Point Arithmetic

2

Fixed-Point Notation

 A K-bit fixed-point number can be
interpreted as either:
 an integer (i.e., 20645)
 a fractional number (i.e., 0.75)

2

3

Integer Fixed-Point Representation

 N-bit fixed point, 2’s complement integer
representation

X = -bN-1 2N-1 + bN-2 2N-2 + … + b020

 Difficult to use due to possible overflow
 In a 16-bit processor, the dynamic range is
 -32,768 to 32,767.

 Example:
 200 × 350 = 70000, which is an overflow!

4

Fractional Fixed-Point Representation

 Also called Q-format
 Fractional representation suitable for DSP

algorithms.
 Fractional number range is between 1 and -1
 Multiplying a fraction by a fraction always

results in a fraction and will not produce an
overflow (e.g., 0.99 x 0.9999 less than 1)

 Successive additions may cause overflow
 Represent numbers between

 -1.0 and 1 − 2−(N-1), when N is number of bits

3

5

Fractional Fixed-Point Representation

 Equivalent to scaling
 Q represents the “Quantity of fractional bits”
 Number following the Q indicates the number of bits that are used

for the fraction.
 Q15 used in 16-bit DSP chip, resolution of the fraction will be 2 –̂15

or 30.518e–6
 Q15 means scaling by 1/215

 Q15 means shifting to the right by 15

 Example: how to represent 0.2625 in memory:
 Method 1 (Truncation): INT[0.2625*215]= INT[8601.6]

= 8601 = 0010000110011001
 Method 2 (Rounding): INT[0.2625*215+0.5]= INT[8602.1]

= 8602 = 0010000110011010

6

Truncating or Rounding?
 Which one is better?
 Truncation

 Magnitude of truncated number always less than or equal to the original value
 Consistent downward bias

 Rounding
 Magnitude of rounded number could be smaller or greater than the

original value
 Error tends to be minimized (positive and negative biases)

 Popular technique: rounding to the nearest integer

 Example:
 INT[251.2] = 251 (Truncate or floor)
 ROUND [251.2] = 252 (Round or ceil)
 ROUNDNEAREST [251.2] = 251

4

7

Q format Multiplication

 Product of two Q15 numbers is Q30.

 So we must remember that the 32-bit product has two bits in front of the
binary point.

 Since NxN multiplication yields 2N-1 result

 Addition MSB sign extension bit

 Typically, only the most significant 15 bits (plus the sign bit) are stored
back into memory, so the write operation requires a left shift by one.

Q15 Q15

X

16-bit memory

15 bits15 bits

Sign bit
Extension sign bit

8

General Fixed-Point Representation

 Qm.n notation
 m bits for integer portion
 n bits for fractional portion
 Total number of bits N = m + n + 1, for signed

numbers
 Example: 16-bit number (N=16) and Q2.13 format

 2 bits for integer portion
 13 bits for fractional portion
 1 signed bit (MSB)

 Special cases:
 16-bit integer number (N=16) => Q15.0 format
 16-bit fractional number (N = 16) => Q0.15 format; also

known as Q.15 or Q15

5

9

General Fixed-Point Representation

 N-bit number in Qm.n format:

 Value of N-bit number in Qm.n format:
n

o

N

N

N

N

N

N
bbbbb 2/)2...222(1

3

3

2

2

1

1 +++++!
!

!

!

!

!

!

n

o

N

N

N

N

N

N
bbbbb

!!

!

!

!

!

! +++++!= 2)2...222(1

3

3

2

2

1

1

nl

N

l

l

m

N
bb

!
!

=

! "+!= 22

2

0

1

{ onnmnmn
bbbbbb

N

111
...... .

1

!!++

!

Fixed Point

10

Some Fractional Examples (16 bits)

Fraction (15 bits)SInteger (15 bits)S
.

Binary pt position

.Q15.0 Q.15 or Q15

Remaining 14 bitsUpper 2 bits
.

Q1.14

Used in DSP

6

11

How to Compute Fractional Number

bn-1bn-2…b0b’sb’m-1…b’0
.

