National Measurement Laboratory

Report of Calibration

Date of Issue: August 08, 2019

Report No.: E190504A

Instrument: DC Voltage Standard

Manufacturer: xDevs

Model: 792X

Serial Number: X102

Applicant: Illya Tsemenko

Address:

The result of this calibration, performed by the National Measurement Laboratory, is specified in this report. When the cover and the following 1 pages are separated, the

validity of this report no longer exists.

Shith - Fang Chen
Approved Signatory

National Measurement Laboratory

National Measurement Laboratory

321, Sec. 2, Kuang Fu Rd., Hsinchu, Taiwan 30011, R.O.C.

Report No.: E190504A

Instrument: DC Voltage Standard Ambient Temp.: (23.0 ± 1.5) °C

Manufacturer: xDevs Relative Humidity: $(45 \pm 10) \%$

Model: 792X Serial No.: X102

Calibration Results and Descriptions

I. Calibration Result

Nominal value (V)	Measured value (V)	Relative expanded uncertainty (μV/V)
10	9.999 9838	0.03

Note: The calibration result is based on the new Josephson constant ($K_J = 483597.85 \text{ GHz/V}$).

II. Descriptions

1. Date of Calibration

This calibration was performed on August 7, 2019.

2. Calibration Method

This calibration was carried out according to Instrument Calibration Technique for Programmable Josephson Voltage Measurement System¹. The DC voltage standard was calibrated by comparing its outputs of 10 V with those of NML programmable Josephson voltage standard.

3. Standard Used

10 V programmable Josephson voltage standard chip (S/N: chip 10WC_131122-12).

4. Relative Expanded Uncertainty

- 4.1 The relative expanded uncertainty was evaluated according to Measurement System Validation Procedure for Programmable Josephson Voltage Measurement System².
- 4.2 The reported relative expanded uncertainty was obtained by multiplying the relative combined standard uncertainty with a coverage factor k=2, corresponding to a level of confidence of approximately 95 %.

III. References

- 1. Instrument Calibration Technique for Programmable Josephson Voltage Measurement System, 07-3-A1-0079, 2nd, CMS/ITRI, 2017.
- Measurement System Validation Procedure for Programmable Josephson Voltage Measurement System, 07-3-A1-0201, 2nd, CMS/ITRI, 2017.