Q m.n Format

-2mb’s+…+21b’1+20b’0+2-1bn-1 + 2-2bn-2…+2-nb0

Examples:

1110 Integer Representation Q3.0: -23 + 22 + 21 = -2

11.10 Fractional Q1.2 Representation: -21 + 20 + 2-1 = -2 + 1 + 0.5 = -0.5

 (Scaling by 1/22)

1.110 Fractional Q3 Representation: -20 + 2-1 + 2-2 = -1 + 0.5 + 0.25 = -
0.25 (Scaling by 1/23)

12

General Fixed-Point Representation

Min and Max Decimal Values of Integer and Fractional 4-Bit Numbers (Kuo & Gan)

7

13

General Fixed-Point Representation

• Dynamic Range
• Ratio between the largest number and the smallest

(positive) number
• It can be expressed in dB (decibels) as follows:
 Dynamic Range (dB) =
• Note: Dynamic Range depends only on N

• N-bit Integer (Q(N-1).0):
 Min = 1; Max = 2N-1 - 1 => Max/Min = 2N-1 - 1
• N-bit fractional number (Q(N-1)):
 Min = 2-(N-1); Max = 1-2-(N-1) => Max/Min = 2N-1 – 1
• General N-bit fixed-point number (Qm.n)
 => Max/Min = 2N-1 – 1

)/(log20 10 MinMax

14

General Fixed-Point Representation

Dynamic Range and Precision of Integer and Fractional 16-Bit Numbers (Kuo & Gan)

8

15

General Fixed-Point Representation

• Precision
• Smallest step (difference) between two consecutive

N-bit numbers.
 Example:
 Q15.0 (integer) format => precision = 1
 Q15 format => precision = 2-15

• Tradeoff between dynamic range and precision
 Example: N = 16 bits
 Q15.0 => widest dynamic range (-32,768 to
 32,767); worst precision (1)
 Q15 => narrowest dynamic range (-1 to +1-); best
 precision (2-15)

16

General Fixed-Point Representation

Dynamic Range and Precision of 16-Bit Numbers for Different Q Formats (Kuo & Gan)

9

17

General Fixed-Point Representation

Scaling Factor and Dynamic Range of 16-Bit Numbers (Kuo & Gan)

18

General Fixed-Point Representation

• Fixed-point DSPs use 2’s complement fixed-
point numbers in different Q formats

• Assembler only recognizes integer values
• Need to know how to convert fixed-point number

from a Q format to an integer value that can be
stored in memory and that can be recognized by the
assembler.

• Programmer must keep track of the position of the
binary point when manipulating fixed-point numbers
in asembly programs.

10

19

How to convert fractional number into integer

• Conversion from fractional to integer value:
• Step 1: normalize the decimal fractional number to the range

determined by the desired Q format
• Step 2: Multiply the normalized fractional number by 2n

• Step 3: Round the product to the nearest integer
• Step 4: Write the decimal integer value in binary using N bits.

• Example:
 Convert the value 3.5 into an integer value that can be

recognized by a DSP assembler using the Q15 format
=> 1) Normalize: 3.5/4 = 0.875;

 2) Scale: 0.875*215= 28,672; 3) Round: 28,672

20

How to convert integer into fractional number

• Numbers and arithmetic results are stored in
the DSP processor in integer form.

• Need to interpret as a fractional value
depending on Q format

• Conversion of integer into a fractional number
for Qm.n format:

• Divide integer by scaling factor of Qm.n => divide
by 2n

• Example:
 Which Q15 value does the integer number 2

represent? 2/215=2*2-15=2-14

11

21

Finite-Wordlength Effects

• Wordlength effects occur when wordlength of memory
(or register) is less than the precision needed to store
the actual values.

• Wordlength effects introduce noise and non-ideal
system responses

• Examples:
• Quantization noise due to limited precision of Analog-to-Digital

(A/D) converter, also called codec
• Limited precision in representing input, filter coefficients,

output and other parameters.
• Overflow or underflow due to limited dynamic range
• Roundoff/truncation errors due to rounding/truncation of

double-precision data to single-precision data for storage in a
register or memory.

• Rounding results in an unbiased error; truncation results in a
biased error => rounding more used in practice.

Multiplication & Division

12

23

Fast Multiplication

 What do we do?
 Let Verilog do it: Write a= b * c

 Design fast multiplier circuit

 Use built-in hardware multipliers

24

Fast Division

 More difficult problem-- no hardware
divider

 Traditional division is slow

 So, what to do?

13

25

Fast Division

 Find alternative solutions:
 Multiply by the reciprocal : A / D = A * 1 / D

 Great for constants
 Use Newton’s method for calculation of the

reciprocal of D

 Pipeline and use a slow algorithm (next
time)

 Speed up the slower algorithms

26

Newton-Raphson division

Newton-Raphson uses Newton's method to converge to
the quotient.

The strategy of Newton-Raphson is to find the reciprocal
of D, and multiply that reciprocal by N to find the final
quotient Q.

14

27

Newton-Raphson division

The steps of Newton-Raphson are:

 1. Calculate an estimate for the reciprocal of the divisor
(D): X0

 2. Compute successively more accurate estimates of the
reciprocal: (X1,…..,Xk)

 3. Compute the quotient by multiplying the dividend by
the reciprocal of the divisor: Q = NXk

28

Newton's method to find reciprocal of D

find a function f(X) which has a zero at X = 1 / D
a function which works is f(X) = 1 / X − D
The Newton-Raphson iteration gives:

which can be calculated from Xi using only
multiplication and subtraction.

Google for more details

15

2929

Division Overview

Grade school algorithm: long division
Subtract shifted divisor from dividend when it “fits”
Quotient bit: 1 or 0

Question: how can hardware tell “when it fits?”

1001010 DividendDivisor 1000
-1000

1001

1010
-1000

10 Remainder

Quotient

Dividend = Quotient X Divisor + Remainder

3030

Division Hardware - 1st Version

Divisor DIVR (64 bits)
Shift R

QUOT
 (32 bits) Shift L

Remainder REM (64 bits)
Write

Control

64-bit ALU

Sign bit (REM<0)

ADD/
SUB

LSB

Shift register moves divisor (DIVR) to right
ALU subtracts DIVR, then restores (adds back)

if REM < 0 (i.e. divisor was “too big”)

16

3131

Division Algorithm - First Version

START: Place Dividend in REM

DONE

REM ≥ 0?

2a. Shift QUOT left 1 bit; LSB=1

2. Shift DIVR right 1 bit

1. REM = REM - DIVR

33nd
Repitition?

REM ≥ 0 REM < 0

No: <33 Repetitions

Yes: 33 Repetitions

2b. REM = REM + DIVR
Shift QUOT left 1 bit; LSB=0

Restore

3232

Divide 1st Version - Observations

We only subtract 32 bits in each iteration
 Idea: Instead of shifting divisor to right,

shift remainder to left
First step cannot produce a 1 in quotient bit

Switch order to shift first, then subtract
Save 1 iteration

17

3333

Divide Hardware - 2nd Version

Divisor Holds Still
Dividend/Remainder Shifts Left
End Result: Remainder in upper half of register

QUOT
(32 bits) Shift L

REM
(64 bits) Write

Control

32-bit ALU

Sign bit (REM<0)

ADD/
SUB

DIVR (32 bits)

Shift L

LSB

3434

Divide Hardware - 3rd Version

Combine quotient with remainder register

REM
(64 bits) Write

Control

32-bit ALU

Sign bit (REM<0)

ADD/
SUB

DIVR (32 bits)

Shift L
LSB

Shift R

18

3535

Divide Algorithm - 3rd Version

START: Place Dividend in REM

DONE (shift LH right 1 bit)

REM ≥ 0?

3a.. Shift REM left 1 bit; LSB=1

1. Shift REM left 1 bit
2. LHREM = LHREM - DIVR

32nd
Repitition?

REM ≥ 0 REM < 0

No: <32 Repetitions

Yes: 32 Repetitions

3b. LHREM = LHREM + DIVR
Shift REM left 1 bit; LSB=0

3636

Dividing Signed Numbers

Check sign of divisor, dividend
Negate quotient if signs of operands are opposite
Make remainder sign match dividend (if nonzero)

19

37

Fast Division - SRT Algorithm
♦2 approaches:

∗ First - conventional - uses add/subtract+shift, number
of operations linearly proportional to word size n

∗ Second - uses multiplication, number of operations
logarithmic in n, but each step more complex

∗ SRT - first approach
♦Most well known division algorithm - named after

Sweeney, Robertson, and Tocher
♦Speed up nonrestoring division (n add/subtracts)

- allows 0 as a quotient digit - no add/subtract:

38

Modified
Nonrestoring

Division

♦Problem: full comparison of 2ri-1 with either D
or -D required

♦Solution: restricting D to normalized fraction 1/2
≤|D|<1

♦Region of 2ri-1 for which qi=0 reduced to

20

39

Modified Nonrestoring → SRT
♦Advantage: Comparing partial remainder 2ri-1 to 1/2

or -1/2, not D or -D
♦Binary fraction in two's complement representation

∗ ≥ 1/2 if and only if it starts with 0.1
∗ ≤ -1/2 if and only if it starts with 1.0

♦Only 2 bits of 2ri-1 examined - not full comparison
between 2ri-1 and D
∗ In some cases (e.g., dividend X>1/2) - shifted partial

remainder needs an integer bit in addition to sign bit - 3 bits
of 2ri-1 examined

♦Selecting
quotient digit:

40

SRT Division
Algorithm

♦Quotient digits
selected so
|ri| ≤ |D| ⇒ final
remainder < |D|

♦Process starts with
normalized divisor - normalizing partial remainder by
shifting over leading 0's/1’s if positive/negative

♦Example:
∗ 2ri-1=0.001xxxx (x - 0/1); 2ri-1<1/2 - set qi=0,

2ri=0.01xxxx and so on
∗ 2ri-1=1.110xxxx; 2ri-1>-1/2 - set qi=0, 2ri=1.10xxxx

♦SRT is nonrestoring division with normalized divisor and
remainder

21

41

Extension
to

Negative
Divisors

♦Example:
Dividend
X=(0.0101)2
=5/16
Divisor
D=(0.1100)2
=3/4

♦Before correction Q=0.1001 - minimal SD repr. of
Q=0.0111 - minimal number of add/subtracts

♦After correction, Q = 0.0111-ulp = 0.01102 = 3/8 ;
final remainder = 1/2 ⋅2 =1/32

_

-4

42

Example
♦X=(0.00111111)2=63/256 D=(0.1001)2=9/16

♦Q =0.01112=7/16 - not a minimal representation
in SD form

♦Conclusion: Number of add/subtracts can be
reduced further

22

43

Properties of SRT

♦Based on simulations and analysis:
♦1.Average “shift”=2.67 - n/2.67 operations for

dividend of length n
∗ 24/2.67 ~ 9 operations on average for n=24

♦2.Actual number of operations depends on
divisor D - smallest when 17/28 ≤ D ≤ 3/4 -
average shift of 3

♦If D out of range (3/5 ≤ D ≤ 3/4) - SRT can
be modified to reduce number of add/subtracts

♦2 ways to modify SRT

44

Two Modifications of SRT
♦Scheme 1: In some steps during division -

∗ If D too small - use a multiple of D like 2D
∗ If D too large - use D/2
∗ Subtracting 2D (D/2) instead of D - equivalent to

performing subtraction one position earlier (later)
♦Motivation for Scheme 1:

∗ Small D may generate a sequence of 1's in quotient one
bit at a time, with subtract operation per each bit

∗ Subtracting 2D instead of D (equivalent to subtracting D
in previous step) may generate negative partial remainder,
generating sequence of 0's as quotient bits while
normalizing partial remainder

♦Scheme 2: Change comparison constant K=1/2 if D
outside optimal range - allowed because ratio D/K
matters - partial remainder compared to K not D

23

45

Example - Scheme 1 (Using 2D)
♦Same as previous example -
♦X=(0.00111111)2=63/256 D=(0.1001)2=9/16

♦Q =0.10012=7/16 - minimal SD representation
_

46

Scheme 1 (Using D/2)

♦ Large D - one 0 in sequence of 1's in quotient may
result in 2 consecutive add/subtracts instead of one

♦ Adding D/2 instead of D for last 1 before the single 0
- equivalent to performing addition one position later -
may generate negative partial remainder

♦ Allows properly handling single 0
♦ Then continue normalizing partial remainder until end of

sequence of 1's

24

47

Example
♦X=(0.01100)2=3/8 ; D=(0.11101)2=29/32
♦Correct 5-bit quotient - Q=(0.01101)2=13/32
♦Applying basic SRT algorithm - Q=0.10111 - single

0 not handled efficiently
♦Using

multiple
D/2 -

♦Q =(0.10011)2=13/32 - single 0 handled properly

- -

_ _

48

Implementing Scheme 1

♦Two adders needed
∗One to add or subtract D
∗Second to add/subtract 2D if D too small
(starts with 0.10 in its true form) or
add/subtract D/2 if D too large (starts with
0.11)

♦Output of primary adder used, unless output of
alternate adder has larger normalizing shift

♦Additional multiples of D possible - 3D/2 or 3D/4
♦Provide higher overall average shift - about 3.7

- but more complex implementation

25

49

Modifying SRT - Scheme 2

♦For K=1/2, ratio D/K in optimal range 3/5≤D≤
3/4 is

♦6/5 ≤ D/K = D/(1/2) ≤ 3/2 or
(6/5)K ≤ D ≤ (3/2)K

♦If D not in optimal range for K=1/2 - choose a
different comparison constant K

♦Region 1/2 ≤ |D|<1 can be divided into 5 (not
equally sized) sub-regions

♦Each has a different comparison constant Ki

50

Division into Sub-regions

♦4 bits of divisor examined for selecting
comparison constant

♦It has only 4 bits compared to 4 most significant
bits of remainder

♦Determination of sub-regions for divisor and
comparison constants - numerical search

♦Reason: Both are binary fractions with small
number of bits to simplify division algorithm

26

51

Example
♦X=(0.00111111)2=63/256 ; D=(0.1001)2=9/16
♦Appropriate comparison constant - K2=7/16=0.01112

♦If remainder negative - compare to two's
complement of K2 =1.10012

♦Q=0.1001=0.01112=7/16 - minimal SD form_

